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CLASSIFICATION VIA SEQUENTIAL TESTING

Abstract

The problem of generating the sequence of tests required to reach a diagnos-

tic conclusion with minimum average cost, which is also known as test sequencing

problem, is considered. The test sequencing problem is formulated as an optimal

binary AND/OR decision tree construction problem, whose solution is known to be

NP-complete. The problem can be solved optimally using dynamic programming

or AND/OR graph search methods (AO∗, CF, and HS). However, for large systems,

the associated computational effort with dynamic programming or AND/OR graph

search methods is substantial, due to the rapidly increasing number of nodes in

AND/OR search graph. In order to prevent the computational explosion, one-step

or multistep lookahead heuristic algorithms have been developed to solve the test

sequencing problem. Our approach is based on integrating concepts from the one-

step lookahead heuristic algorithms and the strategies used in Huffman coding. The

effectiveness of the algorithms is demonstrated on several test cases. The tradi-

tional test sequencing problem is generalized here to include asymmetrical tests.

Our approach to test sequencing can be adapted to solve a wide variety of binary

identification problems arising in decision table programming, medical diagnosis,

database query processing, quality assurance, and pattern recognition.
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SIRALI TESTLER İLE SINIFLANDIRMA

Özet

Test düzenleme problemi adı da verilen, minimum maliyetle teşhis koymak için

gerekli test sırası oluşturma problemi ele alınmıştır. Test düzenleme problemi,

çözümünün NP-tam olduğu bilinen ikili VE/VE YA karar ağacı şeklinde formüle

edilebilir. Problemin en iyi çözümü dinamik programlama ve ya VE/VE YA grafiği

arama yöntemleriyle (AO∗, CF, ve HS) elde edilebilir. Ancak büyük sistemlerde, di-

namik programlama ve ya VE/VE YA arama yöntemleri, VE/VE YA arama grafiğinde

hızla artan noktalar yüzünden, ağır hesaplamaları beraberinde getirmektedir. Bu

hesaplama patlamasının üstesinden gelmek için, test düzenleme problemini çözecek

bir-adım ya da çok-adım ileri bakma yöntemi algoritmaları geliştirildi. Bizim yaklaşımımız,

bir-adım ileri bakma yöntemi algoritmalarıyla, Huffman kodlamasında kullanılan

stratejileri birleştirmektir. Algoritmaların etkinliği bir çok test durumu için gösterilmiştir.

Geleneksel test düzenleme problemi asimetrik testler de katılarak genelleştirilmiştir.

Test düzenleme problemine yaklaşımımız, karar tablosu problemi, tıbb̂ı tanı, veri-

tabanı sorgu işleme, kalite güvencesi, ve örüntü tanıma problemlerinde karşılaşılan

ikili teşhis problemlerine uyarlanabilir.
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Chapter 1

Introduction

1.1 Motivation

In today’s competitive world, complexity of systems are increasing rapidly as a result

of growing demand on system performance and recent advances in very large-scale

integration technology. However, in such a complex environment, the problem of

maintaining and repairing these systems becomes even more difficult. The purpose

of system maintenance is to keep the system running, and if the system fails, to

diagnose and repair detected failures as quickly as possible.

Specifically, the goal of a diagnostic procedure is to identify the actual system

state. The system is in a certain unknown state, before the diagnostic procedure.

The diagnostic procedure identifies the actual state of the system by gathering

information using available tests. Any measurement, observation, signal can be

considered as an available test.

Our goal in this study is to develop an algorithm that exploits the (a priori)

failure probabilities and test costs to construct efficient diagnostic procedures, to

minimize the expected cost of diagnosis. Optimization of a diagnostic procedure,

which is formally defined as a test sequencing problem in literature, is known to be

an NP-complete problem [9].

