Vi-XFST

A VISUAL INTERFACE FOR XEROX FINITE-STATE
TOOLKIT

by
YASIN YILMAZ
Submitted to the Graduate School of Engineering and Natural Sciences
in partia fulfillment of the requirements for the degree of
Master of Science

Sabanci University

Spring 2003

Vi-XFST; A VISUAL INTERFACE FOR XEROX FINITE STATE TOOLKIT

APPROVED BY:

Kemal Oflazer
(Thesis Supervisor)

Berrin Yanikoglu e

UQUr SEzerman e

DATE OF APPROVAL.:

© Yasin Yilmaz 2001

All Rights Reserved

Sevgili esime ve oglum Yusuf Bilge'ye...

Acknowledgments

| like to express special thanks to my supervisor Prof. Kemal Oflazer, who has supported
me in several ways in this project. His motivation and encouragement have always guided me
through out my whole academic career.

Abstract

Vi-XFST; A VISUAL INTERFACE FOR XEROX FINITE-STATE TOOLKIT
Yasin Yilmaz
MS in Computer Science
Supervisor: Prof. Kemal Oflazer
August,2003

This thesis presents a management model and integrated development environment soft-
ware for finite-state network projects using Xerox Finite-State Toolkit (XFST). XFST is a pop-
ular command line tool to construct finite-states networks, used in natural language processing
research. However, XFST lacks various sophisticated management features to help the devel-
opment phase of large projects where there are hundreds of finite-state definitions.

In this thesis, we introduce a new approach to XFST finite-state development: The source
files are handled in a visual workspace associated with a project, and the project is devel oped
step by step interactively by the user just like contemporary software development projects.
Vi-XFST, the software we have created for our development model, includes automatic de-
pendency tracking, source file management, visual regular expression construction, definition
management and network testing features.

With Vi-XFST, a textual file editing is replaced with a project-building concept similar to
modern software development tools. The benefits of adopting an integrated development envi-
ronment designed for finite-state devel opment include productivity gains by substantial reduced
time for debug and management. The visual features of Vi-XFST enable viewing complex net-
worksat different levelsof detail and make even large projects manageable and comprehensible.

Keywords: Natural Language Processing, Finite-State Toolkit, XFST

Ozet

Vi-XFST; XEROX SONLU DURUM MAKINA DERLEYICIS! ICIN GORSEL ARAY UZ
Yasin Yilimaz
Bilgisayar Bilimleri Y Uksek Lisans Programi
Tez Danismani: Prof. Kemal Oflazer
Temmuz, 2003

Bu tez calismasi, Xerox Sonlu Durum Makina Derleyicisi (Xerox Finite-State Toolkit-
XFST) programinin kullanildigi sonlu durum projeleri icin bir yonetim modeli ve entegre gelistirme
ortami ortaya koymaktadir. XFST, dogal dil isleme arastirmalarinda kullanilan sonlu durum
taniyici ve donusturicllerinin hazirlandigr populer bir komut satiri programidir. Ancak, XFST
yuzlerce sonlu durum tanimlarinin bulunabildigi bu biylk projelerde ihtiyag duyulan yetenekli
yardimci yonetim 6zelliklerinden yoksundur.

Bu tezde, XFST sonlu durum aglarinin gelistirme asamalari icin yeni bir yaklasim sunul-
maktadir: Kaynak kodlar, bir proje oturumu icerisinde, gorsel bir calisma ortaminda ele ain-
makta ve proje etkilesimli olarak adim adim geligtirilmektedir. Gelistirmis oldugumuz yazilim,
Vi-XFST, otomatik dizgin deyimlerin bagimlilik takibi, proje kaynak kod yonetimi, gorsel
diizgiin deyimlerin tanimlama araglari ve sonlu durum agi test 6zellikleri saglamaktadir.

Vi-XFST sayesinde, daha 6nce bir metin dosyas! ile hazirlanan proje gelistirme adimlari,
modern yazilim gelistirme yontemlerine benzer bir yaklasim ile degistirilmigtir. Vi-XFST’nin
gorsel dzellikleri, kompleks sonlu durum aglarinin degisik detaylardaincel enebilmesine olanak
saglayarak bliyik projeleri yonetilebilir ve anlasilabilir kilmaktadir. Ozellikle sonlu durum pro-
jeleri icin tasarlanmis bu entegre gelistirme ortami, hata ayiklamave proje gelistirmede 6nemli
avantgjlar saglamaktadir.

Anahtar Kelimeler: Dogal Dil Isleme, Sonlu Durum Makina Derleyicisi, XFST

Contents

1

Introduction
1.1 Motivation. e e e e
12 LayoutoftheThesis

Design Considerations for a Finite-State Integrated Development Environment
21 Introduction
211 Finite-State Networksand XFST
2.2 Modular Structure of Finite-State Machines
23 ViewingaRegular Expression
2.3.1 Dependency Treeof Networks
24 TheRequirementsof A FiniteState Project
24.1 Accessto Visua Model of TheExpressions
24.2 ControllableDetails
24.3 Network ControlandReuse
24.4 Managing Definition Dependencies
245 DefinitionNameControls
25 Featuresof VI-XFST e

An Example Project Development

31 StatingaProject
32 BulldingEXpressions e
3.3 CompilingaRegular Expression
34 TestingaNetwork e
35 ModifyingtheNetworks
3.6 Printingand ViewingtheSourceCode
3.7 ExportingtheCodeandBinary Files

Vi-XFST Development Issues

4.1 SoftwareDesign
411 ConceptsinVi-XFST
412 DesignPrinciples.o
413 ExecutionFlow
4.1.4 Informa CodingRules

416 DebugTechniques i i it 42

417 Fles. 43

42 Vi-XFSTCIasses o s e e e e e 44

421 ClassHierarchies 44

422 CompoundClassList. 46

423 ManClasses e 49

4231 CFormMain 49

4232 CProject 50

4233 CXfst. 52

4234 CSotBaseRect. 55

4235 CDe€finition 55

4236 CNetwork 56

4237 CDéfinitionParser 57

43 Bugs 58
Development Environment 60

51 Introduction 60

52 TargetOperating Systems. i e 60

521 UnixEnvironment 60

522 WindowsEnvironments 61

5.3 Dependenciesand Auxiliary Tools 61

531 TheQTLibrary 61

532 KDevelop 62

533 Concurrent VersionsSystem: CVS.. 62

534 Indent 63

535 DOXYygen e e 63
536 ReplaceandReplacehex 64
Conclusions and Future Work 65

6.1 Conclusion 65

6.2 FutureWork 66
Appendix - Statistics About the Code 68
Appendix - Vi-XFST User Guide 70

8.1 Introduction e 70

8.2 Installationand Requirements 70

8.3 Thelntegrated Development Environment 72

831 ManWindow. 72

8.3.2 DedfinitionBrowser 73
833 Network Browser e 74

415 InterprocessCommunication 40

8.4

8.5

8.6

8.7
8.8

8.3.4 Expression Canvasand WorkspaceTabs 75

835 MessageTab 75
836 TestTab. e 76
837 DebugTab 77
838 Menubar Commands 78
839 ProectOptionsDialog, 83
8.3.10 DefinitionOptionsDialog 84
8.3.11 Network OptionsDialog i 85
8.3.12 PreferencesDialog e 86
8.3.13 ProjectPreviewDialog 88
Project DevelopmentProcess 89
84.1 StatingaNewProject, 89
8.4.2 BuildingRegular Expressions 89
8.4.3 CompilingaRegular Expression 90
84.4 TestingaNetwork 91
845 ModifyingTheStack 91
8.4.6 Printingand ViewingtheSourceCode 91
8.4.7 ExportingtheCodeandBinary Files. 92
8.4.8 Bug Reporting and Debugging Vi-XFST 92
Graphical Representation Of aRegular Expression 93
85.1 Operator BaseObject 95
Expression Arithmetic e 96
86.1 Union 96
8.6.2 Concatenation 97
86.3 Intersection 97
8.6.4 Composition 98
86,5 Crossproduct 98
86.6 Replacement 99
8.6.7 Left-to-right, Longest-Match Replacement 99
868 SmpleMarkup 100
8.6.9 Left-to-right, Longest-matchMarkup 100
BugReporting. 101
AUthors L e 101

List

21
22
2.3
24
25
2.6
2.7

31
3.2
3.3
34
35

3.6
3.7
3.8
39
3.10
311
3.12

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

of Figures

The XFST commandprompt. o i it 10
The AllDatesParser transducer is defined using 19 regular expression definitions. 11
A transducer can be viewed as a closed box that maps inputsto some outputs. . 11
Thefirst level of detail for thedateparser. 12
A dependency graphof anetwork. L oL 13
Dependency sub-graphof node1to9 14
A sample screen-shot fromthe Vi-XFSTIDE. 17
TheProject Optionsdialog, 21
Union operator base withthreeempty slots. 22
Definition Options dialog is used to access definition properties. 23
It ispossible to nest operator basesinsideeach other. 24
A mapping from coinstocentvalues. [[N.x. ¢*5] | [D .x.

c"S5] | [Q.x. ¢S5]] 25
The PRI CE definitiononthecanvas 27
SixtyFiveCents.0. PRICE 28
Testinganetwork. 29
The dependency graph of theproject 30
Ancestorstreeview of adefinition. 31
Thedependantslist of adefinition. 32
Project View dialog enables view, export and print of source file in different
formats. 34
Main execution flow diagram of Vi-XFST 39
A XFST command executionflow path. 40
CShape classinheritance hierarchy. 45
Collaborationdiagram for CFormMain. 50
Collaborationdiagram for CProject: 52
Inheritance diagram for CProject 52
Inheritancediagramfor CXfst 54
Collaborationdiagramfor CXfst 54
Inheritance diagram for CSlotBaseRect 55
Collaboration diagramfor CSlotBaseRect 55

411

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24

8.25
8.26

CDefinitionParser::parse() state diagram to parse adefinitionstring. 58

A sample screen-shot fromthe Vi-XFSTIDE. 72
TheDefinitionBrowser e 73
TheNetwork Browser e 74
The Expression Canvasand Workspace Tabs 75
TheMessageTab 76
TheTestTab. o e e 77
The debugging window is useful only when the debug option is set during com-

PIlation. 78
Project Optionsdialog 83
Definition Optionsdialog e 84
Network Optionsdialog o i 86
Preferencesdialog. 87
Project Previewdialog 88
A definition basewithtwoopendots. [defl | def1] 93
A definition base withtwoopendots. [defO defl def4] 93
Nesting operator basesineachother: [[Q| D] .x. NJ] 94
Asampleoperatorbase 95
The PRICE definition is enlarged inside another definition. 96
Uni on operator base. Displayed regular expression: 96
Concat enat i on operator base. Displayed regular expression: 97
| nt er sect i on operator base. Displayed regular expression: 97
Conposi t i on operator base. Displayed regular expression: 98
Cr osspr oduct operator base. Displayed regular expression: 98
Repl acenent operator base. Displayed regular expression: 99
Left-to-right, Longest Match Repl acenent operator base. Dis-

played regular expression: e 99
Mar kup operator base. Displayed regular expression: 100
Left-to-right, Longest-natch Markup operator base. Displayed

regular eXpreSSioN: i e e e e e e e e e e e e e 100

List of Tables

31
3.2
3.3
34

41
4.2

5.1
5.2

List of definitionstoadd intothebase. 25
Definitions to be inserted into the slots of PRICE Crossproduct base. 26
Output of printdefinedcommand. 33
The ordering does not change although some definitions are redefined. 33
A sampledebugblock o 42
"print directory” command on XFST, gives an error for windowsversion. . . . 59
A sample comment block specially formatted to produce Doxygen. 64
Usage of replace and replacehex commandsinindent.sh 64

Contents

1

Introduction
1.1 Motivation. e e e e
12 LayoutoftheThesis

Design Considerations for a Finite-State Integrated Development Environment
21 Introduction
211 Finite-State Networksand XFST
2.2 Modular Structure of Finite-State Machines
23 ViewingaRegular Expression
2.3.1 Dependency Treeof Networks
24 TheRequirementsof A FiniteState Project
24.1 Accessto Visua Model of TheExpressions
24.2 ControllableDetails
24.3 Network ControlandReuse
24.4 Managing Definition Dependencies
245 DefinitionNameControls
25 Featuresof VI-XFST e

An Example Project Development

31 StatingaProject
32 BulldingEXpressions e
3.3 CompilingaRegular Expression
34 TestingaNetwork e
35 ModifyingtheNetworks
3.6 Printingand ViewingtheSourceCode
3.7 ExportingtheCodeandBinary Files

Vi-XFST Development Issues

4.1 SoftwareDesign
411 ConceptsinVi-XFST
412 DesignPrinciples.o
413 ExecutionFlow
4.1.4 Informa CodingRules

416 DebugTechniques i i it 42

417 Fles. 43

42 Vi-XFSTCIasses o s e e e e e 44

421 ClassHierarchies 44

422 CompoundClassList. 46

423 ManClasses e 49

4231 CFormMain 49

4232 CProject 50

4233 CXfst. 52

4234 CSotBaseRect. 55

4235 CDe€finition 55

4236 CNetwork 56

4237 CDéfinitionParser 57

43 Bugs 58
Development Environment 60

51 Introduction 60

52 TargetOperating Systems. i e 60

521 UnixEnvironment 60

522 WindowsEnvironments 61

5.3 Dependenciesand Auxiliary Tools 61

531 TheQTLibrary 61

532 KDevelop 62

533 Concurrent VersionsSystem: CVS.. 62

534 Indent 63

535 DOXYygen e e 63
536 ReplaceandReplacehex 64
Conclusions and Future Work 65

6.1 Conclusion 65

6.2 FutureWork 66
Appendix - Statistics About the Code 68
Appendix - Vi-XFST User Guide 70

8.1 Introduction e 70

8.2 Installationand Requirements 70

8.3 Thelntegrated Development Environment 72

831 ManWindow. 72

8.3.2 DedfinitionBrowser 73
833 Network Browser e 74

415 InterprocessCommunication 40

8.4

8.5

8.6

8.7
8.8

8.3.4 Expression Canvasand WorkspaceTabs 75

835 MessageTab 75
836 TestTab. e 76
837 DebugTab 77
838 Menubar Commands 78
839 ProectOptionsDialog, 83
8.3.10 DefinitionOptionsDialog 84
8.3.11 Network OptionsDialog i 85
8.3.12 PreferencesDialog e 86
8.3.13 ProjectPreviewDialog 88
Project DevelopmentProcess 89
84.1 StatingaNewProject, 89
8.4.2 BuildingRegular Expressions 89
8.4.3 CompilingaRegular Expression 90
84.4 TestingaNetwork 91
845 ModifyingTheStack 91
8.4.6 Printingand ViewingtheSourceCode 91
8.4.7 ExportingtheCodeandBinary Files. 92
8.4.8 Bug Reporting and Debugging Vi-XFST 92
Graphical Representation Of aRegular Expression 93
85.1 Operator BaseObject 95
Expression Arithmetic e 96
86.1 Union 96
8.6.2 Concatenation 97
86.3 Intersection 97
8.6.4 Composition 98
86,5 Crossproduct 98
86.6 Replacement 99
8.6.7 Left-to-right, Longest-Match Replacement 99
868 SmpleMarkup 100
8.6.9 Left-to-right, Longest-matchMarkup 100
BugReporting. 101
AUthors L e 101

List

21
22
2.3
24
25
2.6
2.7

31
3.2
3.3
34
35

3.6
3.7
3.8
39
3.10
311
3.12

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

of Figures

The XFST commandprompt. o i it 10
The AllDatesParser transducer is defined using 19 regular expression definitions. 11
A transducer can be viewed as a closed box that maps inputsto some outputs. . 11
Thefirst level of detail for thedateparser. 12
A dependency graphof anetwork. L oL 13
Dependency sub-graphof node1to9 14
A sample screen-shot fromthe Vi-XFSTIDE. 17
TheProject Optionsdialog, 21
Union operator base withthreeempty slots. 22
Definition Options dialog is used to access definition properties. 23
It ispossible to nest operator basesinsideeach other. 24
A mapping from coinstocentvalues. [[N.x. ¢*5] | [D .x.

c"S5] | [Q.x. ¢S5]] 25
The PRI CE definitiononthecanvas 27
SixtyFiveCents.0. PRICE 28
Testinganetwork. 29
The dependency graph of theproject 30
Ancestorstreeview of adefinition. 31
Thedependantslist of adefinition. 32
Project View dialog enables view, export and print of source file in different
formats. 34
Main execution flow diagram of Vi-XFST 39
A XFST command executionflow path. 40
CShape classinheritance hierarchy. 45
Collaborationdiagram for CFormMain. 50
Collaborationdiagram for CProject: 52
Inheritance diagram for CProject 52
Inheritancediagramfor CXfst 54
Collaborationdiagramfor CXfst 54
Inheritance diagram for CSlotBaseRect 55
Collaboration diagramfor CSlotBaseRect 55

411

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24

8.25
8.26

CDefinitionParser::parse() state diagram to parse adefinitionstring. 58

A sample screen-shot fromthe Vi-XFSTIDE. 72
TheDefinitionBrowser e 73
TheNetwork Browser e 74
The Expression Canvasand Workspace Tabs 75
TheMessageTab 76
TheTestTab. o e e 77
The debugging window is useful only when the debug option is set during com-

PIlation. 78
Project Optionsdialog 83
Definition Optionsdialog e 84
Network Optionsdialog o i 86
Preferencesdialog. 87
Project Previewdialog 88
A definition basewithtwoopendots. [defl | def1] 93
A definition base withtwoopendots. [defO defl def4] 93
Nesting operator basesineachother: [[Q| D] .x. NJ] 94
Asampleoperatorbase 95
The PRICE definition is enlarged inside another definition. 96
Uni on operator base. Displayed regular expression: 96
Concat enat i on operator base. Displayed regular expression: 97
| nt er sect i on operator base. Displayed regular expression: 97
Conposi t i on operator base. Displayed regular expression: 98
Cr osspr oduct operator base. Displayed regular expression: 98
Repl acenent operator base. Displayed regular expression: 99
Left-to-right, Longest Match Repl acenent operator base. Dis-

played regular expression: e 99
Mar kup operator base. Displayed regular expression: 100
Left-to-right, Longest-natch Markup operator base. Displayed

regular eXpreSSioN: i e e e e e e e e e e e e e 100

List of Tables

31
3.2
3.3
34

41
4.2

5.1
5.2

List of definitionstoadd intothebase. 25
Definitions to be inserted into the slots of PRICE Crossproduct base. 26
Output of printdefinedcommand. 33
The ordering does not change although some definitions are redefined. 33
A sampledebugblock o 42
"print directory” command on XFST, gives an error for windowsversion. . . . 59
A sample comment block specially formatted to produce Doxygen. 64
Usage of replace and replacehex commandsinindent.sh 64

Chapter 1

Introduction

1.1 Motivation

Current finite-state development toolkits provide sophisticated compilers for finite-state sys-
tems but they lack software engineering and visualization tools to aid in the development of
large-scale networks. A finite-state project contains hundreds of regular expression definitions.
These structures have to be constructed and handled manually by the developer. Most of the
time, finite-state projects are edited in a text file and then processed with the compiler. Cor-
rections, debugging and other maintenance operations have to be done afterwards on the same
text file and the whole project has to be recompiled again and again during the development
cycle. Obviously this development life cycle is painstaking. Developing large-scale finite-state
systems for natural language processing requires many software facilities beside a powerful
compiler.

Xerox Finite-State Tool (XFST) isone of the most popular toolsin natural language applica
tions. Researchers use this tool to build transducers for many purposes e.g.; for in spelling and
grammar checking, morphological analysisand finite-state parsing [4]. Beside natural language
applications, finite-state networks are al'so being used in DNA sequencing, intrusion detection
systems and virus or content checking in computer security applications.

