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Abstract

Given a compact set K in an open set D on a Stein manifold {2 of dimension
n, the set A of all restriction of functions to K, analytic in D with absolute value
bounded by 1 is a compact subset of C'(K). The problem on the strict asymptotics

for Kolmogorov diameters (widths):
Ind;(AR) ~ —git/™ i — o0

was stated by Kolmogorov in an equivalent formulation for e-entropy of that set.
For n = 1, this problem is solved by efforts of many authors (Erokhin, Babenko,
Zahariuta, Levin-Tikhomirov, Widom, Nguyen, Skiba - Zahariuta, Fisher - Mic-
cheli, et al) with o = 1/7 where 7(K, D) :=1/27 [ Aw (Aw is a positive measure
supported on K).

For n > 1 Zakharyuta conjectured that for "good" pairs (K, D) such an asymp-
totics holds with o = 2 (n!/C(K, D))" where C(K, D) is the pluricapacity of the
pairs (K, D) introduced by Bedford-Taylor [3]. In [31, 35] Zakharyuta reduced this
problem to a problem of pluripotential theory about approximating w(K, D;z) —1
on any compact subset of D\ K by pluricomplex Green functions on D. The latter
problem which is known as Zakharyuta’s conjecture has been solved by Nivoche
[23] and Poletsky [25]. In this thesis we give the detailed proofs of Zakharyuta’s
reduction of Kolmogorov problem to his conjecture and the Nivoche-Poletsky re-

sult.



KOLMOGOROV CAPININ ASIMTOTU VE COKLU POTANSIYEL TEORISI

Ozcan Yazici
Matematik, Yiiksek Lisans Tezi, 2008

Tez Danigmani: Vyacheslav Zakharyuta

Anahtar Kelimeler: Kolmogorov ¢api, ¢oklu potansiyel teorisi, analitik

fonksiyonlar uzayi, ¢oklu karmasik Green fonksiyonu.

Ozet

n boyutlu €2 Stein manifoldu iizerindeki D acik kiimesinde bir K kompakt seti
verilsin. D {iizerinde analitik ve boyu 1 ile sinirhh fonksiyonlarin K ya indirgen-
mesiyle elde edilen fonksiyonlarm olugturdugu AL kiimesi C(K) nin kompakt bir

alt kiimesidir. Kolmogorov capimin asimtotu ile ilgili problem asagidaki gibidir:
Ind;(AR) ~ —it/™ i — 0.

Problem tek boyutta bir ok matematik¢inin (Erokhin, Babenko, Zahariuta, Levin-
Tikhomirov, Widom, Nguyen, Skiba - Zahariuta, Fisher - Miccheli) cabasiyla
¢Ozililmiigtiir. n > 1 i¢in, Zakharyuta yukardaki asimtotun o = 27 (n!/C(K, D))l/”
icin gegerli olacagim iddia etmigtir. [31, 35] te, Zakharyuta bu problemi tamamen
coklu potansiyel teorik bir problem olan w(D, K; z) — 1 fonksiyonunun D \ K i¢in-
deki kompakt setler iizerinde ¢oklu karmagik Green fonksiyonlariyla yaklagimina in-
dirgemigtir. Bu son problem Nivoche [23] ve Poletsky [25] tarafindan ¢oziilmiigtiir.
Bu tezde Zakharyuta’ nin problemi indirgemesinin ve Nivoche-Poletski sonucunun

ayrintili 1spat1 verilmigtir.
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CHAPTER 1

INTRODUCTION

Complexity of the binary search algorithm that distinguishes a definite element in a
finite set S of N(S) elements is equal to [log, N(S)]+1. For infinite case, consider a
compact set K in a metric space X. Let U; K; be a covering of K such that diameter
of K; <2¢, Vi € N. In 1950's, Kolmogorov introduced the concept of approximate
specification of an element # € K by finding K; that contains x. Let N (K, X)
denote the smallest cardinality of such covering {K; : diameter of K; < 2¢}. Then
the e-entropy of the set K is defined by

H.(K,X)=InN(K,X).

Note that in the information theory e-entropy log, N (K, X) is asymptotically
equivalent to H.(K,X)/In2 as ¢ — 0. Let K be a compact set in an open set
D on a Stein manifold 2, H>°(D) be the Banach space of all bounded and analytic
functions in D with the uniform norm, and AL be the compact subset of C(K)
consisting of all restrictions of functions analytic in D and satisfy the inequality
l|fllp < 1, endowed with the sup norm on K. Kolmogorov stated the problem of

finding strict asymptotics for e-entropy of AL

€

n+1
H.(AP) ~ T <ln 1) as € — 0, i.e. lir% H.(AR)/In(1/e) = T, (1.1)

with some constant 7. For a subset A in a Banach space X the Kolmogorov

diameters (or widths) of A with respect to the unit ball Bx of X are the numbers

di(A,EX) = ngi i{égégﬁ”x —yHX, (1.2)



where L£; is the set of all i-dimensional subspaces of X, i =0, 1,.... We shall write
d;(X,Y) instead of d;(By,Bx) for a pair of normed spaces (X,Y) with a linear
continuous imbedding ¥ — X.

From the result of Mityagin [21] and Levin-Tikhomirov [18]|, we know that the
problem about strict asymptotics (1.1) is equivalent to the following problem re-

lated with Kolmogorov diameters of the set AZ
Ind;(AR) ~ =i/, i — oo, (1.3)

where o = (ﬁ)” " and di(AR) = di(H*(D), AC(K)), where AC(K) is the
the completion of the set of all traces of functions, analytic on K, in the space
C(K).

In one dimensional case, for good pairs (K, D) Kolmogorov conjectured that the
constant 7 is equal to

T=7(K,D):= L Aw,
2T

where
w(z) := limsup sup{u(¢) : w is subharmonic in D, u|x <0, u < 1in D}, (1.4)
¢—z
and Aw is a positive measure whose support is contained in K. This problem is
solved (see [18, 2, 7, 8, 9, 36]): Let K be a non-polar compact subset of an open
set D on an open one-dimensional Riemann surface 2, K = }A(D and D & (2 with
0D consisted of a countable set of compact connected components at least one of

which has more than one point. Then

7
—Ind;(AR) ~ ——— i .
nd;(Ax) T(K,D)l—H)O
Proof of this result based on a property of one dimensional multipole Green func-
tion :

N
gp(P,z) = cxgp(pr, 2)
k=1

where P is the finite set {(pg,cx),1 < k < N}. But we do not have such an

equality in multidimensional case (see (3.6) for the definition of pluricomplex Green



function).
In [35] Zakharyuta conjectured that for good pairs (K, D) on a Stein manifold
1/n
of dimension n > 2, the asymptotics (1.3) holds with o = 27 (C(%'D)) , where
C(K, D) is the pluricapacity of K in D (|3],[26]) defined by
C(K, D) = /

D

(ddw ()" = / (ddw ()", (1.5)

K
where,
w(z) = w(D, K; z) := limsupsup{u(¢) : u € PSH(D),u|x <0,u < 1in D} (1.6)
(—=
is so called relative extremal function for K in D. Let Q) be a Stein manifold. Then

we say (K, D) is a plurireqular pair on ) if the following conditions are satisfied:

e K is a compact subset of open set D such that K = [A(D and K intersects

with every connected component of D.

o w(D,K;z)=0on K and lim; ., w(D, K;z;) =1 for any discrete sequence

{z;} in D.

In [35] Zakharyuta reduced the Kolmogorov problem on asymptotics (1.3) to the
certain problem of pluripotential theory about approximating of w(D, K;z) —1 by
a sequence of multipole Green functions with finite set of logarithmic singularities.
This problem is known as Zakharyuta conjecture and solved recently by Nivoche
[23] and Poletsky [25]. In Chapter 5 we give the proof in detail. In Chapter 4 we
give Zakharyuta’s reduction of Kolmogorov problem to his conjecture. Zakharyuta
used the theory of Hilbert scales, interpolation properties of analytic functions and
functionals, method of extendable bases and extremal plurisubharmonic functions
with isolated singularities to show that in order to solve Kolmogorov problem, it
is enough to solve his conjecture. To modify Kolmogorov problem, Zakharyuta
used Kolmogorov diameters d;( X1, Xo) of an admissible couple of Banach spaces

(X1, Xo) for (K, D). The concept of admissiblity is given below.

Definition 1.0.1. We say that a couple of Banach spaces (Xo, X1) satisfying the

dense linear continuous imbeddings X, — A(D) — A(K) — Xy is admissible for



(K, D) if for any other couple of Banach spaces (Ey, E1) satisfying the dense linear

continuous 1mbeddings
Xy — E; — A(D) — A(K) — Ey — Xo,
we have Ind;(Ey, Ey) ~ Ind;(X1, Xo), i — 0.

Let (X1, Xo) and (Y1, Yo) be two admissible pairs for (K, D). Consider a couple
of Banach spaces (F1, Ey) satisfying

X; — By — A(Q) — A(K) — Ey — X and
Y1 — E) — A(Q) — A(K) — Ey — Y.

Then by admissibility of the pairs (X, Xy) and (Y7, Yp),
hldi(Xl,Xo) ~ lndi(El, Eo) ~ In dz<}/17 %)

Therefore the asymptotic class of In d;( X7, Xy) is a characteristic of the pair (K, D)
rather than a characteristic of (X, Xp).

By Corollary 4.2.1 in this text, for any pluriregular pair (K, D) there exists an
admissible couple (X, X;). The following theorem was proved by Zakharyuta with
the assumption that Zakharyuta Conjecture is true. We give the details in Chapter
4.

Theorem 1.0.1. Let (K, D) be a plurireqular pair on a Stein manifold ). Assume

that Zakharyuta Conjecture is true. Then the strict asymptotics

Ind;(X;. X 9 nhi \'
06,0 ~ 2 (i) i

hold for any couple of Banach spaces (Xo, X1) admissible for (K, D).

As a consequence we have an answer to the question about asymptotics (1.3)

with some additional conditions on X and D.

Corollary 1.0.1. Assume that Zakharyuta Conjecture is true. Let (K, D) be a
pluriregular pair such that (AC(K), H>®(D)) is admissible for (K, D). Then the

following strict asymptotics



nli L/n

holds.



CHAPTER 2

SPACES TO BE CONSIDERED

2.1 Stein Manifolds

A Hausdorff topological space € is called a manifold of dimension n if any point

in €2 has a neighborhood which is homeomorphic to an open set in R".

Definition 2.1.1. A manifold Q (of dimension 2n) is called a compler analytic
manifold (of complex dimension n) if there is a given family F of homeomorphisms
k, called compler analytic coordinate systems, of open sets Q. C €2 on open sets

Q.. C C" such that
(i) If k and k' € F, then the mapping
KE R(Qe N Q) — K (Qe N Q)
defines an analytic mapping,
(if) Uperfls =€,

(iii) If ko is a homeomorphism of an open set Q., C S onto an open set in C"
and the mapping kkg " : ko(Qe N Qwy) — K(Qe N Qy,) and its inverse are analytic

for every k € F, then ko € F.

