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Abstract 

 

In general, mechatronics systems have no standard operating system that could be 

used for planning and control when such devices are running. Our goal is to formulate a 

work platform that can be used as an environment for obtaining precision in the 

manipulation of micro-entities using micro-scale manipulation tools of our microsystem 

applications such as our microassembly workstation. The microassembly workstation 

setup is made up of the manipulation system, vision system, robust control system and 

manipulation tools. In this thesis we also provide groundwork for motion planning and 

assembly of the microassembly workstation manipulation system. We implemented the 

motion planning algorithms which are tested in the virtual workspace environment in 

order to demonstrate the functionality of the work platform. Firstly, we investigate the 

performance of the conventional Euclidean distance algorithm, then, artificial potential 

field algorithm, and finally A* algorithm when implemented on a virtual space. The 

physical conditions of the microworld hinder the immediate application of the work 

platform with the motion planning algorithms on the microassembly workstation. We 

demonstrate our test results of the motion planning algorithms on the virtual workspace 

and grid window of the work platform. However, due to object oriented programming 

nature of the work platform, eventually the work platform can be easily interfaced with 

the microassembly workstation once the problems which limit the micromanipulation 

and assembly are attended. 
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MIKROMONTAJ İŞ ISTASYONU İÇİN HAREKET PLANLAMASI VE MONTAJ 

 

Asanterabi MALIMA 

 

EECS, Yüksek Lisans Tezi, 2007 

 

Tez Danışmanı: Prof. Dr. Asif ŞABANOVİÇ 

 

Anahtar Kelimeler: Hareket planlama, mikromontaj, yolu planlama algoritmaları, nesne 

tabanlı programlama 

 

Özet 

 

Genel olarak mekatronik sistemlerin planlama ve kontrolü için kullanılabilecek 

standart bir işletim sistemi yoktur. Amacımız, mikrosistem uygulamamızdaki mikro 

manipülasyon araçlarıyla mikro büyüklüklerin manipülasyonundaki kesinliği elde 

edecek ortam olarak kullanılacak çalışma düzlemini oluşturmaktır. Mikromontaj iş 

istasyonunda; manipülasyon sistemi, görüntü sistemi, gürbüz kontrol sistemi, 

manipülasyon araçları ve yapılacak göreve göre kullanılacak uç takımları için gerekli 

bağlantı elemanları bulunmaktadır. Bu tezde mikromontaj iş istasyonu manipülasyon 

sisteminin hareket planlama ve montajı için bir temel oluşturulmuştur. Çalışma 

düzleminin işlevselliğini göstermek için sanal çalışma alanı ortamında hareket planlama 

algoritmaları uygulanmıştır. Öncelikle konvansiyonel Euclidean uzaklık olmak üzere, 

yapay potansiyel alan ve son olarak A* algoritmalarının performansları incelenmiştir. 

Mikromontaj iş istasyonundaki hareket planlama algoritmalarıyla birlikte çalışma 

düzeninin hemen uygulanmasını mikro dünyanın engellemesi nedeniyle hareket 

planlama algoritmalarının testleri ve sonuçları sanal çalışma alanında gösterilmiştir. 

Fakat, nesne tabanlı programlamanın doğası gereği, hareket planlama algoritmalarını 

engelleyen problemler modellendiğinde sisteme kolaylıkla dahil edilebilip gerçek 

uygulamaya geçilebilir.  
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1 INTRODUCTION 

1.1 Introduction and Motivation 

Microassembly workstation system is an open-structure and reconfigurable 

system for efficient and reliable assembly of micromachined parts. The structure is used 

as a research tool for investigation of problems in microassembly. It comprise of 

manipulation system; which consist of motion stages providing necessary travel range 

and precision for the realization of assembly tasks, vision system; to visualize the 

microworld and the determination of the position and orientation of micro components 

to be assembled, and robust control system and necessary mounts; for the end effectors 

designed in such a way that manipulation tools can be changed according to the task to 

be realized. 

In this thesis we provide groundwork for motion planning and assembly of the 

microassembly workstation manipulation system. In the microassembly workstation the 

vision system provides rich set of features that should allow the manipulation system to 

move the stages and manipulate the end effectors, and map a larger variety of 

environment (space). Microassembly workstation also focuses on producing a detailed 

map of the workspace using image processing algorithms. After detailed information is 

obtained the manipulation system has to come up with an intelligent motion planning 

algorithm to achieve a complicated manipulation task depending on the image 

(scenario) details obtained from vision system. 

 Humans readily demonstrate the ability to manipulate visually without the 

supplement of metric information or detailed maps. This ability has inspired the 

development of motion planning algorithms as a suitable ingredient to the manipulation 

system so as to reduce human intervention. Such motion planning algorithms have 

proven to be indispensable for the microassembly workstation manipulation tasks. 
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 For virtual demonstration purposes we prepare a programming window 

application in which motion planning algorithms are used to demonstrate the 

functionality of such platform. In this thesis we investigate several motion planning 

algorithms that can later be implemented in our custom built microassembly 

workstation. Firstly, we investigate the performance of the conventional Euclidean 

distance algorithm (EDA) in which manipulation priority is given to the particles that 

are closest to the destination, followed by use of potential field algorithms to avoid 

obstacle on the path, and finally, the graph traversing A* (pronounced “A-star”) 

algorithm that finds a path from a given initial node to a given goal (fixed target) node 

when implemented on a virtual space of our prepared window application. 

 The software for the manipulation system of the microassembly workstation was 

developed using object oriented programming environment while the prepared window 

application contains pull down menus and graphical features to help simplify operation 

commands of the operator. This thesis covers the description of the environment 

prepared specifically to be used in microassembly workstation manipulation system 

with the goal of reducing human intervention in the operation of the system. 

1.2 Background and Objectives 

In literature, motion planning and control of single and multi-agent robotic 

systems is a very challenging problem that received a lot of attention in recent years [1]. 

Challenges in motion planning arise from development of a computationally efficient 

framework accommodating both the complexity of the environment and the 

manipulation system control along with the communication constraints, while allowing 

for a “rich” specification language [2]. In [3], an attempt to discuss planning in 

micro/nano mechatronics technology such as, precision positioning, micro/nano 

actuators and microgrippers together with use of macro mechatronics technology in 

mechanism for intelligent robot control and advanced-user interface can be seen. 

However, the approach taken in part of this work is to translate the motion planning 

problem into a ‘least cost path’ graph problem with an associated cost function for 

trajectories on the maps. A simple progressive scheme is needed for very large maps 

giving approximate solutions in reasonable time and memory space [4]. 
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In [5], the motion planning is associated with a pathfinding algorithm so as to 

determine, first, if it is possible to find a path from the start point to the goal on the map 

whereby maps may contain impassable barriers, objective is to be able to determine the 

optimal path. There are many factors that are evaluated to determine the optimal path 

(defined as the path with the least cost) including the speed in which a path will be 

traversed. Noticeably, there are many different approaches for defining a path ranging 

from simple (walk forward until you hit something) to the complex (path finding 

algorithms with heuristics) [6]. 

The objective of this work is to present a command language for our Micro-

Assembly Workstation (MAW), an idea which was previously introduced in [7] in order 

to simplify the human machine interaction (HMI). Along with this feature we present 

common and simple algorithms that are used to demonstrate the functionality of our 

application. The experimental verification of our work, is more concentrated on 

micro/nano-manipulation for microsystem application. To achieve this precise 

manipulation we will formulate a windows application tool in object oriented 

programming environment which can be used to easily interact with other environment 

such as signal processing board and image processing tool. Such kind of precise 

manipulating environment will provide GUI interface which would enable us to change 

the relative position and relation of entities through direct or indirect human operator 

control [8]. Given list set of commands on windows application, with motion planning 

algorithm, we explore the ability of our system to plan path around obstacles or to make 

choice of the best sequence of arrangements for moving particles to their destinations 

without any collision with obstacles between them. Interesting feature of our work is to 

plan motion around obstacles on a map purposely to demonstrate functionality of 

command language in performing autonomous manipulation of objects in 

microsystems. 

1.3 Thesis Outline 

In chapter 2, microassembly workstation (MAW) will be presented. Also, the 

manipulation system, vision system and control system are presented to demonstrate 

their role on motion planning. Problems associated with experimentation on the 

microassembly workstation setup are also presented. 
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Chapter 3 discusses the features of command language for the MAW. Moreover, 

information regarding the software for motion planning and control of the Micro-

Assembly Workstation (MAW) is covered.  

Chapter 4 contains a theoretical discussion of the motion planning algorithm used 

for micromanipulation. The discussion about the proximity (Euclidean distance) based 

algorithm for manipulation of particles followed by artificial potential field approach, 

and the graph traversing algorithm A * is presented. 

In chapter 5, test for single command operations given on the window application 

are shown followed by experiments and results conducted by using different motion 

planning algorithms is covered.  

