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ABSTRACT

Rapid development of Internet has greatly increased the need for creation, storage and
distribution of digital multimedia products. This raises, however, security concerns due
to digital multimedia products high vulnerability to the illegal copying, distribution,
manipulation, and other attacks. To remedy these security issues, in literature, the
Digital Watermarking has been developed where the information to be hidden is carried
by the watermark signal that is transmitted over the host signal.

The capacity of a watermarking system is suffered from much degradation such as
channel distortion, filtering, JPEG compression, cropping etc. In addition to those
degradations, the host signal interference may even limit the capacity of some systems
called blind watermarking systems where host signal is not available to the end-users.

To mitigate these sources of errors and increase the capacity of the system, in this
thesis, we develop robust detection methods. For this purpose, we devise block
normalization based methods for blind watermarking system in Discrete Cosine
Transform domain. We also propose the channel reliability estimation based detector
for both blind quantization based watermarking system in Discrete Wavelet Transform
domain and non-blind watermarking system in Discrete Cosine Transform domain.
Simulation results demonstrate that the developed detection methods improve the
capacity, bit error rate performance and the robustness of the systems as compared to
existing methods against various distortions and attacks.
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SAYISAL DAMGALAMA ICIN DAYANIKLI GOZU KAPALI VE GOZU
KAPALI OLMAYAN SEZIMLEME

Cagatay KARABAT
EECS, Yiiksek Lisans Tezi, 2007
Tez Danismani: Mehmet KESKINOZ

Anahtar Kelimeler: Damgalama, Sezimleme, Dayanikli

OZET

Internetin hizla gelismesi, sayisal ¢ogul ortam iiriinlerinin iiretilmesi, saklanmasi ve
dagitilmasina olan ihtiyaci biiylik 6l¢iide arttirmistir. Bunun yani sira, bu artis sayisal
cogul ortam irilinlerinin yasal olmayan kopyalamaya, dagitim, degistirme ve diger
saldirilardan etkilenmesi sebebiyle glivenlik sorunlarini da artirmistir. Literatiirde, bu
giivenlik sorunlarint ¢ézmek i¢in, saklanacak olan bilginin damga isareti vasitasiyla
tasiyici isaret lizerinden gonderildigi Sayisal Damgalama gelistirilmistir.

Damgalama sisteminin kapasitesi kanal bozunumu, siizgecleme, JPEG sikistirmasi ve
kirpma gibi bir¢ok bozulumdan etkilenmektedir. Bu bozulumlara ek olarak, tasiyici
isaret girigimi, tasiyici isaretin son kullanicida mevcut olmadig gozii kapali damgalama
sistemleri ad1 verilen sistemlerde kapasiteyi sinirlayabilir.

Bu tezde, bu tip hata kaynaklarini 6nlemek ve sistemin kapasitesini arttirmak igin
giirbiiz sezimleme yontemleri gelistirdik. Bu amagla, ayrik kosiiniis doniisiimii alaninda
g0zii kapali damgalama sistemleri i¢in blok normalize etme yontemine dayali yontemler
gelistirdik. Ayrica, hem ayrik dalgacik doniisiimii alaninda nicemleme tabanli gozii
kapali damgalama sistemi i¢in hem de ayrik kosiiniis doniisiimii alaninda gozi kapali
olmayan damgalama sistemi i¢in kanal gilivenirligi kestirimlerine dayali sezici onerdik.
Benzetim sonuglari, gelistirilen sezimleme yOntemlerinin, ¢esitli bozunumlar ve
saldirilar altinda varolan yontemlerle karsilastirildiginda kapasiteyi, bit hata orani
basarimlarini ve gilirbiizliigl arttirdigini gostermektedir.
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1. INTRODUCTION

The developments in digital technology during the recent years resulted in
explosion in the use of digital media products (image, audio and video). Parallel to the
deployment of the digital infrastucture and the growth of the internet, the producers are
making investments to deliver digital audio, image and video information to its
consumers [1]. The audio, image and video industries are distributing their products in
digital form. This trend will further be increased with the increasing availability of
various advanced multimedia broadcasting services such as pay-per-view, video-on-
demand, tele-marketing, electronic commerce, electronic newspapers, digital libraries
and web magazines [2]. The problem arises at the same time that the media stored in
digital form are vulnerable in a number of ways. First, digital media may be simply
copied and redistributed, either legally or illegally, at low cost and with no loss of
information. In addition, today's fast computers allow digital media to be easily
manipulated, so it is possible to incorporate portions of a digital signal into someone's
work without regard for copyright restrictions placed upon the work. For these reasons,
the researchers have started looking for techniques that could be used for copy control,
proof of ownership, fingerprinting of digital media content and enable copyright

enforcement.

Cryptographic techniques are used to overcome these security problems. The
cryptography can be defined as the processing of information into an unintelligible
(encrypted) form for the purposes of secure transmission. However, these techniques are
not sufficient for secure transmission, since the data is not protected as soon as it is used
after decryption [3]. While cryptography is about protecting the content of messages,
steganography is about concealing their existence. Steganography is a term derived
from the Greek words steganos, which means covered, and graphia, which means
writing [4]. It is the science of writing hidden messages in such a way that no one apart

from the intended recipient knows of the existence of the message. Examples include



sending a message to a spy by marking certain letters in a newspaper using invisible
ink, and adding sub-perceptible echo at certain places in an audio recording. As the
purpose of steganography is having a covert communication between two parties whose
existence is unknown to a possible attacker, a successful attack consists in detecting the
existence of this communication. Watermarking, as opposed to steganography, the
existing of the data can be known by the attacker, even in visible watermarking
application the embedded watermark can be seen by anyone. In addition, the embedded
data is related to the host signal in the watermarking systems; however, the embedded
data may not be related to the host signal in the steganography applications. The other
difference is that the steganography incorporates with the cryptography. The digital
watermarking addresses the growing concerns of the security problems with advanced
signal processing strategies. Actually, a digital watermark is an imperceptible, robust,
secure message embedded into the multimedia content. The watermark identifies at
least one of the media owners, the distributor of the media, the recipient of the media,
the origin or status of the data or the transaction dates [5]. It is hidden in the host media
in such a way that it is not noticed. The imperceptibility constraint can be achieved by
taking into account the properties of the human visual system (HVS) or human audio

system (HAS) which makes the system more robust against most types of attacks.

The idea of watermarking has been arised to remedy these concerns. The digital
image watermarking is a relatively new discipline, the term only becoming widely
known in the early nineties, having first been coined in Komatsu and Tominaga's 1988
paper [6]. During the early nineties, research output was as little as five to ten papers
per year, until 1995 when interest in the area increased greatly. Since then, research
papers have approximately doubled in number each year [7]. The International Society
for Optical Engineering (SPIE) began devoting a specific conference to “Security and

Watermarking of Digital Contents” in 1999.

The commercial exploitation of digital watermarking has started with few notable
commercial applications until the formation of Digimarc Corporation in 1995. Digimarc
has released its first digital image watermarking product in 1996, and now has revenues
in excess of ninety million dollars per year and is backed by large industry players such
as Adobe, NEC and Sony [8]. Digimarc currently provides watermarking solutions for

use in the copyright protection models of many large stock photography firms.



1.1.  Digital Watermarking Systems

The watermarking process can be modelled as a secure communication system as
shown in Figure 1.1, in which the watermark information is transmitted over the
watermark channels within the host signal. These systems are designed for the
applications where security of the transmitted information is an additional requirement
along with very low bit error probability. The secure communication systems use a pair
of secret keys (encryption key and decryption key) at channel encoder to encrypt the
transmitted sequence and to decrypt received sequence at the channel decoder
respectively. These keys are also used in the watermarking system in the watermark
generation and embedding stages that the watermark signal is generated and embedded
into the host image. These stages resemble the encoding and modulation stages in the
secure communication channel model. In addition, the watermark extraction stage is
similar to the demodulation and decoding process, in which the upon reception of a

noisy signal the detector forms an estimate of the transmitted data.

An important issue concerning with the digital watermarking systems is the
detection techniques. The detectors requiring the original image for watermark detection,
such as used in [2], are called non-blind detectors. The other types of watermark
detectors are called blind detectors, i.e. used in [9] - [11] which can detect the
watermark bits without exploit the original image features. Especially, in case of attacks
or strong channel distortions such as filtering, lossy compression, rotation, scaling,
cropping etc., or the host signal interference in the spread spectrum watermarking
systems, the performance of the detection schemes is very critical for the digital
watermarking system for properly recovering the hiding information. In this thesis, we
aim at designing watermark detection methods to make the digital watermarking system

more robust against pre-mentioned channel distortions and attacks.
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Figure 1.1: Secure Communication Channel Model

In rest of this section, the main processes of a digital watermarking system such as
embedding and extraction processes are presented, in an attempt to capture the various
systems and configurations that have been presented in the literature. The Figure 1.2
shows a block diagram of a typical watermark embedding system. In its simplest form,
such a system has two inputs, the host signal and the watermark data, and a single
output, the watermarked version of the signal. This process may be represented by two
blocks: an encoder and an embedding function. In the former, watermark data is
converted into a form suitable to embed into the host signal. Generally, the watermark
signal is converted to the sequence of bits from the set {1,-1} or {0,1}. In the latter, the
encoded watermark is embedded into the host signal by using various methods such as
additive, additive-multiplicative, and quantization method etc. The Figure 1.3 illustrates
a block diagram of a typical watermark extraction process. It is clear from the
illustration that the extraction procedure is almost an inverse of the embedding process.
Depending on the intended application, two additional stages may be performed during
the embedding and extraction process such as perceptual analysis and key generation.

These stages are used in the spread spectrum based watermarking system which is



detailly explained in Chapter 2. In addition, note that the host signal is an optional input
to the extraction system. The presence or absence of this signal indicates the difference
between a non-blind or blind watermarking system respectively. In this thesis, we
employ blind watermarking system in Chapter 2 and 3, and non-blind watermarking
system in Chapter 4. In the following chapters, the watermark embedding and extraction
processes are described in greater detail. The watermarking systems can be named
according their properties such as blind, non-blind, imperceptible, etc. as we mentioned
in this section. Actually, the classification of watermarking systems is very important.
In the next section, we describe criterions used to classify the various watermarking

systems.
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Figure 1.2: Typical Digital Watermark Embedding System. Dashed Lines
Indicates Optional Blocks.
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1.2.  Classification of Digital Watermarking Techniques

This section provides a general classification of existing digital watermarking

systems, as shown in the Figure 1.4, based on the following five criteria:

1) Host Signal Type (images, video, audio, and text),

2) Based on Applications (robust, fragile, and semi-fragile),
3) Perceptibility (visible and invisible),

4) Embedding Domain (spatial and transform),

5) Availability of Host Signal at the Receiver (non-blind and blind).

1.2.1. Classification Based on Host Media Type

The most of the digital watermarking research is focused on digital images
compared with the other host media types i.e. video, audio, image and text. This is due
to the fact that the performance evaluation of a digital watermarking system for digital

images is relatively easier than digital audio and video; because the performance



evaluation of a watermark embedding scheme for audio or video generally requires

subjective testing. Digital watermarking techniques based on host signal type can be

divided into four sub-groups [1]-[12]:

1. Digital Watermarking in Images
2. Digital Watermarking in Video
3. Digital Watermarking in Audio
4. Digital Watermarking in Text

Digital Watermarking Systems
Based On Based On Based On | BasedOn Based On
HostMedia [~ | Application Perceptibility |[~ | Embedding Availability of
Type Domain Host Media at
the Receiver
Image Robust Imperceptible Spatial
Watermarking Watermarking Watermarking Domain
Embedding Blind
Video Semi-Fragile Visible Watermarking
Watermarking Watermarking Watermarking Transform
Domain .
Embedding I\;Vb‘z'Bhniin
Audio Fragile atermarking
Watermarking Watermarking
Text
Watermarking

Figure 1.4 : General Classification of Digital Watermarking Systems




1.2.2. Classification Based on Digital Watermarking Applications

The performance based on robustness, capacity and fidelity of a digital
watermarking systems depend on the application of interest. For example, copyrights
protection applications require a robust watermarking [14], [15], where as content
verification applications need a fragile watermarking [7]. Similarly, fingerprinting needs
a semi-fragile watermarking [16] and [17]. Therefore, existing digital watermarking

systems can be classified into three sub-groups based on the application of interest:

1. Robust Digital Watermarking
2. Fragile Digital Watermarking
3. Semi-Fragile Digital Watermarking

1.2.3. Classification Based on Perceptibility

Existing digital watermarking systems can be divided into two main categories

based on the perceptibility (fidelity) of embedded watermark [7] and [18] that is,

1. Imperceptible Watermark Embedding
2. Visible Watermark Embedding

Imperceptible watermark embedding implies that embedded watermark is
invisible (in case of image, video, and text host media) and inaudible (for audio host
media). Imperceptible watermark embedding schemes are more common than the
visible watermark embedding schemes [19]. Imperceptible watermark embedding
schemes exploit the Human Visual System (HVS) and Human Audio System (HAS)
characteristics to ensure imperceptibility of the embedded watermark. Visible
watermark embedding schemes are generally used to imprint visible logo in digital

images or video.



1.24. Classification Based on Watermark Embedding Domain

Existing digital watermarking sytems can be classified into two major categories

based on embedding domain of the watermark, that is,

1. Digital Watermarking in Spatial/Time Domain

2. Digital Watermarking in Transform Domain

Least significant bit (LSB) and most significant bit (MSB) encoding are the most
common digital watermarking techniques of spatial domain digital watermarking
schemes [1]. The spatial domain digital watermarking systems were very popular
among the data hiding community. However, transform domain techniques, especially
DWT domain techniques, are more commonly used digital watermarking systems
nowadays due to their robustness of various channel distortions and attacks. Discrete
cosine transform (DCT), discrete wavelet transform (DWT), and discrete fourier
transform (DFT) are the most commonly used transforms for data embedding process.
The most of the DCT-based image digital watermarking systems commonly use 8x&
DCT block of image for host data transformation. Then, watermark is embedded by
modifying DCT-coefficients according to human visual system. In DWT-based digital
watermarking algorithms, the host data is first decomposed into subbands using DWT,
then for data embedding discrete wavelet coefficients in the selected subbands are
modified based on human perceptual model. DFT-based algorithms are also common
for audio digital watermarking schemes. The robust digital watermarking systems
should be robust against the common channel distortions such as AWGN, lossy

compression or attacks such cropping, rotation, mean and median filtering etc.

1.2.5. Classification Based on Availability of Host Signal at the
Receiver

The digital watermarking systems based on the host signal availability at receiver

side can be classified in following categories,



1. Non-Blind (Private) Digital Watermarking System
2. Blind Digital (Public) Watermarking System

The digital watermarking systems, which have non-blind watermark detection
scheme, require that the original signal be present at the receiver side in order to extract
watermark information. In contrast, a digital watermarking system which employs blind
watermark detector, does not require access to the original signal in order to decode the
watermark. A blind system, for example, would typically be used to send watermarks to
the end-users of a host signal, whereas a non-blind watermarking system would
intuitively be more secure [20]. The non-blind watermarking may not be practical for
applications where a large number or volume of host signals are generated, or for
applications where watermark data is intended for a large number of end-users to
decode. Examples of such applications are high definition digital television (HDTV) or
broadcast digital radio. In these cases, it is not feasible to transmit both the original and
watermarked versions of the host signal. However, non-blind watermarking may be
suitable for other applications, such as on-line stock photography shops, where a non-
blind library of digital media is maintained by the business, and watermarked versions
sold to consumers. In addition, these systems are suitable for used in the digital
watermarking applications like content authentication, ownership verification, etc. The
blind and non-blind watermarking applications are explained in the following section in

greater detail.