XFEST fulfills the needs of finite-state calculus with its comprehensive command set and
capabilities. It is a command line tool where the inputs are typed in by the user. In XFST, a
finite-state network is built by defining new networks and combining them step by step. At the
end, the top network isthe actual finite-state machine. This hierarchy can be visualized asatree
of dependent objects. Unfortunately XFST does not have satisfactory toolsto manage this hier-
archical tree of networks. When the finite-state projects get larger, managing them with XFST
command line, becomes too complex to do manually. For example, changing one network at
a level in this tree requires a sequence of recompilations of the networks that depend on the
modified ones. This dependency control must be done manually. In a large research project,
thisis every difficult task and subject to human errors. Therefore, usually the whole network
list is recompiled, which is atime consuming method compared to the selective recompilation.

7

We have designed a a development environment designed for XFST finite-state project de-
velopment. Vi-XFST?! includes visual regular expression development components, definition
and network management tools with a large set of supported XFST commands. Vi-XFST aso
provides project maintenance tasks automatically such as definition and network dependency
recompilations. Vi-XFST wraps the functionalities of XFST and provides an extensible archi-
tecture with graphical editing, management and testing features for finite-state projects.

1.2 Layout of the Thesis

Thisthesisis structured as follows. Chapter 2 presents design considerations for an integrated
development environment for finite-state projects and a sample project development using our
model; Chapter 3 focuses on implementation issues for the software, and Chapter 4 is the con-
clusion and discussions on the thesis. The following two sections are appendixes; first oneisa
user guidefor Vi-XFST. The second appendix isashort list of various statistics about the source
code.

lvisua Interface for Xerox Finite State Toolkit

Chapter 2

Design Considerations for a Finite-State
Integrated Development Environment

2.1 Introduction

2.1.1 Finite-State Networks and XFST

Finite-state automata play an important role in natural language processing. They are used in
spelling and grammar checking, morphological analysis and finite-state parsing [4]. Beside nat-
ural language applications, finite-state networks are being used in DNA sequencing, intrusion
detection systems and virus or content checking in computer security applications.

XFST is a genera-purpose utility for computing with finite-state networks. It enables the
user to create simple automata and transducers from text and binary files, regular expressions
and other networks by a variety of operations. The user can display, examine and modify the
structure and the content of the networks. The result can be saved astext or binary files[1].

XFST is used to build networks from user defined regular expressions, which can be read
from standard input or from a file. Networks can be combined with predefined operators to
build new ones. The actual network can be saved to a binary file, which can be loaded and
used without any compilation later. The user can apply stringsto atop network to check if itis
accepted. If the network is a transducer, the input may be transformed into another string.

XFST can read project filesfrom atext file or the project can be typed at the XFST prompt.
After XFST isloaded by the command shell, it prompts xf st [0] : and waits for user com-
mands:

Copyright © Xerox Corporation 1997-2003 Xerox Finite-State
Tool, version 8.0.9

Type "hel p" to list all commands avail able or "hel p hel p" for
further help.

xfst[O0]:

Figure 2.1: The XFST command prompt.

Commands are typed in after the prompt (xf st [0] :) as shown in Figure 2.1. When
the return key is pressed, command execution starts. After the execution finishes, result mes-
sages are displayed and the prompt appears again for more commands. Error messages are also
displayed in this same text screen.

2.2 Modular Structure of Finite-State Machines

Understanding the structure of finite-state networks and how they are built in XFST isthe first
step to figuring out the design requirements of their devel opment environment.

XFST enables the user to develop finite-state transducers by defining regular expressions.
Each regular expression can be used in other expressions with finite-state operators to form
more complex definitions. Therefore, a finite-state development environment should facilitate
this expression reuse and modular structure of expressions. This object hierarchy also intrudes
two more concepts to the design considerations. First one is visualisation of the structure and
sub-components of a complex regular expression. Second concept is tracking of expression
dependencies based on this modular structure.

2.3 Viewing a Regular Expression

A transducer can be visualized as a black box that can take inputs on one side and produce
outputs on the other side. For example, the following transducer maps input strings on the
upper side, to the strings on the lower side, marking substrings that match a date format with
parentheses. Thissimple date parser isimplemented using following definitionswith XFST [4]:

10

define 1to9 [1| 2| 3| 4| 5| 6| 7] 8] 91];
define Day |
Monday| Tuesday| Wednesday| Thur sday| Fri day| Sat ur day| Sunday] ;
define Month |
January| February| March| Apri | | May| June|
Jul y| August | Sept enber | Oct ober | Novenber | Decenber];
define def2 [1|2];
define def4 [3];
define def5 [["0" | 1]];
define EMPTY [O];
define def16 [(Day ", ")];
define SPACE[" "];
define 0To9 ["0" | 1to9];
define Date [1t0o9 | [def2 0To9] | [def4 def5]];
define Year [1to9 [[OTo9 [[[OTo9 [OTo9 | EMPTY |] |
EMPTY] | EMPTY] 1 | EMPTY]];
define DateYear [(", " Year)];
define LeftPar ["["];
define RightPar ["]"];
define Even ["0" | 2| 4| 6| 8];
define Gdd [1| 3| 5] 7| 91];
define AllDates [Day | [defl6 Month SPACE Date DateYear |];
define Al |l DatesParser [AllDates @> LeftPar ... RightPar];
read regex All DatesParser;

Figure 2.2: The AllDatesParser transducer is defined using 19 regular expression definitions.

The top regular expression is the transducer that maps input strings to outputs. This trans-
ducer can be viewed as a box at the top-level:

(Today is Tuesday, July 25, 2000 because yesterday was Monday)

:

AllDatesParser

.

< Today is [Tuesday, July 25,2000] because vesterday was [Monday])

Figure 2.3: A transducer can be viewed as a closed box that maps inputs to some outputs.

The direction of this mapping can be reversed, which means that the input can be applied
from the bottom of the box, where the output will be produced from the top of this virtual
transducer. The top view of the parser gives us a little clue about the structure of the networks

11

it is composed of. In fact, in development phase, a transducer is built using previous smaller
networks, each doing a sub-section of the task. So we would like to be able to view the internal
structure of aregular expression.

|

LeftPar |[AllDates || RightPar

(Today is [Tuesday, July 25,2000] because vesterday was [Monday])

Figure 2.4: Thefirst level of detail for the date parser.

In Figure 2.4, we can visualise a transucer with some of its subcomponents. These networks
can also be enlarged into thier subcomponents. A finite-state development environment should
be ableto let the user view atransducer in different levels of details. Thisenhancesvisualization
of regular expressions and improves the comprehension of complex transducers.

2.3.1 Dependency Tree of Networks

As described above, a network is constructed upon smaller ones. This dependency hierarchy at
development time, can be viewed as an acyclic dependency graph asin Figure 2.5:

12

| AllDaysParser |

defl6

| deR2 || defd | defS

Year

0T 09 MPTY

1to9

Figure 2.5: A dependency graph of a network.

A requirement of XFST is that, when there is a modification in a definition of regular ex-
pression, aminor correction for example, the whol e dependency tree from the modified network
up to the root network, must be recompiled by the user. It is obvious that even within such a
tiny sample project, it is quite hard to predict the path from a node to the top root. With a quick
heuristic, it is evident that compiling each node visited from the ancestors of the modified def-
inition to top recursively is a solution. But it this leads to recompilations of same nodes more
than once, which is quite time consuming, and not the optimal solution.

Suppose that the researcher updates definition of the network "1t 09”. One has to figure
out which definitions have to be recompiled. Further, the order of this recompilation is very
important. The ordering can be achieved by topological ordering of the sub-graph that spans
the dependency relationship of the modified node. For example, the sub-graph of node 1t 09 is
shown in Figure 2.6:

13

| AllDaysParser |

Figure 2.6: Dependency sub-graph of node 1t 09

Topological sort of the this dependency tree gives us the correct ordering of definitions that
have to be recompiled:

1t 09, 0To9, Date, Year, DateYear, Al Days, Al Il DaysParser

2.4 The Requirements of A Finite-State Project

Asdescribed in Section 2.2, regular expressionsfor finite-state transducers possesstheir ownin-
dividual structure that must be taken into account while designing a devel opment environment
for them. XFST is a great tool to construct, test, and update networks, with a very compre-
hensive set of commands. Our intention is to fulfill the management needs of this powerful
command line toolkit.

Based on the usage patterns of developersusing XFST, and the properties of regular expres-
sions, our project model has evolved with the following aims.

2.4.1 Access to Visual Model of The Expressions

Ashinted earlier, visual development of complex regular expressionsisavery desirablefeature.
Without a visual model, it is still possible to type in expressions in an edit box, but that does
not contribute to the intention of an integrated development environment, which is to ease the
burden on the developer. So wherever possible, the visual structure of an expression should be
accessible in afinite-state project management solution.

14

2.4.2 Controllable Details

A finite-state development environment that facilitates model-based structures should also have
features to control the details displayed. Detail hiding is a must when things on the screen get
too crowded. It should be possibleto focus on a section of aregular expression, debug that part,
fix it and then move to other components. While doing these steps, the user should be able to
control the level of detail with the help of his development environment.

2.4.3 Network Control and Reuse

In afinite-state project, hundreds of networks may be created by regular expression definitions.
They are used in many different parts of the project to build new ones. This key concept of
regualar expression and reuse, should be facilitated with easy to use functions in an integrated
development environment. The list of available networks, in the order they are pushed into the
stack, must be accessible to the user in avisual environment.

2.4.4 Managing Definition Dependencies

The dependency problem is one of the mgjor issues that has to be solved. The definition re-
compilations should be accomplished in the most accurate and optimized way without user
intervention. As stated in Section 2.3.1, the solution to dependency recompilation ordering is
extracted from the topological sort of the dependency relationship sub-graph of a definition.

Dependency control is not only applicable to definition modifications. In our development
environment model, a definition which has dependents, is prevented from being undefined, or
renaming. For example, the following three lines defines three networks where the network AB
depends on both A and B:

define R red;
defi ne B bl ue;
define COLORS [R| B];

Our solution does not allow the user toundef i ne or subst i t ut e (rename) definition R
or B sincethey have dependentsthat refer to them using these namesin their regular expressions.
If it was allowed to rename or undefine them, a recompilation for definition COLORS will
not create the intended network. Suppose definition R is undefined and definition COLORS is
recompiled again:

define R red;
defi ne B bl ue;
define COLORS [R| B];

15

undefine R
define COLORS [R| B];

XFST will not generate any error messages. The redefined definition COLORS now does
not accept input strings{” red” ;’ blue” } but {" R” ;" blue” }. Thiswas probably not what the user
wanted. This kind of problems during development phase can be prevented by dependency
controls in our management model.

2.4.5 Definition Name Controls

Another issue that has to be controlled by a finite-state devel opment environment to keep the
project " strongly typed”, is the uniqueness of regular expressions names defined. For example,
redefining a definition in XFST isvalid asin the following piece of code:

define R light _red;

define B |ight bl ue;

define LIGHT COLORS [R| B]; //Ris used in this expression
define R dark red; //R is redefined

The finite-state definitions above are not a good development practice. A network is rede-
fined although it has dependents and maybe used in other definitions. This piece of code is
valid and does not produce any error or warning messages in XFST. But if the user recompiles
definition LIGHT_COL ORS during debugging his code, the LIGHT _COLORS will reject the
intended input string set { ” light_red” ;" light_blue” } and accept set {” dark red” ;" light_blue’ }.

These kinds of errors will become a common issue when there are thousands of definition
names to remember. Definition name conflicts are even more common when the development
has more than one developers working on it. Therefore, to prevent such errors and ambiguities,
our management model will not allow definition name overriding.

2.5 Features of VIi-XFST

Vi-XFST providesasimple and easy, yet powerful way to devel op finite-state networks without
involving devel opersin the complexities of acommand line tool. With its set of innovative fea-
tures, less experienced developers can quickly start testing with finite-state concepts seeing the
actual picture on their workspace, while the advanced developers are freed from many manual
tasks and controls that they had to cope with before. This means that they can focus on what to
build, not on how to.

16

" vi-xest 1.0 senTENCESS 3 =
Eile Project Insert Definition Network Stack Test Help
IS e N R I I A S
| Definttions [Networks | ADVR [VR |NR [SENTENCES |DR |
Display | All ¥ |||*
LeftN - LEftNC.
Name Expression * - -
CISENTENCES [SP .0. SSR.
"ADR [LeftD @-> L i
‘Z3LeftDC el : :
@LEﬂD E “([D ”]]
(Z3RightDC ["Dy] =
(3RightD [Pl
ANR [LeftN @-> L
(3LeftNC ["(N"] Y
LeftN ["[N"] s
(Z3RightNC ["N)"] LS] =] [dnio|
?]\R’,Ehm E RELtP]V @-> Messages | Test | Debug
(Z3RightPVC ["Pv)'] [Definition file loadesd] b
@mghtPV ["Pv]"] bl file loadesd]
@LE&DVC ["(Pyv"] £i =l [F:. Tagd Kb L '.T:—"T. r arcs, f'ir-.jl,:r‘ .
@LE&DV ["Pv"] .r.:. .4_" states, 6235 arcs, Circular.
S ares, Sarculat:
SLeftvC IS0 [Definition file szaved]
SLeftv [Vl [Stack file saved]
(Z3RightWVC ["v)]
ZHRightV [N =
EHLeftVTC [NRE
(LeftvT [ESE |
RIghtVTC ["(VT "]
(ZERightWVT ["[VT"]
["[NP" @-> "y
[LeftAd @-> I3
“«n -

Figure 2.7: A sample screen-shot from the Vi-XFST IDE.

The following are important features of Vi-XFST:

e A development environment designed for XFST: Vi-XFST treats an XFST file as a de-
velopment project that has to be managed on behalf of the user as he builds the regular
expressions. The developer can move from the traditional way of editing an XFST source
file, mostly done with atext editor like ”vi” or ”emacs’, to areal integrated development
environment, like Vi-XFST. He can see results of his work at design time, modify the
code and retest any component.

Visual Regular Expression Development: Vi-XFST's graphical regular expression con-
struction tools allow developersto quickly build avisual model of their finite-state regular
expressions. The developer quickly creates a topological model of the expression show-
ing the relationship between expressions, as they are combined on the canvas of the visual
editor. It isalso easier to break down into the visual structure of large regular expressions.
There is a hierarchical view of networks available, and that hierarchy is visible with in
Vi-XFST. The user can zoom in a definition to see what is inside it, and go deeper, do
tests at any level on a component, modify it, and go back to the top picture. This makes
it possible to view networks at different levels of detail and make even large structures
manageable and comprehensive.

17

e Automatic definition and regular expression dependency checks and recompilation: Vi-
XFST watches modifications to a regular expression and recompiles any other definition
that depends on it. Even the networks on the stack created with previous "regex” com-
mands are recompiled if they depend on amodified regular expression. Thisis, in general,
adifficult processfor the developersto do manually. But with Vi-XFST, it isjust transpar-
ent to the user at the background and automatically handled. Vi-XFST determines which
definitions have to be recompiled. This selective recompilation of modified definitionsis
much efficient than recompiling the whole project.

e Alarge set of supported XFST commands. Beside expression operators, Vi-XFST sup-
portsmany of the XFST’s comprehensive command set and their options. They are hidden
behind many easy to use dialog boxes, menu buttons and other graphical components of
Vi-XFST. The developer will even use some of them without noticing, as he changes a
project setting, clicks a button or updates an expression. Vi-XFST will send the appropri-
ate commandsto XFST on behalf of him to accomplish the requests.

e Definition and Network Browsers:. These two browsers introduced in Vi-XFST display
thelist of defined regular expression definitions and available networks on the stack. The
developer can access any one of the definitions or networks with just a mouse click.
He can check or modify their properties, or use them in other parts of the project. For
example, it is very easy to view which regular expression depends on a particular one.
Without Vi-XFST, itisaquitedifficult task. Also, properties of anetwork can be accessed
with only a mouse click.

e Dragand Drop: Once aregular expression definition isdefined, it isavailablein the Defi-
nition Browser. Then the user can drag and drop it with his mouse onto canvasto construct
new expressions. Once basic definitions are defined, user can build new expressionswith-
out typing anything at all; create a definition base, drop previous definitions into it, and
click Push definition and new definition is ready. Even a unique definition name is auto-
matically created on behalf of the user. Vi-XFST provides a strongly typed devel opment
environment that reduces type errors while writing definition regular expressions.

e History of input and output test strings: Vi-XFST keeps track of strings applied to a
network on the stack. User can always go back and test with his previous inputs with just
one mouse click. He does not have to try to remember the inputs of last tests. They are
saved inside the project file, and can be exported to any text file.

e Message handling: Vi-XFST handles every message from XFST program. They are
never lost between user commands as before. Error messages, test outputs, normal XFST
messages are all differentiated by Vi-XFST, parsed and indicated to the user.

e XFST compatibility: Vi-XFST project file can be used directly inside XFST as a script
file. Thereisno Vi-XFST specific code inside the source file of the project that may be
rejected by XFST.

18

e Multi-platform IDE: Vi-XFST runs on many Unix systems (Sun Solaris and al Linux
distributions) and even on Microsoft Windows platforms with the same functionality. It
isafast pure C++ application, not a slow interpreted code like Javaor TCL.

19

Chapter 3

An Example Project Development

In this chapter we present our management solutionsfor finite-state project development issues
with examples. Only the key concepts of our model will be presented here. For more details of
Vi-XFST features and usage, pleaserefer to manual documentation of Vi-XFST in the A ppendix
sections.

The project that is built below isaregular expression that describes the operation of a vend-
ing machine that dispenses drinks for 65 cents a can. It accepts any sequence of coins: 5 cents
(represented by input 'n’), 10 cents (represented by input *d’) or 25 cents (represented by input
'q’). If one puts in the right amount of money in any combination of these coins, a can of
soft drink drops into a bin (represented by output 'PLONK’); otherwise nothing happens. To
focus on the features of the development environment, we will demonstrate a simpler version
of vending machine that does not return any changes|3].

3.1 Starting a Project

Vi-XFST handles each development session with XFST in a Project Workspace. A finite-state
project is no longer created by text file editing. In a workspace of Vi-XFST, there are various
settings, controls and options associated with the project. For each project three files are used;
one for the regular expression definitions and two more binary files for network and definitions
on the stack. These files are the ones created by ”save defined <filename>" and " save net-
work <filename>" commands of XFST. These files are also a part of the project, and they are
automatically synchronized (saved or loaded) with the project content transparent to the user.

To start a new project workspace, one clicks Project|New* menu item, or the associated
button on the toolbar. The Project Options dialog will be invoked. A descriptive name for the
project and a directory path for the workspace files are expected to be entered in this dialog.

1This syntax printed in bold, defines a command (New), under a menu item (Project) on the top of the main
window.

20

Default value displayed for the directory points to the current directory, but it is probable that
the developer will want his project files saved in a more reasonabl e location.

| Project l Preferences |

70%

Name |THECOKE

Author |Yasin Yilmaz

Contact Iyalovali@hotmail.com

Folder |Documents/TEZ/abrog/infinity20/|nfinity_win32 L)

Decription | A vending machine dispenses drinks for 65 cents
a canlt accepts any sequence of following
coins:5 cents10 cents25 cents

The automaton implements the behaviour of the
soft drink machine.