We say that n complex valued functions (fi, ..., f,) defined in a neighborhood
of a point z € Q) are a local coordinate system at z if they define a coordinate

system of a neighborhood of z into C™.



Definition 2.1.2. A closed subset V' of a complex analytic manifold Q) of dimen-
ston n is called an analytic submanifold of dimension m if for each v € V', there

exist a neighborhood U of v and local coordinates fi, ..., fn such that UNV = {z €
Ut frusa(2) = o = fulz) = 0},

Q2 is called countable at infinity if there exist a family of compact subsets { K :

i € N} such that each compact subset of Q2 is contained in some K.

Definition 2.1.3. A complex analytic manifold Q) of dimension n which is count-

able at infinity is called Stein manifold if
(1) Q is holomorphically convez, that is

K = Ko:={z€Q:|f(2)| < sup|f| for all f € AQ)}
15 a compact subset of Q) for every compact subset K of €.

(ii) For given two points z1, zo with z1 # z, there exists a function f € A(Q)

such that f(z1) # f(22).

(iii) For every z € Q, there exist n analytic functions on Q0 fi, ..., f, which form

a coordinate system at z.

Due to the following theorem, a Stein manifold can be represented as a sub-

manifold of CV where N is sufficiently large.

Theorem 2.1.1. ([/12]) Any Stein manifold of dimension n is isomorphic to an

analytic submanifold of C*"1.

2.2 Spaces of Analytic Functions

Let €2 be a complex manifold. A(€2) is the space of all analytic functions on {2 with
the topology of uniform convergence on compact subsets of {2, i.e. with the locally

convex topology generated by seminorms

|z| g = max{|z(2)| : z € K} (2.1)



where K is any compact subset of 2. If  is countable at infinity, then A((Q?) is

K }:il

Fréchet space whose topology is given by the sequence of seminorms {|x
where K, C Ky,q and UK, = Q.

Let E be an arbitrary subset of Q. By G(E) = Go(FE), we denote the collection of
all open neighborhoods of E in Q. For D¢, D, € G(E), the functions f € A(Dy)
and g € A(D,) are said to equivalent (f ~ g) if there exist a D € G(E) such that
D cDsyNDyand f=gon D. A germ of analytic functions is an eqivalence class
obtained by the relation ~ . If z is a germ on E and f € x then we say that f
represents the germ z. We denote by A(F) the locally convex space of all germs

on E endowed with the inductive limit topology
A(F) = lim indpeg(r)A(D)
that is, the finest topology on A(E) for which all natural mappings
Jpr:A(D) — A(E),D € G(F)

are continuous.

Let K be a compact set in Q and J : A(K) — C(K) be the natural restriction
homomorphism. We denote by AC(K), the Banach space obtained by the com-
pletion of J(A(K)) in C(K) according to the norms (2.1).

We shall say that a locally convex space X is imbedded in a locally convex space Y
if there exist an injective linear continuous mapping 7 : X — Y. We denote this
imbedding by X — Y. If this imbedding is dense, that is, i(X) is a dense set in Y/,
then the conjugate mapping i* := Y* — X* is also a linear continuous injection.
Thus any linear functional y* € Y* can be identified with its image v := *(y*).
Similarly we write Y* =Y’ := i*(Y*) — X*. If X is reflexive, this imbedding is

also dense. In particular for a pluriregular pair (K, D) we write
A(D) = Jp k(A(D)) — A(K);

A(K)" = A(K) = Jp g (A(K)") — A(D)".



The elements of A(D)* are called analytic functionals on D. For F' C D the

non-bounded seminorm is given by
|2 = sup{|2’(2)| : € A(D), |z|p < 1} (2.2)

on A(D)*.

2.3 GKS- Duality

The result of Grothendieck-Kothe-Silva (see [10, 13, 15, 28|) allows us to realize
for any set £ C C the space A(E)* as the space of analytic functions A(E*) where
E* :=C\ E with the assumption that all germs of A(E) are equal to zero at the

point oo if oo € E.

Theorem 2.3.1. For any set E C C there exists an isomorphism v : A(E)* —
A(E™*) such that the following formula holds

£*(z) = / 2 (Oe(Q)dC, = € A(E),

where &' = y(z*), I’ = ['(z,2') is a rectifiable contour separating the singularities

of the analytic germs x and x*.

In several complex variables, there is no similar universal representation of
A(E)* as a space of analytic functions. However, for polydisks in C" we have the

following proposition:

Proposition 2.3.1. Let U™(r) be a polydisk around zero with polyradius r = (r,),
U'(r) =={z=(2,)€C" 2| >r,v=1,..,n}

Then there exist a natural isomorphism J : A(U™(r))* — A(U™(r)*) such that for
' = J(x*), we have

dg
€1Cn

w@) = [ 2(0(0)

where

F=I@@)={2=(2)€eC" :|z|=>I, v=1,..,n}, A= \z*) < L.



2.4 The Dual Form of Cartan Theorem

Let M be a closed analytic submanifold of Stein manifold €2. Then according to

Cartan theorem the restriction operator
R:AQ) — AM) : Rx = z|M, x € A(Q),

is a surjection. The adjoint operator R* : A(M)* — A(Q2)* maps any functional
peAM)" top =poR € A(Q)*. Using the theorem about dual relation between
endomorphisms and monomorphisms we get the following dual version of Cartan

theorem:
Proposition 2.4.1. The adjoint operator R* : A(M)* — A(Q)* of the restriction

operator R : A(QY) — A(M) is an isomorphic embedding.

2.5 Scales and Diameters

Definition 2.5.1. A family of Banach spaces X, ag < a < [y is called a scale of

Banach spaces if for arbitrary ag < a < 3 < ay, the following conditions are met:
(i) Xp— Xa,
(i) llzllx, < Cle, B.N)(ll2llx.) "V (2llx, )™ with 7(7) = 3=, a <y < 8
for any x € Xg.

A scale of Banach spaces X, ag < a < [, is called normal if C(a, 8,7) = 1.

Definition 2.5.2. A normal scale of Banach spaces X, ag < a < [y, s called

continuous normal scale if the function 6,(a) = ||z||x., v € Xg,, is continuous on

[, Bo]-

Definition 2.5.3. A continuous normal scale X, 0 < o < 1, is said to be reqular

if the norm in the dual spaces X satisfies the following:
* | (1=7 -1 w(T(y) 71
2Ly, < 1%, ™ a5

for a <y < B and z* € X!, where T is the same function as in Definition 2.5.1.

10



For further information about scales, we send the reader to the monograph
[16]. Let H, = Hy “H{, a € (—o0,00), be a Hilbert scale generated by Hilbert
spaces with dense imbedding H; — Hj. If this imbedding is compact, i.e. every
set bounded in the norm of H; is relatively compact in Hy, then there is a common
orthogonal basis {e;} for Hy and Hi, normalized in Hy and enumerated by non-

decreasing of norms in H;:
leillny =1, pi = pi(Ho, Hi) = |lei||m, /* oc. (2.3)

The scale {H,} is determined by the norms

H‘/EHHQ Z ‘C1’21u7,2a7 T = Zgieia (24)

€N ieN

so that H, consists of x € Hy with norm (2.4) if & > 0, otherwise H, is the
completion of Hy by the norm (2.4).

For a given a pair of normed spaces X; — X, with a linear continuous imbedding,
an equivalent definition of the Kolmogorov diameters can be given by following

numbers:
di(Xy, Xo) = inf{inf{\ > 0:Bx, C \Bx, + L} : L € L;}, (2.5)

where L; is the set of all « dimensional subspaces of X|.
For a pair of Hilbert spaces Hy, Hy which satisfies the conditions in (2.3), we have
the following simple expression for the diameters ([21]):
1
di(Hy,Hy) = —————, i € N. 2.6
(H1, Ho) priv1(Ho, Hy) (26)
Now we will give a simple expression for the diameters of Hilbert scale H, =

Hy “H{. For ap < ay, due to (2.4), &
H,, with

= Hao is a common basis for H,, and

€l o, =1 and f1;(Hay, Hay) := ||€l| m, = pa(Ho, Hi)™ 770

Hence we have

1 1
ﬂi—i—l(Hao? Ha1) B Mi+1<H07 Hl)aq—ao

di(Ha17Ha0) - — di(HhHo)aliaO. (27)

11



Proposition 2.5.1. Let X; — Y] — Yy — Xy be a quadruple of Banach spaces
with dense imbeddings. Then

d;i(X1, Xo) < di(Y1,Yp).

Proof. Since X; — Y and Yy — X, there exist C,Cy such that By, C C1By,
and By, C CyBx,. For any L in £; let

dp :=1inf{\ > 0: By, C ABy, + L}.
Then for any € > 0
Bx, C CiBy, C Cy(dg + €)By, + L C CoCy(dy, + €)Bx, + L.
By taking infimum over £;, and since € > 0 is arbitrary we obtain
di(X1, Xo) < CoC1d;(Y1, Yo).
Since the constants Cy, C; do not depend on i, we have

di(X1, Xo) < di(Y1,Yp).

12



CHAPTER 3

SOME INFORMATION ON PLURIPOTENTIAL THEORY

In this chapter, we first present some fundamental properties of plurisubharmonic
functions. Then we define the Monge-Ampere operator and the relative extremal
function. For further study of plurisubharmonic functions the reader can consult

[14].

3.1 Plurisubharmonic Functions

Let z = (z1,...,2,) € C". The two norms on C" that we shall be using are the
Euclidean norm

12]] = (2121 + ... + 2n70) /2

and the mazimum norm

2| = max{|z1], ..., |znl}-

Note that, this norms are equivalent and |z| < ||z]| < v/nlz|.

Let a € C" and r > 0. The open polydisc, with center at a, and radius r, is the set
{z€eC":|z—a| <r}.

Let €2 be an open subset of C" | and let u : ) — [—00, 00) be an upper semicon-
tinuous function which is not identically —oo on any connected component of €.
The function w is said to be plurisubharmonic if for each a € Q2 and b € C", the
function A —— u(a + Ab) is subharmonic or identically —oo on every component
of the set {\ € C: a+ \b € Q}. We denote by PSH(S2), the set of all plurisub-
harmonic functions in (2.

The following theorem can be taken as an equivalent definition of plurisubharmonic

13



functions.

Theorem 3.1.1. Let u: Q) — [—00,00) be upper semicontinuous and not identi-
cally —oo on any connected component of Q@ C C™. Then u € PSH(QY) if and only
if for each a € Q) and b € C" such that

{a+X:XeC |\ <1} CQ,

we have

1 2w )

u(a) < —/ u(a + €"b)dt. (3.1)
2 Jo

It should be noted that plurisubharmonicity is a local property.

Let €2 C C" be open. If Q £ C", define
Qeo:={z€Q: dist(z,00) > €}

for e > 0. If Q = C", we set 2. = C". The following theorem is known as main

approzimation theorem for plurisubharmonic functions.

Theorem 3.1.2. Let Q be an open subset of C", and let u € PSH(Q2). Then
Ju. € C* NPSH(Q) such that u. decreases with decreasing €, and lim,_gu(z) =

u(z) for each z € €.
Theorem 3.1.3. Let Q) be an open subset of C"
(1) If u,v € PSH(QY) then max(u,v) € PSH(L).