Chapter 6 concludes the thesis by pointing out the achievements and giving future 

motivations in this research project. 
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2 MICROASSEMBLY WORKSTATION 

Many problems arise through the miniaturization process because of the scaling 

effects, manufacturing techniques and, as might be expected, assembly. The production 

of microsystems integrated with much functionality, many components made of 

different materials require flexible, modular, accurate mechanisms, which can finely 

pick, orient, move and release different types of objects at the right place. In the 

presence of microparts assembly is a key issue in the formation of a product since 

different functions require different materials within a product. In addition, 

microassembly is the key for the development, modification and maintenance of hybrid 

microproducts.  

In comparing relations between the production rate and the size of the parts to be 

assembled, as the assembled parts become smaller and smaller the production rate 

rapidly falls thus opening a field of research in the micrometer size components 

assembly. Due to these facts, the operator has no direct access to the micrometer size 

components and since direct human handling of those components is not possible, the 

need for automated micromanipulation and microassembly is crucial (Figure 2-1). 

 

Figure 2-1 – Interrelations between areas of microassembly 
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2.1 Types of Microassembly 

According to the technique used, microassembly can be classified as shown in 

Figure 2-2. In additional to these techniques stated, there are some special approaches 

but will not be presented here. What we present in this thesis lies along the automated 

assembly motion planning, however in the following subsections we provide some 

background information of what is covered in other braches of microassembly as well.  

2.1.1 Manual microassembly 

Manual microassembly is the realization of assembly tasks by specially trained by 

human operators where they need to perform high-precision hand motions. For the 

manual microassembly there is a great need for visual aid by magnifying glasses or 

microscopes under which the operators carry out the assembly tasks by using special 

tools like tweezers. As a result of the small dimensions of the parts to be assembled, 

forces that are to be applied in order not to give damage to the parts are restricted. 

Manual assembly may result in varying product quality since the control of such small 

forces is hard and may lead to deformations of the parts. In addition, with the 

miniaturization increases, the mounting tolerances are becoming smaller and smaller 

which makes the manual assembly harder since the capabilities of the human becomes 

inadequate in that scale.  

2.1.2 Tele – operated Microassembly 

In tele-operated microassembly, motions of the human operator are transferred 

into the actuators by means of a man-machine interface (MMI). MMI having more 

number of degrees of freedom enables the control of the motion with the same number 

of DOF in the target space. Since the forces and the precision of motion necessary for 

realizing an assembly operation in the microworld should be too small and the human 

capabilities become inadequate for such motions with the increasing miniaturization, 

tele-operation makes it feasible to perform the operations remotely, not in contact with 

the environment. It allows the realization of the manipulation operations precisely by 

scaling the forces and the motions of the microworld to the macroworld and feeding 

6 



back to the human operator.  So that the operator can perform the operations similarly 

as in the macroworld and the task is realized by the micromanipulator system in the 

microworld. During those operations, the operator is guided through visual feedback 

and possibly with force feedback. 

 

Figure 2-2– Classification of Microassembly Techniques 

2.1.3 Automated Microassembly 

Main issues related to the microassembly are the component handling, precision 

and the final product quality. Component handling difficulties, required submicron 

precision necessary for the quality of the product and the limits of human capabilities 

brings the necessity for an automated microassembly operation. Besides guaranteeing 

the required precision and repeatability, automation is necessary in the microassembly 

also for economic reasons since automation increases the quality of the product and the 

production rate which will reduce the cost. 

Automatic microassembly can be divided into two categories  

• Semi-automated Microassembly 

• Fully-automated Microassembly 

In semi-automatic microassembly, operator intervention is permitted but only to 

some extent.  The operator can define some parameters for the operation such as the 

pick-place positions or the assembly order of the components.  The rest of the operation 

is executed automatically. In fully-automated microassembly, all the tasks and the 
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parameters are predefined. With the aid of sensory feedbacks such as visual feedback, 

force sensors, etc. the assembly task is realized automatically. In this regard, what we 

add in this thesis is the ability to reduce the human intervention in the semi-autonomous 

manipulation so as to improve our system towards fully autonomous operations. Further 

discussions on the state of the art and the existing microassembly systems can be found 

in [16]. 

2.1.4 The Subject of this Research 

In this thesis motion planning algorithms are implemented to demonstrate the 

ability to reduce human intervention on the microassembly workstation by allowing 

several commands to take place at once to achieve a certain task. The operator just 

chooses the motion planning algorithm to be implemented and in one of the algorithm a 

specific particle to be manipulated is selected from a crowd, then using the algorithm 

the path which can be used to intelligently manipulate the particle towards its defined 

destination is shown. Even though in semi-automated microassembly the operator 

intervention to the assembly operation is limited, the motion planning algorithm helps to 

reduce the human intervention further. The tasks are pre-programmed and the operator 

simply defines some of the parameters necessary for the assembly. The destination of 

the manipulated piece is usually given as a pattern depending on the task to be fulfilled. 

The rest of the operation is managed automatically. Semi-automated system architecture 

is shown in Figure 2-3; the figure demonstrates the procedure which is: after the 

handling of the initial steps by the operator, relative distance data calculated by the 

vision system is fed to the motion system while sensory feedback (position data) from 

the motion stages is sent back.  
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Figure 2-3 – Trajectory Generation and Motion Planning in Semi-Automated System Architecture 

Figure 2-3 also shows the concentration of this thesis work as an intermediate 

between the vision system and motion control system in the microassembly 

workstation. Note that in semi-autonomous manipulation, the system initialization 

includes the selection of the particle and the desired destination point. Later, a line 

connecting the center point of the selected particle and the destination particle is 

constructed. Then, step motion value for pushing the particle and the selected point are 

calculated. Finally, the tip of the probe is moved in steps towards the destination point 

in order to achieve semi-automated manipulation. The steps are repeated until the center 

of the selected particle coincides with the desired point [16]. 
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 The most feasible trajectory for a particle to its target position by pushing is 

simply a line denoting the closest path to the destination. In that context, the operator 

should choose the suitable part to be pushed and the destination point considering the 

issue that the semi-automated assembly procedure does not include motion planning so 

that there exists nothing as an obstacle between the particle and the target point. In this 

thesis work a similar feature is added as Euclidean distance planning algorithm; in 

which the path planning of the particles to be manipulated are obtained depending on 

the particles proximity to their destination points. 

2.2 System of Microparts Manipulation Workstation 

The overall structure of the workstation is presented in Figure 2-4. The system has 

the following main components: 

1. Manipulation System consists of the gripper manipulator and the sample stages, 

providing the motion necessary for the manipulation operations. 

a. Gripper manipulator consists of coarse and fine positioning stages 

providing necessary travel range and the accuracy for the manipulation 

stages mounted on the fine positioning stages. 

b. Sample Stages provide the usage of the substrate surface more 

effectively by moving the different regions of the substrate into field of 

view. 

2. Control System is the main control unit of the system consisting of a PC and a 

controller board embedded into the PC. 

3. Vision System can be examined in two parts; 

a. Optical System consisting of a stereoscopic optical microscope, CCD 

cameras mounted on the microscope and an autofocusing control unit. 

The automatic zoom and the autofocusing motion units are mounted on 

the microscope and the control is realized from the vision computer. 

b. Illumination System is configured to provide backlighting by means of a 

mirror system using a fiber illuminator as the light source. 

4. End Effectors and necessary fixtures are used interchangeably in the system.  

Microgrippers and probes can be the matter of choice and necessary fixtures are 

designed to be easily integrated to the system.  
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5. The whole system is placed onto an actively controlled damping table in order to 

get rid of environmental vibrations. 

The whole system configuration is shown in Figure 2-4. 

 

Figure 2-4– Microassembly Workstation 

2.2.1 Micromanipulation System 

Manipulation system should allow the positioning of the end effector with very 

high accuracy. According to the complexity of the manipulation tasks, the manipulator 

system should have necessary number of the degrees of freedom. With translational 

degrees of freedom in x, y and z coordinates, system will be capable of executing 

simple pick and place tasks and some 2D tasks such as pushing, pulling type of 

assembly tasks. To be able to implement more complex assembly tasks and to provide 

the system to adapt to any kind of assembly process, a rotational degree of freedom 

about the z axis was added to the manipulator system. 

2.2.2 Control System 

The micro assembly workstation will serve the purpose of manipulating micron 

and sub micron sized modules, and assembling them to build complex but small sized 
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machines or modules thereof. This section focuses on the design methods for the 

implementation of control system aspects of the microassembly workstation. The 

system can be made up of the following modules:  

• Positioning stages with different type of actuation mechanisms 

• Manipulation tools (e.g. microgrippers) 

• Vision system with cameras and an optical microscope which has actuated 

focusing and zooming features  

• Man-machine interface consisting of devices that relay concise information to 

the user including a haptic device for information exchange. 

