

MOTION PLANNING AND ASSEMBLY FOR MICROASSEMBLY

WORKSTATION

By

ASANTERABI MALIMA

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

SABANCI UNIVERSITY

Spring 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11740039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MOTION PLANNING AND ASSEMBLY FOR MICROASSEMBLY

WORKSTATION

APPROVED BY:

Prof. Dr. Asif ŞABANOVİÇ

 (Dissertation Advisor)

Associated Prof. Dr. Mahmut Faruk AKŞİT

Assistant Prof. Dr. Güllü KIZILTAŞ ŞENDUR

Assistant Prof. Dr. Volkan PATOĞLU

Assistant Prof. Dr. Hakan ERDOĞAN

DATE OF APPROVAL:

ii

© Asanterabi Malima 2007

All Rights Reserved

iii

MOTION PLANNING AND ASSEMBLY FOR MICROASSEMBLY

WORKSTATION

Asanterabi MALIMA

EECS, M.Sc. Thesis, 2007

Thesis Supervisor: Prof. Dr. Asif ŞABANOVİÇ

Keywords: Motion planning, microassembly, path planning algorithms, object oriented

programming

Abstract

In general, mechatronics systems have no standard operating system that could be

used for planning and control when such devices are running. Our goal is to formulate a

work platform that can be used as an environment for obtaining precision in the

manipulation of micro-entities using micro-scale manipulation tools of our microsystem

applications such as our microassembly workstation. The microassembly workstation

setup is made up of the manipulation system, vision system, robust control system and

manipulation tools. In this thesis we also provide groundwork for motion planning and

assembly of the microassembly workstation manipulation system. We implemented the

motion planning algorithms which are tested in the virtual workspace environment in

order to demonstrate the functionality of the work platform. Firstly, we investigate the

performance of the conventional Euclidean distance algorithm, then, artificial potential

field algorithm, and finally A* algorithm when implemented on a virtual space. The

physical conditions of the microworld hinder the immediate application of the work

platform with the motion planning algorithms on the microassembly workstation. We

demonstrate our test results of the motion planning algorithms on the virtual workspace

and grid window of the work platform. However, due to object oriented programming

nature of the work platform, eventually the work platform can be easily interfaced with

the microassembly workstation once the problems which limit the micromanipulation

and assembly are attended.

iv

MIKROMONTAJ İŞ ISTASYONU İÇİN HAREKET PLANLAMASI VE MONTAJ

Asanterabi MALIMA

EECS, Yüksek Lisans Tezi, 2007

Tez Danışmanı: Prof. Dr. Asif ŞABANOVİÇ

Anahtar Kelimeler: Hareket planlama, mikromontaj, yolu planlama algoritmaları, nesne

tabanlı programlama

Özet

Genel olarak mekatronik sistemlerin planlama ve kontrolü için kullanılabilecek

standart bir işletim sistemi yoktur. Amacımız, mikrosistem uygulamamızdaki mikro

manipülasyon araçlarıyla mikro büyüklüklerin manipülasyonundaki kesinliği elde

edecek ortam olarak kullanılacak çalışma düzlemini oluşturmaktır. Mikromontaj iş

istasyonunda; manipülasyon sistemi, görüntü sistemi, gürbüz kontrol sistemi,

manipülasyon araçları ve yapılacak göreve göre kullanılacak uç takımları için gerekli

bağlantı elemanları bulunmaktadır. Bu tezde mikromontaj iş istasyonu manipülasyon

sisteminin hareket planlama ve montajı için bir temel oluşturulmuştur. Çalışma

düzleminin işlevselliğini göstermek için sanal çalışma alanı ortamında hareket planlama

algoritmaları uygulanmıştır. Öncelikle konvansiyonel Euclidean uzaklık olmak üzere,

yapay potansiyel alan ve son olarak A* algoritmalarının performansları incelenmiştir.

Mikromontaj iş istasyonundaki hareket planlama algoritmalarıyla birlikte çalışma

düzeninin hemen uygulanmasını mikro dünyanın engellemesi nedeniyle hareket

planlama algoritmalarının testleri ve sonuçları sanal çalışma alanında gösterilmiştir.

Fakat, nesne tabanlı programlamanın doğası gereği, hareket planlama algoritmalarını

engelleyen problemler modellendiğinde sisteme kolaylıkla dahil edilebilip gerçek

uygulamaya geçilebilir.

v

“To my family and the people I love”

vi

ACKNOWLEDGEMENTS

It is a great pleasure to express my gratitude to all the people who contributed to

this work. In particular, I would like to thank my advisor, and mentor Professor Asif

Şabanoviç, for his patience, encouragement and confidence. I have very much

appreciated the liberty that I was given in doing my work. In addition, he was always

there to listen when I knocked on his door.

I wish to thank Dr. Güllü Kızıltaş Şendur for her support, and great advice during

my graduate studies at Sabancı University. Also, I wish to thank Dr. Mahmut Faruk

Akşit, Dr. Volkan Patoğlu, and Dr. Hakan Erdoğan for their interest in my work and

accepting to be my jury members.

Special thanks to Shahzad Khan who not only helped me in brainstorming of

several ideas that I worked on during my graduate studies, but also for being a true

friend. Many thanks to a great friend, Erhan Demirok whom whenever I saw, it was a

sign of a great day. I would like to thank my close friend Erol Özgür; he really has a

talent to lighten the candles even when everybody was moody and never felt like

talking. Thanks to Erdem Öztürk for being a great leader in the office 1114; he always

had the courage to silence us and remind us to get back to work when we seemed to

forget our duties. Also, I would like to thank Merve Acer, Meltem Elitaş, and all the

other members of Mechatronics Graduate Laboratory for being good companies during

my graduate study. Moreover, I would like to express my appreciation to Asha Juma

and Esen Aksoy for their wonderful support and word of encouragement all the way.

Finally, I would like to express my deepest appreciation to Yousef Jameel Scholarship

Foundation of Berlin, Germany for the financial support during my graduate studies.

vii

TABLE OF CONTENTS

1 INTRODUCTION... 1

1.1 Introduction and Motivation... 1

1.2 Background and Objectives.. 2

1.3 Thesis Outline... 3

2 MICROASSEMBLY workstatıon... 5

2.1 Types of Microassembly .. 6

2.1.1 Manual microassembly ... 6

2.1.2 Tele – operated Microassembly .. 6

2.1.3 Automated Microassembly ... 7

2.1.4 The Subject of this Research... 8

2.2 System of Microparts Manipulation Workstation .. 10

2.2.1 Micromanipulation System ... 11

2.2.2 Control System.. 11

2.2.3 Vision System ... 13

2.2.4 Manipulation Tools ... 13

2.3 Microassembly Workstation Operation.. 14

2.3.1 Physics of Micromanipulation .. 15

2.3.2 Discussion on Mechanics of Micromanipulation.................................... 15

3 SOFTWARE for mıcroassembly workstatıon... 18

3.1 Introduction .. 18

3.2 Software Architecture... 20

3.3 Structure of the Software.. 22

3.4 Operation of the Software... 26

3.5 Conclusion and Discussion... 27

4 Motıon Planning algorıthms.. 28

4.1 Introduction .. 28

4.2 Euclidean Distance Algorithm.. 31

viii

4.3 Artificial Potential Field Algorithm ... 33

4.4 Graph Traversing A* Algorithm .. 37

4.5 Conclusion and Discussion... 42

5 EXPERIMENTS AND RESULTS ... 43

5.1 Introduction .. 43

5.2 Commands for Single Operations of Microassembly....................................... 45

5.2.1 Definition .. 45

5.2.2 Implementation and Results .. 46

5.3 Execution of Motion Planning Algorithms in Microassembly......................... 48

5.3.1 Definition of the Task ... 48

5.3.2 Microassembly Examples ... 49

5.4 Results and Discussion ... 53

6 CONCLUSION ... 55

REFERENCES ... 57

ix

LIST OF FIGURES

Figure 2-1 – Interrelations between areas of microassembly ... 5

Figure 2-2– Classification of Microassembly Techniques ... 7

Figure 2-3 – Trajectory Generation and Motion Planning in Semi-Automated System

Architecture .. 9

Figure 2-4– Microassembly Workstation ... 11

Figure 2-5 – Vision System .. 13

Figure 2-6 – Comparison of gravitational and adhesive forces [11] 15

Figure 2-7 – Optimum pushing configuration [16] .. 16

Figure 2-8 – Addition of a Rotational Axis .. 17

Figure 3-1 – The window application used to control operation of the MAW 19

Figure 3-2 – Manipulation of particles on the virtual space ... 20

Figure 3-3 – The manipulation procedure using the software .. 27

Figure 4-1 – Location of the grid search window for demonstration of A* algorithm .. 29

Figure 4-2 – Virtual space form demonstration of EDA and potential field algorithm.. 30

Figure 4-3 – Comparison of scenario for motion of particle between MAW and virtual

space of the window application... 32

Figure 4-4 – Motion of particle with the proximity based algorithm operating 33

Figure 4-5 – Motion of particle with the artificial potential field algorithm 34

Figure 4-6 – Obstacle Avoidance path of the artificial potential field algorithm........... 35

Figure 4-7 – Structure of artificial potential field algorithm with obstacle avoidance... 36

Figure 4-8 – Demostration of how a search is conducted from a node [18]................... 38

Figure 4-9 – Demostration of straight line travel from start (origin) to end (destination)

.. 39

Figure 4-10 – Demostration of obstacle avoidance in A* path planning; grid in blue is

the optimal path .. 41

Figure 5-1 – Random Position of the particles in Virtual Space 44

Figure 5-2 – Experiment showing single mode commands.. 45

Figure 5-3 – Window showing “Particle Show” which gives the x and y coordinates of

the clicked particle and list box of the main form gives the list of all x and y

coordinates of the random particles. ... 47

x

Figure 5-4 – “Particle Select” command shows x and y coordinates of all the random

particle .. 48

Figure 5-5 – Snapshots for Path Planning using EDA.. 49

Figure 5-6 – Pattern Assembly using EDA .. 50

Figure 5-7 – Potential Field oriented motion planning algorithm 51

Figure 5-8 – A* algorithm motion planning to demonstrate the optimal path on the

corridor.. 52

Figure 5-9 – More results of A* algorithm on different scenarios using different

heuristics ... 53

xi

 TABLE OF ABBREVIATIONS

MAW Microassembly Workstation

OOP Object Oriented Programming

EDA Euclidean Distance Algorithm

PFA Potential Field Algorithm

MMI Man Machine Interface

HMI Human Computer Interaction

PZT Lead Zirconium Titanate

PC Personal Computer

GUI Graphical User Interface

DOF Degree of Freedom

CCD Charge-Coupled Device

xii

1 INTRODUCTION

1.1 Introduction and Motivation

Microassembly workstation system is an open-structure and reconfigurable

system for efficient and reliable assembly of micromachined parts. The structure is used

as a research tool for investigation of problems in microassembly. It comprise of

manipulation system; which consist of motion stages providing necessary travel range

and precision for the realization of assembly tasks, vision system; to visualize the

microworld and the determination of the position and orientation of micro components

to be assembled, and robust control system and necessary mounts; for the end effectors

designed in such a way that manipulation tools can be changed according to the task to

be realized.