The test sequencing problem belongs to the general class of binary identification

problems that arise in a wide area of applications. Other than maintenance opera-

tions [1,8,11,17], such problems arise in botanical and zoological field of work, plant

pathology, medical diagnosis, decision table programming, computerized banking,

pattern recognition, nuclear power plant control [3, 9, 10], discriminant analysis of

test data, reliability analysis of coherent systems, research and development plan-

1



ning (e.g., in allocation of limited funds among high-risk projects), communication

networks, speech/voice recognition (e.g., in classification of pattern vectors), dis-

tributed computing, and in the design of interactive expert systems [2].

Next section of this chapter presents a formal definition of the test sequencing

problem. Chapter 2 briefly explains the proposed solution approaches for the test

sequencing problem and its variants in the literature. Chapter 3 gives the details of

the test sequencing problem and our approach to the problem when test costs are

uniform. In chapter 4 test costs are not uniform, and our new approach is discussed.

Chapter 5 gives the details and results of the computational study. Chapter 6

includes the conclusion and possible extensions of the study.

1.2 Problem Definition

In this study, the test sequencing problem is considered in the following context.

We are given [9, 11]:

1. a set of m+1 system states S = {s0, s1, s2, . . . , sm} associated with the system,

where s0 denotes the fault-free state of the system and si (1 ≤ i ≤ m) denotes

one of the m potential faulty states of the system;

2. the prior conditional probability vector of the system states P = [p(s0), . . . , p(sm)]T ,

where p(s0) is the conditional probability that no fault exists in the system

and p(si) (1 ≤ i ≤ m) denotes the probability that system is in state i1;

3. a set of n available reliable tests T = {t1, t2, . . . , tn} with a cost vector C =

[c1, c2, . . . , cn]T , where cj denotes the cost of applying test tj, measured in

terms of time, pain, manpower requirements, other economic factors, etc.;

4. a diagnostic dictionary matrix D = [dij], where dij is 1 if test tj detects a

failure state si, and 0 otherwise.

The tests described above have binary outcomes, i.e., a test fails (outcome= 1) if

it has detected a failure and passes otherwise (outcome= 0). In case of binary tests,

two sets of system states are defined: one corresponding to the fail test outcome

1The techniques to compute these probabilities are explained in detail in Appendix A
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(set A) and the other to the pass test outcome (set B). It is obvious that every

system state has to be an element of at least one set (i.e., A∪B = S, since the test

always has a result). We distinguish between two types of tests [1], as follows:

• a symmetrical test where A ∩B = ∅;
• an asymmetrical test which is a more general test form including the cases

when A ∩B 6= ∅;
The conventional test sequencing problem formulation assumes that tests are

symmetrical. For a symmetrical test, the outcome is determined by the state of the

system: si ∈ A ⇐⇒ test fails. In other words, the ith element of the test vector dij

is 1, iff test tj detects a failure state si.

In the case of asymmetrical test, there is at least one system state that remains on

the candidate list regardless of the test outcome (A∩B 6= ∅ =⇒ ∃s; s ∈ A∧ s ∈ B).

Diagnostic dictionary matrix for three different tests are shown in Table 1.1,

where t2 is an asymmetrical test. Note that when asymmetrical tests are included,

values in diagnostic dictionary matrix may have any value ∈ [0, 1]. If t1 is applied

as the first test in the test sequence, the set of ambiguity will be divided into two

distinct subsets, A = {s1, s2} and B = {s3, s4}. On the other hand, if t2 is applied

as the first test, the set of ambiguity will be divided into two subsets, A = {s1, s3}
and B = {s2, s3, s4}. In other words, when t2 is applied, s3 remains on the candidate

list regardless of the outcome, therefore t2 is an asymmetrical test. Equivalently,

given that the system is in state s3, the outcome of test t2 is 1 with probability 0.4

and 0 with probability 0.6.

Tests

s t1 t2 t3

s1 0 0 0

s2 0 1 0

s3 1 0.4 0

s4 1 1 1

Table 1.1: Symmetrical test vs. asymmetrical test

A feasible solution for the test sequencing problem can be described as a binary

decision tree where nodes correspond to the tests, arcs correspond to the outcome
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Figure 1.1: Decision tree for a test sequencing problem

of the tests, and leaves correspond to the actual system states. A feasible binary

decision tree for the example in Table 1.1, is shown in Figure 1.1. For instance,

tests t1 and t2 are used in the path leading to the identification of state s1. In other

words if the system is in state s1, total cost to identify the system state is (c1 + c2).

