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Abstract 

Arthur’s paradigm of the El Farol bar for modeling bounded rationality and inductive 

behavior is undertaken. The memory horizon available to the agents and the selection 

criteria they utilize for the prediction algorithm are the two essential variables identified 

to represent the heterogeneity of agent strategies. The latter is enriched by including 

various rewarding schemes during decision making. Though the external input of comfort 

level is not explicitly coded in the algorithm pool, it contributes to each agent’s decision 

process. Playing with the essential variables, one can maneuver the overall outcome 

between the comfort level and the endogenously identified limiting state. The distribution 

of algorithm clusters significantly varies for shorter agent memories. This in turn affects 

the long-term aggregated dynamics of attendances. We observe that a transition occurs in 

the attendance distribution at the critical memory horizon where the correlations of the 

attendance deviations take longer time to decay to zero. A larger part of the crowd 

becomes more comfortable while the rest of the bar-goers still feel the congestion for 

long memories. Agents’ confidence on their algorithms and the delayed feedback of 

attendance data increase the overall collectivity of the system behavior. 
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Introduction 

Agent-based modeling allows agents to construct their own decision making 

mechanisms from information allocated to all in common. Simple prediction rules and 

independent decision making processes lead to a coordinated equilibrium that is an 

emergent property of the system (1, 2). 

Arthur’s El Farol bar problem brings up a paradigm (3). A total number of N 

players must decide independently whether to attend the bar or not. If a player forecasts 

that the total attendance will exceed the comfort level, L, she will not show up, otherwise 

she will go. We are interested in the way the players predict the total attendance and its 

long-term characteristics. The problem is based on the agents’ knowledge of the overall 

attendance history, but the individual actions are not known. Yet, a collective behavior 

emerges from the system, whereby the average attendance is bounded on two sides by the 

threshold imposed from the outside, and the randomness that would take over the system 

in the absence of the threshold. 

The problem has been investigated from many perspectives (4-7). In particular, 

Johnson and coworkers have explored the variation of volatility with the pool sizes 

available to the agents, as well as the effect of various selection schemes on attendance 

(8). Challet et al. have proposed a statistical mechanical model on the problem that 

becomes exact in the limit of randomness (9). It has also been analytically shown that the 

problem is mean reverting in nature; therefore, the average attendance will remain within 

the region [N/2, L] (10). Yet, a controlled study that explores the effect of the parameters 

that may influence the output of the system has not been performed. Amongst these are 

(i) the different types of algorithms utilized by the agents, (ii) the strategy employed to 
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select algorithms from this pool, and (iii) the memory horizon for which attendance data 

is available to the agents. In this study, we systematically study the effect of each of these 

parameters on the average attendance recorded. Probability distributions and the time 

correlations of the attendances are determined. We find that the emergent behavior in 

these systems is not only limited by an upper and lower bound, but also that it follows 

predictable patterns within these limitations once a critical value of short memory is 

surpassed. Furthermore, long-lived correlations in the time evolution of the attendances 

may be induced by introducing internal and external constraints. 

Agent-based modeling of the El Farol bar 

We use a system of N potential attendants. Each week we seek to find the number 

of people who will actually attend the bar, ao. The attendance data of the last m weeks [am, 

am-1, …, a1] are available to the agents. Each attendant, j, takes a decision to attend or not 

by making a prediction, qj, on the possible value of ao, using one of the many available 

algorithms. The algorithm pool here consists of (i) point-wise hypothesis – the agent uses 

the attendance data of the kth previous week (1 ≤ k ≤ m) as his prediction, qj = ak; (ii) 

arithmetic average – the agent uses the average of the last k (1 < k ≤ m) weeks as his 

prediction, ∑
=

=
ki

ij a
k

q
,1

1 ; (iii) weighted-average – the agent uses a weighted average of 

the last k (1 < k ≤ m) weeks, where the more recent a week’s data is, the larger weight it 

has, ∑
= +

=
ki

i
j kk

iaq
,1 )1(

2 ; (iv) trend – the agent makes a least squares fit to the last k weeks’ 

data (1 < k ≤ m), and uses its extrapolation to the following week as his prediction, 

bounded by [0,100]. There are, therefore, a total of 4m – 3 algorithms available, where m 
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is the memory of the system. Once the agent makes his prediction qj, he will not attend if 

the prediction is larger than a previously set comfort level, L. 