In this thesis we provide groundwork for motion planning and assembly of the

microassembly workstation manipulation system. In the microassembly workstation the

vision system provides rich set of features that should allow the manipulation system to

move the stages and manipulate the end effectors, and map a larger variety of

environment (space). Microassembly workstation also focuses on producing a detailed

map of the workspace using image processing algorithms. After detailed information is

obtained the manipulation system has to come up with an intelligent motion planning

algorithm to achieve a complicated manipulation task depending on the image

(scenario) details obtained from vision system.

 Humans readily demonstrate the ability to manipulate visually without the

supplement of metric information or detailed maps. This ability has inspired the

development of motion planning algorithms as a suitable ingredient to the manipulation

system so as to reduce human intervention. Such motion planning algorithms have

proven to be indispensable for the microassembly workstation manipulation tasks.

1

 For virtual demonstration purposes we prepare a programming window

application in which motion planning algorithms are used to demonstrate the

functionality of such platform. In this thesis we investigate several motion planning

algorithms that can later be implemented in our custom built microassembly

workstation. Firstly, we investigate the performance of the conventional Euclidean

distance algorithm (EDA) in which manipulation priority is given to the particles that

are closest to the destination, followed by use of potential field algorithms to avoid

obstacle on the path, and finally, the graph traversing A* (pronounced “A-star”)

algorithm that finds a path from a given initial node to a given goal (fixed target) node

when implemented on a virtual space of our prepared window application.

 The software for the manipulation system of the microassembly workstation was

developed using object oriented programming environment while the prepared window

application contains pull down menus and graphical features to help simplify operation

commands of the operator. This thesis covers the description of the environment

prepared specifically to be used in microassembly workstation manipulation system

with the goal of reducing human intervention in the operation of the system.

1.2 Background and Objectives

In literature, motion planning and control of single and multi-agent robotic

systems is a very challenging problem that received a lot of attention in recent years [1].

Challenges in motion planning arise from development of a computationally efficient

framework accommodating both the complexity of the environment and the

manipulation system control along with the communication constraints, while allowing

for a “rich” specification language [2]. In [3], an attempt to discuss planning in

micro/nano mechatronics technology such as, precision positioning, micro/nano

actuators and microgrippers together with use of macro mechatronics technology in

mechanism for intelligent robot control and advanced-user interface can be seen.

However, the approach taken in part of this work is to translate the motion planning

problem into a ‘least cost path’ graph problem with an associated cost function for

trajectories on the maps. A simple progressive scheme is needed for very large maps

giving approximate solutions in reasonable time and memory space [4].

2

In [5], the motion planning is associated with a pathfinding algorithm so as to

determine, first, if it is possible to find a path from the start point to the goal on the map

whereby maps may contain impassable barriers, objective is to be able to determine the

optimal path. There are many factors that are evaluated to determine the optimal path

(defined as the path with the least cost) including the speed in which a path will be

traversed. Noticeably, there are many different approaches for defining a path ranging

from simple (walk forward until you hit something) to the complex (path finding

algorithms with heuristics) [6].

The objective of this work is to present a command language for our Micro-

Assembly Workstation (MAW), an idea which was previously introduced in [7] in order

to simplify the human machine interaction (HMI). Along with this feature we present

common and simple algorithms that are used to demonstrate the functionality of our

application. The experimental verification of our work, is more concentrated on

micro/nano-manipulation for microsystem application. To achieve this precise

manipulation we will formulate a windows application tool in object oriented

programming environment which can be used to easily interact with other environment

such as signal processing board and image processing tool. Such kind of precise

manipulating environment will provide GUI interface which would enable us to change

the relative position and relation of entities through direct or indirect human operator

control [8]. Given list set of commands on windows application, with motion planning

algorithm, we explore the ability of our system to plan path around obstacles or to make

choice of the best sequence of arrangements for moving particles to their destinations

without any collision with obstacles between them. Interesting feature of our work is to

plan motion around obstacles on a map purposely to demonstrate functionality of

command language in performing autonomous manipulation of objects in

microsystems.

1.3 Thesis Outline

In chapter 2, microassembly workstation (MAW) will be presented. Also, the

manipulation system, vision system and control system are presented to demonstrate

their role on motion planning. Problems associated with experimentation on the

microassembly workstation setup are also presented.

3

Chapter 3 discusses the features of command language for the MAW. Moreover,

information regarding the software for motion planning and control of the Micro-

Assembly Workstation (MAW) is covered.

Chapter 4 contains a theoretical discussion of the motion planning algorithm used

for micromanipulation. The discussion about the proximity (Euclidean distance) based

algorithm for manipulation of particles followed by artificial potential field approach,

and the graph traversing algorithm A * is presented.

In chapter 5, test for single command operations given on the window application

are shown followed by experiments and results conducted by using different motion

planning algorithms is covered.

Chapter 6 concludes the thesis by pointing out the achievements and giving future

motivations in this research project.

4

2 MICROASSEMBLY WORKSTATION

Many problems arise through the miniaturization process because of the scaling

effects, manufacturing techniques and, as might be expected, assembly. The production

of microsystems integrated with much functionality, many components made of

different materials require flexible, modular, accurate mechanisms, which can finely

pick, orient, move and release different types of objects at the right place. In the

presence of microparts assembly is a key issue in the formation of a product since

different functions require different materials within a product. In addition,

microassembly is the key for the development, modification and maintenance of hybrid

microproducts.

In comparing relations between the production rate and the size of the parts to be

assembled, as the assembled parts become smaller and smaller the production rate

rapidly falls thus opening a field of research in the micrometer size components

assembly. Due to these facts, the operator has no direct access to the micrometer size

components and since direct human handling of those components is not possible, the

need for automated micromanipulation and microassembly is crucial (Figure 2-1).

Figure 2-1 – Interrelations between areas of microassembly

5

2.1 Types of Microassembly

According to the technique used, microassembly can be classified as shown in

Figure 2-2. In additional to these techniques stated, there are some special approaches

but will not be presented here. What we present in this thesis lies along the automated

assembly motion planning, however in the following subsections we provide some

background information of what is covered in other braches of microassembly as well.

2.1.1 Manual microassembly

Manual microassembly is the realization of assembly tasks by specially trained by

human operators where they need to perform high-precision hand motions. For the

manual microassembly there is a great need for visual aid by magnifying glasses or

microscopes under which the operators carry out the assembly tasks by using special

tools like tweezers. As a result of the small dimensions of the parts to be assembled,

forces that are to be applied in order not to give damage to the parts are restricted.

Manual assembly may result in varying product quality since the control of such small

forces is hard and may lead to deformations of the parts. In addition, with the

miniaturization increases, the mounting tolerances are becoming smaller and smaller

which makes the manual assembly harder since the capabilities of the human becomes

inadequate in that scale.

2.1.2 Tele – operated Microassembly

In tele-operated microassembly, motions of the human operator are transferred

into the actuators by means of a man-machine interface (MMI). MMI having more

number of degrees of freedom enables the control of the motion with the same number

of DOF in the target space. Since the forces and the precision of motion necessary for

realizing an assembly operation in the microworld should be too small and the human

capabilities become inadequate for such motions with the increasing miniaturization,

tele-operation makes it feasible to perform the operations remotely, not in contact with

the environment. It allows the realization of the manipulation operations precisely by

scaling the forces and the motions of the microworld to the macroworld and feeding

6

back to the human operator. So that the operator can perform the operations similarly

as in the macroworld and the task is realized by the micromanipulator system in the

microworld. During those operations, the operator is guided through visual feedback

and possibly with force feedback.

Figure 2-2– Classification of Microassembly Techniques

2.1.3 Automated Microassembly

Main issues related to the microassembly are the component handling, precision

and the final product quality. Component handling difficulties, required submicron

precision necessary for the quality of the product and the limits of human capabilities

brings the necessity for an automated microassembly operation. Besides guaranteeing

the required precision and repeatability, automation is necessary in the microassembly

also for economic reasons since automation increases the quality of the product and the

production rate which will reduce the cost.

Automatic microassembly can be divided into two categories

• Semi-automated Microassembly

• Fully-automated Microassembly

In semi-automatic microassembly, operator intervention is permitted but only to

some extent. The operator can define some parameters for the operation such as the

pick-place positions or the assembly order of the components. The rest of the operation

is executed automatically. In fully-automated microassembly, all the tasks and the

7

parameters are predefined. With the aid of sensory feedbacks such as visual feedback,

force sensors, etc. the assembly task is realized automatically. In this regard, what we

add in this thesis is the ability to reduce the human intervention in the semi-autonomous

manipulation so as to improve our system towards fully autonomous operations. Further

discussions on the state of the art and the existing microassembly systems can be found

in [16].

