RECENT ADVANCES IN THE THEORY OF NONLINEAR
PSEUDORANDOM NUMBER GENERATORS

by
AYCA CESMELIOGLU

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of

Master of Science

Sabanci University

Spring 2002



RECENT ADVANCES IN THE THEORY OF NONLINEAR PSEUDORANDOM
NUMBER GENERATORS

APPROVED BY

Prof. Dr. Alev TOPUZOGLU oo,

(Thesis Supervisor)

Assist. Prof. Cem GUNERIL oo,

Assist. Prof. Berrin YANIKOGLU  ooooovoooooeoeeeo

DATE OF APPROVAL: September 18th, 2002



©Ayga Cegmelioglu 2002
All Rights Reserved



Anneme, babama
ve

biricik kizkardesime...



Acknowledgments

I would like to express my gratitude and deepest regards to my supervisor Prof.Dr.
Alev Topuzoglu for her motivation, guidance and encouragement throughout this
thesis.

I also would like to thank Damla-Emrah Acar, Dilek Akyalcin, Tugba Demirci,
Beril Ciftci, Sibel Koyuncu and Narcisa Poturak for their friendship and endless
support.



RECENT ADVANCES IN THE THEORY OF PSEUDORANDOM
NUMBERS

Abstract

The classical linear congruential method for generating uniform pseudorandom
numbers has some deficiencies that can render them useless for some simulation
problems. This fact motivated the design and the analysis of nonlinear congruential
methods for the generation of pseudorandom numbers.

In this thesis, we aim to review the recent developments in the study of nonlin-
ear congruential pseudorandom generators. Our exposition concentrates on inversive
generators. We also describe the so-called power generator and the quadratic expo-
nential generator which are particularly interesting for cryptographic applications.
We give results on the period length and theoretical analysis of these generators.
The emphasis is on the lattice structure, discrepancy and linear complexity of the
generated sequences.

Keywords: Discrepancy, inversive congruential generator, lattice test, linear com-
plexity profile, linear complexity, power generator, period length, pseudorandom

number generator

vi



(")zet

Diizgiin dagilan sozde rastgele say1 iiretmede genellikle dogrusal kongruans tipi
tiretecler kullanilir. Ancak, bu iireteglerin bazi 6zellikleri simiilasyon problemlerinde
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iretecler yoluyla elde edilen dizilerin period uzunlugu, 6rgi yapisi, sapma ozellikleri
ve dogrusal karmagikligi tizerindeki giincel sonuglar verilmistir.
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CHAPTER 1

INTRODUCTION

Numbers that are “chosen at random” are needed in many different areas; their
use is crucial in stochastic simulations, computer programming and cryptography.
In practice, random numbers are generated by deterministic algorithms and hence
are not really “random” so we actually work with the so-called “pseudorandom”
numbers. Throughout this thesis we will concentrate on uniform pseudorandom
numbers (abbreviated PRN). In fact, no formal definition of a sequence of uniform
PRN can be given, we only have certain characteristics in mind when we talk about

such a sequence:
e the sequence is generated by a deterministic algorithm;
e the sequence should be uniformly distributed on the unit interval [0, 1) ;
e it should pass relevant statistical and theoretical tests for randomness.

Reader is referred to the books Knuth [16] and Niederreiter [25] for further discussion

on “randomness” of generated sequences.

Definition 1.0.1 Let (z,),>0 be a sequence in the unit interval [0,1) . (xn)n>0 @S

said to be uniformly distributed on the unit interval if

=z forallze[0,1)



where An(x) is the counting function which denotes the cardinality of the set

{z 1 <n <N, z,€[0,2)}.

Definition 1.0.2 Let S be an arbitrary nonempty set and (S,)n>0 be a sequence of
elements of S. If there exist integers r > 0 and ny > 0 such that s, = s, for all
n > ng, then the sequence is called periodic and r is called a period of the sequence.
The smallest number among the possible periods of the sequence is called the period
length of the sequence, denoted by per(y,) . If (Sn)n>0 is periodic with period length
r, then the least nonnegative integer ng such that s, . = s, for all n > ny is called

the preperiod. We call (sy,)n>0 purely periodic if ng =0 .

All standard methods of generating uniform PRNs are based on congruences and
they all yield periodic sequences.

The desired properties of sequences of PRNs can be summarized as follows:

long period length

good statistical properties

little intrinsic structure (such as lattice structure)

reasonably fast generation

The classical method for the generation of uniform PRN is the linear congruential
method. Choose a large integer M called the modulus and generate a sequence

(n)n>o of integers in Zy, = {0,1,..., M — 1} by the recursion
Tpi1 =azx, +b (mod M) forn=0,1,...

with initial value zy and a,b € Zj); where we assume that ged(a, M) = 1 to get
a purely periodic sequence. The linear congruential PRNs in [0, 1] are obtained by
the normalization

i
n:_n; fi :0,1,...
Y i orn



We always have per(y,) < M . The conditions on a,b € Zy; such that per(y,) =
M is given in Knuth [16, section 3.2]. Linear congruential generators are fast and
easy to implement. Theoretical results on the structural and statistical properties
of linear congruential generators indicate that these generators show a reasonable
behavior if a judicious choice of parameters is made. But, to guarantee acceptable
properties, a considerable amount of computational effort is needed. Because of the
simple nature of the underlying linear recursion, the generator has an unfavorable
lattice structure which can not be overcome by any choice of parameters. This
lattice structure can render the generator useless for many simulations that require
random irregularities. We will give the definition of the lattice of a generator in
chapter 3.

To overcome these deficiencies of the linear congruential method, nonlinear meth-
ods for uniform PRN generation have been introduced. The first nonlinear congru-

ential method is the quadratic congruential generator
Tpy1 = ax? +br, + ¢ (mod m)

which has been introduced by Knuth [16] and studied in J.Eichenauer, J.Lehn [10],
J.Eichenauer-Herrmann [3-5] and J.Eichenauer-Herrmann, H.Niederreiter [7]. In
J.Eichenauer-Herrmann and E.Herrmann [6] another polynomial generator, namely,
the cubic generator is studied.

An overview of the general nonlinear congruential generators are given in [25,
section 8.1].

Let M be a large modulus. A sequence xg, 1, ... of elements in Z,; is given by
the recursion

Tpi1 = f(z,) (mod M) forn=0,1,...

with initial value xo where f is a fixed integer-valued function on Z,; . We obtain

the PRNSs o, y1,... in [0, 1) by normalization

Tn

Un =77 forn=0,1,...

If the function f can not be represented by a linear polynomial modulo M, then we

arrive at a nonlinear generator.



In the course of this thesis, we are going to deal with nonlinear congruential
generators with a stress on the inversive congruential generator which employs the

operation of multiplicative inversion modulo M .

1.1. Preliminaries

Let IF, be a finite field with ¢ elements. In this section, we introduce the notation and
the terminology and give the results which will be used in the subsequent chapters.
We refer the reader to the classical book of Lidl and Niederreiter [17] for proofs and
related results.

For every finite field Fy, we denote by F; the multiplicative group of nonzero

elements in F, . F} is a cyclic group with ¢ — 1 elements.

Definition 1.1.3 A generator of the cyclic group F; is called a primitive element

of Fy .
In F, there are ¢(q — 1) primitive elements, where ¢ is the Euler’s function.

Definition 1.1.4 A polynomial f € F,[x] of degree m > 1 is called a primitive

polynomial over IF, if it is the minimal polynomial over F, of a primitive element

of Fgm .

Definition 1.1.5 Let k be a positive integer and ag, aq,...,ar_1 be given elements

of a finite field F,. A sequence sy, s1,... of elements of F, satisfying the relation
Sntk = Qk—18n4k—1 T Qk—28n—k—2 + *++ + AoSp + (1.1)

forn=0,1,... is called a kth-order linear recurring sequence in I,

The terms sg, s1, ..., S;_1 which determines the rest of the sequence uniquely are

called initial values. The relation in (1.1) is called a linear recurrence relation of



order k. If a = 0 then (1.1) is called homogeneous linear recurrence relation in Fy,

otherwise we call it as inhomogeneous.

Definition 1.1.6 Let sy, s1,... be a kth-order homogeneous linear recurring se-
quence in Fy satisfying the relation in (1.1) for n = 0,1,... where a; € F, for
0 < 3 <k —1. The characteristic polynomial of the linear recurring sequence is

defined as

1 k—2

flx) =2 —ap_12™ ' —ap_o2™ % — . —qp € F,[x] (1.2)

A linear recurring sequence satisfies many linear recurring relations. For ex-
ample, if the sequence s,, is periodic with period p, then for n = 0,1,..., 8,4, =
Sny  Sn+2p = Sp and so on. The following theorem gives us a relation between the

different linear recurring relations satisfied by a given linear recurring sequence.

Theorem 1.1.1 Let sy, s1,... be a homogeneous linear recurring sequence in [y
Then there exists a uniquely determined monic polynomial m(z) € F,x] having
the following property: a monic polynomial f(x) € Fylx] of positive degree is a

characteristic polynomial of the given sequence if and only if m(x)|f(x).

The uniquely determined polynomial m(z) of the above theorem is called the minimal polynomial
of the sequence s, s1,.... In fact minimal polynomial is the characteristic polyno-
mial of the linear recurrence relation of least possible order satisfied by the given

sequence.

Definition 1.1.7 Let sg,s1,... be a kth-order homogeneous linear recurring se-
quence in F, which is given by (1.1). The reciprocal characteristic polynomial is
defined as

fA(x) =1—ap 10— ap_o2® — -+ — apr® € F[z] . (1.3)

The reciprocal characteristic polynomial and the characteristic polynomial are re-

lated by f*(z) =a2*f(1).

Definition 1.1.8 Let s¢,s1,... be an arbitrary sequence of elements of F, . The



generating function of this sequence is defined as

G’(x):so+sla:+sgx2+---+snx"+--~:an:c" (1.4)
n=0
Theorem 1.1.2 Let sy, s1,... be a kth-order homogeneous linear recurring se-

quence in F, which is given by (1.1). Let f*(x) be its reciprocal characteristic

polynomial and G(x) be its generating function. Then the identity

g9(z)
G(r) =
O = 5w
holds with
k=1 j ‘
g(x)=— Qir—jsix’ € Fylx]
j=0 i=0
where we set ap, = —1 .

For the terms of a linear recurring sequence, an explicit formula is given in
Lidl-Niederreiter [18] as follows: let sg,s1,... be a kth-order homogeneous linear
recurring sequence in F, which is defined as (1.1) with characteristic polynomial
f(z) € Fy[x] as in (1.2) and the reciprocal characteristic polynomial as in (1.3). Let
eo be the multiplicity of 0 as a root of f(x), and let oy, s, ..., a,, be the distinct
nonzero roots of f(z) with multiplicities ey, eq, . .., €, respectively.

Then, for the reciprocal characteristic polynomial we get

m

£r() = a0 =[] - sy

i=1

Since we have deg(f*) = k — ey , by theorem 1.1.2

o) = £ = L+ i

with t,, € F, and deg(b) < k — e¢ . Partial fraction decomposition gives

b(l‘) B m e;—1 ﬁij
P~ 22 = ap?

i=1 j=0

where the f3;; belong to the splitting field of f(z) over F, .

1 = (m+i\ . .,
(1—04z‘$)j+1_z( J )aix

n=0

6



and hence
o] ep—1 00 m e;—1
n-+j
60 =3 = S+ 3 (S5 ("))
Then, comparing the coefficients, we get

_tn+ieil(n+])@]a (1.5)

=1 5=0

for n = 0,1,... where ¢, = 0 for n > ¢y and (3;; belong to the splitting field of
f(@).

Theorem 1.1.3 Let s¢, s1,. .., be a sequence in I, satisfying a k-th order homoge-
neous linear recurrence relation with characteristic polynomial f(x) € Fylx]. Then
f(z) is the minimal polynomial of the sequence if and only if the state vectors
S0,81, - - -, Sk—1 are linearly independent over IF,, where sy, = (Sn, Spt1,-- -5 Sntk—1)

n=0,...,k—1.

Definition 1.1.9 A polynomial f € F,[z] is called a permutation polynomial if the

associated polynomial function f:c— f(c) from F, into F, is a permutation of F,

Lemma 1.1.4 Ifd > 1 is a divisor of g—1, then there is no permutation polynomial

of F, of degree d.
Lemma 1.1.5 Let ag,ay,...,a,-1 be elements of F,. Then the following conditions
are equivalent:

® ap,ai,...,aq1 are distinct

0 fort=0,1,...,q—1
-1 fort=q—1

1
toOat—

Let G be a finite abelian group of order |G| with identity element 1¢ . A character
x of G is a homomorhism from G into the multiplicative group U of complex numbers
of absolute value 1. In other words y is a mapping from G onto U satisfying
X(9192) = x(g1)x(g2) . Note that x(1g) = 1 . Among the characters of G, there is
the trivial character which is defined by xo(g) = 1 for all g € G, all other characters

of G are nontrivial.



Remark 1.1.1 For a nontrivial character of the finite abelian group G, we have

> x(g)=0.

geG

We use the term, additive character for the characters of the additive group of I,
and the term multiplicative character for the characters of the multiplicative group
s .

Now, we define certain exponential sums and give the upper bounds on them

which will be used in the subsequent chapters.

Definition 1.1.10 Let ¢ be a multiplicative and x be an additive character of Fy .
Then the Gaussian sum is defined by
G, x) =Y _9(c)x(e)
ceF:
Theorem 1.1.6 Let ¢ be a multiplicative and x be an additive character of I, .
Then the Gaussian sum G(1,x) satisfies

qg—1 fory =1, x=xo
G, x) =4 -1  fore=1h, Xx# Xo
0 for ¢ # o, x = Xo
If 1 # v and x # xo then

G, x)| = ¢'/* .