(v oK)| @ cancel J |

\ OR T

Figure 3.1: The Project Options dialog

When the OK button is clicked, the Project Options dialog will be closed and a new project
workspace will be initiated. An XFST process will be loaded while menu items, browsers and
workspace canvasareinitialized. Asthisinitialization procedureiscarried out, the XFST Progress
dialog will appear for a short period of time. This dialog indicates that Vi-XFST is busy with
executing some commands and it will disappear automatically with the end of the active task.
When the initialization finishes, one can start adding definitions to his workspace.

3.2 Building Expressions

To build our vending machine, we start by defining a mapping for the coinsto their correspond-
ing centsvalues. This can be accomplished by constructing a transducer that maps each of coins
to astring of "c”s of length that represents its value. For example, c*5 denotes the language
consisting of the string"ccccc”. Thustheexpresson[n . x. c¢c”5] expressesthefact that
anickel isworth 5 cents and defines a mapping that transducesn into "ccccc". A relation that
will be of the following form will map one coin to the given cent value:

[[N.x. ¢*5] | [D.x. ¢*5] | [Q.x. ¢c~51]];

21

The base operand of this expression is the Union operator (|). So, to build this expression on
the canvas, we select the union operator icon from the tool bar and click on the empty expression
canvas. An operator base with two open slots will be opened.

We will insert three crossproduct expressons(f N .x. ¢*5] , [D.x. c¢c”5
] » [Q.x. c¢”5])tomapeachcointypeinto ther cent values. Before inserting these
crossproduct operators as operants, we see that our union operator has only two empty slots,
whereas we need three. So we just right click the union operator base and select " New slot”
menu item. This will add an extra slot to the base. Now our union operator has three empty
dots:

"% vi-xrsT 1.0 THECOKE <2> & e
File Project Insert Definition Metwork Stack Test Help

' L (s)

Jdﬁ;}‘ ‘ | « & x..00 >@& 2@

[Definitions [Networks CENTS |

+*

Messages |Test Debug

Display

Name |Expression

Figure 3.2: Union operator base with three empty slots.

This operator regular expression will be named as” CENTS”. To change its name; we press
F9 to invoke the Definition Options dialog to edit properties of the active definition on the
canvas, then change the auto-generated definition name to "CENTS”. Also a comment seems
reasonable here:

22

& Definition Options 2 ”ﬂg
D

[efinition lEreferences Ancestors | Dependants]

Name ICENTS
Expression

Comment | This is a mapping for coins to cents

Test & Verification
(X Definition has been tested and verified

Note: |Potentially this definition is bug-free (| hope)|

(\/ OK PLO Cancel |

Figure 3.3: Definition Options dialog is used to access definition properties.

Then, we click OK to accept the changes.

Next, we select Crossproduct (. x.) operator from the tool bar and click inside one of the
empty slotsof the union base on the canvas. Asone can see, it ispossibleto nest operatorswithin
each other to construct more complex regular expressions. Now we repeat adding crossproduct
operators two more times for each empty slots of the union operator:

23

K VI-XFST 1.0 THECOKE <2> ; - ;._;;”

File Project Insert Definition Metwork Stack Test Help

1 EE4) Wl . Exo e e

Defiitions] | Networks | cents |

Display

Name |Expression

LIL3

Messages |Test Debug

Figure 3.4: It is possible to nest operator bases inside each other.

So far no definition has been entered into XFST. We are still working on the skeleton of
our regular expression. At any point, we can define our definitions and insert them in the slots
of an operator base. Vi-XFST makes it much easier to focus on the "design” of the models
before the actual code isimplemented, similar to object-oriented design principles. Vi-XFST's
model-driven approach to regular expression definitions allows developers to quickly build a
visual model of their expression before they type in any definition.

Once we are satisfied with the operator base, we start adding actual definitions inside the
dlots. To start with, we double click in the upper slot of the first Crossproduct base. A new
definition will be created and inserted into this slot. The Definition Options dialog is invoked,
presenting a new definition for us. A definition nameis already generated. We change the name
to” N’ and regular expressionto "n”. This definition only denotes a single symbol. Similarly, it
would have been defined in XFST command prompt as:

define N n;

We click OK. The XFST Progress dialog will appear and define the regular expression to
XFST and nameitas”N’. If thereisno error, the definition will appear in the Definition Browser
and it isautomatically inserted into the empty slot that we have double clicked in.

The Message Tab will be popped up if it is not visible. This tab contains atext box where
any XFST or Vi-XFST messages are displayed. One should check these messages for his def-
initions. If there has been an error, Vi-XFST would have noticed that. But it is aways wise to

24

check for any inconsistencies; such as unexpected definition sizes may be hint for debugging of
the code in the future.

We double click the lower side of thefirst Crossproduct base, and add a new definition with
name”C5” and expression”c”5”. Thefirst operand of the Union operator base is finished.

Then we add other definitions to the two crossproduct bases, with definitions:

| Name | Expression|

D d
C10 c"10
Q q
C25 c"25

Table 3.1: List of definitions to add into the base.

The completed operator base looks like:

) Ei=1
FEile Project Insert Definition MNetwork Stack Test Help
RO ENEN | . sxoce e
Definitions | Networks CENTS
Display lAII 3]
MName Expression
RICENTS RN G5 N[B
3010 He4254]
2Q [al
D [d]
$3C10 eatn]
£3C5 e250)
&N Bl
[eiw]
Messages lTest |Debug]
definsd N: 340 bytes. 2 states, 1 arc, 1 path.
definsd C5: 452 1} 5. cs, lLipath.
definsd CL0O: 5 = states, 10 arcs, 1 path.
defin 3 E sesy | pakhs
defin] =) e 1 pEEhs
defined (1 = = : o5y depath: =
definsed CENTS: 1.0 Eb. 26 states, 2 3 paths.
<] || — win) |1 I - I

Figure 3.5: A mapping from coins to cent values: [[N.x. ¢*5] | [D.x.
c"’5]1 | [Q.x. ¢c"51]]

25

Next, we right click on the Union operator base and select Push definition option from the
pull-down menu. The definition will be defined in XFST and added to the Definition Browser.

Now we want to define aKleene star for the” CO NS” definition. Not all operators of XFST
are available in Vi-XFST expression canvas yet. Therefore we have to type this definition just
like we have done for symbols above.

We select Definition|New definition menu, or just press F4 to open the Definition Options
dialog. Then we change the default name to ”Si xt yFi veCent s” and type "CO NS*” for
the expression and close the dialog with the OK button. Although it is not edited on the vi-
sual expression canvas, the same dependency tracking and recompilations are applicable to this
expression, like other definitionsin Vi-XFST.

Another mapping should be for 65 cents to the output can, "PLONK”. The actua regular
expression that wewill construct on thecanvaswill be”[C65 . x. Def Pl ong]”. Wejust
select the Crossproduct icon from the toolbar and click anywhere on the expression canvas. A
new workspace tab will be opened to place the operator base. We renamethisbase as” PRI CE”
as described above from the Definition Options dialog, then we insert two new definition into
empty slots of this crossproduct base which are:

| Name | Expression|
65 ch65 |
Def PLONK PLONK ‘

Table 3.2: Definitions to be inserted into the slots of PRICE Crossproduct base.

After we enter the actual definition in to XFST;

26

1 ERA

FEile Project Insert Definition MNetwork Stack Test Help

ER¥N | .=

oXa sOs => @> -> @»

Iﬂﬂ

Definitions | Networks PRICE | CENTS
Display lAII >]
Ce5
Name Expression .
CIPRICE [CB5 .x. DefPLONK] i
2DefPLONK [PLONK]
¢3C65 [™65]
¢3SixtyFiveCents [CENTS*] IefPLOI\.
W CENTS [[NxC5]|[D.
Q10 [c”25]
4Q [a] H |
D [d] Y
¢3C10 [e~10] [l =
¢3C5 EeaE] Messages l Test | Debug]
&N [n] defined W: 340 Lytes. @
definsd C5: 4
defined CLl0: E
definsd D: 340
definsd
defin : i =5
defin CENTS: 1.0 El 6 B e paths.
defined SixtyFiveCents: 1.0 Kb. 25 states, 27 arcs =
Circular:
defined C65: 2.1 Kb. 66 states, 65 arcs, 1 path.
definsd DefPLCONE: 340 byvtes. 2 states, 1 arec, 1 path.
definsd PRICE: 2.1
definsd PRICE: 2.1 Y
defined PRICE: 2.1)
B — e[| fe] -

Figure 3.6: The PRI CE definition on the canvas

Now the fina step is a mapping from cents to the price of the drink can. Thisis simply
PRI CE] ”. We place a Composition operator (. 0.) on the
canvas and rename it to "Buy Coke”. Next we select definition Si xt yFi veCent s from the
Definition Browser, then drag and drop it into the upper slot of the composition base. In the

"[Si xtyFi veCents . o.

same manner we add the PRI CE definition also into the lower slot of the base:

27

o
FEile Project Insert Definition MNetwork Stack Test Help
JHA@BEREE . s ko e 26
: — 1]
Display LAII * |||
Name Expression
T)BuyCoke [SixtyFiveCents .o. F
YIS EN [C65 x. DefPLONK 1| g
¢3DefPLONK [PLONK]
$3C65 [FE2654]
¢3SixtyFiveCents [CENTS*]
TICENTS [[NxC5]1|[D.||L{
N
¢3Q10 i =2254] H
2Q [q] o =
5D [d] [« CIEY
£3C10 [cAL0] Messages | Test |Debug |
&C5 [c"5] defined CI0: 592 bytes. 11 T#]
3N [n] defined D
lefir
lefinesd |
lefined CENT
lefis
ircu
defined C65: 2.1 56 states, 65 arcs, 1 pat
defined DefPLONE) bytes. 2 states, 1 are, 1 path. H
[Definition file saved]
definsd B 2wila Kb BB p5 arc 1 £l
defin s dain 4 ;
7] [—

Figure 3.7: SixtyFiveCents.o. PRICE

Then we right click and send the definition to XFST. Now we have completed building our
regular expressions and ready to push our network onto the XFST stack.

3.3 Compiling a Regular Expression

Just like most of the commonly used commands of Vi-XFST, there are variouswaysto compilea
regular expression. A simpleway isto right click the definition name on the Definition Browser
and select " Read Regex” menu item.

When the network issuccessfully created on the stack, it isdisplayed in the Network Browser.
After each compilation, Vi-XFST will switch the workspace tabs to test phase automatically.

We can compile regular expressions at any time while building a project. One can just
right click a base on the canvas and select " Read Regex”. The compilation will start. Then the
graphical user interface switches to test tabs, ready to debug the expression with inputs. When
we are done, we can switch back to building our expressions again. We can always see which
network ison the top of stack. The stack can be rotated, reversed, cleared or modified by pop-up
command. Without Vi-XFST, users had to print content of the stack each timeto understand and

28

remember the structure of the stack. Now it isall visible on the screen. By thisway Vi-XFST
encourages the test of each building block of the project at any time without any management
penalty of the stack. It is handled automatically by Vi-XFST.

We locate the Buy Coke in the Definition Browser, right click and select "Read Regex”.
The definition will be compiled onto the stack and Vi-XFST will activate test tabs and place the
cursor in the input string edit box.

3.4 Testing a Network

Inputs to a network on the stack can be entered using the Input Sring edit box, and pressing
enter or clicking the Apply button just below the edit box. The direction of apply command can
be set by down and up radio buttons near the Apply button. The results will be displayed in the
Results edit box, and the input string will be added to the Inputslist.

For example, we enter two quarters and one dime and one nickel (qgdn) and press enter.
The output isa can of drink: PLONK!

& vi-xest 1.0 THEGOKE & _ox
FEile Project Insert Definition MNetwork Stack Test Help
I = =) IR j Y D
J Lj Lj _"')xle e J\.;): . ‘ I . & X..0. -> @> :z @?
Definitions | Networks | BuyCoke 'PRICE CENTS
Top of stack +|
Name Comment i 1‘.-'FiVEC'
BuyCoke network for BuyCoke :
+
+
-« L e
Messages | Test ‘Debug]
rInputs
gqdn
Input string: |qqdn Clr

l o, o Y '
5 Apply (< down O up | £| Remove| [@ Load | X/ Auto clear

rResults
PLONK |

«| Il | [«

lﬂ Turn Jl:-! Pop Jll RotateJ —

Figure 3.8: Testing a network.

29

A set of testing features are also available to help the testing phase of the project. Vi-XFST
keeps track of user test inputs and outputs, so that they can be referred back, as the debugging
goes on. Itemsin the Inputs lists can be removed, cleared, loaded from, or saved to atext file.
These operations are avail able both through the buttons on the test tab and menu items under the
Testmenu. If auto-save option is set in the Vi-XFST settings, input strings are kept inside the
source file when the active project is saved. They are also |oaded when the project is reopened.

3.5 Modifying the Networks

Once we have tested the network on the stack, we may want to make some modifications. For
example the prices of the coke may be updated to 100 cents. If this value is modified, then the
networks that are affected by this change should also be recompiled. The dependency tree of
whole coke machineis show in Figure 3.9.

SixtyFiveCents

Figure 3.9: The dependency graph of the project

A dependency tree is automatically generated for every definition when it is viewed in Def-
inition Options dialog. We select the top definition ”Buy Coke” in the Definition Browser and
right-click, select Properties option from the pull-down menu. On the Definition Options dia-
log in the Ancestors tab, the list of parent nodes of this definition is displayed. Thistreeisjust
another representation of Figure 3.9.

30

| & Definition options § [[[

[Qeﬁnition |Ereferences lAncestors l Dependants]

Ancestors (updated when the definition is pushed into xfst)

Name
--this
--PRICE
. -C65
. -DefPLONK
--SixtyFiveCents
--CENTS
..CH
D
.-N
-Q
~Q10

(\/ OK PL@ Cancel | ‘

Figure 3.10: Ancestorstree view of a definition.

The reverse of an ancestors list is the dependents list. Thisis atree of nodes that depends
on a particular definition. To see which definitions depend on the price of the coke and will
be updated, we select C65 from the Definition Browser and click its properties in the pop-up
menu. In the Dependents tab the list of dependentsis given in atree structure:

31

"8 Dainition options =]

[Qeﬁnition ’Ereferences ‘Ancestors (Dependants |

Dependants (updated when the definition is pushed into xfst)

Name
i--;this
--PRICE
..BuyCoke

',‘v OK J"O Cancel |

Figure 3.11: The dependants list of a definition.

Now we open the Definition Options dialog of C65 if it is not aready invoked. In the
Definition tab expression "¢ 65” is changed to "¢~ 100”. Now a coke costs 100 cents. The
dialogis closed with OK button to accept the update. As soon asthe dialog isclosed, Vi-XFST
starts a sequence of compilations. The definitions in the dependents tree of the C65 are now
recompiled automatically by Vi-XFST. The results and the actual order of compilations can be
viewed from the messages box.

One should observe that since these updated definitions are undefined and defined again,
they are inserted at the top of the Definition Browser. By thisway it is ensured that the ordering
of browser items is consistent with the creation order of definitions, even if they are updated
and not created.

To see how the ordering of definitions are changed as a recompilation takes place, we first
get alist of definitionsfrom XFST by using menu item Definition|print|defined. The ordering
iIsshown in table:

32

N 340 bytes. 2 states, 1 arc, 1 path.

C5 452 bytes. 6 states, 5 arcs, 1 path.

Cl10 592 bytes. 11 states, 10 arcs, 1 path.

D 340 bytes. 2 states, 1 arc, 1 path.

Q 340 bytes. 2 states, 1 arc, 1 path.

QL0 1.0 Kb. 26 states, 25 arcs, 1 path.

CENTS 1.0 Kb. 26 states, 27 arcs, 3 paths.

Si xtyFiveCents 1.0 Kb. 25 states, 27 arcs,
Circular. €665 2.1 Kb. 66 states, 65 arcs, 1 path.
Def PLONK 340 bytes. 2 states, 1 arc, 1 path.
PRICE 2.1 Kb. 66 states, 65 arcs, 1 path.

BuyCoke 936 bytes. 14 states, 34 arcs, 634 paths.

Table 3.3: Output of print defined command.

Then we double click the definition Qin the Definition Browser, change its expression "q”

to”x” and click OK. As the recompilation takes place, definitions are undefined and redefined
automatically, one can observe that most recent updated definitionisinserted at the top of defini-
tionlist. After the process ends, we get alist of definitions again using Definition|print|defined
menu. The ordering does not change in XFST.

N 340 bytes. 2 states, 1 arc, 1 path.

C5 452 bytes. 6 states, 5 arcs, 1 path.

Cl10 592 bytes. 11 states, 10 arcs, 1 path.

D 340 bytes. 2 states, 1 arc, 1 path.

Q 340 bytes. 2 states, 1 arc, 1 path.

QL0 1.0 Kb. 26 states, 25 arcs, 1 path.

CENTS 1.0 Kb. 26 states, 27 arcs, 3 paths.

Si xtyFiveCents 1.0 Kb. 25 states, 27 arcs,
Crcular. ©C65 2.1 Kb. 66 states, 65 arcs, 1 path.
Def PLONK 340 bytes. 2 states, 1 arc, 1 path.
PRICE 2.1 Kb. 66 states, 65 arcs, 1 path.

BuyCoke 936 bytes. 14 states, 34 arcs, 634 paths.

Table 3.4: The ordering does not change although some definitions are redefined.

Unfortunately by using only this list generated by XFST, it is misleading to interpret that
thisisthe creation order of definitions. It should not be referenced to figure out the dependency
order of definitionscreated. But, thelist in Definition Browser always showsthe correct creation
order of definitions.

33

3.6 Printing and Viewing the Source Code

The project source file can be viewed within the Project Preview dialog. We click Project|View
& Print menu to invoke the dialog that will display the source code of our project.

We can use this dialog to export the project to a text file or print in various formats.
Hide all comments checkbox can be used to hide/un-hide Vi-XFST inline control comments.
Syntax highlighting can be enabled/disabled by the Use syntax highlighting checkbox. The
Print button will call the system print dialog box and lets us choose the printing preferences
and get a hardcopy of the project. If the underlying system permits, a postscript copy can also
be generated from this printing dialog.

:;ftpfgjzstaglﬂ(;écor;fé = X| Use syntax highlighting (X Hide all comments
defineN[n]; *
define C5 [c”5];
define C10 [c”10 ;
defineD [d];
define Q[q];
define Q10 [c™25];
define CENTS[[N x.C5] | [D.x.C10] | [Q .x.Q10]1; g
define SixtyFiveCents [CENTS*];]
define C65 [c™65 ;

define DefPLONK [PLONK 1J;

define PRICE [C65 .x. DefPLONK 1];

define BuyCoke [SixtyFiveCents .0. PRICE];
read regex PRICE;

read regex BuyCoke;

«n|[

I Save.as... J | Print J',\ Close J.

Figure 3.12: Project View dialog enables view, export and print of source file in different for-
mats.

A copy of the project can be export ainto atext file by using the Savebutton, according to
the display criteria set in this dialog.

3.7 Exporting the Code and Binary Files

Under the project directory (see Project Optionsdialog), there are threefilesrelated to a project.
These are:

<ProjectName>.infproj The source file for the project. It contains project information, op-
tions, network definitions and input strings. This file can be loaded into XFST with ”-I”
parameter. All the Vi-XFST generated codes are marked with "##Vi - XFST##” com-
ment markers. But it is strongly advised not to edit thisfile manually. Instead, one should
usethe Project View & Print dialog described above to generate auser copy of the project
sourcefile.

<ProjectName>.infdef Thisbinary fileiscreated by the XFST "save defi ned <fil enane>"
command automatically by Vi-XFST whenever the active project issaved. Thebinary file
contains networks for all defined symbolsin the project workspace. This file can be used
in XFST with”l oad defi ned <fil ename>" command. Vi-XFST will try to locate
this file when the project is loaded, but if it is not available, all definitions will be rebuild
from the regular expression source file. But it cannot detect if thisfile is modified outside
Vi-XFST, therefore the content of thisfile shall not be modified manually.