2.1.4 The Subject of this Research

In this thesis motion planning algorithms are implemented to demonstrate the

ability to reduce human intervention on the microassembly workstation by allowing

several commands to take place at once to achieve a certain task. The operator just

chooses the motion planning algorithm to be implemented and in one of the algorithm a

specific particle to be manipulated is selected from a crowd, then using the algorithm

the path which can be used to intelligently manipulate the particle towards its defined

destination is shown. Even though in semi-automated microassembly the operator

intervention to the assembly operation is limited, the motion planning algorithm helps to

reduce the human intervention further. The tasks are pre-programmed and the operator

simply defines some of the parameters necessary for the assembly. The destination of

the manipulated piece is usually given as a pattern depending on the task to be fulfilled.

The rest of the operation is managed automatically. Semi-automated system architecture

is shown in Figure 2-3; the figure demonstrates the procedure which is: after the

handling of the initial steps by the operator, relative distance data calculated by the

vision system is fed to the motion system while sensory feedback (position data) from

the motion stages is sent back.

8

Figure 2-3 – Trajectory Generation and Motion Planning in Semi-Automated System Architecture

Figure 2-3 also shows the concentration of this thesis work as an intermediate

between the vision system and motion control system in the microassembly

workstation. Note that in semi-autonomous manipulation, the system initialization

includes the selection of the particle and the desired destination point. Later, a line

connecting the center point of the selected particle and the destination particle is

constructed. Then, step motion value for pushing the particle and the selected point are

calculated. Finally, the tip of the probe is moved in steps towards the destination point

in order to achieve semi-automated manipulation. The steps are repeated until the center

of the selected particle coincides with the desired point [16].

9

 The most feasible trajectory for a particle to its target position by pushing is

simply a line denoting the closest path to the destination. In that context, the operator

should choose the suitable part to be pushed and the destination point considering the

issue that the semi-automated assembly procedure does not include motion planning so

that there exists nothing as an obstacle between the particle and the target point. In this

thesis work a similar feature is added as Euclidean distance planning algorithm; in

which the path planning of the particles to be manipulated are obtained depending on

the particles proximity to their destination points.

2.2 System of Microparts Manipulation Workstation

The overall structure of the workstation is presented in Figure 2-4. The system has

the following main components:

1. Manipulation System consists of the gripper manipulator and the sample stages,

providing the motion necessary for the manipulation operations.

a. Gripper manipulator consists of coarse and fine positioning stages

providing necessary travel range and the accuracy for the manipulation

stages mounted on the fine positioning stages.

b. Sample Stages provide the usage of the substrate surface more

effectively by moving the different regions of the substrate into field of

view.

2. Control System is the main control unit of the system consisting of a PC and a

controller board embedded into the PC.

3. Vision System can be examined in two parts;

a. Optical System consisting of a stereoscopic optical microscope, CCD

cameras mounted on the microscope and an autofocusing control unit.

The automatic zoom and the autofocusing motion units are mounted on

the microscope and the control is realized from the vision computer.

b. Illumination System is configured to provide backlighting by means of a

mirror system using a fiber illuminator as the light source.

4. End Effectors and necessary fixtures are used interchangeably in the system.

Microgrippers and probes can be the matter of choice and necessary fixtures are

designed to be easily integrated to the system.

10

5. The whole system is placed onto an actively controlled damping table in order to

get rid of environmental vibrations.

The whole system configuration is shown in Figure 2-4.

Figure 2-4– Microassembly Workstation

2.2.1 Micromanipulation System

Manipulation system should allow the positioning of the end effector with very

high accuracy. According to the complexity of the manipulation tasks, the manipulator

system should have necessary number of the degrees of freedom. With translational

degrees of freedom in x, y and z coordinates, system will be capable of executing

simple pick and place tasks and some 2D tasks such as pushing, pulling type of

assembly tasks. To be able to implement more complex assembly tasks and to provide

the system to adapt to any kind of assembly process, a rotational degree of freedom

about the z axis was added to the manipulator system.

2.2.2 Control System

The micro assembly workstation will serve the purpose of manipulating micron

and sub micron sized modules, and assembling them to build complex but small sized

11

machines or modules thereof. This section focuses on the design methods for the

implementation of control system aspects of the microassembly workstation. The

system can be made up of the following modules:

• Positioning stages with different type of actuation mechanisms

• Manipulation tools (e.g. microgrippers)

• Vision system with cameras and an optical microscope which has actuated

focusing and zooming features

• Man-machine interface consisting of devices that relay concise information to

the user including a haptic device for information exchange.

• Main control computer as the computing engine running in real-time, processing

the data coming from various parts of the system and producing reference values

for the modules.

• Real-time communication network to provide the connectivity between the

modules.

• Non-real time communication network to communicate between parts of the

system where occasional late arrival of data can be tolerated. (e.g. connection

between the main control computer and the haptic device.)

The modules of the system listed above is configured in such a way that they can

operate independently of each other. In order to provide the functioning of the whole

system, all modules must be coordinated. For the coordination of the modules, there are

several ways to implement the data processing and the control system.

Main considerations of the system supervision and control are related to the

motion control and image processing. In order to achieve high accuracies for the

motion, control method needs to be considered carefully. Motion control is the basis for

the microassembly workstation since the precision and accuracy of the assembly tasks

mostly depend on the control performance. Vision system supplies the external sensory

feedback for the motion control unit. By using some image processing techniques,

position of parts to be manipulated and the manipulation tools with respect to each other

which are necessary for the implementation of automated assembly tasks are extracted.

As the motion units operate according to the feedback supplied by visual feedback,

vision system must be very precise for the sake of realization of the assembly tasks. For

the automated tasks vision system gains significant importance as it gives the reference

for motion according to the extracted position information.

12

2.2.3 Vision System

In the micro domain, position and orientation of the parts to be assembled with

respect to each other and the manipulation tool can be determined only by using a vision

system. An effective vision system is necessary to visualize the micro domain for

recognizing the geometries and position of 3D microparts, path generation for the

micromanipulator and providing the necessary position feedback. Application of

different vision technologies depends on the size of the parts to be manipulated. The

assembly task for the microassembly workstation is defined in the micrometer domain,

so that optical microscope and contact manipulation are suitable solutions for the vision

system.

Configuration of the vision system is shown in Figure 2-5.

Figure 2-5 – Vision System

2.2.4 Manipulation Tools

One of the most essential components of microassembly systems is the

manipulation tools determining the manipulation capabilities of the whole system.

Manipulation is the key operation for a microassembly workstation as the assembly can

be realized by means of manipulation.

Unfortunately, there is not a wide range of choice of micromanipulation tools in

the market as the microtechnology is still an immature research area all over the world.

13

A few microgrippers are available in the market and suitable ones for our purposes are

selected to be Zyvex Nanoeffector® Microgrippers and Nascatec Nanogrippers.

Microgrippers make it possible to realize 3D microassembly operations. With the

available range of microgripper sizes it is possible to manipulate different objects with

different sizes and features. More details on the experimental setup are available in [16].

2.3 Microassembly Workstation Operation

This section discusses the current features of the microword which limit the

immediate application of the motion planning algorithms on the microassembly

workstation.

Differences between the assembly in macro and microworld forms the basic

requirements for the design of a microassembly workstation which can be defined as

speed, repetitiveness and reliability. As the system is defined as an open architecture

and reconfigurable system – both hardware and software – the system is designed in

such a way that it can adapt easily to different applications. Therefore, flexibility comes

out as another design requirement for the workstation.

Noticeably, the microassembly workstation should have the following

requirements to operate with a good performance;

• For the precise handling of the micro parts, a manipulation system with high

accuracy

• Robust control system design is of great interest in the microassembly.

Modeling and control, especially vision assisted control, become more critical in

microassembly as the accuracy requirements increase and the size of parts

decreases.

• For the determination of the position and orientation of microparts, a

sophisticated measuring system is needed such as an optical microscope for

guidance in assembly of microparts.

• Robust control system design is of great interest in the microassembly.

Modeling and control especially vision assisted control, become more critical in

microassembly as the accuracy requirements increase and the size of parts

decreases (That’s why in our previous work we investigated the high precision

controller for motion control) [19].

14

2.3.1 Physics of Micromanipulation

With the miniaturization of the objects to be handled to micron sizes, attractive

forces, such as van der Waals force, surface tension forces and electrostatic force

between microobjects and the manipulator become dominant over the gravitational and

inertial forces.

Figure 2-6 – Comparison of gravitational and adhesive forces [11]

These attractive forces depend on environmental conditions, such as humidity,

temperature, surface condition, material, etc. For the manipulation of the microobjects,

the physics in the microworld should be carefully considered. Thermal, optical,

electrical, and magnetic effects will change or become dominant when the objects are

miniaturized (Figure 2-6).

2.3.2 Discussion on Mechanics of Micromanipulation

As described in the previous subsections, the action of micromanipulation is very

complex and possessing several problems because of the adhesive forces, complicating

the pick and place tasks. Requirements for the microgrippers differ from the

conventional grippers not only for the size of the particles to be manipulated but also for

the required gripping forces. As a result of that for the design of micromanipulation

15

tools, it is not possible to just miniaturize the existing manipulation tools in the macro

domain. According to the tasks to be realized and parts to be manipulated in the micro

domain, a specific manipulation tool is necessary which can perform not only gripping

but also releasing of the particles. Investigation on properties of different kinds of

grippers is covered in [16].

Furthermore, minimizing the contact surface is necessary to reduce the adhesive

forces dominant in the microworld. In order to avoid the sticking effects, contact surface

between the probe and the particle should be as small as possible [10], [12]. The

optimum configuration for the pushing operation using sharp tungsten probes is

depicted in Figure 2-7. In this configuration, the probe tip and the particle is in

minimum contact providing an effective manipulation.

Figure 2-7 – Optimum pushing configuration [16]

During the pushing operation, the probe tip should point the center of the particle

since the particle can roll around itself failing the pushing operation. Furthermore, if the

distance determined for pushing operation is too much, the particle can also roll around

itself due to imperfections of the base surface and the particle shape, not touching the

surface at one point, etc. Therefore, the operator should be trained to realize

experiments by using the probe as the manipulator. Also, intelligence in the

discretization of the path in motion planning is crucial to avoid the particles from rolling

around during the pushing operations. Moreover, the addition of the rotation axis to

MAW improves the ability to manipulate microparticles in the workspace, see Figure

2-8.