If X is a multiplicative character of F,, then A is defined for all nonzero elements
of F, . But we can extend the definition of A by setting A(0) = 1 if X is the trivial
character and A\(0) = 0 if A is a nontrivial character. Then we have

g if \is trivial,
D_Ae) =
ceFy 0 if X is nontrivial.
Definition 1.1.11 Let Ay, ..., A\ be k multiplicative characters of F, . Then the

sum

T, M) =) dier) - Awlen)

with the summation extended over all k-tuples (c1, . .., cx) of elements of F, satisfying

¢+ +c =1, s called a Jacobi sum in [Fy .

8



If £ =1 then J(A) = A\ (1) = 1 for any multiplicative character of IF, .

Theorem 1.1.7 Let Ay, ..., \; be nontrivial multiplicative characters of F, . Then

k—1
L](Al,...,Ak)|:=q4§7
Definition 1.1.12 Let x be a nontrivial additive character of F, and let a,b € F, .

Then the sum

K(x;a,b) = Z x(ac+bc™t)

cEF;

18 called a Kloosterman sum.

Theorem 1.1.8 If x is a nontrivial additive character of F, and a,b € F, are not

both zero, then the Kloosterman sum K(x;a,b) satisfies

1K (x;a,b)| < 2¢"*.



CHAPTER 2

PERIOD LENGTH

2.1. The Period Length of Inversive Congruential Generators

The widely used method of PRN generation, linear congruential method, has
been investigated extensively and the research uncovered many deficiencies of this
method. To overcome these deficiencies new methods of PRN generation have been
designed and analysed. In this chapter we will mainly deal with the inversive con-
gruential generator with modulus M which is defined as follows:

Let M be alarge, fixed integer. For fixed elements a,b € Z); where gcd(a, M) =1
and an initial value xg € Z,;, we define inversive congruential generator modulo M
by

b if z, =0
Tyl = (2.1)
ar, ' +0b ifz, #0
where x,' is the multiplicative inverse of z,, modulo M. We will consider the

case where the modulus M is a prime p > 5 and the case M = 2° where ¢ > 3

respectively and establish the criteria for these generators to have maximal period

10



length. The case M = p" where p is an odd prime and n > 2 was studied by

Eichenauer-Herrmann, Topuzoglu in [8].

2.1.1. The Period Length of Inversive Congruential Generators with

Prime Modulus

The finiteness of F, guarantees that the sequence (z,),>0 defined in (2.1) is
purely periodic with period length being at most p. Our aim in this section is
to determine the conditions which guarantee the maximal period length for the
inversive generator. It turns out that the study of the polynomial f(z) = 2> —br—a
is crucial in obtaining these conditions. We first note that f(z) = 22 —bz—a needs to
be irreducible over F, in order to obtain the maximal period. When f(x) = z*—bz—a
has a root ¢ € F, then z;, = ¢ for some k € Z implies that x, = c for all n > k .
We assume therefore that f(x) is irreducible. Then f(x) factors completely in
Fpelz] and f(z) = (x — a)(x — §) for o, 8 € F,2 such that o, 3 ¢ F,. Choose the
initial value zy = b. Define Ay, Ay, ... of elements of I, by Ay = 1,4; = b and
Apy1 = a1 +bA, (mod p) for all n > 1. Now, we can characterize x,, by using

A,, as follows:

Ani1§f A £ ()
P 22)
b ifA, =0

From the definition it follows that A, is a second order homogeneous linear recurring

sequence with f(z) = 22 —bx —a as its characteristic polynomial. f(z) is irreducible
over IF, but it splits in F,» and it has two distinct roots «, 3 € F,.. Therefore
Ap = ma™ + 78" for n = 0,1, ... where 71,v2 € Fj2 are uniquely determined by the
initial values of the sequence.
Ag = 1 implies that vy =1 — 7».
—a B—b

Ay = b implies 75 = Z— and v, = £—.

] B—a

11



From f(z) = (r —a)(z — ) = 22 —bx —a, we get b = a+ 3. Therefore 5 = [%a

and vy, = QO‘TB and we finally get
n+1l _ an+l

A = Q o o« I}

a— 0 0 —« a—0

(2.3)

for all n > 0.

Lemma 2.1.1 Let f(z) be irreducible in Fylx]. Let a, 3 € Fy2 be the roots of f(x).
If N s the order of the element g in the multiplicative group of F,z, then the period
length of the sequence {x,} generated by the inversive congruential method is N —1

with to = b .

Proof: If the order of g is N, then for all 1 <n < N, " # o” but Y = a¥. So
A, #0forall0 <n < N —1while Ay_; =0. Since Ay_1 =0, we get zy_1 = b by
definition and N — 1 is the smallest such index. Therefore the period length of the

sequence (,),>0 with g = bis N — 1.

a

Definition 2.1.1 f(z) = 2® — bx — a will be called an inversive maximal period
polynomial (or an IMP polynomial) if the period length of the corresponding inversive

cogruential sequence equals p.

Theorem 2.1.2 f(z) = (x — a)(z — () is an IMP polynomial if and only if the

order ofg in the multiplicative group of Fp2 is p+ 1.

Proof:

Suppose that f(z) is an IMP polynomial. Then the sequence obtained from
f(z) has period length p. From the remarks at the beginning of the section, f(x)
is irreducible over F, . Since (z,,),>0 is assumed to have period length p, finiteness
of [F, guarantees that b € [F, occurs in the sequence. Without loss of generality we

can assume that the initial value is b, i.e, o = b. Therefore x, = xo =0 .

From equation (2.2), z, = Afx:l and x, 1 = 0 which implies A, = —”‘piigp—“ —0
and o — §7*1 = 0. Then (g)p“ =1 and p+1 is the least such integer, hence the

order ofg € Fpeisp+1.

12



Conversely, assume that the order of g in the multiplicative group of Fj» is p+1.
Then f(x) is irreducible over F, otherwise the roots «a, 5 of f(z) would be in F, and
the order of g would divide p — 1.Therefore, by Lemma 2.1.1 we can conclude that
the period length of the sequence (z,),>¢ generated by equation (2.1) with initial
value o = b has period length p. In fact with any initial value this sequence will

have period length p .

|

Corollary 2.1.3 Let o be any generator of the multiplicative group of F(p?), and
a =o', for0<t<p®>—1bearootof f(x) =2*—bx —a. Then f(x) is an IMP
polynomial if and only if ged(t,p 4+ 1) = 1. In particular, any primitive quadratic

polynomial over Fy, is an IMP polynomial.

Proof:

Assume that f(z) is irreducible over F,. If a = o' is a root of f(z) then the
other root of f(z), f=a? =o',

Assume that f(z) is an IMP polynomial. Then the order of £ = a?~! = ¢*(P~1)
is p+ 1. Suppose that ged(t,p + 1) # 1, then there exists k € Z* such that t = rk

and p + 1 = sk for some r, s € Z. So,

(é)s _ (O,t(pfl)>s — O_rk(pfl)s — O_r(p271) -1
(6%

The order of g is p+ 1 hence gcd(t,p+1) = 1.

Conversely, assume that ged(t,p 4+ 1) = 1 but f(x) is not an IMP polynomial.
By Theorem 1, f(z) is an IMP polynomial if and only if the order of g =p+ 1
Hence g # p+ 1 but at the same time,

R

(07

Therefore the order of g is less than p+ 1. Suppose that the order of g isk<p+1.
Then
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E)F = (@) = () =1

Since o is a primitive element of Fz, p? —1|t(p—1)k , i.e, p+1|tk . gcd(t,p+1) =1
implies p + 1|k which is a contradiction (k < p+ 1).
If t = 1 then « is a primitive element of F,» and f(x) becomes a primitive

quadratic polynomial over F,. Since ged(1,p+1) =1, f(z)is an IMP polynomial.
O

The above corollary shows that the set of IMP polynomials over [F,, contains all
primitive quadratic polynomials. We can obtain polynomials over I, satisfying the
condition of Corollary 2.1.3 in the following way:

Suppose that g(z) € F,[z] is a primitive quadratic polynomial and o € F2 be
any root of it. Let ¢ € Z such that 0 < t < p? — 1,then the minimal polynomial of

ot satisfies the required condition.

Corollary 2.1.4 Let T = 21 and let m(z) be the minimal polynomial ofg over
F, where «, 3 are the roots of the polynomial f(z) = x* —bx — a € Fy[z]. If f(x) is
an IMP polynomial, then ged(m(z), 2T +1) # 1.

Proof:
Suppose that f(x) is an IMP polynomial. Then the order of g is p+ 1. There-

B

fore (g)T = —1 and g is a root of #” 4+ 1. Furthermore £ is a root of m(z) so

ged(m(z), 2T +1) # 1.
O

Let us remark here that ged(m(z), 27 + 1) # 1 does not imply that f(z) is an

IMP polynomial.

Example 2.1.1 InFyy, T = 6 and 2? + 1 divides both 2° + 1 and 2* — 1. 2® +1
is irreducible in 1y and since x* + 1 divides x* — 1, the order of the roots g and

(é)p =3 of 2 4+ 1 is 4 and hence f(x) = (v — a)(x — 3) is not an IMP.

«

14



Theorem 2.1.5 Let f(x) = 22 —bx—a be an IMP polynomial. Let ay, b, be elements
of F, such that % = % and b2 + 4a, is a quadratic non-residue mod p. Then

g(z) = 2% — byx — ay is also an IMP ploynomial.

Proof:
If o, B € F2 are the roots of f(x) and m(x) is the minimal polynomial of g over

[F, , then m(z) is irreducible over F, and

o) = (+-2) (o

the last step follows from the fact that f(x) is an IMP polynomial. For the roots «

and 3 of f(z) we have P = a and a? = (3, hence

N
2t =atp="a 2

Let g(x) = 2? — byz — ay. Since b3 + 4a, is a quadratic non-residue mod p, g(x)
does not have a root in F,, and therefore g(z) is irreducible over F,. Let §,~ be the

roots of g(z) in Fj2. Then

g(z) = 2" b —ar= (v —0)(x—1)

= 2* = (0 +7)z+dy

with v-d = —ay and 0 + = b; . Now, we find the minimal polynomial m; (z) of%;
4] 4] b )
mi(z) = (z— Nz —(=P)=2%—(=+ D)+ (=)PH!
1(2) ( 7)( (7)) (7 5) (7)
b2
= 2’ (-2 -2z +1
aq

b2
= 22— (—— =2)z+1=m(z)
a
Therefore the minimal polynomial of g and the minimal polynomial of % are the

same and this means

15



O _ 8
Cr=_

Now, it must be shown that the order of % is p+ 1. Suppose that (%)k =1
for some k € Z with & < p+ 1. Then (g)pk = 1 and this means p + 1|pk. But
gcd(p,p+ 1) = 1 which implies p 4+ 1|k , a contradiction. Therefore the order of %
is p+ 1 and g(x) is an IMP polynomial.

|

Example 2.1.2 Here, we have an example of a non-primitive IMP polynomial. In
Fr, let m(z) = 2% — Az +1 and f(z) =2> —br —a where A= -2 —2=3 -3

T +1=a"+1
v +1=m(z)(2* + Az + 1)

zt + 1]2® — 1 so m(z)|2® — 1 and this means that the roots of m(z) are also roots
of 28 — 1. m(x) does not divide x* — 1 for k < 8 and therefore the order of both
roots of m(x) is 8. Then, By Theorem 1, f(x) is an IMP.Now, let a; = by = 1, then
%—1—2 = 3 and bi+4a; = 5 is a quadratic non-residue mod 7. Hence, fi(x) = r?—x—1
is an IMP polynomial over F; but the roots § and 87 of fi(x) = 2> —x — 1 in Fr

has order 16. Therefore fi(x) is not a primitive polynomial.

2.1.2. The Period Length of Inversive Congruential Generators with

Power of 2 Modulus

The period length of the inversive congruential generators with power of 2 mod-
ulus was first studied by Eichenauer,Lehn,Topuzoglu [11]. In this section we will

consider this case.

Tpir =ax, " +b (mod 2%, 2,41 € Zoe, n >0 (2.4)
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where e > 3 and a,b,xg € Zse = {0,1,...,2° =1} witha =1 (mod 2), b =0
(mod 2), and zy = 1 (mod 2). With these assumptions, x, = 1 (mod 2) for all
n > 0 and therefore z,' € Zye is well-defined and the generator (2.4) is purely
periodic. Here, the necessary and sufficient conditions are derived for this generator

to have maximal period length 2671,

Lemma 2.1.6 Consider the matriz

0 1
A= (2.5)
da+1 48+2

for some fized non-negative integers «, 3. Then

2/(a+p8)+1
1 2M(a+p8+1)+1

AY (mod 2/*1) (2.6)

for every f > 3.

Proof:

First, we want to show that

vpo 2 a2t 2f 41 52 4 3 2f 1320
ep -2 g2l 32070 g2/ 4 320 3207

AP =

for some nonnegative integers ¢, 0, €, ny.

The proof is by induction on f. By a short calculation,

12 da+1 46+ 2
1603 +8a+43+2 1632+ 163 +4a+5
then
A g2 1673 +8a+5 1603 + 85 + 12

16e5 + 83+ 12 16m; + S + 13

for some nonnegative integers ~s, 03, €3, 73 where,
V3 = o’ +4af’ + 2+ 4o+ B+

17



83 =200 +43° +65% +a+ 303
€5 = a’f + 3% + 16a8 + 4o + 1603 + 2403? + 43 + 63 + 33
ns = 1203% + 1203 4+ 3o + 256% + 113 4+ a® + 166 + 323° + 243 + 1

Hence the above equality is true for f = 3. Now suppose that

vype2lt a2l 27 41 g2/t 4 32 4320
ep -2t 4 3. 2f 32071 e 2ftlp go2f 4320 1

AT =

for some f > 3

Then
vpe2lt a2l 207 41 g 2it 4 328 4320
ep 2ty p.2f 32070 g2/t 4 3a2f 4320 4

A2 A2 a2 =

2% +1 223 4+ 2
2afB+ 2B +223+2 2462+ 243+ 22+ 5

Vg1 224 2P 420 1 Gy 2024 320 3.2
€p1 224320 3.2 224320 43020 1

for some nonnegative integers vsi1,0541, €541, n41. Therefore we have proved

the equality for A2 and after this step the proof of the lemma is trivial.

a

Theorem 2.1.7 The nonlinear generator (2.4) has maximal period length 2°7* if

and only if

a=1 (mod4) and b=2 (mod 4) (2.7)

Proof:
By definition of the generator in (2.4) we have a = 1 (mod 2), b = 0 (mod 2)

and g = 1 (mod 2). These assumptions show that the sequence (x,,) is a subset of
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the multiplicative group Zj. . Therefore the period length of the generator in (2.4)
is at most ¢(2°) = 2°71. Without loss of generality we assume that xo = 1 in what
follows.