• Main control computer as the computing engine running in real-time, processing 

the data coming from various parts of the system and producing reference values 

for the modules. 

• Real-time communication network to provide the connectivity between the 

modules. 

• Non-real time communication network to communicate between parts of the 

system where occasional late arrival of data can be tolerated. (e.g. connection 

between the main control computer and the haptic device.) 

The modules of the system listed above is configured in such a way that they can 

operate independently of each other. In order to provide the functioning of the whole 

system, all modules must be coordinated. For the coordination of the modules, there are 

several ways to implement the data processing and the control system.  

Main considerations of the system supervision and control are related to the 

motion control and image processing. In order to achieve high accuracies for the 

motion, control method needs to be considered carefully. Motion control is the basis for 

the microassembly workstation since the precision and accuracy of the assembly tasks 

mostly depend on the control performance. Vision system supplies the external sensory 

feedback for the motion control unit. By using some image processing techniques, 

position of parts to be manipulated and the manipulation tools with respect to each other 

which are necessary for the implementation of automated assembly tasks are extracted. 

As the motion units operate according to the feedback supplied by visual feedback, 

vision system must be very precise for the sake of realization of the assembly tasks. For 

the automated tasks vision system gains significant importance as it gives the reference 

for motion according to the extracted position information. 
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2.2.3 Vision System 

In the micro domain, position and orientation of the parts to be assembled with 

respect to each other and the manipulation tool can be determined only by using a vision 

system. An effective vision system is necessary to visualize the micro domain for 

recognizing the geometries and position of 3D microparts, path generation for the 

micromanipulator and providing the necessary position feedback. Application of 

different vision technologies depends on the size of the parts to be manipulated. The 

assembly task for the microassembly workstation is defined in the micrometer domain, 

so that optical microscope and contact manipulation are suitable solutions for the vision 

system. 

Configuration of the vision system is shown in Figure 2-5. 

 

Figure 2-5 – Vision System 

2.2.4 Manipulation Tools 

One of the most essential components of microassembly systems is the 

manipulation tools determining the manipulation capabilities of the whole system. 

Manipulation is the key operation for a microassembly workstation as the assembly can 

be realized by means of manipulation.  

Unfortunately, there is not a wide range of choice of micromanipulation tools in 

the market as the microtechnology is still an immature research area all over the world. 
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A few microgrippers are available in the market and suitable ones for our purposes are 

selected to be Zyvex Nanoeffector® Microgrippers and Nascatec Nanogrippers. 

Microgrippers make it possible to realize 3D microassembly operations. With the 

available range of microgripper sizes it is possible to manipulate different objects with 

different sizes and features. More details on the experimental setup are available in [16]. 

2.3 Microassembly Workstation Operation 

This section discusses the current features of the microword which limit the 

immediate application of the motion planning algorithms on the microassembly 

workstation.  

Differences between the assembly in macro and microworld forms the basic 

requirements for the design of a microassembly workstation which can be defined as 

speed, repetitiveness and reliability. As the system is defined as an open architecture 

and reconfigurable system – both hardware and software – the system is designed in 

such a way that it can adapt easily to different applications. Therefore, flexibility comes 

out as another design requirement for the workstation. 

Noticeably, the microassembly workstation should have the following 

requirements to operate with a good performance; 

• For the precise handling of the micro parts, a manipulation system with high 

accuracy  

• Robust control system design is of great interest in the microassembly. 

Modeling and control, especially vision assisted control, become more critical in 

microassembly as the accuracy requirements increase and the size of parts 

decreases. 

• For the determination of the position and orientation of microparts, a 

sophisticated measuring system is needed such as an optical microscope for 

guidance in assembly of microparts. 

• Robust control system design is of great interest in the microassembly. 

Modeling and control especially vision assisted control, become more critical in 

microassembly as the accuracy requirements increase and the size of parts 

decreases (That’s why in our previous work we investigated the high precision 

controller for motion control) [19]. 
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2.3.1 Physics of Micromanipulation 

With the miniaturization of the objects to be handled to micron sizes, attractive 

forces, such as van der Waals force, surface tension forces and electrostatic force 

between microobjects and the manipulator become dominant over the gravitational and 

inertial forces.  

 

Figure 2-6 – Comparison of gravitational and adhesive forces [11]

These attractive forces depend on environmental conditions, such as humidity, 

temperature, surface condition, material, etc. For the manipulation of the microobjects, 

the physics in the microworld should be carefully considered. Thermal, optical, 

electrical, and magnetic effects will change or become dominant when the objects are 

miniaturized (Figure 2-6).  

2.3.2 Discussion on Mechanics of Micromanipulation 

As described in the previous subsections, the action of micromanipulation is very 

complex and possessing several problems because of the adhesive forces, complicating 

the pick and place tasks. Requirements for the microgrippers differ from the 

conventional grippers not only for the size of the particles to be manipulated but also for 

the required gripping forces. As a result of that for the design of micromanipulation 
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tools, it is not possible to just miniaturize the existing manipulation tools in the macro 

domain. According to the tasks to be realized and parts to be manipulated in the micro 

domain, a specific manipulation tool is necessary which can perform not only gripping 

but also releasing of the particles. Investigation on properties of different kinds of 

grippers is covered in [16]. 

Furthermore, minimizing the contact surface is necessary to reduce the adhesive 

forces dominant in the microworld. In order to avoid the sticking effects, contact surface 

between the probe and the particle should be as small as possible [10], [12]. The 

optimum configuration for the pushing operation using sharp tungsten probes is 

depicted in Figure 2-7. In this configuration, the probe tip and the particle is in 

minimum contact providing an effective manipulation. 

 

Figure 2-7 – Optimum pushing configuration [16]

During the pushing operation, the probe tip should point the center of the particle 

since the particle can roll around itself failing the pushing operation. Furthermore, if the 

distance determined for pushing operation is too much, the particle can also roll around 

itself due to imperfections of the base surface and the particle shape, not touching the 

surface at one point, etc. Therefore, the operator should be trained to realize 

experiments by using the probe as the manipulator. Also, intelligence in the 

discretization of the path in motion planning is crucial to avoid the particles from rolling 

around during the pushing operations. Moreover, the addition of the rotation axis to 

MAW improves the ability to manipulate microparticles in the workspace, see Figure 

2-8. 
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Figure 2-8 – Addition of a Rotational Axis 

Considering the experiments realized in the microassembly workstation, results 

are promising when precision, accuracy, reliability and repeatability issues are 

concerned. However, when the discussed phenomena are dealt with, the system can 

operate effectively as a microassembly workstation for automated assembly tasks. 

Eventually, accuracy requirements for these operations are very high; therefore, 

precision and repeatability of such assembly systems must be in the micron to 

nanometer range for automatic assembly of millimeter and micron structures. In the 

next chapter, features of MAW software that guarantee precision and repeatability in the 

assembly processes will be discussed. In the next chapter, features of MAW software 

which guarantee precision and repeatability in assembly processes are discussed. 
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3 SOFTWARE FOR MICROASSEMBLY WORKSTATION 

3.1 Introduction 

This chapter is the introduction of the software to be implemented on the 

microassembly workstation. In order to setup an open-architecture and reconfigurable 

microassembly workstation with the necessary specifications, issues related to the 

manipulation language of the system components will be discussed. 

In the following sections, the whole system will be examined in detail as software 

architecture, structure of the software and operation of the software. Finally, software 

configuration to improve the system performance will be presented. 

As discussed earlier, our motivation for this work is to create a language in an 

object oriented fashion in which a user would give some commands and the system 

would respond accordingly to execute the tasks. In attacking the problem, the motion 

plan is obtained through model checking, and results in the form of graphical 

representation of the provided workspace. A brief discussion on the structure and 

architecture of the software is covered in this section; however, the following section 

will also cover discussion of how the software architecture results to computational 

complexity. Manipulation tasks are specified by identifying a target object to be moved 

and its new location.  

The work of thesis involved preparation of the window application with its features 

shown in the Figure 3-1. The commands are classified into groups in terms of 

operations they handle in motion planning and assembly of the microassembly 

workstation. Features of the Main window application prepared include: 

• Main Menu Strip: Carries the implemented items which are located on the Main 

Menu Item bars 
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• Graph Traversing Control Commands: Are commands used to control graph 

traversing A* algorithm 

• Graphics Menu: Contains the menus for demonstration purposes of the A* 

motion planning algorithm 

• Stand and End: Are initial and final positions of the motion planning routine 

• Path Finding Time: Is the time completed in the process of path planning using 

the A* algorithm 

• Action Control Commands: Contains all the actions implemented for the 

demonstration of motion planning in the virtual space and “Grid Search 

Window” 

 

  

Figure 3-1 – The window application used to control operation of the MAW 
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3.2 Software Architecture 

In motion planning, given the high cost of computing optimal plans using 

classical search algorithms, we focus on divide-and-conquer techniques and on the 

efficient reuse of existing plans. 