16

Figure 2-8 – Addition of a Rotational Axis

Considering the experiments realized in the microassembly workstation, results

are promising when precision, accuracy, reliability and repeatability issues are

concerned. However, when the discussed phenomena are dealt with, the system can

operate effectively as a microassembly workstation for automated assembly tasks.

Eventually, accuracy requirements for these operations are very high; therefore,

precision and repeatability of such assembly systems must be in the micron to

nanometer range for automatic assembly of millimeter and micron structures. In the

next chapter, features of MAW software that guarantee precision and repeatability in the

assembly processes will be discussed. In the next chapter, features of MAW software

which guarantee precision and repeatability in assembly processes are discussed.

17

3 SOFTWARE FOR MICROASSEMBLY WORKSTATION

3.1 Introduction

This chapter is the introduction of the software to be implemented on the

microassembly workstation. In order to setup an open-architecture and reconfigurable

microassembly workstation with the necessary specifications, issues related to the

manipulation language of the system components will be discussed.

In the following sections, the whole system will be examined in detail as software

architecture, structure of the software and operation of the software. Finally, software

configuration to improve the system performance will be presented.

As discussed earlier, our motivation for this work is to create a language in an

object oriented fashion in which a user would give some commands and the system

would respond accordingly to execute the tasks. In attacking the problem, the motion

plan is obtained through model checking, and results in the form of graphical

representation of the provided workspace. A brief discussion on the structure and

architecture of the software is covered in this section; however, the following section

will also cover discussion of how the software architecture results to computational

complexity. Manipulation tasks are specified by identifying a target object to be moved

and its new location.

The work of thesis involved preparation of the window application with its features

shown in the Figure 3-1. The commands are classified into groups in terms of

operations they handle in motion planning and assembly of the microassembly

workstation. Features of the Main window application prepared include:

• Main Menu Strip: Carries the implemented items which are located on the Main

Menu Item bars

18

• Graph Traversing Control Commands: Are commands used to control graph

traversing A* algorithm

• Graphics Menu: Contains the menus for demonstration purposes of the A*

motion planning algorithm

• Stand and End: Are initial and final positions of the motion planning routine

• Path Finding Time: Is the time completed in the process of path planning using

the A* algorithm

• Action Control Commands: Contains all the actions implemented for the

demonstration of motion planning in the virtual space and “Grid Search

Window”

Figure 3-1 – The window application used to control operation of the MAW

19

3.2 Software Architecture

In motion planning, given the high cost of computing optimal plans using

classical search algorithms, we focus on divide-and-conquer techniques and on the

efficient reuse of existing plans.

We prepared the list set of commands presented in the divide-and-conquer approach

for the identification of control modes and their combination can lead to major task in

the manipulation process with emphasis on precision, accuracy, reliability and

repeatability. To achieve this we prepared classes for the whole system. Then, all the

system is divided into several categories with particles, stages, microscope and

manipulation tools as objects which are represented by the defined classes. e.g. For the

real time experiment in MAW we have polysterene ball images represented with the

following properties: circular objects (in 2D), with a given radius r, and with x and y

coordinates of the center. Collection of these mentioned properties can be used to

represent methods such as rotate, push, record coordinates of particular particle. Figure

3-2 below illustrates how the manipulation of a particle takes place without colliding

with other particles (obstacles) along its way towards destination.

Figure 3-2 – Manipulation of particles on the virtual space

20

In early days, structured programming is the type of programming which was

commonly used. Now, before we introduce the features of object-oriented programming

reviewing the dominating programming approach prior to object-oriented programming

is very crucial.

Structured programming relies on use of high-level control structures instead of

low-level jumping. Structured programming is also loosely coupled with top-down

programming and program development by stepwise refinement. A well-structured

program should devote a single procedure to the solution of a single problem. The

splitting of problems in sub-problems should be reflected by breaking down a single

procedure into a number of procedures. Notice that only few programmers are radical

with respect to top-down structured programming. In the practical world it is probably

much more typical to start somewhere in the middle, and then both work towards the

top and towards the bottom. Even though structured programming has some weaknesses

in real-time applications this does not mean structured programming is “the wrong way”

to write programs. Similarly, object-oriented programming is not necessarily “the right

way”. However, object-oriented programming (OOP) is an alternative program

development technique that often tends to be better if we deal with large programs and

if we care for program reusability.

When we write a “traditional” structured program it is most often the case that we

have a single application in mind. This may also be the case when we write an object-

oriented program. But with object-oriented programming it is more common - side by

side with the development of the application - also to focus on development of program

pieces that can be used and reused in different contexts.

The next observation deals with “stable structures”. What is most stable: the

overall structure of program control, or the overall program data structure? The former

relates to control structures and procedural structures. The latter relates to data types

and classes (in the sense to be discussed in the following section). It is often argued that

the overall program data structure changes less frequently than the overall program

control structure. Therefore, it is probably better to base the program structure on

decomposition of data types than on procedural decomposition.

Eventually, the above discussion brings us to our interests towards programming

“the object-oriented way”. Below we list some of the most important ideas that we must

care about when we make the transition from structured programming to object-oriented

programming. First of all, the gap between the problem and the level of the machine is

21

filled in the bottom up style. Also, data is used as the basic building blocks, however,

some people argue that data, and relations between data, are more stable than the

actions on data. Then, data is bundled with the natural operations on data: which is one

of the fundamental ideas of abstract datatypes, and also consolidate the programming

constructs (structs/records) for encapsulation of data. Object-oriented programming

concentrate on the objects which should be administrated or handled by the program: it

make use of existing theories of phenomena and concepts, and in particular it provides

features which help to form new concepts from existing concepts. Object-oriented

programming make use of programming style that allows us to collapse the

programming of very similar objects. The following section clarifies the structure of the

software used for motion planning of the MAW.

3.3 Structure of the Software

The structure of the MAW software as described in [7] is in Backus-Naur Form;

Backus-Naur notation (more commonly known as BNF or Backus-Naur Form) is a

formal mathematical way to describe a language, which was developed by John Backus

(and possibly Peter Naur as well) to describe the syntax of the Algol 60 programming

language. In [7] the structure of the software had the following features:

Define Commands are useful when user wants to set a certain condition for MAW or

change some behaviors in MAW.

Enter_Pos ::=Enter_Pos “(“name “,” (x-value “,” y-value)”)”

Use ::=Save_Pos “(“name “,” object”)”

Use∗1 ::=Calc_ORI “(“object1 “,” object2 “,” variable ”)”

Use ::=Create_Path “(“name “,” {variable}|{x-value “,” y-value}”)”

Record ::=Record “(“filename | close [“,”deviceID”)”

Playback ::=Playback “(“filename”)”

Device_Ori ::=Device_Ori“(“ device ID “,”setting”)”

∗1Exception: Argument ‘variable’ in Command Calc_ORI() use variable ‘STATUS’ field as a

 Flag (Flag=1, Rotation is necessary, angle of rotation θz is given in ‘VALUE’ field; Flag=0, No

 rotation, Value field has 0 (θz =0)).

22

Movement Commands are commands which initiate movement in MAW.

Go_ORI ::=Go_ORI“(“move_mode “,” variable ”)”

Follow_Path ::=Follow_Path“(“move_mode “,” name ”)”

MovetoPoint ::=Move_to_Point“(“move_mode “,” (x-value “,”y-value)|variable”)”

Grip ::= Grip“(“object”)”

Release ::= Release“(“object”)”

Lift_UP ::= Lift_UP“(“object [“,”z-value]”)”

Action Commands are commands which handle sensors and other equipment in MAW.

Init ::=Init“(“[address]” , “[{address}]”)”

GoShowPos ::=Go_Show_Pos “(“move_mode”, “view_mode”, “object”)”

Show_Pos ::= Show_Pos “(“sensorID | view_mode “,” object [“,”forever]”)”

Then, there are Control Flow Commands which are commands used to control

execution of other commands.

If ::=If “(“expression”)”{commands} endif

While loop ::=While “(“ expression”)”{commands} endwhile

Break ::=Break[“(“name”)”]

Stop ::=Stop

Cont ::=Cont

Clear ::=Clear “(“variable”)”

Wait ::=Wait “(“number |variable”)”

Note: Commands and parameters used here are expressed using the BNF-notation

(Backus Naur (BNF) Form)

After introducing the concept of object oriented programming in the previous

section, the following is a brief content of the objects used in the software which ensure

the software reusability.

• “Manipulation Point”: Is an object which contain two points with each point

having x and y coordinates of the respective point; e.g. first point could be a

representation of origin point while second point could be a representation of the

destination point. Methods used to calculate the distance, slope, angle,

destination path, destination force and obstacle force between the two points

utilize the properties of this object.

23

• “Particle Store”: Is an object which carries all information of the particles used

in the virtual space manipulation. Method such as minimum distance between all

the particles in store and the destination point is handled using this object class.

• “Path Finder Node”: Is an object which contains information of the nodes such

as: start, open, close, current, path and end. These nodes information can be used

to define methods such “Find Path” using defined heuristics.

• “Point”: Is an object which carries information of x and y coordinates generally

used as an object of another objects such as “Manipulation Point”, “Path

Finder”, etc.

• “File Stream”: Is an object which hides all information of the nodes present in

the GUI interface grid space, so that the information can be used for path

planning routines, or saved in the memory and retrieved for future use.

• “Form”: Is an object window or dialog box used for graphics demonstration

purposes; e.g. “Virtual Workspace” and “Windows Media” form. Form is one

on the features of C#.NET programming environment.

• “Priority Queue”: Is an object which keep list of nodes information while the

A* algorithm is searching for the optimal path in the grid space.

• “Timer”: Is an object used to calculate simulation time in seconds

Based on the structure presented in [7] and classes of object defined above, the software

for the motion planning of the MAW window application was divided into three

categories which are:

• Movement Commands: Motion commands such as “Follow Path”, “Move to

Point”, “Lift Up”, “Rotate(change orientation)” and “Return to Origin” are

categorized in this part;

• Action Commands: Commands to “Initialize Manipulation”, “Show Position of

the Moving Part” and “Exit Manipulation” actions are presented; and

• Definition Commands: List of basic definition manipulation of particles such as

“Enter Position”, “Save Position”, “Select Motion Planning Algorithm”,

“Create Path”, “Save Movie”, “Play Movie”, etc.