1.3.  Applications of Digital Watermarking

Watermarking can be used in a wide variety of applications. The application area
is another criterion to categorize the digital watermarking systems. In this section, we
examine six actual digital watermarking applications. The general watermarking
applications include ownership protection, content authentication and tamper detection,
fingerprinting or labelling, copy & access control, hidden annotation and broadcast

monitoring as explained in the following sub-sections detailly.
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1.3.1. Ownership Protection

The robust digital watermarking systems can be used for ownership protection of
the multimedia data. Digital watermarking systems used for ownership protection is
expected to be robust against strong attacks and channel distortions. In case of dispute
over ownership of the host data, embedded information can be used as a proof to
identify the true owner of the host data. The digital watermarking systems intended for
ownership protection required to have low probability of error and false alarm rate. In
general, digital watermarking systems are used for ownership protection requires

relatively lower embedding capacity [7].

1.3.2. Content Authentication and Tampering Detection

In content authentication and tamper detection applications, robustness and
undetectability are not the main concerns. In general, fragile digital watermarking
systems can be used for such applications. A set of secondary data (watermark) is
embedded into the host data beforehand, and later is used to determine whether the host
data is tampered or not. The robustness against removing the watermark or making it
undetectable is not a concern [7], [21] . However, forging a valid authentication
watermark in an unauthorized or tampered data source must be prevented. In practical
applications, it is also desirable to locate the tampering and to distinguish some changes,
such as the non-content change is made by lossy compression, from some other changes
such as content tampering. The embedding capacity has to be high in general to
accommodate these needs. The detection should be performed without the original
unwatermarked copy because either this original data is unavailable or its integrity has
not been established yet. Hence, the blind watermark detection schemes are used in

these systems generally.
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1.3.3. Fingerprinting or Labeling

The owner or distributor of multimedia contents uses fingerprinting or labelling to
trace the illegal copies. The watermark in this application is used to trace the originator
or recipients of a particular copy of multimedia source. For such applications, content
owner or distributor embed a unique bit sequence such as fingerprint, label, or serial
number in each copy of the distributed data before distributing to each customer. Even
if a copy is made illegally, the source can be easily tracked since each original copy had
a unique bit sequence embedded into it. Although these systems do not require high
embedding capacity in general, they should be robust against intentional and
unintentional attacks, more specifically collusion attacks where colluders combine
several copies with the same content but different fingerprints to remove or attenuate
the original fingerprints [16], [17]. Also, it does require robustness against active
adversary attacks. Actually, in these applications, digital watermarking systems should

be semi-fragile.

1.3.4. Copy Control & Access Control

Embedded watermark in the host multimedia data can be used to control the
copying device for unauthorized copy prevention [7], or can be used in access control
applications. For this purpose, a watermark detector is generally integrated in the
recording or playback system, such as, DVD copy control scheme proposed in [24]. For
such applications, watermarking systems should be robust against all channel distortions
and attacks especailly removal type attacks. Moreover, digital watermarking systems
designed for copy control intend should use a blind watermark detection scheme and

generally requires low data embedding capacity.

1.3.5. Hidden Annotation

The embedded watermark in this application is expected to convey as many bits

as possible without the use of original unmarked copy in detection. Therefore, in these
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applications, the digital watermarking system should use blind watermark detection
scheme [7] . While the robustness against intentional attack is not required, a certain
degree of robustness against common processing like lossy compression may be
desired. For example; the names of the patients can be printed on the X-ray reports and
MRI scans using the techniques of visible digital watermarking systems. The medical
reports play a very important role in the treatment offered to the patient. If there is a mix

up in the reports of two patients this could lead to a disaster.

1.3.6. Broadcast Monitoring

A watermark is embedded into data, for example, commercials or copyrighted
materials [25], to allow automatic monitoring of the data in the broadcasting channels.
For example, a commercial advertisement may be watermarked by putting a unique
watermark in each video or sound clip prior to broadcast. Automated monitoring
systems can then receive broadcasts and check for these watermarks, identifying when
and where each clip appears. This proves very helpful for the advertisers as they
actually pay for only the number of times the advertisement was actually relayed. For
such applications digital watermarking system should be robust against channel
distortions and attacks and requires a blind detection scheme. Furthermore, such

applications require low watermark embedding capacity.

1.4. Requirements for Digital Watermarking Systems

It is important to define the requirements of a digital watermarking system
because they can be used to compare different systems. The importance of each
property depends on the requirements of the application. However, importance of each
property depends on the type of the application and the role of data embedding in the
application. For example, if we are evaluating the performance of an audio
watermarking system for copy control application, we may need to check the robustness
of short time energy ratio that adversary might use for attack. However, such robustness

might be irrelevant for broadcast monitoring applications. Therefore, the performance
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of any watermarking system should be evaluated based on the underlying application.
The most three important requirements of the digital watermarking systems are
robustness, imperceptibility and the hiding capacity. These properties are detailly

explained in the following sub-sections.

1.4.1. Robustness

The one of the important requirements for the digital watermarking systems is
the robustness. Once the watermark is embedded into a host signal, distortions and
attacks degradate watermarked signal before, during, and after distribution across the
communication channel. In general, a digital watermarking system is supposed to be
robust against common data manipulations, such as lossy compression, digital-to-analog
conversion, rescaling, requantization, resampling, low-pass filtering, median filtering
and data format conversion etc. It is also suppose to robust against active adversary
attacks, such as noise and collusion attacks etc. The robustness measures the ability of
embedded watermark to withstand against intentional and unintentional attacks.
Unintentional attacks generally include common data processing operations i.e.
compression, digital-to-analog conversion, resampling, requantization etc, where as,
intentional attacks cover a broad range of degradations [21]-[23], for example, noise
addition, scaling, rotation (for image and video watermarking schemes), cropping, low-

pass filtering, high-pass filtering, mean and median filtering etc.

1.4.2. Imperceptibility

The imperceptibility is another important property of all perceptual based digital
watermarking systems [7]. To meet this constraint, the perceptual distortion introduced
by the watermark is kept below the threshold of human visual system (HVS) for video
and image watermarking systems and human auditory system (HAS) for audio
watermarking systems. This means that the perceived “quality” of the host signal should
not be distorted by the presence of the watermark. Ideally, a typical user should not be

able to differentiate between watermarked and unwatermarked signals. There are two
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reasons why it is important to ensure that the watermarked signal is imperceptible. First
of all, the presence or absence of a watermark should not detract from the primary
purpose of the host signal, that of conveying high-quality audio or visual information. In
addition, perceptible distortion may indicate the presence of a watermark, and perhaps
its precise location within a host signal. This knowledge may be used by a malicious

party to distort, replace, or remove the watermark data.

1.4.3. Hiding Capacity

The hiding capacity refers to the amount of information that a watermarking
system can successfully embed without introducing perceptual distortion. The need for
this property is application dependent, for example, a watermarking system designed for
copyright protection or copy control application does not require high data embedding
capacity because only a few bits of information are sufficient for this application.
Whereas, a data embedding scheme for broadcast monitoring applications requires to

embed relatively large amount of data.

1.5. Thesis Contributions

In this thesis, we try to develop robust watermark detection schemes for various
digital image watermarking systems. First, we address the blind detection methods that
are used in the spread spectrum based watermarking systems. They have the host image
interference problem. In the literature, the existing blind detectors for these systems
regard the host signal interference as a noise and employ statistical characterization of
the host image. These systems reduce the interference by developing optimal or sub-
optimal detectors in the maximum likelihood (ML) sense and by using long pseudo
random sequences. However, their performance is not satisfactory even in the absence
of the channel distortion and attack due to the interference. We propose the block
normalization method to reduce the host image interference. Then, we employ this
method in various types of watermark detectors such as correlation, covariance and ML

detectors based on Bayes tests with certain underlying distributions. Hence, we decrease
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the bit error rate (BER) of the recovered watermark by employing the proposed block
normalization method. For example, we approximately decrease the BER from 107 to
107 for the covariance detector by applying the proposed method when the insertion
strength is set to 0.4 and the watermark length is 256. In addition, the proposed method
approximately decreases the BER from 107 to 10 for the ML estimation based
detectors when the insertion strength is set to 0.4 and the watermark length is 256.
Moreover, we approximately 4 times increase the hiding capacity of the system, which

is very critical in most of the applications.

Then, we focus on the developing a new detection scheme for quantization based
watermarking system in DWT domain. The existing diversity and attack
characterization based detector (DACD) , simultaneously, uses the reference
watermarks to characterize the watermark channel, and the information watermarks to
transmit the hidden information. However, they assume that all the watermark estimates
are reliable. Hence, they do not eliminate the unreliable estimates deteriorating
performance of the system against severe degradations. We propose a new blind
detection method that is called channel reliability estimation based detector (CRED). In
the proposed scheme, first, the reliabilities of the watermark channels are estimated.
Then, channel parameters are found by using the first and second order statistics of the
reliabilities and reliable watermark channels are determined by the proposed threshold
method. Finally, the information watermark is recovered by using estimated information
watermarks from the reliable watermark channels. The use of communication theory
principles such as coefficient diversity, reference patterns and threshold broadens the
class of distortions for which the watermark is robust. The proposed CRED detector can
attain the target correlation coefficient at low SNRs. For example; when we set the
target correlation coefficient to 0,8 , the proposed CRED detector achieves 3 dB SNR
gain in comparison to the DACD detector. On the other hand, it achieves 9 dB SNR
gain in comparison to the MRD detector. Furthermore, if the receiver employs the
proposed detector, the transmitter can more aggressively compress the watermarked
signal with lower JPEG quality factor. Thus, it increases the amount of information to
be hided. For example, when we set the target correlation coefficient to 0.8; the
proposed detector decreases the JPEG quality factor from 56 to 46 in comparison to the
DACD detector. On the other hand, it decreases the quality factor from 91 to 46 in

comparison to the MRD detector.
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Finally, we employ the detectors, which are used in the quantization based
watermarking system, in the non-blind watermarking system in DCT domain. Our goal
is to both characterize the channel distortions and attacks by employing the proposed
channel reliability estimation based detector and compensate the effects of them by
using image restoration algorithms. The proposed channel reliability estimation based
detector decreases BER and increases correlation coefficient of the recovered
watermark. Hence, the proposed detector shows superior performance and demonstrates
robustness to broad class of pre-mentioned channel distortions and attacks. For
example; when we set the target correlation coefficient to 0,9 , the proposed CRED
detector achieves 3 dB SNR gain in comparison to the DACD detector. On the other
hand, it achieves 5 dB SNR gain in comparison to the MRD detector. In addition, when
we set the target correlation coefficient to 0.9; the proposed detector decreases the JPEG
quality factor from 17 to 14 in comparison to the DACD detector. On the other hand, it
decreases the quality factor from 22 to 14 in comparison to the MRD detector.
Furthermore, we apply the image restoration algorithms to the degradated watermarked
image in order to decrease the defects of the degradations and increase the detection
performance. We first apply Wiener filtering for restoring the image. In this case, when
we set the target BER to 10, the proposed detector achieves 4 dB SNR gain in
comparison to the DACD detector. On the other hand, it achieves 7 dB SNR gain in
comparison to the MRD detector. Then, we apply LR algorithm. . In that case, when we
set the target BER to 10™, the proposed detector achieves 3 dB SNR gain in comparison
to the DACD detector. It also achieves 6 dB SNR gain in comparison to the MRD
detector. Finally, we employ regularized filter. To evaluate the performance, we set the
target BER to 10, the proposed detector achieves 3 dB SNR gain in comparison to the
DACD detector. In addition, it achieves 7 dB SNR gain in comparison to the MRD
detector. We can conclude from the simulation results that the proposed CRED detector

achieves the maximum performance improvement.

1.6. Thesis Organization

The rest of the thesis is organized as follows: The Chapter 2 starts with the

introduction to the spread spectrum based watermarking systems in DCT domain. It
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presents the existing watermark detectors and the proposed block normalization method
for blind detection schemes for these systems. Finally, it presents the simulation results
and the conclusions. Chapter 3 explains the quantization based watermarking system in
DWT domain and addresses the basic detection problems of this system against various
degradations. Next, the existing detection methods and the proposed detection method
are explained. Finally, the performance of the detectors are tested and compared with
the simulation results at the last section of this chapter. The Chapter 4, first, explains the
non-blind digital watermarking system in DCT domain. We employ the watermark
detection methods explained in Chapter 3 and evaluate their performances in this non-
blind watermarking system against severe channel distortions and attacks. Finally, we
conclude our work in Chapter 5 with remarks and suggestion for possible research

directions.
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2. ROBUST BLIND DETECTION FOR DCT DOMAIN SPREAD
SPECTRUM WATERMARKING SYSTEM

In this chapter, first, we present the spread spectrum based digital watermarking
system in 8x8 block DCT domain in Section 2.1. We address the basic interference
problems of the blind detectors in these systems in Section 2.2. Then, we introduce the
watermark detection method used in these systems and the proposed detection methods
in Sections 2.3 and 2.4 respectively. Finally, we test and compare the performance of
the detectors with the simulation results and give conclusions in Sections 2.5 and 2.6

respectively.

2.1. Spread Spectrum Watermarking for Still Images

This section introduces the spread spectrum watermarking system in 8x8 block
DCT domain for still images. It covers the generic processes of the watermarking

system such as watermark embedding and extraction processes.

2.1.1. Watermark Embedding Process

In all the subsequent analysis, X[i, j] and Y[i, j] denote host and watermarked
image in spatial domain respectively. Also, x[u,v] and y[u,v] denote host and

watermarked image in DCT domain respectively.

For embedding process which are shown in detail in Figure 2.1 , we first

compute 8x8 block DCT of host image X[i, j]. Then, binary antipodal message
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sequence b =[b1,b2,...,bTJof length 7, , whose elements are from the set {+1}, is

randomly generated. Each message bit is repeated M times to obtain repetition-coded
message vector BC of length 7.=7, xM . In the spread-spectrum modulation stage, we
randomly generate a spread-spectrum sequence p, whose elements are from the set

{1} and length is T, using the security key K,. Then, we multiply repetition coded bit

sequence BC with the pseudo-random sequence p, to obtain the watermark sequence
w_. To achieve a trade-off between perceptual transparency and robustness, we select
and mark only 16 band-pass coefficients for each 8x§ DCT block, as illustrated in
Figure 2.2 . We use key K, to distribute w_ randomly over the all band-pass

coefficients obtained in the block DCT transformed image in order to increase the
confidentiality. The unmarked coefficients are filled with zeros, and consequently the

watermark mask wlu,v] of size NxN is generated in the DCT domain. During the

watermark embedding stage, we shape the watermarked coefficients according to the

human visual system (HVS) using the perceptual mask mj[u,v] which is derived and

explained in [5], [27]-[29]. We also introduce the perceptual mask in detail in Section

2.1.2. Finally, we embed the watermark in DCT domain as follow:
M, v] = [, v)(1+ g, vnfu, v]) @.1)

where @[u,v]=ym[u,v] is the insertion strength matrix, m[u,v] denotes the perceptual
mask, and y denotes the insertion coefficient. Hence, we adapt the watermark

embedding process adaptively according to the HVS by employing a different insertion
strength coefficient to each of the DCT coefficient to be marked.
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Figure 2.1: Watermark Embedding Process
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Figure 2.2: Watermarked Image Coefficients in 8x8 DCT Block

2.1.2. Perceptual Mask

We can embed a stronger watermark if we amplify the mark in the areas where it
is well hidden (such as textures in the images) and attenuate it in the areas where it is
perceptible (such as plain regions in the images). This process is referred as the

perceptual shaping. During the watermark embedding process, we shape the watermark
by employing the perceptual mask m[u,v] which is based on Watson’s Model [29].