Summing up over all states and tests, average cost of the decision tree is

J = p1[c1 + c2] + p2[c1 + c2] + p3[c1 + c3] + p4[c1 + c3]

The goal of the test sequencing problem is to generate a diagnostic procedure

such that the criterion function given by:

J = pT Ac =
m∑

i=0

n∑
j=1

αijp(si)cj (1.1)

(i.e., the average cost of the decision tree) is minimized [9]. In 1.1, A = (αij)

is an (m + 1) by n matrix such that αij = 1 if test tj is used in the path leading

to the identification of system state si and is 0 otherwise. An optimal diagnostic

procedure is one which has the minimum cost over all diagnostic procedures which

use tests from T to determine system state.

The problem above can be considered as a Markov decision problem (MDP),

wherein the Markov state x denotes the suspect set of system states (also termed

the ambiguity set), and the decision corresponds to the test to perform in state

x [9]. The solution to the MDP is a deterministic AND/OR binary decision tree,

with OR nodes labeled by ambiguity status x, AND nodes denoting tests(decisions)

at OR nodes, and the weighted average length of the tree representing the expected

4



0 1

0

OR NODE

AND NODE

0

s1 s2
s3 s4

t1

s3 s4

t3t2

s1 s2 s3 s4

s1 s2

1 1

Figure 1.2: AND/OR binary decision tree for a test sequencing problem

test cost, J . However, the construction of the optimal decision tree is an NP-

complete problem [3,9]. This study aims to develop a test sequencing algorithm with

comparable results by integrating concepts from information theory and heuristic

search to overcome the difficulties that appear as a result of problem complexity.

The corresponding AND/OR binary decision tree for the case represented in

Figure 1.1 is shown in Figure 1.2.

Before proceeding an important distinction should be made. The heuristics

developed and mentioned in this study are not classifiers. Instead, the heuristics

develop a classifier. Thus, the heuristic is used only once for a given instance and

the strategy produced by the heuristic will be used over and over by the user to

classify as needed. This is why expected cost is minimized, instead of minimizing

the number of tests to be used, maximum cost of identifying a state etc.

There are two major kinds of diagnostic procedures [17]: combinatorial and

sequential. In a combinatorial procedure the sequence of tests to be executed is

static (i.e., it does not depend on the result of previously executed tests). In a

sequential procedure, the choice of the ith test to be executed is based on the results

of the (i − 1) previously executed tests. Since in the combinatorial procedure all

tests are always executed, the average time to diagnose a fault is higher than for a

sequential procedure. In this study, we focused on sequential procedures.
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1.3 An Example

The example presented in Table 1.2 is taken from [1] where there are five states and

five tests. In this system, there are four faulty states s1, s2, s3, s4 and the fault-free

state s0. A set of five tests may be used to isolate the failure state. Tests t2, t4

and t5 are symmetrical (binary values). Tests t1 and t3 are asymmetrical. In this

example, test t1 exhibits asymmetrical behavior only in the system state s2 and test

t3 in the system state s3. The value d21 = 0.8 means that the probability test t1

fails is 0.8, if the system is in the state s2.

Tests

System

state

t1 t2 t3 t4 t5

Test costs cj

System

state

probabilities

si 1 1 1 1 1 p(si)

s0

s1

s2

s3

s4

0 0 0 1 0

0 0 1 1 0

0.8 0 0 1 1

1 0 0.5 0 0

1 1 1 1 0

0.32

0.30

0.16

0.12

0.10

Table 1.2: Example: Diagnostic dictionary matrix, fault probabilities and test costs

An optimal test sequence for the example presented in Table 1.2 is shown in

Figure 1.3. This test sequence includes the asymmetrical test t3 which gives an

additional leaf (the system state s3 resides in two leaves).
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Figure 1.3: An optimal test sequence for the example presented in Table 1.2

Average cost for the optimal test sequence presented in Figure 1.3 is calculated

as

J = 0.32[c3+c5+c1]+0.06[c3+c5+c1]+0.16[c3+c5]+0.30[c3+c1]+0.06[c3+c1+c2]+0.10[c3+c1+c2]
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Chapter 2

Literature Review

The problem and its variations described in chapter 1 arise in various contexts in the

literature, both for applied and theoretical considerations. Often, the researchers

in one area have been unaware of the results that were obtained by researchers in

other areas. In this and the following chapters, we shall bring together all these

applications and results along with the results we have obtained.