In order to prepare the main window application some features were taken from [15],

these include:

24

• Grid Size: This parameter just affects the front-end. It can change the grid size,

where reducing the grid size gives a chance to create a bigger test but will take

longer to render.

• Fast PathFinder: When unchecked, the implementation used is the algorithm as

it usually appears in Path Finder [15]. When checked, it will use path finder

implementation which requires more memory, but it is about 300 to 1500 times

faster depending on the map complexity.

• Speed: This is the rendering speed; reducing speed permits detailed examination

of how the algorithm opens and closes the nodes in real-time while the

PathFinder operates.

• Diagonals: Is set to allow the A* algorithm to process path searching in 8

directions instead of 4; including the diagonals of the grid.

• Reopen Closed Nodes: Is the command that allows A* algorithm to reopen

nodes that were already closed when the cost is less than the previous value. If

reopen nodes is allowed it will produce a better and smoother path, but it will

take more time.

• Formula: Is the equation used to calculate the heuristic. Different formulas will

give different results: some will be faster, others slower and the end may vary.

• Punish Change Direction: Is the command that allows every time the A*

algorithm path finder changes direction the cost decreases. The end result is that

if the path is found it will be comparatively smooth without too many direction

changes, thus looking more natural. The downside is that it will take more time

because it must research for extra nodes.

• Show Progress: This permits observation of the algorithm as it operates in real-

time. If this box is checked, the completion time will be the calculation time plus

the rendering time.

• Tie Breaker: In A* path planning algorithm sometimes it encounters a

phenomena in which there are many possible choices for the same cost and

destination. The tie breaker setting tells the algorithm that when it has multiple

choices to research, instead it should keep going. As it goes, changing costs can

be used in a second formula to determine the “best guess” to follow.

• Completed Time: Is the time the algorithm takes to calculate the path from the

start to end point. To know the true value, uncheck “Show Progress.”

25

• Run/Continue and Pause Are action control command buttons use to run and

control the A* motion planning algorithm. The Pause command is used to pause

the graph traversing process while the search for the path continues.

All these functions are featured in the window application main form as seen in Figure

4-2.

3.4 Operation of the Software

Manipulation Process:

• “Initialize Manipulation – Action command” initializes the manipulation

process, in which the manipulators move to the origin (home) position which is

known,

• “Select Algorithm – Definition command” enables user to select the appropriate

algorithm (discussed in the next chapter) to be used in the particular task.

• “Save Movie” is the command used to save the manipulation process as avi.file

so that it can be replayed using

• “Play Movie – Definition command” later for further analysis.

• “Return to Origin – Movement command” is the command for return all stages

and manipulators to the start (system initializing position) and

• “Exit Manipulation – Action command” is used for stoping the manipulation and

switching-off the application.

By default, program can also be set in such a way that once the object has been placed

at the target (destination) location, the manipulator can return to its rest position (system

home position). In addition, hierrachies are assigned in the execution of the commands

to ensure that priorities are given to a set list of commands e.g. Action commands.

Our project challenges involved writing the codes for the commands which run multiple

systems at once. This feature, however may lead to several outcomes such as delay in

debugging due to computational complexities resulting from handling all the data

coming from multiple sensors (camera, motors and manipulators) and sending the

appropriate commands to the motors and the manipulating tools. Implementation of

such commands can be observed in the motion planning algorithms in the next chapter.

26

 Initialize Manipulation

Select Motion Planning Algorithm

 Run Manipulation

 Exit Manipulation

if (EDA)

Select Pattern

Figure 3-3 – The manipulation procedure using the software

The window application can be put into two categories, the first one involves

commands to perform single commands at once, usually commands which can be

applied in the assembly process and the second one includes collection of systematic list

of commands given when system is required to perform certain action. The manner in

which the motion planning algorithms is set to perform manipulation of micro-particles

fits into the second category of the window application.

3.5 Conclusion and Discussion

In this chapter, detailed structure and implementation of the software part of the

microassembly workstation was discussed by means of explaining each subsystem

separately. We have demonstrated how the tasks are specified in a high level language

and have the manipulators and stages automatically convert these specifications into a

set of low level primitives to accomplish such tasks. Functionality of the software

prepared in the object oriented manner is demonstrated in the following chapter. The

common advantage of preparing the MAW software using object oriented programming

makes the software to be easily developed and easily reusable in other mechatronics

system operating in same manner.

27

4 MOTION PLANNING ALGORITHMS

4.1 Introduction

In this chapter, motion planning algorithms used for manipulation processes of the

microassembly workstation will be presented. Detailed discussions of why and on

which scenarios an operator would prefer to apply one algorithm instead of the other is

also presented. Then, mathematical calculations involved in the motion planning

algorithms and results expected from virtual space implementation are described.

Consider a workspace with randomly distributed microparts, our objective is to

use motion planning intelligent algorithms to formulate patterns of particles in defined

locations on the workspace. In motion planning procedure a good understanding of the

physical feature of our manipulation system is very crucial before the user issues

commands. Then, after all constraints have been put into consideration the application

of this technology in assembly of micro components and structures into microsystems

can be fulfilled. Common application of this planned manipulation is on construction of

useful 2D microstructure, e.g in fabricating mold templates in micro/nanoprinting [3].

With few exceptions, most of the works in this area focus on either the complexity of

the environment or manipulator dynamics (while assuming the environmental features

are trivial). Previous study show communication architectures in multi-actuator systems

focusing on proving that certain local interactions give rise to interesting global

behaviors. However, the inverse problem of generating local rules from non-trivial high

level specifications of the group is still not understood. In most of the existing works,

the motion planning problem is simply specified as "go from A to B". It has been

discussed by several authors [2] that this kind of observation is either too explicit, or

simply does not capture the nature of the task, which might require logical (e.g., "visit

either A or B") and/or temporal operators ("reach A and then B infinitely often").

28

Technique for performing motion planning with obstacles range in complexity

from simple behavior-based approach to complex global path-planning schemes. The

simplest approaches are reflexive in nature. Some examples include: turning left if an

obstacle is detected on the right and turning right if an obstacle is detected on the left,

walk forward until you hit something. These approaches tend to be very robust and

adaptive to unstructured environments, but also tend to be inefficient and non-optimal.

Motion planning can find optimal paths through complex environments but also tends to

be brittle and to not scale well to large environments [13].

For demonstration purpose of the motion planning algorithms implemented in this

work we will use two space: first one is a “grid search window” in the middle of the

main form of our widow application usually used for demonstrations of the A*

algorithm, and second one is the “virtual space” form which is activated when either

Euclidean distance or artificial potential field algorithm is activated.

Figure 4-1 – Location of the grid search window for demonstration of A* algorithm

The first thing you should notice is that we have divided our search area into a

square grid (see Figure 4-1). Simplifying the search area, as we have done here, is the

29

first step in path finding for A* algorithm. This particular method reduces our search

area to a simple two dimensional array. Each item in the array represents one of the

squares on the grid, and its status is recorded as walkable or unwalkable. The path is

found by figuring out which squares we should take to get from A (start) to B (goal).

Once the path is found, the manipulator should move from the center of one square to

the center of the next until the target is reached. These center points are called “nodes”.

Figure 4-2, shows the “virtual space” form which pops-up when either Euclidean

distance or artificial potential fields method is activated.

Figure 4-2 – Virtual space form for demonstration of EDA and potential field algorithm

30

4.2 Euclidean Distance Algorithm

Our first motion planning algorithm is the Euclidean distance algorithm, in which

the particle with the nearest proximity to the destination is the one which is pushed first

by the manipulator. This algorithm defines the geometric representations of all particles

in the workspace, and that of the manipulator as well. The method allows planning

algorithms to determine whether particle being moved by the manipulator is in collision

with other particles or with obstacles. The idea is that, the particles that are closest to

the destination are being pushed towards their proposed destinations.

Given an initial coordinate frame)(: OXYF = on our workspace with origin O

and axes X,Y, the position of manipulator is determined by its coordinates (xi,yi). Then,

if the position of the manipulator at any time (t) is (xi(t), yi(t)) and let q(t) be the

configuration variables, then

).)(sin()()(
),)(cos()()(

iii

iii

tdtyty
tdtxtx

αθ
αθ

++=
++=

 (4-1)

where, di:=is the distance between original position of the particles and their

destinations and αi is the angle formed by the segments di and the positive horizontal

axis. Let us introduce the distance function:

[] 2/122)))())(cos()(())())(sin()(())(),((ttdtyttdtxtqtqL iiii θαθθαθ &&&&& ++++−= (4-2)

Since for 2D manipulations the cost function is the distance between two points,

our goal would be to minimize the function in equation (4-2), so that the manipulation is

performed for the particles which are closest to the destination.

))(),((minarg tqtqLPath &= (4-3)

In virtual space we consider the random distributed particles with the same physical

properties. Our objective is to move the particles to their defined destinations without

any collisions between them during the manipulation operation. Since the particles are

spherical, in 2D the particles have the same radii; therefore there is no question whether

the manipulated particle will fit well into their assembled locations. Assuming the above

situation is true the manipulations begins with calculating the closest particle to the

destination point in consideration. Then, a line connecting the defined destination

location and the closest particle is drawn. Afterwards, the line is distributed into

31

segments depending on the structure of movement in the manipulation. Finally, the

manipulation process starts by slowly pushing the particle towards the destination

following the straight line. The Figure 4-3(b) below demonstrates how the process is

implemented in virtual space with particles of radius 10 units. Similarly Figure 4-3(a)

shows how the same algorithm can be applied in the MAW setup using semi-automated

manipulation features already available in the setup.

(a) MAW experiment example (b) Virtual space implementation

Figure 4-3 – Comparison of scenario for motion of particle between MAW and virtual space of the

window application

This type of manipulation considers the particles to be moved as if they have same

physical properties (mass, area, and volume), therefore the necessary force required to

move the particles is the same for all the particles in the workspace. However, in real

situation the dimensions of the particle located on the workspace are of different

magnitudes which prompts for the selection of which particle to move and when to

move. In consideration of the above mentioned scenario, the necessity of the system to

have the motion planning algorithm which has intelligence to allow manipulation of

particle from their original locations to their defined destinations seems to be inevitable.