The model uses the 8x8 block DCT transform. The goal is to guarantee the invisibility
of the alterations introduced by the watermark. We employ the Watson’s DCT-based
visual model as proposed in [5]. First, we estimate the visibility threshold 7 [ij] for
every [i,j] where i = 1,2,..,8 and j=1,2,...,8 , the DCT coefficients of each 8x& block

which can be approximated in logarithmic units by the following function.

Tmin (fi20 +-f;)2')2 2
logT[i,j] =log ’ J +K(10g\/fi,zo +f02 _logfmin)
(flzo + o, )2 —4(1-r) fiofo, J

2.2)

where f; and f, ; are the vertical and horizontal spatial frequencies of the DCT basis

functions respectively (in cycles/degree), T, is the minimum value of 7T [i, j]

associated with f,;, , K is constant value that determines the degree of the perceptual

mask. Also, 7 is a constant between 0 and 1 and may be different for each frequency

coefficient. Watson uses a value » =0.7 for all i and j. Then, we obtain T’ [i, Jj ] values
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of size 8x8 as shown in Table 2.1. Since this model is valid for only AC frequencies,

T[i, j] is re-arranged for every block by using:

Xoo )
T'[i, j]= T[i,j]()_(o’oj (2.3)

0,0
Where a, is a constant exponent controlling the degree of luminance masking, X, is
the DC coefficient for each block, X, 00 18 the average of the DC coefficients in §x8 DCT
blocks. Equation (2.2) and (2.3) contains parameters which are set to 7. =1.01,

K =1.728, f. . =3.68 cycles/degree, o, =0.649 and )?0’0 =1024 as suggested in [5].

min

Finally, the perceptual mask is obtained as follows:
mlu,v] =4(1+(2=1)8[1]) (14 (N2 -1)8[4]) 27 [1,.1,] (2.4)

where [ =n mod 8, , =n, mod 8, &[] is the Kronocker function and y <1 is the

scaling factor.

This mask ensures that the watermark will remain imperceptible to the human
eye; however, at the same time it will alter the pixel values as much as possible in order
to achieve maximum robustness. The small values in DCT sensitivity table shown in
Table 2.1 indicate that human eye is more sensitive to the changes in those coefficients.

Thus, we embed the watermark bits in those coefficients with power.

1,40 | 1,01 | 1,16 | 1,66 | 2,40 | 3,43 | 4,79 | 6,56
1,01 | 1,45 (1,32 [ 1,52 | 2,00 | 2,71 | 3,67 | 4,93
1,16 [ 1,32 2,24 [ 2,59 | 2,98 | 3,64 | 4,60 | 5,88
1,66 | 1,52 [ 2,59 | 3,77 | 4,55 | 8,71 | 6,28 | 7,60
2,40 | 2,00 | 2,98 | 4,55 | 6,15 | 7,46 | 8,71 | 10,17
3,43 12,71 3,64 530 | 7,46 | 9,62 | 11,58 | 13,51
4,79 3,67 | 4,60 | 6,28 | 8,71 | 11,58 | 14,50 | 17,29
6,56 14,93 | 5,88 7,60 10,17 | 13,51 | 17,29 | 21,15

Table 2.1 : 8x8 DCT Sensitivity Table
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2.1.3. Watermark Extraction Process

In the watermark extraction process, as shown in Figure 2.3, we compute 8x8
block DCT of the watermarked image. Since the host image is not available in the

watermark extraction process, we construct the perceptual mask, m[u,v], by using

watermarked image assuming that its perceptual analysis result is similar with that of
host image. Then, we extract the watermarked coefficients corresponding to each

watermark bit by wusing distribution key K, . The watermarked coefficients

corresponding to the " bit of the message sequence constitutes a vector

y, = [5@(1),5@(2), ..... )y, (M )] where i =1,2,..., T, .Therefore, all watermarked coefficients
can be put into a vector y :[yl,yz, ............ Y, } . At the repetition decoding stage,
security key K, is used to re-generate the spread-spectrum sequence p, of length T..
Then, the spread-spectrum sequence p, is divided into 7} consecutive M-length p_,

sequences corresponding to each coded bit. The embedded binary message bits are

recovered with the selected watermark detection scheme using y; and p_;.
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Figure 2.3: Watermark Extraction Process

2.2. The Problem Statement

The existing blind detection methods used in the spread spectrum based
watermarking systems perform poorly, particularly in terms of decoding error
probability due to the presence of the host signal interference at the receiver side. The
interference at the detector limits the detection performance of the spread spectrum
watermarking systems even in the absence of channel distortion and attack. In this case,
we can improve performance of the detectors for these systems by either rejecting or
minimizing the host signal interference. For complete rejection of the host signal
interference we should use a non-blind detection mechanism which is, however, not
feasible for many data hiding applications such as copy control, device control, etc.
Thus, we can think of minimizing the host signal interference and one possible way to
do this by applying pre-processing to the watermarked image which is the main idea of
our work. The main motivation of this chapter has been to design blind detection
schemes for spread spectrum based watermarking systems, which are capable of
cancelling host signal interference at the receiver side. Hence, we can improve decoding

as well as detection performance. These detectors are based on the proposed block
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normalization method. This method reduces host signal interference by using the local
statistics of each 8x§ discrete cosine transform (DCT) block of the watermarked signal.
We employ the proposed method in different types of existing watermark detectors such
as correlation; covariance and maximum likelihood (ML) based detectors with certain
underlying distributions. The simulation results demonstrate that the proposed block
normalization method considerably reduces the bit error rate of the existing correlation,

covariance and ML estimation based watermark detectors.

2.3. Existing Watermark Detection Mechanisms Used in Spread
Spectrum Watermarking Systems

The correlation based watermark detector is one of the oldest blind detection
methods in literature [5]. However, this method performs poorly since the watermarked
coefficients do not obey Gaussian statistics. Even if they were Gaussian, channel
distortions & host signal interference would make them non-Gaussian. We can easily
verify whether the totally 65536 watermarked DCT coefficients deviate from the
Gaussian distribution, by comparing its histogram as shown in Figure 2.4 with the
normal the probability-probability (P-P) plot as shown in Figure 2.5. The P-P plot is
employed to see whether a given set of data follows some specified distribution. The
“+” marks denote the empirical probability versus the data value for each point in the
sample. We use the 65536 watermarked coefficients as the data for the P-P plot. Since
the data deviates from the straight line, we can conclude that the watermarked DCT
coefficients do not follow Gaussian distribution and they are heavy-tailed. In order to
improve the correlation based detectors, the other methods are presented which takes
the statistical characteristics of the transform coefficients into account. The watermark
detection schemes for spread spectrum based watermarking systems employ statistical
characterization of the host signal to develop an optimal or near-optimal watermark
detector in the maximum likelihood (ML) sense [5], [10]. However, they can not reach
non-zero decoding error probability due to the host signal interference at the watermark

decoder even in the absence of attack and channel distortion.

In remaining part of this section, we introduce the existing watermark detection

schemes such as correlation, and covariance and ML based detectors used in the spread
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spectrum watermarking systems. Then, we address the limitations of these watermark

detectors due to the host image interference.

0.2 v T ' ' T
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U
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Figure 2.4: Histogram of the Watermarked Coefficients in DCT Domain
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2.3.1. Correlation Detector (CRD)

In the spread spectrum watermarking system, the watermarked coefficient vector

corresponding to the i bit of the message sequence can be expressed as follows:
¥,=%0(U+40w,) (2.5)

where O denotes the element-wise multiplication of two vectors, @ = yi. denotes the
insertion strength vector, U is a vector of size IxM whose elements are all ones,
W, = B(i)f)w is watermark sequence and p,; is the spread-spectrum sequence. Hence,

the correlation detector has the form:

b()=1, if (¥,.B..) >0}
_ (2.6)
b(i)=—1, if (|y.].B.,) <0
where "<,>" is the inner product operation.
|yl.|=‘il.@(ﬁ+¢fi0vﬁvc’i)‘=|ii|0(f}+?@Wc’i) 2.7)

since, 0< ¢3i(k) <1 for Vk.

%|0(p., OW,,) 2.8)

505, =[%|0B., +(d ol |0l |bo) 2.9)
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v.|Op., =|%|08., +[¢2 @Ii}l@ﬁjfw(i) (2.10)

Therefore, the correlation based watermark detector determines the i™ bit of the

embedded message as follows:

(CAREDIACTME
= 2% 0B, (k) +(Z¢2(k)|ii ()| ﬁ(k)jﬁ(i>=1,-+46<z‘) (2.11)

where ¢ is a positive power strength and /; is a constant value denoting the host image

interference for b(i).
2.3.2. Covariance Detector (CVD)

Due to the interference of the host image, spread-spectrum sequence p, and
watermarked image y[u,v] in DCT domain are not uncorrelated; a better solution is to

subtract the mean of y, and p,; before correlation. The detection rule for each of the

binary message bit f)(i), i=1,2,...,T,, has the form:

b=t it ((W]-sg)(Bes =25, )) 20

(2.12)
st {51 (o)) <o
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where My, denotes sample mean of the vector |§7l. , M denotes sample mean of

the vector p_;.

2.3.3. Block Coefficient Based Maximum Likelihood Detector
(BCMLD)

The distribution of DCT coefficients of the watermarked image can be modelled

by using zero-mean Generalized Gaussian distribution as defined in [5] as follows;
B
fX(x):Aexp(—|ax| ) (2.13)

where A4 and a are the functions of £ and the standard deviation o as follows,

a = L(Mj (2.14)
o \T(/p)

0

where I'(+) denotes the Gamma function and calculated by I'(x) = J‘tx_le"dt and
0

_ apl2

T TWwp

(2.15)

We can write two hypotheses for the i bit of the embedded message sequence

associated with a bit “-1” and ‘1’ respectively:
Hy:¥,(k) = %,(k) (1- (0P, (5)) (2.16)

H, :¥,(k) = %,(k) (1+ 6, (B, (K)) (2.17)
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where &k = 1,2,...M and M denotes the number of the watermarked coefficients to

embed the i bit of the message sequence.

By assuming that a priori probabilities for both hypotheses are equal,

1e., p(H,) = p(H,), Bayes test becomes;

A k))= T 2.18
(yl( )) p(yl(k)U‘[o);O ( )
Sy (¥ (k)| H, )=q;exp —| a(k)y, (k) |M (2.19)
T g (b, ()| 1=, (b)|
4 | ety |
SV (k)| H)=—=————exp : (2.20)

C1+g (0B, () | |1+4(0B,, ()|
where f,(y,(k)|H,) and f,(y,(k)|H,) are the probability density function of y,(k)
under the hypotheses H, and H, respectively and 7 is threshold as given in Equations
2.19 and 2.20.

In this detection scheme, the estimation of £ and o parameters are separately
done on each of the watermarked 16 coefficients in 8x8 DCT block. That is, there are
N,=N?/64 blocks in the watermarked image of size NxN, so for each block
coefficient we have N, DCT samples. Therefore, 16 different (0, ﬂ) values are

obtained after estimation since we mark 16 coefficients in each 8x8 DCT block. By

using the obtained (0', ,B) sets, we can calculate o and A. In fact, there is no need to

calculate 4 since it is irrelevant to the likelihood ratio. Therefore, the standard deviation

can be found as follows:
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o, = \/Nl > (y,, ) ( Sy, (k )] (2.21)

b k=l bkl

where o, ; is the standard deviation corresponding to the DCT coefficients of the

watermarked image in the i row and the j” column of 8x8 DCT blocks which is

denoted by y, ; . Estimates of f , parameters are obtained by matching the sample

mean absolute value and the sample variance of DCT coefficients to those of
Generalized Gaussian distribution as proposed in [30] and by solving maximum

likelihood equation as follows;

Efy.| r2/4,)

_ 2.22
i, \/F(I/IBI.’],)F(N@J) -

where E{.} denotes the expected value function, actually in our case it denotes the

sample mean.

Since an open solution for £, ; does not exist, one can instead sample the solution
space by computing the right hand side of the Equation (2.22) for several values of S,
and find the best match. We construct an ensemble between 0.3 < <2 in steps of
0,01 to estimate the best approximation of S, ; parameters. Once (O'l., B, J.) parameters

are estimated for each of the 16 coefficient sets, we can start decoding each bit of the

embedded watermark independently. Therefore, we obtain decision test as follows:

') LN O T G
o 1+¢(k)pc,<k> 1+ (k)p.., (k)
A(y.D= - a®ly,@| [ (2.23)
G ws® k)pc,<k> P-4 w0p.. )
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where k=1,2,...M and f and « are the vectors of size /xM whose elements belong to

one of the 16 parameter set (O'l., B, J.) depending on which set y,(k) belongs to. We

use the log-likelihood ratio to determine the value of b(i),

B(k)
= < e = J (k) #i(k)
S(3.)=2 (1405, + 2 —%
aly, | [

> In(1+G®.,0)+ | - (2.24)

1

1+4,(k)p, , (k)

Hl
where S(|yl.|)>0 and fB(k) and a(k) denotes the parameter set in which Yy, (k)
<

Hy

belongs to.

2.4. The Proposed Block Normalization Based Watermark Detectors

In this section, we present the proposed block normalization method and the
watermark detectors using that method. The proposed method is used to reduce the host
signal interference at the receiver side. It is applied to the new and existing detection

schemes as stated in [31].
24.1. Block Normalization based Correlation Detector (BNCRD)

In this watermark detection scheme, we aim at to reduce the host image
interference in the correlation detector. We therefore employ the proposed block

normalization method. Firstly, we transform the absolute value of the 16 watermarked
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coefficients in each 8x8 DCT block by using the proposed block normalization method

in DCT domain as follows:

[/ )] - a1,

7/ (n) = (2.25)

O\,

i
where n=1,2,..,16 , j=1,....,N2/64 and N?/64 denotes the block number of
watermarked coefficients for image of size NxN, y’ and Z’ denotes watermarked and

transformed coefficient vector respectively for the j DCT block. Also, /.ﬂyj and o

denotes the sample mean and the standard deviation of the absolute value of the / DCT
block’s watermarked coefficients. The watermarked coefficient vector corresponding to
the i bit of the embedded binary message can be transformed as shown in the following

formula:

v.(0)|- 7,
(k)

(%)

Z,(k) = (2.26)

Gy./

where k=1,2,.,M , M denotes the number of watermarked coefficients to embed i” bit

of the watermark sequence, 'Zﬂyf (k) and 6"91.‘(1() denotes the sample mean and the

standard deviation of the absolute value of watermarked coefficients of the DCT block

in which |§7l. (k)| belongs to and is calculated as follows:

["y,‘ (k) = %i\?’ (n) (2.27)
and
~ 1 do _ 21 e .
‘7‘?,‘ (k)z\/gnz;‘y (")\ —E;\y (n)\ (2.28)
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Then, we calculate the inner product of the vector Z,, which belongs to the

watermarked coefficients, and p_,, which belongs to the spread-spectrum sequence, in

order to determine the value of i bit of the watermark b(i) as follows;

M

(Z.p..) = 270)p,,(k)

k=1

$,()[%, (1))
(k)

f'f‘ s -3 P f( B()= 1+ B()  (229)

‘J

where ¢ denotes the positive power strength for i" bit of the watermark sequence and

I! denotes the constant value denoting the reduced host image interference for b(i).

