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ABSTRACT

A Neuro — Sliding Mode Controller was designed for systems that have
uncertainties like unknown external disturbances and unknown system parameters.
First, the controller was designed for single input single output (SISO) systems and then
it was generalized for a certain class of multi input multi output systems. Stability proof
was given using Lyapunov Stability Criteria and finally, the theory was supported by
simulation and experimental results.

The Neuro — Sliding Mode Controller proposed in this thesis consists of a one
layered neural network whose activation functions are linear. The main working
principle of the controller is minimizing a cost function which is determined from the
requirements of the Lyapunov Stability Criteria and Sliding Mode Control Theory.

The major contribution of this work is that, different from the similar works in the
field, the stability of the overall control system was shown by analyzing the properties
of the cost function introduced to the neural network for minimization.

Two different experimental setups were used for SISO and MIMO cases
respectively. For the SISO case, the position of an electrical motor that actuates a linear
servo — drive was controlled. For the MIMO case, a system consisting of two
piezoelectric actuators connected to each other via a load cell, which was used for force
measurement, was used. In this system, the position of one actuator and the internal
force created were controlled simultaneously. Both experiments were successful and
supported the theory.
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OZET

Bilinmeyen digsal etkenlerin etki ettigi ve parametrelerinin tam olarak
bilinemedigi sistemlerin denetimi icin yapay sinir aglari kullanilarak kayan kipli bir
denetim algoritmas1 gelistirilmistir. Bu algoritma oncelikle tek giris ve tek c¢ikigh
(TGTC) sistemler i¢in dizayn edilmis, daha sonra da, bir smif ¢ok girisli ve ¢ok ¢ikish
(CGCC) sistemler i¢in genellestirilmistir. Ortaya ¢ikan denetim sisteminin kararliligi
gosterilmis ve son olarak da simulasyon ve deneylerle teori desteklenmistir.

Dizayn edilen denetim sistemi, aktivasyon fonksiyonlari dogrusal olan, tek
katmanli bir yapay sinir ag1 igermektedir. Bu denetleyicinin temel ¢alisma prensibi,
Lyapunov Kararlilik Kriterleri ve Kayan Kipli Denetim Teorisi kullanilarak segilmis
olan bir maliyet fonksiyonun minimizasyonudur.

Bu ¢aligmanin en 6nemli katkisi, bu alanda yapilmis daha onceki calismalardan
farkli olarak, yapay sinir agi ile minimizasyonu yapilan maliyet fonksiyonunun
ozellikleri incelenerek, tiim denetim sisteminin kararlilik ispatinin yapilmig olmasidir.

TGTC ve CGCC durumlar i¢in iki ayr1 deney diizenegi kullanilmistir. TGTC igin
dogrusal eksenli konumlandirma siiriictisiinde kullanilan elektrik motorunun pozisyon
denetimi yapilmistir. CGCC durumu i¢inse, birbirlerine aralarindaki kuvvet 6l¢gmek igin
kullanilan bir yiik hiicresi - “load cell”-, vasitasiyla etki eden iki piezoelektrik
malzemeden olusan bir deney diizenegi kullanilmistir. Bu deneyde piezoelektrik
malzemelerden bir tanesinin pozisyon denetimi yapilirken, ayni anda sistemde yiik
hiicresinin tepkisinden dolay1 olusan kuvvetin de denetimi yapilmistir. Her iki deney de
basarili olmus ve One siiriilen teoriyi desteklemistir.



Bilimsel merakimi tetikleyen ve bana her zaman cesaret veren babam,

Sakir Yildiz a...
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1. INTRODUCTION

1.1. Artificial Neural Networks

In the last fifteen years, the field of neural networks became popular among
researchers and this resulted in considerable amount of work in the field. Being a
subject to the interest of many researchers, neural networks do not have a standard,
agreed definition. In the literature, among the attempts to make a neat introduction to
the field, the work of J.M. Bishop and R.J. Mitchell [1] attracts attention. The
introduction given here is taken from this work [1]:

The field of neural networks, also known as “connectionism”, parallel distributed
processing, connection science or neural computing, is a mode of computing which
seeks to include the style of computing used in the brain. In their book An Introduction

to Neural Computing [2], Alexander and Morton have the following definition:

“Neural computing is the study of networks of adaptable node which,
through a process of learning from task examples, store experimental knowledge

’

and make it available for use.’

A neural network is a processor of information consisting of simple processing
elements connected together. Each processing element is a very simple model of a
neuron in the brain, hence the term neural networks. Thus, a neural network could be
described as an attempt to create an artificial brain. However, present neural networks
try to mimic the way the brain does things in order to harness its ability to infer and
induce from incomplete and confusing information.

What makes these networks powerful is their potential for performance
improvement over time as they acquire more knowledge about a problem, and their

ability to handle fuzzy, real world data. That is, a network “taught” certain data patterns,



is able to recognize both these patterns and those which are similar: the network is able
to generalize. Also, neural networks are inherently parallel in their operation, and so
have the capacity to operate much faster than conventional computers.

Work in the neural networks began in 1940s and flourished under McCulloch,
Pitts, Hebb, Widrow, Minsky and Rosenblatt until 1969. Unfortunately, the claims by
Rosenblatt as to what his machine could do were somewhat exaggerated, and in 1969
Minsky and Papert wrote a book, Perceptrons [3], which showed that there were
various problems with these neural networks and so the subject went out of fashion until
the mid 1980s. During this time, however, various people were still working in the field,
including Alexander, Kohonen, Hopfield, and the PDP group including Rumelhart,
McClelland and Hinton. Neural networks have become fashionable again because it has
been realized that there are limitations as to what Expert Systems do, and the success of
Hopfield and the PDP group. In 1986, Rumelhart and McClelland published Parallel
Distributed Processing [4] in which it is shown how the objections of Minsky and
Papert could be overcome, and work in the field flourished.

A neural network consists of simple processing elements connected together.
There are various ways in which these elements can be connected, in single or multiple
layers, fully or partially connected, etc., and there are various forms of processing
elements. However, many factors are common.

A neural network is not programmed to complete a given task, rather it adapts and
acquires knowledge over time in order to complete a task. One stage of operation,
therefore, requires the network to learn, and this can be supervised or unsupervised.
Once the network has learned to perform a task, it can then be set to undertake that task.
For example, a neural network which is to be used to recognize objects would first be
taught what those objects looked like, and then would be put in the mode whereby it
reported whether the object it was being shown was one it had been taught.

There are many forms of neural network of which the main types are “Perceptron”
types, Hopfield nets, Boltzmann machines, Weightless or n-tuple nets, Kohonen nets,
the neocognitron and ART classifiers. The two types which are used the most, and
which are more applicable in the area covered by colloquium, are “Perceptron” and

Kohonen nets.



1.1.1. Perceptron Networks

In these networks, the main element is an extension of the McCulloch and Pitts
neuron, as shown in Fig. 1.1. The output of the element is some function of the
weighted sum of all the inputs. Sometimes the output value is used directly, or the
output is processed by, say, a threshold or the sigmoid function. In some networks it is
important to know if the element has “fired” — in some way that a neuron in the brain
produces an active output- and this occurs if the weighted sum exceeds a given
threshold. For other networks, the actual value of the output is required.

Learning is the process of deciding what the values of the weights should be. This
is often achieved by comparing the output of the element with what it should be — a
form of supervised learning — and adjusting the weights appropriately.

A single layer network of such neurons can perform simple functions. However
one of the criticisms raised by Minsky and Papert was that such a network could not
solve a problem that is not linearly separable, which is one where one straight line
cannot separate opposing classes. However, a multilayer network can solve such

problems.

Output

Figure 1.1. Basic neuron model



In learning mode, the network is repeatedly presented the data in the training set,
both the required input and output for each item in the set, and the weights adjusted
accordingly using the generalized delta rule, by propagating errors between the actual
output and the desired output back through the network. This can take time as the whole
data set must be presented many hundred times. This is a severe disadvantage of the
method. However, a great many researchers in the field use backpropagation learning

on multi layer perceptrons.

1.1.2. Kohonen Networks

Teuvo Kohonen postulated a different form of network with a different learning
strategy. The learning of these networks is unsupervised, which in some ways is more
like the form in which humans learn. In Kohonen networks, each node has a number of
values associated with it, one value for each input to the network, and each is connected
to each node. In use, the values associated with each node are compared with the input,
and the node which most closely resembles the input is the one which fires. The system
must be taught patterns to fire, and also be able to recognize similar patterns. This is
achieved by the following way.

In learning mode, the node which most resembles the input is determined. Then,
its weights are adjusted so as to reduce the difference between the weights and the
inputs. This allows the node to resemble the input more closely. So that, similar patterns
are also remembered, those nodes which are connected to this node, that is those which
are adjacent to it, also have their weights adjusted, but the amount by which they are
adjusted is determined by the distance of each node from that which fired. If the main
node is changed by an amount O, the other nodes are changed by Mo, where M is
determined by the “maxican hat” function shown in Fig. 1.2. Therefore, the system
should be able to remember the taught input patterns, and similar patterns, that is the
network can generalize. Kohonen has used these networks successfully in the field of

speech recognition and many other researchers use Kohonen networks.
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Figure 1.2. “Mexican Hat”

1.2. Neural Networks for Control

The past fifteen years have witnessed a great deal of progress in both theory and
practice of control using neural networks. A review of control practice using neural
networks and the theory related to it can be found in the work of Kumpati S. Narendra
[5], from which the following summary is taken:

The field of control is inherently interdisciplinary in nature and extends from
design, development, and production on the one hand to mathematics on the other.
Since the very beginning over six decades ago, control research has been driven by the
diverse and changing nature of technology. Today, control techniques have become
pervasive in a wide spectrum of applications which are major scientific, technological,
and economic importance. Mathematical control theory has been described as an
indispensable component of a partnership between mathematical theory, engineering
practice, and hardware and software capabilities.

