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Abstract

In this thesis, we discuss results on isomorphisms of spaces of analytic functions

of several complex variables in terms of pluripotential theoretic considerations. More

specifically, we present the following result:

Theorem 1 Let Ω be a Stein manifold of dimension n. Then,

A(Ω) ' A(Un)

if and only if Ω is pluriregular and consists of at most finite number of connected

components.

The problem of isomorphic classification of spaces of analytic functions is also

closely related to the problem of existence and construction of bases in such spaces.

The essential tools we use in our approach are Hilbert methods and the interpolation

properties of spaces of analytic functions which give us estimates of dual norms and

help us to obtain extendable bases for pluriregular pairs.



ÇOKLU KARMAŞIK DEĞİŞKENLİ ANALİTİK FONKSİYON UZAYLARINDA

EŞBİÇİMLİLİK ÜZERİNE

Can Deha Karıksız

Matematik, Yüksek Lisans Tezi, 2007

Tez Danışmanları: Prof. Dr. Vyacheslav Zakharyuta

Anahtar Kelimeler: Stein Manifoldu, Analitik Fonksiyon Uzayları, Dual Uzaylar

Özet

Bu tezde çoklu karmaşık deǧişkenli analitik fonksiyon uzaylarında eşbiçimliliǧin

karmaşık potansiyel teorisi yardımıyla karakterize edilmesi konusundaki gelişmelere

deǧinilmekte ve n boyutlu bir Stein manifoldu üzerindeki analitik fonksiyon uzayının

Cn’in birim diski üzerindeki analitik fonksiyon uzayına eşbiçimli olması için gerekli

ve yeterli şartlara dair sonuca yer verilmektedir.

Analitik fonksiyon uzayları arasındaki eşbiçimlilik problemi bu uzaylarda taban-

ların varlıǧı ve bu tabanların oluşturulması problemiyle de yakın ilişki içerisindedir.

Analitik fonksiyon uzaylarının interpolasyon özellikleri ve Hilbert teknikleri bu uza-

ylar için taban oluşturmada ve eşbiçimliliklerin belirlenmesinde önemli yardımlar

saǧlamaktadır.
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CHAPTER 1

SPACES OF ANALYTIC FUNCTIONS

1.1. Stein Manifolds

A Hausdorff topological space Ω is called a manifold (of dimension n) if any

point in Ω has a neighbourhood which is homeomorphic to an open set in Rn.

Definition 1.1.1 A manifold Ω is called a complex analytic manifold if there is a

given family F of homeomorphisms κ of open sets Ωκ ⊂ Ω on open sets Ω̃κ ⊂ Cn

such that

(i) For κ, κ′ ∈ F, the mapping

κ′κ−1 : κ(Ωκ ∩ Ωκ′) → κ′(Ωκ ∩ Ωκ′)

between open sets in Cn is analytic,

(ii) ⋃
κ∈F

Ωκ = Ω,

(iii) For a homeomorphism κ0 of an open set Ω0 ⊂ Ω on an open set in Cn where

the mapping

κκ−1
0 : κ0(Ω0 ∩ Ωκ) → κ(Ω0 ∩ Ωκ)

and its inverse are analytic for every κ ∈ F, we have κ0 ∈ F.
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If F satisfies (i) and (ii) only, then F can be extended in only one way to a

family F ′ satisfying (i), (ii) and (iii), which is the set of all mappings satisfying

(iii) relative to F . So, if we drop the last condition, then we can find different

families defining the same complex analytic structure. Such a family is called a

complete set of complex analytic coordinate systems. We also say that n complex

valued functions (z1, . . . , zn) defined in a neighbourhood of a point w ∈ Ω are a local

coordinate system at w if they define a mapping of a neighbourhood of w into Cn

which is a complex analytic coordinate system.

We may define analyticity in several complex variables simply via Cauchy-Riemann

conditions:

Definition 1.1.2 u ∈ C1(Ω), where Ω is an open set in Cn, is called analytic in Ω

if ∂̄u = 0 (i.e. it satisfies the Cauchy-Riemann equations).

Then, the concept of analyticity can be extended to functions on complex man-

ifolds as follows:

Definition 1.1.3 Let Ω1 and Ω2 be complex analytic manifolds. Then a mapping

f : Ω1 → Ω2 is called analytic if κ2 ◦ f ◦ κ−1
1 is analytic for all coordinate systems

κ1 in Ω1 and κ2 in Ω2.

Every open subset of a complex analytic manifold Ω has a structure of a complex

analytic manifold, so the concept of an analytic function on an open subset is also

well defined. By the definition of a complex analytic manifold, analytic functions

exist locally. Here is a class of complex manifolds where we can obtain globally

defined analytic functions:

Definition 1.1.4 An n-dimensional complex analytic manifold Ω is called a Stein

manifold if

(i) Ω is countable at infinity, i.e. if there exists a countable number of compact

subsets {Ki : i ∈ N} such that every compact subset of Ω is contained in some

Ki.

(ii) K̂ := {z ∈ Ω : |f(z)| ≤ supK |f | ∀f ∈ A(Ω)} is a compact subset of Ω for

any compact subset K of Ω.
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(iii) for any different points z1 and z2 in Ω, there exists f ∈ A(Ω) such that f(z1) 6=

f(z2).

(iv) for any z ∈ Ω there exist n functions f1, · · · , fn ∈ A(Ω) which form a coordi-

nate system at z.

Every domain of holomorphy in Cn is a Stein manifold since an open set Ω in

Cn is a domain of holomorphy if and only if K is relatively compact in Ω implies

K̂ is relatively compact in Ω. Also, any submanifold of a Stein manifold is a Stein

manifold itself. For the definition of submanifold and the proof of this statement,

one can look at [8].