We prepared the list set of commands presented in the divide-and-conquer approach 

for the identification of control modes and their combination can lead to major task in 

the manipulation process with emphasis on precision, accuracy, reliability and 

repeatability. To achieve this we prepared classes for the whole system. Then, all the 

system is divided into several categories with particles, stages, microscope and 

manipulation tools as objects which are represented by the defined classes. e.g. For the 

real time experiment in MAW we have polysterene ball images represented with the 

following properties: circular objects (in 2D), with a given radius r, and with x and y 

coordinates of the center. Collection of these mentioned properties can be used to 

represent methods such as rotate, push, record coordinates of particular particle. Figure 

3-2 below illustrates how the manipulation of a particle takes place without colliding 

with other particles (obstacles) along its way towards destination. 

 

 

Figure 3-2 – Manipulation of particles on the virtual space 
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In early days, structured programming is the type of programming which was 

commonly used. Now, before we introduce the features of object-oriented programming 

reviewing the dominating programming approach prior to object-oriented programming 

is very crucial.  

Structured programming relies on use of high-level control structures instead of 

low-level jumping. Structured programming is also loosely coupled with top-down 

programming and program development by stepwise refinement. A well-structured 

program should devote a single procedure to the solution of a single problem. The 

splitting of problems in sub-problems should be reflected by breaking down a single 

procedure into a number of procedures. Notice that only few programmers are radical 

with respect to top-down structured programming. In the practical world it is probably 

much more typical to start somewhere in the middle, and then both work towards the 

top and towards the bottom. Even though structured programming has some weaknesses 

in real-time applications this does not mean structured programming is “the wrong way” 

to write programs. Similarly, object-oriented programming is not necessarily “the right 

way”. However, object-oriented programming (OOP) is an alternative program 

development technique that often tends to be better if we deal with large programs and 

if we care for program reusability. 

When we write a “traditional” structured program it is most often the case that we 

have a single application in mind. This may also be the case when we write an object-

oriented program. But with object-oriented programming it is more common - side by 

side with the development of the application - also to focus on development of program 

pieces that can be used and reused in different contexts. 

The next observation deals with “stable structures”. What is most stable: the 

overall structure of program control, or the overall program data structure? The former 

relates to control structures and procedural structures. The latter relates to data types 

and classes (in the sense to be discussed in the following section). It is often argued that 

the overall program data structure changes less frequently than the overall program 

control structure. Therefore, it is probably better to base the program structure on 

decomposition of data types than on procedural decomposition. 

Eventually, the above discussion brings us to our interests towards programming 

“the object-oriented way”. Below we list some of the most important ideas that we must 

care about when we make the transition from structured programming to object-oriented 

programming. First of all, the gap between the problem and the level of the machine is 
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filled in the bottom up style. Also, data is used as the basic building blocks, however, 

some people argue that data, and relations between data, are more stable than the 

actions on data. Then, data is bundled with the natural operations on data: which is one 

of the fundamental ideas of abstract datatypes, and also consolidate the programming 

constructs (structs/records) for encapsulation of data. Object-oriented programming 

concentrate on the objects which should be administrated or handled by the program: it 

make use of existing theories of phenomena and concepts, and in particular it provides 

features which help to form new concepts from existing concepts. Object-oriented 

programming make use of programming style that allows us to collapse the 

programming of very similar objects. The following section clarifies the structure of the 

software used for motion planning of the MAW. 

3.3 Structure of the Software 

The structure of the MAW software as described in [7] is in Backus-Naur Form; 

Backus-Naur notation (more commonly known as BNF or Backus-Naur Form) is a 

formal mathematical way to describe a language, which was developed by John Backus 

(and possibly Peter Naur as well) to describe the syntax of the Algol 60 programming 

language. In [7] the structure of the software had the following features: 

 

Define Commands are useful when user wants to set a certain condition for MAW or 

change some behaviors in MAW. 

Enter_Pos         ::=Enter_Pos “(“name “,” (x-value “,” y-value)”)” 

Use          ::=Save_Pos “(“name “,” object”)” 

Use∗1          ::=Calc_ORI “(“object1 “,” object2  “,” variable ”)”  

Use          ::=Create_Path “(“name “,” {variable}|{x-value “,” y-value}”)” 

Record         ::=Record “(“filename | close [“,”deviceID”)” 

Playback          ::=Playback “(“filename”)” 

Device_Ori        ::=Device_Ori“(“ device ID “,”setting”)” 

 

                                                 
∗1Exception: Argument ‘variable’ in Command Calc_ORI( ) use variable ‘STATUS’ field as a 

   Flag (Flag=1, Rotation is necessary, angle of rotation θz is given in ‘VALUE’ field;  Flag=0, No 

   rotation, Value field has 0 (θz =0)). 
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Movement Commands are commands which initiate movement in MAW. 

Go_ORI         ::=Go_ORI“(“move_mode “,” variable ”)” 

Follow_Path       ::=Follow_Path“(“move_mode “,” name ”)” 

MovetoPoint      ::=Move_to_Point“(“move_mode  “,” (x-value “,”y-value )|variable”)” 

Grip         ::= Grip“(“object”)” 

Release        ::= Release“(“object”)” 

Lift_UP        ::= Lift_UP“(“object [“,”z-value]”)” 

 

Action Commands are commands which handle sensors and other equipment in MAW. 

Init        ::=Init“( “[address]” , “[{address}]”)” 

GoShowPos ::=Go_Show_Pos “(“move_mode”, “view_mode”, “object”)” 

Show_Pos ::= Show_Pos “(“sensorID | view_mode “,” object [ “,”forever]”)” 

 

Then, there are Control Flow Commands which are commands used to control 

execution of other commands. 

If ::=If “(“expression”)”{commands} endif 

While loop ::=While “(“ expression”)”{commands} endwhile 

Break ::=Break[“(“name”)”] 

Stop ::=Stop 

Cont ::=Cont 

Clear ::=Clear “(“variable”)” 

Wait ::=Wait “(“number |variable”)” 

Note: Commands and parameters used here are expressed using the BNF-notation 

(Backus Naur (BNF) Form) 

 

After introducing the concept of object oriented programming in the previous 

section, the following is a brief content of the objects used in the software which ensure 

the software reusability.  

• “Manipulation Point”: Is an object which contain two points with each point 

having x and y coordinates of the respective point; e.g. first point could be a 

representation of origin point while second point could be a representation of the 

destination point. Methods used to calculate the distance, slope, angle, 

destination path, destination force and obstacle force between the two points 

utilize the properties of this object. 
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• “Particle Store”: Is an object which carries all information of the particles used 

in the virtual space manipulation. Method such as minimum distance between all 

the particles in store and the destination point is handled using this object class. 

• “Path Finder Node”: Is an object which contains information of the nodes such 

as: start, open, close, current, path and end. These nodes information can be used 

to define methods such “Find Path” using defined heuristics. 

• “Point”: Is an object which carries information of x and y coordinates generally 

used as an object of another objects such as “Manipulation Point”, “Path 

Finder”, etc. 

• “File Stream”: Is an object which hides all information of the nodes present in 

the GUI interface grid space, so that the information can be used for path 

planning routines, or saved in the memory and retrieved for future use. 

• “Form”: Is an object window or dialog box used for graphics demonstration 

purposes; e.g. “Virtual Workspace” and “Windows Media” form. Form is one 

on the features of C#.NET programming environment.  

• “Priority Queue”: Is an object which keep list of nodes information while the 

A* algorithm is searching for the optimal path in the grid space. 

• “Timer”: Is an object used to calculate simulation time in seconds 

 

Based on the structure presented in [7] and classes of object defined above, the software 

for the motion planning of the MAW window application was divided into three 

categories which are: 

• Movement Commands: Motion commands such as “Follow Path”, “Move to 

Point”, “Lift Up”, “Rotate(change orientation)” and “Return to Origin” are 

categorized in this part; 

• Action Commands: Commands to “Initialize Manipulation”, “Show Position of 

the Moving Part” and “Exit Manipulation” actions are presented; and 

• Definition Commands: List of  basic definition manipulation of particles such as 

“Enter Position”, “Save Position”, “Select Motion Planning Algorithm”, 

“Create Path”, “Save Movie”, “Play Movie”, etc. 

 

In order to prepare the main window application some features were taken from [15], 

these include: 
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• Grid Size: This parameter just affects the front-end. It can change the grid size, 

where reducing the grid size gives a chance to create a bigger test but will take 

longer to render. 

• Fast PathFinder: When unchecked, the implementation used is the algorithm as 

it usually appears in Path Finder [15]. When checked, it will use path finder 

implementation which requires more memory, but it is about 300 to 1500 times 

faster depending on the map complexity.  

• Speed: This is the rendering speed; reducing speed permits detailed examination 

of how the algorithm opens and closes the nodes in real-time while the 

PathFinder operates. 