Finally, we conclude to the i bit of the embedded binary message b(i) as

follows:
b()=1, if (Z.p,,) 20
(2.30)
b()=-1, if (Z.p,,) <0
2.4.2. Block Normalization Based Covariance Detector (BNCVD)

In this detection method, we employ the proposed block normalization method in
the 8x8 DCT domain in order to increase the detection performance of the covariance

detector. Hence, we calculate the vector Z, , where i =1,2,....,7,, in order to recover

>Tbh
the i bit of the embedded watermark. Finally, we recover the embedded watermark by

using the formula below:
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B(’) =1, if <(2z _ﬂ\zi\ )’(f)c,i _/u]aw. )> 20 2.31)
b()=—1, if <(2 ~ ) (Bes — 4, )> <0

where My and and g4  denote the sample mean of the vectors z; and p,, respectively.

2.4.3. Block Based Maximum Likelihood Detector (BMLD)

In this watermark detection scheme, we model the distribution of the /” 8x8 DCT

block belonging to the watermarked image according to the Generalized Gaussian

model in Equation (2.13). We find the (O'j,ﬂj) parameter set, where j=1,...., N’/ 64

and N°/64 denotes the block number of watermarked coefficients for the image of size
NxN, for each of the ;" DCT block as found in BCMLD detector by using the

following formulas;

1 ds _ 5 1 6 . 2
O, = \/EZ(Y' (n)) —(E;y (n)j (2.32)

n=1

and

By r(s) -

< \/F(l/,b’j)l“(l/ﬂj)

where E{.} denotes the expected value function actually in our case it takes the sample

mean of the input vector \yf ‘ Also, y’ denotes vector which contains watermarked

coefficients of the /* DCT block, j=1,...N>/64 and N*/64 denote the block

number of the watermarked coefficients for the image of size NxN.

Then, we take the average of all the (O'j,ﬂj) parameter sets, to obtain (0', ,B)

parameter set which is used to model all the watermarked coefficients. Finally, we

36



decode each bit of the embedded watermark sequence by using (0', ,B) parameter set

and Equation (2.24).

2.4.4. Block Normalization Based Maximum Likelihood Detector
(BNMLD)

In this watermark detection method, our aim is to improve the detection
performance of the BMLD detector. To achieve this aim, firstly, we employ the block

normalization method in each of the 8x8 DCT blocks. Therefore, we obtain the vector
7’ , where j=1,...N>/64 and N°’/64 denotes the block number of watermarked

coefficients for the image of size NxN, for the / DCT block by using the Equation
(2.25). Then, with the normalized watermarked coefficients and the process used in the

BMLD detector, we can recover the embedded binary message bits.

2.5. Simulation Results and Discussions

In all experiments, we examined the performances of the watermark detection
schemes by using the test image “Lena” of size 5/2x512 as a host image. We calculate
the peak signal to noise ratio (PSNR) and watermark to document ratio (WDR) to
evaluate the perceptual quality of the watermarked image. The PSNR is a measure of
the degradation in the original image introduced by the watermark as well as by the

other factors. It also a rough measure of the image fidelity and calculated as follows,

Xz)euk
N (2.34)

e 2 (X1 VT 1)

i=l j=1

PSNR =10log

where X[i, j] and Y[i, j] denotes the host and the watermarked image respectively, N
denotes the size of the image along both dimensions, and X, is the maximum pixel

luminance value in the host image.
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On the other hand, WDR is the measure of the ratio of watermark energy to the

host image energy calculated as:

ZN:ZN:(X[I J1-Y1, j1)’

WDR =10log-—"——
J

ZZ;Xz[i,j]

i=] j=

(2.35)

The bit error rate (BER) is the probability that an information bit is decoded
erroneously during the watermark extraction process. It is the ratio of the number of bits
received in error to the total number of received bits. As in every communications
system, the watermarking systems also depend on the transmitted signal energy since
BER decreases when signal energy increases. The simulation results shown in Figure
2.11 — Figure 2.13 demonstrate that the watermark energy increases linearly as we

increase the insertion coefficient  from 0.02 to 0.06. Therefore, we obtain lower BERs

and the performance of the watermark detectors increases. However, there is a trade-off
between robustness and perceptual quality in these simulations. As we increase the

insertion coefficient ¥ to achieve more robust and reliable digital watermarking system,

we decrease the perceptual quality of the watermarked image. In order to achieve a low
bit error rate and high channel capacity while maintaining an acceptable image quality;
one has to compromise between the WDR and PSNR as shown in Table 2.2. The
insertion strength should be chosen so that the watermark power is maximized, while
the PSNR is kept above the minimum acceptable level of 38 dB [32]. In addition, we
can subjectively evaluate the perceptual quality of the watermarked images with the
various insertion strengths shown in Figure 2.6 - Figure 2.10. In these figures, as the

insertion increases, the images lose the perceptual quality.
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Insertion PSNR [dB] WDR [dB]
Coefficient

0.01 55.6277 -50.3188
0.02 49.6071 -44.2982
0.03 46.0853 -40.7764
0.04 43.5865 -38.2776
0.05 41.6483 -36.3394
0.06 40.0647 -34.7558
0.07 38.7257 -33.4169
0.08 37.5659 -32.2570
0.09 36.5428 -31.2340
0.1 35.6277 -30.3188

Table 2.2 : PSNR and WDR Results of the Watermarked Lena Image as a

Function of Insertion Coefficient y

Figure 2.6 : Original Lena Image used as Host Signal
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Figure 2.7: Watermarked Lena Image with Insertion Coefficient y =0.1

Figure 2.8: Watermarked Lena Image with Insertion Coefficient y =0.07
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Figure 2.9 : Watermarked Lena Image with Insertion Coefficient y =0.04

Figure 2.10 : Watermarked Lena Image with Insertion Coefficient y =0.01
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Research of relation between watermarking capacity and reliability will help us to
find how to transmit more watermark information while keep an acceptable watermark
detection bit error rate. In watermarking schemes, image can be considered as a
communication channel to transmit messages. However, watermarking have some
properties different from traditional communication because of the requirements of
robustness and invisibility. We totally embed 65536 watermark bits into the host image
in each simulation as shown in Figure 2.11 — Figure 2.14. As we decrease the
watermark length, the number of repetition of watermark increases as well. However,
the total watermark power does not depend on the number of embedded watermarks
since the total number of embedded watermark bits is equal in each experiment. In these
simulations, we embed the watermarks of length 256, 512 and 1024 bit respectively by

changing the number of repetitions.

The simulations shown in Figure 2.11 — Figure 2.13, an increase in the length of
watermark, results in a decrease in the number of embedded watermark repetitions and

the bit per energy at a constant insertion coefficient ¥ . Low bit energy in turn, produces

a higher bit error rate. This severely limits the amount of information that the watermark

can carry. Hence, the dependence of the bit error rate on the insertion coefficient y, can

be seen in these figures. Furthermore, the detectors using the proposed block
normalization method reduce the BER and increase the capacity at a constant insertion

coefficient in these simulations.

Generally, the recovered watermarks have high BERs because the watermark bits
are embedded with low powers not to lose the perceptual quality of the watermarked
image. Figure 2.13 illustrates how the BER rate of the extracted watermark increases as
the length of watermark increases. Since the number of pixels per bit decreases, the
energy per bit hence decreases. In this simulation, the value of insertion strength y is
set to 0.04 fulfilling the pre-mentioned requirements. We can also evaluate the
perceptual quality of this watermarked image by looking at the Figure 2.9. Furthermore,
if we evaluate the system at a constant BER, we can conclude that the proposed

detectors approximately increase the capacity of the system four fold. Hence, the
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proposed BNMLD detector can especially be chosen in most of the watermarking

applications since hiding capacity is one of the most important requirements.

When we set the watermark length to 256 bit in simulation shown in Figure 2.14,
the proposed block normalization method approximately reduces the BER of the
covariance detector from 10 to 107, In addition, the proposed method approximately
reduces the BER from 107 to 10® in the ML based detection schemes. In this

simulation, the insertion coefficient is set to 0.04.

The proposed detection methods reduce the computational complexity of the
watermarking system. For example, the existing BCMLD detector has higher BER than
the BNCVD detector, however, the proposed BNCVD has the lower computational
complexity since it does not model the distribution of the coefficients and does not
employ ML estimation method. Thus, the BNCVD can be employed as sub-optimal

detection method in most of the watermarking applications.

In all experiments in this chapter, the proposed BNMLD watermark detector has the
lowest BER among all watermark detectors. The main reason is that the BNMLD
detector models and normalizes the watermarked coefficients in a block-wise manner.
The other detectors do not use the block-wise manner both to model and normalize

watermarked coefficients.
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2.6. Conclusions

In this chapter, we address the host signal interference problem of spread spectrum
watermarking systems employing blind detection schemes. The interference both limits
the capacity of the system and increases the BER of the recovered watermark even if
there is no channel distortion and attack. We develop blind detection schemes based on
the host signal interference cancellation method at the receiver side [31]. These schemes
reduce the interference by employing the proposed block normalization method. Hence,
they approximately 4 times increase the capacity of the system at the same insertion
strength level. Since the capacity plays very critical role in many watermarking
applications, it provides very important gains to the system. In addition, the block
normalization method improves the BER performances of the detectors. For example,
when the insertion strength is set to 0.06 and 256-bit watermarks are embedded, the
proposed method approximately reduces BER of the recovered watermark from 107 to
10° in ML estimation based detection method. In addition, BER of the recovered
watermark is reduced from 10 to 107 in covariance detector by the proposed method,
when the insertion strength is set to 0.06 and 256-bit watermarks are embedded.
Furthermore, we utilize Watson’s HVS model in the watermark embedding process.
Hence, we shape the watermark before embed it into the host image according to the
HVS. The simulations results demonstrate that both modeling the watermarked DCT
coefficients and reducing the interference in a block-wise manner increases the blind

detection performance of the spread spectrum watermarking system.
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3. ROBUST BLIND DETECTION FOR DWT DOMAIN QUANTIZATION
BASED WATERMARKING SYSTEM

In this chapter, we introduce the quantization based watermarking system in DWT
domain in Section 3.1, which is proposed in [33] and [34]. We address the detection
problem of this system against channel distortions and attacks in Section 3.2. Then, we
briefly describe the detectors used in this system and the proposed detection scheme in
Section 3.3 and Section 3.4 respectively. Finally, we evaluate the performance of the
detectors with simulation results and give conclusions in Sections 3.5 and 3.6

respectively.

3.1. Quantization Based Digital Watermarking System

In this section, we introduce the quantization based digital watermarking system
that is used in [33] and [34] for embedding and extracting the watermark bits. This
system, simultaneously, uses the reference watermarks to characterize the channel
distortions and degradations, and the information watermarks to transmit the hidden
information. The information and reference (optional) watermarks are embedded into
the host image at the transmitter. Then, information and reference watermarks are
extracted according to the quantization based algorithm at the receiver side from the
watermarked image, which is exposed channel distortions and attacks in the
transmitting channel, as show in the Figure 3.1. There is no need to know the host
image, so, this digital watermarking system employs blind watermark detection
schemes. Also, in this digital watermarking system, we randomly generate binary
watermark sequences w(i) € { £ 1} and r(i)) € {£ 1}, where 1<i< N for information

and reference watermarks respectively.
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Figure 3.1: Quantization Based Digital Watermarking System

3.1.1. Watermark Embedding Process

In subsequent analysis, x[m,n] and y[m,n] denotes the host image and
watermarked image in spatial domain respectively. Also, X, [u,v] and Y, [u,v]
denotes the o™ frequency orientation at the /” resolution level of the host image and the
watermarked image in DWT domain respectively. In this notation, oe{hv,d}
expresses the horizontal, vertical and diagonal image details respectively, / € {1,2,...,L}
is the resolution level and [u, V] is the particular spatial location index at the resolution

level / as shown in Figure 3.2.

In the embedding process, firstly, the host image x[m,n] is transformed into the

DWT domain by performing the L-level DWT decomposition. So, we obtain 3L detail

images and an approximation image at the coarsest level. Then, we sort the detail image
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coefficients at the spatial location [u,v] and at the resolution level / in an ascending

order such that;

X, v < X, [u,v]1< X5, (1, ] 3.1

where 0l,02,03 €{h,v,d} and ol # 02,02 # 03,0l # 03. We divide the range of values

between the minimum and the maximum detail coefficient into the bins of width A by

using the below formula;

X V]-X ,
A= o3,l[” v] ol,] [,v] (3.2)
201

In order to embed the watermark bit, we quantize the median value of the detail
image coefficients at the /" resolution level as shown in Figure 3.3. The value of the
quantization parameter Q is a trade-off between perceptual transparency and robustness,
1.e. if we set smaller value for O, we may lose the perceptual transparency but the
system will be more robust and reliable against channel distortions and attacks. Finally,

we compute the L-level inverse DWT and construct watermarked image y[m,n] in the

spatial domain.

Figure 3.2 : 4 level DWT of the Lena Image
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Figure 3.3: Watermark Embedding Scheme

3.1.2. Watermark Extraction Process

The watermarked image, y[m,n], is transformed into the DWT domain by

performing the L-level DWT decomposition at the receiver side. Since quantization
based watermarking system employs blind watermark detection scheme, the original
image is not needed for the watermark extraction process. Then, we sort the detail

coefficients in an ascending order as follows,

Yo1,1[“a"] < Yoz,z[”a"] < Y03’l[u,v] (3.3)

where 0l,02,03 € {h,v,d} and ol # 02,02 # 03,0l # 03 . The value of the embedded
watermark bit is determined from the relative position of Y, [u,v] by using the same

value of Q used in embedding scheme. Once, we find the closest quantized value to,

Y,,,[u,v], it is converted into its associated binary value as shown in Figure 3.4.
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Figure 3.4: Watermark Extraction Scheme

3.2. Existing Watermark Detection Methods Used in Quantization Based
Digital Watermarking System

In this section, we introduce the majority rule based watermark detector and
diversity and attack characterization based watermark detector. These detectors are

developed for the quantization based watermarking system in DWT domain [33], [34].

3.2.1. Majority Rule Based Watermark Detector (MRD)

The quantization based watermarking system using the majority rule based
detection scheme to estimate the recovered watermark, is presented in [33]. In this
watermark detection method, Kundur and Hatzinakos do not use reference watermarks
in order to characterize the attacks. They embed the information watermarks into the
host signal multiple times, i.e. M times, at the transmitter and then M watermark
estimates are extracted at the receiver. The most common bit value among the i bits of
the M watermark estimates is assigned as the i bit of the recovered information
watermark by the majority rule based detector. Therefore, all the bits of the embedded

information watermark are estimated.
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3.2.2. Diversity and Attack Characterization Based Watermark
Detector (DACD)

Kundur and Hatzinakos proposed the diversity and attack characterization based
watermark detector in the quantization based watermarking system in [34]. In this
detection scheme, firstly, they define the localized regions. In these localized regions,
each of the information and reference watermark bits are alternatively embedded. Hence,
they assume that if the information and reference watermarks are in the same localized
region, they are effected from the channel distortions and attacks statistically similarly.