1.2. Spaces of Analytic Functions

The space of all analytic functions on a complex manifold Ω, with the topology

of uniform convergence on compact subsets of Ω, will be denoted by A(Ω). More

precisely, the topology on A(Ω) is the locally convex topology generated by the

seminorms

|f |K = max
z∈K

{|f(z)|} (1.1)

where K is any compact set in Ω. If Ω is countable at infinity, e.g. Ω is a Stein

manifold, then the topology on A(Ω) can be defined by some countable sequence of

seminorms of the form (1.1). Also, completeness follows from the fact that for any

sequence in A(Ω) converging locally uniformly to a function f : Ω → C, we have

f ∈ A(Ω). Hence, A(Ω) becomes a Fréchet space when Ω is a Stein manifold.

For any arbitrary subset E of Ω, we can also construct a locally convex space by

using germs of analytic functions on E as follows:

Let N (E) denote the collection of all open neighbourhoods of E in Ω. We define

an equivalence relation by stating that two functions f ∈ A(Df ) and g ∈ A(Dg),

where Df , Dg ∈ N (E), are equivalent if there exists D ∈ N (E) such that D ⊂

Df ∩ Dg and f(z) = g(z) for every z ∈ D. An equivalence class of this relation is

called a germ of analytic functions (or, briefly a germ).
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If E is a non-empty open set in Ω, then if any two functions f, g ∈ A(E) are in

the same germ, we have f ≡ g on E. Since E is a non-empty open set in Ω and

f − g ≡ 0 on E, we should have f − g ≡ 0 on Ω. So, f ≡ g on any neighbourhood of

E, which implies that any germ on E consists of a unique analytic function on E.

Let us denote by A(E), all analytic germs on E equipped with the inductive

limit topology

A(E) = lim indD∈N (E)A(D), (1.2)

i.e. the finest topology on A(E) for which the natural restriction mappings from

A(D) to A(E), where D ∈ N (E), are continuous. Then, A(E) is also a locally

convex space.

IfK is a compact set in Ω, then we can represent A(K) as the countable inductive

limit

A(K) = lim indn→∞A(Dn)

where Dn is any countable basis of N (K). Without loss of generality, we may choose

Dn such that Dn+1 is relatively compact in Dn for every n and no Dn contains a

connected component disjoint from K. So, in this setting, xn → x in A(K) if there

exists a neighbourhood D ∈ N (K) such that xn ∈ A(D) for every n, x ∈ A(D) and

(xn) converges uniformly to x on any compact subset of D.

Let K be a compact set in Ω and J : A(K) → C(K) be the natural restric-

tion homomorphism. We denote by AC(K), the Banach space obtained from the

completion of J(A(K)) in C(K) with respect to the norm (1.1).
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CHAPTER 2

ON DUALITY

2.1. Analytic Functionals

Let Ω be a Stein manifold. An element of the dual space A(Ω)∗ of A(Ω), i.e. the

space of all linear continuous functionals on A(Ω), is called an analytic functional.

If E is an arbitrary subset of a connected Stein manifold Ω, then

j∗ : A(E)∗ → A(Ω)∗ (2.1)

which maps any x∗ ∈ A(E)∗ to its restriction on A(Ω)∗, is linear and continuous.

If E is a Runge set in Ω, i.e. A(Ω) is dense in A(E), then j∗ becomes a dense

imbedding. This result is obtained from the following proposition:

Proposition 2.1.1 Let X0 and X1 be separable locally convex spaces with a linear

continuous dense imbedding j : X1 → X0 where X1 is reflexive. Then, the adjoint

operator j∗ : X∗
0 → X∗

1 , where j∗(x∗) = x∗ ◦ j for every x∗ ∈ X∗
0 , is also a linear

continuous dense imbedding.

Proof: Linearity and continuity of j∗ follows simply from the definition of j∗.

To show that j∗ is injective, let j∗(x∗1) = j∗(x∗2) where x∗1, x
∗
2 ∈ X∗

0 . Then

x∗1 ◦ j = x∗2 ◦ j and, since j is a dense imbedding, we have x∗1 = x∗2 on the dense
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image set j(X1) ⊂ X0. Any continuous function is determined by its values on a

dense subset, so x∗1 = x∗2 on X0. Thus, j∗ is injective.

To show that j∗ is a dense mapping, we need to use the reflexivity of X1. Since

X1 is reflexive, there exists an isometric isomorphism

λ : X1 → X∗∗
1

λ(x)(u) = u(x), u ∈ X∗
1

and λ(X1) = X∗∗
1 . Now, fix v ∈ X∗∗

1 such that v(y∗) = 0 for every y∗ ∈ j∗(X∗
0 ).

Since X1 is reflexive, there exists x ∈ X1 such that λ(x) = v. So, for all y∗ ∈ j∗(X∗
0 ),

v(y∗) = 0 implies λ(x)(y∗) = 0, which implies y∗(x) = 0. Hence x∗(j(x)) = 0 for

every x∗ ∈ X∗
0 . Since X∗

0 separates points of X0, we have j(x) = 0, which implies

that x = 0 since j is injective. This implies that v = λ(x) = 0.

So, we have shown that for any v ∈ X∗∗
1 such that v(y∗) = 0 for all y∗ ∈ L,

we get v ≡ 0. Hence, by a corollary to Hahn-Banach theorem, L must be a dense

subset of X∗
1 . Thus, j∗ is a dense imbedding. 2

For a Runge set E ⊂ Ω, let A′(E) denote the image of A(E)∗ under j∗ as in

(2.1). Then, for Runge subsets E,F in Ω where E ⊂ F and A(F ) is dense in A(E),

we have the natural imbeddings A′(F ) ⊂ A′(E) ⊂ A′(Ω).

2.2. GKS-Duality

The result of Grothendieck, Köthe and Silva, called GKS-duality, which we will

state now, supplies us with the machinery in one-dimensional case so that for any

set E ∈ C, we can realize the dual space A(E)∗ as the space of analytic functions

A(E∗), where E∗ = C\E, with the assumption that all germs of A(E) are equal to

zero at the point ∞ if ∞ ∈ E.