The objective of control is to influence the behavior of dynamical systems. It
includes maintaining the outputs of systems at constant values, regulation, or forcing
them to follow prescribed time functions, tracking. The control is to find the necessary
control inputs to the system using all available data. Achieving fast and accurate control
while assuring stability and robustness is the aim of all control systems design.

The best developed part of control theory deals with linear systems and powerful
methods for designing controllers for such systems are currently available. In fact, most
of the controllers used in modern industry belong this class. However, as applications

become more complex, the processes to be controlled are increasingly characterized by



poor models, distributed sensors and actuators, multiple subsystems, high noise levels
and complex information patterns. The difficulties encountered in designing controls for
such processes can be broadly classified under three headings: 1) complexity, 2)
nonlinearity, 3) uncertainty.

A neural network can be considered as a conveniently parameterized class of
nonlinear maps, from a systems theoretic point of view. During the 1980’s and the early
1990’s, conclusive proofs were given by numerous authors that multilayer feedforward
networks (MNN) are capable of approximating any continuous function on a compact
set in a very precise and satisfactory sense [6]-[9] . As a result, such networks found
wide application in many fields, both for function approximation and pattern
recognition. Since dynamics is an essential part of physical systems, it was proposed in
[10], that neural networks should be used as components in dynamical systems and that
a study of such networks should be undertaken within a unified framework of systems
theory. A great deal of progress has been made since that time both in the theory and
practice of control using neural networks, i.e., the field of neurocontrol. Numerous
dynamical systems have been identified and controlled in computer simulations, and a
few have been practically implemented. It has become increasingly evident that
artificial neural networks (ANN) are capable of coping with all three categories of
difficulties which arise in complex control systems.

In the 1980°s the MNN shown in Fig. 1.3 was introduced for approximating
continuous functions. Later, the radial basis function network (RBFN) was proposed as

a viable alternative. The n layer MNN with input » and output y is described by the

rwrw, . .TWu+b|+..+b, ,]+b,]=y (1.1)

where W, is the weight matrix in the i” layer, and the vectors b,

(i =1,2,..,n)represents the threshold values for each node in the i” layer. F[] is a
nonlinear operator with I'(x)= [}/1 (%), 72 (%) 7, (x)] where y; () is a smooth

activation function , which is generally sigmoid.



Input Layer Hidden Layers Output Layer

Figure 1.3. Structure of the multi layer neural network

In Fig. 1.4, the structure of the RBFN with an input u € R" and output y e R is

shown. The output is described by the equation

N
y=fu)=>WRu)+W, (1.2)
i=1

where W, (i=0,1,2,..,N) are the weights, and the function R;:R" —> R have

generally the form

" o Rlju—ci]

u, RQ|u - 02”)

Rl <)

Figure 1.4. Structure of the radial basis function network
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R (u)=exp| - ) ~——— (1.3)
where ¢,” =[c;,...,c,, | is the center of the i receptive field and o ; 1s referred to as its

width.

Both MNN and RBFN are capable, at least in theory, of coping with complexity,
nonlinearity, and uncertainty encountered in complex systems. The massive parallel
nature of the MNN permits computation to be performed at high rates. Since they can
approximate nonlinear maps to any desired degree of accuracy, they can also be used to
identify and control nonlinear dynamical systems. Finally, the fact that various
algorithms are currently available for the adjustment of the parameters of the networks
implies that they can deal with uncertainty, by realizing approximations of unknown
static and dynamic mappings, from IO data.

While it has been shown that both MNN and RBFN can approximate arbitrary
functions from one finite dimensional space to another to any desired degree of
accuracy, it is also true that polynomials, trigonometric series, splines, and orthogonal
functions share the same properties. Hence, questions naturally arise as to why ANN
should be preferred over such methods. Extensive computer studies carried out during
the past years have revealed that neural networks enjoy numerous practical advantages
over conventional methods. In view of their architecture they are more fault tolerant and
less sensitive to noise and they are more easily implementable in hardware because of
the parameterization used. Barron’s work [11] has also provided partial theoretical

justification for using ANN’s over its competitors. If the class of functions F is
restricted to those whose Fourier transforms have a first moment, and f:R? >R isa

member of this class, the problem of approximating it with a network having one hidden

layer and 7' nodes in that layer is considered [11]. If f; is the map obtained by the

neural network, it is shown that the L, norm of the approximation error || f- f,”2 is

bounded by O(Cf /T" 2) where Cis the first moment of the Fourier transform. In
contrast to this, no linear combination of 7T fixed basis functions can achieve an
approximation error smaller than O(C AT v d) Hence, as the dimensionality of input

space increases, it is clear that MNN are preferable to approximation schemes in which

the adjustable parameters arise linearly.



The above theoretical result has great significance for the design of practical
controllers for dynamical systems, since the dimensionality of the input space is
invariably large in such cases. Both MNN, in which the parameters occur nonlinearly,

and RBFN in which ¢; and o are adjusted, require substantially fewer parameters for

a desired degree of accuracy.

1.2.1. Applications of Neurocontrol

Most of the current interest in the application of neural networks is in static
systems, particularly in recognition, where they have been very successful. The problem
of control is a considerably difficult one, and the presence of a feedback loop implies
that stability problems are invariably present. Even though such stability questions will
eventually become very important in industrial applications, the neurocontrol problems
being attempted at the present time are those in which improving performance rather
than assuring stability is the main consideration.

It is true in control practice that the simplest controller which satisfies all the
constraints while meeting performance specifications, is the one most likely to be
chosen in any application. This is because simplicity generally correlates strongly with
robustness as well as low cost. Neural network based controllers, on the other hand,
contain a large number of parameters and are invariably complex. Hence, simple
controllers such as constant gain controllers, PI and PID, state feedback controllers, and
linear adaptive controllers must all be tried and found inadequate in some sense before
neural controllers are considered seriously in applications.

In the initial stages of any field, when theory is not well developed, it is natural
for heuristic techniques to be used in the solution of practical problems. There are
numerous examples of such periods in the history of automatic control. Before 1868
automatic control systems were designed through intuition and invention. Efforts to
increase the accuracy of the system led to problems of instability and the field had to
wait Maxwell’s theory for an explanation. In the 1950’s and 1960’s, when the area of
adaptive control was in its initial stages, ingenious schemes were proposed with little
theoretical justification. History repeated itself in 1980’s, when a number of

approximate schemes, based on simple concepts, were proposed in the neurocontrol



literature for the output y of a plant to track a desired output y* with a small error. The

basic idea of the above schemes was to determine the inverse of an operator P , which
represents the plant, and use it as a controller C , so that the plant together with the
controller, PC, would approximate a unit operator over the range of values of the
reference input. The different methods of computing the inverse gave rise to different
control architectures, some of which are shown in Fig. 1.5. In “Direct Inverse Control”,

Fig. 1.5.a, the input to the controller is y and the controller, a neural network, is trained
to approximate the input to the plant. In “Feedforward Inverse Control”, Fig. 1.5.b, a
neural network NN, is trained so that its output y approximates the output of the plant.
A controller NN, is then trained so that (NN, )(NN,) approximates a unit operator. In
internal model control, the error e between model and plant is fed back to the input so
that NN,, NN,, and P form part of a feedback loop as shown in Fig. 1.5.c. This model

has been found to be very successful in practical applications in chemical engineering.

All the above approaches are approximate, since the plant is a dynamic rather that
a static map. The latter raises many mathematical questions such as existence of
solutions, left versus right inverses of operators, as well as those related to the domains
and range spaces of the operators being approximated. Nevertheless, these questions are
mentioned here because successful heuristic techniques are the precursors to good
theory and the latter is quite often merely a precise way of stating intuitive concepts.

The problem of nonlinear control is very complex and even at the present time a
great deal of heuristic reasoning is used in applications. Simple schemes, such as those
discussed earlier, have yielded impressive results in simulation studies as well as in
some applications with long time constants. But they do not offer guarantees about their
applicability under very different operating conditions. Theoretical control methods
become increasingly relevant to provide such guarantees. This is not to imply that such
methods can be directly applied to practical problems. Practical control system design
invariably involves compromises and approximations, but a sound theory provides a
sound basis for such engineering choices. In the following a few applications of

neurocontrol selected from a large pool is presented.
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Figure 1.5. Control architectures

1.2.1.1 Robotics

Neural networks have been extensively used in robotics and the areas where
neurocontrollers have found application can be conveniently classified as: 1)
manipulator control, 2) contact control, 3) coordination, grasping, and manipulation, 4)
locomotion, and 5) planning and navigation.

In manipulator control, the use of neural networks has been strongly motivated by
the enormous complexity of computing kinematics in real time. Since adaptive laws
with kinematics terms computed based on desired rather that actual trajectories had
been shown to be stable, neural networks could be trained off-line to learn the dynamics
of the robot.