Figure 4-4 demonstrates another application example of the Euclidean distance

algorithm in the virtual space. The advantage of using this simple algorithm is that the

obstacles (particles lying along the path of a possible candidate for manipulation) are

given higher priority of manipulation before manipulation of the candidate.

32

Figure 4-4 – Motion of particle with the proximity based algorithm operating

4.3 Artificial Potential Field Algorithm

After the description of the Euclidean distance algorithm for path planning of

particles with the same physical properties, it is also fair mentioning the scenario in

which motion planning algorithm operates on particles with different physical

properties. Then, the need to use artificial intelligence to allow manipulation of particles

from their original locations to their defined destinations seems to be inevitable. In

Artificial Potential Field method, an obstacle applies repulsive forces on the

manipulator, simultenously the goal applies an attractive force to attract the manipulator

and the particle being pushed towards its direction. Eventually the manipulator is forced

to take the direction of the resultant force field.

One of the challenges with artificial potential field is the problem of local minima

[8]; we had to find a way to get out of local minima in our solution or have no local

minima at all. To accomplish this we had to modify the way in which we build our

potential field. If the obstacle force experienced by the moving particle is as illustrated

below.

∑
=

⋅⋅−=
n

i
i

i
obs r

d
OF

1
2

ˆ1ρ
 (4-4)

33

where O is a constant scaling factor, n is the number of obstacles, di is the distance

between obstacle i and the manipulator, is the direction vector from moving particle

to representative point of obstacle. Note that, in equation
ir̂

(4-4) O is divided by di
2,

therefore, the obstacle force increases as the moving particle gets closer to the obstacle

(as d decreases). The obstacle force comes into consideration once the obstacle reaches

the perimeter of the dotted circle of Figure 4-5, otherwise the obstacle force is

negligible. And the attaraction force between the moving piece and the goal is:

rdGFgoal ˆ2 ⋅⋅=
ρ

 (4-5)

where G is similarly a scaling factor, d is the distance from moving particle to the goal,

and r̂ is the direction vector from manipulator and moving particle to the goal.

obsF
ρ

goalF
ρ

obsθ

tresulF tan

ρ

θF

rF

Figure 4-5 – Motion of particle with the artificial potential field algorithm

Using the outputs of the distance sensors, the net repulsive force is calculated and

decomposed to its components, one along the direction of motion of the manipulator

and one perpendicular to it (see Figure 4-5). If obsθ is the angle between the direction of

motion of the manipulator and the obstacle force, then

)sin(

)cos(

obsobs

obsobsr

FF

FF

θ

θ

θ ⋅=

⋅=
ρ

ρ

 (4-6)

For safe motion of the moving piece being pushed, the manipulator should try to

keep the force component along its direction of motion, Fr minimum or ideally zero.

This can be achieved by changing the orientation of the manipulator, since the force

components are dependent on the orientation. To this end, a controller can be used for

34

the optimization. The rate of change of the force components with respect to the

obstacle angle is,

)cos(

)sin(

obsobsobs

obsobsobsr

FF

FF

θθ

θθ

θ ⋅⋅=

⋅⋅−=

&ρ&

&ρ&
 (4-7)

Then, the controls to drive the PZT 3-axis manipulator which hold the

manipulator are selected as rr Fu &= and
θθ Fu &= .

The techniques of using potential field can be seen as an interesting alternative for

the A* algorithm that seems to be more popular in the current state of the art. The

potential field method requires some serious calculations which are computationally

expensive [9]; however, with modification in which computations for the potential field

are done only in the vicinity of the moving particle, the resulting operation becomes less

computationally expensive.

For the modification of the artificial potential field algorithm; first after selecting

the particle to be manipulated, a line connecting the defined destination position and the

particle to be manipulated is drawn. Then the particles close to the line joining the start

and the end position of the manipulation are treated as obstacles as shown in the Figure

4-6 below. For software implementation in virtual space the moving particle only takes

into consideration its distances from the particles along its path and its desired

destination.

Figure 4-6 – Obstacle Avoidance path of the artificial potential field algorithm

Operation of the field oriented motion planning algorithm used for demonstration

on our virtual space operates as follows:

35

Input: Destination (given as input pattern), particle to be moved (given a click input

event on the virtual space of the window application) and obstacle coordinates (given as

random particles dispersed on the virtual space).

Output: A path from origin to destination obtained through online pushing.

(i) Initialize the window application

(ii) Click to start the field oriented path planning

(iii) Click the particle to be moved

(iv) The algorithm will return, either the particle was successfully pushed

towards its destination, or due to some discrepancies the manipulation of

the particle failed.

Figure 4-7 demonstrates the full mode of operation for the modified version of the

potential field algorithm in the virtual space of our window application.

Figure 4-7 – Structure of artificial potential field algorithm with obstacle avoidance

36

4.4 Graph Traversing A* Algorithm

Finally, we implement the A* algorithm; a popular path finding algorithm used to

find a shortest path. A* algorithm incrementally builds all routes leading from the

starting point until it finds one that reaches the goal. But, like all informed search

algorithms, it only builds routes that appear to lead towards the goal. In order to

determine which routes will likely lead to the goal, A* algorithm employs a heuristic

estimation of the distance from a given point to a specified goal. We can find an

unobstructed path through configuration space by discretizing the configuration space

and then employing some form of search algorithm. Considering all possible actions

and all possible states to which the manipulator can transition is un-realistic because the

size of the search space would be too large or infinite. Instead we chose to represent the

workspace as a set of discrete states and we select a subset of manipulator’s actions that

correctly transition the manipulator between those states while not limiting the

manipulator’s capabilities too severely.

Methods for discretizing the configuration space take on two general forms:

skeletonization and cell decomposition. Skeletonization reduces the configuration space

to a one-dimensional space consisting of a network of connected curve segments

through free space, collectively called a skeleton. Cell decompositions break the

configuration space into adjacent regions (spaces). For our system we chose uniform

grid cell decomposition at multiple discrete orientations for its flexibility and simplicity.

We create discrete states in the configuration space by laying a two-dimensional

grid over the workspace and then considering only a discrete set of orientations. The

discrete coordinates and orientations used for path planning need not correspond

directly to the discretization used to calculate the configuration space. For example, it

might be advantageous to search through a very simplified state space but then check

whether an action is obstructed at a much higher resolution.

Search is the process of exploring sequences of actions to determine a sequence

that leads to a desired goal state. An action performs a transition from one state to

another. A sequence of actions from the initial state is called a search node. The search

nodes form a search tree, where the fringe of search is at the leaves. In motion-planning

the goal state is some desired point in configuration space and the actions represent

motions the manipulated particle is due to perform. We approximate initial state and the

37

http://en.wikipedia.org/wiki/Informed_search_algorithm
http://en.wikipedia.org/wiki/Informed_search_algorithm

goal state by converting them to the nearest state in the discretization of the

configurations space being used, and then search for a sequence of unobstructed actions

that, when completed, end at the goal state.

The search algorithm is initialized by placing the goal state in a priority queue.

The algorithm then proceeds by removing the first node on the priority queue and

checking if the goal has been reached. If it has not, the node expanded into its

neighboring nodes, which in turn placed on the queue. The search continues until the

goal state is found, the search space is exhausted, or some other stopping criterion

occurs, such as a timeout.

The searching procedure is conducted as illustrated in Figure 4-8. In this figure,

the dark green square in the center is your starting square. It is outlined in light blue to

indicate that the square has been added to the closed list. All of the adjacent squares are

now on the open list of squares to be checked, and they are outlined in light green. Each

has a gray pointer that points back to its parent, which is the starting square.

Figure 4-8 – Demostration of how a search is conducted from a node [18]

Depending on the position of the particle, the position of the goal, and the position

of the obstacles in the workspace, there may not be a legal path from the particle’s

initial state to the goal state. This condition can be detected by checking whether or not

the search queue is empty when the search terminates and it should be reported to the

procedure’s caller.

Different priority queue implementations yield different search behaviors. A

priority queue that orders search nodes based on the cost:

),(),()(tnhnsgnf st += (4-8)

where is the cost of the path from the start node to a node , and is the

estimated cost from a node to the goal node t yields the efficient heuristic search

),(nsg s n),(tnh

n

38

algorithm called A* [13]. A* returns an optimal path sequence if the heuristic used to

estimate the cost to the goal is admissible,

),(*),(tngtnh ≤ (4-9)

or in other words, if the heuristic function from node to the goal node is always

an underestimate of the optimal cost from to t (the “*” stands for optimal or

shortest). A commonly used admissible heuristic in motion planning is the straight line

distance to the goal, although other heuristics are possible (see

h n t

),(* tng n

Figure 4-9).

Figure 4-9 – Demostration of straight line travel from start (origin) to end (destination)

 Search is computationally expensive, as it generally exponential in the depth of

the search in both space and time. A perfect heuristic would change the running time to

be linear, but perfect heuristics are difficult to come by. We can speed up the A*

algorithm and reduce the size of the search problem to the size of the state space by

eliminating loops from the search tree. In other words, we want to avoid considering the

same actions from a given state multiple times and also stop pursuing multiple action

39

sequences that lead to the same state. The nodes that have already been expanded are

sometimes called the closed list or the expanded list. The nodes still on the queue are

called the open list, visited list, or the fringe.

 Changing the search algorithm to only expand nodes that have not been expanded

before changes the optimality condition on the search heuristic. The heuristic must also

be consistent, which means it must obey that triangle inequality.

),(),(),(tnhnmgtmh +≤ (4-10)

for an intermediary node n . Fortunately, admissible heuristics that are not also

consistent appear to be somewhat rare, and the straight line distance heuristic is both

admissible and consistent.