First, suppose that the generator in (2.4) is maximal period length 2¢~! for some
e > 3. If e = 2 then the maximal period length is ¢(4) = 2 and 9 = 29 = 1
(mod 4). When e = 3, the period length is 4 and 4 =1 (mod 8), 25 # 1 (mod 8).
Therefore 2 = 5 (mod 8). For x € Zj;, 7' = 2 (mod 8) and a € {1,3,5,7},
b€ {0,2,4,6}. Hence, it follows that

Ty =ar; +b

ry=ala+b) P +b=ala+b)+b=(a+1)b+1 (mod8) (2.8)

Therefore, (a + 1)b = 4 (mod 8), i.e, (a + 1)b = 0 (mod 4). Now there are 3

cases:
1. b=0 (mod 4)
2. a =3 (mod 4)

3. b=2 (mod 4) and a =1 (mod 4)

Case 1 implies that b = 0 (mod 8) or b = 4 (mod 8). First one leads to the
contradiction that (¢ + 1)b = 0 (mod 8) and second one implies a = 0 (mod 8),
which is not true. From case 2, it follows that ¢ = 3 (mod 8) or a = 7 (mod 8).
First one implies that b = 1 (mod 8) which is impossible and second one leads to
the contradiction that (a + 1)b =0 (mod 8). Therefore, case 3 true.

Conversely, suppose that b = 2 (mod 4) and a = 1 (mod 4). For e = 3, (2.7) and
(2.8) imply that the period length of the generator is 4. Now, we assume that the
generator (2.4) has period length 2/~! modulo 2/ for every integer with 3 < f < e—1.
Note that, ¥, Z 1 (mod 2/*1) for n € Zys \ {0,2/71}, otherwise, 7, = 1 (mod 2/)
for n € Zys \ {0,2/7'}, which contradicts our assumption. Therefore, we only need

to show that 2,51 =2/ +1 (mod 2/71).
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Define a new sequence (y,) by
Yn = bYn_1+ ayn_o (mod 2°) (2.9)

Yn € Zoe, n > 2 with yg =31 = 1. a+b =1 (mod 2) it follows that y, = 1

(mod 2) for n > 0 by induction on n. Consider
Ynt1 = aYn_1 + by, (mod 2°)
Multiply both sides by v, !, then
Yni1Yn ' = alynynt) "t +b  (mod 2°9)
By keeping in mind that xo = yo = y; and looking at the generator in (2.4), it

is easily seen that

Ty = Yns1y, " (mod 2°) ,n >0 (2.10)

a=1 (mod 4) and b =2 (mod 4) implies that there are integers «, f such that
a=4a+1and b =40+ 2. So, (2.9) yields

Yn — Yn = A ) Yn—1
Yn+1 Y1+ byn Yn
= A2 Yn—2 =g Yo
Yn—1 U1
1
= A"
1

where the matrix A is defined as in (2.5). Therefore the lemma yields

_ 1 2f(a+B) +1
— A2 = (a4 5) (mod 2f+1)

Yor-141 1 2/ (a+B+1)+1

Yar-1

Since

v =22 (a+ 3?2+ 2" a4+ B)+1=1 (mod 2/
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Yyts = Y1 (mod 2/

equation (2.10) gives us

Tas-1 = Yor1Yor111 = (2N(a+ )+ )2 (a+ B+ 1) + 1)

2.2. The Period Length of the Power Generator

Let e > 2 ,m > 1 and ¥ be integers such that ged(d, m) = 1 . Then the power

generator is defined as

U, =us,_; (mod m), 0<u,<m-1,n=12 ... (2.11)

with initial value ug = ¥ . When ged(e, ¢(m)) = 1 where ¢(m) is the Euler’s phi
function function, this generator is known as the RSA generator and in the case
e = 2, it is called as the Blum- Blum- Shub generator.

We define the Carmicheal function, A(n) as the largest possible order of elements
of the unit group in the residue ring modulo n, for n > 1 . In other words, for a

prime power pF,

PP p-1), ifp>3o0rk<2

kY _
AP =9 S
2F== ifp=2andk >3

and for n = pit .. pkr,

A(n) = lem(A(pY), - .. A(p"))

If ged(e, A\(m)) = 1, then e is a unit in the residue ring modulo A(m) and
MAM) =1 (mod A(m)) by the definition of the Carmicheal function. So, there
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exists @ € Z such that e*A™) = q\(m) + 1 . At the same time, ged(v,m) = 1
implies that ¥ is a unit in the residue ring modulo m and Y™ = 1 (mod m) .
Hence

A(A(m))

¥° = 9 =9 (mod m)

i.e,

Ux(A(m)) = Yo -

This shows us that the sequence generated by (2.11) is purely periodic.

For integers g and M > 2 with ged(g, M) = 1 denote by ordy;g the multiplicative
order of g modulo M . Let ¢ be the smallest integer such that u; = 9¢° =9 (mod m) .
Then e =1 (mod ord,,) and the smallest ¢ satisfying this condition is ¢ = ordse
where s = ord,,¥ . Hence the period length of the sequence is t = ordse and A(A(m))
is the largest possible period.

The following result which was proved in Friedlander, Pomerance and Shparlinski
[13], gives the lower bound on the period length of the sequence (u,),>o generated
by (2.11) with m = pl when the primes p, [, the initial value ¥ with ged(d,m) = 1

and the exponent e > 2 are chosen randomly.

Theorem 2.2.8 For Q sufficiently large, for any A > 6(loglog Q)? , and for all
pairs prime pairs (p,1) ;1 < p <1< Q , except at most Q% exp(—0, 1(Alog A)Y/?)
of them, the following statement holds. For all pairs (¥,e) with

1<d9<m-—1, 1<e<A(m), ged(¥,m)=gcd(e,\(m))=1,

where m = pl , except at most mA(m)exp(—0,2A) of them, the period t of the
sequence (uy,) given by (2.11) satisfies

t > Q% exp(—A)

With the below theorem given in [13], we have the lower bound of the period of
Blum-Blum-Shub generator, that is, the case where the exponent is e = 2 . Here,

p, 1,V are arbitrary.
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Theorem 2.2.9 Given € > 0 , there exist positive constants c,y such that for @)

sufficiently large, there are more than cQ?/(log Q)* prime pairs (p,1), p <1 < Q
such that for all integers ¥ with

1<9<m—1 and gced(¥,m) =1,

where m = pl , except at most m'~" of them, the period t of the sequence (uy,) given
by (2.11) with e = 2 satisfies
t>cQ'c .
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CHAPTER 3

ANALYSIS OF PSEUDORANDOM SEQUENCES

The outcome of a stochastic simulation depends on the quality of the PRNs.
The sequences generated by the classical linear congruential method show a coarse
lattice structure which causes undesirable regularities that can make the generated
PRNs useless for simulations that requires random irregularities and the problem
can not be overcome by any choice of the parameters. This fact was first pointed
out in Marsaglia’s famous paper “Random numbers fall mainly in the planes” [19],
which provided the motivation for the study of nonlinear methods for the generation
of PRNs. In this chapter we are going to deal with the distribution properties of

nonlinear PRN generators.

3.1. Lattice Test

In this section we will consider recursive congruential generators of the form

Tpy1 = g(xn) , Tps1 €Fy, n >0 (3.1)

where the modulus ¢ = p* |k > 1 | is a power of a prime p, 7o € F,, and

f:F, — F, denotes a function such that the generator in (3.1) has maximal period
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length, i.e, {zo, z1,...,24-1} = F, . Eichenauer, Grothe and Lehn studied nonlinear
generators in (3.1) and established results on the performance of these generators
under the lattice test in [9]. Later, in [22], Niederreiter presented a quicker approach
to their results and made some improvements by using linear recurring sequences
and permutation polynomials . He also improved the results on the performance of
the inversive congruential generator under the lattice test which were given in [9]

.We will mainly follow his treatment.

3.1.1. Nonlinear congruential generators and the lattice test

In order to avoid trivial cases, we assume that p > 5 and that the generator (3.1)

is not additive, hence there exists no a € F} such that

flx)=z4+a (modp) ,xel, (3.2)

Define the difference operator A* on a sequence (y,), n = 0,1, ... of elements of
a field F' as:
Aoyn = Yn, Akyn = Ak_lyn-i—l - Ak_lyn

for k > 1.

Lemma 3.1.1 .
ik
Akyn - Z(_1>k J (j>yn+j

Proof: The proof is by induction on k. When k = 0, A%, = v, by definition
and Z;C:O(—l)k*j (’;) Ynt; becomes y,,. So, the basis step is complete. Now, assume

that

Ay, = Xk:(—l)’“_j (];) Ynts

§=0
for some k£ > 0. We want to show that
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k+1
k+1
AkJrlyn _ Z( 1)k+1 ]< j )yn+j

Jj=0

k k
. (k Mk
Ak+1yn = Akyn+1 - Akyn = Z(_l)k ! <j>yn+1+j - Z(_1>k ! (j)ynJrj

j=0 7=0

Replace j by j — 1 in the first sum, hence we get

%(—nk—ﬁl (jfl)ynﬂ' - i(_l)k_j (I;)y"”

j=1 =0
Taking out j = k + 1 term from the first sum and 7 = 0 term from the second sum

yields

i RS S (RO ) MR O

since (Z) = (ZE) and ('8) - (kgl)

SRS e (G0 SRE G

hence we get the desired equality

k
ik
Ak—Hyn = Z<_1)k J ( ‘)yn-‘rj

Remark 3.1.1 Let h(x) € F[z]| with deg(h) < k. Then
AFh(n) =0 (3.3)

Since we assumed that the generator in (3.1) yields a sequence of period p, we

can write z,+, = x, for n > 0. Now, (z,) can be viewed as a linear recurring
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sequence with characteristic polynomial 27 — 1 = (z — 1)?. The minimal polynomial
of (z,) which is a divisor of (z — 1)? by Theorem 1.1.1, is of the form (x — 1)
with 1 <t<p. t+#0 since (z,) is not the zero sequence.

From (1.5), it follows that

Ty = Z (n +]> aj =g(n) for all n>0 (3.4)

=0 N/

where s =t —1,a; € F, and g € F,[z] with deg(g) <s. If deg(g) < s then
A’g(n) = Az, = Z(—l)s’j (j) Tpy; =0

and hence (z — 1)® with s = ¢ — 1 is a characteristic polynomial of (z,), which is a

contradiction to the definition of the minimal polynomial. Therefore deg(g) = s .

Lemma 3.1.2 We always have 1 < s < p—2 and if s > 1, then s does not divide

p — 1. In the non-additive case, s > 3.

Proof:

Since {g(0),9(1),...,g(p — 1)} =F,, ¢ is a permutation polynomial of F,. This
implies that s # 0. If s > 1, then by lemma 1.1.4, s does not divide p—1. Therefore,
1 <t <p implies 1 <s < p—2. The generator is called additive if x,,.1 = x, + «
for all n > 0 with zy € F, where o € IF;. This means Az, is a constant which is
« here. In the non-additive case, s # 1 otherwise the generator is additive, s # 2
either, since p > 5 and s can not divide p — 1 by the same reason as above. Thus,

s > 3 in the non-additive case.

O
Now, let
I/l-d = (mi,$i+1, e ,$i+d_1)T € Fg, 1>0 (35)
denote the vectors of d > 2 consecutive PRNs and let
wl=v!—v§eFl i>0 (3.6)
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be the corresponding difference vectors.
Let

T .
u; = (O,l"iﬂ — Xy, Tj42 — Ljy - - - >$i+p71) , W € ng 1>0

be a sequence of difference vectors of p consecutive PRNs and denote by

G* = (ug,uy,...,uq-1)" = (wf,wf,... ,wi_,) € FP

the d x p matrix whose rows are the vectors ug, uy,...,uq_1 .

Lemma 3.1.3

_ifS
S (Yoo
for all k > 0 where uy, is defined as in (3.7).

Proof:
For any h > 0,

j7=0 7=0 n=k
s k+h—1
— Z(_l)”(S») > Ay,
j=0 Yt
k+h—1 s s
= D Z(_l)Sj()Aﬂn?C
n=k j=0 J
k+h—1 k+h—1

= ) A(Az,)= > A,
n=~k

n==k

— As—i—lg(n) =0

where the last step follows from the fact that deg(g) = s.

(3.8)

O

Lemma 3.1.4 Let G% be the d x p matriz over F, which was defined in (3.8).