At the transmitter side, M repetitions of the information watermark w, and reference
watermark 7, were embedded into the host image. Then, these each M repetition of

information and reference watermark are extracted according to the quantization based
algorithm at the receiver. Kundur and Hatzinakos modelled the region that one
information watermark sequence and one reference watermark sequence have
embedded as a binary symmetric channel (BSC) as shown in Figure 3.5 . A BSC is a
common communications channel model used in communication theory and
information theory. In this model, a transmitter wishes to send a bit, and the receiver
receives a bit. It is assumed that the bit is usually transmitted correctly, but occasionally
the receiver gets the wrong bit. Thus, the bit error probability of each channel is

calculated as follows;
1 & .
Pa =5 250 ® i @) (3.4)
i=1

where 7, denotes the reference watermark associated with the K" binary symmetric

channel or localized region and N denotes the reference watermark length. Finally, all
extracted information watermark repetitions are linearly weighed and added in order to

recover the information watermark at the receiver side as follows;

w(i) = sgn{fakﬁ/k (i)} (3.5)
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where i=1,2,..,N, sgn(.) denotes the sign function and ¢, denotes the linear

combination coefficients for the & BSC, that are calculated as follows;

log[l_pEkj
o P

LY 1—
Zlog{ pEjJ

=1 P

(3.6)

Since the watermark bits come from the set {+ 1} rather than the set {0, 1} as in
[34], in order to recover the watermark bits we use sgn (.) function instead of round (.)

function.

1-pp,
Wl =W 1;1\/1
P PE
1= pp,
l-pg,
W2 =W w,
Pe> Pe>
1-pg,
1= ppy
Wy =W W,
Peu Peu
1- Pem

Figure 3.5: Binary Symmetric Channel Model



3.3. The Proposed Channel Reliability Estimation Based Watermark
Detector (CRED)

In this section, we propose a new detection method to improve the detection
performance in the quantization based watermarking system. The detector is named as
the channel reliability estimation based detector [36]. In literature, Kundur and
Hatzinakos propose the diversity and attack characterization based blind watermark
detection method [34]. They assume that all the watermark estimates are reliable. Hence,
they do not eliminate the unreliable estimates deteriorating performance of the system

against severe degradations.

In this detection scheme, we, first, define the region that an information
watermark sequence and a reference watermark sequence have embedded alternatively
as a watermark channel. Then, we employ reference watermarks to estimate the
reliabilities of each watermark channel. Hence, the watermark channel parameters are
calculated by using the first and second order channel reliabilities and the proposed

threshold scheme. Finally, information watermark is recovered one by one.
In the proposed watermark detection method, instead of determining the bit error

probability within each watermark channel, we estimate reliability of the each

watermark channel by using the below formula,
1 N

R =—2 5,(i) (3.7)
N i=1

where R, denotes the reliability of K" watermark channel, k=1,2,..., M , M denotes the

number of embedded reference watermarks, NV denotes the reference watermark length,

i=1,2,...,N, and S, is determined by using the below equation;

L L if r(@)=7()
Si(@)= {O, otherwise (3-8)
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where r denotes the reference watermark and 7, denotes the reference watermark

estimate of the K watermark channel.

The reliabilities of watermark channels; R,, can vary according to the channel

distortion and attack type and also the embedding region in the DWT domain. The
channel parameter of each watermark channel is calculated by using the first and the

second order statistics of the channel reliabilities as follows;

p = (3.9)

where f, denotes the channel parameter of the K" watermark channel and also M, and
o, denotes the sample mean and the standard deviation of the watermark channel

reliabilities and calculated by using the below formulas;

=—>R 3.10
Hp Mkzz; k ( )
and
oy = iiRtiiR (3.11)
fAME T Mat '

The watermark channel parameters gives information about the watermark
channel and the reliabilities of the watermarks extracted from these channels. The
channel parameter defined in Equation (3.9) results in large values for high reliability

probabilities and negative values for the reliability probabilities that are smaller than z, .

As in the all estimation problems, some channel reliability estimates might be
unreliable. In our method, we called the channels, whose channel parameters are above
the sample mean of the channel reliabilities, as reliable channels experimentally. Since,

unreliable estimates increase the bit error rate, we do not use the watermarks extracted
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from the unreliable channels in the watermark recovering process. To eliminate these

unreliable estimates, we propose a threshold scheme as follows;

B if R, > u,
=11 R=u, (3.12)

0, otherwise

where A, denotes the channel parameter of the k” watermark channel after the

thresholding scheme.

Due to the nature of the DWT domain, the reliabilities of the watermark channels
are equal when there is no channel distortion and attack. In this case, we set the channel
parameter to one since all the channel reliabilities equals to the sample mean of the
reliabilities. Finally, we recover the i bit of the information watermark by using the

watermark channel parameters A, and i bits of the information watermark estimates

w, as follows:
M
Ww(i) = sgn{z AW, (i)} (3.13)
k=1

where i=1/,2,..,N and sgn(.) is the sign function. Hence, the embedded information

watermark bits are recovered.

3.4. Simulation Results and Discussions

This section provides simulation results to test and compare the performance of
the proposed detection method. In all experiments, randomly generated information and
reference watermarks of size 256 bit from the set {-1, 1} are embedded into the test
image “Lena” of size 5/2x512. To test the performance of the detectors in each
simulation, 5000 experiments are done. In the quantization based digital watermarking

system, DWT has been performed with the number of resolution level L =4 and 10-
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point Daubechies filter. We, first, evaluate and compare the robustness of the detectors
against various channel distortions such as mean and median filtering, additive white
Gaussian noise (AWGN) and lossy compression by using the normalized correlation

coefficient is given by,

2 W)
c(w, W) = t (3.14)

\/szo')\/vaz(i)

where w denotes the original watermark and w denotes the recovered watermark.

The quantization parameter (Q) has to be chosen so that the watermark power is
maximized, while the perceptual quality is kept above the minimum acceptable level.
We can also subjectively evaluate the perceptual quality of the watermarked image as
shown in Figure 3.6 - Figure 3.9 . The simulations shown in the Figure 3.10 - Figure
3.17, we set the quantization parameter Q = 4 and the corresponding PSNR value is
42.33 dB. This PSNR value is quite acceptable for the image quality as shown in the
Figure 3.8. The Figure 3.6 shows the original Lena image and the Figure 3.7, Figure
3.8 and Figure 3.9 shows watermarked Lena image with quantization parameter 1, 4 and
6 respectively. The proposed CRED detector shows superior performance in
comparison to the other detectors against common channel distortions such as filtering,
adding of white noise and JPEG compression that are shown in the Figure 3.10 — Figure
3.13 in terms of the correlation coefficient between the embedded and the recovered
watermark. We also use WDR which is a measure of the ratio of watermark energy to
the host image energy and calculated as in Equation (2.35). It is used to evaluate the
performance of the digital watermarking system against severe channel distortions and

attacks.

In practical applications, the watermarked image may be exposed to some channel
degradations and attacks. In that case, the performance of the watermark detector is very
critical for the watermarking system. The simulations shown in Figure 3.10 and Figure
3.11, mean and median filtering is applied to the watermarked image with varying filter

sizes respectively. The aim is to destroy the watermark detection capability. The
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performance of the proposed CRED detector is compared with the MRD and DACD
detector in terms of the correlation coefficient defined in Equation (3.14). The
simulation results demonstrate that the proposed CRED detector is more robust against

filtering attacks than the both MRD detector and DACD detector at the same filter size.

We also study the influence of AWGN on the performance of the detectors. The
watermarked image is degraded by applying additive white Gaussian noise. The
simulation shown in Figure 3.12 presents the corresponding correlation coefficient
between the embedded and the recovered watermarks at different SNRs. The watermark
correlation coefficient is still high enough to be detected at low SNR value if the
proposed detection method is employed. The watermark correlation coefficient should
be minimum 0.4 so that the receiver can properly detect it [35]. Hence, if we set the
target correlation coefficient to 0.4; the proposed CRED detector achieves 2 dB SNR
gain in comparison to the DACD detector. It also achieves 9 dB SNR gain in
comparison to the MRD detector as given detailly in the Appendix A. In addition, we
conclude that the proposed CRED detector is more robust against AWGN than the
MRD detector and CRED detector at the same SNR.

The effects of lossy compression on watermark detection are shown in Figure
3.13. The watermarked image is exposed to the JPEG compression with varying quality
factors in this simulation. If we evaluate the performances at the same JPEG quality
factor, we can claim that the proposed CRED detector is more robust against JPEG
compression than the other detectors used in the quantization based watermarking
system. In addition, the performance of the proposed CRED detector is increased with
the increasing JPEG quality factor. For example; when we set the target correlation
coefficient to 0.4; the proposed CRED detector decreases the JPEG quality factor from
29 to 25 in comparison to the DACD detector. It also decreases the JPEG quality factor
from 71 to 25 in comparison to the MRD detector as given detailly in the Appendix A.
In other words, if the receiver employs the proposed detector, the transmitter can more
aggressively compress the watermarked signal. Hence, it increases the amount of

information to be sent.

58



We also investigate the effects of Low-Pass Filtering on the BER of the recovered
watermark in the simulations shown in Figure 3.14- Figure 3.17. The formula of the

low-pass filter is shown below:

h(m,n) ==L (3.15)

M N
where K = ZZh(m,n), 4, denotes the filter parameter. In these experiments, the

m=1 n=1
watermarked image is exposed to the low-pass filtering attack at various filter sizes and
with various filter parameters. As the value of the filter parameter increases, the
performances of the detectors decrease. In addition, filter size affects the watermark
correlation coefficient. The proposed CRED detector is more robust than the other
detectors at the same filter size. It also increases the correlation coefficient at the same

filter parameter.

The BER is used as another performance metric to compare the performance of
the proposed CRED detector with the MRD detector and DACD detector. The
experiment shown in the Figure 3.18 — Figure 3.27, we change the quantization
parameter (Q) from 1 to 6 and obtain WDR values in the -41dB to -20 dB range
associated with these quantization parameters. The watermarked image is exposed to
mean filtering, median filtering, and Gaussian low-pass filtering attack in the
simulations shown in the Figure 3.18 — Figure 3.22 respectively. For example, the
watermarked image is exposed to 3x3 mean filtering attack in simulation shown in
Figure 3.19, if we set the target BER to 10 in the simulation shown in Figure 3.25, the
proposed CRED detector achieves 4 dB WDR gain in comparison to the DACD
detector. On the other hand, the MRD detector can not attain the target BER as given
detailly in the Appendix A. The proposed detector is more robust than the others at the
same WDR value in these simulations. In addition, the robustness of the watermarked
image is tested against AWGN attack at 15 dB, 20 dB and 25 dB SNR in simulations
shown in Figure 3.23 - Figure 3.25 respectively. If we set the target BER to 10 in the
simulation shown in Figure 3.25, the proposed CRED detector achieves 5 dB WDR gain
in comparison to the DACD detector. On the other hand, the MRD detector can not

attain the target BER as given detailly in the Appendix A. Thus, we conclude that the
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proposed CRED detector is more robust against AWGN than the MRD detector and
CRED detector at the same SNR. Finally, the watermarked image is compressed with
JPEG compression with quality factor 30 and 70 and its robustness is tested in
simulations shown in Figure 3.26 - Figure 3.27 respectively. For example, when we
set the target BER to 107 in simulation shown in the Figure 3.27, the proposed CRED
detector achieves 2 dB WDR gain in comparison to the DACD detector. On the other
hand, MRD detector can not attain the target BER as given detailly in the Appendix A.

In these simulations, as we decrease the value of the quantization parameter,
WDR increases, hence, BER of the detectors decreases. However, as we decrease the
watermark power via increasing the quantization parameter, the BER increases
independently from the employed detector. In order to achieve a low BER while
keeping an acceptable image quality one has to compromise between the WDR and
PSNR which are given as a function of quantization parameter in Table 3.1. Also, the
perceptual quality of the watermarked images can be subjectively evaluated from the

Figure 3.6 - Figure 3.9 by using various quantization parameter such Q = 1, 4 and 6.

Quantization WDR [dB] PSNR [dB]
Parameter (Q)

1 -20,0147 25.6803

2 -29,9845 35.1969

3 -34.3355 39.3697

4 -37,2580 42.3996

5 -39.3664 44.8551

6 -41.0229 46.2361

Table 3.1 : PSNR and WDR Results of the Watermarked Lena Image as a

Function of Quantization Parameter (Q)
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Figure 3.6 : Original Lena Image used as Host Signal

Figure 3.7: Watermarked Lena Image with Q=1
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Figure 3.8: Watermarked Lena Image with O =4

Figure 3.9: Watermarked Lena Image with Q =6
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Figure 3.10: Detector Performances Against Mean Filtering Attack
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Figure 3.11: Detector Performances Against Median Filtering Attack

63



Correlation Coefficient

0 10 20 30 40 50
Signal to Noise Ratio [dE]

Figure 3.12: Detector Performances Against AWGN Attack
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Figure 3.13: Detector Performances Against JPEG Compression Attack

64



Correlation Coefficient

02 oD |-
DACD | : : : : ' : '
—~/—CRED| . . . | |
1 i i i i 1 i i

n |
0 01 0.2 0.3 04 05 06 0.7 0.8 0.9 1
Filter Parameter
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Figure 3.15: Detector Performances Against 5x5 Gaussian Low-Pass Filtering
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Figure 3.16: Detector Performances Against 7x7 Gaussian Low-Pass Filtering
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Figure 3.17: Detector Performances Against 9x9 Gaussian Low-Pass Filtering
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Figure 3.18: BER Performance of the Detectors versus WDR Against 5x5

Gaussian Low-Pass Filter with Parameter 0.4
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Figure 3.19: BER Performance of the Detectors versus WDR Against 3x3 Mean
Filtering Attack
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Figure 3.20 : BER Performance of the Detectors versus WDR Against 5x5 Mean
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Figure 3.21: BER Performance of the Detectors versus WDR Against 3x3 Median
Filtering Attack

68



Bit Error Rate(BER|)

10 ; i: l: l: i
-40 -35 -30 -25 -20
Watermark to Document Ratio (WDR) [dE]

Figure 3.22 : BER Performance of the Detectors versus WDR Against 5x5
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Figure 3.23 : BER Performance of the Detectors versus WDR Against AWGN
Attack with 15 dB
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Figure 3.24 : BER Performance of the Detectors versus WDR Against AWGN
Attack with 20 dB
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Figure 3.25: BER Performance of the Detectors versus WDR Against AWGN
Attack with 25 dB
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Figure 3.26 : BER of Performance of the Detectors versus WDR Against JPEG
Compression with Quality 30
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Figure 3.27 : BER of Performance of the Detectors versus WDR Against JPEG
Compression with Quality 70
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3.5. Conclusions