This has been the main approach used in this area starting with the work of
Kawato [12], and also used in the work of Zomoya and Nabhan [13]. In that works, the
authors have shown that satisfactory tracking can be achieved for unknown payloads
and that neural networks can adapt rapidly to changing payloads on-line. With few
exceptions [14]-[16], most work on robot control has been in the form of simulation
studies where dynamic model parameter values have been obtained from experimental

studies.
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Learning impedance relationships for the purpose of transferring human skills to
robots in tool handling, and learning environmental models for overall system stability
and performance are two areas where some effort has been made to apply neural
networks to contact control. Asada [17] has applied neural networks for learning skill
from real force and motion data. Learning of a skill in many cases implies the learning
of the combined impedance of the human and the tool, and this is accomplished using a
neural network. Transferring the skill to a robot implies that the robot must be able to
change its impedance through control to match what was learned in the neural network.
Using recurrent networks, Venkataraman [18], has developed a robotic system that has
the ability to autonomously acquire models of soil and rock samples found on planetary
surfaces.

In view of the inherent complexity of the coordination, grasping, and
manipulation, neural networks have been used very few. A notable work is Hwang [19],
who has considered the problem of cooperative control of two robots that grasp and
carry an object. Two neural networks, one for each arm, are trained with data from the
system. Another problem area where neural networks have been used effectively is due
to Hanes [20] and is related to control of contact forces between the fingers of a robot
hand and the object it grasps. The problem of determining grasp locations that will
result in a desired force distribution is complex from the computational viewpoint and
neural networks are ideally suited for it. Neural networks were found to yield stable
grasp configurations over a wide range of object sizes and clinch levels.

In the area of locomotion, Miller [21] has been systematically using neural
networks to control biped walking robots. He and his co-workers have designed,
implemented and tested an adaptive dynamic balance scheme on such an experimental
robot. According to them, while the control problems for dynamic walking are more
complicated than with static balance, dynamic walking promises higher walking speeds,
improved walking structures and greater efficiency.

A truly interesting and novel application of neural adaptive control is described by
Pomerleau in [22] and is the area of vision-based autonomous driving. Based on images
from an on-board video camera, a robot van, equipped with motors for the steering
wheel, braking and the acceleration pedal, determines its own trajectory. The
noteworthy feature of the system is the supervisory control method used to train it. The
neural network is taught to imitate the driving reactions of a person. As the person

drives, the neural network is trained using backpropagation. The snout to the neural
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network is a 30 x 32 unit video image and the output layer consists of 30 nodes each of
which corresponds to steering direction.

A very exciting application in a somewhat different direction is by Beer and his
colleagues who believe that neural network architectures abstracted from biological
systems can be directly applied to the control of autonomous agents [23]. Since they
have evolved over a long periods of time, even simple animals are capable of feats of
sensorimotor control that are far superior to the most of the sophisticated robots. In [24],
a fully distributed neural network architecture for controlling the locomotion of a
Hexapod robot is described. It is shown that the controller can be utilized to direct the

robust locomotion of an actual six-legged robot to achieve a wide range of gaits.

1.2.1.2 Neural Networks in Aeronautics

Another area where neural networks are finding application is aeronautics. For an
excellent review of the problems that arise in such systems and manner in which neural
networks may be used, [25] can be consulted.

Driven by cost and operational requirements operating envelopes of aircraft are
being extended toward regimes governed by unsteady fluid mechanics. These, in turn,
are bringing in their wake complex stability and control problems. Under such operating
conditions, to maintain safety and operational readiness, new types of control systems
are needed. Neural network technologies are being explored for fault diagnosis, control
reconfiguration, identification of nonlinear dynamics and adaptive control.

The use of the theory and technology of ANNs for problems of identification,
diagnosis, and control in large complex space systems is proposed by Rauch and
Schaecter [26]. Improvement of performance without interrupting the control loop,
evaluation of the output sensors to determine the existence of spurious structural
vibrations and implementation of health monitoring which allows the system to
recognize immediate faults as well as long term degradation are some of the problems
considered in this article.

Another interesting feature of aeronautical systems described in [25] is the
possibility of using thousands of sensors and actuators based on microelectronic

mechanical systems. Faller and Schreck [25] and Rauch and Schaecter [26] believe that
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one of the major advantages of neural networks is the tremendous computational speed

achieved by massively parallel hardware.

1.3. Neuro — Sliding Mode Control

Sliding mode control is a well established control scheme for the control of
nonlinear systems due its robustness to parameter uncertainties and external
disturbances [27]-[29]. However, because it is necessary to know the system dynamics
for the calculation of the control input, it is hard to apply to systems that has very
complex dynamics or the ones whose dynamics are not very well known. For these
systems a control scheme that does not need full information of system dynamics is
needed. In the literature there exist some approximate solutions [30] but their stability is
not proven yet. The controller should also adapt itself to large parameter variations and
unexpected external disturbances. Merging a well established control structure like
sliding mode control with intelligent algorithms appeared to be a good idea and many
researchers published various control structures based on this. A comprehensive
historical investigation and a literature survey can be found in [31]. To mention some,
in [32], Jezernic, Rodic, Safaric and Curk applied the idea on a 3.D.0.F PUMA type
DD - robot system. They used continuous sliding mode theory to establish a robust
control scheme. To avoid the chattering effect, they estimated the equivalent control and
used this estimation in the sliding mode control algorithm. The estimation of the
equivalent control was done using an online neural network estimator. In [33], Rodie,
Jezernic, Sabanovic and Safarie used a sliding-mode based learning algorithm for robust
accurate tracking of a single axis DD robotic manipulator driven with an induction
motor. In another work, [34], Fang, Y., Chow; T.W.S. and Li, X.D. proposed a control
system on the basis of a discrete Lyapunov function. Part of the equivalent control is
estimated by a recurrent neural network (RNN) and a real-time iterative learning
algorithm is developed and used to train the RNN. They also proved the stability of the
system by showing that the learning error converges to zero.

In this thesis, the controller proposed is designed based on the minimization of a
cost function that is obtained by satisfying Lyapunov stability criteria. This cost

function is the same cost function used in [33] but different from their approach, the aim
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is not calculating the equivalent control but computing the whole control signal using
the minimization process. Also, the neural network used is a one layer neural network
which holds the linearity of parameters. The major contribution in this work is that, the
stability of the system is proven by investigating the shape of the cost function and
showing that there is no danger of sticking to local minima.

In chapter 2, the proposed control scheme is presented for single input single
output (SISO) systems. The stability is proven and the performance of the controller is
verified by simulations and experiments. In chapter 3, the theory is generalized to
enclose a class of multiple input multiple output systems (MIMO). Again the stability is
proven and simulation and experimental results showing the controller performance is

presented. In the last chapter, chapter 4, the conclusion of the overall work is given.

15



2. NEURO-SLIDING MODE CONTROLLER DESIGN FOR SISO SYSTEMS

2.1. Problem Definition

Consider an n” order, SISO, nonlinear system

i=f(x)+Bxu+d 2.1)

where x = [y,..., y"! " cM" is the state vector, y € R is the output of the system,
ueR is the control input, f(x)eR" is an unknown, continuous and bounded
nonlinear function, B(x) € R" is a known input vector whose elements are continuous
and bounded and d €R" is an unknown, bounded external disturbance. Also,
y(”) =d"y/dt". Tt is assumed that the system is controllable. The goal is to find a

control input such that, the system output y, will follow a desired trajectory y,, while
: : ) . .
desired state vector is defined as x, = [yd,..., yd( 1)] . The tracking error vector is

defined as e, = [e,...,e("’l)]r e R", where e=y, —y. Sliding mode control is used as
the control scheme.

The claim here is to design a neurocontroller for the system with partially known
dynamics. Although the nonlinear function f(x) is assumed to be unknown, the order
of the system is assumed to be known and this is itself information about system
dynamics. Because of this reason, the word uncertain is used instead of unknown to

define the level of information about system dynamics.
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2.2. Controller Design

To design a sliding mode controller for the defined problem, firstly, a sliding
manifold must be chosen. Secondly, to ensure the existence of the sliding mode, a
Lyapunov function must be determined in terms of the sliding function and the
necessary control input must be computed that will fulfill the requirements of the
Lyapunov stability criteria. In the following sections, these design steps is described in

detail and the reason for the necessity of a neural network controller is given.

2.2.1. Selection of the Sliding Manifold

If the output of the system (2.1) y follows the desired trajectory y,, it means that
actually, system states, x, are following the desired states, x,. This is equivalent to
e, =x, —x =0. Generally, the sliding mode manifold is selected as o = Ge, =0. The

(1xn) row vector G is selected such that the sliding mode manifold takes the following

form.
n—1
G=(—+Cj e=0 (2.2)
where e =y, — y. Explicitly the manifold can be written as

-1 -1 -1 -1
e [T cem | T T e 44| T e e =0 (2.3)
0 1 2 n—1

For example, if the system is of second order, the sliding manifold becomes

e+Ce=0 (2.4)
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which is a straight line in e vs é plane. The selection of the positive constant C,
determines the speed of the system. Once the desired speed is decided, the sliding

manifold can be designed by selecting an appropriate C value.

2.2.2 Lyapunov Function Selection and Finding the Necessary Control Input

According to the Lyapunov stability criteria, if a function V(o) is positive

definite and the time derivative of it is negative definite and the function vanishes only
when o =0, then o has to go to zero. To achieve these requirements, the following

Lyapunov function is selected.
(2.5)

The function selected is positive definite and it vanishes only when o =0. The only
requirement left is its time derivative be negative definite. Choosing its time derivative

as
V =-Do* (2.6)

where, D is positive constant, restricts the derivative to be negative definite.