Then rank(G?) = d for d < s and rank(G?) =s for d > s.
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Proof:
For £k = 0, Lemma 2 shows us that ug is a linear combination of ug,uy,...,us_1

which implies that rank(G¢+Y) < s. From the definition of the matrix G (3.8),

we can see that the columns of the matrix are the vectors wi™, wi™, ... wi*]. The

congruential sequence (z,) in (3.1) has a minimal polynomial of degree t = s + 1,

hence by theorem 1.1.3, the vectors vgth, vs*t .. w5t are linearly independent.
Therefore the vectors wit! wi™, ... ,ws! are linearly independent which yields

rank(G**') > s (Note that wi™ = 0). Thus, rank(G**') = s and the rows
of the matrix, ug,uy,...,us_1 are linearly independent. Hence, for any d < s,
rank(G?) = d since the rows of the matrix, ug,uy,...,uq_1 are linearly indepen-

dent. From lemma 3.1.3 we see that, for any d > s, ugq is a linear combination of

Ug, Uy, ..., Uus 1. Therefore rank(G?) = s for any d > s.
O
Let
d—1
Vi={ve Fg|v = Z ziwd  (mod p); 21, ..., zp_1 € Fp} (3.9)
i=0
The set V¥ is called as the d-lattice of the generator (3.1) spanned by the vectors
wi,wi, ... wl | in FY. Marsaglia proposed the following lattice test that can be

applied to generators of the form (3.1). The generator passes the lattice test for
fixedd >2if VI = Fg and it fails the d-lattice test if V¥ Fg.
There is a connection between the d-lattice V¢ and the matrix G%. The following

lemma [9] establishes this relation.

Lemma 3.1.5 The generator (3.1) passes d-dimensional lattice test for fived d > 2

if and only if its d-matrix has rank d.

Proof:
First, note that V% is the column space of G¢. Then the proof follows from the

fact that the condition rank(G?) = d is equivalent to V¢ = F¢ .
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Lemma 3.1.6 The generator (3.1) passes the d-dimensional lattice test for any

d < s and it fails the test for any d > s.

Proof: Proof follows from lemma (3.1.5) and lemma (3.1.4)

The performance of the special nonlinear generator

b if z, =0
Tn+1 = (310)

ar, ' +b ifz, #0
where a,b € F, and n > 0 was considered in [9]. We choose a, b such that (z,)
has period p and {zo,z1,...,2,-1 = F,}. The conditions on a,b under which (z,)

has maximal period p is studied in chapter 2.

Theorem 3.1.7 The generator in (3.10) passes the d-dimensional lattice test for

alld < B

Proof: It suffices to show that s > ’%1. Let z, = z,xp11 — bz, — a. Then z, is

zero for p — 1 of the values 29, 21, ...,2,—1. Hence p —1 < 2s, ie, s > 1%1. But
s = p%l is impossible since s does not divide p — 1. Therefore s is an integer implies

p—1 _ ptl
sz +1l=5"

|

Now, consider the sequence (z,,) of elements of F,,with period ¢ and {zo, z1, ..., 41}
= [, where ¢ > 3 is an arbitrary prime power . We can develop a theory for this
case analogous to the prime modulus case.

(x,) can be viewed as a linear recurring sequence since x,., = x,, for all n > 0.

A characteristic polynomial of this sequence is 9 —1 = (z — 1)9. Hence its minimal
polynomial is of the form (z — 1)" with 1 < ¢ < ¢. Again, by (1.5), we have the

representation,

xn:i("fj%j (3.11)

=0 \ 7

for all n > 0,where s =t — 1 and a; € F,. (z,) is additive if Az,, is constant.
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Theorem 3.1.8 1 < s < q — 2 and in the non-additive case s > 3 for ¢ > 5.

Proof: If s = 0 then by (3.11) z,, = a¢ for all n > 0, so (x,,) is a constant sequence
which is a contradiction. Suppose s = ¢ — 1. Then the minimal polynomial of (z,)

has degree t = s + 1 = ¢ and by theorem 1.1.3

Xn = (xnaxn+1a ---7$n+q—1) 0<n< q— 1

are linearly independent. Each component of

q—1 q—1
E Xy = E (s Tpg1s oos Trpg—1)
n=0 n=0

is equal to

qg—1
E Tn4j+k = E c=0
k=0

ceFy

for all 0 < j < ¢—1 by lemma (1.1.5) since ¢ > 3. Therefore Zf;%) X, = 0 which is
a contradiction. So, 1 < s < g — 2.

If ¢ > 5 is prime in the non-additive case, then s > 3 by Lemma 3.1.2. If ¢ = p°
where p > 3 is a prime, ¢ > 2 and s < 2, then

*(n+j
" ; ( j >

yields x, = o for s = 1 and s = 2 which is a contradiction to the assumption that
the period length of (z,) is ¢q. If ¢ = 2° such that e > 3 and s < 2, then x4 = z9

which is a contradiction.

Remark 3.1.2 (:l) =0 form < 0.
Lemma 3.1.9 7% (—1)"" (j)uk+j =0 forall k>0 where
Un = (0, Zpi1 — Tny Trt2y ooy Trpge1 — T) € 1
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- s—j S - s—j S
> (=17 (j) W= » (—1)"7 (]) (0, Thj1 = Thtgy -+ s Thpjrg—1 — Thij)

j=0 j=0
Now we will show that each component of the above vector is 0. Let h > 0.

Then

i(—l)s_j <j) (Thijrn — Tryy) = i(—l)s_j <j> k:zh:ﬁl‘m

j=0 7=0

Proceeding as in the proof of Lemma 3.1.3 we get

k+h—1 k+h—1 s (

_ Z Aerl(xn) — Z AsT] Z
n=~k n=~k 7=0
XS: k—i_zhfl Aerl <n+j)
= a; )
7=0 ’ =k J

Now, we want to show that

()60

n-+j
i)Y

by induction on r.

When j =0
Suppose that

for some r > 0. Then

N“(”ﬂ) = A’"(”H,ﬂ)—N(H.])
J J J
_ (nt+147\ (n+]
B jg—r j—r
B n-+j
o \y-r—1
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Hence,

AsH n+jg\ _ [ ntJ _ 0
J j—s—1

for 0 < j < s by the previous remark. Therefore

s s k+h—1 .
(S sy T+
E (=1’ ](j) (Thsjrn — Taig) = E 0 Z A +1( ' J) !
J=0

§=0 n=k J

for each 0 < h < g — 1. So the result follows.

Theorem 3.1.10 Let G be the d x q¢ matriz over F, whose rows ug, uy,...,uq_1
are as given in Lemma 3.1.9. Then rank(G?) = d for d < s and rank(G?) = s for

d> s.

Proof: This theorem is a generalization of lemma 3.1.4 and it can be proved in the

same way. But here lemma 3.1.9 is used instead of Lemma 3.1.3.

Let (x,) be a sequence of elements in [, generated by (3.10)with period length ¢

and {xg,...,zq_1} =F,.

Theorem 3.1.11 The sequence (z,,) defined asin (3.10) in F, passes the d-dimensional

lattice test for all d < &21 if q>4.

Proof: The special sequence (x,) generated by inversive congruential generator
with modulo ¢ passes the d-dimensional lattice test for d < s. So, it suffices to show

that s > 4 . Let 2z, = 2,241 — bz, —a, n > 0.

ATy = A (g2, — b, — a)

By, induction on r, it can be shown that

A"z, = A"(xpxp41) — DAz,
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for r > 0. Hence,

2s+1 o 2s5+1 2s5+1 _ 2s+1
A=z, = AT (xpwpyr) — DA T, = AZT (22041)

since

241, _ N\ 21 (M) _ N\ n+j _
S Y (10 B ST CRR) B
7=0 7=0

by remark 3.1.2. Therefore, (3.3) implies,

i > i (m+i\ (n+1+k
2= 3 s (V) (IR L

Jk=0 J

since (";rj) ("JF;M) can be viewed as a polynomial in n with degree j + k£ < 2s.
Now, by lemma 3.1.1, we can write
2s+1
(2s+1
Z<—1>25*”( 0 )ZW- =0 (3.13)
J

J=0

for all n > 0. When z,, # 0

Zn = TpTpi1 —br, —a =0

and when z,, =0

Zn = —a .

Therefore, among any ¢ consecutive terms of the sequence (z,), ¢ — 1 of them
are zero and only one of them is different from zero. Suppose, we had 2s+1 < g—1
and choose n such that z, # 0, then z,,; =0 for 1 <j <2s+1.1If ¢ is even then
1<j<2s+1 and s € Z yields s > . Now, suppose that ¢ > 5 is odd.

Asxn:ZajAs(n;,—j) :Za](?ji) = as

j=0 J=0

as # 0 since (z — 1)**! is the minimal polynomial of (z,) .
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S

J

q—1
D=
n=0

Fix j,k > 0 and let v, = (";”) ("r k) n > 0. We consider v,, as a sequence of

elements in F,. Then AJ*F = (]jk) and AT+l = 0 for all n > 0 since v,, can be

akg (” J ) (” ' k) (3.14)

7,k=0

viewed as a polynomial in n of degree 7 + k£ . By comparing the results above and

(1.5),(3.12) we get,
j+k
n+h
= b
w2 ()
for all n > 0 with b, € IF, and b, = (J;rk) Therefore

qzl(n+j)(n+k:> %bhi(mh)

n= n=

j+k  h+g—1 . j+k 0+ h
= b = b 3.15
>y () =2u( ) (3.15)

r=h

Let e(r,m) be the largest exponent such that p*"™ divides (;) where r > m >
0. Then by lemma 6.39 in [17],

e(r,m) = Ey(r) = Ey(r —m) — Ep(m)

s(m) + s(r —m) — s(r)
p—1

where s(n) is the sum of digits in the representation of n to the base p. e(q +

h,h+1)>0for 0 <h < qg—1, hence (%ﬁ) =0in [, for 0 < h < ¢—1 and the sum

q—1 , Jj+k q+h
nzzoxn: Z ajakzbh(h—l—l) =0

7,k=0
for0<j+k<qg—1.
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Ifwehads—q ,thenfor j=k=s, j+k=qgq—1landfor h=j+k=q—1
the term (Zﬂ) # 0 and
1

! - (n + s) (q _ 1) (Qq _ 1)
$ CL == S ﬂ

n

M

e(q — 1,%) = 0 = e(2¢ — 1,q), hence 391 22 # 0 . But, lemma 1.1.5 and

n=0 Ty,

{zo,21,...,24-1} = F, implies

Q
|
—

2 _
x, =0

Il
=

n

. . . -1 . 1
which is a contradiction. So s > 4=, i.e, s > % .

Now, we characterize the generators (3.1) with prime modulus p and maximal
period length which passes the d-dimensional lattice test for all d < p—2 by following
the treatment of [12].

Theorem 3.1.12 A nonlinear generator passes d-dimensional lattice test exactly

for all dimensions

d < max{k <p—2| Z nP'Fz, #0 (mod p)}

nek,
Proof: Let g be the permutation polynomial over I, defined by ¢g(n) = x, where

n € IF,. Then g can be written as

gty = (L= (t=n)P ")z,

neFyp

= w = (i(—l)plk (p; 1> nplktj) T

nek, neFp \k=0

By Lemma (1.1.5), >, ¢ » = 0, hence the sum becomes
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p—1
k:+1< B 1) Z np—l—k:xn ¢k

k=0 neFp

By the same lemma, the term for k = p — 1 is zero, therefore we get

p—2
k+1( ;1> Z np—l—kxn 1k

k=0 nek,

Hence

max{k < p— 2| Z nP 'k, 20 (mod p)}

nek,
represents the degree of g. By Lemma 3.1.6 the generator passes the d-dimensional

lattice test for all

d < max{k <p-—2| Z nP~ ' Fr, 20 (mod p)}

nek,

O

Corollary 3.1.13 A nonlinear congruential generator passes d-dimensional lattice

test for all dimensions d < p — 2 if and only if

Z nx, #0 (mod p)

nek,

Now, we give an example of a generator which behaves optimally under d-
dimensional lattice test although it is in fact an extremely bad generator. This
demonstrates the weakness of the test and indicates that it should be applied in

addition to other criteria for selecting good PRN generators.

Example 3.1.3 The nonlinear generator which generates the sequence (x,,)n>o with

{zo, 21, ..., 2p-1} ={0,1,...,p—3,p—2,p— 1}

passes d-dimensional lattice test for all dimensions d < p — 2.
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Proof:

p—3
Z ne, = Zn2 +2(p—1)(p—2)=—-1 (mod p)
nekFy, n=1

Therefore the generator passes d-dimensional lattice test for all d < p — 2. But this
generator shows extremely bad behaviour with respect to standard statistical tests

for the randomness of uniform PRNs.

The inversive congruential generators with prime modulus do not show the lattice
structure of the widely used linear congruential generator and they posses even a
stronger property: any hyperplane in d-space contains at most d points generated
generated by the inversive method. This was shown by Eichenauer-Herrmann in [2].

Let p > 3 be a prime number and denote by Z,; = {1,2,...,p — 1} the set
of positive integers less than p. For integers a,b € Z,;, an inversive congruential
sequence (Z,),>0 is obtained by the recursion

b if x, =0
[ (3.16)
ar,' +b (modp) ifx, #0
n > 0 and z, € Z,; . Suppose that the sequence defined has maximal period p.

Let 2 < d < p be an integer and define

Vd:{(xnwuaxn-l—d—l) Ez’gl xna"‘7xn+d—27é070§n>p}

the set of d-tuples of consecutive PRNs generated by the inversive congruential
method, the d-tuples with zeros in the first d — 1 coordinates are omitted. Let

Qg, . .., 04 € Zy be arbitrary elements with (ap, ..., aq) # (0,...,0). Then the set

H:{(Zla“-azd)ezg a2y + -+ agza = o}

is a hyperplane in Z2 .
To prove the main theorem we need auxiliary results. Let Z, o = Z, . A function

fi 12y — Z, is given by
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filz)=az™'+b (mod p) .