Theorem 2.2.1 For any set E ⊂ C there exists an isomorphism

γ : A(E)∗ → A(E∗)

such that

x∗(x) =

∫
Γ

x′(ζ)x(ζ)dζ, x ∈ A(E),

6



where x′ = γ(x∗) and Γ = Γ(x, x′) is a rectifiable contour separating the singularities

of the analytic germs x and x∗.

However, in several complex variables, there is no similar universal representation

of A(E)∗ as a space of analytic functions. Here is a simple special case that will be

necessary for us:

Proposition 2.2.2 Let Ur be a polydisc in Cn around zero with the polyradius r =

(r1, . . . , rn) and define U∗r as

U∗r := {z = (zν) ∈ C̄n : |zν | > rν , ν = 1, . . . , n}

Then there exists a natural isomorphism J : A(Ur)
∗ → A(U∗r ) such that for

x′ = J(x∗), we have

x∗(x) =

∫
Γλ

x(ζ)x′(ζ)dζ1 · · · dζn,

where

Γλ = Γλ(x
∗) = {ζ = (ζν) ∈ C̄n : |ζν | = λrν , ν = 1, · · · , n}, λ = λ(x∗) < 1

Proof: From the Cauchy integral formula, we know that any x ∈ A(Ur) can be

represented as the integral

x(z) =

(
1

2πi

)n ∫
Γ

x(ζ1, . . . , ζn)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn (2.2)

where Γλ = {ζ = (ζν) ∈ Cn : |ζν | = λrν , ν = 1, . . . , n} for 0 < λ < 1 and

z = (z1, . . . , zn) ∈ A(Ur). Let

uζ(z) :=

(
1

2πi

)n
1

(ζ1 − z1) · · · (ζn − zn)

Then, for any ζ ∈ Γλ, we have uζ ∈ A(Uλr), where

Uλr = λUr = {z = (zν) ∈ C̄n : |zν | < λrν , ν = 1, . . . , n}. Also , if we denote by

vz(ζ) := uζ(z), a function of ζ where z ∈ Uλr is fixed, then vz(ζ) ∈ A(U∗λr).

Now, let x∗ ∈ A(Ur)
∗. Then there exist γ = γ(x∗) in (0, 1) and a positive

constant C = C(x∗) so that |x∗(x)| ≤ |x|Uγr for any x ∈ A(Ur).
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Let us take λ = λ(x∗) such that γ < λ < 1. Then

x(z) =

(
1

2πi

)n ∫
Γλ

x(ζ1, . . . , ζn)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn

=

∫
Γλ

x(ζ1, . . . , ζn)uζ(z1, . . . , zn)dζ1 · · · dζn

Now, if we take a sequence of partitions {∆(m)
j }m

j=1 of Γλ with ζ
(m)
j ∈ ∆

(m)
j and

µ
(m)
j is the measure of ∆

(m)
j for every j = 1, . . . ,m such that δ(m) := maxj{µ(m)

j } → 0

as m→∞, then, by the continuity of x(ζ)uζ(z), for any fixed z, we have

x(z) = lim
m→∞

m∑
j=1

x(ζ
(m)
j )u

ζ
(m)
j

(z)µ
(m)
j

Let ε > 0, then by the additivity of integral we have∫
Γλ

x(ζ)uζ(z)dζ =
m∑

j=1

∫
∆

(m)
j

x(ζ)uζ(z)dζ,

and ∣∣∣∣∣
∫

Γλ

x(ζ)uζ(z)dζ −
m∑

j=1

x(ζ
(m)
j )u

ζ
(m)
j

(z)µ
(m)
j

∣∣∣∣∣
=

∣∣∣∣∣
m∑

j=1

∫
∆

(m)
j

x(ζ)uζ(z)dζ −
m∑

j=1

x(ζ
(m)
j )u

ζ
(m)
j

(z)µ
(m)
j

∣∣∣∣∣
≤

m∑
j=1

∣∣∣∣∣
∫

∆
(m)
j

(
x(ζ)uζ(z)− x(ζ

(m)
j )u

ζ
(m)
j

(z)
)

dζ

∣∣∣∣∣
Since vζ(z) is uniformly continuous on Uγr, for the given ε, there exists δ > 0

such that
∣∣vζ(1)(z)− vζ(2)(z)

∣∣ < ε whenever
∣∣ζ(1) − ζ(2)

∣∣ < δ. So, if we choose a

partition ∆(m0) such that δ(m0) < δ, then we have

m∑
j=1

∣∣∣∣∣
∫

∆
(m)
j

(
x(ζ)uζ(z)− x(ζ

(m)
j )u

ζ
(m)
j

(z)
)

dζ

∣∣∣∣∣ < ε
m∑

j=1

µ
(m)
j

whenever m ≥ m0. Hence, the partial sums converge to x(z) uniformly on A(Uγr).

Thus, if we apply x∗ to both sides, we get

x∗(x) = x∗( lim
m→∞

m∑
j=1

x(ζ
(m)
j )u

ζ
(m)
j

(z)µ
(m)
j )

= lim
m→∞

m∑
j=1

x(ζ
(m)
j )x∗(u

ζ
(m)
j

(z))µ
(m)
j

8



By using the similar arguments as above, we can show that this limit tends to∫
Γλ
x(ζ)x′(ζ)dζ, where x′(ζ) = x∗(uζ). Thus, x∗(x) =

∫
Γλ
x(ζ)x′(ζ)dζ.