In this chapter, we develop a new blind detection method for quantization based
watermarking system in DWT domain [36]. We apply the communication theory
principles of diversity, channel estimation and threshold in order to improve the
robustness of the system. This system does not vulnerable from the host signal
interference problem. We consider the importance of a watermark detection stage which
makes use of information concerning the attacker’s actions to optimally estimate the
watermark. By optimal we mean that the probability of bit error for watermark detection
is minimized. We develop a new detection scheme that increases the detection
performance of the watermarking system against channel distortions and attacks. In this
scheme, first, the watermark sequence is repeatedly embedded within the host signal to
provide diversity and to combat a broad class of degradations. Then, we model the
digital watermarking system as a communication channel. Each embedded watermark
repetition is modelled as travelling through watermark channel. The proposed detection
method uses the reference watermarks in order to determine the reliabilities of the
watermark channels. The unreliable watermark estimates decreases the performance of
the system as in all estimation problems. The main contribution of the proposed detector
is to employ a channel parameter to each of the watermark channels by first and second
order statistics of the watermark channel reliabilities and the eliminating the unreliable
watermark estimates by using the proposed threshold scheme. The proposed CRED
detector is more robust against common channel distortions such as addition of white
noise, filtering, lossy compression and decreases the BER for a given WDR and SNR.
In addition, it, especially, shows superior performance in terms of bit error rate and
correlation coefficient at the high WDR and SNR values. For example, if we set the
target BER to 10~ when the watermarked image is exposed to JPEG compression with
quality factor 70, the proposed CRED detector achieves 7 dB WDR gain in comparison
to the DACD detector. On the other hand, the MRD detector can not attain the target
BER as given detailly in the Appendix A. Moreover, when we set the target correlation
coefficient to 0.8; the proposed CRED detector achives 9 dB SNR gain in comparison to
the DACD detector. It also achieves 3 dB SNR in comparison to the MRD detector as
given detailly in the Appendix A. Finally, when we set the target correlation coefficient

to 0.9; the proposed CRED detector decreases the JPEG quality factor from 76 to 62 in
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comparison to the DACD detector. It also decreases the JPEG quality factor from 97 to
62 in comparison to the MRD detector as given detailly in the Appendix A. In other
words, if the receiver employs the proposed CRED detector, the watermarked image

can be compressed more aggressively the transmitter.
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4. ROBUST NON-BLIND DETECTION FOR DCT DOMAIN
WATERMARKING SYSTEM

In this chapter, we present non-blind digital watermarking system in DCT domain
in Section 4.1. In this application, host image is available at the receiver side. In section
4.2, we introduce the employed detectors such as the proposed CRED watermark
detector, MRD watermark detector and DACD watermark detector. These detectors
explained in detail in Chapter 3. Then, we explain the image restoration algorithms
applied to the degradated watermarked image in Section 4.3. We test and compare their
performances against channel distortions, attacks and apply image restoration

algorithms in Section 4.4. Finally, we conclude the overall system in Section 4.5.

4.1. Additive-Multiplicative Digital Watermarking System in DCT

Domain

In the number of developing digital watermark algorithms, the embedding
processes are carried out by using additive or additive-multiplicative method. The
digital watermarking systems modify the host signal and embed the watermark
information safely. Thus, the watermark should be embedded by taking into account the
perceptual constraints in these systems. In addition, they should detect the embedded
watermark in case of the channel distortions and attacks. The digital watermarking
system, which Piva et. al. [37] proposed, achieves the trade-off between the
perceptibility and the robustness by properly choosing the watermark embedding region
and insertion strength. Actually, Piva et. al. [37] suggested a digital watermarking
system based on the DCT that is the core of the JPEG technology. In this chapter, we
develop the non-blind digital watermarking system that is very similar to the system

presented in [37].
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4.1.1. The Proposed Watermark Embedding Process

In the watermark embedding process, which is shown in Figure 4.1 - Figure 4.3,
the host image of size NxN is transformed into DCT domain. The DCT coefficients are
re-ordered by the using zig-zag scan. This method re-orders all the DCT coefficients
from low frequency to high frequency. For most images, it is equivalent to sorting
according to importance, since the perturbation in the low frequency components is
generally more perceivable to human eyes than high frequency components. The main
idea behind the selection criteria for the watermark embedding region is to preserve the
perceptual quality while being robust the system against channel distortions and both

intentional and unintentional attacks.

The way of the watermark embedding changes whether we use or not use the
reference watermarks in order to characterize the watermark channel. If the
watermarking system employs the DACD detector or the proposed CRED detector, the
reference watermarks are used in the embedding process to characterize the channel
distortions and attacks. Hence, we, first, generate the information and reference

watermark sequences as described in Chapter 3 and [34], [36]. The information
watermark sequence nﬁz[m(l),m(Z), ........ ,m(T )] of length T, whose elements are
from the set {1}, is randomly generated. Also, the reference watermark sequence

17'=[r(1),r(2), ........ ,r(T)] of length T, whose elements are from the set {+1}, is

randomly generated. We combine the information and reference watermark to obtain

the combined watermark sequence which is embedded into the host signal and denoted
as w, =[m(1),r(1),m(2),r(2), ...... ,m(T),r(T)] . Then, the combined watermark
sequence is repeated K times to obtain repetition-coded watermark vector w, of
length 7 = Kx2xT . Next, we generate a spread-spectrum sequence p, whose
elements are from the set {+1} and length is 7. = K x2xT using the security key K;.
Finally, we multiply the repetition-coded watermark vector w, with the spread-

spectrum sequence p, to obtain the watermark sequence w.
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In the second case, if the digital watermarking system employs MRD watermark

detector, there is no need to use the reference watermarks. In that case, only the
information watermark 7 = [m(l),m(2), ........ ,m(T ):| of length T, whose elements are
from the set {*1}, is randomly generated. Then, the watermark sequence is repeated
2xK times to obtain repetition-coded watermark vector w, of length 7 =2xKxT .
Next, we generate a spread-spectrum sequence p, whose elements are from the set
{+1} and length is 7. = 2x K xT using the security key K;. Finally, we multiply the
repetition-coded watermark vector w, with the spread-spectrum sequence p, to obtain

the watermark sequence w. Thus, we embed the constant number of watermark bits to
the host image in both cases. In this scheme, we do not employ Watson’s perceptual
model since this model is valid in the 8x8 block DCT domain. On the other hand, we
employ zig-zag scan to achieve a trade-off between the perceptual quality and the

robustness.

Finally, we embed watermark sequence bits into the selected DCT coefficients as
proposed in [37] by leaving the first L coefficients intact and adding the watermark
sequence bits on the next M coefficients. Hence, after re-ordering the host image
coefficients in DCT domain by using the zig-zag scan, we embed the watermark by

using the additive-multiplicative embedding method as follows:
y(i)=x(i)(1+ yw(i)) (4.1)

where i=1,2,...KxT , K denotes the total number of embedded information and

reference watermarks, 7" denotes the length of embedded watermark, )7(1' ) denotes the
watermarked coefficients in DCT domain, J?(z) denotes the host image coefficients to

be watermarked in DCT domain, Vv(i ) denotes the watermark sequence and y denotes

insertion strength. Then, the watermarked coefficients re-ordered by using the inverse
zig-zag scan in DCT domain. Finally, we obtain the watermarked image by performing

inverse DCT.
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4.1.2. The Watermark Extraction Process

Since we employ non-blind digital watermarking system, we have the host image
at the receiver side. Hence, first, we compute the NxN DCT of both the watermarked
image and host image in the extraction process as illustrated in the Figure 4.4. The DCT
coefficients of both host image and watermarked image are re-ordered by using the zig-
zag scan. Then, we subtract the watermarked image coefficients from the host image
coefficients. The L+/ to L+M DCT coefficients are selected since they are the
coefficients in which the watermark sequence bits are embedded. Then, we re-generate
the spread-spectrum sequence p, whose length is 7. = 2x K xT using the security key
K;. Finally, the information and reference watermark bits are determined by using the

sign function as follows:
w<z')=sgn[%.’;@]mi> 42

where i=1,2,...KxT , K denotes the total number of embedded information and

reference watermarks, 7 denotes the length of information watermark sequence, )7(1' )
denotes the watermarked image coefficients, )?(i ) denotes the host image coefficients,

w(i) denotes the watermark sequence bits, p, (i) denotes the spread-spectrum sequence

bits and y denotes insertion strength.
Finally, we determine the embedded watermark sequence bits by choosing the

proper detection method. Thus, we recover the information watermark sequence bits

and reference watermark sequence bits from the watermark sequence Vv(i) .
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4.2. The Proposed Watermark Detection Process

In this section, we employ the majority rule based watermark detector (MRD),

diversity and attack characterization based watermark detector (DACD) and the

proposed channel reliability estimation based watermark detector (CRED) as described

in greater detail in Chapter 3. Then, we test and compare the performances of these
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detectors in the non-blind watermarking system in DCT domain against various channel
distortions, intentional and unintentional attacks such as mean filtering, median filtering,

JPEG compression and AWGN.

4.3. Simulation Results and Discussions without Image Restoration
Algorithms

In this chapter, we use the test image “Lena” of size 5/2x5/2 as a host image in
all the simulations. In addition, we embed the randomly generated information and
reference watermarks from the set {-1,1} into the host image as described in Chapter 3.

In each simulation, 5000 experiments are done to test the performance of the detectors.

The selection of the watermark embedding regions is the one of the most
important step in this algorithm. To what extent these regions can be invariant against
attacks like filtering, compression and AWGN directly determines the how robust this
digital watermarking system is. In order to obtain the simulation results, we chose to
leave the first L = 600 DCT coefficients intact due to achieve the trade-off between the
perceptual transparency and watermark energy. To test the performance of the majority
rule based detector, we embed 2x K =70 randomly generated watermark whose
elements are from the set {-1, 1}. Also, To test the performance of the proposed CRED
detector and DACD detector, we embed K =35 randomly generated information
watermark and 35 randomly generated reference watermark whose elements are from
the set {-1,1}. Therefore, in each experiment, we embed totally 17920 watermark bits

into the host image constantly.

In experiments shown in Figure 4.5 - Figure 4.12, the insertion strength is set to 0.1 to
achieve a trade-off between the perceptual quality and the robustness. As we increase
the insertion strength, the power of the embedded watermark is increased. However, we

lose the perceptual quality of the watermarked image as shown in Table 4.1.
We apply mean and median filtering attack to the watermarked image with
various filter sizes in order to decrease the detection capability of the system in

simulation shown in Figure 4.5 and Figure 4.6 respectively. We can claim from
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simulation results that the proposed CRED detector is more robust against mean and
median filtering attack than the MRD detector and DACD detector. On the other hand,
we investigate the effects of Gaussian low-pass filter attack with various filter sizes and
various filter parameters. The simulations shown in Figure 4.7 — Figure 10, the
proposed CRED detector increases the watermark correlation coefficient at the same
filter parameter. Thus, we conclude from the simulation results that the proposed CRED
detector is more robust than the other detectors at the same filter size and with the same

filter parameter.

Furthermore, we investigate the performance of the detectors against AWGN
attack under various SNR values as shown in Figure 4.11. The proposed CRED detector
shows the best performance among the employed detectors in terms of the correlation
coefficient between the embedded and extracted watermark. For example, if we set the
target correlation coefficient to 0.8; the proposed CRED detector achieves 2 dB SNR
gain in comparison to the DACD detector. It also achieves 5 dB SNR gain in
comparison to the MRD detector as given detailly in the Appendix B.

Then, we evaluate the performance of the watermark detectors against JPEG
compression attack with varying quality factors which is shown in Figure 4.12. Since
we embed the watermark by using the zig-zag scan, this makes the digital watermarking
system more robust against JPEG compression as expected. The proposed CRED
outperforms from the other watermark detectors, especially at low JPEG quality factors.
In addition, when we set the target correlation coefficient to 0.9; the proposed CRED
detector decreases the JPEG quality factor from 17 to 14 in comparison to the DACD
detector. It also decreases the JPEG quality factor from 22 to 14 in comparison to the
MRD detector as given detailly in the Appendix B. In other words, if the receiver
employs the proposed detector, the transmitter can compress the watermarked signal

with lower JPEG quality factors. Thus, it increases the amount of information to be sent.

The experiments shown in Figure 4.13 and Figure 4.14, we test and compare the
BER performance of the watermark detectors with varying insertion strengths against
mean filter attacks with filter size 3x3 and 5xJ respectively. When we evaluate these
simulations at the same insertion coefficient level, the MRD detector shows the worst

performance and the best performance belongs to the proposed CRED detector. Hence,
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especially increasing the insertion strength, the proposed CRED detector improves the
detection performance of the digital watermarking system against mean filtering attack
which increases the correlation between the watermarked coefficients. Also, we
evaluate the robustness of the watermark detectors against median filtering of size
attack with 3x3 and 5x5 filter sizes as shown in Figure 4.15 and Figure 4.16. In these
simulations, as the insertion increases, the watermark power increases. Hence, the BER
performances of the watermark detectors are improved. Although the proposed CRED
detector demonstrates superior performance, BER of the detectors is very high since the
5x5 median filtering is very strong attack. The proposed CRED watermark detector
outperforms from the other detectors, especially, when the insertion strength is greater
than 0.12. In addition, we test the BER performances of the detectors against Gaussian
low-pass filter versus various insertion strengths in simulations shown in Figure 4.17 -
Figure 4.19. The BERs of the recovered watermark decreases as the insertion strength
increases in these simulations. Moreover, the proposed detector achieves lower BERs

than the other detectors at the same insertion strength level.

In experiments shown in Figure 4.20 - Figure 4.22, the AWGN is added to the
watermarked image with fixed SNR and various embedding strengths. In these
simulations, we can observe the effects of the embedding strength over the BER
performances of the watermark detectors at constant SNR. In these experiments,
independent from the embedding strength, the proposed CRED detector is more robust
to the AWGN attack at various SNRs. To investigate the effect of AWGN attack, we set
insertion strength to 0.1 and add AWGN to the watermarked image with various SNRs
as shown in Figure 4.23. In that simulation, the proposed CRED detector outperforms
the other detectors, especially, at SNR values greater than 18 dB. In addition, when we
set the target BER to 10™; the proposed CRED detector achieves 4 dB SNR gain in
comparison to the DACD detector. It also achieves 7 dB SNR gain in comparison to the

MRD detector as given detailly in the Appendix B.

We expect that the watermarking system to be robust against the JPEG
compression since it is based on the zig-zag scan in DCT domain. The simulations that
are shown in Figure 4.24 — Figure 4.27 demonstrate the robustness of the watermarking
system against JPEG compression with various insertion strengths even if at low JPEG

quality factors. However, we improve the detection performance of this system by using
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the proposed CRED detector. In addition, we investigate the JPEG compression attack
with different point of view. We set the insertion strength to 0.1 to make a trade-off
between the perceptual quality and the robustness. Then, we evaluate the robustness of
the detectors to JPEG compression with various quality factors. We conclude that the
proposed CRED detector is more robust than MRD detector and the DACD detector in
terms of BER.