For 2 < k < p, the sets Z,  and the functions f : Z, — 7Z, are defined recursively
by

Zpy ={x € Zp-1x| fr—1(x) # 0}

and

fk(fﬂ) = fl(fk;—l(l"))

Let 7o : Z, — Z, be defined as my(z) = x and for 1 < k < p define my : Zpp — Z,
by
k

mr(x) = :cH fi(xz) (mod p)

j=1

A linear congruential sequence (7,),>¢ in Z, is given by 7o =0, 77 = 1 and

Tp = bTp_1+at,—2 (mod p) n > 2

and for 0 < k < p, linear functions ¢ : Z, — 7Z, are defined by

lx) = Tppw + e (mod p)

Lemma 3.1.14 The function m, is the restriction of the linear function (. to the

set Zpy for 0 <k<p,ie m(z) =Ll(x) for v € Ly

Proof: The proof is by induction on k. For k = 0, mo(x) = x and {y(z) = ma+T19a =

x. Hence their values are the same. Suppose that m(x) = ¢ (z) for some integer k
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with 0 <k <p—1 where x € Z,;. Then

k+1

Te(2) = @ H fi(x) = xfrpa () fi(w) . fa() fu(2) = ami(fi(2))

U (f1(2)) = 2(Tpr1 [1(2) + Ta)
2(ps1(az™ +b) + 7pa) = Thy1a + (b + Ta)x

U1 ()

for x € Z, ;.1 since
p,k+ ’

foni(@) = filfu(@) == filfi(o . filfi(2)))
= filfar(fi(2))) = fu(fr(2))

for every n > 1.

O

T, To, ..., T, # 0, therefore & € Z, with & = —T,;:lTka (mod p) is the unique
zero of the linear function ¢, for 0 <k <p.

Lemma 3.1.15 The zeros &, ...,&,—1 of the linear functions ly, ..., {,_1 are pair-

wise different, i.e, {lo, ..., {p-1} =7y
Proof: Define elements yx € Z, by yx = 75417, ' (mod p) for 1 < k < p. Then
Ypr1 = Tk+27-k;_11 = (b1 + aTk)T,;rll
= b+ann), =ay, +b (mod p)

for1<k<p.

y1 = b (mod p) where b € Z,; and the parameters a,b in the above equality
are the same with the generator in (3.16) which has maximal period. This means
{vi,.--,yp} = {xo,...,2p-1} = Z, but not necessarily in the same order, since the

first elements may be different. Now,

& = —Tk_jlfka =b—1yr (mod p)
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for 0 < k < p, implies that &, ...,&§,—1 are pairwise different since yi,...,y, are

pairwise different.

Let ag,1,...,aq € Z, such that (o, aq,...,aq) # (0,0,...,0) and let Py :

Z, — 7y, be a polynomial defined by

42 d d—2
Py(x) = (ax — ayp) Hﬁj(x) + Z apli—1(x) H li(x) (mod p)
=0 k=2 =0

k=2

Lemma 3.1.16 The polynomial has at most d zeros.

Proof: First of all we should show that the polynomial above is not identically zero.
Suppose that Py(x) = 0 for all x € Z, . Now consider P4(§;). By our assumption
Py(&) =0 but also for 0 <i < d —2

d—2
Pa(&) = aiolina (&) H lij(z) (mod p)
y=
since ¢ is the zero of the ¢;(z) and for only k& = i + 2, P,(&) has
nonzero summands. Therefore our assumption and lemma 3.1.15 implies that
;0 =0 for 0 < i < d— 2 and hence

d—2

Py(z) = (12 — ) Hfj(x) (mod p)

=0
for x € Z,, . From our assumption, it follows that Py(&;_1) = P4(&;) = 0 and lemma
3.1.15 implies that oy = a; = 0. But this contradicts (ap, a1, ..., aq) # (0,0,...,0)
and shows that the polynomial P,(x) is not identically zero. Since the degree of

Py(z) is at most d, it can have at most d zeros.
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Now, we can prove the main theorem in [2]

Theorem 3.1.17 Any hyperplane H in Zg contains at most d points of the set V.

Proof: z € Z, 41 implies  # 0 and f(z) # 0 for 1 < k < d — 2. Furthermore, x
together with fi(z) for 1 <k < d—1 defines d consecutive elements of the sequence

in (3.16) since fx(z) = fi(fr—1(z)). Hence we can write the set V; as

Va = {(l’,fl(l‘), e '7fd—1(x)) S Zz | 2 Z}Ld—l}

Therefore

#HNVy) =#{x€Zpg | v+ fi(z) + -+ agfi—1(x) =y (mod p)}

= #{z € Ly | (ztazfi(z)+ - +agfii(z)) Hﬂj(fﬁ) = o Hﬂj(fﬁ) (mod p)}

d—2 d d—2
= #{z € Zpar [(rz—ao) [ [ () +D  arfuor(@)mia() m;(x) =0 (mod p)}
d—2 d d—2
=#{z € Zpar [(rz — ag) [ [ mj () + D awmps (2) m;(x) =0 (mod p)}
k=2 J=0
j#k—2

for any hyperplane H in Z¢ . By lemma 3.1.14 7;(x) = {;(x) for 0 < j < d —1,
since © € Zyq—1. So, the elements in Z, 4_; that satisfies the last statement are just

the zeros of the polynomial P,;(z) and by lemma 3.1.16, the number of zeros can not

exceed d. Therefore #(H NVp) <d.
O

This result shows that inversive congruential generators do not fall on the planes
in contrast to the linear congruential method. Hence, they are suitable for simulation

problems which require random irregularities.
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3.2. Estimates For The Discrepancy Of The Inversive Congruential

Generators

3.2.1. Upper Bounds

In this section, the statistical independence properties of the PRNs with prime
modulus generated by (3.16) will be studied. A reliable theoretical test for the
statistical independence is the serial test which employs the discrepancy of tu-
ples of successive PRNs. For a given dimension k£ > 2 and arbitrary N points

to,t1,...,tn_1 € [0,1)F the discrepancy is defined by

Dn(to, t1,...,tn-1) = sgp |Fn(J) = V(J)]

where the supremum is taken over all subintervals J of [0,1)* | Fy(J) is N~! times
the number of terms among tg,ty,...,tx_1 in J and V(J) is the volume of J. If
Zo, T1,- .., is a sequence of uniform PRNs in [0,1) which is purely periodic with

period 7, then we consider the points

Xn = (Tpy Totty - o Tnak—1) € [0, l)k

forn=20,1,...,7 — 1 and we write D, (k) = D,(X0,X1,...,X,_1) for their discrep-
ancy. The PRNs x,, pass the k-dimensional series test over the full period if D, (k)
is reasonably small.

Consider the generator in (3.16) with prime modulus p > 5. Suppose that
a,b € F, are chosen such that f(z) = 2> — bx — a is a primitive polynomial. Then
the period length of the sequence is p.

We will derive an upper bound for the discrepancy D, (k) by using the results in

Niederreiter [23]. Let y, = fa, then we get a sequence of uniform PRNs o, y1,... .
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Let m > 2 and k > 1 be integers and let C(m) be the set of all nonzero lattice
points (hy, ..., h) € ZF with —m/2 < h; < m/2 for 1 leqj < k . We put

(h.m) 1 for h =0
r(h,m) =
msin % for h € Cy(m)

and for h = (hy,..., hy) € Cx(m) we define

k

r(h,m) = H r(hj,m)

j=1
For t € R, we write e(t) = e*™. Let x -y denote the standard inner product of

x,y € RF.

Lemma 3.2.18 Let m > 2 be an integer and let Xo,X1,...,Xn_1 € Z* with k > 2
be the lattice points, all of whose coordinates are in [0, m) . Then the discrepancy of

the points t, = m™1xy, for 0 <n < N — 1 satisfies

N—

k 1 1
Dy(tg, ... tno1) < — + — _ h-t
N( 0, ; LN 1) = m+N Z T<h,m>’26( n)|

heC), (m) n

[ary

Lemma 3.2.19 For any integer m > 2, we have

g ! < : logm + :
r(h,m) ~w 5 5
heC1(m)

Let x be the canonical additive character of F, defined by x(n) = e(n/p) for

n c F,.

Lemma 3.2.20 For polynomials Q, R € Fp[z] with 1 < deg(R) < deg(Q) < p we

have
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Q(n) - 1/2
Z X (M <|r—2+ Z m; | p
neFyp =1

R(n)#0
where v is the number of distinct poles of Q/R in the algebraic closure Fp (including

the point at infinity) and my, ..., m, are the multiplicities of the poles.

The proofs of the above lemmas can be found in [20, section 2] .

Theorem 3.2.21 For PRNs derived from inversive generator and for 2 < k < p

we have
2 Lok — 2 2% —
DW) < op=1/2 [ Zogp + ! logp + ko7 +2p Y24
P T 5 T 5
k—1
1/2 7 2k — 2 12k -7
+—( —logp+ - logp +
p AT ) m 5)

Proof: Define ¢ : F, — F, by ¢(n) = an™' + b for n € F, and let ¢/ be the jth
iterate of ¢ and 1°(n) = n . Then

{(xnvxn+17 s 7-Tn+k71) 0 <n< p— 1}
= {(¥"(zn), ¥ (@), - ¥ (20)) 1 0 < < p— 1}

and by lemma 3.2.18

k
Dz(yk) = Dp(Yoayla e ayn-‘rp—l) S E +

e(h : yn)

S
L
I
)
N
™
VR
]~
>
<
=
3
_l’_
<
AN
~
|
)
M1
)
VR
]~
>
<
<
N
Sl
S
2
~__—

3
I
o
3
I
o
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st = 3 (L)

neFyp
Therefore {zg, z1,...,2,-1} = F, implies
p—1 p—1
s = S (L ) = ety
n=0 n=0

Hence,

ko1 1
DY <=+ % ——[S(h)

PP r(h,p)

For fixed h € Cy(p) let m be the number of nonzero coordinates of h, then 1 < m <
k. If m =1, then

S(h) =Y x(h''(n) = Y x(hm) =0,

neFy neFy
since )’ is a permutation of F, for all j > 0. If2<m <k, let 1 <4 <ig <--- <
im < k such that h;, #0,...,h;, # 0. Then

=) X <Z hi " ( ) > x <Z hi ) (3.17)

neFy ner,

since for eachj > 0, ¢ defines a permutation of F, , we can write ¢"'~(n)
instead of n .

Let ¢; € F), be defined by ¢y = 0,¢1 = 1 and ¢j;2 = bejyq + acj for j > 0. Since
f(z) = 2? — bx — a is primitive over F,, we have ¢; # 0 for 1 < j < p . In fact,
(¢;) is a second order homogeneous linear recurring sequence with characteristic
polynomial f(z). Then by applying a similar method as in chapter 2, we can see
that ¢; = (72,# where v € 2 is a root of f(x) . Since f(x) is primitive over [,
c; = 0 when j is a multiple of p +1 hence the result follows.

Now, by induction on j we will show that,

Nnecj11 + ac;
ne; + acjq

W(n) =
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for1Sjgp,wheren%aci_lci_lforlgigj.Forjzl,

ney + ac nb+a
2 L. :anfl—l—b:;bl(n)
nc; + aco n

where, n # 0 . Suppose that

Nnec;j11 + ac;
ne; + acjq

Y (n) =

forsome1§j§p—1,wheren#—aci,1ci’1 for1 <i<jy.
W) = Y@ (n)) =a(®’(n)" +b

I e n(ac; + bcjy1) + alac;_y + bej)

necj41 + ac; necj41 + ac;

NCjto + ACj41
nc;11 + ac;

where n # _aCjJ,_le_l :

Define the rational function

Q) hiv + in: ZCiy—iy+1 + ACj,—j;

R(I’) N P TCiy—iy + acCi,—i1—1
with
R(z) = [ [(wei—i, + aci,—i, 1)
t=2

Then, by theorem 1 in [23], we obtain

o Q(n)
Sh)| <2ty — 1) — (m—1 T
S <26 — i) = 00 =1+ 3 x
R(n)20
()/R has at most deg(R) = m — 1 finite poles and since deg(Q) = deg(R) + 1, it
has a pole at infinity with multiplicity 1. Since deg(R) < deg(Q) =m <k <p, we

can apply lemma 3.2.20 and this implies that

1S(h)| < (2m — 2)p'? + 2(iy, — i1) — (m — 1)
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Finally, i, —1; < k — 1 yields

1IS(h)| < (2m —2)p"/> + 2k —m — 1

From this result we get that

1 . 1
Y= hecz;(p) WD) 1S(h)| = mzl ) |S(h)|

IN

i 2 2 'f’(hl,p)

=11<41<ig<-<im<k \ heCi(p)

IN

For m =1,|S(h)| = 0 hence we can write
) [S(h)|

i 1
2 2 2

m=21<4; <ig<--<im <k

m

k
<>y > > r(fbl,p) ((2m —2)p*? + 2k —m — 1)

m=21<i1 <ia2<-<im<k \ heCi(p)

then applying lemma 3.2.19 yields

k m
2 2
< g g (;logp—l—g) ((2m —2)p"? + 2k —m — 1)

m=2 1<i1<ig<-<im<k

k m
E\ /2 2 2 7
=27 - 1)) ~1 - =22 (=1 k1
(2p )m:1m(m) (F ogp+5) P ((W 0gp+5) )
2 7

2k — 1) [ (21 V-1
+( )((W ogp+5) )

Let G(2) = YF _, (¥)2z™. Then

G(z)=(1+2)" -1

and



Therefore

b E\ /2 2\™ 2 2\ /2 7\t
Zm —logp+—-) =k(—logp+-)|—-logp+ -
‘ m T 5 T 5 T 5

m=

and hence

With simple manipulations,

2 N\ ok —2 % — 7
E<2p1/2(%logp—|—g> ( - logp + 5 )—|—2p1/2—|—

2 ok — 92 12k —
(—logp—i—z) ( b logp + k 7) —2k+1
T 5 T 15)

Hence,

2 7\ ok — 2 2% — 7
Z<2p1/2(—logp+—> (—10gp+ g )+2p1/2+
T T

1/2 N\ ok —2 12k — 7 1—k
—| =logp+ = logp + +
p\m ) m i) p

Since % < 0 we get the desired result.

3.2.2. Lower bounds
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In the preceeding paragraphs it was shown that D,(;k) = O(p~"?*(logp)*) for
2 < k < p . In the following paragraphs, lower bounds for D}(ok) which was obtained
in Niederreiter [24] will be given.