Substituting (2.5) into (2.6), the following equation is obtained.
6o =—-Do* (2.7)
where D is a positive constant. Going one step further,
o(6+Doc)=0. (2.8)
Hence, for the Lyapunov stability criteria to be held,
6+Do=0 (2.9)
must be satisfied for o #0. By substituting (2.2) into (2.9) and using (2.1), the

necessary control input can be found as
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u=(GB) " (Gx, — Gf (x)+ Gd + Do ). (2.10)

This control input does not result in a VSS structure because the system reaches the
manifold asymptotically instead of hitting the manifold in finite time. This is called
pseudo sliding mode control.

It is clearly seen that, to compute the necessary control input, full information
about system dynamics and disturbance is needed. In most real — life engineering
problems, this information can not be found or can be obtained partially. Some
approximations can be done (e.g. see [33]), but the resulting control input may not give
the desired performance.

A solution to this problem can be using a neural network structure that minimizes
the function 6 + Do and eventually makes it zero, without need for the information
about the system dynamics or the disturbance but using only the information about the

error, the order of the system and the vector B.

2.2.2.1 Structure of the Controller

The proposed structure of the neurocontroller is shown in Fig. 2.1. There is an
input layer which has linear activation (i.e. whatever comes in directly goes out without
any manipulation), an output node that also has a linear activation function. w;,’s are
adaptable weights that are updated during the operation. Overall, this structure is called
an ADALINE —adaptive linear element-, the simplest type of neural network structures.
The output of the controller is the weighted sum of the components of the error vector

e, , which can be written as

u:Zwie(H). (2.11)
i=1

As stated above, the goal is to push the function 6 + Do to zero. To achieve this

goal the error function

E:%@+DGY (2.12)
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Output

Figure 2.1. Structure of the neurocontroller

is introduced to the network and weights are updated accordingly. The weight update

algorithm is described in the next section.

2.2.2.2 Weight Update Algorithm

Weights are updated using simple gradient descent approach —in continuous form-

or backpropagation:
W, =—1— (2.13)

where, 7 is the learning constant, generally chosen between 0 and 1. To compute the
weight updates, the derivative of the error function £ w.r.t. w; should be found. Using
the chain rule, the derivative can be written as

OE _OF ou

a—m—aam . (2.14)

Substituting (2.12) into (2.14) and taking the derivatives, the following equation is

obtained:

OE . (o)
P (O'+D0')%e(' ) (2.15)

1
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Substituting o = Ge, into (2.15),

OFE

olGx, -Gx) |
—=(c+ Da)we(”” (2.16)
ow, ou
hence,
8_E = —(d + DO')GB(x)e(H) (2.17)
ow,
is obtained. As a result, the weight update algorithm can be stated as
W, = (6 + Do )pGB(x)e" ™. (2.18)

In this form the update mechanism is continuous. For the computer implementation, the

discrete version is used:
w,[(k + 1)h] = w,[(kh) ]+ (6[(kh) |+ Do[(ki)phGB(x)e "™ [(kh)] (2.19)

where 4 refers to the sampling interval. For a system with constant B, the term 1nhAGB

is a constant scalar, which can be denoted by 77 to make the expression (2.19) neater:

w,[(kh + h)| = w, [(kh) |+ 7 (6 + Do )e" [ (kh)] (2.20)

2.2.2.3 Disturbance Rejection

The goal of the neurocontroller is to push (2.12) to zero. To see how this is
achieved by the control action, error function is rewritten by substituting the sliding

function o = Ge, and using (2.1):

E :%[G(xd — f(x)— Bu—d)+ DGe,| (2.21)

Substituting (2.11) into (2.21),
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E= %{G(xd — f(x)- BZn: we'™ — d] + DGet} (2.22)

From (2.22), it is clear that as e approaches zero, the weights w; has to increase

infinitely to compensate for the disturbance and the other terms in the equation. This
decreases the controller performance and results in a sluggish system response. To
avoid this, another term is added to the controller structure that is independent of the

error e. The structure of the resulting controller is shown in Fig. 2.2.

Output

Figure 2.2. Structure of the upgraded neurocontroller

The new term, 1w, ,,,

can be seen as a bias for the ADALINE. After adding this

term, the error function takes the following form.

2
E = %|:G£xd - f(x) - BZ Wie(iil) - BlwnH - d] + DGet:| (223)
i=1

(2.23) shows that the term, lw,,, is not multiplied by the error e, and hence can

compensate the disturbance term without increasing indefinitely. The weight update of

this new term is given as

w, [k + D] = w,., [(kh)]+ 7 ([(ki) ]+ Do[(kh))) (2.24)
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2.2.2.4 Stability Proof

It is a known fact that one of the biggest problems in backpropagation weight
update algorithm is sticking to local minima. In this section, it is shown that, using the
proposed control algorithm, the error function is pushed to zero without sticking to any

local minima, thus forcing the components of the error vector e, to the sliding

manifold. Then, the stability proof in terms of Lyapunov is presented.

2.2.2.4.1 The Shape of the Error Surface

If a function’s second derivative does not change sign with respect to a variable,
then the function does not have a change in the curvature sign through that variable,
which means that the function does not have a local minimum through that variable.
Examining the second derivative of the error function (2.12) w.r.t. its variables
(weights), the following equation holds.

d’E .
~=(GBe'"™)? (2.25)

dw;,

1

This result, (2.25), shows that the sign of the curvature of the error surface (2.9) is
always positive; hence, there are no local minima. This indicates that, with a proper
selection of the learning constant, the proposed network is capable of minimizing the
function (2.9) up to its global minimum, which is nothing but zero. Thus, the tracking

error vector has to converge to zero. Also, since 7 is a constant, G is a constant vector
and B(x) is bounded, weight update algorithm (2.18) shows that weights converge to a

finite value at steady state. A finite value for the weights at steady state results in a
bounded control input (2.11). As a result, all the signals in the control system are

bounded.
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2.2.2.4.2 Proof Based on Lyapunov

Let the Lyapunov function candidate be
l,. 2
V= E(a +Dao). (2.26)

This is exactly the same function that is used for the error function (2.12). It is easily
seen that V' >0 for 6+ Do # 0. Taking the time derivative of V', one obtains the

following equation.

= OV dw,

=_—— 2.27
ow, dt 227)

Substituting (2.13) into (2.27) and using the identity E =V, gives the following

expression.

y - _,7[%] (2.28)

In the expression (2.28), 7 is a positive scalar, thus ¥ < 0. However, since it is proven
that the error surface — hence, the Lyapunov function — does not have any local minima,

the expression 0V /0w, becomes zero only at the global minimum, which is zero. So,

V <0 for 6+Do #0. This proves that Lyapunov function converges to zero and the

requirement (2.9) is satisfied, resulting a stable system.

2.3. Simulation Results

Simulations are carried on the model of a single axis, toothed belt, linear servo
system, which is now in use at Sabanci University, Mechatronics Laboratory. This

system is driven by an electrical motor. The belt can carry different loads by the help of
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a carriage. Thus, the load carried by the belt, the friction forces between the carriage and
the rail, and the friction on the motor bearings affect the motor as disturbances. The aim
is to control the motor under different loading conditions, without the information about
the load. The controller should be able to suppress the oscillations caused by the elastic
belt, the system response should be fast enough and the steady state error should be
Zero.

The physical and mathematical model of the system together with open loop
response is given in section 2.3.1, and the simulation results are presented in section

2.3.2. Also, the experimental results on the same system are presented in section 2.4.

2.3.1 The Model of the System

The system consists of the electrical servomotor connected to the toothed-belt

driven mass m, referred as the load. The physical model of the system is presented in

Fig. 2.4.

« I i L .
< L] »
‘ Fg m F]
1]

A
v

Figure 2.4. The physical model of the timing-belt driven system

The structure depicts the forces in each part of the timing belt along with the
inertia of the motor and the pulleys.
The structure has the active torque developed by the motor, the inertia of which is

given by J, , six forces developed by the different part of the timing-belt and lumped

motor and load disturbances. In each part of the timing belt the belt elasticity and belt
friction force are developed. The belt elasticity forces are dependent on the stretch of

the belt and the belt friction forces are dependent on the derivative of the belt stretch. In
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general the behavior of the system could be described as a sixth order dynamical system
where the motion of the pulley 2, the inertia of which is given by J,, is defined by the
forces F3 and F».

The following equations (2.29) — (2.31) describe the mathematical model of the

system.

2
J ddtfl =T-T,—r(F, - F,) (2.29)
d*o,
J, e =r(F, - F;) (2.30)
d*y
m e =—F, +(F,+F,) (2.31)

The meanings of the variables and parameters are given in Table 2.1.