<ProjectName>.infstack Thisbinary fileiscreated by the XFST "save stack <fil enanme>"

command automatically by Vi-XFST whenever the active project is saved. The binary file
contains networks on the stack of the project workspace. Thisfile can be used in XFST
with "l oad stack <fil ename>" command. Vi-XFST will try to locate this file
when the project is loaded, but if it is not available, al networks will be rebuild from the
source file. But it cannot detect if this file is modified outside Vi-XFST, therefore the
content of thisfile shall not be modified manually.

Any modification on the stack will be effective in this binary file. So if one wants to
prepare abinary transducer file to distribute without the source code, he can freely do any
modification with the operators in Network menu. But he should remember that these
modifications are not saved into project sourcefile.

All of thefileslisted above, are compatible with XFST program. Any of them can be distributed
to other users. But only the project file (with extension .infproj) can beloaded back to Vi-XFST.

If the project file seems confusing with many inline comment blocks put by Vi-XFST, a
more tidy file copy may be produced by Project Preview dialog described in Section 3.7.

35

Chapter 4

VI-XFST Development Issues

4.1 Software Design

The software design of the project is to address the requirements of developing large-scale
finite-state networks and to ease the development process. In the software created, we have
demonstrated these solutions. However, this first version is not still a fully comprehensive de-
velopment environment that can encapsulate all the functionality of the XFST system. For
example not all the XFST calculusisimplemented in the visual expression building feature, or
some XFST commands are excluded from the project because of some implimentation restric-
tions.

It should be kept in mind that the software designed here, is not a new finite-state toolkit,
and is not areplacement for XFST. The Vi-XFST project is a supplementary tool to manage the
XFST compiler. Therefore, the features of the software are strictly related to the XFST program,
and should not be evaluated by neglecting thisrelation. On the other hand, itisrelatively eash to
adapt this software and its model to other finite-state toolkits such as Van Noord's FSA (Finite
State Automata Utilities) [6] or FSM Library toolsfrom AT&T [5].

XFST is available in various platforms such as for Sun Solaris, Linux and Microsoft Win-
dows systems. Therefore we have designed our devel opment application compatible with many
operating systems. The graphical interface is based on a QT library which supports various
platforms. Thislibrary also provided some important base classes used in process management
and thread support in our application. Please see Section 5.3.1 for more information about QT
library.

4.1.1 Conceptsin Vi-XFST

Some key conceptsin Vi-XFST design and development environment have to be defined prior
to discussing the detail of the software. These are:

36

Project: A project is a session in which the user can create, load, modify and run an XFST
script file. For Vi-XFST, a project is not only the XFST file. It is a development session,
with graphical objects, definition entries, input and output string listsand more. A project
session can be saved and loaded from a project file. Unfortunately not al activities are
saved in thisversion of Vi-XFST, such as the print commands, or network operations like
epsilon-remove. The project concept is coded in CPr o] ect class.

XFST Process: Whenever a project is activated in Vi-XFST, an XFST must be started in the
background as a separate process to access the finite-state operations. The process can be
viewed by system tools such as”ps’ command on Unix systems. The regular expression
operations are carried out with this XFST process. A better approach may be to use a
application programming interface (API). But unfortunately such an API is not available
for XFST. Vi-XFST passes commands to this process and receives outputsform it. If this
process killed by some way, Vi-XFST will not be able to complete user commands and it
will give an error messages.

Definition: It is an entity that symbolically represents a regular expression in XFST process.
It also includes many additional concepts, other than asimple regular expression, such as
comments and dependency lists associated with the classinstance. It isdiscussed in more
detail and technically in Section 4.2.3.5.

Network: isan entity that symbolically represents a finite-state machine in XFST process. A
network instance in Vi-XFST aso has comments, dependency lists and associated def-
inition that is used in construction of this network. It is discussed in more detail and
technically in Section 4.2.3.6.

Test Phase:is the process of applying strings to the top network on the stack. Test phase is
initiated by status of the stack. If the stack isempty most of the test functions are disabled
automatically.

Definition Dependency: If a regular expression definition is composed using another defini-
tion, then the new definition is caled as a dependent of the previous definition, or the
previous definition is an ancestor of the new definition. The dependency of regular ex-
pression definitions is used in automatic recompilation procedure.

Network Dependency: A network only depends on the definition that it is composed of. When
the definition isrecompiled at some step, the dependent network is also recompiled in the
stack.

4.1.2 Design Principles

The main tenet, for both for high level and for implementation designs, it to stick to object
oriented techniques. The tasks of the project are divided into three main components: the main

37

window, project class, and XFST process. Their responsibilities and interactions are stated at
the top level before the actual detailed design.

With the recursive application of the above principle to each main component, they are
also divided into smaller classes, with additional new auxiliary ones. At the final depth, the
behaviors lead to method and property definitions in the actual class bodies. More detail about
class hierarchies and designsis provided in the following sections.

Asthe main classes can be grouped into three, the majority of methods in the actual project
may be grouped into three to get a better understanding of the implementation:

1. XFST - Vi-XFST interprocess communication-handling and command functions.
2. Graphical components classes and functions.

3. User communication functions.

These groups are not necessarily restricted to unique classes. A class may possess methods
from any of these groups. For example the CPr oj ect class has functions that handles XFST
communications (such as acceptDefinitionDefine), graphical component functions (such as ope-
nAWorkPage), or from group 3, the user communication functions (like slot_define_definition).
However, most of the functionsthat are defined in Vi-XFST can beincluded in onethese groups.

Theideafor defining such avirtual functional grouping in the design phase is that, for each
of these groups, similar algorithms, design approaches and coding styles have been used. This
has greatly increased the understandability of the code. Once the logic in one group has been
understood, it is easy to handle the rest of the methods in the same group.

For example, in this version of Vi-XFST, there are 49 XFST commands implemented.
These command executions requires following execution steps which are carried out with dif-
ferent methods:

e User command initiation,
e CProject command execution preparation,
e CXfst command execution and result evaluation,

e CProject command execution success/failure actions.

1One can get the number of XFST access methods with:
#cat cxfst.h | grep run_xfst | we -|I
49

38

For every XFST command implemented in Vi-XFST, there is a path over these functions. And
these functions are not necessarily same for all commands, because each of the commands may
require different handlers than others. These methods are scattered in CPr oj ect , CXf st ,
CDef i ni ti on and CNet wor k classes. For 49 commands, the approximate number of meth-
odsis 300, excluding many auxiliary methods that connect the execution flow to the other com-
ponents of the Vi-XFST. Hopefully, the uniform design of similar functional methods reduces
the overhead of maintaining and handling of this many numbers of functions in big software
project.

Theflow diagram for a” print network” command execution is no different than amore com-
plex " save network” command. Understanding one flow diagram helps to understand the whole
structure. This reduces the complexity of adding new commands to Vi-XFST and debugging
phases.

4.1.3 Execution Flow

Main execution flow is a high-level design view of the key components of the system:

main

I

Main Window

user events pro It‘Ll messages

Project instance

load/start project

add, remove, modify definitions)

Ccumpile. remove, modify nel\\‘urk)
(: apply inputs to stack > evaluate XFST messages

(other XFST commands >

XFST process

Figure 4.1: Main execution flow diagram of Vi-XFST

The interna flow paths of certain tasks, such as definition parsing on visual expression
canvas, project saving and loading or XFST command execution, may be much more complex.
The following figures illustrates a typical path of XFST command execution flow:

4.1

Besi

Main Window \
C 2

user interface update

Cproject %

(re.\'u It accept/reject melhods)

user request

Preparations

execution methods

Cxfst
C message evaluation)
stdin write stdout read

XFST process

Figure 4.2: A XFST command execution flow path.

4 Informal Coding Rules

de design principles, there are also some informal rules used in the design and code to keep

the project uniform and understandable:

1

2.

\I

4.1

Minimum number of global variables and static members.

Short function bodies. Functions should do only one job, but do it perfectly, no more or
no less.

Meaningful and readable names for variable and methods.
Source file lengths less then ~1000 lines. Longer files are split into smaller ones.

Checking memory allocation with debug codes and checking for NULL pointers before
accessing a parameter in a method.

Using get and set methods to access a class member, avoiding direct access to members.

. Using only platform independent libraries.

.5 Interprocess Communication

XFST program is run in the background as a process while the Vi-XFST interacts with the

user.

The XFST processisinitiated when a project isloaded on the main window. The process

remains active as long as the associated project is active.

40

Vi-XFST isonly an interface and manager for XFST process. All actual regular expression
operations are done inside this process. Vi-XFST prepares commands and writes them to the
standard input of XFST process, and reads results from standard output and standard error.
All of these interpretations are carried out in CXf st class. The entry points to this class are
methods associated with a command to be executed. The result of execution is a signa that
implies either a success or afailure. The signal also includes the XFST message returned. The
internal steps of this execution flow involve command execution setup, command execution,
flushing of standard output and errors, output evaluation and emitting result signals.

One of the important conceptsin CXf st class, is the buffer flushing mechanism for stdout
and stderr. To understand the mechanism, lets look at how we interpret a command sent to
XFST:

After a command is written to the XFST program standard input, we cannot be sure when
the command execution ended by looking at the output messages. Because not every command
returnsareply. To ensureareply isproduced for every command, we send extraecho commands
before and after each functional command. So we are expecting at |east our echo messages, even
though the actual command may return nothing.

Here is an example command execution step: the requested command is the line starting
with "define .."

echo start_of command;
define FAMILY [yasin | aliye | yusuf | bilge];
echo end_of command,;

The expected output is:

start_of command
defined FAMILY: 260 bytes. 2 states, 4 arcs, 4 paths.
end of command

So everything between a’start_of command’ and’end_of command’ keywordsis the out-
put returned by XFST. If weonly seea’start_of command’, and not received an’end_of _command’
yet, thismeans that XFST is still busy with our command, and we have to wait more.

Unfortunately interprocess communication channel s between XFST processand the QPr ocess
class has an internal buffer. QT library does not give access to these low level options to adjust
internal buffer sizes. So when we send a command to XFST, we may not get a reply immedi-
ately. Thisisnot what we want in an interactive development environment.

So we try to fill the stdout buffer with echoing dummy characters. The amount of this flush
strings is determined with adj ust _xf st _buf f er () method with the startup of CXf st
class. This echo commands flushes the stdout and stderr on Unix systems. But on Microsoft

41

Windows systems, we saw that this method only flushes the stdout. So we have developed
another function to flush the stderr buffer specially designed for Windows systems, which is
also fine for Unix systems. A simple solution to flush the standard error is to load a dummy
binary network filewith” | oad st ack” commandin XFST. Thissmall network fileisloaded
and unloaded each time acommand isrun in XFST to get results from the standard error buffer.
A better approach would be to use a application programming interface (API) which will not
cause these kind of interprocess communication tricks. But unfortunately such an API is not
available for XFST.

Once the messages are received from either from the standard output or error, the resultsare
evaluated in the same class to understand whether it is an accept or an error message. And the
calling classisinformed accordingly.

4.1.6 Debug Techniques

Vi-XFST software contains additional debug lines to ease debugging of the code. QT library
auxiliary function ” gDebug” generates the debug messages. Nearly al debug messages are
encapsulated between ” #i f def _ XXX _DEBUG ” and” #endi f 7 preprocessor commands,
like:

if (isRunning())

{
#i f def _CXFST_DEBUG_

gDebug(" Xfst didnot exit, we are going to kill it!");
#endi f

Process->tryTerm nate();

Qri mer: : si ngl eShot (1000, Process, SLOT(kill()));

gApp- >pr ocessEvent s(1000) ;

Table 4.1: A sample debug block

Therefore the gDebug messages are available only these” XXX _DEBUG " definitions are
defined prior to the debug line. And aso the compiler should be configured with the debug
options on. Under X 11, the debug messages are printed to stderr. Under Windows, the text is
sent to the debugger. Or if the user clicks the install message handler button on Debug Tab the
messages will be appended into the debug window.

42

4.1.7 Files

Aucxiliary files used beside the Vi-XFST sources and binary are;

Settings file or System Registry Databasén Unix systems Vi-XFST program stores its op-
tions in a settings text file under $HOVE/ . qt / directory in afile anal yzerrc. On
windows system the Vi-XFST settings are saved into system registry database under
" HKEY_CURRENT_USER/ Sof t war e/ anal yzerrc” path.

Image files There are various icons prepared for Vi-XFST program. Vi-XFST searches these
icons in the Images directory in the same folder as the program executable binary.

Stderr Flushing file Stderr of XFST cannot be flushed with echo commands as done with
flushing the standard output. A simple solution to flush the standard error is to load a
dummy binary network file with ” | oad st ack” command in XFST. This small net-
work fileisloaded and unloaded each time a command isrun in XFST to get results from
stderr.

Project files All project files are saved in the active project directory (see Project Options dia-
log). There are threefilesrelated to a project. These are:

e <ProjectName>.infproj: The source file for the project. It contains project information,
options, network definitions and input strings.

e <ProjectName>.infdef: This binary file is created by the XFST "save defined <file-
name>" command automatically by Vi-XFST whenever the active project is saved. The
binary file contains networks for all defined symbolsin the project workspace.

e <ProjectName>.infstack: A binary file created by the XFST "save stack <filename>"
command automatically by Vi-XFST whenever the active project is saved. The binary
file contains networks on the stack of the project workspace.

For more information about the usage of these files please refer to Section 3.7.

Exported print files Some of the results generated by XFST can be exported to a text file.
These are the ” print” commands which give information about entitiesin the XFST, such
as definitions, networks, languages accepted etc.

Exported message filesThe messages in the message window or test results window can be
written into text files. These files can be used for future reference or debugging of the
proj ect.

4.2 VI-XFST Classes

4.2.1 Class Hierarchies

The code design of Vi-XFST heavily uses object-oriented technigues, such asinheritance, poly-
morphism, virtual functions and more. Therefore it is necessary to understand the hierarchy of
the classes and their relation with each other. Most of the classes are inherited from QT based
classes, mainly the QObj ect which isthe base class of all QT objects. QObj ect isthe heart
of the QT object model. To enable signal-slot communications between two classes, QObj ect

must be inherited. For more information about signal-slot communications refer to QT docu-
mentation [9].

Another important class hierarchy tree is the one starting with CShape, shown in Figure
4.3. CShape isthe base class of graphica components that are displayed within Vi-XFST. It
has common properties for al shapes, such as size, location on the screen, background color, a
pointer to parent class, and another pointer to the parent widget on the screen. CRect angl e
immediately follows this class in the inheritance hierarchy. Since all of the shapesin Vi-XFST
are in rectangles, displayed with a QFr ane, it is reasonable to have all shapes inheriting
from CRect angl e. This class introduces the drawing widget of a rectangle, which is the
QFr ame inside a CCanvasFrame class. So everything visible within Vi-XFST workspace are
QFrane’ s, except some QLabel s and But t ons on definition rectangles.

CBinaryConditionOperator |

CCompositionOperator|

CConcatinationOperator|

CCrossproduct Cperator |
CProjectSettings CProject |
\ ClntersectionOperator
CBrackets \
h. | ClongestMarkUpOperator |
CDefinitionRect JJ
| CLongestMatchReplacementOperator|
CShape CRectangle CMinimizedSlotRect ,:-’
= /
i g 4 CMarkUpOperator
COperatorRect
: | CRepIacementOperator|
CRestrictionOperator
| CSimpIeMarkUpOperator|
CTransducerRect
ClUnderscorCperator
CUnionOperator CBinaryCondition
CSlotBaseRect CBinarySlot CBinaryReplacementSiot |
CSlotOpenRect CReplacement CMarkUpSlot

Figure 4.3: CShape class inheritance hierarchy.

Another important hierarchy isin Figure 4.3 is the subtree starting with CS| ot BaseRect .
It is the main class for all operator rectangles. An operator base is the visible shape on the
workspace, on which the user can insert/remove definition rectangles or other operation bases.
CSl ot BaseRect implements many of the common operations for all base classes. It man-
ages the definition rectangle insertion and removals, pop-up options, basic drawing functions
and more. But for every operation, there may be different requirements, for example to han-
dleget Stri ng() function that returns the string represented by the definition slot. Or the
posi tionChj ect s() method, which positions items contained within a definition slot.
These methods are reimplemented in the descendant classesthat inherit from CSI ot BaseRect .

Multiple-inheritanceis afeature of C++ object oriented model. It is not recommended since
it sometimes makes the code a bit complicated. The only where it is used is for CPr 0] ect
class, which inherits both from CRect angl e and CPr oj ect Setti ngs. Those two an-
cestor classes are quite different in their functionalities; therefore they cause less confusion in
multiple-inheritance tree.

45

4.2.2 Compound Class List

Here are the classes defined in Vi-XFST project, with brief descriptions:

CBinaryCondition A graphical base for binary conditionals for replacement operators
CBinaryCondition Operator class for operators used in CBi nar yCondi ti on slots

CBinaryReplacementSlot Implements the graphical base class for replacement, restriction
and markup operators. This class differs from CBi nar y S| ot because of its fixed size
parameters and pop-up menu items

CBinarySlot Base classfor al binary dots. It is also the base class for most of ordinary oper-
ators like union/concatenation/restriction etc. Other bases for more complex operations
may inherit from CBi nar ySI ot

CBrackets Base class for a bracket on the canvas. A bracket can hold only one object inside.
It can be adefinition, or aCS| ot BaseRect , and it is held in variable BracketRect

CCanvasFrame Handlesall operations about a canvas, on which the graphical componentsare
drawn. The mouse move event handlers, drag drop operations, chain-object delete orders
of destructors are implemented in this class. Any QFr anre used in the project workspace
must inherit from this class

CCompositionOperator Base class for the composition icon
CConcatinationOperator Base classfor the concatenation icon
CCrossproductOperator Base classfor the crossproduct icon

CDefinition Base class for any regular expression definition. All definition related functional-
ities are implemented here

CDefinitionList Holds the list of definitions used in this project. Definitions are held in this
class by value not by reference. Any method that requires access to a definition takes a
copy of it from thelist, it does not access the actual definition

CDefinitionParser Implements a static parser method to parse a definition into graphical pre-
sentation. The definition can be converted from string representation into graphical hier-
archical objects on a CS| ot Base object. The par se() method is where this parsing
isinitiated

CDefinitionRect Base classfor displaying adefinition on any canvasthat inheritsfrom QN dget .
Usually this widget is one of the operator bases, like CSI ot BaseRect . All user inter-
actions with a definition can be accessed using this class, with pop-up menus, drag-drop
operations, mouse clicks etc

46

CFormEditDefinition Display a dialog box for the o class properties. This dialog box can is
also used to defineanew CDef i ni ti on object or modifying an existing one

CFormEditNetwork Display a dialog box for the CNet wor k class properties. This dialog
box can is also used to define anew CNet wor k object or modifying an existing one

CFormEditProject Display adialog box for the CPr o] ect class properties. This dialog box
can is also used to define anew CPr 0j ect object or modifying an existing one

CFormMain Thisis the main graphical form of Vi-XFST. Most of the project functions are
initiated by the user from this class. This class may have bidirectional interactions with
other class instances, such as CPr oj ect

CFormName Implements adialog box to get afilename. Inheritsfrom f or nFi | eNane

CFormProjectView Implements a dialog box to preview the project script file. This classis
also used to saving and printing of the project file in many different formats. Inheritsfrom
For nPr oj ect Vi ew

CFormXfst Implements a progress dialog box while the XFST processis active. Inheritsfrom
For mXf st

CfrmAbout Inheritsfromf or mAbout class. That opens the about dialog box

CfrmOptions Thisclassis used to implement a graphical dialog box to set and get the system
settings