For a prime p > 5, choose a, b € F, in such a way that the polynomial 2% —bz+a is

primitive over I, . Then a sequence xg, x1, ... is generated by the inversive recursion
Tpi1 = —ax, +b (modp), forn=0,1,...

The numbers y, = %” ,n =20,1,... in the interval [0,1) are called the inversive
congruential PRNs. The sequence is purely periodic with period p .
We write e(u) = €™ for u € R and u - v denotes the standard inner product of

u,veRr.
Lemma 3.2.22 Let to,ty,...,tn_1 €[0,1)* |k > 1 with discrepancy
Dy = Dn(to,tq1,...,tn-1) -

Then for any nonzero h = (hy, ... hy) € Z¥,

2 T+1\" 1
<z
< (( 5 ) 2m> NDNHmaX (1,2]h;]) ,

where m s the number of nonzero coordinates of h .

N-1

D e(h-ty)

n=0

Proof: Since the sum above is a complex number we can write it as:

N-1 N-1
e(h-t e(h-t
n=0 n=0
for some 6 € R. So,
N-1 N-1 N-1
D> elbta) e(h-ta) =Y e(h-t
n=0 n:0 n=0

By looking at the real parts, we get

N—-1 m
2 T+ 1 1

n=0

N-1
e(h
n=0

where the last step follows from p/64, Niederreiter, [21]
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O

For a nontrivial additive character x of F, and for a € F}, we define the following

character sum

K(x,a) =Y x(c+ac™)

ceFyq

Consider K (x,a) where K represents the complex conjugate of K. Then
K(x.a)= Y x(-e+a(=)™") = K(x,a)
—c€Fq
since —c runs through the elements of I, when c runs through the elements of [F,.

Hence, K(x,a) is always real.

Lemma 3.2.23 For any nontrivial additive x we have,

Y K(x,a) =¢

acFy

Proof:

ZK(X,G)Q = Z Zx(c+ac_1)ZX(d+ad_l)

acky a€Fy \ ceFq deFq

= > | D x(et+ac)x(d+ad ™)

aEFZ c,deFy

= > | Y xle+dx(alc +d7h)

aEFZ c,deFq
= Y (xe+ ) S xale +d)
c,deFyq acF:

since y is an additive character. If ¢™! + d~! # 0, then

Z x(a(e™H+d71) =0

acFy

together with y(a(c™' +d~')) = 1 when a = 0, implies that

> xla(c +d ) = -1

acFy
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If ' +d~' =0, then for all a € F; , x(a(c™' +d™")) =1, hence

Y xlalet +d ) =g-1

acFy

Y K(x.a)=(q—1g— Y, xlc+d

acF} c,deFy
c14d= 10
=(g-1g— > xlc+d) +q=¢
c,deFy

since there are ¢ pairs (c,d) € F, with ¢™' +d~' =0 and > eder, X(c+d) =0
O

Let 1 be a nontrivial multiplicative character of IF,. For v, the Gaussian sum is

defined as
G, x) = > ¥(e)x(e)

ceFy

and the Jacobi sum on F, is defined as

J@W) = > wle)dle) =Y el -c)

with J(0) = 0 . The conjugate character ¢! is defined by ¢~!(c) = (c™!) for
¢ € Fy. d(cd) = (c)ip(d) for all ¢,d € Fg and 3~ ¢ 1(c) =0

Lemma 3.2.24 For any nontrivial x and 1,

S wet e +d ) = Gl ) (T() +2)

c,deF,
Proof: Let c,d € F,.

e+ d ) = v(e) + ¥(d)
if c=0or d =0 by the conventions 0~! = 0 and (0) = 0 . When both ¢ and d are

Nonzero,

e+ d ) =T (e +d)(ed) ) = d((ed)(c+d) ) = Y(ed)yT e+ d)
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So we can write

v e+ d)(ced) if ed #0

Pt +d) =
¥(c) + ¢(d) ifed=0
So,
Z x(c+d)y et +d)
c,deFy
= > xletdp e+ dppled) + > x(@v e + > x(dyHd)
c,deF? ceFyq deF,

= > xle+d)p e+ d)(ed) +2G (1), x)

c,dEF;
since ¥ (c¢™') = 9¥(c) and ¥ ~H(d™!) = ¢(d) . Therefore,
> xletdp (et +d ) =) xl(e+ dyyp e+ d)v(ed) + 26, X)
c,deFy c,deFy

because 1(0) = 0 . By substituting ¢ + d = f, we get

D xle+dy e+ dypled) = > XN (Hvle(f — o)

c,deFq ¢, fEFy

= 2 XN D wlef(f =)

feF; ceFy

= > X)) (et — o)

feF; ceFRy

= G, x)J(¥)
O

The group of multiplicative characters of F, is isomorphic to F; and therefore it
is cyclic of order ¢ — 1 . Let H,(m) be the set of multiplicative characters of order

m where m is a positive divisor of ¢ — 1. Let P, be the set of primitive elements of

F

q -
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Lemma 3.2.25 For any nontrivial y,

¢lg—1) ,  dlg—1)
2 Klheaf ==+ =

M) S G )R W) +2)
%ggﬂmheum

where 1 1s the Moebius function.
Proof: By the result of problem 5.14 on page 258 of [17],
¢(g—1) p(m) 1 ifac P,
RUZ2D N ST u(g) =
i=)) 52 M) 5

mlg—1 e H,(m) 0 otherwise
Therefore

> Kaf = 3 (P SRS v | K

acky m|g—1 YEHy(m)
¢(g—1)
Let A = = me . <1>

Z%H (my ¥(a) . In the above equality we were able
to extend the summation from P, to Fy, since P, C F; and for elements of I} that

are not in P, , A = 0 and for elements of P, , A =1 . Hence

Zaepq K(X? a)2

ey ¢—m o)

mlg—1 €Hy(m) a€F
-1) -1)
S = OF - DI S S,
mq €Hgy( 2 acF}

since there is only one character with order 1, 1)y and it satisfies ¢y(a) = 1 for all

a € F; . Then by applying lemma 3.2.23, we get

ZPKX’ )2 = 2¢q61_—11 Zﬂﬂm”b S Y vk

|q 1 wEH (m) a€F}
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For any nontrivial v,

> W(@)E(x.a)’ =) dla) Y xle+d+alc +d7)).

acFy acF} c,deFy

X is an additive character implies that

x(c+d+alc +d™")) =x(c+d)x(alc +d7))

Hence,
Y (@K (x,a)? =Y xle+d) Y dla)x(alc +d ™)
aEF; c,deFq aEF;
= > xle+d)d @)+ Y xle+d)D wlax(a(c +d 7))
c—lcfg—quzo “eF c—lcfg—Fi];éo “er

Y wer- ¥(a) = 0, hence the above sum becomes

= > e d) Do vl (e +d ()

c,deFy acFy
c14d= 10

=G, x) Y xle+d)p (e +d™h) =G, x)*(J(¥) +2)

c,deFq

where lemma 3.2.24 is used in the last step.

Lemma 3.2.26 For any nontrivial x there exists an a € P, with

1K (x,a)| > ¢"/* —2¢*/° .

Proof: For nontrivial ¢,y we have |G(¢, x)| = ¢*/? and |J(¢)| < ¢'/? by theorems
(1.1.5) and (1.1.6), respectively . Since the group of multiplicative characters of F,
is cyclic, #H,(m) = ¢(m) and therefore

> G )’ () +2) < g(m)g(q"* +2)

YeHq(m)
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By lemma 3.2.25 and the above equality,

since p(1) = 1. Let w(qg — 1) be the number of different prime factors of ¢ — 1 and
let g —1= ... P E’(q Y be the prime decomposition of ¢ — 1. Then

> luld |—1+Zup1 +Zupzpj

dlg—1
_1+<w(q1_1))+...+(wgq_1)> gw(g—1)
w(q —
So we obtain,
S Ko > U - e g gy

Now, we want to show that 240 < (2.4)m%3%" for any positive integer m . For
m=1, w(m)=0and 2°™ =1 <24 . For m > 1, let m = p$* ... p° be the prime

factorization of m . Then

27“

w(m) _or _ (log2)/log7
2 2 m (pil o .p?)(log 2)/log7

2
(log 2)/log7 0 357
H e;(log 2) /log7 H /log7
j=1Pj j=1P J
For p; > 7
2
— <1
log2)/log 7
p§ 22)/ log
SO
0 357 0,357 23
U log2)/log7 <m” (2 . 3. 5)log2/log7
Hence,
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2w(m) 8 0,357

< 30(log2)/log7m 7 < (2,4)’]710’357

and
Plg—1
> K(va? > Lo - @00+ 2)
since 29071 < (2,4)(q—1)%%7 < (2,4)¢°%7 When ¢ < 210, ¢—(2,4)¢"*"(¢"/?+2) <

0. So we can assume that ¢ > 2'°. Then we have

4q1/10 . (274)q0,057<1 + 2q71/2> > 4q1/10 . (2’55)(]0,057

> 8 —(2,55)20%7 > 4

and we get

¢ —¢"P((2,9)" (1 +2¢7172) > g — ¢"°(4 = ¢/1°) = (¢"* = 2¢*°)?

0 =207 > 0l = 1)(a"? — 24"

Let a; € P, be such that K(x,a1)? = maxaep, K(x,a)®. Then, #P, = ¢(q — 1)
implies that

K(x,a1)’d(q — 1) > Y K(x,a)’ > ¢(qg — 1)(¢"* — 2¢°/°)

achy

and hence | K (x, a1)| > ¢'/? — 2¢*/° .

|

Lemma 3.2.27 Let x be nontrivial and let 0 <t < 1. Then there are more than
A,t)p(q — 1) values of a € P, for which |K(x,a)| > tq'/? | where

(1—*)g — (¢" +2)2¢l7V

A pr—
Q(t) (4—t2)q—|—4ql/2+1
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Proof: We can assume that A,(t) > 0 . Suppose that |K(x,a)| < t¢*/? holds for
at most A,(t)¢(q — 1) values of a € P, . Then |K(x,a)| < tq*/? holds for at least
(1—A,(t)p(q — 1) values of a € P, . For a nontrivial additive character x and for

a,b € Fy a Kloosterman sum is defined as

K(x;a,b) = Z x(ac+bct) .

ceFy

So our definition is equal to,
K(x,a) = K(x;1,a) + x(0) = K(x;1,a) + 1.
From the classical bound on Kloosterman sums we obtain
K (x.a)| < 207 +1
for all a € F; . Therefore

Y K(a) < (1= Ag1)dla — D)Pq + Ay(t)d(q — 1)(2¢"/% + 1)°

a€l,

< dlg—1)((1—17)g — ("7 +2)2¢17 1 4 £2)
<dlg—1)(q — (¢"*+2) 2

< ——(g—1)(q— (¢ +2)2¢0 D) .

Hence,

Z K(x, a)2 < CbE]C]_—ll)qQ _ ¢E]CJ_—11)q(q1/2 + 2)2u}(q—1)

But, this contradicts (3.18).

O

In lemma 3.2.22, let K > 2 N =p ;t, = ynfor 0 < n < p—1 with h =
(1,-1,0,...,0) € Z* Then we get

2 ((m+1\> 1 s .
§;<( : ) —Z>pD§,>2 = 2(m + 2)pD{
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Z e(h-yn)

n=0




(k) 1 h
P = 27T+4 nzzoe( Yn)
p—1 p—1 p—1 1
e(h-yn)| = e(Yn — Ynt1)| = e(=(zn — Tni1))
n=0 n=0 n=0 p
p—1 p—1 1
e xn + ax,, = e :En + ax,
2K 2 eGylen e
Let x(c) = e(c/p) be the nontrivial additive character on F,, . Then
p—1 p—1
2 elb-yn)| =D xl(zat a:c;1>>‘ = |K(x.0)
n=0 n=0
since o, ..., xp—1 runs through F, . Thus,
D) > K 3.19
PP 2 K (x,a) (319

forall k > 2.

)
2¢( 1)

Lemma 3.2.28 For any primitive element a € F, there are e:mctly primative

polynomials over F, of the form 2*> —br + a .

Proof: If 22 — bz + a is primitive over F,, then for some primitive element o €
Fpe ,2? —br +a = (z — «)(z — a?) which implies that a = a?™! . Let S(a) be
the number of primitive elements (3 such that 39! = @ . The primitive elements
a, a? are the roots of the above polynomial and ¢ + 1st power of both are equal to
a. Hence the number of primitive polynomials over F, of the form z? — bz + a is
given by $S(a) . Let 8 € Fypz and let ord(3) denote the order of 3 in F?,. Then
ord(a) = ¢ — 1 and a = 7! for some v € Fi . Let A be a fixed primitive element
of F2 . Then there exists k € Z such that, v = A .

¢ -1

— 1= ord(a) = ord(\Flathy =
1 ord(a) = ord( ) ged(q? — 1, (g + 1)k)

hence ged(q®> — 1, (¢ + 1)k) =g+ 1, i.e, ged(q — 1,k) = 1.
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Now, we are going to find S(a) . Let 3 be an element in Fl.. Then we have
Bt = @ if and only if (By 1) = 1, ie., if and only if By~' = A=Y for
some j € Z . So, the elements 3 € F; such that B9t = @ are of the form 8 =
Net@=17 wwhere k is fixed and j € Z . Suppose that 3 is a primitive element of
F2, e, ord(f) = ¢* — 1 = gcd(qQ—qu,l:—il-(q—l)j) . So, ged(¢* — 1,k +(g—1)j) = 1.
Furthermore, ged(q — 1,k) = 1 implies that ged(¢®* — 1,k + (¢ — 1)) = 1 if and only

if ged(q+ 1,k + (¢ —1)j) = 1. So, S(a) is the number of integers j (mod ¢ + 1)
with ged(qg+ 1,k +(¢—1)j) =1

To find S(a), we need to find the number of solutions j of the congruence

k+(g—1)j=m (mod ¢+ 1) (3.20)

for every m (mod g+1) with ged(m,q+1) = 1. Let ¢ be even, then ged(¢—1,g+1) =
1 and hence for each m € Z the congruence in (3.20) has a unique solution by [15],
p/94. This means, S(a) = ¢p(q+1) = ‘ng;:ll)) :

Let ¢ be odd, then gcd(q — 1,q + 1) = 2 . For every integer m (mod ¢q + 1)

with ged(q +1,m) = 1, consider the congruence k + (¢ — 1)j = m (mod ¢+ 1),i.e,
(g—1)j=m—Fk (mod g+ 1) . Then ged(q—1,k) = ged(q+ 1,m) = 1 implies that
k,m are odd and the above congruence has two solutions j (mod g + 1) for every

choice of m, again by [15], p/94. Hence S(a) = 2¢(q+ 1) = o=

é(g—1)
Therefore S(a) = % and the number of primitive polynomials over [F, of the
form z? — bx + a is g’é‘ijg .