Table 2.1. Variables used in the model of the linear drive

6, The angular position on the pulley driven by the servomotor
0, The angular position on the undriven pulley
X The longitudinal position of the load
v The longitudinal velocity of the load
T The torque developed by the servomotor
T, The friction torque at the servomotor side
F,F,, F; The forces in the different part of the belt
F, The friction force at the load side
J Equivalent moment of inertia on the motor side
m Mass of the load

The following assumptions could be made for the purpose of analyzing the
system, presented in Fig. 2.4:

Inertia of pulleys 1 and 2 are small in comparison with the motor and the load
inertia. Because of this, dynamics of the system could be simplified so that the resulting
system is described by the dynamics of motor and the dynamics of the load mass subject
to the action of the timing belt resulting force — representing the influence of all three

parts of the timing belt. The simplified structure is represented in Fig. 2.5.
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Figure 2.5. The simplified structure of the system

The following assumptions could be made for the purpose of analyzing the system
presented in Fig. 2.5:

e Servomotor is assumed to be operating in the current control mode with high
dynamics torque response on the motor axis with negligible time constant;

e Connection of the motor to driving pulley is assumed to be rigid;

e The inertia of the pulleys on both sides of the load (motor side and the belt-
driven side) is negligible in comparison with inertia of the other components of
the system;

e The elasticity of the toothed belt is treated as a nonlinear spring

Simplified description of the motor-belt-mass system can be modeled as a two-

mass system with -nonlinear spring connection. Under these assumptions the motion of
the system in Fig. 2.4 can be described by the following set of differential equations
(2.32-2.36):

— =0 (2.32)

Fy+F)) (2.33)

dy

Aoy 2.34

& (2.34)
dv_Fy+Fp Fy (235)
dt m m
Fgey = Fg + Fp (2.36)

The variables used in the simplified model (2.32-2.36) is given in Table 2.2.
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Table 2.2 Variables used in the simplified model of linear drive

0 The angular position on the servomotor’s shaft

10, The angular velocity of the servomotor’s shaft

Fy The belt elasticity force proportional to the belt stretch

F, The‘ darpping force developed by the belt proportional to the
derivative of stretch

F, The friction force at the load side

¥ Radius of pulleys

For the simpler treatment of the system as a whole in further analysis the
equations (2.32) and (2.33) will be rewritten so to represent the motion of the belt on the

pulley attached to the motor using transformation x, =@ one can write

dx, y
a0 (2.37)
dvm — Fmot _FB(xmﬁx)-i_FD(vm’v)_FLmot (238)
dt mmot mmot mmot
where meaning of the new variables is as follows:
1 1 1 1Y’
Fmot :_KTi:_TJ FLm()[ :_TL7 mmot :(_j J (239)
r r r r

The behavior of the motor with a pulse servomotor reference current is shown in
Fig. 2.6. In these pictures the transients are given for FESTO linear drive DGEL25-
1500-ZR-KF equipped with servomotor MTR-AC-70-3S-AA. These results are
obtained through experiments.

The disturbance current shown in Fig. 2.6 is the total disturbance — belt force and
frictions — that affect the motor.

In the next section, the design of the neurocontroller for the position control of the

motor used in the servo system is presented.
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Figure 2.6. Open loop response of the system

2.3.2 Neurocontroller Design

As stated in the previous sections, the aim of the controller to be designed is to
make the position control of the motor used in the linear servo system. In the system,
the load on the belt and the friction on the slider, thus the belt force, is assumed to be
unknown. Also, the friction at the motor bearings is not known. The only thing that is
known about the system is that, when the belt force and the friction are taken as
disturbance to the motor, the system is a second order system and the torque constant
about the motor is known. Actually, because the learning rate is found generally by
experience, the torque constant is not needed to be known precisely. It is shown by
simulation results that the system is insensitive to parameter changes caused by say,
adding extra load on the belt. In the end, the resulting controller is robust and stable.

Rewriting (2.37) and (2.38) by taking belt force and the friction acting on the

motor as disturbance D(?), the following equations are obtained.
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dx,,

i Vi (2.40)
v, _F,, D@ (2.41)
dt m m

mot mot

Substituting (2.39) into (2.41)

dv Kr Dt
Vm _ R DO (2.42)

mot

and representing the whole system in state space, gives the following equation.

] To 17x, 0o 1.[ 07, s
o 1=lo olv \Tlkria[Tlm PO @43)

After having the state space representation, the next step is to decide a sliding manifold
and obtain the weight update algorithm. Using (2.3), for second order systems, the

sliding manifold is selected as
o=¢é+Ce (2.44)

where e=(e, ), —e, and C is a positive constant. The neural network’s job is to

m

minimize the error function E = (1/2)(6 + Do)*. For the second order system, the

network structure is shown in Figure 2.7.

Output

Figure 2.7. Controller structure for second order system
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The control input, u, then becomes

u=we+w,e+w, (2.45)

Following the procedure presented at (2.13)-(2.19), the weight updates are found as

w, (kh + h) = w, (kh) + h [f]f” (6(kh) + Do (kh) )e(kh) (2.46)
w, (kh + h) = w, (kh) + 7h [f]f” (6(kh) + Do (kh))e(kh) (2.47)
wy (kh + h) = wy (kh) + 17 [f]”’ (6(kh) + Do (kh)) (2.48)

Applying these weight updates, the controller becomes stable and robust to external
disturbances and parameter variations. In the following section this is verified by the

simulation results.

2.3.3 Simulation Results

In the simulations, the controller parameters are set as in the following.

C =40, D =90, 1 =0.00005 (2.49)

Figures (2.8) - (2.13) show the response of the system to a position reference input
which is in the form of a smooth s-shaped curve realized as a linear segment preceded
and followed by parabolic segments. This corresponds to a trapezoidal velocity
reference curve. In Fig. 2.8, the reference position and the actual motor response is
presented. As it is seen from the graph, the motor tracks its reference quite well, that it
is hard to distinguish the two lines. The error in this tracking is shown in Fig. 2.9. The
transient error is exceptionally small and steady state error is zero. In Fig. 2.10 the
control input is presented. As seen from the figure, control input is smooth and has
acceptable bounds. Figures 2.11 - 2.13 show the time evolution of the network weights.

The initial values are taken as zero for all the three parameters. After updating
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themselves, they converge to a finite value, which indicates that the weight update

algorithm is stable.
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When the torque applied to the motor is converted to force, it is found that the
force created by the motor changes between -5 and 55 Newtons during this operation.
To verify that this neurocontroller is robust to external disturbances, an external
disturbance of 30 Newtons step input is applied to the motor at time t = 0.5 seconds.
Fig. 2.14 shows the force created by the motor before applying this step disturbance and
Fig. 2.15 shows the total force created by the motor and the step disturbance. Figures
reveal that although a step disturbance that is approximately equal to half the force
created by the motor is applied, the motor force is adjusted such that, after a very small
transient, the net force converges to its previous value. This means that the position of
the motor is not affected dramatically due to this huge disturbance and continues to
follow its reference. This is shown by figures 2.16 and 2.17. Fig. 2.16 shows the
position tracking of the motor. When compared with the position tracking curve Fig.
2.8, no difference can be recognized. To see the difference more clearly, Fig. 2.17
showing the position error after step disturbance is applied and Fig. 2.9, the position
error before step disturbance is applied, should be compared. As it is seen, after a small
deviation from the original one, the error converges to its original value in a short time.
Overall, it can be said that the controller adapted its output in such a way that the
system is not affected dramatically after a large step disturbance. This shows that

controller is robust enough.

[N]

i 0.5 1 15 2 2.5 3 ) 0.5 1 1.5 2 2.5 3

[sec] [sec]
Figure 2.14. Force Created by the Figure 2.15. Net Force Acting on the Motor
Motor, Before Step Disturbance is Applied Shaft After Disturbance is Applied
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Because the reference is smooth, the error and the derivative of the error start
from zero and move in the vicinity of zero, hence, the reaching phase to the sliding
manifold is hard to distinguish. Thus, giving a step position reference solves this
problem and makes the states catching the manifold visible. Fig. 2.18 shows the
position tracking for a step input and Fig. 2.19 shows the phase plane, when this step
reference is applied to the system. In this case, the controller parameters are set as,
C=10, D=50, and n=0.0001. It is seen that a quick reaching phase without
significant overshoot over the sliding line is achieved. When the line is reached, the
sliding behavior is observed and the position error decays to zero with the error
dynamics dictated by the parameter C of the controller (sliding line slope is
—10 =-C). The simulation outputs are in harmony with the theoretical results. In the

following section, the experimental results on the same linear drive system are

presented.
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Figure 2.18. Position Tracking Figure 2.19. Phase Plane
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2.4. Experimental Results on the Linear Drive

In this section, the experimental verification of the theory presented in the
previous sections is presented using the same plant the model of which was introduced
in section 2.3.1, that is the linear drive. The controller performance is tested by several
reference inputs such as sigmoid, step, repeated pulse and sine. For the experiments the

controller parameters used are D =200, C =10, =0.00001.

Fig. 2.20 — 2.26 show the response of the system to a smooth sigmoid position
reference. From Fig. 2.20, which shows the position tracking of the motor, it is very
hard to distinguish the reference and actual motor positions. Fig. 2.21 shows the error in
this tracking. As it is seen, the transient error makes a jump in the very beginning of the
motion and then decreases dramatically during the tracking. In the end, steady state
error reaches its theoretical limit, which is set by the position measurement device. In
Fig. 2.22, the velocity tracking of the motor is presented. This figure also shows that
after a deviation from the reference, the velocity catches its reference and tracks it. The
initial deviation can be explained by the weights of the network starting from zero.
After they reach certain values in a short time, the system behaves as desired. In Fig.
2.23, the control signal produced is shown. It is seen that the control signal is
sufficiently smooth. Fig. 2.24 — 2.26 indicate that after having a transient period, the

weights are converging to a finite value, hence the update algorithm is stable.
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Figure 2.20. Position tracking Figure 2.21. Position tracking error
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As explained in the simulation section, to see the phase graph more clearly, a step

reference input should be given to the system. Fig. 2.27- 2.28 show the position tracking
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and phase plane for such an input. It is seen that a relatively quick reaching phase over

the sliding line is achieved. When the line is reached, the sliding behavior is observed

and the position error decays to zero with the error dynamics dictated by the parameter

C of the controller (sliding line slope is =10 =-C).

0.025
0.02
£0.015
0.01

0.005

-0.005

2 3
[sec]
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To see the tracking capabilities of the system, a repeated pulse position reference

is given to the system and the response of the system is presented in Fig. 2.29 — 2.34.