To show that x′ is analytic on U∗λr, let us look at the partial derivatives

∂

∂ζν
uζ(z) = lim

h→0

uζ+heν (z)− uζ(z)

h
, ζ ∈ U∗λr (2.3)

where eν are the unit vectors in the respective coordinates ζν , ν = 1, . . . , n. Since

we have uniform continuity on Uγr,

x∗
(

lim
h→0

uζ+heν(z) − uζ(z)

h

)
= lim

h→0
x∗
(
uζ+heν − uζ

h

)
= lim

h→0

x∗(uζ+heν )− x∗(uζ)

h

=
∂

∂ζν
(x∗(uζ))

=
∂

∂ζν
(x′(ζ))

Hence, x′ is analytic in each variable ζν , and so x′ is analytic on U∗λr. 2

2.3. Dual Form Of Cartan Theorem

Let M be a closed analytic submanifold of a Stein manifold Ω. Then, according

to Cartan theorem, the operator

R : A(Ω) → A(M) : Rx = x|M , x ∈ A(Ω)

is a surjection. If we consider the adjoint operator R∗ : A(M)∗ → A(Ω)∗ which maps

any functional φ ∈ A(M)∗ to ψ = φ ◦ R ∈ A(Ω)∗, we get a dual form of Cartan

theorem:

Proposition 2.3.1 The adjoint operator R∗ : A(M)∗ → A(Ω)∗ of the restriction

operator R : A(Ω) → A(M) is an isomorphic imbedding.

The proof can be found in [7].
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CHAPTER 3

SOME TOPICS OF PLURIPOTENTIAL THEORY

3.1. Maximal plurisubharmonic functions

Let PSH(D) denote the class of all plurisubharmonic functions in a domain D.

For a detailed information on plurisubharmonic functions and pluripotential theory,

one can refer to [9].

Definition 3.1.1 A function u ∈ PSH(D) is called maximal in D if for any rela-

tively compact open subset G of D and any function v ∈ PSH(D), upper semicon-

tinuous on G such that v ≤ u on ∂G, we have v ≤ u in G.

Let us denote the class of all maximal plurisubharmonic functions on D by

MPSH(D). Due to Bremermann ([6]), we know that if u ∈ MPSH(D) ∩ C2(D),

then u is maximal if and only if

(ddcu)n = 0, (3.1)

where d = ∂ + ∂, dc = i(∂ − ∂). The equation (3.1) is called the homogeneous

Monge-Ampère equation.

Bedford and Taylor, in [3] and [4], had shown that the Monge-Ampère operator

u→ (ddcu)n

10



can be defined as a continuous operator from the space L∞loc(D)∩PSH(D) equipped

with the topology induced by L∞loc(D), to the spaceM(D) of non-negative Borel mea-

sures on D equipped with the weak convergence topology, by continuously extending

the corresponding differential operator acting on PSH(D)∩C2(D). In light of these

results, maximal plurisubharmonic functions can be characterized as follows:

Proposition 3.1.1 A function u ∈ PSH(D) ∩ L∞(D) is maximal if and only if u

satisfies the homogeneous Monge-Ampère equation, (ddcu)n = 0, in the generalized

sense.

3.2. Green Pluripotential

Let E be a subset of a Stein manifold Ω. The following extremal function is called

the Green pluripotential (or MP -measure):

ω(z) = ω(Ω, E, z) = lim sup
ζ→z

ω0(Ω, E, z), z ∈ Ω, (3.2)

where

ω0(z) = ω0(Ω, E, z) = sup{u(z) : U ∈ P (E,Ω)},

P (E,Ω) = {u ∈ PSH(Ω) : u|E ≤ 0, u(z) < 1, z ∈ Ω}.

ω(z) is an analogue to the general solution of the Dirichlet problem for the class of

harmonic functions in the domain Ω = Ω1\Ω0 ⊂ Rn with the boundary conditions

u|∂Ω1 ≡ 1, u|∂Ω0 ≡ 0.

Here are some elementary properties of (3.2):

1. ω ∈ PSH(Ω),

2. if Ω1 ⊂ Ω, E1 ⊂ E, then ω(Ω, E, z) ≤ ω(Ω1, E1, z) for all z ∈ Ω1,

3. if Ω′ is a connected component of Ω and Ω′ ∩ E = ∅, then ω(Ω, E, z) ≡ 1 in

Ω′.

11



Bedford and Taylor had proven that ω(z) satisfies the homogeneous Monge-

Ampère equation on Ω\E, hence ω(z) is maximal in Ω\E.

With the help of ω(z), we can state an analogue of the Two Constant Theorem

for analytic functions of several complex variables:

Proposition 3.2.2 Let K be a compact subset of a Stein manifold Ω and f be a

bounded analytic function in Ω. Then,

|f(z)| ≤ (|f |Ω)ω(z)(|f |K)1−ω(z), z ∈ Ω. (3.3)

Proof: Since f(z) is a bounded analytic function in Ω, ln |f(z)| is plurisubhar-

monic in Ω. Also, by the definiton of the norms |f |Ω and |f |K , we have ln|f | ≤ |f |Ω
on Ω and ln|f | ≤ |f |K on K. Hence we can consider the function

ln |f(z)| − ln |f |K
ln |f |Ω − ln |f |K

which is plurisubharmonic in Ω\K and

ln |f(z)| − ln |f |K
ln |f |Ω − ln |f |K

≤ ω(z),

by the maximality of ω(z). Thus we have,

ln |f(z)| ≤ ω(z) ln |f |Ω + (1− ω(z)) ln |f |K

which implies

|f(z)| ≤ |f |ω(z)
Ω |f |(1−ω(z))

K .

2

3.3. Pluriregularity

Definition 3.3.1 A Stein manifold Ω is called pluriregular (or strongly pseudo-

convex) if there exists a plurisubharmonic function u ∈ PSH(Ω) such that u(z) < 0

for every z ∈ Ω and u(zj) → 0 for every sequence {zj} ⊂ Ω without limit points in

Ω.
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Definition 3.3.2 A compact set K in a Stein manifold Ω is called pluriregular on

Ω if ω(D,K, z) = 0 on K for some open neighbourhood D relatively compact in

Ω. K is called strongly pluriregular on Ω if for any open neighbourhood D of K,

relatively compact in Ω, we have ω(D̃,K, z) ≡ 0 on K, where D̃ is the envelope of

holomorphy of D.