The algorithm pool available to each agent affects the results. In one scenario, all 

algorithms in the pool may be available to all agents. However, note that alternatively, a 

sub-pool specific to each agent may be assigned a priori, and the agents may only choose 

from within this subset. Johnson and coworkers have shown that this choice significantly 

affects the volatility, where a minimum value of the volatility is obtained for a given 

fraction of the pool size, and it has a larger value for lower or higher fractions; maximum 

volatility is recorded for a fraction of one (8). The sub-pool may consist of a particular 

type of strategy (i) – (iv) above, or a mixture of those. The union of all the sub-pools 

should then define the total of the algorithms. The algorithms are initially assigned to the 

sub-pools using a uniform distribution. The extent to which the memory of each agent 

extends into the past is equivalent to m in all these cases. In what follows, one property 

we investigate in detail is how m affects the outcome. Since the fraction that gives the 

minimum volatility depends on m, we choose to make all the algorithms available to all 

the agents; i.e. the sub-pool fraction is one. Volatility is therefore at its maximum for the 

entire memory horizon. 

Another property that significantly influences the results is the way the agents 

pick future algorithms from their sub-pool. This may be done in one of a multitude of 

ways: In the simplest of the applications, each agent hangs on to his current algorithm as 

long as it is successful, and changes it as soon as he fails in his prediction (denoted by 

scheme I here). Alternatively, various rewarding schemes that evaluate the success of the 

algorithms in retrospect may be adopted. In one scheme, the agent re-evaluates the 
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predictions of all of his algorithms, and picks the one that would have been successful 

and provides the closest value to ao (scheme II).  In another scheme, the agent keeps a 

log of the success of his algorithms, by giving a point to all algorithms that would have 

succeeded at the current step. The agent then picks the one that has the highest 

cumulative score as his next predictor, or randomly selects between algorithms in case of 

equivalent scores (scheme III).  

We have also implemented a modification of scheme I, where agents employ 

insistence by changing their current algorithms only after a predetermined number of 

failures, instead of an immediate alteration (scheme I´). As another variation of scheme I, 

we have studied the effect of feeding delayed information to the agents (scheme I˝). 

These latter two approaches uncover the effect of altering the system dynamics internally, 

by adjusting the response time of the agents (scheme I´), or externally, by imposing an 

outside condition in addition to the comfort level L (scheme I˝). As we shall see, such 

choices significantly affect the fundamental properties of the system. 

Effect of memory on mean attendance and distributions of active algorithms 

In figure 1 we display the variation of the average attendance with increasing 

memory for the three schemes discussed above. We observe that there are upper and 

lower bounds on the attendance: As the amount of information available to the agents 

increases, the average attendance approaches a value that is equal to or less than the 

comfort level, L. The ultimate value attained depends on the choice of the algorithm 

selection scheme, I, II, or III. The lower bound, on the other hand, tends to N/2; i.e. when 

there is very limited amount of information provided to the agents, their predictions 

become randomized, irrespective of the comfort level. The change from the lower bound, 
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N/2, to the upper bound, occurs in an S-shaped curve; however, for short memories, 

depending on the selection scheme used, some of the data points deviate from this curve, 

as shown with the hollow circles in figure 1.  

The reason for this deviation becomes clear if we investigate the fraction of 

algorithms utilized by the agents at different memories. This is shown in figure 2 for the 

three selection procedures, and the four types of algorithms that may be utilized by the 

agents. We find that in all cases, the distributions converge once the agents extend their 

memory horizon past a critical value. That memory value also corresponds to the point 

where the scatter in the data in figure 1 disappears, and the data track the curves marked 

by the solid line. For scheme I, since the algorithms are freely and readily changed from 

the total pool, that position is rapidly reached at a short memory of m = 4. For schemes II 

and III, however, the corresponding position is reached at m = 9 and the scatter in the 

data at lower memory values is reflected into figure 1. We therefore mark the 

approximate expected trace of the data, had they followed the converged distributions in 

all memory values, by the dashed line. 

Also interesting is the fact that the point-wise hypotheses (cycle detectors) are the 

most frequently used algorithms in all schemes. In scheme I where the algorithms are 

changed immediately in case they fail, they appear nearly twice as much as all the other 

types, indicating that they are the more often winners at instantaneous steps. That they 

make-up ⅔ of the algorithms utilized in scheme II, where the agents change to the 

predictor with the least error, points to the fact that they are also more precise predictors. 

Furthermore, in scheme III which uses cumulative rewarding, the competitive edge of 

cycle detectors gets compounded, and 90% of the algorithms utilized are composed of 
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these. This over-expression of the point-wise hypotheses hints that there are cycles that 

occur in the data, an observation that may be corroborated by the correlations in the 

attendance profiles that emerge (see figure 3 in the next section). The remaining 

algorithm types behave almost equally well in scheme I, having values reduced slightly 

below that expected of random choice (23, 19, and 20% respectively for arithmetic 

average, weighted average, and trend, as opposed to the expected nearly 25% each); the 

reductions contribute almost equally to the enhancement in the cycle detectors. However, 

once rewarding is introduced in schemes II and III, weighted average algorithms are used 

less. In particular, in III their probability of appearance is nearly zero for all memories. 