2.1 Systems with Symmetrical Tests

Systems with symmetrical tests are simplest and most widely studied cases. How-

ever, even if we impose the additional constraint that tests have uniform costs, the

problem turns out to be minimizing the expected number of tests, which is still

NP-complete [12].

The existing solution approaches to the test sequencing problem can be cate-

gorized in two different groups: dynamic programming(DP), and ”greedy” heuris-

tics [9]. The bottom-up DP algorithm builds the optimal decision tree from the

leaves up by identifying successively larger subtrees until the entire tree from the

initial node of complete ambiguity is generated. The DP technique [3] has stor-

age and computational requirements O(3n), and, hence, is impractical for large n,

where n is the number of tests. Therefore, approximation techniques for construct-

ing near-optimal decision trees are essential. Most of the traditional approximation

techniques employ ”greedy” heuristics; that is they perform a local, step-by-step

optimization.

One of the earliest greedy heuristics is the information heuristic developed by

Johnson [6]. In this algorithm a test tk is selected in Markov state x, if it maximizes
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the information gain per unit cost of the test:

k = arg max
j
{IG(x, tj)

cj

} (2.1)

where IG(x, tj) is the information gain given by [6]:

IG(x, tj) = −{p(xjp) log2 p(xjp) + p(xjf ) log2 p(xjf )} (2.2)

where {xjp, xjf} are the subsets of Markov state x corresponding to pass and fail

outcomes of test tj such that xjp ∪ xjf = x, and p(xjp), p(xjf ) are the conditional

probabilities of the pass and fail outcomes of test tj, respectively. Thus, the infor-

mation heuristic is a one-step look-ahead procedure with computational complexity

O(mn).

Another similar heuristic1 is the ”separation heuristic” [4], where at each node

of ambiguity a test tk is selected that maximizes the distinguishability criterion

dc(x, tj) defined as

dc(x, tj) = p(xjp) · p(xjf ) (2.3)

Varshney et al. [16] develops an algorithm for the construction of efficient sequen-

tial experiments. The approach in that construction is to minimize the upper bound

at each step during the construction. A multistep look-ahead procedure similar to

the information heuristic is used to derive these upper bounds.

The approach of Pattipati and Alexandridis [9] is based on integrating concepts

from information theory and heuristic AND/OR graph search methods. AO∗ [7]

is employed as the heuristic graph search method with three information theo-

retic HEFs2 namely HEF1: Huffman code length-based, HEF2: Entropy-based, and

HEF3: Entropy+1 based functions. Using heuristics HEF1 or HEF2, AO∗ is guar-

anteed to find an optimal solution. HEF3 does not always give an optimal solution

but it is useful for complex examples which are intractable with HEF1 and HEF2.

A different approach is proposed by Fraughnaugh et al. in [2]. A number of dif-

ferent algorithms using various heuristic techniques including hillclimbing, random

1Information heuristic provides the same decision tree as the distinguishability criterion when

test costs are equal [9].
2HEF: Heuristic Evaluation Function.
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search, and tabu search are developed. A generic decision rule is used to determine

which test to perform next in any state x:

(cost)α(|0.5− probability|)β(|0.5− proportion|)γ (2.4)

Cost of a test, probability that a test fails, and proportion of unclassified states

are values to use and the test that minimizes 2.4 is selected in any state x. Tabu

search is used to find best values for decision variables α, β, and γ which affect the

decision tree, thus cost of the policy.