(ii) The family PSH(SY) is a convex cone, i.e. if a, 3 are non-negative numbers

and u,v € PSH(S?), then au+ fv € PSH(Q).

iii) If Q is connected and {u;};en C PSH(S2) is a decreasing sequence then u =
(iii) jJi€ g

lim; o u; € PSH(Q) or u = —o0.

(iv) Let {uq}aca C PSH(Q) be such that its upper envelope u = Sup, 4 Uy 15 lo-
cally bounded above. Then the upper semicontinuous reqularization u* is plurisub-

harmonic in Q where

u(y) =limsupu(z) ye€Q

z€Q

14



Proposition 3.1.1. Let Q be a domain in C*. Let V C Q be an open subset. If
u € PSH(Q), ve PSH(V), and

limsupv(z) < u(y), y € oV NQ, (3.2)

z—Y

then
max{u,v} nV

u in Q\V

18 plurisubharmonic in €.

Proof. The boundary condition (3.2) on v ensures that w is upper semicontinuous
on €. By Theorem 3.1.3 (i) w satisfies the local submean inequality (3.1) at each

z € V, and it does also so when z € Q\ V since w > u on (. O

3.2 The Complex Monge-Ampere Operator

3.2.1 Maximal Plurisubharmonic Functions

Definition 3.2.1. A function u € PSH(Q) is called mazximal if for every relatively

compact open subset G of 0, and for each upper semicontinuous function v on G

such that v € PSH(G) and v < u on 0G, we have v < u in G.

We will use MPSH(Q2) to denote the family of all maximal plurisubharmonic
functions on (2.

The differential operators d and d° are defined by

where
0= Zidz and 9 = Zidz-
a P 8zj J a P Zﬁj I
Note that
dd® = 2100

and if u € C?(2), then

d°u = 2i Z @Zj 5)2k ———dz;dz.

Jk=1

15



Then the Monge-Ampere operator for C*- functions is defined as

(dd°)" = dd° A dd°... A dde.

n—times

Note that if u € C*(2), then

0%*u
zj&ék

(dd°u)™ = 4"n!det [ } av,

where dV = (%)"dzl ANdZy..dz, N Z,.
The following theorem characterizes the maximality of a function u € C2NPSH(L2)

in terms of the Monge-Ampeére operator.

Theorem 3.2.1. Let u € C2NPSH(QY). Then u is mazimal if and only if (dd°u)™ =
0 in Q.

3.2.2 Currents

By A¥(C",C), we denote the set of all k- forms. If p, ¢ are positive integers such
that p + ¢ = k, then by AP4(C",C) we shall denote the subspace of A¥(C",C)
generated by

{dza, Ao Ndzoy, NdZg,... NdZg, 1 <oy < .. <o, <n, 1 < By << By <nt.

A 2n form w is called positive if w = 7dV for some non-negative number 7. A
form w € APP(C™ R) is called elementary strongly positive if there are linearly
independent C-linear mappings ¢; : C* — C, j : 1, ..., p, such that

i\ P
1 _ _
w:(ﬁ) PLNPL A o Ny N ©p.

A form w is called strongly positive if it is belongs to the convex cone SPPP(C")
in APP(C", R) generated by elementary strongly positive forms.

Now we are in a position to define the positive forms of degree less than 2n.

Definition 3.2.2. A form w € APP(C",C) is called positive if for any ¢ €
SPPn=P(C™), the 2n-form w A ¢ is positive.

16



Let © be a domain in C", and Cy(£2, C) be the family of all continuous functions
u on €2 such that suppu is a compact subset of 2.
A Radon measure on 2 is a continuous C-linear functional on Cy(Q2, C). By Dy?(Q)
(respectively, DP?(Q)) we denote the set of all differential forms of bidegree (p, q)
whose coefficients belong to Cy(€2, C) (respectively, Cg°(£2, C)). i.e.

Dg,q(Q) = C()(Qv Ap,q(cn, C))
and
D) = Coo (2, AP4(C", C)).

The elements of DP4(Q)) are known as test forms. Let DP4(Q)) be equipped with
Schwartz’ topology. Any continuous linear functional on the space DP((2) is called

a current of bidegree (n — p,n — q). The family of such currents will be denoted
by (D™7)(2)
A current T is called positive of degree p if it is a (p, p) current such that for each
w € Ce (2, SPP"=P(C™)) we have T(w) > 0.
For u € PSH(2) and ¢ € D" 1""1(Q)) we can define a current ddu by

ddu(p) = /Quddc(go)

Theorem 3.2.2. If u € PSH(SY), then dd°u is a positive (1,1)- current.

3.2.3 Generalized Complex Monge-Ampere Operator

In this part we will extend the definition of the Monge-Ampere operator so that

it can be applied to locally bounded plurisubharmonic functions.

Lemma 3.2.1. ([1}]) Let Q2 be an open neighborhood of a compact set K C C".
Then there exist a constant C' > 0 and a compact set L C Q\ K, such that for all
Uy, ...u, € C*(Q) NPSH(Q), we have

K
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Bedford and Taylor (1976) constructed an inductive definition of the Monge-
Ampere operator acting on locally bounded plurisubharmonic function by using
the fact that dd°u is a positive (1,1) current and inequality (3.3) with integration
by part formula.

Let ul,...,u* € L(Q) NPSH(Q). If 1 < k < n, then ddu' A ... A dd°u” can be

defined inductively as a positive (k,k)-current like this:

ddu' A... Add“u"(p) = /

ddu* A...AdduP N = / uFddeut A ... ANdduFTE AddC,
Q

Q
where ¢ is a test form of bidegree (n — k,n — k).

The operator (dd®)", acting on locally bounded plurisubharmonic functions, is
called the generalized complex Monge-Ampere operator. Note that for a locally
bounded plurisubharmonic function w in €2, (ddu)™ is a positive distribution.

Therefore it is a (Radon) measure on €.

Theorem 3.2.3 (Convergence theorem). Let Q C C" be a domain, k < n,
{ul,}; € PSH(Q) and let ul, | u, € PSH() N LS

loc

(Q) pointwise in Q) for m <k

as ) — oo. Then
ddw) A ... A ddu], — dd®uy A ... A ddCuy, (3.4)
as j — 00, in the sense of weak™- convergence of currents, that is,
ddeul A ... A ddul (@) — dd°uy A ... A ddCug (), Yo € D" FF(Q).

Theorem 3.2.4 (Comparison theorem). Let 2 C C" be a domain. Let u,v €
PSH(Q) N L) and for each ¢ € 09,

loc

lim i(nf(u(z) —w(z)) > 0.
z€Q

/ (dd%)"g/ (ddu)™
u<v u<v

Theorem 3.2.5. Let Q2 be a domain in C" and u € PSH(Q) N LS

loc

Then

(Q). Then u
is mazimal if and only if (dd°u)™ = 0.
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3.3 The Relative Extremal Functions

Let Q2 be a domain in C™ and E is a subset of €). The relative extremal function

for £/'in  is defined as
upa(z) =sup{v(z) : v € PSH(N),v|g < —1,v <0} (3.5)

Note that the function (ugq)* is plurisubharmonic in 2 and (ugq)* = w—1 where
w :=w(, E; 2) is defined in (1.6). The next proposition follows directly from the

definition of the relative extremal function.

Proposition 3.3.1. If £; C Ey C Q1 C )y, then

UEB,, M > UE,,M > UE,,Q

A domain 2 in C" is called pluriregular (or hyperconver) if there exist a con-
tinuous plurisubharmonic function ¢ : @ — (—00,0) such that lim._5p ¢(¢) = 0.
If Q2 is open and K is a non pluripolar relatively compact subset of €2, then € is

pluriregular if and only if lim, .5 ux p = 0 for each § € 952

Theorem 3.3.1. If Q is pluriregular and K C € is compact, then uj;  is mazimal
in Q\ K, ie.
(dduq)" =0 in Q\K

Proposition 3.3.2. If Q is a plurireqular domain containing a compact set K with

« . . .
uy o =—1on K, then ukgq is a continuous function.

Proposition 3.3.3. Let Q be a connected open set containing E. Then up o =0

iof and only iof E is pluripolar.

Proposition 3.3.4. Let Q be a plurireqular domain in C" containing a compact
set K. Suppose that ) is an increasing sequence of open sets such that @ = U372, (),

and K C Q. Then for each z € €,

lim ugq,(2) = urxa(z).

Jj—00
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Let Q2 be a domain in C" and P be a finite set
{(pjvcj) :ijQ, Cj>07 1§]§N}

where p; € 2 and ¢; are positive weights. Then

go(P,z) =sup{v(z) : vpshonQ, Vj=1,..,N (3.6)

v <0,v(2) < ¢logllz —ps|| +O(1)}

is called pluricomplex Green function on Q with logarithmic poles p; of weight c;.
If © is pluriregular domain, then gq(P, z) is the unique solution to the following

problem:
(

u€ PSH(Q)NCQ\ {p1,.,pn}) Hu/2<0

(ddcu)n =0 on \ {pla ...,p]\[}7
u(z) = cjlog|lz —p;|| +O(1) as z — p,

u(z) — 0 as z— (€00
We have the following equality for the capacity of Green function g := gq(P, 2):

N

(dd°g)" = (2m)" Z cjop, in

=1

where 0, denotes the Dirac measure at p;. If g > ¢ on S then,

/Q (dd° max{g,c})" = (27)" ch. (3.7)

Jj=1
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CHAPTER 4

KOLMOGOROV PROBLEM ON WIDTHS ASYMPTOTICS

4.1 Interpolation of Analytic Functions and Functionals

Definition 4.1.1. An open set D € §Q is said to be strongly plurireqular if there
exist a function u which is continuous and plurisubharmonic on some pseudoconvex

open set G such that D € G and D = {z € G : u(z) < 0}.

For analytic functions, we have the following interpolational estimates (see [33])

[flps < (1f1)(1fIp)",0 < a < 1, f € H*(D), (4.1)

where (K, D) is a pluriregular pair and D, := {z € D : w(D, K; z) < a}.

In one variable, since any analytic functional can be represented as an analytic
function in the complement of K (GKS duality), the inequalities (4.1) can be used
to estimate analytic functionals. However in higher dimension (n > 2), we do not

have GK S duality. Instead, we have the following interpolational estimates:

Theorem 4.1.1. (/33, 35]) Let (K, D) be a pluriregular pair on a Stein manifold

Q and D be strongly plurireqular. Then for each e >0 and 0 < o < 1, we have
|25, < M (J2'[}) = (|2[H)" 7, o' € AC(K) — A(D)" (4.2)
with some constant M = M (a,€).

At first, we will consider the special case when D and K are analytic polyhe-

drons in €2 defined by the same collection of analytic functions. Here we consider
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the Stein manifold Q as a closed complex manifold in CV for some big enough N.