Also, trend algorithms behave slightly better than arithmetic averages in II and III, 

opposite of the observation in scheme I.  

In sum, for a given scheme, beyond a critical size of memory, the attendances fall 

onto an S-shaped curve. For shorter memories, attendances show large deviations from 

this curve. The critical memory where the average attendance begins to follow a 

predictable pattern corresponds to the converged distributions of the algorithm types used 

from the algorithm pool. The question remains, however, as to the origin of the 

dependence between the attendance and agent memory.  

Effect of memory on attendance distributions and deviation clustering 

In this section, we confine our attention to scheme I, and the threshold value L = 

60. The probability distribution of the attendance for this set is displayed in figure 3. In 

the case of low memories, the probability distribution of attendance is widely spread over 

the attendance range exhibiting almost a double hump (blue line). One hump is centered 

on 70 with low variance and the second one is furnished with very high variance around 
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40. As the memory takes higher values, the lower end of the distribution moves towards 

the center and the hump at the lower end becomes more and more pronounced, while the 

higher end also shifts slightly towards the tail. When the memory reaches 60 (green line) 

the bump heights are equalized. Hereafter, with the higher memory values (dashed black 

line and black line are associated with the memory 90 and 150, respectively), the higher 

end distribution gets shallower loosing its maximum. Finally, the attendance distribution 

converges when the memory is around 200. The red line in figure 3(a) is obtained for the 

case where the memory is 210. The converged distribution is left only with one peak 

whose maximum is very close to the threshold value with a very thick tail of high 

attendances.  

We note that the “transition” occurring in the attendance distribution resembles 

the phase transition phenomena frequently observed in nature. The point where the 

transition occurs in figure 3(a) (where the double humps are equalized) is also the 

memory level at which the correlations of the attendance deviations take longer time to 

decay to zero. In figure 3(b), we present the correlations of the attendance deviations and 

the correlations of the absolute attendance deviations (inset). The most dominant 

correlations occur in consecutive weeks, a negative value which prevails for all memory 

levels, representing the immediate pull back to the mean. The correlation between the 

attendances of every other week, on the other hand, tends to be maximum at the point 

where the two humps in the distributions are equalized (i.e. the transition point, m = 60, 

in figure 3a) and then disappears for very long memories. A positive correlation between 

the attendances of every third week, in contrast, exist even at m = 210.  
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Exhibited in the inset of figure 3(b) are the correlations of the absolute attendance. 

While an examination of the correlations lends one to assume that correlations die, the 

correlations of the absolute attendance display decay in the first two weeks and then 

remains positive and significantly high. This is a manifestation of the intuition that the 

attendances tend to revert the mean. Yet, the inset of figure3(b) signifies that “large 

changes tend to be followed by large changes, of either sign, and small changes tend to be 

followed by small changes.” The structural issues pertinent to deviation clustering have 

been recently reviewed (11). Note that the non-diminishing correlations between the data 

are manifested in the success of the point-wise algorithms (figure 2). 

Effect of agents’ rigidity and delayed information allocation to cooperative behavior 

The outcome of the simulations based upon scheme I´ is displayed in figure 4(a) 

and (b). The attendance distributions at the long memory horizon are not altered 

significantly if the agents insist on keeping their current algorithms. Yet the attendance 

distributions at the memory level where the transition takes place are not distorted 

qualitatively, only the lower attendance hills shift slightly to the lower attendance regime. 

These observations are independent of the rigidity degree of the agents in response to the 

number of the failures that their algorithms experience, as shown in figure 4(a) in black, 

blue, and red curves for one, ten, and 100 failures, respectively. The correlations of the 

attendances, on the other hand, do not remain unresponsive to the agents’ reckless 

attitude to failures as shown in figure 4(b). Sticking to failed algorithms amplifies the 

collectivity of the system as the correlation time increases significantly. As expected, the 

most significant increase in the collective memory is obtained at the transition. 
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Allocating delayed information to the agents as abbreviated by scheme I˝ 

modifies the attendance distributions and the correlations significantly. The results are 

summarized in figure 5(a) and (b). First of all, for the low memory horizon (m = 20), the 

distributions tend to become shallower, losing the humps at the extremes if the delay is 

one or two weeks as displayed in figure 5(a). Increasing the delay to five weeks makes 

the agents more inclined towards the all-or-none behavior, showing peaks at the 

extremes. The output of very long memory horizon simulations (m = 2500) indicate that 

the attendance distributions will eventually reach that of the on-time information case 

(scheme I) for small delays (one or two weeks). However, at a moderate delay of five 

weeks, convergence is still not obtained at these very high memory allocations. The time 

correlations, on the other hand, display persistent diminishing cyclic patterns that survive 

for long periods, figure 5(b). For both low and very long memories, strong cooperativity 

is induced by the delays. This behavior may find its roots in the delayed control of 

mechanical systems (12). 