ClconView Thisis aderived class from Q conVi ew. The main purpose is to add additions
to the mouse events

CintersectionOperator Base class for the intersectionicon

CLabel Thisis a derived class from QLabel . The main purpose is to add additions to the
mouse events

CLongestMarkUpOperator Base classfor the longest markup operator icon

CLongestMatchReplacementOperator Base class for the longest-match-replacement opera-
tor icon

CMarkUpOperator Base class for the markup operator icon
CMarkUpSlot This classimplements a markup operation slot

CMinimizedSlotRect This class implements a base rectangle to display minimized graphical
components

CMyList A derived classfrom Q conVi ew. The main purposeisto add additional function-
aitiesto the standard QLi st Vi ew such as mouse and drag/drop events

47

CNetwork Thisclassisthe base for XFST networks in the stack
CNetworkList Thisclass holdsthe list of networks on the stack
COperatorRect Defines aclass that will represent the operator objects displayed on canvas

COptions Holds all the application settings and methods to access, save and load them. This
settings-class is operating system independent. It uses a file in SHOME/.gt on Unix ma-
chines and the system registry for the Microsoft Windows operating systems. COpt i ons
class also holds the define variables used in the project source code. Most of these con-
stants are settings default values, which are used if the Vi-XFST settings are not available
for any reason

CProject The main class of the active Vi-XFST project. All project functions are managed
within this class

CProjectSettings Holds the settings of aprojectinaQSet t i ngs based class

CRectangle Base class of any rectangle on the canvas. This class activates many base slots on
the frame such as mouse actions. If they are needed, one should just override them in his
class

CReplacement This class implements a base for the multi-line operators such as replacement,
conditional replacement, longest match etc

CReplacementOperator Base class for the replacement operator icon
CRestrictionOperator Base classfor the restriction icon

CShape Thisisthe base class of any visible shape on the canvas. All of the graphical objects
used by Vi-XFST must inherit from this class. The virtual functions of this class must be
implemented on derived classes, such asthe’ draw()’ method

CSimpleMarkUpOperator Base classfor the simple markup operator icon
CSlotBaseRectThisis the base class for a slot canvas

CSlotOpenRect This class represents a rectangle on a sot rectangle, where it is possible to
drag and drop definitionsinside

CTest Thisclass implements an object to hold the properties of atest on XFST. The string ap-
plied to XFST is considered atest item. This class also implements methods to save/load
tests from project files

CTransducer Thisisthe base class for operator slotsfor transducers

CTransducerRect This classimplementsthe icons of atransducer that points the input/output
locationsof thetransducer. The classisimplemented by inheriting from the COper at or Rect
class

48

CUnderscorOperator Base class for the underscore operator icon
CUnionOperator Base classfor the unionicon
CWorkTab A workspace class that is connected to every tab page of the active workspace

CXfst XFST interprocess management class. XFST processis controlled inside this class

4.2.3 Main Classes

42.3.1 CFormMain

Thisisthe main window of Vi-XFST. Most of user interactions are initiated from this class.

CFor mvai n inheritsfrom classf or mVai n that is prepared by QT user interface designer
tool: Designer. Once the design of the GUI is completed, CFor mVai n overrides the asso-
ciated slots of user interface events, such as sl ot _bt nRepl ace_cl i cked() . Rewriting
the contents of these overridden virtual functions, now CFor niVRi n can accept the user events
emitted by the QT main event handler and process them.

Most of the methods of CFor mvai n do not nothing but just pass the request to the active
CPr oj ect classinstance. CPr 0j ect isthemain classwhere all the actual work is done. For
example when the user clicks compile option, thesl ot _Acti onConpi | e_acti vat ed()
dlot istriggered inside CFor mvai n. This dot just passes the request to the active CPr oj ect
as.

if (getActiveProject())
{

get Acti veProject()->slot_Base DefinitionConpile(NULL);
}

CPr oj ect can also access back to CFor mvai n. It has a pointer to the main window.
The action results can be displayed on the main window by accessing the public slots of
CFor mVai n using this pointer.

At this moment CFor mVai n can handle only one active project. But the class is designed
with the future extensions so that it can handle more than one project at a time. With alittle
modification it may be possible to work on more than one project file. CFor mivei n will be one
of the few globally shared objects between CPr 0j ect instances (Another global classis the
COpt i ons, where options for Vi-XFST are accessed). So it will be wiser to control access to
these classes in a multi-project version of Vi-XFST.

Other tasks of CFor nivai n are to enable/disable screen controls such as some buttons
available only for certain states of the project. Most of these updates are group into three
methods:

49

e prepare_definition_gui()
e prepare_network_gui ()

e prepare_recent Projects()

CFor mvai n aso handlesthe Vi-XFST initializations on startup and some necessary actionson
close of the application. These processes are initiated in constructor and destructor of the class.
For example, loading the COpt i ons classfrom settings database (system registry on windows
platforms) isatask donein constructor of CFor mivai n. In the sameway, COpt i ons issaved
back to settings system, inthecl oseEvent () of CFor mVai n instance.

Form

COptions _ Options
DefinitionlconView W ActiveProject 1 CPTOIECt

MetlconView

s
Figure 4.4: Collaboration diagram for CFormMain
4.2.3.2 CProject

The main class of the active Vi-XFST project. All project functions are managed within this
class.

For every project opened in Vi-XFST, a new CPr o) ect class is constructed. Regular
expression definitions, network operations, testing, generating XFST scripts and most of the
other functions of Vi-XFST are handled here. The CPr 0] ect class has access points to other
components of the Vi-XFST design. Most important of these entities are:

1. The user: Through the CFor niVRai n class, user may initiate actions, by pressing a but-
ton, or using the mouse. The CFor mVai n, which is the main Vi-XFST window, inter-
acts with the user, and passes user requests to CPr oj ect with its corresponding public
methods. After CPr oj ect precesses these requests, to return the results back to the
user, CPr o] ect must be able to communicate to the main window. Thisis communica
tion is established by passing a pointer to the main windows instance, in the constructor
of the class. CPr 0] ect uses this pointer to access public methods and public slots of
CFor m\ai n to adjust the user interface to display the execution results and current state
of the project.

50

2. XFST: Through CXf st class. Whenthe CPr 0 ect classisactivated and displayed with
Display() method, an instance of CXf st isconstructed and XFST processis started. The
commandsfrom the user are passed to CXf st public methods. r un_xf st _M ni m zeNet).
The results of these command executions are returned back to CPr oj ect with signals
of CXf st totheslotsof CProj ect . Thesign of CXf st that CPr oj ect listensare:
CXfst::signal _Reject()

CXfst::signal _accept()

And the corresponding listening slots of CProject:
CProject::slot_Reject()

CProj ect::slot_Accept ()

3. Graphical Objects: These are the graphical components on the workspace, which rep-
resent the regular expressions. The base class of these components is the CSI ot Base
class. CProj ect gets signals from CS| ot Base class, to its associated slots. These
signals may refer to user requests, such as adding a new CDef i ni ti onRect to the
active base, or may refer to component requests such as for redrawing the active slot on
the screen.

4. File system:CPr 0j ect interactswith thefile system to load and save a project. Process
of saving or loading a project is always under the control of CPr oj ect. When the
process is started, the execution is sequentially transferred to relevant other classes such
asCDef i ni ti on, CTest etc. Once al descendant classes complete their work with
thefile /O, CPr ocess returns success from the process, and adjust the state of Vi-XFST
accordingly.

Other functions of the class CPr o] ect are for managing the project options, definition lists,
dependency controls of definitions, printing support and test-phase controls.

51

CProjectSettings

vz

—. _ActiveRectangle
-
w

i
- 7 -

> ¢ ~
! [chetwork
e _ workNetwark .

DefinftionList
e “E

ActiveProject

.
—————— B o cromwan)

workBase
ActiveSlot #
3 ;

;i

o

- &

o - wiil]
i : o Bt b
CDefinftionList _ DefinitionList " Ly
- & i ’/ |
Definition- -~ DefinitionList i g i

B e B 5 |

o 7 ‘

& -

& = !

-7 workDefinttion .- ;

il _ i 27 |

- = = !

CDefinition R RS TR f

] R

Figure 4.5: Collaboration diagram for CProject:

| CRectangle | | CProjectSettings

CProject

Figure 4.6: Inheritance diagram for CProject

4.2.3.3 CXfst

XFST interprocess management class. XFST processis controlled inside this class.

The main purpose of this CXf st isto encapsulate XFST program as a system process and
to control the interprocess communicationswith this process. Once the CXf st isconstructed, it
has accessto COpt i ons class, whereit can get the XFST program location on the file system.

The st art Xf st () method initiates and runs the XFST program in a QT QPr ocess
class. The standard input, standard error and standard output of the process are linked to appro-
priate slots of the CXf st class. The commands are written to the stdin, while the outputs are
read from the stderr or stdout of this process.

52

One of the important concepts in CXf st class is the buffer flushing mechanism for stdout
and stderr. To understand the mechanism, lets look at how we interpret a command sent to
XFST.

After acommand is sent to XFST program, we cannot be sure when the command execution
ended. Because every command does not return areply that we can decide the end of execution
with. To ensureareply is produced for every command, we send an extra echo command before
and after each functional command. So we are expecting at least our echoes, even the actual
command may return nothing.

Here is an example command execution step, the requested command is the line starting
with "define ...":

echo start_of command;
define NOUN [osman | zeynep | kazim | defter |;
echo end_of command,;

The expected output is:

start_of command
defined NOUN: 260 bytes. 2 states, 4 arcs, 4 paths.
end_of command

So everything between a’start_of _command’ and 'end_of command’ keywords s the out-
put returned by XFST. If we seea’start_of command’ only, this means that XFST is still busy
with our command, and we have to wait.

Unfortunately interprocess communication channel s between X FST processand the QPr ocess
classhas an internal buffer. QT library does not give access to these low level options. So when
we send a command to XFST, we may not get areply immediately. Thisis not what we want in
an interactive development environment.

So we try to fill the stdout buffer with echoing dummy characters. The amount of this flush
strings is determined with adj ust _xf st _buf f er () method with the startup of CXf st
class. This echo commands flushes the stdout and stderr on Unix systems. But on windows
systems, we saw that this method only flushes the stdout. So we have devel oped another func-
tion to flush the stderr buffer specially designed for Windows systems, which is also fine for
Unix systems. A simple solution to flush the standard error isto load a dummy binary network
filewith” | oad st ack” command in XFST. Thissmall network file isloaded and unloaded
each time a command is run in XFST to get results from the standard error buffer. A better
approach would be to use aapplication programming interface (API) which will not cause these
kind of interprocess communication tricks. But unfortunately such an API is not available for
XFST.

53

Once a command is run, we expect an output. After we receive the output on stdout, we
have to decide whether the command is a success, or afailure. A faillure may be because of a
syntax or alogic error. Before every command execution, a regular expression is set to decide
an output is an error message or not. For example a definition accept regular expression is:

“\b([dD] efined [\S]*:)

With the same way, aregular expression error message is detected by the following expres-
sion:
"\ b\ *** Regex error\b"

The output evaluation isdoneinsideeval uat eQut put () . According to the result of the
evaluation the one of the two signalsis emitted:

si gnal _accept ()
signal _Reject()

The CPr 0 ect dotsaccept these signals. Emitting these signalsisthe final job of CXf st
in command execution. Then CXf st classreturns execution to calling function. XFST process
stays in the memory waiting for more commands, until it is stopped by st opXf st () method.

CFormXfst

Figure 4.7: Inheritance diagram for CXfst

CFormxfst| | coOptions |

: Options

Figure 4.8: Collaboration diagram for CXfst

54

4.2.3.4 CSlotBaseRect

This classis the base of other graphical operator classes used in visual regular expression con-
struction. It includes most of the common methods and properties of an operator base, such as
child lists, many of the command slots, drawing methods, definition rectangle handling func-
tions any many more. The classes that inherit from CSl| ot BaseRect have to modify only a
few methods for their needs. The rest of the code is the same for all.

CBinarySlot

CRectangle

CReplacement |

| CTransducer|

Figure 4.9: Inheritance diagram for CSlotBaseRect

[Comapel % "~

CDefinition [**~ — e /
i L. - '
Options s 2
COptions Options DefinitionList -~
=T o
CDefinitionList potmn mectit

Figure 4.10: Collaboration diagram for CSlotBaseRect
4.2.3.5 CDefinition

Thisclassrepresentsasingleregul ar expression definition entity insideVi-XFST. A CDef i ni ti on
in CDef i ni ti onLi st class represents the definition instance in XFST stack. All settings,
functions related to a definition are handled in this class.

A definition’s main attributes are name, expression and the comment fields. ” name” and
" expression” values are also available in XFST. When the user creates a definition as:

55

define BROTHERS [| brahim| Cevdet | Yasin | Azim];

The " BROTHERS' is the unique name of the definition and string after the name is the
" expression” value for the definition. Vi-XFST introduces another important attribute to every
definition in the project: the comment field. These primary values of CDef i ni ti on can be
set either in the constructor or later with appropriate set methods.

The name of a definition is always unique. This restriction is not checked by XFST and
the previous definition is overwritten with the new one. This may cause confusions and errors,
because the user is not given any warning at all when a second definition with the same nameis
defined. In Vi-XFST each definition nameisindexedin CDef i ni ti onLi st ::Def Nanes so
that no two CDef i ni t i on with same name can be defined into XFST stack, until the previous
one is undefined.

A definition can be composed by using previous definitions. In this case, we say; it has de-
pendency on these ancestors. Any change in the ancestor definitions should affect the children.
But thisis not the case in XFST. Once a definition is compiled using other definitions, it is not
updated until it is redefined manually. For example:

define GRADE LETTERS[A| B| C| D| E];
defi ne GRADES GRADE_LETTERS[- | +] ;

The definition GRADES can accept A+, B-, C, etc. But we realized that we forget the great
" F . Soweupdate GRADE LETTERS as.

define GRADE_LETTERS[A| B| C| D| E| F];

But unfortunately this modification is not reflected in GRADES definition. It still points to
the previous finite-state machine. It has to be redefined:

defi ne GRADES GRADE_LETTERS| - | +] ;

This introduces a problem, which is not handled in XFST. Suppose our definition is much
more complex; lets say we use definition GRADE LETTERS in many other expressions. We
try to update them, but it is possible that we may also forget some of them. Vi-XFST solves
this problem by checking dependencies of each definition to handle these updates. Once a
definition is modified, Vi-XFST redefines its dependents, without any user intervention. Even
the networks that depend on one of these redefined definitions are re-compiled by Vi-XFST.

4.2.3.6 CNetwork

This class represents a network in the XFST stack. All settings, functions related to a network
are handled in this class.

56

A network’s main attributes are name, definition name it is created from and the comment
fields. In XFST anetwork can be compiled as:

read regex GRADE NET
or
read regex [A| B| C| D| E| F];

In Vi-XFST a network can only be defined from a single definition as in the first example
above:

read regex GRADE NET

This does not reduce any functionality on XFST, but enforces the user to follow a unique
development style.

Asmentionedin Section 4.2.3.5, network’sdependenciesare handled asapart of CDef i ni ti on
dependency compilations. When a definition is modified and redefined, its dependent networks
are also re-compiled into XFST stack.

4.2.3.7 CDefinitionParser

This class implements a static parser method to parse a definition string into graphical presen-
tation. The definition can be converted from string representation into graphical objects on a
QW dget drawing canvas. Thepar se() method iswhere thisparsing isinitiated.

Theget St ri ng() function of classesthat inherit from CSI ot Base,and CDef i ni ti on,
returnsthe string represented by the graphical object treeonthecanvas. TheCDef i ni ti onPar ser
class introduces the reverse functionality; it can build the graphical object tree back on to the
canvas from a given string.

The par se() function isthe entry point to this definition parser. This method includes a
finite-state machine to do the parsing. The state diagram is shown in Figure 4.11.

57

LC: Literal or Commeand
CoO: Comma "

UND: Underline * "
Accept states: 10, 40, 60, 80,
180, 225, 100, 210,
130, 140

Figure 4.11: CD¢finitionParser::parse() state diagram to parse a definition string.

The parser can parse a definition string created by Vi-XFST, which isread from project file.
Any addition to the operator set of Vi-XFST also requires modification to this method. So it
IS wise to understand the state diagram of the parser before any change in the operator set of
Vi-XFST.

4.3 Bugs

Beside our best effortsto rel ease abug-free software with version 1.0, there are still some known
problems, along with many undiscovered ones hiding in the code.

Abnormal termination of the Vi-XFST program leavesthe XFST process as azombie in the
system. It has to be killed using system tools; "kill” command on Unix or Task Manager in
Microsoft Windows. Otherwise it will stay resident in the system memory and will not release
system resources.

On the Expression Canvas a definition may be moved in two ways. using the scrollbars
around the canvas or using the mouse to drag the operator base. The synchronization between
position of the operator base and the scrollbars is not perfect at the moment. This causes some
flickering while dragging the operator base. It does not cause any serious problem or any
inconsistency and to be fixed in the next release.

A bug we encountered in XFST during our testsisthat; on windows systems XFST "pr i nt
di rect ory” commandor aias”di r " doesnot work properly. It givesthe following message:

58

Copyri ght Xerox Corporation 1997-2003 Xerox Finite-State Tool,
version 8.1.3

Type "help" to list all commands avail able or "hel p hel p" for
further help.

xfst[O]: print directory

"I's’” is not recognized as an internal or external conmand,
oper abl e program or batch file.

Table 4.2: "print directory” command on XFST, givesan error for windows version.

It seemsthat, XFST usesthe Unix "I s” command on the system to get the directory content,
which is not available on Windows systems. Because of this bug in XFST, we had to exclude
"print directory” commandfrom our project.

59

Chapter 5

Development Environment

5.1 Introduction

The main component of the development was the Integrated Devel opment Environment (IDE)
tools. Most of the development was carried out using gcc (version 3.3 20030226, prerelease)
on Linux systems using KDevelop from the KDE project. On Microsoft platforms, Visual C++
\ersion 6.0 was the choice for compiler.

Beside compilers there is a library that has to be mentioned here. The QT library from
Trolltech Corparation * was heavily used through out the Vi-X FST source code. The QT library
will be discussed in more detail in the following sections.

The project design and intentionslead us to use many other auxiliary toolsto support the de-
velopment phase of thethesis. These are version control (CVS), source code beautifiers (indent),
project source code documentation generators (doxygen) and replace, replacehex tools.

5.2 Target Operating Systems

5.2.1 Unix Environment

Thefirst designs of the Vi-XFST have targeted for an application running on Unix platforms, in
particular for Sun Solaris machines on the university campus. The close architectural similari-
ties among Unix machines lead us to move the design and devel opment environment to Linux
operating systems without losing any features from the project. Since then, the primary project
development environment system has been Linux. Today, all of the source code maintenance,
functional tests and documentation are done on Linux machines. The choice of distribution
is the SuSe Linux (which is at version 8.1 at the time of writing this document). On Linux
systems, the project development is carried out on the KDevelop IDE.

http://www trolltech.com

60

5.2.2 Windows Environments

XFST program is also available on Microsoft Windows operating systems. So Vi-XFST should
be, too. Thankfully QT library proved itself, as the best choice library for a multi-platform
graphical C++ application. Within a few days, the Vi-XFST project was successfully ported
to Microsoft Windows operating systems. Neither feature reduction nor any maor changes
in the source code was needed. Now more than 30,000 lines of Vi-XFST source code is the
same for al platforms. The same code can be compiled and run on all the supported platforms.
Development can also be done on any of these systems without any conflict. Occasionally,
development of Vi-XFST is done on Microsoft Windows platforms using Visual C++ 6.0.