Let us consider a family of polydisks in CV given by:
Voi={2z=(2)eC":|z5|<r,(a), v=1,.., N},

where r,(a) = Rerl=@ r, < R,, v = 1,..., N, a € R. Now we consider two

families of analytic polyhedrons in {2:
Ao =VoaNQ, Ay :=VonNQ, ac[-0,1+0],0>0

and let &, and éa be polyhedrons that are the connected components of A, and

Aa respectively which have non-empty intersection with <i>_g =A_,.

Proposition 4.1.1. For every e > 0 and a € (0, 1) there is a constant C = C(a, €)
such that

l1—a+e a—e ~
|x*|})a <C <]:c*|;0) <|x*|;l) , 1" e AC(®g)* (4.3)
Proof. All polyhedrons @, are closed submanifolds of polyhedrons V,,, and ®, =

Ng=a®Ps. Let oy < a7 and both are contained in [—o,1 4+ 0], ¢ > 0. For any

a € [ag, aq], since By, C B, C D, we have natural imbeddings
A(&)ao) N A(&)a) - A((i)m)‘

Hence, taking the duals

A@)ao)* - A(q:)a)* - A((i)m)*'
Since V:;O D VZ D V:;l natural imbeddings
AV,

«@Q

) = A(V,) = A(V,,)
hold. Using Proposition 2.4.1 we get the isomorphic imbeddings T, : A(Ci)a)* —
A(Vo)* Va € [ap, ay]. Proposition 2.3.1 implies that there are onto isomorphisms

— —%

Se : A(V o) — A(V,). Therefore we obtain the following diagram:

Sal OTal =%
—

A(®y, )" AV;,)
T T
Ada) = AT
T T
A(bo,) 2 AV
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Since A(®,)* — A(V,,) forany e: 0 < € < ¢ 36 = 6(¢) 3C' = C(a, €) such that

2l < Cla )il (14)
Cla,e)|z”z =12 v (4.5)

where 2’ := S, o T, (2*). Since 0 only depends on € for § = « + € we obtain that

27, < Clae)ls!

. (4.6)

Cla, "3, = Io'ly,. (4.7)
Now for any e: 0 < € < o we obtain that
5, < Clayolally < Claye)(fallpr, ) 7> (|2'[g) 70
< Mo, e)|zt[3 ) T (jat )5 ) T
0

Proof. (of Theorem 4.1.1) Let ¢ > 0 and 0 < € be fixed positive number. By

Lelong-Bremermann Lemma we can construct a function
v(z) :=max{a;In|fj(2)]: j=1,...m}, a; >0, f; € A(Q)

such that
v(z) <w(D,K;z2) <wv(z)+06, z€ D.

The sublevel domains @, := {v(z) < a} of v(z) are analytic polyhedrons that

simultaneously approximate the corresponding level domains D,:
b, sCcD,C P,
for all a € [0, 1]. Hence the following natural imbeddings hold:

A(®,_s)* — A(Dy)* — A(®,)*, Ya € [0, 1]. (4.8)
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Then for any z* € AC(K)* using (4.8) and Proposition 4.1.1 with ¢ — ¢ instead €

we obtain that

IN

oo (Ily,) " (103)" (@)

N (e, e) (|2 5) (2" [5) "

||, < M(a)lz"s,

IN

[]

Theorem 4.1.2. Let D be a strongly pluriregular open set on a Stein manifold
and K C D be a compact set such that (K, D) is a plurireqular pair. Let Hy and

Hy be a pair of Hilbert spaces with the continuous imbeddings:

A(K) — Hy — AC(K) (4.10)

A(D) — H, — A(D). (4.11)
Then we have the following continuous imbeddings:
A(K,) — H, — A(D,), 0 < a < 1. (4.12)

Proof. Let {e;}ien be a common orthogonal basis for H; and Hj as in (2.3). Since
Hy — AC(K) there is a constant B such that |e;|x < B||e;||n, = B, Vi € N. Since
Hy — A(D), for any ¢ < 1, |e;|p, < C|le;||mn, = Cp; for some constant C' = C(q).
For any o < 1 and e > 0, we choose g with 5 := a/q < a + €. The relation (4.1)
implies that

leilp,, < BC(leilx)' " (leilp,)".

Thus we obtain

les|p., < Npote, Vi e N (4.13)

)

with a constant N = N(a,€).
Let {¢.}ien be the biorthogonal system for {e;}ien. Since Hf — A(K)*, Vo > 0
there is a constant M = M (4) such that

l€ilp, < Mle;

g =M. (4.14)
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The continuous imbedding H; — A(D)* implies that Vy > 1,3P = P(y)

l€il, < Plleilln; = Pp;* ViN. (4.15)

Then using Theorem 4.1.1 with (4.14) and (4.15) we obtain

el < Lia,e)|ellp, " lel]p, " < LMIatepaeyate

ilD,
where
D, :={2z€ D, :w(D,, Ds;z) < a}.
As~v | 1, va | a. Thus
lefln,. < S(a, ). (4.16)

Let = € H,. For any 8 with 3+ € < «, using (4.13) with Schwartz’s inequality we
obtain that

[2lp, < Zuz e (@)l les] pyp (4.17)

1/2 1/2
- (zremw) W (i)

Since the imbedding H; — H, is nuclear

Z 11 —2a Z2 ﬁ-l—s)

Thus we get |z|p, < C||x||g, for some constant C, that is H, — A(D,).
Jél et

By definiton of dual norm we have that

|e;<$)| S |€;’*Da+25 x|Do¢+26 (418)

for any aw < 1 and € > 0. For any x € A(K,), using (4.16) and (4.18) we have the

following estimate:

1/2
[Er (De ) < (Zﬂeﬂm

)

1/2
el (z u?(“)u?“>

S R(&7€)’x|Da+2e

1/2
x|Da+25)21LL7,2a) <419>

IN

for some constant R(«,€). Thus A(K,) — H,. O
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4.2 Adherent Spaces

Let E be a Fréchet space with the topology defined by seminorms {||z||,,p € N}

and
Hx*H; =sup{|z*(z)| : x € E, ||z||, <1}, 2" € E*, pe N, (4.20)
be the system of non-bounded polar norms.

Definition 4.2.1. A Banach space X — E 1is said to be adherent to E if for each
p € N and any 6 > 0 there exist ¢ € N and C > 0 such that

[la*]l5 < CUl* 1) = (7]];)°, 2™ € B,
where ||z*||* is the norm in X* defined by
||z*||" = sup{|z*(z)| : x € Bx}.

Theorem 4.2.1. (/20]) A Banach space X is adherent to E if and only if for any
neighborhood V' of zero in E and any 6 > 0 there exist p € N and C > 0 such that

C
U, Ct'Bx + Vi t>0 (4.21)
where Up = {x € E : ||z||, < 1}.

Remark: A Banach space X; — A(D) is adherent to A(D) if and only if
for any Banach space Xy <= A(D), A(D) — X, where (X, )acp,1] is any normal

regular Banach scale connecting X; and X,.

Definition 4.2.2. A Fréchet space E belongs to the class Dy if for every p € N
there is ¢ € N such that for each r € N there is C' > 0 such that:

(lz"[I)* < Clla™|[; l|l="][7, =" € B, (4.22)

Proposition 4.2.1. Let Q be a Stein manifold having finite set of connected com-

ponents. Then the followings are equivalent:

(1) Q is pluriregular,
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(ii) A(Q) € Dy,
(iii) there exists a Hilbert space H — A(Y) adherent to A(£2).

Proof. The implications (i) < (ii) and (iii) = (i) are due to [33, 34]. For the
proof Zakharyuta used Hadamard type inequalities for analytic functionals. (See,
Theorem 4.1.1); (i) = (zii): By Vogt ([30], Lemma 4) there is a Banach space
X — A(Q) adherent to A(Q2). By a result of Pietsch [24], since A(Q2) is nuclear,
there is a Hilbert space H such that X — H — A(Q). Therefore H is also
adherent to A(Q). O

Remark: In [1] with the assumption (i), using L*-estimates of Hormander for
O-operator (see, [12]) Aytuna constructed an adherent Hilbert space for A(Q) as a
weighted L? space.

Proposition 4.2.2. Let D be a strongly pluriregular domain on a Stein manifold.

Then any Banach space X satisfying the dense imbeddings A(D) — X — A(D)
is adherent to A(D); in particular, H*(D) is adherent to A(D).

Proof. Let K C D be a compact set making up a pluriregular pair with D. Let
X be a Banach space as above and Hj be a Hilbert space satisfying the following
imbedding:

A(D) — Hy — AC(K).

Since A(D) is a nuclear space there is a Hilbert space H; such that A(D) — H; —
X — A(D). Let H, be any Banach scale connecting H; and Hy. By Theorem
4.1.2 the imbeddinds A(K,) — H, hold for a € (0,1). Thus A(D) — H,, that is;
H; is adherent to A(D). Consequently X is adherent to A(D). O

Definition 4.2.3. Let K be a compact set in ) and a Banach space X satisfy the
dense imbedding A(K) — X. Then we say that X is *-adherent to A(K) if the
dual space X* — A(K)* is adherent to A(K)* in the usual sense.

A compact set K C € is said to be Runge set on Q if A(S2) is dense in A(K).
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Proposition 4.2.3. ([32, 33]) Let K be a Runge set on Stein manifold Q and each
connected component of () has non-empty intersection with K. Then the following

statements are equivalent:

(1) K is pluriregular; that is, there is some open neighborhood D € Q2 of K such
that w(D, K,z) =0 on K.

(ii) A(K)* € Dy;
(iii) There is a Hilbert space H <« A(K) *-adherent to A(K);
(iv) AC(K) is *-adherent to A(K).

Example 4.2.1. Let K be a compact set in Q and (K,Q) be a pluriregular pair.
From the implication (i) = (iv) any Hilbert space H, satisfying the dense imbed-
dings A(K) — H — AC(K), *-is adherent to A(K). More explicitly, as an exam-
ple of Hilbert space H <« A(K) *-adherent to A(K) we consider H = ALy(K, 1)

obtained as a completion of A(K) by the norm

1/2
o] = ( / |56|2du)
K

with p = (dd“w)", w = w(D, K; z).

Definition 4.2.4. Let (K, ) be a pluriregular pair. A couple of Banach spaces
(Xo, X1) is said to be adherent to (A(K), A(Q)) if

X; — A(Q) — A(K) — X,
and X is adherent to A(Y), Xo is *-adherent to A(K).

As a direct consequence of Proposition 4.2.1 and Proposition 4.2.3, we have the

following corollary:

Corollary 4.2.1. Given any pluriregular pair (K, ), there exist a couple of Hilbert
spaces (Ho, Hy) adherent to (A(K), A(2)).
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Theorem 4.2.2. ([37])Let D be a Stein manifold and (K, D) be a pluriregular pair.
Let (Xo, X1) be a couple of Banach spaces adherent to the couple (A(K), A(D))
such that the imbedding X1 — Xq is normal and Bx, is closed in Xo. Let X,
0 < a <1, be any reqular normal scale of Banach spaces connecting the spaces X

and Xi1. Then the following continuous imbeddings hold
A(K,) — Xy — A(D,), 0 <a < 1, (4.23)

where K, = {z € D : w(z) < a} and D, = {z € D : w(z) < a} are sublevel
domains of the function w(z) = w(D, K; z) which was defined in (1.6).