• Diagonals: Is set to allow the A* algorithm to process path searching in 8 

directions instead of 4; including the diagonals of the grid. 

• Reopen Closed Nodes: Is the command that allows A* algorithm to reopen 

nodes that were already closed when the cost is less than the previous value. If 

reopen nodes is allowed it will produce a better and smoother path, but it will 

take more time. 

• Formula: Is the equation used to calculate the heuristic. Different formulas will 

give different results: some will be faster, others slower and the end may vary. 

• Punish Change Direction: Is the command that allows every time the A* 

algorithm path finder changes direction the cost decreases. The end result is that 

if the path is found it will be comparatively smooth without too many direction 

changes, thus looking more natural. The downside is that it will take more time 

because it must research for extra nodes. 

• Show Progress: This permits observation of the algorithm as it operates in real-

time. If this box is checked, the completion time will be the calculation time plus 

the rendering time. 

• Tie Breaker: In A* path planning algorithm sometimes it encounters a 

phenomena in which there are many possible choices for the same cost and 

destination. The tie breaker setting tells the algorithm that when it has multiple 

choices to research, instead it should keep going. As it goes, changing costs can 

be used in a second formula to determine the “best guess” to follow.  

• Completed Time: Is the time the algorithm takes to calculate the path from the 

start to end point. To know the true value, uncheck “Show Progress.” 
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• Run/Continue and Pause Are action control command buttons use to run and 

control the A* motion planning algorithm. The Pause command is used to pause 

the graph traversing process while the search for the path continues. 

All these functions are featured in the window application main form as seen in Figure 

4-2. 

3.4 Operation of the Software 

Manipulation Process:  

• “Initialize Manipulation – Action command” initializes the manipulation 

process, in which the manipulators move to the origin (home) position which is 

known,  

• “Select Algorithm – Definition command” enables user to select the appropriate 

algorithm (discussed in the next chapter) to be used in the particular task.  

• “Save Movie” is the command used to save the manipulation process as avi.file 

so that it can be replayed using  

• “Play Movie – Definition command” later for further analysis.  

• “Return to Origin – Movement command” is the command for return all stages 

and manipulators to the start (system initializing position) and  

• “Exit Manipulation – Action command” is used for stoping the manipulation and 

switching-off the application.  

 

By default, program can also be set in such a way that once the object has been placed 

at the target (destination) location, the manipulator can return to its rest position (system 

home position). In addition, hierrachies are assigned in the execution of the commands 

to ensure that priorities are given to a set list of commands e.g. Action commands.  

 

Our project challenges involved writing the codes for the commands which run multiple 

systems at once. This feature, however may lead to several outcomes such as delay in 

debugging due to computational complexities resulting from handling all the data 

coming from multiple sensors (camera, motors and manipulators) and sending the 

appropriate commands to the motors and the manipulating tools. Implementation of 

such commands can be observed in the motion planning algorithms in the next chapter. 

26 



      Initialize Manipulation 

Select Motion Planning Algorithm 

         Run Manipulation 

          Exit Manipulation 

if (EDA) 

Select Pattern 

 

Figure 3-3 – The manipulation procedure using the software 

The window application can be put into two categories, the first one involves 

commands to perform single commands at once, usually commands which can be 

applied in the assembly process and the second one includes collection of systematic list 

of commands given when system is required to perform certain action. The manner in 

which the motion planning algorithms is set to perform manipulation of micro-particles 

fits into the second category of the window application.  

3.5 Conclusion and Discussion 

In this chapter, detailed structure and implementation of the software part of the 

microassembly workstation was discussed by means of explaining each subsystem 

separately. We have demonstrated how the tasks are specified in a high level language 

and have the manipulators and stages automatically convert these specifications into a 

set of low level primitives to accomplish such tasks. Functionality of the software 

prepared in the object oriented manner is demonstrated in the following chapter. The 

common advantage of preparing the MAW software using object oriented programming 

makes the software to be easily developed and easily reusable in other mechatronics 

system operating in same manner. 

27 



4 MOTION PLANNING ALGORITHMS 

4.1 Introduction 

In this chapter, motion planning algorithms used for manipulation processes of the 

microassembly workstation will be presented. Detailed discussions of why and on 

which scenarios an operator would prefer to apply one algorithm instead of the other is 

also presented. Then, mathematical calculations involved in the motion planning 

algorithms and results expected from virtual space implementation are described. 

Consider a workspace with randomly distributed microparts, our objective is to 

use motion planning intelligent algorithms to formulate patterns of particles in defined 

locations on the workspace. In motion planning procedure a good understanding of the 

physical feature of our manipulation system is very crucial before the user issues 

commands. Then, after all constraints have been put into consideration the application 

of this technology in assembly of micro components and structures into microsystems 

can be fulfilled. Common application of this planned manipulation is on construction of 

useful 2D microstructure, e.g in fabricating mold templates in micro/nanoprinting [3]. 

With few exceptions, most of the works in this area focus on either the complexity of 

the environment or manipulator dynamics (while assuming the environmental features 

are trivial). Previous study show communication architectures in multi-actuator systems 

focusing on proving that certain local interactions give rise to interesting global 

behaviors. However, the inverse problem of generating local rules from non-trivial high 

level specifications of the group is still not understood. In most of the existing works, 

the motion planning problem is simply specified as "go from A to B". It has been 

discussed by several authors [2] that this kind of observation is either too explicit, or 

simply does not capture the nature of the task, which might require logical (e.g., "visit 

either A or B") and/or temporal operators ("reach A and then B infinitely often"). 
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Technique for performing motion planning with obstacles range in complexity 

from simple behavior-based approach to complex global path-planning schemes. The 

simplest approaches are reflexive in nature. Some examples include: turning left if an 

obstacle is detected on the right and turning right if an obstacle is detected on the left, 

walk forward until you hit something. These approaches tend to be very robust and 

adaptive to unstructured environments, but also tend to be inefficient and non-optimal. 

Motion planning can find optimal paths through complex environments but also tends to 

be brittle and to not scale well to large environments [13]. 

For demonstration purpose of the motion planning algorithms implemented in this 

work we will use two space: first one is a “grid search window” in the middle of the 

main form of our widow application usually used for demonstrations of the A* 

algorithm, and second one is the “virtual space” form which is activated when either 

Euclidean distance or artificial potential field algorithm is activated. 

 

Figure 4-1 – Location of the grid search window for demonstration of A* algorithm 

The first thing you should notice is that we have divided our search area into a 

square grid (see Figure 4-1). Simplifying the search area, as we have done here, is the 
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first step in path finding for A* algorithm. This particular method reduces our search 

area to a simple two dimensional array. Each item in the array represents one of the 

squares on the grid, and its status is recorded as walkable or unwalkable. The path is 

found by figuring out which squares we should take to get from A (start) to B (goal). 

Once the path is found, the manipulator should move from the center of one square to 

the center of the next until the target is reached. These center points are called “nodes”. 

 

Figure 4-2, shows the “virtual space” form which pops-up when either Euclidean 

distance or artificial potential fields method is activated. 

 

 

Figure 4-2 – Virtual space form for demonstration of EDA and potential field algorithm 
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4.2 Euclidean Distance Algorithm 

Our first motion planning algorithm is the Euclidean distance algorithm, in which 

the particle with the nearest proximity to the destination is the one which is pushed first 

by the manipulator. This algorithm defines the geometric representations of all particles 

in the workspace, and that of the manipulator as well. The method allows planning 

algorithms to determine whether particle being moved by the manipulator is in collision 

with other particles or with obstacles. The idea is that, the particles that are closest to 

the destination are being pushed towards their proposed destinations.  

Given an initial coordinate frame )(: OXYF =  on our workspace with origin O 

and axes X,Y, the position of manipulator is determined by its coordinates (xi,yi). Then, 

if the position of the manipulator at any time (t) is (xi(t), yi(t)) and let q(t) be the 

configuration variables, then  
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where, di:=is the distance between original position of the particles and their 

destinations and αi is the angle formed by the segments di and the positive horizontal 

axis. Let us introduce the distance function: 

[ ] 2/122 )))())(cos()(())())(sin()(())(),(( ttdtyttdtxtqtqL iiii θαθθαθ &&&&& ++++−=  (4-2) 

Since for 2D manipulations the cost function is the distance between two points, 

our goal would be to minimize the function in equation (4-2), so that the manipulation is 

performed for the particles which are closest to the destination. 

))(),((minarg tqtqLPath &=  (4-3) 

In virtual space we consider the random distributed particles with the same physical 

properties. Our objective is to move the particles to their defined destinations without 

any collisions between them during the manipulation operation. Since the particles are 

spherical, in 2D the particles have the same radii; therefore there is no question whether 

the manipulated particle will fit well into their assembled locations. Assuming the above 

situation is true the manipulations begins with calculating the closest particle to the 

destination point in consideration. Then, a line connecting the defined destination 

location and the closest particle is drawn. Afterwards, the line is distributed into 
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segments depending on the structure of movement in the manipulation. Finally, the 

manipulation process starts by slowly pushing the particle towards the destination 

following the straight line. The Figure 4-3(b) below demonstrates how the process is 

implemented in virtual space with particles of radius 10 units. Similarly Figure 4-3(a) 

shows how the same algorithm can be applied in the MAW setup using semi-automated 

manipulation features already available in the setup.  
 