The only restriction isthat QT library used in Vi-XFST is not freely available on Microsoft
Windows platforms. Trolltech offers educational and academic licenses at a lower cost or for
free to be used in non-profit applications. For more information about QT licensing, Trolltech
should be contacted.

5.3 Dependencies and Auxiliary Tools

5.3.1 The QT Library

While designing our software, multiple operating system support was one of our principles.
With thisintention, after |ooking for amulti-platform graphical user interface application frame-
work, eventually QT library has been chosen as the main graphical user interface library. As
stated in QT Documentation [9] QT supports the following platforms:

e MS/Windows—95, 98, NT 4.0, ME, 2000, and XP
e Unix/X11 - Linux, Sun Solaris, HP-UX, Compag Tru64 UNIX, IBM AlX, SGI IRIX
e Macintosh—Mac OS X

e Embedded — Linux platforms with framebuffer support.

Thislist of supported platforms makes QT our best choice among user interface libraries. Using
QT library, we have successfully created a software that runs on all platformsthat XFST binary
isavailable.

Thislibrary isfreely available on Unix environments, but unfortunately the required version
of QT isnot available on windows systemsfor free. There aretrial versions, or somelow-priced
academic licenses. For the availability of a license for a specific platform, more information
may be found in Trolltech home page (ht t p: / / wwww. trol | t ech. com

61

5.3.2 KbDevelop

KDevelop is an Integrated Development Environment for Unix Systems. The version we have
used for our software development is 2.1 on SuSe Linux 8.1 distribution. Just like the Vi-XFST
project, KDevelop wraps the functionalities of many difficult to manage command line Unix
tools such as compiler and debuggers, adds many more features and offers a very powerful
development environment to the open source community. It is one of the best open source
IDE’s available today. It is distributed within most of the Linux distributions and runs on Sun
Solaris machines as well.

KDevelop aso handles installation scripts like used like configure, Makefile etc. of the
Vi-XFST project. The whole project can be compiled ssmply by:

./ configure & make && make install

command sequence on most of the Linux systems. These scripts are auto-generated by KDe-
velop for every opened project.

5.3.3 Concurrent Versions System: CVS

" | can’t imagine programming without it... that would be like parachuting without
a parachute!”

Brian Fitzpatrick on CVS

CVSisused in this project mostly for record keeping purposes rather than collaboration of
source between devel opers because the code is devel oped by a single person.

Record keeping became necessary when it was necessary to compare current state of the
code with a version at some point in the past. For example, in the normal course of imple-
menting a new feature, sometimes code is brought into a thoroughly broken state. Rolling back
from this position to, or comparing changes with a stable state is quite smpleusing CVS. It is
possibleto get any version in timeif the source code history is kept under CVS.

Also, instead of backing up a snapshot of the code, taking the whole CV'S root directory,
secures the whol e devel opment stages of the project.

The collaboration facility is one of the most "magical” features of CVS. CV'S enables de-
velopers to edit the same source code on their local system and merge their changes in the
repository. For example, suppose two developers edit the different parts of the same class file.
When they commit their sources, CV'S merges these changes into the same file and most of the
time without any conflict.

62

The only place, where this collaboration facility is used is, when the code is developed on
more than one computer: one on Linux and one on Windows operating systems, simultaneously.
With the help of CV'S, the code edited on any of these platforms may be sent to the CV S server,
without loosing any control on the version of the active code on any of the systems.

5.3.4 Indent

Indent is a C++ source code beautifier for Unix. It has been used to keep the code indentation
consistent throughout the 133 source files of the project.

5.3.5 Doxygen

Doxygen is adocumentation system for C++, C, Java, IDL (Corba, Microsoft, and KDE-DCOP
flavors) and to some extent PHP.

To create API documentation, some of which is appended at the end of this document as an
appendix, Doxygen (Version: 1.2.17) toolkit is used. It is a very powerful tool to create doc-
umentation from project source codes. It can extract class references, dependency graphs, and
document indexes in many document formats like HTML, LATEX, PostScript and more. The
documentation is extracted from source codes, which requires some special formatting to have
a better output. In a well-documented source code each class, method, variable, enumerator or
type definition, has a definition comment block. Using Doxygen on this code will produce a
better and usable documentation.

Vi-XFST source code is developed with this intention. All classes, majority of methods,
and most of the important variables have formatted documentation blocks as comments.

63

/*]

Parses a given definition into graphical objects.

@aram parent Parent of this class. This pointer is used in chain delete
operations.

@aram options Pointer to Cptions object, where the all the application
settings are held.

param string String to be parsed.

@ar am baseacti ongroup Pointer to the action group of definitions in a
pul I down nenu.

@aramdefinition Definition to be parsed into.

@aramdefinitionList Pointer to the global |ist of definitions used in
this project. The definitions

inthis |list nust be used to reference any definition.

@eturn Returns the rectangl e created for the parse.

*/

static CRectangl e *parse(CShape * parent, const Cptions * options, QN dget
* widget, const Q@String & string, QActionGoup * const baseactiongroup,
const CDefinition * definition, CDefinitionList * definitionList);

Table 5.1: A sample comment block specially formatted to produce Doxygen.

5.3.6 Replace and Replacehex

"replace” isa command line tool on Unix machines that searches and replaces a string though
alist of input files. It comes with the MySQL source code package[10]. It is very useful for
changing some variable names or keywords through the list of Vi-XFST source code files.

During this project, a tool, "replacehex” is also created to address some requirements that
the previous replace command cannot handle. This new tool can replace any given hex code
sequence with another hex code sequence. Therefore it is very flexible and powerful with
the texts it can handle. For example sometimes it is necessary to replace Microsoft Windows
end of line characters with the Unix end of line character, or to replace some sequence of tab
characters with alist of space characters. The only difficulty isto find the hex values of search
and replace strings. "man ascii” givesthelist of ASCII character set encoded in octal, decimal,
and hexadecimal which can be referenced.

Replacehex project had started as an auxiliary tool to Vi-XFST project, then it is realized
that it is unique on the Internet with these features. Now it is public with GNU license, and its
source code is avail able on SourceForge servers at address
http://sourceforge. net/projects/repl acehex/.

replace -s '/*" " [*1" -- $i.tenp.2
repl acehex -r $i -w/tnmp/$i -s "0d" -p "O0a"

Table 5.2: Usage of replace and replacehex commands in indent.sh

64

Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis a new finite-state project management model has been introduced. We have fo-
cused on creation of a powerful and extensible architecture that acts as an interface for Xerox
Finite State Toolkit (XFST). We have also implemented a multi-platform software application
using this model that facilitates XFST as a compiler in the background. Our software handles
finite-state projects in a workspace and controls all activities between the user and the XFST
application. By this encapsulation of the XFST process from the user, we have successfully
integrated a user interface to control the finite-state development process. This control gave us
the opportunity to introduce our management model.

With the proposed design, a textual file editing is replaced with a project-building concept
similar to modern software development tools. The benefits of adopting an integrated devel-
opment environment designed for finite-states include productivity gains and advantages due
to substantial reduced time to debug and management costs of a research project. The visual
supporting features of Vi-XFST, enable viewing complex networks at different levels of detall
and make even large projects manageable and comprehensible. Regular expression building
is carried out on the workspace canvas with mouse clicks or drag and drops. Network build-
ing, testing, modification and many more commands of XFST prompt are now associated with
toolbar buttons or many easy to use pop-up Menus.

Also, many manual tasks are now carried out automatically. For example, when a definition
is modified by the user, any other definitions that depend on the modified one are recursively
recompiled. Thisfeature isagreat enhancement in finite-state project development since it was
avery complex task for usersto carry out manually.

New controls are introduced to the finite-state cal culations such as restricting the definition
names to be unique on the stack. Another control is to prevent un-defining networks that have
dependents on the stack to reduce ambiguities and increase understandability of the network
structure by the researchers.

65

6.2 Future Work

Our intention in this first version of management model and software implementation is to
illustrate our approach for finite-state development process. Therefore, in our application (Vi-
XFST), only the most commonly used regular expression operators have been supported in
visual regular expression development interface. Some more complicated commands and fea-
tures of XFST have been excluded. In future extensions to the model and the software project,
these excluded features of XFST may be implemented.

Vi-XFST cannot handle project files edited manually. This ability to handle external source
files requires a complete XFST source file parser. Also, Vi-XFST enforces some syntactic
restrictions on regular expressions; such as every litera should be defined in a definition before
itisused in avisual regular expression component. Therefore, a project import feature should
include algorithmsto convert a manually edited source file into an acceptable format.

This version of Vi-XFST supports only one workspace on its main window. Working with
multiple workspaces will greatly enhance the project handling capabilities of the development
environment. The user shall be able switch between projects, comparetheir finite-state networks
and reuse each other’s components in one main window.

XFST supportsworking on multiple source or networksfiles. A source file can be included
in another file. Thisfeature isimportant to manage very large project files, since it allows split-
ting long input files. In an actual development environment for finite-state projects, it should be
possible to work on many filesin a single project workspace.

A final extension that is being planned is to add a capability of defining regular expression
operators at runtime to Vi-XFST operator set. As there are many formats of commands and
regular expression operatorsin XFST, and always new ones are being added to thislist, it may
be a good approach to include this flexibility in our application.

66

Bibliography

[1]

[2]

[3]

[4]

[5]
[6]
[7]
[8]
[9]
[10]

Lauri Karttunen, Tamas Gaal, Andre Kempe, Xerox Finite-State Tool, Xerox Corporation,
1997.

Xerox Corporation, Syntax and Semantics of Regular Expressions,
http://www.xrce.xerox.com

Xerox Corporation, Examples of Networks and Regular Expressions,
http://www.xrce.xerox.com

Lauri Karttunen, Application of Finite-State Transducersin Natural-L anguage Processing,
Xerox Research Center Europe, Meylan, France.

AT&T Labs-Research, FSM Library, http://www.research.att.com/sw/tool s/fsm/

Gertjan van Noord, FSA Utilities: A Toolbox to Manipulate Finite-state Automata, 1998
Scot Meyers, More Effective C++, Addison Wesley.

Karl Fogel, Open Source Development With CVS, The Coriolis Group

QT Documentation, http://www.trolltech.com

MySQL, http://www.mysgl.com

67

Chapter 7

Appendix - Statistics About the Code

Number of lines of total code: 39067
akdere@/infinity20> cat *.h *.cpp *.ui| wc -I
39067

Number of lines of handwritten code: 30438
akdere@/infinity20> cat c*.h c*.cpp main.cpp | wc -I
30438

Number of lines of computer generated code: 8629
akdere@/infinity20> cat f*.h *.ui| w -|
8629

Number of source codefiles: 133
akdere@/infinity20>1s *.h *.cpp *.ui | we -I
133

Number of characters; 872856
akdere@/infinity20> cat *.h *.cpp | w -c
872856

Compilation time (on Celeron 800MHz, 128MB Ram, Suse Linux 8.1 with default conf.): 16
Mn 31 Sec

akdere@/infinity20> date &% make > /dev/null && date

Sat Jun 21 22:01: 21 EEST 2003

Sat Jun 21 22:17:52 EEST 2003

Number of method declarations; 1075
akdere@/infinity20> cat c*.h | grep ");" | wc -1
1075

Number of ”/*” and ”//” sequences, the command blocks: 2927
akdere@/infinity20> cat c*.h c*.cpp main.cpp | grep -E "(/*)|(//)"
| we -1

68

2927

Number of debug messages: 548

akdere@/infinity20> cat c*.h c*.cpp main.cpp | grep -E "(qgDebug) |
(gwarning)| (gFatal)" | we -1

548

Number of pointer checks: 356

akdere@/infinity20> cat c*.h c*.cpp main.cpp | grep -E "Q CHECK PTR'
| we -1

356

Number of asserts: 34

akdere@/infinity20> cat c*.h c*.cpp main.cpp | grep -E "ASSERT" |
we - |

34

69

Chapter 8

Appendix - VI-XFST User Guide

8.1 Introduction

This is a user guide documentation for Vi-XFST project. This documentation introduces the
software implementation of the XFST management model prepared by Prof. Kemal Oflazer*
and Yasin Yilmaz? in Sabanci University. Please contact the designers of the project for the
other related documents on the proposed model.

Intention of Vi-XFST project isto wrap the functionalities of XFST and to provide graphical
editing, management and testing features to the researchers. XFST is a very powerful tool
to manipulate finite-state networks, with its large set of commands. Vi-XFST is designed to
make these commands invisible to the user and serve their functionalities through graphical
components of itsinterface.

8.2 Installation and Requirements

Vi-XFST code can be compiled on any UNIX or Microsoft Windows platforms where QT
library (version >= 3.0.0) is available. The installation process may vary according to the plat-
form, but it is quite straight forward if these given steps are followed.

A script is prepared that uses QT tool gmake to compile and install the source code. This
is useful where autoconf and automake tools are not installed on the target platform. The only
requirement isthe QT library. Just type:

sh ./compil e. gmake. sh

to start compilation, in the source directory. The default prefix value points to the users home
director. Please adjust it prior to compilation by editingthe” DESTDIR’ variablein the” project”

Loflazer @sabanciuniv.edu
2yasin@uekage.tubitak.gov.tr

70

filein the " infinity20/infinity20” directory. The output binary fileis named "vixfst” and installed
inthe prefix directory with the necessary auxiliary files, such as documentation (in $prefix/docs)
and images (in $prefix/images).

The other way to build the code on Unix systemsis mostly for development purposes. The
original code is organized using KDevelop IDE and project source contains autoconf and au-
tomake compatible compilation and installation Makefiles. The compile.autoconf.sh script is
prepared to automate this installation procedure, which generates a binary with debug options
on. The output file nameis”infinity20”, which is the code name of the project during develop-
ment phase. The binary is created in infinity20/infinity20 directory. It is strongly recommended
to use this compilation if you intent to debug your code.

Just gunzip and un-tar the source packet and enter the infinity20 directory, type:
sh ./ conpile. aut oconf. sh

to start compilation. The installation prefix is "/usr/local/” by default. To install bina-
ries type ” make install” after compilation successfully ends. There are other options for the
auto-generated ” configure” script created during the compilation. These options may require
advanced knowledge of GNU autoconf and automake scripts; therefore it is mostly used for
development purposes only.

If you wish to debug or scroll through the classes and see the structure of the project code,
you should load the project filefor KDevelop " infinity.kdeproj” ininfinity20 directory. KDevelop
also handles the projects with the above autoconf generated makefiles.

On Microsoft Windows platforms, Vi-XFST project file under ” Infinity20 Win32" direc-
tory, should be loaded using Microsoft Visual C++ (version >= 6.0). Once the compilation is
done, the image and flush_network file should be in the same directory as the output executable
file.

As it is mentioned above, the only requirement of Vi-XFST source code isthe QT library.
There are freeware versions for Unix systems. For Microsoft Windows platforms a freeware
licenseis not available. But it is possible to obtain academic licenses for educational purposes
at lower prices. For more information see Section 5.3.1.

Our project codeisnot tested yet on other Unix operating systems (like FreeBSD, OpenBSD
or HP Unix). But the design and implementation of the project avoids depending on any system
specific libraries, calls or functions that may reduce the portability of the code. So there should
not be any trouble porting Vi-XFST code on other UNIX platforms.

Of course, to build your own projectswith Vi-XFST, XFST executable should be availablein
thetarget platform. For moreinformation about availability of XFST binariesfor your platform,
please refer to http://www.xrce.xerox.com

71

8.3 The Integrated Development Environment

When you start Vi-XFST, you are immediately placed within the integrated development envi-
ronment. This main window provides all the tools you need to design, compile and test your
finite-state networks.

& vi-xrst 1.0 senTencEss 2 ks
Eile Project Insert Definition Network Stack Test Help

r - 2 B 9"

9@ OaOx@N 1. & xo e e

2 = =L
Definitions | Networks | ADVR [VR |NR [SENTENCES |DR |
Display | All
LeftN - LeﬂNc.

Name Expression

"ISENTENCES [SP .o. SSR.

DR [LeftD @-> L

(BLeftDC ROk : -

RightN RightN

SLettD ("D] ightrs [l ightnffil]

3RightDC ["D)"]

3RightD ["D1"1]

ANR [LeftN @-> L

3LeftNC ["(N"] *

LeftN ["[N"] *

ERightNC ["N)"] L [«] [
Z3RightN ["N]"]

VR [RightPV @-> Messages | Test | Debug W

2RightPVC [Py} [Definition file loaded] bt
3RightPV ["Pv]"] [Stack file loaded] 1
OLEAPVC [PV] s :

@LE&DV ["[Pv"] 1— t]_l 1 -.::LI‘T.E‘.‘ Circulaxr

SLeftvC IS0 [Definition file szaved]

SLeftv [Vl [Stack file savsd]

3RightVC ["v"] |
ERightV (R %
LeftVTC ["VT)] :
FLeftVT [ovT]e]

RightvTC ["(VT "]

3RightVT [F vy @]

@NPR ["[Np - ||‘

QADVR [LeftAd @-> (& |
«[E LIS ¥

Figure 8.1: A sample screen-shot from the Vi-XFST IDE.

The development environment is composed of many graphical functional components; such
as menu items, tabs, dialog boxes, which are used during different steps of finite-state project
development. In the following sections these components are discussed in detail.

8.3.1 Main Window

Vi-XFST development environment main window is activated when the program isstarted. This
window is the main control panel of the development process. For better understanding, main
window can be detailed into the following components; Definition Browser, Network Browser,
Expression Canvas, Messages Tab, Test Tab Debug Tab and Menubar components, each of
which will be explained in more detail:

72

8.3.2 Definition Browser

The defined symbols in XFST that are constructed by "def i ne” command are referred as
regular expression definitionsin Vi-XFST. Any regular expression created on Vi-XFST isadded
into the Definition Browser. It will remain there until it is undefined. Definition Browser isthe
main component to access aregular expression definition in Vi-XFST.

' Definitions ‘ Networks ’

Display | Al

Name

TIDR
&3LeftDC
&3 eftD
&3RightDC
&3RightD
TAINR
&3LeftNC
&3 eftN
&3RightNC
&3RightN
TAVR
&3RightPVC
&3RightPV
&3LeftPVC
&3 eftPV

elmi

TISENTENCES [SP .0. SSR .0. Ad

Expression L

[LeftD @-> LeftDE&
("0 "] 1
("[D"]
["D)]
("D
[LeftN @-> LeftNC
[(N"]

["[N"]

[N)"]

(" NJ"]

[RightPV @-> Rigt
["Pv)"]

["Pv]"]

["(Pv "]

["[Pv"] =
e “ln

Figure 8.2: The Definition Browser

There are many functions available in the pop-up menu of Definition Browser. Select a
definition item and right click to invoke the Definition Browser pop-up. The available functions
are:

New Definition Invokes the Definition Option dialog to create a new definition. See Sec-
tion 8.3.10 for more information.

Properties Displaysthe properties of a definition in Definition Option dialog. You can modify
the definition propertiesin this dialog. See Section 8.3.10 for more information.

Read regex Creates the network for the definition and pushed it onto the stack. The Net-
work Browser and Test Tab are activated after a successful compilation. The network
appears in the Network Browser and becomes the top network. You can test it using the
Test Tab.

73

Undefine Un-bindsthe symbol and removes the definition from the Definition Browser.

Theitemsin the Definition Browser can be dragged and dropped into empty slots of an operator
base on the Expression Canvas. See Section 8.4.2 for an example usage of drag and drop
functionsin Vi-XFST.

8.3.3 Network Browser

Every network on the XFST stack is listed in the Network Browser. The top network of the
stack isthe top item in the browser. Once a network is created, it isadded to this browser where
itwill remain until it is popped up. Network Browser isthe main component to access a network
inVi-XFST.