Theorem 4.2.3. Let X, — A(Q) be a Banach space and Xy < A(K) be a Hilbert
space such that (X1, Xo) forms a couple adherent to (A(K), A()). Then (X1, Xo)
is admissible for (K, ().

Proof. Let (Y1, Yy) be a couple of Banach spaces satisfying the following imbeddings
X1 =Y = AQ) = A(K) — Yy — Xo.

Then we need to show that
Ind;(X1, Xo) ~ Ind;(Y1,Ys) as i — oo. (4.24)

Since A(2) is nuclear, by the result of Pietsch [24], there is a Hilbert space H,
satisfying the continuous imbeddings X; <— H; — A(Q2). Clearly, H; is adherent
to A(Q). Consider the Hilbert scale H, = (X,)'~%(X;)® which satisfies the imbed-
dings (4.23). Then the system of norms {||z||x,,0 < a < 1} defines the original
topology of the spaces A(2). Since X; is adherent to A(f2), applying (4.21) with
V =Bx, NA(Q), U, = B,, N A(Q) and any § > 0, there exist @ = a(0) < 1 and
C = C(9) > 0 such that

1\°
By, C (X) Bx, + CA'Bx,, A > 0. (4.25)
Choose any A = A(i) > 0 such that

di(XlaXO) <A< QdZ(Xl,XQ) (426)
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Then due to the definition of diameters, there is L € £; such that
By, C ABx, +L (4.27)
Combining (4.25), (4.26), (4.27), we obtain
By, C (1+C)(2di(X1, X)) By, + L. (4.28)
Let a > > 0. Then by (2.5.1) and (4.28) we get

di(X1, Xo) = di(Y1,Yo) = dy(Ha, Hg) = di( Hy, Xo)* "
= di(Ha,XO)aTiﬁ < di<X1,XO>W
Since § and [ are arbitrary, we obtain the result (4.24). .

Corollary 4.2.2. Let X; — A(Q) be a Banach space adherent to A(Y). Then
(AC(K), X1) is admissible for (K, Q).

Proof. Consider the Hilbert space H = AL?(K, 1) ( defined as in Example 4.2.1)
which is *-adherent to A(K). Since A(K) — AC(K) — H, preceding theorem
implies that (AC(K), X;) is admissible for (K, ). O

4.3 Maximal Plurisubharmonic Functions with Isolated Singularities

Let Q be a pluriregular Stein manifold. By G(2), we denote the set of all plurisub-

harmonic functions u on € satisfying the following conditions:
e lim, o u(z) =0.

e there is a finite set A=A(u) C 2 such that u € MP(Q2\ A) and u(z) = —o0
on A.

By GA(Q2), we denote the set of all functions v € G(Q2) with a fixed set A.

Definition 4.3.1. For an open neighborhood U of ¢, we say that two functions ¢
and ¢ € PSH(U) N MPSH(U \ {C}) with ¢(¢) = ¥ (() = —c0 generate the same
singularity in ¢ of

¢~ = lim oz _ 1. (4.29)

2—( ¢(Z)
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The equivalence class o = [¢] generated by ¢, is called standart singularity at
the point (. A standart singularity o at the point ( is called continuous if there is

a representative ¢ € ¢ which is continuous in some punctured neighborhood of (.

Theorem 4.3.1. ([31, 35]) Given a pluriregular Stein manifold Q , finite set
A={¢ :p=1,...,m} CQ and continuous standart singularities o, = [¢,] at the
points ,, there exist the unique function g € GA(2) having the singularities o, at

the points C,. This function is continuous in '\ A and defined by
g(2) :==sup{u(z) : v e P(L, A, (0,))} (4.30)

where P(Q, A, (0,)) is the class of all negative plurisubharmonic functions u in Q

such that there is a constant ¢ provided u(z) < ¢,(z) + ¢ in some neighborhood of

Cu» ot =1,...,m.

Given any point ¢, € A, we have a logarithmic singularity o, = [¢,] defined
by the function ¢,(z) = a,Int,(z) — t,(¢,)| where ay, > 0 and ¢,(z) are local
coordinates in ¢,. Then the function (4.30) is called multipolar Green function and
denoted by go(A, o, 2) where a = (a,) € R}. Note that in Chapter 3 (3.6) we

have defined gq(A, o, 2) as go(P, z) for domains in C".

Definition 4.3.2. Let u € PSH(R2) and G € Q. Then MP-balayage of the func-

tion u s defined by

s(G,u; 2) = limsupsup{v(¢) : v € P(Q,G;u)}, (4.31)
(—z

where P(Q, G;u) is the class of all plurisubharmonic function on Q with v < u on

Q\G.

Proposition 4.3.1. Let u be a continuous plurisubharmonic function on 0 and

GeDeQ. Then

/D (dd°u(=))" = / (dd°s(Cus 2))". (4.32)

D
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Proof. First we will show that the statement is true for functions u € C?*(2’) where

D e Q) & (). By Stokes’ theorem

/ (ddu)" = / du A (ddu)™.
D oD

Since u(z) = s(z) := s(G,u;2) in 2\ G D ID, we obtain 4.32.
In general, take a decreasing sequence u;, € C*(Q) N PSH('),D € ' € Q with

|u — ug|er — 0. On 0G, since si(2) := s(G, ux; 2) = ug(z) and s(z) = u(z) we have
s(2) = |u— ugloc < sk(z) < s(2) + Ju — uloc- (4.33)

By the maximality of s and s, in G, we have the relation (4.33) in G, that is,
|s — sk]or — 0. Then by Theorem 3.2.3,

/D (dd°u(2))" = lim /D (dd°u(2))" = lim /D (ddesi(2))" = /D (ddes(2))"
O

Definition 4.3.3. Let 0 = [¢] be a standart singularity at ( € Q). Then the charge
of o 1s defined by

o) = vefoh = (5) [@rsansarass (434

where Ay == {z € A : ¢(2) < =2}, A = A(¢) € Q is an open neighborhood of ¢
provided ¢ € PSH(A) N MPSH(A\ {C}) and 6 > 0 is such that As € Q.

Proposition 4.3.2. The charge of a singularity o is well-defined, that is; v:(o)

does not depend on a choice of A or ¢ € 0.

Proof. By Proposition 4.3.1, v-(0) does not depend on A > 4. Therefore it is
enough to show that v;(o) is independent of a choice of ¢. Let ¢ and ¢ be two

representative function in the class o. Then for each € > 0, there is v such that
A(l—i—e))\ C Al)\ C A(l_ep\, A >, (4.35)
where A/ are sublevel domains for the function . Since

$(Axg, 332) = (Ao — A)w(Ay,, Ayy; 2) — Ao, (4.36)
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ve{ o} = (Mo — M)"C(Ay, An,), (4.37)

where v < A\ < A.
Using the relations (4.37) (with Ay = 2(1 + €)X and A\ = (1 — ¢€)\), (4.35) and

monotonicity of the capacity we obtain

v{o} — — Ay v}
(1 + 3€)n)\n = O(A2(1+6))\7A( ) < O(A2>\, A ) W
- v ¢
< C(Asa—or Aayeor) = % (4.38)
Since € > 0 is arbitrary, we have the equality v.{¢} = v {9 }. ]

Definition 4.3.4. Let g € G5 (Q2) where A = {(, : p=1,...,m}. Then the charge
of g 1s defined by

vig) = (%)n / (dd°s(Q, g: = Z% (4.39)

where

QU ={z€Q:9(2) < =A}LA>0.

Proposition 4.3.3. The charge of the multipole Green plurifunction g(z) = ga(A, a; 2)

1$ equal to

m

g} = (o) (4.40)

pn=1
Proof. In the definition of go(A,a;z), we choose local coordinates ¢, such that
t,(¢y) = 0. Then in a neighborhood of (,, [g] = [o,In|t,]] for p = 1,....m
Therefore, using (4.3.3), (4.3.4), and the Jensen equality (|[14], Example 6.5.6)

1 n
(—) [ dmlh A @an iyt =1,
2m IB(0,r)

we get the result. O

4.4 Estimates of Analytic Functions and Functionals with Given Zeros

and Poles

Definition 4.4.1. Let Q) be a pluriregular Stein manifold of dimension n, F' =
{Guip=1,....,m} CQando = (s,) € Z7. We say that a functional f' € A(F) is
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discrete rational functional having the poles of order at least s, at the point ¢, if
f'(f) =0 forall f € Ag((F,0),Q) where Ag((F,0),Q) is the set of all functions in
A(Q) vanishing on F and having zero of order < s,, at the point (,. By Ay (F,0),

we denote the set of all such functionals.

Theorem 4.4.1. For any f € Ao((F,0),2), we have

[f(2)] < [flaexps(a)ga(F, a;2), 2 € 9Q, (4.41)
where Q, F,o are defined as in Definition 4.4.1 and s(o) = inf{s,/a, : p =
1,...,m}.

_ In|f(=)[-In|flg

s(a)

Proof. Tt is clear that the plurisubharmonic function u(z) : belongs

to the class P(Q, F, (0,,)) with the logarithmic singularities o,, defined by the func-
tion ¢, (2) := a, In[t((,) — t(2)|, where ¢ are local coordinates in a neighborhood
of (,, p =1,...,m. By definition, we have the inequality u(z) < go(F,a;z) in Q
which is equivalent to (4.41). O

Theorem 4.4.2. Let D be a strongly plurireqular open set on a Stein manifold €,
[’ be a discrete rational functional with the pole set F = {(, :p=1,...,m} C D,

o = (s,) € ZY be the corresponding set of multiplicities. Let
O\ =0)\(F,a):={z€D:gp(F,a;z) < —a},0 < a < o0,
where o = (o), > 0. Then for each 6 > 0 the following estimates
|5, < C|f [pexp(A+d)s(a), 0 < A < oo, (4.42)
hold with some constant C = C'(A,9) and s(a) := max{s,/a, : p=1,...,m}.

Proof. Let t® = (tl(-”)) : AW — " be local coordinates for each ¢, € F with
mutually disjoint neighborhoods A® of Cu- Let A=UJ Ay, Then

ga(F s 2) = sup{ln|t§“)(z)| cj=1,..,n}, z€ AW,
Let A, denote the sublevel domains

A ={zeA:ga(Fa;2) < —T} = UZLlA(T“), (4.43)
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where

W={rec AW \ ()\<exp( /o) },0 < T < o0.