When the figures are examined, it is seen that the system tracks its reference

successfully and the control input is smooth. However, Fig. 2.32 and 2.33 show that the

weights w; and w, grow while the system is following its trajectory. This may create

dangerous outcomes on the system such as deterioration of the stability due to control

input built up over time.
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The weights w;, and w, are increasing for each pulse because the terms
(o"+D0')e and (o"+D0')é in (2.46) and (2.47) always make them bigger than what
they were initially after a pulse period of updating, no matter the direction of reference
is. However, when w; is examined, it is seen that it does not have such a problem. It
behaves just the opposite for the pulse coming after the pulse it just has been exposed
to. In the end it has an average of zero during the whole action. It shows us that if the
sign of the weight update is determined by the term (o"+D0') , as in the w, case,
weights does not built up but instead adjust themselves according to the direction of the
reference — increasing or decreasing reference- so that in the end that have an average
value during the tracking of a cyclic trajectory. It is logical then, to make the sign of the
weight update for w; and w, same as the sign of the term (('7+ Da). To achieve this,

the weight updates are changed as shown in the following.
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K,r

w (k+1)=w (k) +7 N (6(k) + Do(k))e(h)| (2.50)
w,(k+1)=w, (k) +7 If]’r (6(k)+ Do(k))ech)| (2.51)

Using the absolute values of the e and é, the sign of the weight updates are determined
by the term (o" + DO'). The results of the experiment made using these upgraded weight

updates are given in Fig. 2.35 — 2.40. It is seen that the upgraded update algorithm

performs as well as the previous one without causing a weight built up.
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2.5. Experimental Results on a Piezoelectric Actuator

Micromanipulator applications require controllers that can provide accurate
position tracking performance in addition to robustness. These objectives are
significantly compromised by the presence of backlash and Coulomb friction in the
control plant, the effects of which are exaggerated in small scales. Since PZT stack
actuators are monolithic and have no sliding or rolling parts, they exhibit no significant
mechanical stiction or backlash. Additionally, a typical PZT stack actuator can perform
step movements in nanometer resolutions with bandwidths on the order of a kilohertz.
Consequently, PZT actuators are well suited for use as precision micro actuators for
micro positioning devices.

An inherent non-linearity in piezo-ceramic actuators is hysteresis. This hysteresis
non-linearity is usually 15-20% of the output thereby greatly reducing the performance
of the actuators. Additionally, many attempts of modeling this behavior have been
fruitless due to its peculiarities. In [35] and [36] attempts were made to model the
voltage-to-displacement behavior of PZT actuators using Bond-Graph and Priesach
models. These models proved effective, however, these models failed to explain the
physical behavior of the actuators. In [37] and [38], models were made based on the
physics of the actuators and these models proved to be effective in modeling the
behavior of these actuators under different excitations. Additionally, they claim that the
hysteresis behavior exists in the electrical domain of the actuator and is between voltage

and charge. In Fig. 2.41, the actuators used in the experiments are shown.
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Fig. 2.41. Stack actuators used in the experiments

2.5.1. Structure of the piezoelectric actuator

Dielectric materials are insulators, thus, there is an electrical relation between
electrical voltage and electrical charge. Piezoelectric materials are a special type of
dielectric in the sense that, in piezoelectric materials, an externally applied force induces
an electrical charge. Conversely, an applied electrical charge induces a force. The
former effect is known as the piezoelectric effect and was discovered in 1880 by the
Curies. The latter effect is the inverse piezoelectric effect. The word “piezo” derives
from the Greek word “piezen,” which means “to push.” The effect was discovered when
a pushing force or, in other words pressure, was applied to the material. In the
beginning, both pressure electricity and piezoelectricity were used to describe the same
phenomenon. Besides the piezoelectric and inverse piezoelectric effect, we have the
already mentioned electrical relation between voltage and charge, and a mechanical
relation between force and elongation.

In naturally occurring piezoelectric materials, such as quartz, the (inverse)
piezoelectric effect is too small to be of practical use. Man-made piezoelectric
polycrystalline ceramics are much more suitable for actuator purposes because the
useful properties, such as maximum elongation, can be influenced by the proper mixture
of ingredients. A disadvantage of man-made piezoelectric ceramics is that a hysteresis
effect is encountered between electrical voltage and electrical charge. The piezoelectric
effect (or the piezo effect for short) and the hysteresis effect play an important role in

the dynamical behavior of these actuators.
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The fundamental component of a PZT stack actuator is a wafer of piezoelectric
material sandwiched between two electrodes. Prior to fabrication, the wafer is polarized
uniaxially along its thickness, and thus exhibits significant piezoelectric effect in this
direction only. A typical PZT stack actuator is formed by assembling several of the
wafer elements in series mechanically and connecting the electrodes so that the wafers
are parallel electrically, as illustrated in Fig. 2.42. The nominal quasi-static behavior of

a PZT stack actuator is a steady-state output displacement that is monotonically related

to the voltage input.

Electrode

[

PZT ceramic ﬁ_\)

|
B
|

Figure 2.42. Illustration of a PZT stack actuator

2.5.2. Model of the piezoelectric actuator

In this section, a few models that exist for PZT actuators is presented.

2.5.2.1 Earlier Formulations

The most widely recognized description of piezoelectric ceramic behavior
published by a standards committee of the IEEE Ultrasonics, Ferroelectrics and
Frequency Control Society originally in 1966 and most recently revised in 1987 [38].
This committee formulated linearized constitutive relations describing piezoelectric

continua which form the basis of piezoelectric behavior that is presently in general use.
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The linearized constitutive relations are typically represented in a compressed matrix

notation as shown in the following equations,

S, =S5qTq +d, E, (2.52)

D, =d,T, +¢&,E, (2.53)

where S represents the strain tensor, s is the elastic compliance matrix when subjected
to constant electric field, 7 represents the stress tensor, d is a matrix of piezoelectric
material constants, E is the electric field vector, D is the electric displacement vector,
and ¢’ the permittivity measured at a constant stress. Aside from the awkward notation
and the obvious difficulty in implementing these in real-time applications these relations

fail to explicitly describe the nonlinearities that are present in all piezoelectric ceramics.

2.5.2.2 A More Accurate Model

A fairly accurate overall electromechanical model of a PZT actuator is given in
[38]. It is reproduced in figure 2.43. H represents the hysteresis effect and uy, is the
voltage due to this effect. The piezoelectric effect is represented by 7,,, which is an
electromechanical transducer with transformer ratio 7,,. The capacitance C represents
the sum of the capacitances of the individual PZT wafers. The total current flowing

through the circuit isg. The charge ¢, is the transduced charge from the mechanical

side. The voltage u, is due to the piezo effect. The total voltage over the PZT actuator is
Uin, F, 1s the transduced force from the electrical side, F.y is the externally applied
force, and the resulting elongation of the PZT actuator is denoted by X. The mechanical
relation between F), and x is denoted by M.

The piezoelectric ceramic has elasticity modulus E, viscosity #, and mass density
p. Furthermore, the geometrical properties of the PZT actuator are length L and cross-
sectional area 4. Mass m,, stiffness k,, and damping coefficient ¢, can be calculated

from the material and geometrical properties as follows:
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Uin A

Figure 2.43. Electromechanical model of the PZT actuator

m, = pAL (2.54)

k, =E—LA (2.55)
A

c, :’77 (2.56)

The complete electromechanical equations are defined by (2.57) thru (2.62). The
model can also be described by the block diagram given in Fig. 2.44.

H(q)

! C Te]n (
O ‘ 1
> > T
Uip up

> >
o m,s* +c,s+k, X
Fext
Fig. 2.44. Block-Diagram representation of the electromechanical model
Up =Uip —Up (2.57)
u, =H(q) (2.58)
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q=Cu,+q, (2.59)

q, =T.,X (2.60)
Fp :Temup (261)

mpx+cpx+kpx:Fp -F

ext

(2.62)

2.5.2.3 Hysteresis Model

By definition, a hysteretic effect is dynamic, rate-independent and nonlinear. In
[38], this effect is modeled by a combination of elements that were called elasto-slide
elements. The accuracy of the model was improved by using larger numbers of those
elements, and hence the number of parameters involved was large.

A hysteresis loop is defined as the stationary loop in the input-output plane for a
quasi-static monotone oscillating input such as a low-frequency sinusoid. The equation
under consideration is a first-order differential equation that is proposed in [37]. The

model between the hysteresis effect between u, and g is given by
g = ali,|(f (u,)~q)+i,g(u,) (2.63)

where f(u,)and g(u, ) are functions which are used to “shape” the hysteresis loop.

< 24 >
qur
£ _
tan~' (b)
0 [ \an'@
uh,c

Figure 2.45. A hysteresis loop
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In theory, PZT actuators show lengthening saturation. In practice, however,
saturation is avoided, i.e., hysteresis loops that are similar in shape to the one in Fig.

2.45 are dealt with. Therefore, the functions f(u,)and g(u, ) may be chosen as

fu,) = au, (2.64)

g(u,)=b (2.65)

where a and b are constants.
Using the previously mentioned results, the equations for the center point and the

average slope of a hysteresis loop are given by

qc = auh,c (266)

qur _qll :bZA (267)

where ¢ andg, are the upper right- and lower left-hand-side points of a hysteresis

loop, respectively, and A is the input amplitude.