Pluriregularity of a compact set K in Ω is equivalent to the pluriregularity of

its envelope of holomorphy K̂Ω. Also, K is strongly pluriregular if and only if for

every pseudoconvex covering domain Ω1 over Ω such that Ω1 ⊃ K, the envelope of

holomorphy K̂Ω1 is pluriregular on Ω1. For the definition of envelope of holomorphy

and some of its properties, one can look at [8], chapter 5.4.

Definition 3.3.3 A pair (K,Ω) is called pluriregular if K is a pluriregular holomor-

phically convex compact set on the pluriregular Stein manifold Ω and every connected

component of Ω has a nonempty intersection with K.

Given a pluriregular pair (K,Ω), the Green pluripotential ω(z) has the following

useful properties:

Theorem 3.3.1 If (K,Ω) is a pluriregular pair, then ω(z) = ω(Ω, K, z) is contin-

uous in Ω and satisfies

(i) ω(z) = 0, z ∈ K,

(ii) 0 < ω(z) < 1, z ∈ Ω\K,

(iii) limz→∂Ω ω(z) = 1.

The proof can be found in [16].

A set Ω ∈ Cn is called circled if for every a = (a1, · · · , an) ∈ Ω, the torus

{z ∈ Cn : z = (a1e
iθ1 , · · · , ane

iθn , 0 ≤ θj ≤ 2π}

lies in Ω. An open circled set in Cn is called a circular (Reinhardt) domain. A

circular domain Ω is called complete if for every a ∈ Ω, we have

{z ∈ Cn : |zj| < |aj|, j = 1, · · · , n} ⊂ Ω.

13



Let D be a complete circular domain in Cn and let us define the function

ψD(z) := ln inf{t > 0 :
z

t
∈ D}, z ∈ Cn (3.4)

ψD(z) is upper semicontinuous in Cn and it is known that it characterizes the pseu-

doconvexity of D. So, a complete circular domain D is pluriregular if and only if

ψD(z) is plurisubharmonic in Cn and continuous in Cn\{0}.

14



CHAPTER 4

INTERPOLATION PROPERTIES OF

SPACES OF ANALYTIC FUNCTIONS

4.1. Interpolation Estimates of the Norms of Analytic Functionals

In this section, we consider the two constant theorem in the case of analytic

functionals. In the implicit form, it was considered in [16] as a result about Hilbert

scales of analytic functions. Here, we give a proof based on the dual version of

Cartan Theorem (theorem 2.3.1), without using Hilbert space techniques.

Theorem 4.1.1 Let (K,D) be a pluriregular pair on a Stein Manifold Ω, where D

is a strongly pluriregular open set on Ω. Then, for any ε > 0 and α ∈ (0, 1), there

exists a constant C = C(α, ε) such that for any x∗ ∈ AC(K)∗ the following estimate

holds

|x∗|∗Dα
≤ C(|x∗|∗K)1−α+ε(|x∗|∗D)α−ε,

where

Dα = {z ∈ D : ω(D,K, z) < α}, 0 < α < 1 (4.1)

Let us first consider a special case when D and K are analytic polyhedrons in

Ω defined by the same collection of analytic functions. We have a one-parameter

family of polydiscs in CN :

Vα = {z = (zν) ∈ CN : |zν | < rν(α), ν = 1, . . . , N}

15



where

rν(α) = Rα
ν r

1−α
ν , rν < Rν , ν = 1, . . . , N, α ∈ R

For α ∈ [0, 1], let ∆α := Vα ∩ Ω and ∆̃α := V α ∩ Ω be two families of analytic

polyhedrons in Ω and let Φα and Φ̃α be polyhedrons that are the connected compo-

nents of ∆α and ∆̃α respectively, which have nonempty intersections with Φ̃0 = ∆̃0.

Then, we have the following:

Proposition 4.1.2 For every ε > 0 and α ∈ (0, 1), there exists a constant C =

C(α, ε) such that

|x∗|∗
Φ̃α
≤ C

(
|x∗|∗

Φ̃0

)1−α+ε (
|x∗|∗

Φ̃1

)α−ε

, x∗ ∈ AC(Φ̃0)
∗ (4.2)

Proof: We know that all polyhedrons Φα are closed submanifolds of polyhedrons

Vα, and so are Φ̃α, since Φ̃α =
⋂

β>α Φβ. So, for α ∈ (0, 1), we have

Φ̃0 ⊂ Φα ⊂ Φ̃α ⊂ Φ1,

which implies that

A(Φ̃0) ⊃ A(Φα) ⊃ A(Φ̃α) ⊃ A(Φ1).

Hence, taking the duals, we have the inclusions

A(Φ̃0)
∗ ⊂ A(Φα)∗ ⊂ A(Φ̃α)∗ ⊂ A(Φ1)

∗.

Thus, we get the natural imbeddings

A(Φ̃0)
∗ → A(Φα)∗ → A(Φ̃α)∗ → A(Φ1)

∗.

Similarly, we obtain the natural imbeddings

A(V 0)
∗ → A(Vα)∗ → A(V α)∗ → A(V1)

∗.

Also, if we consider the polydiscs

V ∗α = {z = (zν) ∈ CN : |zν | > rν(α), ν = 1, . . . , N},

then we have the inclusions V
∗
0 ⊃ V ∗α ⊃ V

∗
α ⊃ V ∗1 . Hence, we have the natural

imbeddings

A(V
∗
0) → A(V ∗α ) → A(V

∗
α) → A(V ∗1 ).
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Now, according to the dual form of Cartan theorem (theorem 2.3.1), for any α ∈

[0, 1], we get the isomorphic imbeddings Tα : A(Φα)∗ → A(Vα)∗ and T̃α : A(Φ̃α)∗ →

A(V α)∗. Also, by theorem 2.2.2, we have the isomorphisms Sα : A(Vα)∗ → A(V ∗α )

and S̃α : A(V α)∗ → A(V
∗
α). Hence, we obtain the following diagram:

A(Φ1)
∗ → A(V1)

∗ → A(V ∗1 )

↑ ↑ ↑

A(Φ̃α)∗ → A(V α)∗ → A(V
∗
α)

↑ ↑ ↑

A(Φα)∗ → A(Vα)∗ → A(V ∗α )

↑ ↑ ↑

A(Φ̃0)
∗ → A(V 0)

∗ → A(V
∗
0)

So, if we apply the two constant theorem (theorem 3.2.2) for any given x ∈

A(V ∗α ), 0 < α < 1, then we have

|x|V ∗
α
≤
(
|x|V ∗

0

)1−α (|x|V ∗
1

)α
.