We choose a common basis for A(A;) and A(F)

t (2)k = W)k W (ke 2 e AR

Jeu(2) =
g 0 e A\AW,

(4.44)

with k = (K1, ..., k) € Z7 and p = 1,...,m. Its biorthogonal system can be given
by

S () (27”) S tkH dt, feAlA,), 0 <7< o0, (4.45)

where v, : U" — AW is the inverse mapping of t", u=1,...m, k = (ky, ..., k),
I =(1,..,1) and S = S, is the Shilov boundary of polydisc U}, where r =
r(A) :=exp(—A—7/a,), 0 < A < co. Any functional f’ € Ay (F,0) can be written
F =320 Ffen)fip (4.46)

w=1k|<sy

Then using expression (4.46) with

ald . ald
| frula, =exp (—a—u) ; ‘fl::,p’AT = exp (04_#

we obtain
’f/’ZT < ‘f,|*AT Z(&#)"(su/&u)” eXp TS#/O‘M
p=1
< F1A) (@) s(a)" expTs(a).
p=1

with 0 < 7 < 00, s(a) := max{s,/a, : 1 =1,...,m}. Then we have the estimates

[['[a, < M(e)|f'[aexp(T + €)s(a) (4.47)

with € > 0, M(e) = > " (o,)" sup{r"exp(—er) : r > 0}. Choose 7 so that
¢, € A.. Then we obtain from (4.47) that

1f'15, < M()|f'[5, exp(T + €)s(a),0 < 7 < 0. (4.48)
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Let F, :={z€ D : gp(F,a;z) < —7}. Then we have the following relation

DV ={:€D:w(DF;z)<a}=®1 a,0<a<l,0<a<l (449)

comes from
w(D, F,;z) = %gD(F,a;z) +1,2z€ D\ F, 0 <7< 00.
Thus applying Theorem 4.1.1 with
K=F,a=1-\10<A<T, >0,
we obtain
oy < NEA USRS 15) (4.50)

Since the relation (4.42) is homogeneous, we can assume that |f’|7, = 1. Therefore

combining (4.48) and (4.50) we obtain

2
Loy £ N (ML s, exp(r +)s) (451)

A
Tre
< N(If1s,)" exp(r+€)s

with some constant N’ = N'(7, A\, ¢) and € = 7e +e+¢2, 0 < A < 7. In particular,

for 7 =4y, A = v and € = 1/4 we obtain
1f's, < (N")? exp(27y + 1)2s. (4.52)
For given 0 and A we choose 7 and € so that
227+ 1) (N7 +¢€) <d/2and Te + e+ € < §/2. (4.53)

Then (4.51) and (4.52) with the parameters satisfying the conditions (4.53) imply
(4.42) in the case |f'|}, = 1.
[l

Corollary 4.4.1. Let Q, F and o be as in Theorem 4.4.2. Let H — A(Q) be a
Hilbert space adherent to A(Y). Then for each f' € Ay (F,0) and any § > 0, we
have the following:

6, < COLOF e exp(A +d)s(a), 0 <A < oo

where s(a) 1= Sup{fl—‘; cp=1,..k}.
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4.5 Extendible Bases

Theorem 4.5.1. ([31, 35]) Let Q be a plurireqular Stein manifold, F = {(, :
w=1,....,m} be a finite set in §, of dimension n, having no connected component

disjoint with the set F'; o = (a,),a, > 0. Then there exists a common basis

{@i(2) }ien in the spaces
A(Q), A(F), A(S2)), A(F)), 0 < X < oo, where (4.54)

M={2€Q:g90(F,a;2) < =}, Fx :={2€Q:90(F,a;z) < —-\}

with 0 < X\ < co. Also the estimates
1
& eXp On(=X — €)i"" < |@i(2)|r, < Cexpon(=A+€)i/" i e N (4.55)

hold with some constant

1/n
n!
C:C(A,E,CLTLCZO}L: m o .
) <ZH=1(O‘AL>”>

By the way, we have the following formula for Green multipole function:

In [(¢)]

= onga(Fe5z), 2 € QN F. (4.56)

lim sup lim sup

(—z 1—00

Proof. Let {f; bk € Z,;p=1,..,m} C A(F)" be a basis for A(F)" as in (4.45).

We enumarate

€ = feyuy # €N (4.57)

such that s, (i) := % is non-decreasing.
We take any Hilbert space H adherent to A(2) and orthonormalize the sequence
(4.57) in the space H* D A(2)*. Then we obtain the system
o = Ztijeg, ieN
j<i
We will show that the biorthogonal system {p;}ieny € H C A(R2) C A(F) is a
required basis for the spaces (4.54). Let f € A(F) and ¢}(f) =0, Vi € N. Then

ei(f) =0, Vi € N. Thus f =0 in a neighborhood of F. Therefore {¢;};cy is total
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and hence complete in the spaces (4.54), due to the reflexivity of all the spaces
there. Let < f,¢; >pg= ¢i(f) =0 for all i € N. Then f = 0. Thus {; }ien is also
complete in H.

By definition, ¢} € Ay (F,o) with 0 = [a,s.(2)] + 1. Since |5, = 1, Corollary
4.4.1 implies the following inequality:

l@ila, < Cexp(A+0d)sq(i), i€N, 0 <A <oo (4.58)
with some constant C' = C(\,d),0 > 0. Since H — A(Q2), for any § > 0

[pilas < Llgiln = L

for some constant L = L(0). Note that ¢, € Ag((F,0),8s) with 0 = ([ausa(7)])
and go, (F, a; 2) = go(F, «; z) + 6. Thus using Theorem 4.4.1 we obtain

loilay, < Nexpsa(i)(—A+6), i€ N, 0<d <A <o0 (4.59)

for some constant N = N(A,d). From (4.58) and (4.59) for any function f in
any space in (4.54), f(z) = >_, ¥i(f)wi(z) converges in the topology of that space.
Using (4.58) we get

)
|dila, |03l oy

< |gilo, < Cexp(A+0)sq(i), 1 €N, 0 <A <oo. (4.60)
The strict asymptotics
So(t) ~ oni /™, i — 00 (4.61)

follows from .

i sali) <t} ~ > (O‘;?n, £ — 0.

Now (4.59), (4.60) with (4.61) imply the result (4.55).
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4.6 Solution of Kolmogorov Problem on Widths Asymptotics

Here we give a detailed proof of Theorem 1.0.1. This proof is due to Zakharyuta
[37] and based on the following recent result of Nivoche and Poletsky.

Proposition 4.6.1. Let (K, D) be a pluriregular pair on a Stein manifold Q. Then
there ezist a sequence of multipole Green functions (with finite numbers of poles)

converging to w(D, K; z) — 1 uniformly on any compact subset of D\ K.
A detailed proof of Proposition 4.6.1 is given in next chapter.

Proof. (of Theorem 1.0.1) Take any pair of Hilbert spaces (Hy, H;) adherent to
(A(K),A(D)). By Theorem 4.2.3, (Hy, Hy) is admissible for (K, D). Since the
strict asymptotics is independent of the choice of admissible pair of Banach spaces,

it is enough to prove that

_Ind;(Hy, Ho) n! L/n
lim — D20 _on () 4.62
e iUn "\ (&, D) (4.62)

By Theorem 4.2.2 the Hilbert scale H, := H; *H{ connecting H; and Hj satisfies

the following imbeddings:
A(K,) — Hy — A(Q4) (4.63)

where K, and D, are defined as in Theorem 4.2.2. Take two sequences of real

numbers ¢€; | 0 and 6; | 0 such that
€j+1 < €5 — 25] (464)

By Proposition 4.6.1, for each j, there exists a multipole Green function g;(z) :=
ga(F9 al): 2) with a finite set of poles FY) = {(;; : i = 1,...,m;} C D and a

vector al) = (a;;) € R} such that
9;(2) —w(D, K;2) + 1] < 95, 2 € K1, \ Dy,. (4.65)

Consider the function

i(2)+1—€; .
wi(z) = s (0, LT8G ) 2 g Hze DAY, (4.66)
SN 0 if 2 € 6, '
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where 6; := {z € D : gj(2) < —1 +¢;}. Clearly w;(z) = w(D,0;;z) in D. Since
041 C0;, wi(z) =w(D,0;; z) is non-decreasing. Using (4.64) and (4.65) we get

K, C 9j+1 C Kej,(;j.

j+1— 0541

Thus

UJ(D,KGJ., 372) < ijrl(Z) < U)(D,KE Z)?] € N.

j+1— 05417

So we proved that
wj(z) Tw(D,K;z), z € D. (4.67)

Using the fact that Monge-Ampere operator continuous on increasing sequence

of locally bounded functions (see Theorem 3.6.1 in [14]) and (4.40) we have

@S (a0 = C(0;, D) = /D (dd°w; (2))" | /D (dd°w(2))" = C(K, D).(4.68)

i=1
Thus for a given € > 0, there is 7 such that

C(K,D) < C(6;,D) < (1+€e)C(K,D), ¢ <e. (4.69)

Using Theorem 4.5.1 with H = H,F = FU o = oY%, we choose a basis {¢;}
orthonormal in H;. Consider the Hilbert space GG consist of all z = ZZ.GN (i with

the norm

1/2
|zlle = (Z |Gl exp 20, (e; — 1)@'1/”) < 00 (4.70)

€N

where
op = —=r——— =21 =———— ) (4.71)
(Zﬂ(%z’)”) C(0;, D)
Then by (2.6)
di_1(Hy, G) = exp o, (—1+¢;)i/™ (4.72)

Using the estimate (4.69) and (4.71) we have

n! L/n In di—l(Hh G) n! l/n
- (rgemn) < e < (o) 4
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Due to (4.55) and (4.63), we have the following imbeddings:
Hy — H 5, = A(D4s,) — A(;) — G — A(D;) — A(K) — Hj.

By Proposition 2.5.1, there is C' > 0 such that

1
Edi(HlaHO) < di(H1,G) < Cdi(Hy, He,15,)- (4.74)

From the inequalities in (4.73), (4.74) with the relation

di(Hla ngJrgj) = di(H1, HU)1*51*53'

we get
. Ind(Hy, Hy) nl Hn
—1 f—————————= > (1—¢)2
it 2 U= T o0& D)
and y
. In di(Hla H()) 2m n! "
—1 < :
TSP T S T2 \O(K, D)
Since € is arbitrary we obtain (4.62). O

Due to Proposition 4.2.2 and Corollary 4.2.2 we have the following sufficient

condition for strict asymptotics (1.3):

Corollary 4.6.1. Let D be strongly plurireqular domain. Then the strict asymp-
totics (1.8) holds for any compact set K making up a pluriregular pair with D.
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CHAPTER 5

PROOF OF THE CONJECTURE OF ZAHARIUTA

Zakharyuta’s Conjecture: Given a plurireqular pair (K, D) on a Stein manifold

Q of dimension n, the relative extremal function w(D, K; z)—1 can be approzimated

uniformly on any compact subset of D\ K by pluricomplex Green functions on D.
Nivoche 23] and Poletsky [25] solved this conjecture recently. We will follow

the proof of Poletsky with slight differences and improvements.

5.1 Approximation of Condensers by Holomorphic Functions

Definition 5.1.1. Let D be an open set in ). An open set P := {z € D :
1fi(2)] <1forj=1,...,N}, where PCC D and f = (f;)}L, € A(D)", is called
an analytic polyhedron of type N. We say that (D, f1, ..., fn) is a frame for P. An
analytic polyhedron of type n = dimS) is called a special analytic polyhedron.