 Keeping the entire search tree in memory is expensive but feasible for reasonably

sized local path planning problems. We can reduce the space cost by only keeping in

memory one node per state and then also checking whether a node to be put on the

queue represents a state that has been put on the queue before. If node representing the

same state has already been put on the queue is less than the cost of the new node, then

the new node need not be put on the queue as well. Otherwise the cost of the node in

memory should be updated with the smaller cost, and the new node should be put on the

queue and the old node should be taken off. Removing the old node may not be

practical depending on the priority queue implementation, but leaving it on the queue

does not affect the order of node expansion so we do not bother with this step in our

implementation.

Figure 4-10, shows the implementation of the A* search algorithm with the obstacles

located along the way.

40

Figure 4-10 – Demostration of obstacle avoidance in A* path planning; grid in blue is the optimal path

In A* algorithm, heuristic function; is a constant that will affect the estimated

distance from the current position to the goal destination. A heuristic function is used to

create an estimate of how long it will take to reach the goal state. The best estimate is

generally the one which gives the shorter path with smallest terrain cost.

Formula is the equation used to calculate the heuristic. Different formulas will

give different results: some will be faster, others slower and the end may vary. The

formula to be used depends strongly on the A* algorithm's use.

When A* is finding the path, sometimes a “tie breaker” is used since the

algorithm may find many possible choices for the same cost and destination. The tie

breaker setting tells the algorithm that when it has multiple choices to research, instead

it should keep going. As it goes, the changing costs can be used in a second formula to

41

determine the “best guess” to follow. Usually, this formula is incrementing the heuristic

from the current position to the goal, multiplied by a constant factor.

 Obviously, this requires each of the paths to be searched to the very end to

determine which path possesses the deepest node; and this takes more time.

Consequently, A* is frequently implemented with various ‘tie-breaking’ heuristics. A

different way to break ties is to prefer paths that are along the straight line from the

starting point to the goal: This urges for computation of the vector cross-product

between the start to goal vector and the current point to goal vector. When these vectors

don't line up, the cross product will be larger. The result of such computation will give

some slight preference to a path that lies along the straight line path from the start to the

goal when there are no obstacles.

If is matrix for node changes, ⎥
⎦

⎤
⎢
⎣

⎡
=

22

11

dydx
dydx

A

where dx1 = currentX = parentNode.X - end.X;

 dy1 = currentY = parentNode.Y - end.Y;

 dx2 = goalX = start.X - end.X;

 dy2 = goalY = start.Y - end.Y;

Then, in such cases the formula below is used.

001.0*)(det AabsHeuristicHeuristic += (4-11)

Best choice of heuristic, lead to obtaining the best choice of a path in motion planning

using A* algorithm. For further details on heuristics used in the motion planning using

A* algorithm please refer to [18].

4.5 Conclusion and Discussion

In this chapter, issues related to the motion planning algorithms of the

microassembly workstation were presented. However, in the following chapter we

provide results when we studied the feasibility for constructing 2D microparticles/

microstructure autonomously using image processing and motion planning algorithms

in the microassembly workstation.

42

5 EXPERIMENTS AND RESULTS

5.1 Introduction

In testing the reliability of the window application software for different

microassembly tasks, several experiments are implemented in different modes. These

experiments will be elaborated in the following sections. Firstly, commands for single

microassembly operations are realized by giving single command, and then allowing the

system to execute the command before a next microassembly command is given on the

window application. Then, motion planning algorithms are implemented to demonstrate

the ability to reduce human intervention by allowing several commands to take place

sequentially to achieve certain tasks. The operator chooses the motion planning

algorithm to be implemented then using the algorithm the path used to intelligently

manipulate the particle towards its destination is defined. Only in the artificial potential

field algorithm the operator has also to specify the particle to be manipulated and in the

A* algorithm operator has to give few specifications before the motion planning begins.

Experiments related to these two approaches and results will be shown in the

following sections. Evaluations will be made according to the results achieved by the

experiments and the chapter will be concluded with some discussion about the results of

the experiments.

For the realization of micromanipulation and microassembly tasks, it is necessary

to visualize and sense the environment. Position and orientation of microparticles with

respect to each other and the manipulation tool can be defined by using a vision system.

Since vision provides fast and contact less information extraction, it is suitable for

visualizing the microworld and providing position and orientation data for the

micromanipulation and microassembly tasks.

For the automated microassembly tasks, position and orientation information of

specific manipulation tools or micro parts must be extracted by means of vision system.

43

The information named as visual features, is used in the control loop of the

manipulation system. Thus, vision based control is attained.

However in the window application’s virtual space the mode of operation is a bit

different. Since our goal is to provide the motion planning for the realization of

micromanipulation and microassembly tasks, the software does random calculations for

the x and y coordinates of the particles each time the motion planning algorithm is

initialized. The application operates under the assumption that all the information about

the particles is correctly obtained from vision system. Therefore, the experiments given

in this thesis work are graphical simulations showing the path in which the

micromanipulators should follow in orienting and pushing the particle towards its

destination.

Figure 5-1 – Random Position of the particles in Virtual Space

Figure 5-1 shows the random distribution of the particles on the virtual space prior

the selection of planning algorithm (EDA or Potential Field Algorithm). For the

simulation of motion planning algorithm using A* the “grid search window” (see Figure

4-1) in the middle of the main form of our widow application is used for demonstrations

of the most optimal path. In the following sections we will cover the experimental

details for the single mode operations and motion planning algorithm while running the

window application software.

44

5.2 Commands for Single Operations of Microassembly

5.2.1 Definition

In the single operations for the microassembly, single command are given and

then allowing the system to execute the command before a next microassembly

command is given on the window application.

For initializing the application operator has to click the “play” button in green.

This initializes the main form for the motion planning algorithms. Contrary to that, in

closing the application operator has to click “File” and select “Exit” in the pull-down

menu, or simply click the “close” button on the upper right corner of the main form

window (see Figure 5-2(a)-(b) for elaborations).

(a) Initializing Manipulation Path (b) File-Exit or “close” terminates the application

Figure 5-2 – Experiment showing single mode commands

The “File” menu of the pull-down menu contains several commands such as

“Save Video” which saves the video of an activity taking place on the active window on

the screen. While the “Play Video” retrieves the video saved in the specified memory

location and plays the “avi.file” on the screen using “Windows Media” form. In

addition, “Print/Take Picture” menu captures snapshots of the activities taking place in

the main form window. Lastly, the “Exit” command closes the main form and exits the

application.

45

The “View” menu contains commands such as “Zoom”, “Resize” and “Full

Screen” which helps to resize and reshape structure of the main form window of the

window application. Also, “Tools” menu of the pull-down menu comprises of

commands such as: “Create Path” command for initializing the A* graph traversing

algorithm is found, along with “Slow/Fast” tool to change the speed of the path finding

algorithm, and “Resume” tool to continue the path finding algorithm when in the

“Pause” mode.

The “Extras” menu contains the “Particle Select” which shows the x and y

coordinates of all the particles located on the virtual workspace of the main form. While

“Particle Show” gives the x and y coordinates of the specific particle selected on the

virtual space; usually it also demonstrates the coordinates of the particle selected for

motion planning using potential field algorithm. In the “Extras” menu a shortcut to

initialize the artificial potential field algorithm is also located. Other commands such as

demos on how to run the application are yet to be implemented in the software in order

to increase human computer interaction functions.

5.2.2 Implementation and Results

EDA and PFA algorithms operating on the virtual space are initialized by drawing

random particles on the workspace. Therefore, when the user selects “Particle Select”

(Figure 5-4) from “Extra” menu tools of the main window a list of x and y coordinates

of all the particles located on the virtual space is given on the list box of the main form

of window application as shown in Figure 5-3 below. The “Action Control Commands”

contains the Path Planning; command used to initialize the virtual workspace form, so

that EDA and potential field oriented motion planning algorithm can be used to

determine path for manipulation of randomly distributed particles.

46

Figure 5-3 – Window showing “Particle Show” which gives the x and y coordinates of the clicked

particle and list box of the main form gives the list of all x and y coordinates of the random particles.

For the EDA each particle is intended to be moved to the closest target point in

the workspace. However, in order to guide the operator, in pushing a particle which is

obstructed by other particles on its trajectory, operator acts by simply clicking on

particle on the screen, then user has to acknowledge by clicking on the message box

which gives the x and y coordinates of the selected particle. Alternatively, when the

“Particle Show” from “Extras” tool command is selected a message box pops-up to give

x and y coordinates of the selected particle.

47

Figure 5-4 – “Particle Select” command shows x and y coordinates of all the random particle

5.3 Execution of Motion Planning Algorithms in Microassembly

5.3.1 Definition of the Task

In semi-autonomous manipulation, the system initialization includes the selection

of the particle and the desired destination point. Later, a line connecting the center point

of the selected particle and the destination particle is drawn. Then, step motion value for

pushing the particle and the selected point are calculated. Finally, the tip of the probe is

moved in steps towards the destination point in order to achieve manipulation. The steps

are repeated until the center of the selected particle coincides with the desired point.

 The most feasible trajectory for a particle to its target position by pushing is

simply a line denoting the closest path to the destination. In that context, the operator

should choose the suitable part to be pushed and the destination point considering the

issue that the semi-automated assembly procedure does not include motion planning so

48

that there exists nothing as an obstacle between the particle and the target point. In our

thesis work this feature is added as Euclidean distance planning algorithm in which the

particle are manipulated depending on their proximity to the destination point.

5.3.2 Microassembly Examples

EDA Results:

(a) Initializing Manipulation Path (b) First Particle’s Path

(c) Second Particle’s Path (d) ThirdSecond Particle’s Path

Figure 5-5 – Snapshots for Path Planning using EDA

Figure 5-5 (a) shows the pattern about to be assembled by using EDA motion

planning algorithm. Figure 5-5 (b)-(d) presents the consecutive motion planning path

for assembling each particle to formulate an “I” like pattern on the left corner of the

49

virtual workspace. In addition, Figure 5-6, presents a complete path plan for different

set of random particles on the virtual workspace.

More results:

Figure 5-6 – Pattern Assembly using EDA

PFA Results:

In [16], several semi-automated tasks are generated and implemented with the

microassembly workstation. One of the main problems for the realization of the

experiments is to find suitable microparticles to be used in the microassembly

operations; in our virtual experiments the problem is solved depending on the scenario

(distribution of particles on the workspace). If the particles to be manipulated have

different physical properties artificial potential field method is used to determine the

path for manipulation of particles from their original locations to their defined

destinations. To initialize the algorithm the operator has to select the particle to be

manipulated out of crowd of randomly distributed particles on the virtual workspace.