Furthermore, since we have the continuous imbeddings as shown in the diagram,

given ε > 0 and 0 < α < 1, there exists a constant C = C(α, ε) such that

|x∗|∗
Φ̃α
≤ C(α, ε)|x|V ∗

α−ε
.

So, combining these two inequalities, for any x∗ ∈ A(Φ̃∗α), we get

|x∗|∗
Φ̃α
≤ C

(
|x∗|∗

Φ̃0

)1−α+ε (
|x∗|∗

Φ̃1

)α−ε

.

2

The main case can be obtained with the help of Lelong-Bremermann theorem

about the uniform approximation of an arbitrary continuous plurisubharmonic func-

tion, which can be found in [5], by constructing the following plurisubharmonic

function:

v(z) = max{αj ln |fj(z)| : j = 1, . . . , n},

where αj > 0 and fj ∈ A(Ω), and considering the fact that level domains of v(z)

are analytic polyhedrons that simultaneously approximate the corresponding level

domains Dα. Plurisubharmonicity of v(z) is shown in [16].
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4.2. Hilbert Scales

Hilbert scales are a special class of analytic scales, so let us start by introducing

the notion of analytic scale of spaces, as done in [10]. Let M be a normed space in

which a family of linear operators T (z) acts satisfying the following conditions:

(i) T (z)x is an entire function of the complex variable z.

(ii) ‖T (z)x‖M is a bounded function on every straight line parallel to the imaginary

axis.

(iii) T (0)x = x.

(iv) supµ,ν ‖T (α+ iµ)T (β + iν)x‖ ≤ supτ ‖T (α+ β + iτ)x‖M .

(v) T (iµ)T (z+∆z)x−T (z)x
∆z

→ T (iµ) (T (z)x)′ uniformly in µ as ∆z → 0.

The family Eα, −∞ < α <∞, of Banach spaces where Eα are the completions

of M with respect to the respective norms

‖x‖α = sup
−∞<τ<∞

‖T (α+ iτ)x‖M

is called an analytic scale of spaces.

Now, let H0 be a complex Hilbert space and let j be an unbounded positive

definite selfadjoint operator in H0 with a domain Dj such that

‖x‖H0 ≤ ‖jx‖H0 x ∈ Dj.

Let us denote by Eλ the spectral resolution of the identity corresponding to j,

and consider the set M of all elements representable in the form x =
∫ N

1
λdEλx for

some N <∞. This set M is dense in H0 and on this set we can define the operators

T (z) = jz where

jzx =

∫ N

1

λzdEλx.

This family of operators satisfies the conditions necessary to construct an analytic

scale from them. So, on M , we introduce the norms

‖x‖α = sup
−∞<τ<∞

‖jα+iτx‖H0 = ‖jαx‖H0 .
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The completions Hα of M with respect to these norms are Hilbert Spaces and they

form an analytic scale which is called a Hilbert scale.

Now let Hα = (H0)
1−α(H1)

α, α ∈ R, be a Hilbert scale generated by a pair

H1 ⊂ H0 of Hilbert spaces with continuous imbedding. If this imbedding is compact,

i.e. every set bounded in the norm of H1 is relatively compact in H0, then we have

the following proposition:

Proposition 4.2.1 Let H1 ↪→ H0 be a linear dense compact imbedding, then there

exists a common orthogonal basis {ek} in every space Hα such that ‖ek‖H0 = 1 and

µk := ‖ek‖H1 ↗∞.

Proof: Given the pair of Hilbert spaces H0 and H1, let us consider the restriction

operator R : H1 → H0, which is a linear dense compact imbedding. Then the

adjoint operator R∗ : H0 → H1 can be defined as

〈Rx, y〉H0 = 〈x,R∗y〉H1 x ∈ H1, y ∈ H0.

Now, let S := R∗R, then S is a self adjoint operator and given x, y ∈ H1, we have

〈x, y〉H0 = 〈Rx,Ry〉H0 by the definition of R,

= 〈x,R∗Ry〉H1

= 〈x, Sy〉H1 by the definition of S,

= 〈Sx, y〉H1 since S is selfadjoint.

From the above equality we get that 〈Sx, x〉H1 = 0 if and only if x = 0. Hence,

S is strictly positively defined. Also, S is compact since it is the composition of a

continuous and a compact operator. Therefore, there exists a complete orthonormal

sequence of eigenvectors {gk} with respective strictly positive eigenvalues λk, where

λk → 0. Without loss of generality we can take λk ↘ 0. Then, for any m,n we have

〈gm, gn〉H0 = 〈Sgm, gn〉H1 = 〈λmgm, gn〉H1 = λm〈gm, gn〉H1 = λmδm,n

Hence, we have ‖gk‖H0 =
√
λk and ‖gk‖H1 = 1 where {gk}is a common orthogonal

basis in H0 and H1. Setting ek = 1
λk
gk, we get the common orthogonal basis with

the properties ‖ek‖H0 = 1 and µk := ‖ek‖H1 ↗∞, where µk = 1√
λk

.
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Using this basis, the Hilbert scale is determined by the norms:

‖x‖Hα =

(
∞∑

k=1

|ξk|2µ2α
k

) 1
2

, x =
∞∑

k=1

ξkek.