Let P be an open set in ) such that OP is compact. If there are neighborhood U C §)
of OP and (f;)}2, € A(U)Y such that UNP ={z € U: |fi(z)| <1, 1 <i < N},
then P is called polyhedral region with a frame (U, f1,..., fn). If N > n we say
that P is unreduced. P is called prepared if P is unreduced and (fof; ", .., fnfit)

is light on U \ {f1 = 0}, that is, all its level sets consist of just isolated points of
U\ {fi =0}

Let D be a strongly pluriregular domain on a Stein manifold 2. For all integer
7 > 1 we define
. 1
D' ={ze€Q:¢(z) <=}
J

42



A pluriregular condenser K = (K1, ..., K, 01, ...,0,,) in D is a system of plurireg-
ular compact sets K,, C K,,_.1 C ... C K1 C D C D = K, and the numbers
Om < Om—1 < ... < 01 < 0y = 0 such that there is a continuous plurisubharmonic
function w(z) on D with 0 boundary values, K; = {z € D : w < o0;} and w is
maximal on int (K; 1)\ K; for all i, 1 <i < m. Let D, = {2z € D : w(z) < r}.
Suppose that f = (fx), € A(D’) and p > 0 is an integer. Now define

1
v(z) = sup —log|fi(2)].
1<k<N P

We say that f = (fx)r, € A(D?) approzimates K for € > 0 with p if there exists

T:0<7<esuchthat Vi: 1 <7<m,

1. 0, + 27 <0,

2. v(2) <w(z) on D,

3. F;, the union of all connected components of the set {v < ;4 7} intersecting

K;, must satisfy the condition F; C D,, ;.

This is the slight modification of the notion of approximation given by Poletsky
[25].

Denote by G; the interior of F;. Then G, is an analytic polyhedron.

Existence of approximation of pluriregular condenser is given in the following

lemma.

Lemma 5.1.1. Let K be a plurireqular condenser in a strongly plurireqular domain
D. For any sufficiently small ¢ > 0 and integer j there exist p € N* and (f)Y_, €
A(D?) that approzimate K for e.

Proof. We assume that o7 +2¢ < 0. Wetake 7: 0 <7 <€ d:0< 9 < 7/2 and

a > 0 such that a¢ < w on D_s. Then

W (2) = max{w,ap} —§ forz € D,‘ (5.1)
ap — 0 for ze D’ \ D
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is plurisubharmonic on D?. By Lelong-Bremermann Lemma [5](see [27] for proof),
there exist a positive integer p and (fy)Y_, € A(D7) such that
!/ 1 /
w'(z) <wv(z):= sup —log|fi(2)] <w'(z)+¢
1<k<N P

on D¥. Sincew' =w—-don D_5,w—6<v<won D_s. On 9D v < 0 and on
0D_s v < —). By maximality of w in D\ D_s, we have that v < w on D\ D_s.
Since v > —2§ on D \ D_s, we obtain that

w(z) =7 <v(z) < w(z) (5.2)

on D. By inequality 5.2, G;, the set of all connected components of {v < o; + 7}
that intersect K;, belongs to Dy, o,. Therefore p and (f;)Y_, approximate K for
€. [l

Next lemma shows that approximation is stable under a small shifting of ap-

proximating function f = (fx)r_,.

Lemma 5.1.2. ([25]) Suppose that an integer p and (fi,)Y_, € A(D)N approzi-
mate K for € > 0. Then 35 > 0 such that for any analytic functions (hy)N_, €
A(D)YN with ||he|lp < 6, (gr = fx + hi)h—y, approzimates K with the same € and
P.

Proof. Choose a > 0 such that |fi| < e —aon DVk:1<k< N.If§ < a, then

lgi| < eP. We take § so small that 1 — de PlOitT) — o= for all 1 < i < m where

0<b<rt. If 2 € 0G;, then |fp(2)| = e?i*7) for some k. Then
()] > PO L= o) — ok,
where 7/ = 7 — b. Thus
/ 1 /
v'(z) := sup —log|gr(2)| > oy + 7.
1<k<N P
Let G be the interior of the union F} of connected components of the set {z €

D7 :v/'(z) < 0;+ 7'} that intersect K;. Let F” be one of the connected components

of the set F/. Then F' N K, # @. Therefore I’ intersects a connected components
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G of the set G;. Since v/ > 0; + 7" on 0G;, F' C G. Thus F] C G; C F;. This
implies that G} C G;,.
There is a positive 7" < 7 such that F; C Dy, 2,». We choose § > 0 so small that
7" < 7. Then F! C D,, 9. Thus (gx)y_,, approximates K with the same € and
p.

O

The following theorem shows that any pluriregular condenser can be approxi-

mated by n functions.

Theorem 5.1.1. For any sufficiently small € > 0, there exist p € N* and n analytic
functions fi, ..., f, on D’ that approzimate K for e. Moreover f = (fx)i_, can be

choosen such that isolated zeros f in D are simple.
The following Lemma will be needed in the proof of Theorem 5.1.1.

Lemma 5.1.3. Let P be a polyhedral region with a frame (U, f1, ..., fr). Let V C U
be a relatively compact neighborhood of OP such that P\'V is a non-empty compact
subset of P and || fillovep =771, 1 < i <k for somer > 1. Let QN be the union

of the components of
{zeV VN -V <1,2<i<k}

which intersects P\ V. Then RN = QN U(P\V) is a polyhedral region with frame
POV, (rf2)™ = (rfO)N, o, (rf)™ — (r f1)N) if N is sufficiently large.

Lemma 5.1.3 is stated in [11] as Lemma 7B2 without saying that P\ V is
non-empty. In this case, if we take V' O P as a neighborhood of P, then oV N P
will be empty, and the number r in the lemma has no role anymore.

Note that for the proof of Lemma 5.1.3 is same with the proof of Lemma 752 in
[11].

Proof.(of Theorem 5.1.1) Take € > 0 such that o; +2¢ < 0,1 Vi = 1,...,m. Let
N > n be the minimal number of holomorphic functions (f)y_, € A(D)Y that

approximates K for e. Note that existence of such an approximation is guaranteed
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by Lemma 5.1.1. Let § be as in Lemma 5.1.2. Since the set of N — 1 tuples
in A(D7)N=1 which give light maps on D7 \ {f; = 0} is dense in A(D?)N~! by
Lemma 7B1 (or by Theorem 5D4 in [11]), there exist hg, ..., hx € A(D?)V~! such
that ||hrl|pz < 6 for 2 < k < N and (fof; + ha, ..o, fnfi ! + hy) is light on
D¥\ {fi = 0}. Since |fi|p, <1, by Lemma 5.1.2, gy = fi. + hyf1 for 2 <k <N
and ¢g; = f; approximate K for € with same p. Now G;, interior of the union of all
connected components of {z € D : v(z) := suplSkSN%log\gk(z)] < 0, + 7} that
intersect K, are prepared analytic polyhedra. We want to show that for some
q € Z big enough, g — g{, 2 < k < N, also approximate K for ¢ with some p'.

Since the functions gy are continuous and |gx|p < 1, we can find a < 1 and j; > j
such that |gx|ps < a for all k: 1 <k < N. Therefore |g] — g{|pi < 1 when ¢ > qo
for some qo. v(z) < w(z) < 0y, for z € K;. Thus we can choose a v > 0 such that

v(2)|k, < 0;— 7 and v(2)|p < —7. Then v < w — v on D. Now we have
97 — gi] < |gf| + |g7| < 2"~ on D.

Let us choose ¢; > qg such that for any ¢ > ¢;, we have 1;‘—; < 7. Then we obtain

, 1 ¢ g In2
v' = sup —loglgy —gf| Sw—v+—<w
2<k<N bq

on D where p' = pq.

Let us show that Eaiw C G;. Since 0, + 7 < 04_1, Eai% belongs to the interior
K of Ki1. G; C D, +or C K[ | because o; + 27 < 0;_;. Since G; D K;, w
is maximal on K7 ; \ G;. The boundary of K , \ G; consists of the boundary of
K? |, where w = 0,1 > 0; + 7, and the boundary of G;, where w > v = 0; + 7.
By the maximality of w, w > o; + 7 on K¢ | \ G;. Hence D, .. C G;. Since
w>v=o0;+7ondG; Dy s C G

Thus we can take 7 < 7 such that
DU,L'—&-T’ C Gl C Gl C DO'Z‘+2T’

i = 1,...,m. Let us take an open set U; CC D,,12, such that GG; is a prepared

analytic polyhedron with the frame (U;, gii, ..., gni), Where gp; = e P i that
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is, G; ={z € U; : |gni(2)] < 1,1 < k < N} CC U;. Take an open set U/ such
that G; C U] cC U;. Consider V; := U/ \ D, which is a neighborhood of 9G;.
V; cC U;. Since 0V; NGy = ODg, 1, |wloving, = 05 + 7'. Thus |gri| < €?™~7) on
oV, N Gy. Put r; = e P77 then |g| < r;71 < 1ondV;NG;. Soby Lemma 5.1.3
Jg > ¢ such that Vg > ¢y the union Rz of Dy, and all connected components
of the set {z € V; : 17 gf. —gl.| < 1, 2 < k < N} intersecting D, is a polyhedral

region with the frame
(Vi Gi,ri (g3 — g1i), - righi — 91:)- (5.3)

Choose 7 < 7’ such that 71’ C Dyt

Let F’ be a connected component of {v' < og; + 7"} intersecting K;. If zy €
"N K;, then zy € DU#T/ since K; C EGHFT/. Thus zy € R which is one of the
connected component of R;. So F' N K; C R. By (5.3), R is contained in V;.
Therefore if z; € OR, then rf|gi.(z1) — g%;(z1)] = 1 for some k. So |g}(z1) —
gy (20)]e PP = |gi(z)) — g{(21)]e 71T = 1 = |gi(z1) — gi(21)| =
ePdloitt) » epalaitt") Qo o/ (2) > 03 + 7" ie ORNF' = @. Since FFNK; C R
and F' is connected, F' C R C R}. Since R}, C U/ CC Dy 271, F' C Dy o0 i€,
the functions g{ — ¢f, 2 < k < N and p’ = pq — p approximate K for e. But this
contradicts to minimality of N.
Suppose that f = (fi,..., f») has non-simple isolated zeros. By Lemma 5.1.2,
our approximation is stable for some o > 0. Sard’s theorem states that the set
{y € f(D): Df(z) = 0 for some = € f~'(y)} has measure 0. So there exist a
point ¢ = (cy, ..., ¢,) € C" such that Df is different from 0 at all preimages of ¢ and
lek] < dforallk:1,...,n. Let gp = fr—ck. Now gy, ..., g, and p also approximate K

for same € and isolated zeros of g = (g1, ..., gn) are simple. O

5.2 Approximation of the Relative Extremal Function by Multipole

Green functions

Lemma 5.2.1. Let K be a plurireqular condenser in a strongly pluriregular domain

D C Q. Then there are positive numbers 6; | 0, €; | 0, Green functions g; on D,
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numbers o;; < o; converging to o; for all i = 1,...,m and open sets Vi; and Wi;

(Wi # 0) such that
Dagj CcC VVij ccC DO'Z‘ ccC Vvij ccC DU7;+26]'

g; > o on OV, g; > oi; on OWyy, the poles of g; are conlained in the union of

sets Z; =V \Wij, 1<i<m, and

/.