[nsertion PSNR [dB] 'WDR [dB]
Strength

0.05 47.9463 -42.6374
0.06 46.3626 -41.0538
0.07 45.0237 -39.7148
0.08 43.8639 -38.5550
0.09 42.8408 -37.5320
0.10 41.9257 -36.6168
0.11 41.0978 -35.7889
0.12 40.3420 -35.0332
0.13 39.6468 -34.3379
0.14 39.0031 -33.6942
0.15 38.4038 -33.0950

Table 4.1 : PSNR and WDR values of Watermarked Lena Image with Various
Insertion Strengths

84



Correlation Coefficient

Filter Size

Figure 4.5 : Detector Performances Against Mean Filtering Attack

TF

------------------------------

Correlation Coefficient

Filter Size

Figure 4.6 : Detector Performances Against Median Filtering Attack
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Figure 4.10: Detector Performances Against 9x9 Gaussian Low-Pass Filter Attack
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Figure 4.16 : Detector Performances Against 5x5 Median Filtering Attack versus

Various Insertion Strengths
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Filter Parameter 0.4 Attack versus Various Insertion Strengths
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Filter Parameter 0.6 Attack versus Various Insertion Strengths
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Figure 4.20 : Detector Performances Against AWGN Attack with 12 dB SNR
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Figure 4.24 : Detector Performances Against JPEG Compression Attack with
Quality Factor 20
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Figure 4.25 : Detector Performances Against JPEG Compression Attack with
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Figure 4.26 : Detector Performances Against JPEG Compression Attack with
Quality Factor 30
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Figure 4.27 : BER Performances of Detectors with Various JPEG Quality Factors

4.4. Image Restoration Algorithms

In practical applications, the watermarked image suffers from the channel
distortions and attacks in the channel as shown in Figure 4.28. These degradations cause
the decrease in the recovering performance of the system. As a result, the recovered

watermark has a high bit error rate and low correlation coefficient.

In this section, we propose using the existing image restoration algorithms in
order to increase the quality of the watermarked image. If the receiver may predict or
know the type of degradations, he can reduce the effects of them by using these
algorithms and improve the detection performance of the system [38]. The purpose of
image restoration is to “compensate for” or “undo” defects that degrade the
watermarked image. In cases like filtering or blurring, it is possible to come up with a

very good estimate of the actual blurring function and "undo" the blur to restore the

96



watermarked image. In cases where the watermarked image is corrupted by noise, the

best we may hope to do is to compensate for the degradation it caused.

Now, we can describe our degradation model in the frequency domain as follows;
G[u,v]:F[u,v]H[u,v]+N[u,v] 4.3)

where G[u,v] , F [u,v] , H [u,v] and N [u,v] denotes the degradated watermarked

image, watermarked image, degradation function and additive noise in the frequency
domain respectively. In addition, we have used the fact that the Fourier transform is a
linear operator to show that additive noise in the spatial domain is also additive in the

frequency domain.

In the sub-sections, we describe the algorithms used for restoring the degradated

watermarked image.

Channel
Distortions and
Attacks
Watermarked Degradated Image Restoration
Image Watermarked Algorithms
Image

Figure 4.28 : The General Scheme for Image Restoration Algorithms

97



4.4.1. Wiener Filtering

Clearly the simplest way to implement deconvolution would be direct inverse
filtering; since we know that convolution in the frequency domain is multiplication, to
deconvolve the images we could just divide the degraded image by the point spread

function (PSF) and obtain the clean image, as shown below [38]:

F[u,v] = ‘ (4.4)

However, this does not truly represent what our result would be with direct
inverse filtering, because, as Equation (4.3) shows, we also have the problem of additive
noise. If we take the noise into account, inverse filtering would give us a quite different

result:

N[u,v]

H[u,v]

G[u,v] N N[u,v] —F[u,v]+

S s i s

(4.5)

This result shows that even if we know the PSF, we can not fully recover the
clean image because of the additive noise. This also presents another problem, because
if the degradation function contains small values, the second term in Equation (4.4) will
be very large, and our estimated image will be dominated by noise. Therefore, we need

a different approach to deconvolution which will take these issues into account.

The Wiener filter is the optimum filter, in the mean square sense. That is, the
Wiener filter finds the estimate of the clean image such that the mean square error
between the estimate and the original is minimized. This is also called the minimum
mean square error (MMSE) approach to filtering. Put in mathematical terms, the clean
and estimated images are treated as random processes, and a cost function, defined as
the mean square value of the error, is minimized. We define the error function as the

difference between the clean image and the restored image:
eli. j]= f[i- /] F[isJ] (4.6)
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The cost function is defined as;
. . * . . . . 2
J=E{efi )¢ i1 = E{Jefin T (4.7)

where E{.} denotes the statistical expectation operator.

The Wiener filter is the optimum filter in the sense that it minimizes the value of
the cost function J. It is important to note that mean-square optimality does not
necessarily mean visual optimality; that is, even though the Wiener filter is optimum in
the sense of minimizing the mean-square error, this does not necessarily mean that the
estimated image from the Wiener filter will look the best compared to other
deconvolution solutions. Visual clarity is a subjective criterion, while mathematical

optimality is objective, and they do not have to be equal.

It can be shown that the solution to the MMSE problem in the frequency domain

takes the following form:

ﬁ[u,v]z H*z[u,;][u v] G[u,v] (4.8)
‘H[”’V]‘ +S; [u’,v]

where §, [u,v] is the power spectrum of the noise and S, [u,v] is the power spectrum

of the clean image.

It is easy to see that if the noise is zero, the Wiener filter reduces to the inverse
filter given in Eq. (4.1) and we theoretically get the exact clean image if we know the
PSF. Since our problem is finding an estimate of the clean image, this inherently means

that we do not have a copy of the clean image (if we did, we wouldn’t need to find an

estimate of it). Therefore, we do not have access to the image power spectrum S, [u,v] .
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We can modify the Wiener filter to take this into account by replacing the noise-to-

signal power ratio M with a constant K as an estimate of the ratio:
S, [u.v]
ﬁ’[u,v] = Lu,zv] G[u,v] 4.9)
‘H [u,v]‘ +K

The best value for K in Equation (4.9) can be found either by using random values
until a desirable result is achieved or by searching through a range to find the most
suitable result. This parameter most likely will need to be recomputed for different
images; this is a drawback of Wiener filtering because we cannot use the same value of

K to filter a variety of images.

4.4.2. Constrained Least Squares (Regularized) Filtering

As stated in the previous section, the problem with Wiener filtering is the need to
know the power spectrum of the clean image. Although we can use the parameter K to
estimate the Wiener filter, this causes more computations to be done to find the correct
value for each filtering operation. To solve this problem we can use the constrained
least squares, or regularized, filtering method to perform deconvolution. As is the case
with the Wiener filter, we need to know the PSF to perform this operation, and in fact,
the equation for this filter looks very similar to the Wiener filter. The development of
the regularized filtering method uses the Laplacian operator. The Laplacian is a second-

order derivative operator used for image enhancement as defined in [38]

Vif= N | (4.10)

Substituting the values of the partial derivates into Eq. (5.1) gives us the following

formula for implementing the Laplacian in the spatial domain:
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Vi = f(x+Ly) S (x=Ly). f(xy+1), f (e y=1)] =4 (x,y) 4.11)

This can be realized in the discrete spatial domain by using an image mask of

0 -1 0
ploy]=|-1 4 -1 (4.12)
0 -1 0

In contrast to the Wiener filter, the method of regularized filtering bases
optimality on the measure of smoothness; since taking the second derivative of an
image will smooth it out, this is why the Laplacian operator is used in the formulation of

the filter. The degradation process in matrix notation for the MxN image is [39], [40]:

g=Hf +n (4.13)

where g denotes the lexicographic order of the degradated image of size MNxi, f
denotes the the lexicographic order of the undegradated image of size MNx/, n denotes
the lexicographic order of the noise of size MNx/, H denotes the lexicographic order of

the Toeplitz matrix of size MNxMN and it is called the degradation function.

We need to find the minimum of the criterion function

2

‘Cf (4.14)
R M-1N-1 2
where f is the estimated of the undegradated image and C = [V f X y ] and
x=0 y=0
subject to the constraint
A2
‘ — n[f (4.15)

101



where ||n||2 2n'n is the Euclidean norm and f is the estimate of the undegradated
image.
It can be shown that the solution to this constrained optimization problem in the

frequency domain is:

A

F[u,v]

_ H [u,v]
‘H[u,v]‘z +/1‘P[u,v]

G[u,v] (4.16)

‘2

where P[u,v] is the Fourier transform of the (zero-padded) Laplacian matrix in Equation
(4.12), and the parameter A is the Lagrange multiplier, or the regularization parameter,
which is computed so that the constraint in Equation (4.15) is satisfied; A controls
tradeoff between the mean square error and the smoothness of the solution. Larger
values of A introduce more ringing into the restored image, while smaller values
amplify the noise. Equation (4.16) is very similar in form to the Wiener filter, and we

can see that if 4 1is set to zero, this becomes the ideal inverse filter.

4.4.3. Lucy- Richardson Algorithm

Apart from those two methods, there are some iterative approaches to the subject
of deblurring as well. The transform between the clean image and the observed blurred
image being known, one could expect that applying the invert transform would result in
a perfectly restored image. However, this is not true due to the noise in the image,
which will be strongly emphasized by the invert transform. Iterative restoration
algorithms have been developed to find a solution for that problem. At each pass, they
tend to ameliorate the PSF towards a single pixel. When the best compromise between
the image detail enhancement and the noise has been reached, the iterations should be
stopped. One of these iterative approaches applied in the Lucy-Richardson (LR)
Algorithm [41]. The LR algorithm is an iterative technique for image restoration, used
extensively for restoring astronomical images. The LR algorithm works very well
restoring images with Poisson noise, which is the predominant noise source in

astronomical imaging. The algorithm is derived by maximizing the likelihood of the
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restored image, and indeed converges to the maximum likelihood solution for images
with Poisson noise statistics. The LR algorithm is popular because of the fact that
restored images are robust to small errors in the degradation function, the algorithm

forces the image to be non-negative, and it conserves the total energy.

There are many ways to maximize the likelihood function. One of the ways the
iterative Richardson-Lucy algorithm in the spatial domain can be expressed is by the

following equation:

2 ley]= £ [x,y1-[h [x,ylo%]ém@p (0] @)
and
r[x,y] = h[x, y] ®fa’;p [x,y] (4.18)

where, ﬁlll‘)p [x,y] is the estimate of the restored image after k iterations of the

algorithm, © denotes correlation, ® denotes convolution, r[x, y] called the reblurred

image, and ® denotes point-wise multiplication. Also, the division operation in Equation
(4.17) is done by point-wise. This algorithm finds an image estimate which closely
resembles the original clean image. The correlation operator is used for matching and to
check the similarity between two images. An initial image estimate f° needs to be

provided at the start of the algorithm; as Biggs and Andrews recommended [38] , we

have used 4 ® g as this initial input. If the noise is Gaussian in nature, an alternative to

the Equation (4.17) is given by:
fon [%:01= fon, [ v+ h [xy]0(g[xy]= £, [x. ¥]®h [x,¥]) (4.19)

The algorithm as stated above is not efficiently computable; it requires iteration
over all of the pixels of the image for each iteration of the algorithm. Fortunately, the

Equation (4.17) can also be implemented partially in the frequency domain. Since
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multiplication and division in the spatial domain do not correspond to multiplication
and division in the frequency domain, the entire iteration can not be directly
transformed. Instead, some transforming and inverse transforming needs to take place to
compute each iteration. The convolution and correlation operations can be done in the
frequency domain, while the division and multiplication can be done in the time domain

This would modify Equation (4.16) as shown below:

BT 1= 5 Ty vlel 57 “Tuvle g[an/]
fapp[ ’y]_fapp[ ’y] S H [ > ] J{NI{H[u,V]OFk [u’v]}} (4'19)

> app

where ® denotes point-wise multiplication and the division operation in Equation (4.19)

is done by point-wise.

There are some drawbacks to the LR algorithm applied with Equation (4.17). The
first is that it can be slow to converge to the maximum likelihood solution. To solve this
problem, there have been several adaptations to the conventional algorithm [42]. The
first adaptation is accelerating the algorithm so that less iterations are needed to get to a
particular point along the curve to the maximum likelihood solution; this can be done
with a variety of methods. One possible way to accelerate this algorithm is to add an

exponential factor to Equation (4.17):

k4l k g[x,y] )
=15 [x ]| Ax, . 420
A I o ) 0

where v >1 and ® denotes point-wise multiplication. However, this approach may

become unstable after many iterations.

The second major drawback to the LR algorithm is that of noise amplification.
Noise amplification is a general problem with maximum likelihood techniques [42].
The more iterations that are run for the algorithm the higher the noise can get, especially
with smooth objects present in the image. One solution for this is to stop the algorithm

when noise starts becoming a factor. Of course, this can be difficult to ascertain, as the
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number of iterations at which point this happens will differ based on the image being
restored and its noise statistics. A way to determine the termination point for the
algorithm is to compute the normalized change in energy at each iteration from the
previous iteration and compare it to a threshold. For example, a possible termination

point could happen when

lha= AL,

- (4.26)
A

where ¢ is some threshold defined by the user.

4.5. Simulations Results and Discussions with Image Restoration
Algorithms

The watermarked image may undergo the channel distortions and attacks in the
channel. The image restoration algorithms remove or minimize some known
degradations in the watermarked image. Our primarily goal is to characterize the
degradations by employing the proposed CRED detector and decrease the effects of
them by applying image restoration algorithms. Thus, we improve the detection

performance of the system.

In order to obtain the simulation result shown in Figure 4.29, the watermarked image is
blurred with mean filter of various filter sizes such as 3x3, 5x5, 7x7 and 9x9. Then, it is
reconstructed by using the Wiener filter with true PSF. Actually, Wiener deconvolution
can be used effectively when the frequency characteristics of the image and additive
noise are known, to at least some degree. In the absence of noise, the Wiener filter
reduces to the ideal inverse filter. When the watermarked image is blurred and
deblurred with mean filter of size 3x3, the detection performance of the digital
watermarking system is almost perfect. As the size of the mean filter increases, the
attack gets stronger and the BER rate of the recovered watermark is increased. We can
conclude from simulation that the proposed CRED detector improves the detection

performance of the watermarking system in case of restoration.
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The Figure 4.30 demonstrates the BER performance of the detectors when the
watermarked image, first, is exposed to 3x3 mean filtering attack and AWGN attack at
various SNRs. Although the attack is very strong, the proposed detection method works
satisfactorily. The BER performances of the detectors are almost the same. In addition,

as the SNR increases we get lower BERs as expected.

We test and compare the performances of the watermark detectors in case of the
watermarked image is 3x3 mean filtered and then AWGN is added with various SNRs.
We employ Wiener filter restoration method to decrease the degradations caused by the
filtering and AWGN. The BER performance of the detectors is improved as shown in
Figure 4.31. Especially, the proposed CRED detector outperforms in comparison to the
other detectors at 18 dB and greater SNR values. In this simulation, when we set the
target BER to 10™; the proposed CRED detector achieves 4 dB SNR gain in comparison
to the DACD detector. It also achieves 7 dB SNR gain in comparison to the MRD
detector as given detailly in the Appendix C.

Then, we employ Lucy-Richardson algorithm in order to deblur the degradated
watermarked image. The experiment shown in Figure 4.32, we apply Lucy-Richardson
restoration algorithm to the watermarked image. In this experiment, we assume that the
receiver knows the true PSF but nothing knows about the noise. We aim at reducing the
degradation caused by 3x3 mean filter and AWGN. The algorithm increases the detector
performances considerably. In this simulation, when we set the target BER to 10™; the
proposed CRED detector achieves 3 dB SNR gain in comparison to the DACD detector.
It also achieves 6 dB SNR gain in comparison to the MRD detector as given detailly in
the Appendix C.