Another interesting paper where the same problem comes up is by Raghavan et

al. [11]. In this paper, various AO∗ and information heuristic-based algorithms to

solve test sequencing problem are developed. The major contribution in this work

is that, a generalized test sequencing problem that incorporate various practical

features such as precedence constraints, rectification etc. is considered. Rectification

is the replacement of a potentially faulty component without prior diagnosis, i.e.,

the state is not known to be faulty for certain, but is replaced with a known good

part for some rectification cost.

In [12], Raghavan et al. consider not only the test sequencing problem (i.e.,

how to determine a test sequence that minimizes expected testing cost), but three

more problems as well; how to determine a test sequence that does not depend on

the failure probability distribution, how to determine a test sequence that minimizes

average ambiguity group size without using more than a number of tests, and how to

determine a test sequence that minimizes the storage cost of tests3 in the diagnostic

strategy.

In [13], Shakeri et al. consider algorithms for multiple fault diagnosis. In multi-

ple fault diagnosis problem, the system can be in fault-free state s0, or in one of m

potential faulty states si (1 ≤ i ≤ m), or in any one of 2m possible combination of

failure states. Single fault strategy of their previous work [9, 11] is extended to di-

agnose multiple faults by successively isolating the potential single-fault candidates,

then double-fault candidates, and so on.

Tu and Pattipati combine rollout algorithm with test sequencing heuristics in

[14]. Rollout algorithm based on a heuristic test sequencing algorithm H, denoted

3Minimizing the storage cost of tests is simply minimizing number of tests in the tree.
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by RH, proceeds as follows:

The cost of constructing a test tree at a nondestination node4 i is denoted by

H(i). Let N(i) denote the set of immediate successor nodes of an OR node i, that

is N(i) = {j|(i, j) is an arc} which contains all the tests available at node i. The

rollout algorithm starts with the root node S and at any intermediate OR node i,

RH adds to the test sequence a test jk+1 such that

jk+1 = arg min
j∈N(i)

Hj(i) (2.5)

where Hj(i), j ∈ N(i) denotes the expected test cost starting at OR node i and

applying test j as the first test at that node. The algorithm terminates when all

successors are destination nodes.

2.2 Systems with Asymmetrical Tests

A more generalized, hence harder to solve systems are the ones that include asym-

metrical tests. Although most of the algorithms used for systems with symmetrical

tests can be applied to systems with asymmetrical tests, the performance of the

algorithm will obviously decrease since it cannot make use of the special structure

of the problem.

In [1], Biasizzo et al. prove that the same heuristics that have been employed in

the traditional solution of the problem such as AO∗ algorithm with heuristics based

on Huffman coding, can also be employed for the generalized case with asymmetrical

tests. After numerous examples it is observed that AND/OR graph search algorithm

pushes asymmetrical tests towards the leaves of the decision tree where they actually

exhibit the symmetrical property.

In [17], Žužek et al. present the sequential diagnosis tool (SDT) that enables the

user to generate solutions of the generalized test sequencing problem. The purpose of

this study is to report this first sequential diagnosis software, that provide solutions

to the generalized case including asymmetrical tests. The SDT reported in [17]

includes both classes of algorithms: information heuristic algorithm and separation

algorithm for fast generation of suboptimal solutions, and algorithm AO∗ for the

generation of optimal solutions.

4Also termed the set of ambiguity, OR node.
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2.3 Two Polynomial Time Cases

Optimal test algorithms with computational complexity O(m log m) can be designed

for two extreme cases of the test sequencing problem [9].

The first case occurs when the binary test matrix is diagonal with singleton tests,

that is, test tj detects faults in system state j (1 ≤ j ≤ m). In this case, the total

expected testing cost J for a given ordering of tests ([1], [2], . . . , [m]) is given by

J =
m∑

j=1

c[j][p(s0) +
m∑

i=j

p(s[i])] (2.6)

The optimal test sequence is the priority rule

p(s[1])

c[1]

≥ p(s[2)

c[2]

≥ . . . ≥ p(s[m]

c[m]

(2.7)

On the other extreme, if all 2m tests are available and the test costs are equal,

the test sequencing problem is identical to Huffman coding problem; that is, the

problem of generating the minimum redundancy, prefix free binary code of a set of

binary messages for transmission over a noiseless channel [5]. Detailed information

on noiseless coding problem and the analogy between the test sequencing and the

noiseless coding problem is described below.