2

Theorem 4.2.2 Let D be a strongly pluriregular open set on the Stein manifold

Ω and a compact set K ⊂ D be pluriregular on D. Given a pair of Hilbert spaces

H0, H1 with the continuous imbeddings

A(K) ↪→ H0 ↪→ AC(K),

A(D) ↪→ H1 ↪→ A(D),

the following continuous imbeddings hold:

A(Kα) ⊂ Hα ⊂ A(Dα), 0 < α < 1.

Sketch of proof: Using the common orthogonal basis from the previous proposi-

tion, {ek} ⊂ H1 ⊂ A(D), and we obtain the estimate

|ek|Dα ≤ C(α, ε)µα+ε
k

by using the projective limit topology properties of the spaces considered and ap-

plying the two constant theorem for analytic functions. Also, applying the interpo-

lational estimates as in theorem 4.1.1, we get

|e∗k|∗Dα
≤ C(α, ε)µ−α+ε

k .

Furthermore, we use the fact that the imbedding H1 ⊂ H0 is nuclear and so for any

δ > 0 we get
∞∑

k=1

µ−δ
k <∞

Thus we can obtain the norm estimates which provides us with the continuous

imbeddings A(Kα) ⊂ Hα ⊂ A(Dα).

The following generalization of the previous theorem can be stated by means of

Vogt’s idea, which will be presented in the next section. This statement was also

proved in [16] under the assumption of existence of a basis in A(D):
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Theorem 4.2.3 Let (K,Ω) be a pluriregular pair. Then there exists a Hilbert space

H1 ⊂ A(Ω) such that for any Hilbert space H0 satisfying

A(K) ↪→ H0 ↪→ AC(K),

the following continuous imbeddings hold:

A(Kα) ⊂ Hα ⊂ A(Dα), 0 < α < 1.

The proof can be found in [17].

The conditions onH0 can also be weakened by considering theH-spaceAL2(E, µ),

which is the completion of the set A(E) in the space L2(E, µ) with respect to the

norm

‖x‖ =

(∫
E

|x(z)|2dµ
)1/2

where µ is some Borel measure on an unrestricted Borel set E ⊂ Ω. Let us state

this fact formally in the next theorem:

Theorem 4.2.4 Let E be a relatively compact Borel set on a pluriregular Stein

manifold Ω not pluripolar in any connected component of Ω, and µ be a Borel mea-

sure supported on E satisfying∫
A

(ddcω(Ω, K, z))n ≤
(

ln
1

µA

)−n(1+δ)

for any Borel set A ⊂ E with a sufficiently small measure µA ≤ ε(δ). Then there

exists a Hilbert space H1 ⊂ A(Ω) such that for any Hilbert space H0 satisfying the

continuous imbeddings

A(E) ⊂ H0 ⊂ AL2(E, µ)

the following continuous imbeddings hold:

A(Eα) ⊂ Hα ⊂ A(Ωα), 0 < α < 1,

where

Ωα = {z ∈ Ω : ω(Ω, E, z) < α},

Eα = {z ∈ Ω : ω0(Ω, E, z) ≤ α}.
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4.3. Dragilev Classes

Let X be an F -space with topology defined by the system of norms

{‖x‖p, p ∈ N}.

Then, in the strong dual space X∗, we have the system of dual unbounded norms

‖x∗‖∗p := sup{|x∗(x)| : x ∈ Up}, x∗ ∈ X∗, p ∈ N,

where

Up := {x ∈ X : ‖x‖p ≤ 1}.

Also, let us introduce another notation

U0
p := {x∗ ∈ X∗ : ‖x∗‖∗p ≤ 1}, p ∈ N.

Definition 4.3.1 A Fréchet space X belongs

(i) to the class D1 if

∃p ∀q ∃r ∃C | ‖x‖2
q ≤ C‖x‖p‖x‖r, x ∈ X,

(ii) to the class D2 if

∀p ∃q ∀r ∃C |
(
‖x∗‖∗q

)2 ≤ C‖x∗‖∗p‖x∗‖∗r, x∗ ∈ X∗.

The inequalities in conditions (i) and (ii) are equivalent to the following relations

respectively:

U0
q ⊂ tU0

p +
C

t
Ur, t > 0,

Uq ⊂ tUr +
C

t
Up, t > 0.

With the help of these relations, the next theorem was proved by Vogt in [13],

which was also used in the generalization of existence of a Hilbert space H1 as in

the previous section.

Theorem 4.3.1 Let X be a Fréchet-Schwarz space. Then, X ∈ D2 if and only if

there exists a bounded closed absolutely convex set B ⊂ X such that

∀p ∀µ : 0 < µ < 1 ∃q ∃c | Uq ⊂ tµB +
C

t1−µ
Up, t > 0. (4.3)
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The statement was also proved in [16] under the assumption of existence of an

unconditional basis in a Hilbert space (not necessarily Schwarz).

The inclusion in (4.3) can also be written in an equivalent form with the same

quantifiers as

‖x∗‖∗q ≤ C (‖x∗‖∗)1−µ (‖x∗‖∗p)1−µ
, x∗ ∈ X∗, (4.4)

where

‖x∗‖∗ := sup{|x∗(x)| : x ∈ B}, x∗ ∈ X∗.

Definition 4.3.2 A Banach space E continuously imbedded in X is called a Vogt

space, denoted by E ∈ V(X), if (4.4) holds for the norm ‖x∗‖∗ defined above.

Now, we can relate the Dragilev classes to the spaces of analytic functions in

terms of pluripotential theoretic considerations.

Theorem 4.3.2 Let Ω be a Stein manifold. Then, A(Ω) ∈ D2 if and only if Ω is

pluriregular.

Sketch of proof: For sufficiency, given p, ‖x‖p is defined on a compact set, say K,

and (K,Ω) becomes a pluriregular pair. So, given a strongly pluriregular open set

D in Ω and µ such that 0 < µ < 1, by theorem 4.1.1, we have the interpolational

estimate where for every ε > 0 there exists C such that

‖x∗‖∗Dµ
≤ C (‖x∗‖∗K)1−µ+ε (‖x∗‖∗D)µ−ε .