(T .)
Definitions | Networks '

Name Comment

LeftN network for LeftN
PasVRB Pasive verbs...

AdjPR network for AdjPR

SP network for SP

NR network for NR
SENTENCES parses your sentences.
ADVR A network for adverbs...

l\;‘j Turn JL—] Pop “J Rotate J

Figure 8.3: The Network Browser

To access the properties of a network, select and right click on it in the Network Browser.
The Network Options dialog will be invoked in which various network settings can be adjusted.
There are also other operations on the stack under Stack menu, which are turn, rotate, pop,
clear and print stack. These operations modifies the stack in the XFST process, then Vi-XFST
synchronizesits Network Browser with the XFST stack at the same time.

74

8.3.4 Expression Canvas and Workspace Tabs

Expression Canvas is where the visua regular expression development can be done when a
project is active on Vi-XFST main window. There can be more than one Expression Canvas
but only one of them is active at atime. These canvases are held in the Workspace Tabs. The
user can switch between these tabsto activate the desired canvas and edit the regular expression
insideit.

defo | SENTENCES ‘VR- INR |DR |
|
[
‘t
¥
[«] = .

Figure 8.4: The Expression Canvas and Workspace Tabs

Each Expression Canvas can contain only one regular expression object. When this ob-
ject is removed the associated canvas and workspace tab is also closed. To start a new regular
expression in a new page, just select your operator from the tool bar and click on any Expres-
sion Canvas, Vi-XFST will open an empty workspace tab and canvas for you.

8.3.5 Message Tab

Vi-XFST also handles XFST messages on behalf of the user. They are filtered and displayed in
the Message Tab.

75

Messages lTest ‘Debug 1

lefined ICES: 82.7 Kl w L

[Definition file saved]

[Stack file saved] =

(5 (NP (N (NP (N I N) NP) N) NP) (V (V speak V) V) (P (P with

Py P)(NP (D (D the D)) (M (NP (N girl M) NP) N) NP) (C (C

while C) C) (NP (M [zl (N she N) NP) N) NP) (V (V sings V) V)

(NP (D (D a D) D) (ARdj (ARdj wvery beautiful Adj) Adj) (N (NP (N

song N) NP) N) NP) §) =

test

‘ bytes. tates, I

*** Regex error (parse error) at ;

*** Input contains 1 or more errors

Cannot define def0. N
A:”vi i:: 1.1 TI.I: ‘11‘-." ::.f,A‘i; ;Ll:: t

] S, . : . . 3

Figure 8.5: The Message Tab

The messages displayed in this tab can be grouped in to three:

XFST success messageBhey display successful command execution messages, such asasuc-
cessful regular expression or network compilation. They are printed in green color.

XFST error messagesThey are printed in red, and inform error events. Most of the time, to
take the attention of the user, a pop-up information dialog box may be invoked about the
error.

Print Messages These are the outputs of ” print” commands of XFST, such as” print defined,
print stack, print random-lower etc” . They are displayed in blue.

Test Results Test result messages are generated by the " apply” commands. They are displayed
in both Test Tab and Message Tab. These messages are printed in black fonts.

VI-XFST Messages These messages are not XFST generated. Some of the actions of Vi-XFST
produces these outputs, such as loading a project, saving or loading the stack file etc.
These messages are in dark blue.

8.3.6 TestTab

Test Tab iswhere you can apply strings to your networks on the stack.

76

Messages | Test |Debug

~Inputs
PO T O e g T VIS ST e ST g SOV STy DS OO e SO g ~
I understand the importance of good English and 1 read many books written in good English so tF
he says that women sing well because they have a good voice and they have long hairs i

the nice very beautiful red girl speaks with the boy
the book is a comprehensive survey of grammar written in simple modern English with numerous Y

yasin says that he understands English well ’
- | “»
Input string:: Ithe nice very beautiful red girl speaks with the boy Cir
' Yol .fl) 1 A

&3 Apply [|© down © up | %] Remove| LEﬁ Load | ICJ Auto clear
~Results

(S (NP (N IN)NP)(V speak V) S)(P with P)(NP (D the D) (N girl N) NP) (C while C) (S (NP (N she N
[test returned no output]
[test returned no output]

Figure 8.6: The Test Tab

When a network is compiled onto stack, Vi-XFST will automatically activate Test Tab and
place the cursor in the Input String Edit Box. Enter your inputs into the Input Sring Edit Box,
and press enter or click the Apply button just below. The direction of apply command can
be set by down and up radio buttons near the Apply button. The results will be displayed in
the Results Edit Box, and your input string will be added to the Inputs list. You can adjust
maximum number of input strings kept in the Inputs list and some other settings about Test Tab

in the Preferences diaog.

[tems in the Inputs lists can be removed, cleared all, loaded from, or saved to a text file by
the buttons on this tab. These actions are also associated with menu items in the Test menu.

8.3.7 Debug Tab

The Vi-XFST project is still under development. Inevitably, despite our hard efforts on debug-
ging the code, there may still be software bugs or logic errors. Therefore the debugging window,
whichisheavily used in the devel opment process, isnot removed from thisrelease version. This
window, when the message handler isinstalled and debug option is enabled during compilation,

displays various debug messages from Vi-XFST execution flow.

77

Messages | Test ‘Debug ’

Install message handler |

10:Debug : void CProject::rereadOptions() L
11:Debug : CCanvasFrame *CProject::getActiveFrame() |
12:Debug : CProject::Display()

13:Debug : CXfst::CXfst(const COptions* options)

14:Debug : void CXfst::start()

15:Debug : Process is :/home/yasin/Documents/TEZ/xfst -pipe -e set quit-on-fail OF
16:Debug : Process started

17:Debug : CXfst::adjust_xfst_buffer()

18:Warning: QMutex: :unlock: unlock from different thread than locker

19:Warning: was locked by 0, unlock attempt from 16384

20:Debug : command written - CXfst: :slot_wroteToStdin(){

21:Warning: QMutex: :unlock: unlock from different thread than locker *

22:Warning: was locked by 0, unlock attempt from 16384 3
«| (I | «n

Figure 8.7: The debugging window is useful only when the debug option is set during compila-
tion.

The user can include the outputs of this window to report bugs to the project devel oper that
will be used to track down the cause of the problem.

8.3.8 Menubar Commands

File Menu

There are functions for editing Vi-XFST preferences and shutting down Vi-XFST, under file
menu item.

Preferences Opens the Preferences dialog. See Section 8.3.12 on page 86 for more informa-
tion.

Exit (Ctrl-Q) Initiates the shutdown sequence of Vi-XFST, which can be canceled if the user
does not confirm the invoked confirmation dialog box. If there are modifications in the
active project, the user will be prompted to save the changes. The Vi-XFST will close all
open files, try to close and then try to kill XFST process, and save al Vi-XFST options
and history to the operating system settings structure. For more information about Vi-
XFST Settings refer to Section ?72.

Project Menu

New (Ctrl+N) Opensthe New Project dialog, allowing to create a new project workspace and
associated project file.

Save (Ctrl+S) Saves the active project file and associated binary definitions and network files
to the project directory.

78

Load (Ctrl+L) Opens the Load Project dialog, allowing the user to select an existing project
filetoload into Vi-XFST.

Close (Ctrl+W) Closesthe active project.

View & print project file (Ctrl+P) Opensthe Project Preview dial og, where the project source
file can be viewed, saved or printed in various formats.

Open recent project Contains a sub-menu with the last 10 opened projects. The user can open
aproject more easily using this recent project menu.

Save xfst messageSaves the Message Tab content to atext file. Invokes a Save File dialog.
Clear xfst message<Clears the contents of Message Tab.

Properties (F2) Opens the Project Options dialog that |ets the user change various settings for
the project. This could be a project name to save the project with another name or some
user interface options.

Insert Menu

Release selection (F2lick this menu option to de-select any selected insert toolbar button.
This stops the pointer to insert new operators on the Expression Canvas.

Concatenation Click this menu option and then click on the Expression Canvas or an open
dlot of an expression to place a Concatenation operator.

Crossproduct Click this menu option and then click on the Expression Canvas or an open slot
of an expression to place a Crossproduct operator.

Intersection Click this menu option and then click on the Expression Canvas or an open slot
of an expression to place an Intersection operator.

Longest match replacementClick this menu option and then click on the Expression Canvas
or an open slot of an expression to place a Longest Match Replacement operator.

Longest match markup Click this menu option and then click on the Expression Canvas or
an open slot of an expression to place a Longest Match Markup operator.

Replacement Click this menu option and then click on the Expression Canvas or an open slot
of an expression to place a Replacement operator.

Simple markup Click this menu option and then click on the Expression Canvas or an open
slot of an expression to place a Simple markup operator.

Composition Click this menu option and then click on the Expression Canvas or an open slot
of an expression to place a Composition operator.

79

Crossproduct Click this menu option and then click on the Expression Canvas or an open slot
of an expression to place a Crossproduct operator.
Definition Menu

New definition (F4) Invokesthe Definition Options dialog to get definition properties and then
pushes a new definition into the stack with these values. The created definition will be
added to the Definition Browser.

Push (F5) Defines the active definition on the Expression Canvas and adds it to the Defini-
tion Browser.

Read regex (F7) Compiles the active definition on the Expression Canvas adds it to the Net-
work Browser.

Undefine (F8) Undefines the active definition on the Expression Canvas and removes it from
the Definition Browser.

Properties (F9) Opens the Definition Options dialog box for the active definition on the Ex-
pression Canvas. Definition name, expression and comment are some of the editable
values of a definition through this dialog box.

Save print outputs to file This is a toggle-menu item. If it is selected, the print command
outputswill bewritten to afileinstead of the Message Tab. Thisoptioninvokesa SaveFile
dialog.

Do not printto file Thisis a toggle-menu item. If it is selected, the print command outputs
will be written to the Message Tab instead of afile.

Print-Defined prints each defined symbol and the size of the network it stands for.

Network Menu

Save print outputs to file This is a toggle-menu item. If it is selected, the print command
outputs will be written to afile instead of the Message Tab.

Print first N outputs Thisisatoggle-menu item. If it is selected, the print command outputs
will be written to the Message Tab instead of afile.

Print Random-lower Generates random words from the lower side of top network on the
stack.

Print Random-upper Generates random words from the upper side of top network on the
stack.

Print Words Printsthe paths in the top network of the stack.

80

Print Lower Words Displays the words in the lower side language of the top network on the
stack.

Print Upper Words Displays the words in the upper side language of the top network on the
stack.

Print Net Prints a text representation of the top network on the stack.

Print Sigma Prints the sigma a phabet of the top network on the stack.

Print Random Words Generates random words from the top network on the stack.

Print Size Printsthe size of the top network on the stack.

Tests Equivalent Returns 1 if the topmost two networks contain the same language.

Tests Lower-Bounded Returns 1 if the lower side of the top network has no epsilon cycles.

Tests Lower-Universal Returns 1 if the lower side of the top-level network represents the uni-
versal language.

Tests Overlap Returns 1 if the languages of the two topmost networks have a non-empty in-
tersection.

Tests SublanguageReturns 1 if the language of the topmost network is a sublanguage of the
second network on the stack.

Tests Upper-Bounded Returns 1 if the upper side of the top level network contains no epsilon
cycles.

Tests Upper-Universal Returns 1 if the upper side of the top-level network contains the uni-
versal language.

Prune Removes all paths leading to non-final states in the top network on the stack. This
operation is not included in the project file.

Reverse Replaces the top network on the stack with the one that accepts the reverse language.
This operation is not included in the project file.

Sigma Replacesthe top network on the stack with anetwork that encodes the "sigmalanguage”
of the original network, that is, the union of all symbols in the sigma alphabet. This
operation is not included in the project file.

Sort Reorders the arcs of the top network on the stack in a canonical order. This operation is
not included in the project file.

Substring Replaces the top network on the stack with a network that accepts every string that
isasubstring of some string in the language of the original network. This operation is not
included in the project file.

81

Optimize Runs a heuristic algorithm that tries to reduce the number of arcs. This operation is
not included in the project file.

Unoptimize Reverses the effect of optimize command. This operation is not included in the
project file.

Complete Extends the top network until it has atransition for every symbol in sigmain every
state. Thisoperation is not included in the project file.

Determinize Replaces the top network with an equivalent deterministic network. This opera-
tionis not included in the project file.

Epsilon-remove Replacesthetop network with an equivalent onethat has no epsilon transition.
This operation is not included in the project file.

Invert Exchanges the two sides of the top network on the stack.

Lower side Extractsthe lower language of the top network on the stack.

Minimize Replaces the top network with an equivalent one that has minimal number of states.
Negate Replaces the top network with a network that acceptsall and only those strings rejected

by the original.

Stack Menu

Clear Removesall networks on the stack.

Pop Removesthe top network on the stack.

Print Displaysthe content of the stack.

Rotate Pushesthe top element of the stack to the bottom.

Turn Reversesthe order of the networks on the stack.

Test Menu

Clear outputs Clears the outputs generated by previous tests.

Save outputs Saves the output messages in the Test Messages Window into a text file. This
option invokes a Save File dialog box.

Apply up Simulates the composition of the input string with the lower side of the top network
on the stack and extracts the result from the upper side. Any output message is displayed
in the Test Messages Window.

82

Apply down Simulates the composition of the input string with the upper side of the top net-
work on the stack and extracts the result from the lower side. Any output message is
displayed in the Test Messages Window.

Load text file as inputs Invokes a File Open dialog box, and loads the selected ASCII fileasa
list of input strings into the Test Inputs Listbox.

Save test inputs Saves the test inputs in the Test Inputs Listbox into a text file. This option
invokes a Save File dialog box.

Clear test inputs Clears the entries in the Test Inputs Listbox.

Help Menu

About Vi-XFST Invokes the About Vi-XFST dialog, which gives the author contact informa-
tion, version number, and some licensing information about Vi-XFST.

8.3.9 Project Options Dialog

Click Project|Properties or Project|Newto invoke the Project Options dialog.

N P PN

| Project l Preferences |

Name |SENTENCES3

Author]Yasin Yilmaz

Contact \yalovali@hotmail.com

Folder h’EZ/aprog/infinity20/Infinity_win32 L)

Decription | This is an example project that
parses some simple sentences.

Have fun!

v oK)@ cancel || J

Figure 8.8: Project Options dialog

Thisdialog is used to edit properties a project session in Vi-XFST. The values that can be
setinthisdialog are:

83

Project Name This the descriptive name for the active project. It is also used to generate the
filename of the source file with the extension ".infproj ". Changing the project name,
functions as a "save as’ operation. The next save command will create al project files
according to this new name.

Author The author of the project file.
Contact The contact information for the project, probably an email address or a web site.
Folder Thefolder inwhichthe project fileswill be saved. Default valueisthe current directory.

Description Intention of this field is a short description for the project purpose, structure or
any other useful information to the others.

Canvas Color This option sets the Expression Canvas background color for this project.
8.3.10 Definition Options Dialog

Click Definition|Properties or Definition|New to invoke the Definition Options dialog.

/E— o Y

'I Definition | Preferences]Ancestors ‘Dgpendants 1

Name ISENTENCES
Expression

Comment | This is the actual sentences.
Second line of comment.

Test & Verification
(X| Definition has been tested and verified

Note: |It is readonly

v OK l||10 Cancel |

Figure 8.9: Definition Options dialog

Thisdialog isused to edit properties of an existing or anewly created definition. The values
that can be set in thisdialog are:

Name This is the name of the definition. If it is a new definition Vi-XFST will generate a
random definition name for the user. In Vi-XFST definition names are kept unique and
overriding a definition name is not alowed. If a definition has dependents, changing its
name s also not allowed.

Expression It is the regular expression that this definition is composed of. Definitionsin Vi-
XFST can be created in two ways; either by typing an expression in this Definition Op-
tions dialog, or by using graphical components on the Expression Canvas. Thefirst kind
of definitions are marked as non-visual, they cannot be displayed on the Expression Can-
vas graphically. Their expressions can only be edited in this dialog. But the second type
of definitions are called visual definitions, and their expression is extracted from their
graphical representation on the canvas. These definitions can only be edited on the Ex-
pression Canvas. Therefore their expressions are read-only on in this dialog.

Comment Any comment on the definition can be typed in here.

Canvas Color This option sets the definition rectangle background color for this definition
only.

Tested & Verified A checkbox to indicate that this definition is verified and tested, and possi-
bly bug-free.

Verify Note A short note on verification of definition.

Ancestors A tree view of the ancestors of this definition. The root node is this definition and
items below are the ones, which it depends on.

Dependents A tree view of definitions that depends on this definition. The root node is this
definition and items below are the ones that depend onit.

8.3.11 Network Options Dialog

Click Properties menu item of the pop-up menu in the Network Browser to invoke the Network
Optionsdiaog.

85

"5 _iatwork options i E— =

" Network | Ancestors [Dgpendants]

Name OneAd|

Comment | network for OneAdj

Test & Verification

(X| Net. has been tested and verified

Note: |

',‘v OK J"O Cancel |

Figure 8.10: Network Options dialog

This dialog is used to edit and view properties of a network on the stack. The values that
can be set inthisdialog are:

Name Thisisthe name of the network, which is the same as the definition that this network is
compiled from. Thisvalueisread only.

Comment Any comment on the network can be typed in here.

Tested & Verified A checkbox to indicate that this network is verified and tested, and possibly
bug-free.

Verify Note A short note on verification of this network.

Ancestors A tree view of the ancestors of this network, which is the same as ancestors of the
definition of the network. The root node is this network and items below are the ones,
which this network depends on.

dependents A tree view of definitions that depends on the definition of the network. The root
node is the network and items below are the ones those depend on it.

8.3.12 Preferences Dialog

Click File|Preferencesto invoke the Preferences dialog. The following dialog will appear, to
let various Vi-XFST settings to be changed.

86

& _nfinity2.0 options T Ral=iks

> (!
@’ QSN |(General | GUI |

Xfst binary location he/yasin/Documents/'I’ EZ/ixfst)

%] Tooltips are enabled globally

'Print' commands output limit 10 &
—Test Options

(X| Save test input history on exit

Max item in history 10 <

v

| Clear History |

Keep lists sorted by
& history O alphabetically

(0OK PL Cancel J/
7

Figure 8.11: Preferences dialog

The setting in this dialog box are saved in " $HOME/.qgt/infinityrc” file on UNIX systems.
On Microsoft Windows operating systems it is in the registry database under ’infinityrc’ key.
For the first execution of Vi-XFST, some default values will be set to these options. The most
important of them that has to be reset by the user is the XFST (or XFST.exe on Microsoft

Windows systems) binary location. If thislocation is not entered or invalid, Vi-XFST will not
be ableto load XFST process.

The optionsthat can be set in thisdialog are:

XFST Binary Location Thisisthelocation of the executable XFST binary file on the system.
User should have proper access rights to execute thisfile.

Enable Tooltips Enables/disables the tooltips available for many components on Vi-XFST.

These are little help messages displayed in a small yellow box below the mouse cur-

sor, that appears when the user points to a menu item, definition box on the canvas or
toolbar items.

Print Commands Output Limit Sets a limit on the upper limit of output lines generated by
print commands available in definition and network menus.

87

Save Test Inputs On Exit Enables/disablesautomatic saving of test inputslist into your project
file.

Max Number of Inputs Puts an upper limit on the number of test inputs that will be kept in
your project file.

Clear History Thisbutton clears the test input list.

Keep Inputs Sorted by History|Alphabetically Sortstheinput list according to the given cri-
teria

Definition Canvas Color This option sets the definition rectangle background color for this
definition.

Project Canvas Color Thisoption setsthe Expression Canvas background color for this project.