  

(a) MAW experiment example (b) Virtual space implementation 

Figure 4-3 – Comparison of scenario for motion of particle between MAW and virtual space of the 

window application 

 

This type of manipulation considers the particles to be moved as if they have same 

physical properties (mass, area, and volume), therefore the necessary force required to 

move the particles is the same for all the particles in the workspace. However, in real 

situation the dimensions of the particle located on the workspace are of different 

magnitudes which prompts for the selection of which particle to move and when to 

move. In consideration of the above mentioned scenario, the necessity of the system to 

have the motion planning algorithm which has intelligence to allow manipulation of 

particle from their original locations to their defined destinations seems to be inevitable. 

Figure 4-4 demonstrates another application example of the Euclidean distance 

algorithm in the virtual space. The advantage of using this simple algorithm is that the 

obstacles (particles lying along the path of a possible candidate for manipulation) are 

given higher priority of manipulation before manipulation of the candidate. 
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Figure 4-4 – Motion of particle with the proximity based algorithm operating 

4.3 Artificial Potential Field Algorithm 

After the description of the Euclidean distance algorithm for path planning of 

particles with the same physical properties, it is also fair mentioning the scenario in 

which motion planning algorithm operates on particles with different physical 

properties. Then, the need to use artificial intelligence to allow manipulation of particles 

from their original locations to their defined destinations seems to be inevitable. In 

Artificial Potential Field method, an obstacle applies repulsive forces on the 

manipulator, simultenously the goal applies an attractive force to attract the manipulator 

and the particle being pushed towards its direction. Eventually the manipulator is forced 

to take the direction of the resultant force field. 

One of the challenges with artificial potential field is the problem of local minima 

[8]; we had to find a way to get out of local minima in our solution or have no local 

minima at all. To accomplish this we had to modify the way in which we build our 

potential field. If the obstacle force experienced by the moving particle is as illustrated 

below. 
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where O is a constant scaling factor, n is the number of obstacles, di is the distance 

between obstacle i and the manipulator,  is the direction vector from moving particle 

to representative point of obstacle. Note that, in equation 
ir̂

(4-4) O is divided by di
2, 

therefore, the obstacle force increases as the moving particle gets closer to the obstacle 

(as d decreases). The obstacle force comes into consideration once the obstacle reaches 

the perimeter of the dotted circle of Figure 4-5, otherwise the obstacle force is 

negligible. And the attaraction force between the moving piece and the goal is: 

rdGFgoal ˆ2 ⋅⋅=
ρ

 (4-5) 

where G is similarly a scaling factor, d is the distance from moving particle to the goal, 

and r̂  is the direction vector from manipulator and moving particle to the goal. 
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ρ
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ρ
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tresulF tan

ρ

θF
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Figure 4-5 – Motion of particle with the artificial potential field algorithm 

Using the outputs of the distance sensors, the net repulsive force is calculated and 

decomposed to its components, one along the direction of motion of the manipulator 

and one perpendicular to it (see Figure 4-5). If obsθ is the angle between the direction of 

motion of the manipulator and the obstacle force, then 

)sin(

)cos(

obsobs

obsobsr

FF

FF

θ

θ

θ ⋅=

⋅=
ρ

ρ

 (4-6) 

For safe motion of the moving piece being pushed, the manipulator should try to 

keep the force component along its direction of motion, Fr minimum or ideally zero. 

This can be achieved by changing the orientation of the manipulator, since the force 

components are dependent on the orientation. To this end, a controller can be used for 
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the optimization. The rate of change of the force components with respect to the 

obstacle angle is, 

)cos(

)sin(

obsobsobs

obsobsobsr

FF

FF

θθ

θθ

θ ⋅⋅=

⋅⋅−=

&ρ&

&ρ&
 (4-7) 

Then, the controls to drive the PZT 3-axis manipulator which hold the 

manipulator are selected as rr Fu &=  and
θθ Fu &= . 

The techniques of using potential field can be seen as an interesting alternative for 

the A* algorithm that seems to be more popular in the current state of the art. The 

potential field method requires some serious calculations which are computationally 

expensive [9]; however, with modification in which computations for the potential field 

are done only in the vicinity of the moving particle, the resulting operation becomes less 

computationally expensive. 

For the modification of the artificial potential field algorithm; first after selecting 

the particle to be manipulated, a line connecting the defined destination position and the 

particle to be manipulated is drawn. Then the particles close to the line joining the start 

and the end position of the manipulation are treated as obstacles as shown in the Figure 

4-6 below. For software implementation in virtual space the moving particle only takes 

into consideration its distances from the particles along its path and its desired 

destination. 

 

 

Figure 4-6 – Obstacle Avoidance path of the artificial potential field algorithm 

Operation of the field oriented motion planning algorithm used for demonstration 

on our virtual space operates as follows: 
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Input: Destination (given as input pattern), particle to be moved (given a click input 

event on the virtual space of the window application) and obstacle coordinates (given as 

random particles dispersed on the virtual space). 

Output: A path from origin to destination obtained through online pushing. 

(i) Initialize the window application 

(ii) Click to start the field oriented path planning 

(iii) Click the particle to be moved 

(iv) The algorithm will return, either the particle was successfully pushed 

towards its destination, or due to some discrepancies the manipulation of 

the particle failed. 

Figure 4-7 demonstrates the full mode of operation for the modified version of the 

potential field algorithm in the virtual space of our window application. 

 

Figure 4-7 – Structure of artificial potential field algorithm with obstacle avoidance 
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4.4 Graph Traversing A* Algorithm  

Finally, we implement the A* algorithm; a popular path finding algorithm used to 

find a shortest path. A* algorithm incrementally builds all routes leading from the 

starting point until it finds one that reaches the goal. But, like all informed search 

algorithms, it only builds routes that appear to lead towards the goal. In order to 

determine which routes will likely lead to the goal, A* algorithm employs a heuristic 

estimation of the distance from a given point to a specified goal. We can find an 

unobstructed path through configuration space by discretizing the configuration space 

and then employing some form of search algorithm. Considering all possible actions 

and all possible states to which the manipulator can transition is un-realistic because the 

size of the search space would be too large or infinite. Instead we chose to represent the 

workspace as a set of discrete states and we select a subset of manipulator’s actions that 

correctly transition the manipulator between those states while not limiting the 

manipulator’s capabilities too severely. 

Methods for discretizing the configuration space take on two general forms: 

skeletonization and cell decomposition. Skeletonization reduces the configuration space 

to a one-dimensional space consisting of a network of connected curve segments 

through free space, collectively called a skeleton. Cell decompositions break the 

configuration space into adjacent regions (spaces). For our system we chose uniform 

grid cell decomposition at multiple discrete orientations for its flexibility and simplicity.  

We create discrete states in the configuration space by laying a two-dimensional 

grid over the workspace and then considering only a discrete set of orientations. The 

discrete coordinates and orientations used for path planning need not correspond 

directly to the discretization used to calculate the configuration space. For example, it 

might be advantageous to search through a very simplified state space but then check 

whether an action is obstructed at a much higher resolution. 

Search is the process of exploring sequences of actions to determine a sequence 

that leads to a desired goal state. An action performs a transition from one state to 

another. A sequence of actions from the initial state is called a search node. The search 

nodes form a search tree, where the fringe of search is at the leaves. In motion-planning 

the goal state is some desired point in configuration space and the actions represent 

motions the manipulated particle is due to perform. We approximate initial state and the 
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goal state by converting them to the nearest state in the discretization of the 

configurations space being used, and then search for a sequence of unobstructed actions 

that, when completed, end at the goal state. 

The search algorithm is initialized by placing the goal state in a priority queue. 

The algorithm then proceeds by removing the first node on the priority queue and 

checking if the goal has been reached. If it has not, the node expanded into its 

neighboring nodes, which in turn placed on the queue. The search continues until the 

goal state is found, the search space is exhausted, or some other stopping criterion 

occurs, such as a timeout. 

The searching procedure is conducted as illustrated in Figure 4-8. In this figure, 

the dark green square in the center is your starting square. It is outlined in light blue to 

indicate that the square has been added to the closed list. All of the adjacent squares are 

now on the open list of squares to be checked, and they are outlined in light green. Each 

has a gray pointer that points back to its parent, which is the starting square. 

 

Figure 4-8 – Demostration of how a search is conducted from a node [18]

Depending on the position of the particle, the position of the goal, and the position 

of the obstacles in the workspace, there may not be a legal path from the particle’s 

initial state to the goal state. This condition can be detected by checking whether or not 

the search queue is empty when the search terminates and it should be reported to the 

procedure’s caller. 