In (2.63), (2.64) and (2.65) there are three independent parameters, namely a, a
and b. This means that there should be three independent characteristic quantities in a
hysteresis loop. Besides the center point and the average slope, in [37], a relation has
been derived for the hysteresis area for relatively small amplitudes of the sinusoidal

input (Figure 2.45), as shown in the following.

gz%@—bbﬁ3 (2.68)

Having experimentally determined @ and b from center points and average slopes,
the parameter o can then be experimentally determined from hysteresis areas.

As it seen clearly from the above discussion, forming a mathematical model of a
PZT actuator is a very complicated task. Furthermore, the resulting formulas may not
perform well for different experimental setups due to the nature of the formulas. Thus,
the neurocontroller proposed in this thesis is a very good candidate for the control of
this plant. In the following sections, the controller used is described briefly and the

experimental results are presented.
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2.5.3. The Controller Structure

In (2.62) the term m, representing the mass of the plant is approximately one
million times smaller than the damping and elasticity terms for low frequencies. Thus,
the system can be treated as a first order system, to simply the structure of the

controller. The proposed controller is shown in Fig. 2.46.

e_»@ (2 — Output

Figure 2.46. The proposed controller for the PZT Actuator

The weight updates are shown in the following equations.

wy (k +1) = w, (k) +77(6(k) + Do (k) fle(k)| (2.69)

. (2.70)
wy (k +1) = wy (k) + 77(6(k) + Do(k))

The controller parameters are selected as D =7000, 7 =800. The system

response is presented in Fig. 2.47 — 2.51. Fig. 2.47 shows that the tracking is excellent.
The error in this tracking is presented at Fig. 2.48. As it is seen, the error bound is
around 0.15 nanometers, which indicates the high performance of the controller. Fig.
2.50 shows the time evolution of w; and as it seen there is no built up problem.

To show that the controller can also handle very small step references, a 0,5
nanometer step reference is given to the system and the response of the system is
presented in Fig. 2.52. From the figure it can be concluded that the controller performs

well even for such a small step reference input.
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2.6. Discussion

In this chapter a control algorithm by merging sliding mode control and neural
network technology is presented for SISO systems with partially known dynamics. The
reasons of the necessity for such a controller are given and the formulation of the
controller is shown. The simulation and experimental results are given for different
plants to verify the performance of the controller.

The first plant used to test the controller is a linear, single axis, servo drive, driven
by an electric motor. It is shown that although the friction and the load on the system is
not known, the proposed controller is able to make the system to follow a desired
trajectory with a control effort that is bounded by acceptable values.

The second plant is a PZT actuator, modeling of which is still a hot research topic.
Again it is shown by experiments that the controller proposed can control this system
with 0.15 nanometers error bound, without the information of the model. Also, it is
shown that the system can be pushed to follow a 0.5 nanometer step input.

As a result, it is shown that the proposed controller can be used for systems with
partially unknown dynamics and for systems that are exposed to uncertain external
disturbances. In the next chapter, the generalization of this control algorithm for MIMO

systems is presented and results are supported by simulations and experiments.
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3. NEURO-SLIDING MODE CONTROLLER DESIGN FOR MIMO SYSTEMS

3.1. Problem Definition

Consider the class of MIMO systems described by the following differential

equation:
x=f(x)+B(x)u+d (3.1)

- n,-1) |” no: m
where x=[y1,...,y1("‘ l),...,ym,...yfn'” 1)] € R" is the state vector, y=Ly1,..,ym]T eR" is

the output vector, u € R"” is the control vector, f(x)eR" is an unknown, continuous
and bounded nonlinear function, B(x) € ‘R™ is a known input matrix whose elements
are continuous and bounded and d € R" is an unknown, bounded external disturbance.
Also, y" =d"y,/dt" . 1t is assumed that the system is controllable. The goal is to
compute the control action u =[u,,...,u, |, such that the outputs of the system
Vs, track the desired trajectories y, ...y, . To achieve this goal sliding mode
control is used as the control scheme. The tracking error is defined as

(m=1)

— (n,=1)
et—lel,...,e1 yeees € 5eni

Y mo T m

Je R", where,e, =y, —y,.

3.2. Controller Design

To design a sliding mode controller for the defined problem, firstly, a sliding manifold
should be chosen. Secondly, to ensure the sliding mode existence, a Lyapunov function
should be determined in terms of the sliding function and the necessary control input

should be computed that will fulfill the requirements of the Lyapunov stability criteria.
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In the following sections, these design steps is described in detail and the reason for the
necessity of a neural network controller is given.
3.2.1. Selection of the sliding surfaces

The sliding surfaces are defined as:

o =Ge, =0 (3.2)

t

where, o = [O'i,...am]e‘ﬁ’", G € R™ . Matrix G is selected such that each sliding

n—1

d . ..

surface takes the form: o, = (z +C j e, =0, where C is a positive, real constant.
t

3.2.2. Computing the Necessary Control Input

A Lyapunov Function candidate can be selected as:

V=—0'0 (3.3)

where, V' € R . This function can also be stated as: V' =(1/ 2)||J j, where |||| , indicates

Euclidian norm. Equating the time derivative of this function to a negative definite

function, the necessary control input can be computed:
V = —GT Do (34)

where, D is a positive definite, symmetric matrix. Substituting (3.3) into (3.4) and

making the necessary arrangements, the following requirement is found.
o' (6+Dc)=0 (3.5)

Therefore, for o # 0, the control law can be calculated by satisfying the following

equation.
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(6+Do)=0 (3.6)
Finally, using (3.1) and (3.2), the control law is calculated as:
u = -GB(x)"(Gf (x) + Gd(x) - Gk, - Do) (3.7)

where, x,, =lyd1 yeues yi,f"_l),..., Vy peens y;””’*l)J. To realize this control input, exact

information about the plant dynamics and external disturbances are needed. In the
literature some solutions approximating the actual control input (3.7) exist to overcome
this difficulty (see [30]) but here, instead of approximation, the output of a neural
network, which is computed by minimizing the function ¢ + Do , is used as the control
input. The neural network consists of only one layer of weights and uses linear

activation function in the output layer.

3.2.3 The Structure and the Working Principles of the Neural Network

The structure of the NN is presented in Fig. 3.1, where, e, is the i " row of e,.

Figure 3.1 Structure of the NN

The control input can be defined as u = [ul,...,um], where each component is

computed as:
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n

u; = Qe w; +1lw,, i=1...,m (3.8)

i
J=1

The weight update algorithm is shaped by least square minimization, i.e.

introducing the following error function to the network for minimization.

E= %(m Do) (6+ Do) (3.9)

Equivalently, this error function can be stated as £ = (1/ 2)||d + DJ”z. In the following

sections, it is shown that the weights, hence the outputs of the NN, is updated

successfully and (3.9) is forced to go to zero, resulting in a sliding motion.

3.2.3.1 Weight Update Algorithm

Weights are updated by using backpropagation:
Wy =1 —— (3.10)

where, 7 is the learning constant, generally chosen between 0 and 1. To compute the
weight updates, the derivative of the error function £ w.r.t. w; should be found. Using

the chain rule, the derivative can be written as:

OE  OF Ou,
ow, Ou, 8wij

y

3.11)

Substituting (3.9) into (3.11) and taking the necessary derivatives, the following

equation is obtained.

a—E=(<f+D<7)T@et. (3.12)

ow; ou;,

Substituting (3.2) into (3.12), the following equation is obtained.
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aaTE (64 Doy a(Gxguj ch)etj (3.13)
Rewriting (3.1),
U,
= f(x)+[B(x): B, (x)] i |+d (3.14)
u

and substituting (3.14) into (3.13) and taking the derivative gives the following result.

a8

=0+ Do) GB(v)e, (3.15)
:

where B,(x) is the i” column of the matrix B(x). Therefore, the weight update is
given as:

. . A

W, =7(6 + Do) GB,(x)e, (3.16)
For the bias terms, the weight update is given as:

W, =n(6 + Do) GB,(x) (3.17)

For computer applications, the weights are updated in a discrete fashion, as shown in

the following.
w, [(k + k] = w, [(e) ]+ nh(6 (ki) ]+ Do(kh)]) GB,(x,t)e, [(kh)] (3.18)

where £ is the sampling interval. The derivative of the sliding function is calculated as

o(kh) = (O'(kh) —o(kh— h))/ h . The update for the bias term is done in the same way.

3.2.3.2 Stability Proof

It is a known fact that one of the biggest problems in backpropagation weight

update algorithm is sticking to local minima. In this section, it is shown that, using the
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proposed control algorithm, the error function (3.9) is pushed to zero without sticking to

a local minimum.

3.2.3.2.1 The Shape of the Error Surface

If a function’s second derivative does not change sign with respect to a function
variable, then the function at hand does not have a change in the curvature sign through
that variable, which means that the function does not have a local minimum through that

variable. Taking the second derivative of the error function (3.9), w.r.t the weight w,

gives the following result.

—]GB,- (x)e, (3.19)

Using the chain rule,

0’ (8(0" +Do) ou
=1
ou, ,

]GBi(x)etj (3.20)

J

and substituting (3.8), the following equation is obtained.