Font Options These are the font settings used in the canvas of the Vi-XFST. They can be
changed to whatever settings are available on the underlying operating system.

8.3.13 Project Preview Dialog

Click Project|View & Print menu to invoke the Project Preview dialog. The following dialog
will display the source code of your project.

B Proj@Ct SCIIDT Til@ . oumeessssisssisssisssisssiisssissssiissss s

xfst compatible script file for project

(X Use syntax highlighting (X Hide all comments

SENTENCES3.

define SC [" "*]; L
define N [llwomanll | lllabll(llsll) | llyoull | "yaSin" | (Ilsll)llhell | llwomenn | "they“ | llbooku(llsll) | n
define V [["say" | "speak" | "read" | "write" | "run" | "sing" | "get" | "illustrate"| "help" | "und

define VT [["say"("s") | "think"("s") | "write"("s")] SC "that"];

define C ["because" | "after" | "when" | "as" | "so" SC "that" | "while" | "and"];

define PasVRB ["written" | "spoken" | "known" SC "as"];

define D ["the" | "a" | "an"];

define P ["in" | "at" | "on" | "belo T ———— 1
define Adj ["comprehensive"| "go

define Adv ["beautifully" | "hardly! ok jn: |[g/infinity20/infinity20/ | ¥ =L
define SRight [" S]" 1; in: (| =g Y) &= (=]

define SLeft ["[S"];
define AdjRight [" Adj]" 1;
define AdjLeft ["[Adj"];
define PRight [" P]" 1;

Figure 8.12: Project Preview dialog

.. _Itemplates
_1CVS [binary.test.txt
_ldocs

define Pleft [*[P "]; File name: |MyProject SR { save)
define VERY ["very"];
define VERYSPACED [VERY SC]; | Filetype: || Text files (*.txt) ¥| | Cancel |
define def6 [(VERYSPACED)]; é
define OneAdj [def6é Adj SC]; ~i
define AdjP [OneAdj+]; H
« [| LTI

| Saveas.. || J ‘. Close |'

88

You can use this dialog to export the project to atext file or print in various formats. Click
Hide all comments checkbox to hide/unhide Vi-XFST in-line control comments. Or you can
enable/disable syntax highlighting by the Use syntax highlighting checkbox. The Print button
will call the system print dialog box and let you choose printing preferences and get a hardcopy
of your project. If your underlying system permits, a postscript copy can aso be generated with
this printing dialog.

The Savebutton lets you export acopy of the project into atext file, according to the display
criteriaset in thisdiaog.

8.4 Project Development Process

8.4.1 Starting a New Project

Vi-XFST handles a development session with XFST in a Project Workspace. For each project
workspace, a project file is created. Also when the project is saved, a binary definition and/or
network file will be created in the same directory. Definition and network settings, regular
expressions, test inputs and user comments are kept in the project file which has aname created
by concatenation of project name and ”.infproj” file extension.

To start a project workspace, click Project|New menu item, or the associated tool button.
The Project Options dialog will be invoked. Enter a descriptive name for your project, and
select aproject directory. The default value pointsto the current directory, but it is probabl e that
you will want your project files saved in a more reasonable |ocation.

You can also enter some values for Author, Contact information and for project descrip-
tion. These are optional fields and you can change these values at any time later, just select
Project|Properties menu to bring this dialog back.

When you click the OK button, the Project Options dialog will be closed and a new project
workspace will be initiated. A XFST process will be loaded and menu items, browsers and
workspace canvas will be initialized. After the initializations, you can start adding definitions
to your workspace.

8.4.2 Building Regular Expressions

There are two ways to define aregular expression definition in Vi-XFST. The quickest way isto
typein aregular expression using the keyboard. Simply click Definition|New Definition menu
item or associated keyboard shortcut (F4) to open Definition Options dialog.

In the dialog a definition name is already generated for you. Just type aregular expression,
-some comment is optional but recommended- and click OK. The XFST Progress Dialog will

89

appear and try to define your expression. If no error occurs, your regular expression definition
will appear in the Definition Browser. The Message Tab will be popped up if it is not visible.
Check these messages for your definition. If there has been an error, Vi-XFST would have
noticed that and display the error message generated by XFST.

The other way to create your definition, is to use the Expression Canvas to build your reg-
ular expression in a more controlled and user friendly way. Vi-XFST offers a powerful visual
interface for regular expression construction.

Select an operator base type from the toolbar and click on the Expression Canvas. Vi-XFST
will draw the operator base with empty slots. These slots are where you will insert existing
regular expression definitions. You can select and drag a definition from the Definition Browser .
Or write click the empty slot and select Insert Definition menu item and select an existing
definition from the list. The selected definition will be added into this empty slot you have
right-clicked.

You can double click an empty slot to create a new definition more quickly. Definition Op-
tions dialog will be invoked and the created definition will be inserted into this slot automati-
caly.

For more information about working with graphical representation of regular expression see
Section 8.5.

8.4.3 Compiling a Regular Expression

Oncearegular expression isdefined in XFST and added to the Definition Browser, now it can be
compiled as a network onto the stack. There are many ways of compiling aregular expression,
you can just right click a definition in the Definition Browser, and select read regexin the
invoked pop-up menu. Or if your regular expression definition is on the expression canvas,
right click the definition there and select read regexmenu item in the pop-up. There is also
another menu item to do same task under the Definition menu.

During the regular expression definition compilation, XFST Progress dialog will be dis-
played. If there is no error, your network item will appear in the Network Browser. The
Test Window will be popped up if it is not visible. If there has been an error, Vi-XFST would
have noticed that display the Message Window instead of the test window.

Compiling a regular expression is just one mouse click as described above, and you can
quickly start entering inputs to the network. Now, please proceed to the next section.

90

8.4.4 Testing a Network

To apply input strings on the transducer at the top of the stack, switch to the Test Tab if it is
not already activated. Enter your inputs into the Input Sring edit box, and press enter or click
the Apply button just below. The direction of apply command can be set by down and up radio
buttons near the Apply button. The results will be displayed in the Results editbox, and your
input string will be added to the Inputsist.

Items in the inputs lists can be removed, cleared and loaded from or saved to a text file.
These operations are available both through the buttons on the Test Tab and menu items under
the Test menu. If auto-save option is set in the Vi-XFST settings, input strings are kept inside
the source file when the active project is saved. They are also |oaded when the project is opened
back.

8.4.5 Modifying The Stack

Items on the stack are the networks compiled by Vi-XFST. You can remove (pop-up), change
position and ordering (turn, rotate) of these items with buttons below the Network Browser.
There are various operations over a network on the stack. Most of them are available under
the Network menu. For this version of Vi-XFST these network modification commands are
not kept in your project file. But the binary network file saved by "save st ack” command,
will contain your most recent stack including these modifications. So keep in mind this issue
and beware that Vi-XFST will not re-run these modification commands when it recompiles the
networks on the stack.

8.4.6 Printing and Viewing the Source Code

The project source file can be viewed within the Project Preview dialog. Click Project|View &
Print menu to invoke the dialog that will display the source code of your project.

You can use this dialog to export the project to atext file or print in various formats. Click
Hide all comments checkbox to hide/unhide Vi-XFST inline control comments. Or you can
enable/disable syntax highlighting by the Use syntax highlighting checkbox. The Print button
will call the system print dialog box and let you choose the printing preferences and get a
hardcopy of your project. If your underlying system permits, a postscript copy can aso be
generated from this printing dialog.

Click the Savebutton to export a copy of the project into atext file, according to the display
criteriaset in thisdiaog.

91

8.4.7 Exporting the Code and Binary Files

Under the project directory (see Project Options dialog), there are threefilesrelated to a project.
These are:

<ProjectName>.infproj The source file for your project. It contains project information, op-
tions, network definitions and input strings. This file can be loaded into XFST with ”-I”
parameter. All the Vi-XFST generated codes are marked with "##Vi-XFST##’ com-
ment markers. But it is strongly advised not to edit this file manualy. Instead, use the
Project View & Print dialog described in Section 8.3.13 to generate a user copy of the
project source file.

<ProjectName>.infdef Thisbinary fileiscreated by the XFST "save defi ned <fil ename>"

command automatically by Vi-XFST whenever the active project issaved. Thebinary file
contains networks for al defined symbolsin the project workspace. You can use thisfile
inXFST with”l oad defi ned <fil enanme>" command. Vi-XFST will try to locate
this file when the project is loaded, but if it is not available, all definitions will be rebuild
from the regular expression source file. But it cannot detect if thisfile is modified outside
Vi-XFST, therefore you should not change the content of thisfile. You must work on your
own copy of thisbinary file.

<ProjectName>.infstack Thishinary fileiscreated by the XFST "save stack <fil enanme>"

command automatically by Vi-XFST whenever the active project is saved. The binary file
contains networks on the stack of the project workspace. You can use this file in XFST
with "l oad stack <fil enanme>" command. Vi-XFST will try to locate this file
when the project is loaded, but if it is not available, al networks will be rebuild from the
source file. But it cannot detect if this file is modified outside Vi-XFST, therefore you
should not change the content of thisfile. You must work on your own copy of thisbinary
file.

Any modification on the stack will be effective in thisbinary file. So if you want to pre-
pare a binary transducer file to distribute without the source code, you can freely do any
maodification with the operatorsin Network menu. But remember that these modifications
are not saved into project source file.

All of thefileslisted above, are compatible with XFST program. Any of them can be distributed
to other users. But only the project file (with extension .infproj) can be loaded back to Vi-XFST.

If the project file seems confusing with many inline comment blocks put by Vi-XFST, you
can get atidier file by Project Preview dialog as described above.

8.4.8 Bug Reporting and Debugging Vi-XFST

The Vi-XFST project is still under development. It lacks many features of a comprehensive
integrated development environment. Inevitably, despite our hard efforts on debugging the

92

code, there may still be bugs, logic errors, or even crashes while using Vi-XFST. Therefore the
debugging window, which is heavily used in the development process, is not removed from this
release version. This window, when the message handler is installed and debugging enabled
during compilation, displays various debug messages from Vi-XFST execution flow.

If you experience a bug to report to the authors, please send a copy of these messages that
will let to track down the bug. We appreciate every bit of help to improve the code.

8.5 Graphical Representation Of a Regular Expression

One of the most powerful features of Vi-XFST isthe graphical representation of regular expres-
sions. On the Expression Canvas, it is possible to build complex regular expression with simple
mouse clicks.

When aproject is opened on Vi-XFST, there is always an active workspace tab that contains
an empty expression canvas. You can use this canvas to place and construct expressions on.
First step is to select an operator from the toolbar that will be the main operator base. Then
operands should be added to slots of thisbase. Each slot on Vi-XFST’ s operator basesisalikea
pair of brackets("[" ... "]")inregular expressiontext. Vi-XFST placesyour definitions
in these boxes. Figure 8.13 shows an example definition and the corresponding expression.

def1 - def2 .

Figure 8.13: A definition base withtwoopendlots: [defl | defl]

Operator bases like union, concatenation or composition may take more than default number
of operands. To add additional slots select New Slotfrom the pop-up menu of the base.

Figure 8.14: A definition base withtwo open dlots: [def O def 1 def4]

93

Just the same way an empty slot may be removed. Right click an empty slot and select
Removefrom the invoked pop-up menu to remove it from the operator base.

There are three ways to insert a definition into an empty slot. If you want to create and
add a new definition, just double click into an empty slot. Vi-XFST will create a definition
for you and pop-up the Definition Options dialog. Freely enter any expression you like, there
IS no restriction in regular expressions for definitions created using this dialog. Click OK to
accept your changes. Vi-XFST will automatically push your expression into XFST, add it to
the Definition Browser and replace the empty slot with this definition. Thisisavery fast way to
build up complex expressions.

Another way is to use an existing definition from the Definition Browser. Select it with
mouse, drag and drop it into an empty slot. Thisis also another comfortable way of building
expression within Vi-XFST.

The last way is to select the definition to be inserted, from the pop-up menu of the empty
dlot under Insert Definition item. Sub-menu of thisitem is the list of definition available in
Vi-XFST. The selected definition will be inserted into the empty slot.

It isalso possibleto insert an operator base into an empty slot of another base. This feature
enables to build complex regular expressions. It is important to remember that each dot is a
pair bracket. Therefore your new operator base is enclosed within apair of brackets as show in
Figure 8.15.

Figure 8.15: Nesting operator basesineachother: [[Q| D] .x. N

There is no limit in the depth of nesting operators inside each other. You can freely build
large regular expressions. If things get confusing on the canvas, try the Minimize option in the
pop-up menus of operators to shrink the operator you are working on.

Onceyou are donewith your regular expression, it hasto be defined in XFST process. Select
Push definition in the pop-up menu of the operator base. Vi-XFST will define and store it in
the Definition Browser. For more information about defining a definition see Section 8.4.2.

94

8.5.1 Operator Base Object

The basic component of an expression is the base rectangle that defines a pair of brackets ([
...]") and the selected operator. You add other components (definitions) onto this base.

You can give it a name that will be used to refer to this network once it is compiled. When
abase is added to the workspace canvas a unique definition name is already generated for you.
Also the name of a base can be modified from the Definition Dialog that is invoked with the
Properties item inside pop-up menu of the base. When thisdefinition is compiled, it will appear
in the definitions browser of Vi-XFST with this new name. The following drawing isasimple
definition object:

def1 -
&)

Figure 8.16: A sample operator base

In Figure 8.13 the main operator is an intersection. This base has two operands; def 1 and
PRI CE, which are also previously defined definitions. These definitions can be removed from
the base by selecting Removeoperator from the pull-down menu invoked by right clicking on
them.

The symbols on the upper right corner of these definition rectangles denote if the definition
can be enlarged inside the operator base. A 7. ” means that this definition was not built using
the visual expression canvas; therefore it cannot be enlarged using graphical components on the
screen. Also double clicking on the definition rectangle only opens this definition’s properties.

The ”x” sign on the upper right corner of a definition, as for the ”PRI CE” in Figure 8.13,
means that the definition can be enlarged into its components. When a definition is enlarged by
clicking on this icon, this symbol changes into an ”O’. Clicking again in this symbol shrinks
the definition back to its original state. Here is an example of viewing a definition in enlarged
form:

95

[defl & PRICE]

def1 .

B g
'efPLON.

Figure 8.17: The PRICE definition is enlarged inside another definition.

By using this feature of Vi-XFST, it is possible to view a transducer back into its sub-
components. It is also possible to compile an enlarged definition, and apply input string to this
network on the stack to debug it.

8.6 Expression Arithmetic

In this version of Vi-XFST, only most commonly used regular expression operators are sup-
ported on the expression canvas. Regular expressions that require the other operators can be
still built using the Definition Options dialog that is invoked by Definition|New menu. We hope
to release support for these excluded operators in the next version.

Once an operation is defined you can still change it, replace operands, or delete it later. It
is possible to add new slots to an operator if it can take more than default number of operands.
For example the default Union operator comes with two empty slots. But you can always add
new slots for additional operands. Also some operators, such as markup and replacement, have
"conditional” operator bases that have special meanings for them. You can add a conditional
base to them from the pull down menu by right clicking on these operators. All of these features
are accessi ble through the pop-up menus of the operator slots.

The following sections in this chapter are alist of available operatorsin Vi-XFST.

8.6.1 Union

def1 . def2 .

Figure 8.18: Uni on operator base. Displayed regular expression:
[def1l | def2]

96

Opens with 2 default open slots and more slots can be added. Operator icon can be changed
into: Concatenation, I ntersection.

8.6.2 Concatenation

Figure 8.19: Concat enat i on operator base. Displayed regular expression:
[defl def2 def4]

Opens with 2 default open slots and more slots can be added. Operator icon can be changed
into: Union, Intersection.

8.6.3 Intersection

Figure 8.20: | nt er sect i on operator base. Displayed regular expression:
[[defl13 | def8] & def2]

Opens with 2 default open slots and more slots can be added. Operator icon can be changed
into: Union, Concatenation.

97

8.6.4 Composition

def4 .

Figure 8.21: Conposi t i on operator base. Displayed regular expression:
[defl .o. [defO | def3] .o. def4]

Opens with 2 default open slots and more slots can be added. Operator icon cannot be
changed into another operator.

8.6.5 Crossproduct

def1 .

X
def2 .

Figure 8.22: Cr osspr oduct operator base. Displayed regular expression:
[defl .x. def2]

Opens with 2 default open slots and no more slots can be added. Operator icon cannot be
changed into another operator.

98

8.6.6 Replacement

Figure 8.23: Repl acenent operator base. Displayed regular expression:
[[defl -> def2],[def4 -> defl12] // Right _ Left]

Opens with 2 default open slots. Possible to add another pair of slots for parallel replace-
ment. Operator icon can be changed into: Longest-match Replacement.

Special option: New Condition adds a condition with two open slots to the replacement
operation. Only one condition can be defined per operator base.

8.6.7 Left-to-right, Longest-Match Replacement

Figure 8.24: Left-to-right, Longest Match Repl acenent operator base. Dis
played regular expression:
[defl @> def2]

Opens with 2 default open slots. Possible to add another pair of slots for parallel replace-
ment. Operator icon can be changed into: Replacement.

Special option: New Condition adds a condition with two open slots to the replacement
operation. Only one condition can be defined per operator base.

99

8.6.8 Simple Markup

Figure 8.25: Mar kup operator base. Displayed regular expression:
[A->defl ... def2]

Opens with 3 default open slots. Possible to add another triple of slots for parallel markup.
Operator icon can be changed into: Longest-match markup.

Special option: New Condition adds a condition with two open sots to the markup opera-
tion. Only one condition can be defined per operator base.

8.6.9 Left-to-right, Longest-match Markup

Figure 8.26: Left-to-right, Longest-match Markup operator base. Displayed
regular expression:
[[A @> defl ... def2],[B @> def4 ... defl2] || Left_Right]

Opens with 3 default open slots. Possible to add another triple of slots for parallel markup.
Operator icon can be changed into: Simple markup.

Special option: New Condition adds a condition with two open dots to the markup opera-
tion. Only one condition can be defined per operator base.

100

8.7 Bug Reporting

The Vi-XFST project is still under development. Inevitably, despite our hard efforts on debug-
ging the code, there may still be bugs. Therefore the debugging window, which is heavily used
in the development process, is not removed from this release version. This window, when the
message handler isinstalled and debugging enabled during compilation, displays various debug
messages from Vi-XFST execution flow.

If you experience a bug to report to the authors, please send a copy of these messages that
will let us track down the bug. We appreciate every bit of help to improve the code.

8.8 Authors

Project Supervisor:

Prof. Kemal Oflazer <koflaz@sabanciuniv.edu>
Main Developers:

Yasin Yilmaz <yalovali@hotmail.com>

101

Bibliography

[1]

[2]

[3]

[4]

[5]
[6]
[7]
[8]
[9]
[10]

Lauri Karttunen, Tamas Gaal, Andre Kempe, Xerox Finite-State Tool, Xerox Corporation,
1997.

Xerox Corporation, Syntax and Semantics of Regular Expressions,
http://www.xrce.xerox.com

Xerox Corporation, Examples of Networks and Regular Expressions,
http://www.xrce.xerox.com

Lauri Karttunen, Application of Finite-State Transducersin Natural-L anguage Processing,
Xerox Research Center Europe, Meylan, France.

AT&T Labs-Research, FSM Library, http://www.research.att.com/sw/tool s/fsm/

Gertjan van Noord, FSA Utilities: A Toolbox to Manipulate Finite-state Automata, 1998
Scot Meyers, More Effective C++, Addison Wesley.

Karl Fogel, Open Source Development With CVS, The Coriolis Group

QT Documentation, http://www.trolltech.com

MySQL, http://www.mysgl.com

67