Different priority queue implementations yield different search behaviors. A 

priority queue that orders search nodes based on the cost: 

),(),()( tnhnsgnf st +=  (4-8) 

where is the cost of the path from the start node to a node , and is the 

estimated cost from a node to the goal node t  yields the efficient heuristic search 

),( nsg s n ),( tnh

n
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algorithm called A* [13]. A* returns an optimal path sequence if the heuristic used to 

estimate the cost to the goal is admissible, 

),(*),( tngtnh ≤  (4-9) 

or in other words, if the heuristic function  from node to the goal node  is always 

an underestimate of the optimal cost  from to t  (the “*” stands for optimal or 

shortest). A commonly used admissible heuristic in motion planning is the straight line 

distance to the goal, although other heuristics are possible (see 

h n t

),(* tng n

Figure 4-9). 

 

Figure 4-9 – Demostration of straight line travel from start (origin) to end (destination) 

 Search is computationally expensive, as it generally exponential in the depth of 

the search in both space and time. A perfect heuristic would change the running time to 

be linear, but perfect heuristics are difficult to come by. We can speed up the A* 

algorithm and reduce the size of the search problem to the size of the state space by 

eliminating loops from the search tree. In other words, we want to avoid considering the 

same actions from a given state multiple times and also stop pursuing multiple action 
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sequences that lead to the same state. The nodes that have already been expanded are 

sometimes called the closed list or the expanded list. The nodes still on the queue are 

called the open list, visited list, or the fringe. 

 Changing the search algorithm to only expand nodes that have not been expanded 

before changes the optimality condition on the search heuristic. The heuristic must also 

be consistent, which means it must obey that triangle inequality.                                    

),(),(),( tnhnmgtmh +≤  (4-10) 

for an intermediary node n . Fortunately, admissible heuristics that are not also 

consistent appear to be somewhat rare, and the straight line distance heuristic is both 

admissible and consistent. 

 Keeping the entire search tree in memory is expensive but feasible for reasonably 

sized local path planning problems. We can reduce the space cost by only keeping in 

memory one node per state and then also checking whether a node to be put on the 

queue represents a state that has been put on the queue before. If node representing the 

same state has already been put on the queue is less than the cost of the new node, then 

the new node need not be put on the queue as well. Otherwise the cost of the node in 

memory should be updated with the smaller cost, and the new node should be put on the 

queue and the old node should be taken off. Removing the old node may not be 

practical depending on the priority queue implementation, but leaving it on the queue 

does not affect the order of node expansion so we do not bother with this step in our 

implementation. 

Figure 4-10, shows the implementation of the A* search algorithm with the obstacles 

located along the way. 
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Figure 4-10 – Demostration of obstacle avoidance in A* path planning; grid in blue is the optimal path 

In A* algorithm, heuristic function; is a constant that will affect the estimated 

distance from the current position to the goal destination. A heuristic function is used to 

create an estimate of how long it will take to reach the goal state. The best estimate is 

generally the one which gives the shorter path with smallest terrain cost. 

Formula is the equation used to calculate the heuristic. Different formulas will 

give different results: some will be faster, others slower and the end may vary. The 

formula to be used depends strongly on the A* algorithm's use. 

When A* is finding the path, sometimes a “tie breaker” is used since the 

algorithm may find many possible choices for the same cost and destination. The tie 

breaker setting tells the algorithm that when it has multiple choices to research, instead 

it should keep going. As it goes, the changing costs can be used in a second formula to 
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determine the “best guess” to follow. Usually, this formula is incrementing the heuristic 

from the current position to the goal, multiplied by a constant factor. 

 Obviously, this requires each of the paths to be searched to the very end to 

determine which path possesses the deepest node; and this takes more time. 

Consequently, A* is frequently implemented with various ‘tie-breaking’ heuristics. A 

different way to break ties is to prefer paths that are along the straight line from the 

starting point to the goal: This urges for computation of the vector cross-product 

between the start to goal vector and the current point to goal vector. When these vectors 

don't line up, the cross product will be larger. The result of such computation will give 

some slight preference to a path that lies along the straight line path from the start to the 

goal when there are no obstacles.  

If   is matrix for node changes,                 ⎥
⎦

⎤
⎢
⎣

⎡
=

22

11

dydx
dydx

A

where dx1 = currentX  = parentNode.X - end.X; 

           dy1 = currentY  = parentNode.Y - end.Y; 

           dx2 = goalX      = start.X - end.X; 

           dy2 = goalY      = start.Y - end.Y; 

Then, in such cases the formula below is used. 

001.0*)(det AabsHeuristicHeuristic +=  (4-11) 

Best choice of heuristic, lead to obtaining the best choice of a path in motion planning 

using A* algorithm. For further details on heuristics used in the motion planning using 

A* algorithm please refer to [18]. 

4.5 Conclusion and Discussion 

In this chapter, issues related to the motion planning algorithms of the 

microassembly workstation were presented.  However, in the following chapter we 

provide results when we studied the feasibility for constructing 2D microparticles/ 

microstructure autonomously using image processing and motion planning algorithms 

in the microassembly workstation. 
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5 EXPERIMENTS AND RESULTS 

5.1 Introduction 

In testing the reliability of the window application software for different 

microassembly tasks, several experiments are implemented in different modes. These 

experiments will be elaborated in the following sections. Firstly, commands for single 

microassembly operations are realized by giving single command, and then allowing the 

system to execute the command before a next microassembly command is given on the 

window application. Then, motion planning algorithms are implemented to demonstrate 

the ability to reduce human intervention by allowing several commands to take place 

sequentially to achieve certain tasks. The operator chooses the motion planning 

algorithm to be implemented then using the algorithm the path used to intelligently 

manipulate the particle towards its destination is defined. Only in the artificial potential 

field algorithm the operator has also to specify the particle to be manipulated and in the 

A* algorithm operator has to give few specifications before the motion planning begins. 

Experiments related to these two approaches and results will be shown in the 

following sections. Evaluations will be made according to the results achieved by the 

experiments and the chapter will be concluded with some discussion about the results of 

the experiments. 

For the realization of micromanipulation and microassembly tasks, it is necessary 

to visualize and sense the environment. Position and orientation of microparticles with 

respect to each other and the manipulation tool can be defined by using a vision system. 

Since vision provides fast and contact less information extraction, it is suitable for 

visualizing the microworld and providing position and orientation data for the 

micromanipulation and microassembly tasks.  

For the automated microassembly tasks, position and orientation information of 

specific manipulation tools or micro parts must be extracted by means of vision system. 
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The information named as visual features, is used in the control loop of the 

manipulation system. Thus, vision based control is attained. 

However in the window application’s virtual space the mode of operation is a bit 

different. Since our goal is to provide the motion planning for the realization of 

micromanipulation and microassembly tasks, the software does random calculations for 

the x and y coordinates of the particles each time the motion planning algorithm is 

initialized. The application operates under the assumption that all the information about 

the particles is correctly obtained from vision system. Therefore, the experiments given 

in this thesis work are graphical simulations showing the path in which the 

micromanipulators should follow in orienting and pushing the particle towards its 

destination. 

 

Figure 5-1 – Random Position of the particles in Virtual Space 

Figure 5-1 shows the random distribution of the particles on the virtual space prior 

the selection of planning algorithm (EDA or Potential Field Algorithm). For the 

simulation of motion planning algorithm using A* the “grid search window” (see Figure 

4-1) in the middle of the main form of our widow application is used for demonstrations 

of the most optimal path. In the following sections we will cover the experimental 

details for the  single mode operations and motion planning algorithm while running the 

window application software. 
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5.2 Commands for Single Operations of Microassembly 

5.2.1 Definition 

In the single operations for the microassembly, single command are given and 

then allowing the system to execute the command before a next microassembly 

command is given on the window application.  

For initializing the application operator has to click the “play” button in green. 

This initializes the main form for the motion planning algorithms. Contrary to that, in 

closing the application operator has to click “File” and select “Exit” in the pull-down 

menu, or simply click the “close” button on the upper right corner of the main form 

window (see Figure 5-2(a)-(b) for elaborations). 

(a) Initializing Manipulation Path (b) File-Exit or “close” terminates the application 

Figure 5-2 – Experiment showing single mode commands 

The “File” menu of the pull-down menu contains several commands such as 

“Save Video” which saves the video of an activity taking place on the active window on 

the screen. While the “Play Video” retrieves the video saved in the specified memory 

location and plays the “avi.file” on the screen using “Windows Media” form. In 

addition, “Print/Take Picture” menu captures snapshots of the activities taking place in 

the main form window. Lastly, the “Exit” command closes the main form and exits the 

application. 
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The “View” menu contains commands such as “Zoom”, “Resize” and “Full 

Screen” which helps to resize and reshape structure of the main form window of the 

window application. Also, “Tools” menu of the pull-down menu comprises of 

commands such as: “Create Path” command for initializing the A* graph traversing 

algorithm is found, along with “Slow/Fast” tool to change the speed of the path finding 

algorithm, and “Resume” tool to continue the path finding algorithm when in the 

“Pause” mode. 