Then, manipulation is conducted as shown in Figure 5-7. In that experiment, operator

selects the particle, while the destination point of the particle is provided (known). This

selection is made by the operator for every particle’s path planning. Then, after particle

selection is done, user has to acknowledge the coordinates of the particle given on the

message box on the screen and the rest of operations are executed automatically.

50

Figure 5-7 – Potential Field oriented motion planning algorithm

Figure 5-7 presents results for the object avoidance algorithm using potential field

built around obstacle to guarantee that the particle to be manipulated doesn’t collide

with other particles on the workspace.

51

A* Results:

In A*, the main features necessary to perform motion planning for the manipulation

tasks are pre-programmed and the operator simply has to define some of the parameters

necessary for the assembly. Figure 5-8 shows results of A* motion planning algorithm

for a path along the corridor.

Figure 5-8 – A* algorithm motion planning to demonstrate the optimal path on the corridor

 For more results of A* algorithm in different scenarios see (Figure 5-9). The

results in Figure 5-9 only show the grid search window; A* algorithm is functional for

wall avoidance, optimal path planning around obstacles, corridor following, and also it

returns “no path” when path is not found during path planning process.

52

Figure 5-9 – More results of A* algorithm on different scenarios using different heuristics

5.4 Results and Discussion

The challenges of microassembly workstation regarding the manipulation

operation like obtaining depth information, sticking problems, effects of forces and

53

many issues concerning sample preparation still hinder full operation of the motion

algorithm on the microassembly workstation setup. These issues should be carefully

dealt with for a successful automated assembly operation.

 Other issues involved in the plan execution is the process of taking a motion plan

from the motion planning model and then sending the correct control to the

manipulators and stages so that they perform a desired task. The plan execution unit

must execute the planned actions as accurately as possible and also deal with failure

conditions. Issues that may arise during such process are such as latency; if the latency

is too large the manipulators may drift from intended path or yield unexpected results,

obstructed path; in which even if motion planning finds a valid path to the goal this may

become obstructed due to previous unobserved obstacles becoming visible, new goal

location; user may change the location of the goal when this happens the system must

abandon any current execution plans and proceed towards the new goal location, and

finally lost target; in which particle may have to move away from the goal to avoid

obstacle(s) this may cause the particle to move outside the virtual space boundaries or

cause the goal to go out of range [13].

54

6 CONCLUSION

In this work, first the introduction of an open-architecture and reconfigurable

microassembly workstation for efficient and reliable assembly of micromachined parts

was presented. Then, software description of the microassembly workstation was

presented. Furthermore, in order to reduce human intervention in the precision

manipulation, we developed and implemented several motion planning algorithms

which could be rigorously applied in our setup. It should be noted that prior the

introduction of the motion planning algorithms, the system lacked the ability to avoid

obstacles, especially in the case semi-autonomous manipulation case.

The realized microassembly workstation represents an important step towards the

automatic, autonomous assembly of micrometer-sized parts by means of sensory

feedback. With the integration of motion planning algorithms, the system will have the

ability to function in an automated mode where human intervention will be greatly

reduced.

This thesis also presents how the window application was prepared using object

oriented programming environment set of commands to achieve several tasks, along

with motion planning algorithms for autonomous manipulation of objects in virtual

space. Experiments regarding the implementation of conventional euclidean algorithm

were demonstrated; in this case the solution for planning problem is trivial since the

particle closest to the goal is the one which is pushed towards its destination.Then, the

application of artificial potential field control algorithm was implemented with

modifications in which the manipulator only reacts to obstacles in its proximity. Lastly,

application of motion planning algorithm A* was demonstrated with feature which

facilitate the object avoidance in manipulaton of objects from one point to another in the

virtual space. Since the objective is to reduce human intervention in the precision

autonomous manipulation, application of motion planning algorithms brings valuable

ingredient to the Microassembly Workstation setup. All in all, this type of work

55

platform can be seen as a step in using a standard platform in the manipulation of

micro-entities using micro-scale manipulation tools. Results of this thesis have been

submitted as conference paper [20].

Future work will include implementing the features of the work platform obtained

from this thesis to the Microassembly Workstation (MAW) setup. Also, the assembly

process proposed in this thesis can be improved further by introducing autonomous

algorithm which can choose most optimal algorithm. The autonomous algorithm for

motion planning will further reduce human intervention observed in the semi-automated

microassembly processes.

56

 REFERENCES

[1] C. Belta, “Symbolic Approaches for Robot Motion Planning and Control,” In

Proc. Of the IEEE Int. Conf. on Robotics and Automation, Rome, Italy 2007

[2] J. H. Makaliwe and A. A. G. Requicha, “Automatic Planning of Nanoparticle

Assembly Tasks,” Proc. of the IEEE Int. Symposium on Assembly and Task

Planning, pp. 288-293, Fukuoka, Japan, May 2001.

[3] C. Pawashe, and M. Sitti, “Two-Dimensional Vision Based Autonomous

Microparticle Manipulation using Nanoprobe,” Journal of Micromechatronics,

September 2006.

[4] F.Markus Jönsson, “An optimal pathfinder for vehicles in real-world digital

terrain maps,” Master’s Thesis, Royal Institute of Science Stockholm, Sweden,

1997.

[5] M. Kloetzer and C. Belta, “Managing non-determinism in symbolic robot motion

planning and control,” in Proc. Of the IEEE Int. Conf. on Robotics and

Automation, Rome, Italy 2007

[6] A. Patel, “Amit’s Game Programming Site,” http://www-cs-

students.stanford.edu/~amitp/gameprog.html, Accessed May, 2007

[7] N. Sabanovic, “Planning of One Part Movement,” Project EACF05_00268,

Istanbul, Turkey, December 2005.

[8] V. I. Utkin, J. Guldner, J.Shi – Sliding Mode Control in Electromechanical

Systems CRC Press, 1999.

[9] M. Bastan, “Visual Servoing of Mobile Robots Using Potential Fields,” Masters

Thesis, Sabanci University, Istanbul, 2004.

[10] M. Sitti, “Survey of Nanomanipulation Systems,” IEEE Nanotechnology

Conference, vol., no.pp.75-80, Nov. 2001

57

http://www-cs-students.stanford.edu/%7Eamitp/gameprog.html
http://www-cs-students.stanford.edu/%7Eamitp/gameprog.html

[11] A. Menciassi, A. Eisinberg, I. Izzo, P. Dario, “From "macro" to "micro"

manipulation: models and experiments,” Mechatronics, IEEE/ASME Transaction ,

vol.9, no.2pp. 311- 320, June 2004

[12] M. Sitti, and H. Hashimoto, “Controlled pushing of nanoparticles: modeling and

experiments,” Mechatronics, IEEE/ASME Transactions on , vol.5, no.2pp.199-

211, Jun 2000

[13] D. Roth, “Vision Based Robot Navigation,” Masters Thesis, Massachusetts

Institute of Technology, Cambridge, USA, 2004.

[14] K. Lynch, “Nonprehensile Robotic Manipulation: Controlability and Planning,”

PhD Thesis, The Robotic Institute, Carnegie Mellon University, USA, 1996.

[15] “A* algorithm implementation in C#,” (updated May 2006),

www.codeproject.com , Accessed June, 2007

[16] E.D. Kunt, “Design and Realization of a Microassembly Workstation,” Masters

Thesis, Sabancı University, Istanbul, Turkey, 2006.

[17] J. Kuffner, S. Kagami, K.Nishiwaki, M. Inaba, and H. Inoue, “Online Footstep

Planning for Humanoid Robots”, IEEE Int’l Conf. On Robotics and Automation

(ICRA ‘2003), September, 2003.

[18] P. Lester, (updated July, 2005) “A* Pathfinding for Beginners,”

http://www.policyalmanac.org/games/aStarTutorial.htm, Accessed June, 2007

[19] A. Malima, E. Demirok, and A. Sabanovic, “Experimental Investigation of High

Accuracy Motion Controllers”, TOK07 (Turkish Automatic Control), Istanbul,

Turkey. (in Turkish)

[20] A. Malima, and A. Sabanovic, “Motion Planning and Assembly for

Microassembly Workstation,” Intelligent and Systems Control, ‘ISC’ 2007

Cambridge, USA.

58

http://www.codeproject.com/

	1 INTRODUCTION
	1.1 Introduction and Motivation
	1.2 Background and Objectives
	1.3 Thesis Outline
	2 MICROASSEMBLY WORKSTATION
	2.1 Types of Microassembly
	2.1.1 Manual microassembly
	2.1.2 Tele – operated Microassembly
	2.1.3 Automated Microassembly
	2.1.4 The Subject of this Research

	2.2 System of Microparts Manipulation Workstation
	2.2.1 Micromanipulation System
	2.2.2 Control System
	2.2.3 Vision System
	2.2.4 Manipulation Tools

	2.3 Microassembly Workstation Operation
	2.3.1 Physics of Micromanipulation
	2.3.2 Discussion on Mechanics of Micromanipulation

	3 SOFTWARE FOR MICROASSEMBLY WORKSTATION
	3.1 Introduction
	3.2 Software Architecture
	3.3 Structure of the Software
	3.4 Operation of the Software
	3.5 Conclusion and Discussion

	4 MOTION PLANNING ALGORITHMS
	4.1 Introduction
	4.2 Euclidean Distance Algorithm
	4.3 Artificial Potential Field Algorithm
	4.4 Graph Traversing A* Algorithm
	4.5 Conclusion and Discussion

	5 EXPERIMENTS AND RESULTS
	5.1 Introduction
	5.2 Commands for Single Operations of Microassembly
	5.2.1 Definition
	5.2.2 Implementation and Results

	5.3 Execution of Motion Planning Algorithms in Microassembly
	5.3.1 Definition of the Task
	5.3.2 Microassembly Examples

	5.4 Results and Discussion

	6 CONCLUSION
	 REFERENCES