2 . A
ok —UEMJG&@)& (321)
aul_ J
The term Do does not depend on u. Knowing this and using (3.2), (3.21) can be

simplified as:

ow’ - ou

g

OE [MJG& () (3.22)

i

The term x, does not depend on u . Knowing this and substituting (1) into (3.22), gives

the following equation.
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ow’ ou.

g i

O’E _ n(a(f(x)TGT + uTB(x)TGT + d(x)TGT)]GBi(x)eth (323)

Taking the derivative,

O’E
8W2=mguyif63(@qi=ﬂMB¢mﬁ4_ (3.24)
2

Using the same procedure, second derivative of the error function (3.9) w.r.t the bias

weights are calculated as:

aE =1B,(x)' G'GB,(x) =|GB, () (3.25)

These results (3.24) & (3.25) show that the sign of the curvature of the error
surface (3.9) is always positive, meaning that there are no local minima, thus there is no
danger of sticking to a local minimum. All these discussions indicate that, with a proper
selection of the learning rate, the proposed network is capable of minimizing the
function (3.9) up to its global minimum, which is nothing but zero, which forces the

system to approach to the intersection of the sliding surfaces and eventually converges

to its reference. Also, since 77 is a constant scalar, G is a constant matrix and B,(x) is

bounded, weight update algorithms (3.16) & (3.17) show that weights converge to a
finite value in steady state. A finite value for the weights in steady state results in a
bounded control input (3.8). As a result, all the signals in the control system are

bounded.

3.2.3.2.2 Stability Proof Based on Lyapunov

Let the Lyapunov function candidate be

V:%@+DJYQ+DG) (3.26)
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This is exactly the same function as the error function (3.9) introduced to the NN. It is
seen that V>0 for 6+ Do # 0. Taking the time derivative of V', one obtains the

following equation.

n 8V dW

V= f} (3.27)

iy 08w dt

Since E =V, using (3.10), the following expression is obtained.
o\
V= (3.28)

In this expression, (3.28), 7 is a positive scalar, thus ¥ > 0. However, since it is proven
that the error surface — hence, the Lyapunov function — does not have any local minima,

the expression 0V /ow, becomes zero only at the global minimum, which is zero. So,

V <0 for 6+ Do #0. This proves that Lyapunov function converges to zero and the

requirement (3.6) is satisfied, resulting a stable system.

3.3. Simulation Results

To check the performance of the controller, the problem of parking a
nonholonomic mobile robot to a given desired position and orientation in plane, is

attacked.
3.3.1 Kinematic Model of the System

Fig. 3.2 demonstrates the kinematics of the mobile robot. According to this model,

the kinematic equations can be written as
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Figure 3.2 Kinematic model of the mobile robot

u
x = — cos(P
*=2 (D)
.ou .
y= 5 sin(®) (3.29)
o=

L

where, u is the average of the left and right wheel velocities and v is half of the
difference between the wheel velocities.

After these definitions, the problem is stated as: “What should be the control
inputs # and v such that the robot will go to the origin and park itself horizontally
(®=0) from an arbitrary initial position and orientation?”” To solve this problem, the

error function

E= %(0"+DO')T (6 + Do) (3.30)
where,
x+Cx
o=| y+Cy (3.31)
®+CD

is introduced to the controller and the weights are updated according to the procedure

explained above.
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3.3.2 Simulation Results

Controller parameters used are,

C=10
D =101 (3.32)
5 =0.01

Where [ is the identity matrix. The trajectory that the mobile robot follows and time
evolution of robot coordinates are shown in Fig. 3.3 — 3.6. As it is seen from the graphs,
the initial coordinate of the mobile robot is (10, 10) and the orientation is 7z radians.
Applying the control, the robot goes to the origin of the plane with a final orientation of

zero radians successfully.
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> x
2
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0
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Figure 3.3. Trajectory of the mobile robot Figure 3.4. Time evolution of x
10 4
8 ;
6 —
—_ e 2
E 4 =
0 L/\ 0
-2 - - : -1 : - -
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Figure 3.5 Time Evolution of y Figure 3.6 Time Evolution of ®
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3.4. Experimental Results

To verify the performance of the proposed controller for MIMO systems, the
experimental setup used for SISO case — piezoelectric actuator setup — is modified to
represent a MIMO system. The structure of the setup is presented in Fig. 3.7. In this
setup, two piezo-drives (PD) are attached to each other via a load cell that is used for
force measurement. The aim is to control the position of one actuator while controlling
the force that is created due to the reaction of the load cell. Force control is achieved by
moving the other actuator. Thus, there are two outputs of the system, position of one
actuator and the force created. Also there are two inputs: the voltage input to the
actuator whose position is controlled and the voltage input to the other actuator by the

help of which, the force is controlled.

o xz Signal
Q Conditioner
u £ Signal .
7 Conditioner] AQJustable
E Rigid support
& Signal x| X2
g x, |Conditioner |__) (__| /
S 5 \
S 7 N Piezo-drive 1[] (O_)- [1Piezo-drive 2
= | Rigid support &
e [
. Vi Analog J
Amplifier 1
Analog
Vs Amplifier 2

Figure 3.7 Structure of the experimental setup

For all the experiments, the controller parameters are D =400/,7=1.5, and
sampling time is selected as 0.0001 seconds.
Fig. 3.8 — 3.14 represent the response of the system for a sigmoid reference for

each of the actuators. The references are applied at the same time and PD-1 is able to
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track a sigmoid position reference while simultaneously PD-2 moves in such a way that
the force created also tracks a sigmoid reference. Fig. 3.14 presents the funny looking
trajectory that PD-2 follows to maintain the sigmoid force reference. Also, figures 3.12

and 3.13 shows that both control inputs are bounded and well-behaving.
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Figure 3.14 Position of PD-2

Another experiment is held to check the performance of the controller for a sine
reference for position the force. Fig. 3.15 — 3.21 represent the response of the system for
such a reference. Again, the position and the force references are applied at the same
time and the result is successful: PD-1 is able to track the sine position reference while
simultaneously PD-2 moves in such a way that the force created also tracks the sine
reference. Again, PD-2 has to make a strange looking move, which is presented in Fig.
21, to maintain the desired force in the system. Also in this experiment, figures 3.19 and

3.20 shows that both control inputs are bounded and well-behaving.
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Figure 3.15 Position tracking of PD-1 Figure 3.16 Force tracking of PD-2
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3.5. Discussion

In this chapter, the theory presented for SISO systems in the previous chapter is
generalized for MIMO systems. It is shown that error surface characteristics and
stability proofs hold also for MIMO case. To verify the theory simulation and
experimental results are given.

A nonholonomic mobile robot model is used for the simulations. It is shown that
the proposed algorithm can solve the parking problem, i.e starting from an arbitrary
point and orientation on the x-y plane and parking the mobile robot to the origin with a
predefined orientation.

Two piezo actuators attached together via a load cell that is used to measure the
force is used as the experimental setup. The system has two inputs, two voltages that
feed the piezo actuators, and two outputs, the position of one of the actuators and the
force created in the system due to the reaction of the load cell. Experimental results
show that using the proposed control scheme it is possible to control the force and the
position at the same time.

To conclude, other than satisfying Lyapunov stability criteria, the proposed
control scheme for MIMO systems prove itself after performing well in the simulations

and experiments.
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4. CONCLUSION AND DISCUSSION

In this work, a controller scheme that merges sliding mode control and neural
networks is presented. The controller benefits from the well-established theory of the
sliding mode control and uncertainty dealing potential of the neural networks. The idea
is simple: Find the necessary condition for sliding mode to exist and satisfy it by
minimizing a cost function via backpropagation. One of the most important results of
this controller is that, unlike many similar attempts in the literature to use sliding mode
and neural networks together, its stability could be proven. The biggest reason that the
stability could be proven comes from the structure of the neural network used. The
neural network is a one-layer net with linear activation functions in all the neurons.
Since the activation functions are linear, the outputs, that are the control signals, are
linear combinations of the inputs. This fact leads to a cost function that has no local
minima, thus guaranteeing the convergence to the global minimum.

Although the neural network structure used gives the opportunity to prove the
stability, it brings on the following question: Is this really a Neural Network ? To
answer this question, first one needs a proper and exact definition of neural networks.
Let’s have a look at one of the definitions:

According to the DARPA Neural Network Study (1988, AFCEA International
Press, p. 60):
“.. a neural network is a system composed of many simple processing
elements operating in parallel whose function is determined by network structure,
connection strengths, and the processing performed at computing elements or

’

nodes.’
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According to this explanation, it can be easily claimed that yes, the network used
in this work is really a neural network. Unfortunately, this is not the only definition for
the neural networks. Here is another one:

According to Haykin, S. (1994), Neural Networks: A Comprehensive Foundation,
NY: Macmillan, p. 2:

“A neural network is a massively parallel distributed processor that has a
natural propensity for storing experiential knowledge and making it available for

use. It resembles the brain in two respects:

1.Knowledge is acquired by the network through a learning process.
2.Interneuron connection strengths known as synaptic weights are used to store

’

the knowledge.’

Now, there is a problem. Does the network used in this work store experiential
knowledge and makes it available for use? The answer is most probably no, because this
network is updating its variables from zero whenever one operation finishes and the
other starts. However, this problem can be solved by the idea of on-line learning which
means that the network uses its experiential knowledge about one operation while the
operation is being executed. Hence, using the information at the previous sampling
intervals, it decides what to do for the sampling interval it is in.

As it is seen, both claims are reasonable. The network used can be named as
neural network or without pronouncing the word neural , the whole controller can be
named as adaptive sliding mode control . Anyhow, whatever the name is, as soon as it
works, it counts.

Simulations and experiments show that the controller performs well under
uncertainties. However, while tuning the controller parameters, there is no rigorous
method, it’s still trial and error. A deeper mathematical analysis may give some bounds
on the controller parameters, thus facilitate the tuning process.

As a conclusion, this controller is promising for the control of uncertain systems

and is a good candidate for the industry applications that needs intelligent controllers.
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