Finally, we apply regularized filter to the degradated watermarked image for
decreasing the effects of the degradations as shown in Figure 4.33. In this experiment,
we assume that the receiver knows the true PSF but nothing knows about the noise. The
simulation shown in Figure 4.33, the BER performance of the proposed CRED detector
increases as the SNR increases. It has lower BERs than the other detectors especially at

18 dB SNR levels. In this simulation, when we set the target BER to 10™*; the proposed
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CRED detector achieves 3 dB SNR gain in comparison to the DACD detector. It also
achieves 6 dB SNR gain in comparison to the MRD detector as shown in Appendix C.

We compare the BER performances of the detectors before applying the
restoration algorithms and after applying restoration algorithms in simulation shown in
Figure 4.34 - Figure 4.36. We can conclude from the simulations that the restoration
algorithms improve the detection performance of the digital watermarking system since
they decrease the effects of the degradations caused by the channel distortions and
attacks. In addition, we can observe that the proposed CRED detector achieves the
maximum performance improvement after applying the restoration algorithms. On the
other hand, depending on the particular application and the media being watermarked,
computational complexity can be a significant factor in the assessment of the feasibility
of a watermarking system. For example, in DVD players watermark extraction must be
performed in real-time. Hence, computational complexity is very critical for these
applications. In this thesis, the proposed CRED detector has the lowest computational
complexity since it employs thresholding scheme. In addition, the MRD detector is less
complex than the DACD detector, since it does not estimate the channel parameters by

using the reference watermarks and does not assign channel parameter.

The watermarked image is exposed to 3x3 Gaussian low-pass filter attack with
filter parameter 0.8 and AWGN attack at various SNRs in Figure 4.30. In this
simulation, the proposed CRED detector decreases the BER at the same SNR level.
Then, we employ Wiener filter restoration method to decrease the degradations caused
by the Gaussian low-pass filter and AWGN. The BER performance of the detectors is
improved as shown in Figure 4.38. In this simulation, if we set the target BER to 107;
the proposed CRED detector achieves 2 dB SNR gain in comparison to the DACD
detector. On the other hand, the MRD detector can’t attain the target BER as given

detailly in the Appendix C.

The experiment shown in Figure 4.39, we apply Lucy-Richardson restoration
algorithm to the watermarked image. Our goal is to reduce the degradation caused by
3x3 Gaussian filter and AWGN. The algorithm decreases the BERs of the recovered

watermarks considerably. In this simulation, if we set the target BER to 10 the
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proposed CRED detector achieves 2 dB SNR gain in comparison to the DACD detector.
However, MRD detector can’t attain the target BER as given detailly in the Appendix C.

The experiment shown in Figure 4.40, we apply regularized filter to the
degradated watermarked image. In this experiment, the BER performance of the
detectors increases as the SNR increases. For example, if we set the target BER to 107;
the proposed CRED detector achieves 3 dB SNR gain in comparison to the DACD
detector but the MRD detector can’t attain the target BER level as given detailly in the

Appendix C.

Finally, we investigate the effects of image restoration algorithms on the BER
performance of the detectors in simulation shown in Figure 4.41 - Figure 4.43. Thus, we
can conclude from the simulations that the restoration algorithms improve the detection
performance of the watermarking system considerably. In addition, we can claim that
the proposed CRED detector achieves the maximum performance improvement after

the restoration algorithms.

Bit Error Rate (BER)

Filter Size

Figure 4.29 : BER Performances of the Detectors with Blurring Mean Filter of Various
Filter Sizes and Wiener Filter Restoration
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Figure 4.30 : BER Performances of the Detectors Against 3x3 Mean Filter and

AWGN at Various SNRs
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Figure 4.31 : BER Performances of the Detectors Agianst 3x3 Mean Filter and
Applying Wiener Filter Restoration Against AWGN at Various SNRs
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Figure 4.33 : BER Performances of the Detectors Against 3x3 Mean Filter and
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Applying Regularized Filter Restoration Against AWGN at Various SNRs
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Figure 4.34 : BER Performance of MRD Detector Against 3x3 Mean Filter and

Various Restoration Methods
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Figure 4.35 : BER Performance of DACD Detector Against 3x3 Mean Filter and
Various Restoration Methods
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Figure 4.36 : BER Performance of the Proposed CRED Detector Against 3x3

Mean Filter and Various Restoration Methods
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Figure 4.37: BER Performances of the Detectors Against 3x3 Gaussian Low-Pass
Filter with Parameter 0.8 and AWGN at Various SNRs
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Figure 4.38: BER Performances of the Detectors Against 3x3 Gaussian Low-Pass
Filter with Parameter 0.8 and Applying Wiener Filter Restoration Against AWGN at
Various SNRs
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Figure 4.39: BER Performances of the Detectors Against 3x3 Gaussian Low-Pass
Filter with Parameter 0.8 and Applying Lucy-Richardson Restoration Algorithm
Against AWGN at Various SNRs
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Filter with Parameter 0.8 and Applying Regularized Filter Restoration Against AWGN
at Various SNRs
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Figure 4.41: BER Performance of the MRD Detector Against 3x3 Gaussian Low-

Pass Filter with Parameter 0.8 and Various Restoration Methods

114



—@— Without Restoration

Bit Error Rate (EER)
—
—

FH EHEH HI!IH

+ With Wiener Filter
1 —%— With Regularized Filter
. —O— With Lucy-Richardson Algorithm

i
0 3 6 9 12

i | |
15 18 21 24

SNR [dB]

27

30

Figure 4.42: BER Performance of the DACD Detector Against 3x3 Gaussian

Low-Pass Filter with Parameter 0.8 and Various Restoration Methods
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Figure 4.43: BER Performance of the Proposed CRED Detector Against 3x3

Gaussian Low-Pass Filter with Parameter 0.8 and Various Restoration Methods
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4.6. Conclusions

In this chapter, we investigate the performances of the watermark detectors
described in Chapter 3, in the non-blind watermarking system in DCT domain. Our
primarily concern is to both characterize the degradations by employing the proposed

CRED detector and decrease effects of them by using image restoration algorithms.

We can conclude from the simulation results that the proposed CRED detector
increases the detection performance of the watermarking system both in terms of BER
and in terms of correlation coefficient between the embedded and the recovered
watermark against pre-mentioned channel distortions and attacks. For example, when
we set the target correlation coefficient to 0.7; the proposed CRED detector decreases
the JPEG quality factor from 12 to 9 in comparison to the DACD detector. It also
decreases the JPEG quality factor from 14 to 9 in comparison to the MRD detector.
Thus, we can conclude that if the receiver employs the proposed CRED detector, the
transmitter can more aggressively compress the watermarked signal. In addition, the
image restoration algorithms improve the system capacity, robustness and the decreases
the BER of the recovered watermark by decreasing the effects of the degradations.
Especially, the proposed CRED detector achieves the major improvement when the
image restoration algorithms applied. For example, when we set the target BER to 107
in the Wiener filter restroration; the proposed CRED detector achieves 4 dB SNR gain
in comparison to the DACD detector. It also achieves 7 dB SNR gain in comparison to

the MRD detector.

Finally, we compare the required detection time for the employed detection
algorithms. The simulations are run on a PC with 512 MB RAM, Intel Celeron 1,5 GHz
CPU, and Windows XP operating system. The MRD detector requires 5,305070
seconds, the DACD detector requires 5,23121 seconds, and the proposed CRED
detector requires 5,272602 seconds. Thus we can claim that the proposed CRED

detector has the lowest computational complexity.
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5. CONCLUSIONS & FUTURE WORK

The performance of digital watermarking systems is limited with the watermark
detection methods used for recovering the embedded watermark. In this thesis, we

develop several watermark detection schemes for various digital watermarking systems.

The simulations results demonstrate that the digital watermarking systems, which
employ the proposed watermark detection methods, improve their detection
performance both in terms of bit error rate and the correlation coefficient between the
recovered watermark and embedded watermark. On the other hand, we may test the
robustness of the detectors against different channel distortions and attacks such

cropping, copying, rotation etc. by employing Stirmark benchmark tool [43].

In this thesis, we only employ repetition coding. In the future work, as we model
the digital watermarking system as a communication channel, we can employ more
intelligent error correction codes such as hamming codes, turbo codes, LPDC codes etc.
in order to recover the embedded watermark with low bit error rates. In addition, the
watermarked image may be pre-processed with the improved and more intelligent
image restorations algorithms for reducing and compensating the effects of channel
distortion and attacks just before the watermark detection process. Furthermore, we can
employ JPEG quantization table in the embedding process in the spread spectrum based
watermarking system. Thus, we can investigate the effects of quantization on the host

signal interference.
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APPENDIX A — SNR AND WDR GAIN TABLES TO ACHIEVE SOME
TARGET BER AND CORRELATION COEFFICIENTS FOR QUANTIZATION
BASED WATERMARKING SYSTEM

Target Required SNR for Required SNR Required SNR
Correlation MRD Detector for DACD Detector | for CRED Detector
Coefficient

0,4 22 dB 15dB 13dB
0,5 25dB 12 dB 15 dB
0,6 26 dB 18 dB 17 dB
0,7 28 dB 20dB 18 dB
0,8 30dB 24 dB 21 dB
0,9 35dB 30dB 27 dB

Table 1: Target Correlation Coefficients versus Required SNR for Detectors

Target Required Required Required
Correlation JPEG Quality JPEG Quality JPEG Quality
Coefficient Factor for MRD Factor for DACD Factor for CRED

Detector Detector Detector
0,4 71 29 25
0,5 78 36 30
0,6 83 40 33
0,7 87 44 42
0,8 91 56 46
0,9 97 76 62

Table 2: Target Correlation Coefficients versus Required JPEG Quality Factor for

Detectors
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Required Required Required
Target BER WDR for MRD WDR for DACD WDR for CRED
Detector Detector Detector
107 - 28 dB -30 dB
10 - -20 dB -25dB
107 - - -20 dB

Table 3: Target BERs versus Required WDR for Detectors at 25 dB SNR

Required Required Required
Target BER WDR for MRD WDR for DACD WDR for CRED
Detector Detector Detector
107 - 28 dB -30 dB
10" - -20 dB -25dB
107 - - -20 dB

Table 4: Target BERs versus Required WDR for Detectors when the

Watermarked Image is exposed to JPEG Compression with Quality Factor 70

Required Required Required
Target BER WDR for MRD WDR for DACD WDR for CRED
Detector Detector Detector
107 - 28 dB -32dB
10" - 23 dB 27 dB
107 - - -21dB

Table 5: Target BERs versus Required WDR for Detectors when the

Watermarked Image is exposed to 3x3 Mean Filter attack




Required Required Required
Target BER WDR for MRD WDR for DACD WDR for CRED
Detector Detector Detector
107 - 29 dB -31dB
10 - -22 dB -26 dB
107 - - 21 dB

Table 6: Target BERs versus Required WDR for Detectors when the

Watermarked Image is exposed to 3x3 Median Filter attack
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APPENDIX B — SNR GAIN AND JPEG QUALITY FACTOR TABLES TO
ACHIEVE SOME TARGET BER AND CORRELATION COEFFICIENTS
WITHOUT IMAGE RESTORATION FOR NON-BLIND WATERMARKING

SYSTEM
Target BER Required SNR Required SNR Required SNR
for MRD Detector | for DACD Detector | for CRED Detector
107 24 dB 20 dB 16 dB
10 27 dB 24 dB 20 dB
107 30 dB 29 dB 25dB

Table 7: Target BER versus Required SNR for Detectors

Target Required Required Required
Correlation JPEG Quality JPEG Quality JPEG Quality
Coefficient Factor for MRD Factor for DACD Factor for CRED

Detector Detector Detector
0,5 8 7 6
0,6 10 9 8
0,7 14 12 9
0,8 16 14 11
0,9 22 17 14

Table 8: Target Correlation Coefficient versus Required JPEG Quality Factor for

Detectors
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Target Required SNR Required SNR Required SNR
Correlation for MRD Detector | for DACD Detector | for CRED Detector
Coefficient

0,5 6 dB 4 dB 2dB
0,6 7 dB 6 dB 3dB
0,7 9dB 8 dB 4dB
0,8 12 dB 9dB 7 dB
0,9 15dB 13dB 10 dB

Table 9: Target Correlation Coefficient versus Required SNR for Detectors

Target BER Required Required Required
Insertion Strength Insertion Strength Insertion Strength
for MRD Detector | for DACD Detector | for CRED Detector

107 0,14 0,113 0,11
10 - 0,116 0,13
107 - 0,15 0,138

Table 10: Target BER versus Required Insertion Strength for Detectors against

3x3 Mean Filter Attack
Target BER Required Required Required
Insertion Strength Insertion Strength Insertion Strength
for MRD Detector | for DACD Detector | for CRED Detector
107 0,13 0,113 0,11
10 - 0,132 0,121
107 - 0,15 0,141

Table 11: Target BER versus Required Insertion Strength for Detectors Against
3x3 Median Filter Attack
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APPENDIX C - SNR GAIN AND JPEG QUALITY FACTOR TABLES TO
ACHIEVE SOME TARGET BER AND CORRELATION COEFFICIENTS
WITH IMAGE RESTORATION FOR NON-BLIND WATERMARKING

SYSTEM
Target BER Required SNR Required SNR Required SNR
for MRD Detector | for DACD Detector | for CRED Detector
107 24 dB 19 dB 16 dB
10 28 dB 25dB 21dB
107 30 dB 23 dB

Table 12: Target BER versus Required SNR in case of Wiener Filter Restoration

for Detectors against Mean Filtert AWGN

Target BER Required SNR Required SNR Required SNR
for MRD Detector | for DACD Detector | for CRED Detector
107 24 dB 20 dB 18 dB
10" 28 dB 25dB 22 dB
107 30 dB 23 dB

Table 13: Target BER versus Required SNR in case of the LR Algorithm

Restoration for Detectors Mean FiltertAWGN

Target BER Required SNR Required SNR Required SNR
for MRD Detector | for DACD Detector | for CRED Detector
107 24 dB 20 dB 18 dB
10 28 dB 25dB 22 dB
107 30 dB 23 dB

Table 14: Target BER versus Required SNR in case of Regularized Filter

Restoration for Detectors Mean Filtert AWGN
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Target BER Required SNR Required SNR Required SNR
for MRD Detector | for DACD Detector | for CRED Detector
107 - 21dB 19 dB
10" - 26 dB 24 dB
107 - 28 dB

Table 15: Target BER versus Required SNR in case of Wiener Filter Restoration

for Detectors Gaussian Low-Pass Filtert AWGN

Target BER Required SNR Required SNR Required SNR
for MRD Detector | for DACD Detector | for CRED Detector
107 - 22 dB 20 dB
10" - 26 dB 25dB
107 - 29 dB

Table 16: Target BER versus Required SNR in case of the LR Algorithm

Restoration for Detectors Gaussian Low-Pass FiltertAWGN

Target BER Required SNR Required SNR Required SNR
for MRD Detector | for DACD Detector | for CRED Detector
107 - 22 dB 19 dB
10 - 26 dB 25 dB
107 - 29 dB

Table 17: Target BER versus Required SNR in case of Regularized Filter

Restoration for Detectors Gaussian Low-Pass Filtert AWGN
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