The “Extras” menu contains the “Particle Select” which shows the x and y 

coordinates of all the particles located on the virtual workspace of the main form. While 

“Particle Show” gives the x and y coordinates of the specific particle selected on the 

virtual space; usually it also demonstrates the coordinates of the particle selected for 

motion planning using potential field algorithm. In the “Extras” menu a shortcut to 

initialize the artificial potential field algorithm is also located. Other commands such as 

demos on how to run the application are yet to be implemented in the software in order 

to increase human computer interaction functions. 

5.2.2 Implementation and Results 

EDA and PFA algorithms operating on the virtual space are initialized by drawing 

random particles on the workspace. Therefore, when the user selects “Particle Select” 

(Figure 5-4) from “Extra” menu tools of the main window a list of x and y coordinates 

of all the particles located on the virtual space is given on the list box of the main form 

of window application as shown in Figure 5-3 below. The “Action Control Commands” 

contains the Path Planning; command used to initialize the virtual workspace form, so 

that EDA and potential field oriented motion planning algorithm can be used to 

determine path for manipulation of randomly distributed particles. 

46 



 

Figure 5-3 – Window showing “Particle Show” which gives the x and y coordinates of the clicked 

particle and list box of the main form gives the list of all x and y coordinates of the random particles. 

For the EDA each particle is intended to be moved to the closest target point in 

the workspace. However, in order to guide the operator, in pushing a particle which is 

obstructed by other particles on its trajectory, operator acts by simply clicking on 

particle on the screen, then user has to acknowledge by clicking on the message box 

which gives the x and y coordinates of the selected particle. Alternatively, when the 

“Particle Show” from “Extras” tool command is selected a message box pops-up to give 

x and y coordinates of the selected particle. 
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Figure 5-4 – “Particle Select” command shows x and y coordinates of all the random particle 

5.3 Execution of Motion Planning Algorithms in Microassembly 

5.3.1 Definition of the Task 

In semi-autonomous manipulation, the system initialization includes the selection 

of the particle and the desired destination point. Later, a line connecting the center point 

of the selected particle and the destination particle is drawn. Then, step motion value for 

pushing the particle and the selected point are calculated. Finally, the tip of the probe is 

moved in steps towards the destination point in order to achieve manipulation. The steps 

are repeated until the center of the selected particle coincides with the desired point. 

 The most feasible trajectory for a particle to its target position by pushing is 

simply a line denoting the closest path to the destination. In that context, the operator 

should choose the suitable part to be pushed and the destination point considering the 

issue that the semi-automated assembly procedure does not include motion planning so 

48 



that there exists nothing as an obstacle between the particle and the target point. In our 

thesis work this feature is added as Euclidean distance planning algorithm in which the 

particle are manipulated depending on their proximity to the destination point.  

5.3.2 Microassembly Examples 

EDA Results: 

 

(a) Initializing Manipulation Path (b) First Particle’s Path 

 

(c) Second Particle’s Path (d) ThirdSecond Particle’s Path 

Figure 5-5 – Snapshots for Path Planning using EDA 

Figure 5-5 (a) shows the pattern about to be assembled by using EDA motion 

planning algorithm. Figure 5-5 (b)-(d) presents the consecutive motion planning path 

for assembling each particle to formulate an “I” like pattern on the left corner of the 
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virtual workspace. In addition, Figure 5-6, presents a complete path plan for different 

set of random particles on the virtual workspace. 

 

More results: 

 

Figure 5-6 – Pattern Assembly using EDA 

 

PFA Results: 

In [16], several semi-automated tasks are generated and implemented with the 

microassembly workstation. One of the main problems for the realization of the 

experiments is to find suitable microparticles to be used in the microassembly 

operations; in our virtual experiments the problem is solved depending on the scenario 

(distribution of particles on the workspace). If the particles to be manipulated have 

different physical properties artificial potential field method is used to determine the 

path for manipulation of particles from their original locations to their defined 

destinations. To initialize the algorithm the operator has to select the particle to be 

manipulated out of crowd of randomly distributed particles on the virtual workspace. 

Then, manipulation is conducted as shown in Figure 5-7. In that experiment, operator 

selects the particle, while the destination point of the particle is provided (known). This 

selection is made by the operator for every particle’s path planning. Then, after particle 

selection is done, user has to acknowledge the coordinates of the particle given on the 

message box on the screen and the rest of operations are executed automatically. 
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Figure 5-7 – Potential Field oriented motion planning algorithm 

Figure 5-7 presents results for the object avoidance algorithm using potential field 

built around obstacle to guarantee that the particle to be manipulated doesn’t collide 

with other particles on the workspace. 
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A* Results: 

In A*, the main features necessary to perform motion planning for the manipulation 

tasks are pre-programmed and the operator simply has to define some of the parameters 

necessary for the assembly. Figure 5-8 shows results of A* motion planning algorithm 

for a path along the corridor. 

 

 

Figure 5-8 – A* algorithm motion planning to demonstrate the optimal path on the corridor 

 For more results of A* algorithm in different scenarios see (Figure 5-9). The 

results in Figure 5-9 only show the grid search window; A* algorithm is functional for 

wall avoidance, optimal path planning around obstacles, corridor following, and also it 

returns “no path” when path is not found during path planning process. 
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Figure 5-9 – More results of A* algorithm on different scenarios using different heuristics 

5.4 Results and Discussion 

The challenges of microassembly workstation regarding the manipulation 

operation like obtaining depth information, sticking problems, effects of forces and 
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many issues concerning sample preparation still hinder full operation of the motion 

algorithm on the microassembly workstation setup. These issues should be carefully 

dealt with for a successful automated assembly operation. 

 Other issues involved in the plan execution is the process of taking a motion plan 

from the motion planning model and then sending the correct control to the 

manipulators and stages so that they perform a desired task. The plan execution unit 

must execute the planned actions as accurately as possible and also deal with failure 

conditions. Issues that may arise during such process are such as latency; if the latency 

is too large the manipulators may drift from intended path or yield unexpected results, 

obstructed path; in which even if motion planning finds a valid path to the goal this may 

become obstructed due to previous unobserved obstacles becoming visible, new goal 

location; user may change the location of the goal when this happens the system must 

abandon any current execution plans and proceed towards the new goal location, and 

finally lost target; in which particle may have to move away from the goal to avoid 

obstacle(s) this may cause the particle to move outside the virtual space boundaries or 

cause the goal to go out of range [13]. 
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6 CONCLUSION 

In this work, first the introduction of an open-architecture and reconfigurable 

microassembly workstation for efficient and reliable assembly of micromachined parts 

was presented. Then, software description of the microassembly workstation was 

presented. Furthermore, in order to reduce human intervention in the precision 

manipulation, we developed and implemented several motion planning algorithms 

which could be rigorously applied in our setup. It should be noted that prior the 

introduction of the motion planning algorithms, the system lacked the ability to avoid 

obstacles, especially in the case semi-autonomous manipulation case. 

The realized microassembly workstation represents an important step towards the 

automatic, autonomous assembly of micrometer-sized parts by means of sensory 

feedback. With the integration of motion planning algorithms, the system will have the 

ability to function in an automated mode where human intervention will be greatly 

reduced. 

This thesis also presents how the window application was prepared using object 

oriented programming environment set of commands to achieve several tasks, along 

with motion planning algorithms for autonomous manipulation of objects in virtual 

space. Experiments regarding the implementation of conventional euclidean algorithm 

were demonstrated; in this case the solution for planning problem is trivial since the 

particle closest to the goal is the one which is pushed towards its destination.Then, the 

application of artificial potential field control algorithm was implemented with 

modifications in which the manipulator only reacts to obstacles in its proximity. Lastly, 

application of motion planning algorithm A* was demonstrated with feature which 

facilitate the object avoidance in manipulaton of objects from one point to another in the 

virtual space. Since the objective is to reduce human intervention in the precision 

autonomous manipulation, application of motion planning algorithms brings valuable 

ingredient to the Microassembly Workstation setup. All in all, this type of work 
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platform can be seen as a step in using a standard platform in the manipulation of 

micro-entities using micro-scale manipulation tools. Results of this thesis have been 

submitted as conference paper [20]. 

Future work will include implementing the features of the work platform obtained 

from this thesis to the Microassembly Workstation (MAW) setup. Also, the assembly 

process proposed in this thesis can be improved further by introducing autonomous 

algorithm which can choose most optimal algorithm. The autonomous algorithm for 

motion planning will further reduce human intervention observed in the semi-automated 

microassembly processes. 
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