O

Theorem 3.2.29 For any prime p > 5 there are at least ¢(p + 1) primitive poly-
nomials ©* — bxr + a over F,, such that for the corresponding inversive congruential

PRNs we have

D® >
p 2m + 4

(pfl/Z . 2p73/5>

forallk > 2.

60



Proof: From the equation (3.19) we get

D® > L

p = m|K(Xaa)| :

Now, choose a € F,, in such a way that the lower bound for |K(x, a)| in lemma 3.2.26

holds. For this a there are f(%j; = ¢(p+ 1) primitive polynomials 22 — bz + a over

[F, and for the corresponding inversive congruential generators we have the lower
bound

1 1
DWW 5 = (pl/2 4 9p2/5) — ~1/2 4 9,-2/5
M p(2ﬂ+4)(p +2p77) = o (0T 2T

|

Theorem 3.2.30 Let p > 5 be a prime and let 0 < t < 1. Then there are more
than A,(t)¢(p* — 1)/2 primitive polynomials z* — bx + a over F, such that for the

corresponding inversive congruential PRNs we have

D(k) > —1/2

p 2r +4

p

for all k > 2, where

(1—#)p = (p'/? + 2)22~ 1
(4—t)p+4p/2+1

Ap(t) =

Proof: We have
1
DW > ———|K(x.a)| .

P p(2r +4)
By lemma 3.2.27 we have more than A,(t)¢(p — 1) values of a € F, such that
|K(x,a)| > tp'/? . For each such a we have (21)(;}();:3 suitable primitive polynomials.

Therefore, there are more than Ap(t)@ primitive polynomials such that for the

corresponding inversive congruential generators we have

DF > 1 1/2 1 -1/2

t = t
T T L O

61



3.2.3. Distribution of inversive congruential pseudorandom numbers in

parts of the period

For arbitrary a € F, and b € I, consider the sequence generated by (3.10) and
let ) be the permutation of F,, defined by

¢(xn) :xn+1 7n:0,1,...

The sequence is periodic with period t < p .

The first nontrivial bounds on the discrepancy of a sequence of inversive congru-
ential PRNs in parts of the period, which we are going to describe below, are given
by Niederreiter, Shparlinski in [26].

Let zo/p,x1/p, ..., xn_1/p be the inversive congruential PRNs with 1 < N <t ,
where t is arbitrary. We define the discrepancy Dy of these numbers as

A(J, N)
N

-\

where A;(N) is the number of points zo/p, z1/p,...,xx_1/p in the interval J and
A(J) is the length of J . For integers h # 0 (mod p) , let

iy 2mihx
Su(N) =Y exp( p =)
n=0

Theorem 3.2.31 For any prime p and any integer h % 0 (mod p)

3\ 1/2 1/2 3\ 1/2
SV < ((g) +2) N2 <8> 2
for1< N <t.

Proof: For N < 2p'/? |

3\ 1/2 1/2 3\ 1/2
<<§> +2> N1/2p1/4+(§) p/? > N 4+ N2

so the upper bound for |S,(N)| is greater than N. Therefore we can assume that
N > 2p'/? . This implies that p >t > N > 2p'/2 ie, p*> > 4p and hence p > 5 .

For a fixed prime p > 5 and an integer A £ 0 (mod p), let
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then

i
o

Let ™ denote the mth iterate of the permutation v for any m € Z . Then

Ty = Y"(xg) for any n > 0.

SuV) = S o) =[S (0m) — x| < 2K (3.20)
Let k € Z with k > 1 and define
RUK) (keZ :—(K—-1)/2<k<(K—1)/2}, ifKisodd 52

{keZ :—-K/2+1< k< K/2}, if K is even

Note that, |R(K)| = K and

KZ
S k=

keR(K)

K% -1
Sl =

kER(K)

if K is even and

if K is odd. Hence,

K2
Z |k|§7

kER(K)
Let
N-—1
W={> > x@ww
n=0 keR(K)
Then
N-1 N-1
W< X(Tnyr)| = X(@bk(xn))
n=0 |keR(K) n=0 |keR(K)

If we use (3.21) for all k € R(K) with W, we get
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2
Z SUN)| <W+2 > \k\§W+K7

kERe(K kER(K)

Now, we find a lower bound on W? ;

N— 2 N—-1 N-1 2
= (Y1 S || < S (W)
n= keR(K) n=o0 n=0 |keR(K)

2
N-1
= N X(wk(xn))
n=0 |keR(K)

by Cauchy-Schwarz inequality.

2 < N Y @)

weF, [keR(K)

< NS S x@hw) — o)

kIeR(K) |weF,

=N > a0+ S Y xwhw) - viw))

kleéR K) weF, kleR(K) |weFy
k>l

= KNp+2N > | x(@*(w) - ¢'(w))
k,liigK) weF

@ w) =g w) = D@ (w) — ¢ (w))

weFp weFy

= 3 (W w) - w)

weF,
When K is odd, &= <1 <k < £2L jmplies that 1 <k —1=m < K — 1
and when K is even %+1§l<k§§ implies that 1 < k—-[l=m<J K —-1.
Therefore,

W2 < KNp+2N Y (K —m)| Y x(@"(w) - w)
m=1 weF,
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Assume that K <t .For 1 <m < K — 1, there exist nonzero constant or linear

polynomials f,,, g, € F,[x] such that

for all w € IF, \ €,,,, where &, consists of the roots of all polynomials g; ,1 <j <m.

Since g; is at most of degree 1, for 1 < j <m, |&,,,| < m and

S -w - Y o)
weF, g;u(i}lj;o
PR CE TN DG a0
weem 97:}(615)7;&0
<2m-1

Indeed, it is easy to prove the above equality:

For w € F, \ €, , we have " (w) = i; ::EZ; and hence we do not consider the
terms with w € F}, \ €, in the above sum. If g,,(w) is a nonzero constant then &,
can contain at most m — 1 elements, if g,,(w) is a linear polynomial then it can have
only one zero wy € €, and this zero is not included in the second sum. In the first
case the elements of ¢, are the terms that the first and the second sum differ from
each other. In the second case the elements of ¢,, are the terms that the first sum
differs from the second sum and the elements of &, \ {wy} are the elements that the
second sum differs from the first sum. Therefore, the first sum can contain at most
m terms which do not occur in the second sum and the second sum may contain at
most m — 1 terms which do not occur in the first sum, hence the last step of the
above inequality follows.

If ¢, is a nonzero constant polynomial then ¢ (w) = w for all w € F, \ &, .
But, |e,,| < m < t, implies that there exists x,, & &, and V" (x,) = Tpim # Tn -

Therefore, we assume that g, is a linear polynomial and hence
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Z X(;:EZUU? —w)| = Z x(dw™" + ew)

weFp weky
gm (w)#0

for some d € F, and e € F, . What we obtain in the last step is a Kloosterman

1/2

sum in absolute value and it is bounded by 2p*/* . Hence

3 @™ (w) — w)| < 272 +2m — 1

weF,

for 1 <m < K — 1. Therefore,

K—-1
W2 < KNp+2N ) (K —m)(2p"?+2m—1).
m=1
K-1 K-1
(K —m)(2p"?+2m —1) = K(2p% — 1) + m(2K — 2p*? + 1) — 2m?
m=1 m=1
2K — 1
= K(K-1)(p"*+ — )
So,
2K — 1
W? < KNp+ NK(K —1)(2p"? + )
2K
< KNp+NK(K —1)(2p'? + =)
2 2K
= K°N ((p — K 2pl/? — 3+ ?>
With this upper bound for W2, we obtain
K2
K|Sp(N)| < W+7
2 2K K2
S KNl/Q((p . 2p1/2)K—1 + 2p1/2 . § + ?>1/2 + 7
and
2 2K K
[Sh(N)| < NY2((p = 2p ) Kt 2p! 2 = o =)0 g o
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Let K = [(2)Y2(p—2p"/*)"/?] and A = (p—2p"*) K +2p"/? — 2 + 2K . Then
t > N > 2p'/? implies that ¢t > K and

2 2
A = (p—2p" K14+ 2p? -2 4+ 2K

3 3
9\ 1/2 o\ 172
< (g) (p — 2pM/2)/2 4 opl/? 4 (5) (p — 2pM/2)V/2
1/2 s
_ 2 / _ 9,1/2\1/2 1/2 8 / 12
= 2|3 (p—2p /)" +2p/* < 5]
So,
8\ 1/2 1/2 3\ 1/2 .

|SH(N)| < N2 ((g) + 2p1/2> X (g) (p— 2p1/2)1/2 I )

Since (p — 2p*/?) < p'/? — 1 and (%)1/2

1/2
1/2, 1/4 8\ "2 3 12

> % , the above inequality becomes

Theorem 3.2.32 The discrepancy Dy of the inversive congruential PRNs

xo/p, T1/p, ..., xN_1/p Satisfies

8\ 1/ i 3\ 1/ 4 2\ 1
Dy < S 19 N—1/2p1/4 (2 N—1/2p1/2 _2108229+ I
3 8 T 5 P

for 1 < N <t and primes p > 31 .

Proof: Let B be a bound on |S,(NV)| for all integers h # 0 (mod p) . Then by

corollary 3.11 in [25] together with an inequality of Cochrane [1] we can write

B[4
Dy < — (—210gp+0,38—|—
m

0,608 n 0,116 1
N

p p? p
For primes p > 31, we can take B as the bound on |Sy(n)| in theorem 3.2.31 and

we obtain the bound on Dy .
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3.3. The Linear Complexity and The Linear Complexity Profile

The linear complexity profile L(S, N) of an infinite sequence & = (sp)n>0 Of
elements of [Fy is the function which for every integer N > 2 is defined as the least

order k of a linear recurrence relation
Snt+k = Ak—1Sn+k—1 + - + AoSy

which is satisfied by this sequence for 0 <n < N — k — 1. We have the convention
that £(S, N) = 0 is the first N terms of S are zero and L(S,N) = N if sp = s; =
oo =8y_o=0but sy_1 #0.
The linear complexity of S is defined as
L(S) =sup L(S,N) .
N>2
The nonlinear complezity profile N'L,,(S, N) of an infinite sequence S = (8, )n>0
of elements of [F, is the function defined for every integer N > 2 as the least order

k of a polynomial recurrence relation
Sk = V(Spak-1,---,82), 0<n<N—-k—-1

where W(Aq, ..., \x) is a polynomial of total degree at most m which is satisfied by
the sequence.

In general, NLy(S,N) # L(S, N) because in the definition of the linear com-
plexity profile only homogeneous linear recurrence relations are used. In fact we

have

L(S,N) > NLi(S,N) > NLs(S,N) > ...

In the following paragraphs, we give the lower bounds on the nonlinear com-
plexity profile of inversive congruential generator and the linear complexity profile
of quadratic exponential generator which were obtained by Gutierrez, Shparlinski,
Winterhof in [14].

First, we define the inversive generator and the quadratic exponential generator:
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The inversive generator giving the sequence V = (vy,)n>0 is defined as

O a w Z:fv 7Y (3.23)
b ifu=0

where a € IF;; and b € [F, . We can also write

Un = w(vn—l) .

We have the convention that ¢°(v) = v for allv € F, .
Given an element v € F;, we define the sequence generated by the quadratic
exponential generator by U := (uy)n>0 Where

2

U, :=0" ,n=0,1,... (3.24)

Now, let
Ho(z) =z, Hi(z) = Hi_y(az™ " +b),i=1,2,..., (3.25)

be a sequence of rational functions over F, with a € F; and b € F, . We observe
that this sequence is purely periodic and we denote by T' the period length.

Let fo(x) = z and go(x) = 1. Then Hy(x) = = = fo(x)/go(x), which is a
nonconstant polynomial with max(deg(fo), deg(go)) = 1 and ged(fo,g0) = 1 . Now,
suppose that H;(z) = fi(z)/g;(z) for some f;,g; € F,[z] which is a nonconstant
polynomial with max(deg(f;),deg(g;)) = 1 and ged(fi,g;) = 1 . Then there exist
a;, bi, c;,d; € F, such that f;(z) = a;x + b; and g;(v) = ¢;x + d; . Therefore,

filax™ +b)

H, — Hyazr'+p)=1000 T2
+1<.T) ((IZE + ) gi(ax—l—I—b)

(bai + bl)ﬂf + aa; . fi+1 (I)
(be; + d;)x + ac;  gip1(x)

where max(deg(fi+1),deg(gi+1)) = 1 and ged(fiz1,9i41) = 1 otherwise we have a
contradiction to our assumptions about H; . Since max(deg(f;),deg(g;)) = 1 for all

1 > 0, H; is always a nonconstant rational function.
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Lemma 3.3.33 For all integers i,k with 0 < + < k < T and all polynomials
U e F,lzo,...,2z;] and G € F,lz] with ged(G, gx) = 1 we have

G(x)Hy(x) £ U(Hi(z), ..., Ho(z))

Proof: By induction, it can be shown that if g;(z) = ¢;x + d; then f;(z) = (bc; +
d;))x + ac; . This is true for fy(z) since ¢ = 0 and dy = 1 . Suppose that if
gj(x) = cjx +d; then f;(x) = (be; + d;)x + ac; for some j . We want to show that

if gj+1 = Cj+1T + dj+1 then fj+1 = (ij+1 + dj+1)$ —+ Cjt1 - NOW,

Ll — Hyalo) = e+
B filax™t 4+ b)
N gjlax=1 +b)

(b(be; + dj) + acj)x + albe; + d;)
(be; + dj)z + ac;

Since we assumed that g;41(z) = ¢j412 + djy1 , we have ¢j 11 = be; +dj and djq =
ac; . This implies fj41(x) = (bcjy1 + djr1)x + acjs1 . Note here that ¢;11(x) = fi(x)
foralli>0.