2.4 Noiseless Coding Problem

In noiseless coding problem, which is also referred to as Huffman coding problem

or the problem of constructing minimum-redundancy codes, a coding scheme is con-

structed in such a way that the average number of coding digits per message is

minimized.

Let us assume that there are k messages in our problem set U = {u1, . . . , uk} with

the associated probability measure PU(uk). The messages are to be encoded into

binary5 sequences for storage. In order to do that we associate a binary codeword ak

to each uk. The set of all codewords A = {a1, . . . , ak} is known as a binary code. We

constrain A to be uniquely decodable, i.e., for each finite message in U , the binary

sequence corresponding to the encoding of this message is different from the binary

5In noiseless coding problem, there are D different types of symbols that can be used in coding.

Since we are not dealing with multivalued tests, D is fixed to 2 to explain the analogy easier.
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sequence corresponding to the encoding of any other message in U . Another basic

restriction is that the message codes should be constructed in such a way that no

additional indication is necessary to specify where a message code begins and ends

once the starting point of a sequence of messages is known. That necessitates that

codes should be prefix-free. A prefix-free code is a code in which no codeword is

the prefix of any other codeword. The objective is to minimize the average storage

which is equivalent to minimizing the average codeword length W . This is defined

as

W =
K∑

k=1

WkPU(uk) (2.8)

where Wk is the length of the codeword ak. Huffman [5] develops an optimum

method of coding an emsemble of messages consisting of a finite number of members.

For the binary case, this procedure is as follows.

Step 0: Designate K terminal nodes as u1, . . . , uK and assign probability PU(uk)

to node uk for k = 1, . . . , K. Consider these K nodes as active.

Step 1: Tie together the two least likely active nodes with a binary branch.

Deactivate these two active nodes, activate the new node, and assign it a probability

equal to the sum of the probabilities of the two nodes just deactivated.

Step 2: If now there is only one active node, then ground this node. Otherwise,

go to Step 1.

Example 2.4.1 Suppose there are 6 messages to be coded U = {u1, . . . , u6}, where

PU(u1) = 0.35, PU(u2) = 0.10, PU(u3) = 0.18, PU(u4) = 0.10, PU(u5) = 0.15, and

PU(u6) = 0.12. When we apply Huffman’s procedure, the nodes are tied as in Figure

2.1 and the corresponding coding results are summarized in Table 2.1.

The left hand column in Figure 2.1 contains the ordered message probabilities of

the ensemble to be coded where K = 6. Since each combination of two messages

(indicated by a bracket) is accompanied by the assigning of a new digit to each,

then the total number of digits which should be assigned to each original message is

the same as the number of combinations indicated for that message. For example,
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Figure 2.1: Optimum binary coding procedure

the message marked ∗, or a composite of which it is a part, is combined with others

three times, and therefore should be assigned a code length of three digits.

When there is no alternative in choosing the two least probable messages, then

it is clear that the requirements, established as necessary, are also sufficient for

deriving an optimum code. There may arise situations in which a choice may be

made between two or more groupings of least likely messages. No such case arises

in example 2.4.1, however it is possible to rearrange codes in any manner among

equally likely messages without affecting the average code length, and so a choice

of either of the alternatives could have been made.

u PU(u) W (k) WkPU(uk) Code

u1 0.35 2 0.70 11

u2 0.10 3 0.30 011

u3 0.18 2 0.36 00

u4 0.10 3 0.30 010

u5 0.15 3 0.45 101

u6 0.12 3 0.36 100

W = 2.47

Table 2.1: Results of optimum binary coding procedure
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The code in Table 2.1 was obtained by using the digit 0 for the lower message

and the digit 1 for the upper message. In Figure 2.1, when two least probable

messages, u2 and u4, are tied together at first step. The last digit for u4 is set to 0

and u2 is set to 1. At second step, last digit of lower message, u6, is set to 0 and

last digit of upper message, u5, is set to 1. At third step, last digit of lower message,

u3, is set to 0 but upper messages (i.e., u2 and u4) have already a last digit, so the

digit before last are used and are set to 1. The algorithm proceeds that way and

the coding results are shown in Table 2.1.