So, we can apply theorem 4.3.1 to obtain that A(Ω) ∈ D2.

In order to prove necessity, without loss of generality, we may assume that Ω

is connected. We can also choose a suitable compact set K ⊂ Ω, a Hilbert space

H0 such that A(K) ↪→ H0 ↪→ AC(K), and a space H1 ∈ V(A(Ω)) such that there

is a common orthogonal basis {ek} for H0 and H1 satisfying ‖ek‖H0 = 1 and µk =

‖ek‖H1 ↗∞. Then the function

u(z) = limζ→zlimk→∞

(
ln |ek(ζ)|

lnµk

− 1

)
is a negative plurisubharmonic function such that limz→∂Ω u(z) = 0. This fact was

proved in [16]. Hence, Ω is pluriregular.

Similarly, one can state the following theorem:

Theorem 4.3.3 Let K be a compact set on a Stein manifold Ω. Then A(K)∗ ∈ D2

if and only if K is strongly pluriregular on Ω.
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CHAPTER 5

ISOMORPHISMS OF SPACES OF ANALYTIC FUNCTIONS

5.1. Extendable Basis For a Pluriregular Pair

Theorem 5.1.1 Let (K,D) be a pluriregular pair. Then, there exists a common

basis {xi(z)} in the spaces A(D), A(K), A(Dα), A(Kα), 0 < α < 1, satisfying the

asymptotic estimate

lim sup
ζ→z

lim sup
i→∞

ln |xi(z)|
ai

= ω(D,K, z), z ∈ D\K (5.1)

where

Kα = {z ∈ D : ω(D,K, z) ≤ α}, Dα = {z ∈ D : ω(D,K, z) < α}

and {ai} is some nondecreasing sequence of positive numbers such that

ai � i
1

dim D , i→∞.

Let us give a sketch of the proof. We can take a common orthogonal basis {xi(z)}

for some pair of Hilbert spaces H0, H1 with the continuous imbeddings

H1 ↪→ A(D) ↪→ A(K) ↪→ H0.
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According to a method proposed in [14], we can choose H0 and H1 so that H1 ∈

V(A(D)) and H∗
0 ∈ V(A(K)∗). By the proposition 2.1.1, the dual space H∗

0 is nat-

urally imbedded in A(K)∗. The existence of such spaces follows from the theorems

in section . The system {xi(z)} is normed and ordered by theorem 4.2.1, so if we

take ai = lnµi(H0, H1) then the conclusion follows from the inequalities

|xi|Dα ≤ C(α, ε)µα+ε
i , |x∗i |∗Dα

≤ C(α, ε)µ−α+ε
i ,

∞∑
k=1

µ−δ
k <∞.

How to obtain the asymptotic equality is explained in [16].

There exists simpler sufficient conditions for H1 ∈ V(A(D)) and H∗
0 ∈ V(A(K)∗).

For example, it is sufficient for the space H0 to satisfy the continuous imbeddings

A(K) ↪→ H0 ↪→ AL2(K,µ)

where µ is a Borel measure satisfying the sonditions of Theorem 4.2.4. Also, if a

manifold D is strongly pluriregular on the Stein manifold Ω, then the continuity of

the imbeddings

A(D) ↪→ H1 ↪→ A(D)

imply H1 ∈ V(A(D)). However, in the case of arbitrary pluriregular Stein manifolds,

we have only the fact of existence of Vogt spaces.

As an application of the previous theorem, we can state the following proposition,

which was considered in [14]:

Proposition 5.1.2 Let D0, D be pluriregular circular (Reinhardt) domains where

D0 ⊂ D. Then, there exists a common basis in A(D)and A(D0) consisting of

homogeneous polynomials.

5.2. Isomorphisms of Pluriregular Domains and Compact Sets

By means of extendable bases considered in the previous section, we obtain the

following result:
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Theorem 5.2.1 Let Ω be a Stein manifold of dimension n. Then,

A(Ω) ' A(Un)

if and only if Ω is pluriregular and consists of at most finite number of connected

components.

Sketch of Proof: Let Ω be a Stein manifold of dimension n satisfying A(Ω) '

A(Un). Then A(Ω) ∈ D2 since it is isomorphic to A(Un). So, the necessity follows

from the fact that A(Ω) ∈ D2 if and only if Ω is pluriregular.

Conversely, let Ω be pluriregular, consisting of at most finite number of connected

components and letK be a pluriregular compact set having a non-empty intersection

with every connected component of Ω with the property K = K̂Ω. Given a common

basis {xi(z)}, which exists due to theorem 5.1.1, we have the isomorphism T :

A(Ω) → A(Un) defined by

xi(z) → (exp ai) ei(z), i ∈ N,

where {ei} is a common orthogonal basis such that

‖ei‖H0 = 1, µi := ‖ei‖H1 ↗∞.

It should be pointed out here that the result of Vogt which provides us a suitable

Hilbert space H1 was used.

Under some additional assumptions on Ω, such as strong pluriregularity or exis-

tence of a basis in A(Ω), the sufficiency was also proved in [16].

Similarly, we can obtain the following result:

Theorem 5.2.2 Let K be a compact set on a Stein manifold Ω. Then,

A(K) ' A(Un)

if and only if K has a Runge neighbourhood in Ω and K is strongly pluriregular.

Necessity follows from the fact that A(K)∗ ∈ D2 if and only if K is strongly

pluriregular on Ω. For sufficiency, the isomorphism can be obtained by using the

basis from Theorem 5.1.1 for the pluriregular pair (K, D̃), where D is some Runge

neighbourhood of K such that its envelope of holomorphy D̃ is pluriregular.

Here is a corollary of Theorem 5.2.1:
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Proposition 5.2.3 Let Ω be a complete pseudoconvex circular domain in Cn and

ψΩ(z) := ln inf{t > 0 :
z

t
∈ Ω}, z ∈ Cn.

Then, A(Ω) ' A(Un) if and only if ψΩ(z) is continuous in Cn.
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