If ¢; =0 then H;j(x) =z and i =0 or i > T . For all integers 0 < j; < jo < T,

ng(gjlgj2) =1.

Otherwise

9i (7) = kgj,(x) with k € T}

which yields f;, (z) = kf;,(z) and thus H; (x) = Hj,(x) . Therefore,
Hj yi(x) = Hj (az™' +b) = Hy,(az™" +b) = Hj,q(2)
and iteratively,
Hjy g1y () = Hjprr—jp (1) = Hr(z) = Ho(x)

which is a contradiction to the definition of 7T .
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Suppose that for i =0,
G(x)Hi(x) = Y (Ho(z)) = U(x) .

Then G(x)fix(x) = ¥(x)gr(z) and ged(G, gx) = 1 implies that gx(z) divides fi(z) .
Since max(deg(fi),deg(gr)) = 1 and Hy(z) is a nonconstant polynomial, we have
deg(fr) = 1 and deg(gx) = 0. This implies that ¢, = 0 and this yields a contradiction

since 0 < i < k < T . Now, suppose that for 7 > 0, we have an equation of the form
G(z)Hy(z) = V(H;(z),. .., Ho(x)) .

Then

and clearing the denominators we get
G(x) fu(@)gi(x)™ ... g1(2)" = gi(x)¥(2) .

where s1,...,s; are nonnegative integers. Since gcd(G, gx) = 1 = ged(fi, gr) and
ged(g;,gx) = 1forall 1 < j <i<k<T,g; does not divide the left hand side of

the above equality which is a contradiction. Therefore
G(x)Hy(x) # U(H;(z), ..., Ho(x)) .
O

Theorem 3.3.34 The nonlinear complezity profile of a sequence V = (vy,)n>0 pro-

duced by the inversive generator which is purely periodic with period t, satisfies

ez mn{ Y21 [51])

Proof: Suppose that k is the least positive integer such that

Unak = V(Unik—1,---,Un) 0<n<N-k-1
with a polynomial W(\y,..., ;) over F, of total degree at most m . Then
P (0,) = T (v,), ..., U0(vy,)) 0<n<N-k-1.
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Let E; denote the poles of the rational functions Hy, ..., H; for any j > 0 . Since
max{deg(fi),deg(g:)} =1, |E;|<j.Forj=0,

Y(z) = = Hy(x)

where x € F, . Suppose that for some ¢ > 0 ,

where z € F \ E; .

For x € F, \ E;, we can write

V(@) =Y ((@) = Hi(d(w)) = Hi(az™" +b) = Hiy(2)

when ¢(x) € F, \ E; is also true. Since z € F, \ E; ,¢(z) = H(x) and hence the
equality holds when H(x) € F, \ E; . This means that the condition z € F, \ E;;;
should be satisfied. Therefore, by induction, we have ¢/ (z) = H;(z) for all j > 0
and x € F, \ Ej; .

The sequence (H;) is purely periodic. Let T be the smallest period of the se-
quence (H;) . We have T" > t where t is the period of the inversive generator.
In fact, for any x € F, \ E; ,Hi(z) = ¢'(x) = « and for € E; , we have
r = Y'(x) = Hyq(x) . Hence, if By = F, then T' =t + 1 and otherwise T" > ¢ .
We can suppose that k¥ < ¢ < T . Let G(z) = 1 . Then lemma 1 implies that
Hi(x) # V(Hi-1(x),...,Ho(x)) , ie,

H(z) = —Hy(z) + V(Hy_1(z), ..., Ho(x))

is a nonzero rational function. Since H;(z) = % are nonconstant rational func-

tions where f;(x), gi(x) € Fyla] with max{deg(f:),deg(g:)} = 1, H(x) = 53 with
F(z),G(z) € Fylz] . Here deg(F) < mk +1. When v, & Ex ,¢?(v,) = H;(v,) for
all 0 < 7 <k and hence

Hy(vy) = ¢k(vn) = qj(@bk_l(vn)v ceey \Ijo(vn))



for 0 <n <N —k—1, hence

H(z) = —Hy(2) + U(Hy1 (), ..., Ho(z))

is zero for all v, ¢ Ep with 0 < n < N —k — 1 . To determine zeros of H(z),
we should consider the elements vy, ..., vy_r_1 Which are pairwise distinct and not
contained in Ej, . If N —k —1 <t then among the N — k elements vy, ..., uy_1
there are at least N — 2k distinct zeros of H(z) and if N —k — 1 > t then there
are at least ¢t — k distinct zeros of H(z) . So, the polynomial F(z) has at least
min{ N — 2k,t — k} zeros and hence deg(F) > min{N — 2k,¢t — k} . This implies
mk+1 > min{N -2k, t—k} . If N—2k = min{N —2k,t—k} then k = NL,,(V,N) >

7Nn—$ otherwise, k = N'L,,(V, N) > ﬁ . Therefore,

NLm(V.N) > min{m;ﬂ , m;ﬂ}

Theorem 3.3.35 The linear complexity profile of a sequence U = (uy,)n>0 produced
by the quadratic exponential generator (3.24) which is purely periodic with period t

satisfies the inequality

> [0

Proof: Let k be the least positive integer with
Uptk = Qg1 Untk—1 T Qp—2Upig—2 + - -+ QoUy
for0<n<N—-—k—1.Then L{U,N)=Fk.Forl,n>0,
Unyy = D = WPy 02
Now let a, = —1 and b; = Ulzal , then
—Upik + Qg 1Unyk—1 + Qg 2Upyr—2 + -+ agy, =0
which implies

2 _1)2 _
a0 VP g oD 2D 4 o 4 ag = 0
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and

bk’U2nk + bk_lvzn(k_l) 4.+ b1U2n + bo =0

for 0 <n < N — K —1. Consider the polynomial
fz) = bpa® + b2 - by + by

Now, we are going to find out the number of zeros of f(x). Let 7 be the multiplicative

order of v . For even values of 7 the elements 1,v?, v*, ..., v7 2 and for odd values of
7, the elements 1,02 v*, ... v*" 2 are distinct. If 7 is even and 7—2 > 2(N —k —1)
then f(x) has at least N — k zeros; 1,0%,..., 0™ =F=1 otherwise f(z) has at least
7/2 zeros; 1,v%, ..., 0" 2. Hence there are at least min{7/2, N — k} roots of f(z) .

Suppose that 7 is odd. If 27 —2 > 2(N — k — 1) then f(z) has at least N — k zeros;

1,0%,..., v®N=k=1) " otherwise there are at least 7 zeros of f(x) ;1,v%,..., 0% 2 .

Hence there are at least min{r, N — k} roots of f(z) if 7 is odd.

deg(f(x)) =k > min{7/2, N — k}, min{r, N — k}

and t < 7 implies that k = L(U, N) > ’Vmin{ZN,t}-‘ '

There is a relation between the linear complexity of a general inversive congru-
ential generator with modulus p and maximal period length and the degree of the
permutation polynomial defining it. We explain this in the following paragraphs.

The linear complexity £(S) of an infinite sequence S = (s,,)n>0 on a ring R can

also be defined as the length L of the shortest linear recurrence relation
SptL = OL-1Sp+L-1 1+ "+ + AoSn, N =1,2,... (3.26)

with ar_1,...,a9 € R which is satisfied by the sequence (s,,),>o . With this defini-

tion in mind consider the nonlinear congruential generator of the form

Tpr1 = f(z,) (mod p)
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where the modulus p > 5 is a prime number, z¢ € F, and f : F, — F, denotes a func-
tion such that the generator has period length p . Then z,y, = x,, n =20,1,...
and we can view X = (x,),>0 as a linear recurring sequence with a characteristic
polynomial 2 — 1 = (x — 1)? . The minimal polynomial of this sequence is a divisor
of (x — 1), hence it should be of the form m(z) = (z — 1) where 1 < ¢ < p .
In fact, m(x) is the characteristic polynomial of the linear recurrence relation of
least possible order satisfied by the sequence X . Therefore the linear complexity
L(X)=t.

We have mentioned in section 3.1.1 by equation (3.4) that the terms of the above

sequence can be written as

xn:Z(nf]>aj:g(n) for all n>0

=0 N 7
with g € F,[z] with deg(g) = s =t — 1 . Here, g is a permutation polynomial of
IF, since {g(0),¢(1),...,9(p — 1)} =F, . Therefore we can conclude that the linear
complexity of the nonlinear congruential sequence with period p > 5, is equal to

deg(g) + 1 where g is the permutation polynomial defining the sequence.

Now, we look at the linear complexity of the power generator which is defined in
(2.11). We assume that the power generator is purely periodic with period ¢ . For
all periodic sequences (z,,) with period t ,x,,s = x, for all n > 0. Hence L <t
since we assumed that the power generator is purely periodic with period ¢ .

We give two important lemmas which will be used to prove main results about

the linear complexity of the power generator in Shparlinski [27].

Lemma 3.3.36 Let ¢ > 2 and g be integers, and let T be the largest positive integer
for which the powers g ,x = 1,...,7 are distinct modulo q . Then for any H < 7

and 1 < h < q, there exists an integer a ,0 < a < q— 1, such that the congruence

g =a+y (modq) 0<z<H-1,0<y<h-1,

5



has

H
T8 > O
q
solutions (z,vy) .
Proof: We have X
—
> T.(H.h)=Hh.
a=0

Let ag be the integer 1 < ag < g — 1 such that T,,(H, h) = max{T,(H,h)| 0 <a <
g — 1} . Then

q—1
qTog(H, h) =Y T.(H,h) = Hh
a=0

and hence
Hh

Tao(H7 h) > —
q

a

Lemma 3.3.37 Let a sequence (S,)n>0 satisfy a linear recurrence relation of the
form (3.26) over a field F . Then for any T > L + 1 pairwise distinct nonnegative

integers ji, ..., Jjr there exist c1,...,cpr € F | not all equal to zero, such that

T
E CiSnvj;, =0 n=1,2,....
i=1

Proof: Consider the set S of all solutions of the linear recurrence relation given

in (3.26). By [17, section 8.5], S is a vector space of dimension L over F . For

i=1,...,T ,let spyj; = (Sntjss Sntjst1s-- -+ Sntj+1—1) Where n = 1,2, ... . Then
Sntijis- -+, Sntjp are solutions of (3.26) and since T > L + 1 , they are linearly
dependent over [ . There exist c¢1,...,cr € F |, not all zero such that

T

Zcisn+ji =0, n=1,2,....

i=1

By considering the first component of this sum, we get

T
E CiSnvj; =0 n=1,2,....
i=1
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Now, we give the upper bound for the linear complexity of the power generator in

the prime modulus case.

Theorem 3.3.38 Let m = p be a prime. Assume that the sequence (uy)n>0 , given
by (2.11) with m = p is purely periodic with period t . Then, for the linear complexity
L of this sequence, the bound

holds.

Proof: Let 7 be the largest positive integer such that the powers ¢ forx =1,...,7
are distinct modulo p — 1 . Suppose that 7 < t. Since " =1 (mod p—1) ,9" =9
(mod p) which contradicts ¢ being the period of the power generator with modulus
p . Therefore 7 > t . Lemma 3.3.36 implies that there exists a with 0 < a <p—2

such that for the number of solutions 7' of the congruence
e"=a+y (modp—1),0<z<7-1,0<y<t-—1, (3.27)

we have

Tt 12
>

p—1"p—1°
Let (j1,k1),- .., (Jr, k) be the corresponding solutions of the congruence (3.27).

Assume that 7> L+ 1 (L <T —1) . Then

T >

— ,196"+ji

— i — ,,a+k; _ S
Un+ i, =uet =ul™ (modp), n=1,2,...,i=1,...,T,

and by lemma 3.3.37, there exist ¢;,...,cr € F, , not all equal to zero such that
T
Zcmff’” =0 (modp), n=12....
i=1

By the definition of the power generator ¥ # 0 and hence u,, = 9" #Z 0 (mod p) ,n =

1,2,..., and the nonzero polynomial

F(z) = Z ;¥ € Fpa]

of degree
deg f 11;1%)( ki <t—1

t2

has t distinct zeros uq, ..., u;—1; which is impossible. So, we have L > T > 2T -

7



|

We call the numbers m = pl as Blum integers where p,[ are distinct primes. We
show that the linear complexity of the power generator with modulus m = pl is at

least of order tp(m)~1/% .

Theorem 3.3.39 Let m = pl , where p and | are two distinct primes. Assume that
the sequence (uy)n>0 given by (2.11), is purely periodic with period t . Then for the

linear complexity L of this sequence the bound
L > to(m) ™12
holds.

Proof: Let t, be the period of the sequence (u,) modulo p and ¢; be the period of

the same sequence modulo [ . We have the inequality ¢ < ¢,¢; and hence

2t} St
(p=1(=1) = ¢(m)

t2
Suppose that P R .Then

12 /
p >t —1/2 )
1= (b(m)

The linear complexity L is not smaller than the linear complexity modulo p, hence

by theorem 3.3.38 we have
L>tp(m) V2.
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