Concluding Remarks 

Whether the average attendance will converge to the externally provided comfort 

level or not depends on the algorithm selection procedures of the agents. Changing the 

algorithm used whenever it fails, irrespective of the past success of the algorithm, and 

picking up another one randomly (scheme I), drives the average attendance to the comfort 

level, L, as the agents use more information from the past. Taking into account a merit 

based stickiness to the algorithms employed in the past (schemes II and III), exhibit 

considerable deviation from the path that carries the average attendance to L. As shown 

in figure 1, stickiness not only alters the plateau levels, but also yields large fluctuations 
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at the approach-to-plateau pathways, especially for shorter memory allocations (empty 

circles). 

Information carrying capacity modulates the fractional use of the type of 

algorithms available in the pool. For short time horizons, it is rather difficult to estimate 

the distinct distributions. The algorithm clusters, namely, cycle detectors, trend followers, 

average takers, are shared by the agents sporadically, exhibiting a transient regime as 

observed in figure 2. As more of the past information is made available to all agents, 

independent of the rewarding scheme, fractional distributions are collectively balanced. 

Note, however, that reaching the detailed balance in the distributions does not coincide 

with reaching the plateau value of the attendance in figure 1, but is rather associated with 

the regions of small variations from the paths described by the S-shaped curves. 

The mean-reverting nature of the process is characterized by the correlation of the 

attendances in figure 3(b). Metaphorically, the energy wells associated with different 

memory horizons of the process may be obtained by the negative logarithm of the 

attendance distributions. In figure 3(a), we showed that the attendance distribution 

experiences a phase transition when the areas of the wells are equalized at a memory of 

60. After the transition, a larger crowd feels the comfort, yet, still many attends without 

joy. 

When agents happen to be unresponsive to the number of failures of the 

algorithms that they select, the attendance distributions are not changed considerably. 

The correlations, on the other hand, become longer lasting at the memory level where the 

transition takes place. Also, correlations are significantly higher at short time intervals for 

the long memories. For the delayed revealing of the attendance data, both the attendance 
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distributions and the correlations are extremely altered. The distributions converge at 

very high memory allocations and the correlations indicate the sign of high collectivity. 

Thus, it is possible to manipulate the time evolution of the attendance internally if agents 

agree to delay algorithm modification upon failure, or externally by providing past data 

with delay. 
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Figure Captions: 

Figure 1. Average attendance versus memory of agents for N = 100 agents, and a 

comfort level of L = 60. Each data point is the result of 50 runs of 2000 weeks. The first 

100 weeks of attendance data are not included in the averages to remove transient effects. 

Error bars are smaller than the data points. Dashed lines approximate the paths that would 

have been followed at short memories, had the algorithm types followed the converged 

distribution profiles (see figure 2 and the text for details). Solid lines at longer memories 

are drawn through the points to guide the eye. 

Figure 2. The distributions reached by each of the algorithm types (point-wise, arithmetic 

average, weighted average, and trend) at different memory values. Note that there are 4m 

– 3 algorithms available to the agents at each memory value, m. The sum of the values at 

each m is equal to one. 

Figure 3. Attendance profiles of agents acting according to scheme I for different 

memory horizons. (a) Probability distributions of the attendance; note the transition 

observed at the memory, m = 60 (green line). The fat tail does not disappear even in the 

longer memory horizons, indicating a significant amount of uncomfortable bar-goers. (b) 

Correlations of the attendance deviations from the average. The absolute attendance 

deviations are given in the inset, where the correlations decay fast in the first two weeks 

and stay significant at later times. 

Figure 4. Effect of the resistance of agents to change their algorithms, scheme I´, on (a) 

the probability distributions of the attendance, and (b) the time correlations, during 

transition (m = 70, top, dashed curves, values on right y-axis) and at convergence (m = 

210, bottom, solid curves).  Sticking with a failing algorithm for one (black), 10 (blue) 

and 100 weeks (red) are shown. 

Figure 5. Effect of feeding delayed information to the agents, scheme I˝, on (a) the 

probability distributions of the attendance, and (b) the time correlations, at short memory 

(m = 20, top, dashed curves, values on right y-axis) and at very long memory (m = 2500, 

bottom, solid curves). Delaying attendance information for one (black), two (blue) and 

five weeks (red) are shown. Note that these simulations were carried out for 10000 weeks. 
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