Proof. For each 1 <i < m let us take a sequence of numbers o;; satisfying ;1 <

@twy 5 <

(ddcgj)n S / (ddcw)" -+ 6j.
ij Zij

oi; < o; and oj; T 0;. For each j we consider the pluriregular condenser
K7 = {Kljy ciey K2mj7 O1jy ey Uij}

where Ky 1, = K;, Ky j = Ea;j, 09i-1j = 04, 02 j = 0j;. Note that w(D,K;z) =
w(D, K7; z) for all j. Let (fxj)i_; be a sequence of holomorphic functions that
approximates K7 for ¢; < 1/j. Assume that the system fi; = ... = f,; = 0 have
simple roots and ¢; satify the following:

Oij — 0i_1j + € 1\ "
Q= _J : ‘13 .j 2<(1+—.)
Oijj —0i—15t€ + €5 9

for all 1 <7 < 2m. Then there exist 7; < ¢; satisfying o,; + 27; < 0,1 ; and
Kij C Gij CC Dy, 127

where G is the interior of union of all connected components of {v; < o;;+7;} that

intersect K;; with v; := sup, <, 1/p;log | fi;]. Let wy; == (1—7;)(w—0i;—7; —7']-2)
and Vij = Vj — 045 — Tj. On GGU Vi = 0 and Wi < 0. Since w S 045 0N Kij and
v; < w on D, Wi > Vi on Klj Therefore Hij = {Uz'j < wij} N Gij D) KU By

Comparison Principle,

J

We assume that (1 —7;)" > 1 —¢;. Since w;; is maximal on G;; \ K;; we obtain

(ddcvj)" Z/ (ddcvw)” Z/ (ddcww)n

ij
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/Grr(ddcw - /G..(ddcwij)n = (1- Tj)”/G (dd°w)"

> (1—¢) / (ddw)". (5.4)
Gij
Let P;; be the set of poles of v; that lie in G;;. We consider the Green function
gij on Dy, with poles in F;; of weight 1/p; and g;; = 0 on dD,,_, ;. By definition

of gij We have that Gij > Vj — 0j—15 O1 Em’,—lj'

/ . - [
Let wj; be the restriction of aj(w — ;1) to Dy,_, ; and vj; := max{g;,os; —
0i1; + 7j}. Since wj; < oy — 0515 + 75 on Gy, wi; < vj; on Gy On 9D,

o , . ) )
gij = wi; = 0. On 0Gy; gij > 04y — 041 + 7; > wj;. Since g;; is maximal on

D,,_, \ G,; we see that vi; > gij > wi; on D By the Comparison Principle,

Oi—1j"
/ (ddv;)" < (aj)”/ /(ddcw)”.
Doy ; Doy ;
By
[ty = [ gy
Do;_y Doi_y

Since g;; and w are maximal on Dy, \ Gy,

| @y = [ o <o) | @y, 55)

ij Gij ij

Then by (5.4), (5.5) and the equality

/ (ddw)" = / (dd°w)"
Ga; 5 G2it1j

we obtain that

2
/ (dd°v;)" — / (ddev;)" < = / (ddw)" (5.6)
G j G2it1j J Goit1j

Let V;j := Ggi—1j and W;; := Gy, j for all i = 1, ...,m. For each j we introduce the
Green function g; on D with poles of weight 1/p; at those poles of v; that lie in
the union of the sets G2m—1j and GQi—lj \agij7 1 S 1 S m — 1. By definiton of g;

and inequality (5.5),
1
/ (dd°g;)" §/ (ddv;)" < (1+—,>/ (ddw)"™. (5.7)
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Since the set of poles of g; in V}; is equal to the set of poles of v; that lie in the set

Vis \UES (Gan j \ Gakg )

| gy = [

ij %

By (5.4) and (5.6),
/V“(ddcgj)" > <1 — 27m> /V“(ddcw)”. (5.8)

g g

we have

(ddv;)" / (ddv;)™.
j ] Z Gar j\Gary1 ; ’

Let v; :=2m/j and §; := 2v; [, (dd°w)". By inequalities (5.7) and (5.8),

[ weay = [ aray- [ gy

g )

< () [ (@rwr—(1-) /V | arur < | oy s

Similarly,

[ gy = (=) [ @ -y / (ddvw)"

(%) (%) i+1 j

> / (dd°w)" — ;.
Z..

ij
By definiton, g; > v; on D. Thus g; > o; on dVj; and g; > o7; on OW;;. Now the

proof is complete. n

Lemma 5.2.2. Let (g;); be a sequence of Green function on D that satisfies the
conditions of Lemma 5.2.1. Then (g;); converges uniformly to w(z) on every com-

pact set in Dy, \ K;, i1 =1,...m

Proof. Let g;; be the restriction of g; to the open set Z;;. Since g; > 0; > o}, on
OVij and g; > oj; on OWyj, {gij < of; — 0;} CC Zyy. Let gi; := max{gij, o}; — 0;}.
Then the function g; defined as g;; on Z;; for all i = 1,...,m and g; on D\ UL, Z;;
is plurisubharmonic in D. Let

i+ 2¢;
cj::min{al—i_ ejzlgigm}.
O'--—(Sj
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Note that ¢; — 1. Let h; := ¢;g}. On Z;, hj > 0;+2¢; > w for all i = 1,...,m. By
the maximality of h; outside the union of the Z,;, h; > w on D. Thus integrating
by parts we have,

/D(—w)(ddCW" > /D (—=hy)(ddw)" = / (—w)dd°h; A (dd°w)"~"

D

/(—hj)ddchj/\(ddcw)"_l = > /(—hj)(dd%j)”.

D

Vv

Then we obtain

o< [y—wary < [ nany - [ ooy

D
_ 2_; ( /Z () - /Z ij w(ddcw)n>  (5.9)

The support of (ddw) lies on 0K;, where w = o;. The support of (dd°h;) lies
where g; < o};. Thus by (5.9)

m

0< [ (b —w)druy <3 (c;a;j | gy o | U(ddﬂw)”) .

=1 ij

By (3.7) and Lemma 5.2.1,

/Ziv(ddch" = /Zi.(ddcgj)n > /zw(ddcw)n 5,

J J 3

For any a > 0,

0<a / (dd°w)" < / (h; — w)(dd°w)"
{hj—w>a} D
> <(cyagj —0;) /Z (ddw)"™ — 5jc;lagj> .

i=1 ©J

IN

Thus

lim (dd“w)" = 0. (5.10)

J=00 J{h;—w>a}

For any § > 0 we choose € > 0 such that €|z|*> < §/2 on D and denote u; :=
h; + €|z|*> — 0. Note that (dd“(e|z|* — 0))" = €"k,dV, where k, depends only on
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n and dV is the volume form. Let E; := {z € D : w < u;}. Since u; < —J/2 on
0D and h; —w > 0/2 on Ej;, E; is relatively compact in D and contained in the
set {h; —w > §/2}. By the subadditivity of the complex Monge-Ampere operator
and the Comparison Principle we have

'k,m(E;) < /(ddchj)"—i-/ (dd°e|z|? — &)™
E. .

J EJ

< /E.(ddcug‘)" S/

(dd°w)" g/ (dd°w)".
i Ej {hj—w>6/2}
Thus by (5.10),

lim m(£;) = 0.

Jj—o00
Let F; := {w < h; — ¢} C Ej;. There exists r > 0 such that |w(z) — w(2’)| <
whenever |z — 2/| < r. Take j, such that m(E;) < dm(B(z,7)) Vj > jo. If
B = B(zp,7) C D, then

1 1

B\
< — (w+6)dV — (w+8)dV | <w(z) + (2 —0m)d.
m(B) ( B BNF;
Thus h; converge to w uniformly on D. Consequently on every compact set in

D; 1\ K;, g; converge uniformly to w for all i =1, ..., m. O

Now we can prove Proposition 4.6.1 which is the positive solution of Zakharyuta
Conjecture. Proposition 4.6.1 can be considered as a particular case of Lemma
5.2.2. Only we need to extend the notion of approximation from strongly plurireg-

ular domain to pluriregular domain. Here we follow Nivoche [23] for the proof.
Proof. (of Proposition 4.6.1) For any ¢ sufficiently small, D(—¢) is a strongly
pluriregular domain containing a compact set K. By definition, we have on D(—0)

Uk p + )
UK, D(—-6) = T(S

Therefore, for any ¢ > 0, there exist dy < 0 such that,

UK,D
(1+ e)%

UK, D(—~50) <
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By Proposition 3.3.1, for any &' < inf{dy, 6*}, we have
(1 + 6)1/3UK,D(—5’) S UK, ,D S UK,D(f(S’) on D(—5> (511)

Now Lemma 5.2.2 for the couple (K, D(—¢")) with m = 1 and ug p instead of w
implies that there exist pluricomplex Green function g on D(—¢’) such that on

each compact set in D(—d") \ D(—=1+ (1 —¢")) ,
(1463 <ugpsy < (1—e). (5.12)
By combining the equation (5.12) with the equation (5.11), we get
(14639 <ugp < (1—€)*Pgon D(=0")\ D(=14+6(1—0)).  (5.13)

Next step is to replace g by a pluricomplex Green function on D. Let ¢’ be
the pluricomplex Green function with the same poles as g but with weights all

multiplied by the constant (§ — §")/d. Since D(—d") C D,

g < 0 ; 7) gon D(—¢"). (5.14)

By (5.13), on 9D(—¢) we have,

uK,D(Z) o -’ ((5 — 5’) 5
(1—€)2/3 (1 —¢€)2/3 < 5 9(z) — m

On 0D(—0d"), since g(z) = 0 and ug p(z) = =6,

UK,D<Z) _ -’ B ((5 — 5’) 5
(1—e)23 (11—  § 9(z) — m

Let v denote the following negative psh function:

(6_65’)9(2,) _ (1—i;2/3 on D(—6)
U(Z) = max (57;6/) (Z) T a il2/37 ulK 522} on D<_5,) \ D<_5)
s on D\ D(~)

(65— &) 5
5 g(Z) - (1 _ 6)2/3'

Q\
v

(5.15)
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By combining the inequalities (5.13), (5.14) and (5.15),

on D(—=9)\ D(—1+6'(1 —¢")) we have,

S(14¢e)%3 S5(1—e)?3 [, 5
-~ 7 < < —F + = |-
5y 9 Surplz) £ —5—o— g (1— €23

Since ug p and ¢ are maximal in D\ D(—¢), we have the same inequalities on
D\ D(—4). Since §'(1—¢") < &, we have also the same inequalities on D\ D(—1+4).

By choosing ¢’ sufficiently small such that *5 < (14¢)"/3 and 22 + %g’ <

(1—-€)g’ on D\ D(—1+§), we obtain the following inequality on D\ D(—1+ §),
(1+€)d'(2) <urp(z) < (1—e€)d(z)

which completes the proof. O]
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