The analogy between the test sequencing and the noiseless coding problem is

given in [11] as follows: the system states correspond to the binary messages, the

sequence of test results are similar to the message code word, the average number

of tests is characterized by the average length of code word, and the test sequencing

algorithm is the coding scheme. The only differences are that the generation of a test

algorithm is constrained by the availability of the tests, whereas no such constraint

exists for the coding problem, and the tests may have unequal costs in the test

sequencing problem.

Tests

t1 t2 t3

Test Costs

s 1 1 1

s1 1 1 *

s2 0 1 1

s3 0 0 *

s4 0 1 0

s5 1 0 1

s6 1 0 0

Table 2.2: Tests required to use results of noiseless coding for Example 2.4.1

In order to use results of noiseless coding problem we need availability of tests6

shown in Table 2.2 for Example 2.4.1 and every test possible in general. Figure 2.1

can be modified as in Figure 2.2 to demonstrate the tests required easily. To sum up

6∗ marks indicate that tests may have any value ∈ [0, 1], i.e., may even be asymmetrical
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Figure 2.2: Optimum binary coding procedure: A different perspective
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Figure 2.3: Test sequencing for example 2.4.1

we can say that, if there exist the desired columns (i.e., test results) in diagnostic

dictionary matrix D with uniform test costs, we can use the results of Huffman

coding procedure as in Figure 2.3. Note that Figure 2.2 and Figure 2.3 are actually

performing the same operations at each node of ambiguity.

It is easy to notice that, tests required to use the results of noiseless coding are

not unique, i.e., there may exist many combination of tests that have the same

use. There is another alternative set of tests in Table 2.3 for which the diagnostic

procedure will be as in Figure 2.4.

Several admissible HEF’s are derived in [9] for the basic test sequencing problem

by appealing to the analogy between the test sequencing and the Huffman coding

problem.
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Tests

t1 t2 t3 t4 t5

Test Costs

s 1 1 1 1 1

s1 1 1 ∗ ∗ ∗
s2 0 ∗ ∗ 1 1

s3 0 ∗ ∗ 0 ∗
s4 0 ∗ ∗ 1 0

s5 1 0 1 ∗ ∗
s6 1 0 0 ∗ ∗

Table 2.3: Alternative tests required to use results of noiseless coding for the example

2.4.1

Property 1: The average conditional Huffman codeword length w∗(x) for any

node of ambiguity subset x provides a lower bound on the conditional average length,

1(x) of any test algorithm rooted at x (including the optimal test algorithm with

length 1∗(x)). Formally

w∗(x) ≤ [p̂(x)](−1)
∑
si∈x

p(si)(
n∑

j=1

αij(x)) (2.9)

where αij = 1 if test tj is used by a test algorithm rooted at x to identify the system

state si and is zero otherwise. Let G be an AND/OR graph. An HEF h(x) defined

0

0 110

1

10

t1

t2

10

t3
s1s3

s4 s2 s6 s5

t4

t5

Figure 2.4: Alternative test sequencing for example 2.4.1
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on the nodes of G is admissible if for each node x in G, h(x) ≤ h∗(x), the optimal

cost-to-go. In particular, h(x) can be infinite only if h∗(x) is infinite. The above

property of Huffman code can be used to derive an admissible HEF as mentioned

before.

2.5 Systems with Multivalued Tests

Traditionally, we only consider binary outcome tests in the fault diagnosis problem.

However, in practice, available diagnostic tests may exhibit significantly different

behaviors. Generally, a test may have more than two possible outcomes. We call

such test sets multivalued tests [15, 17, 18]. Basically, the algorithms used for a

binary test system can also be applied to multivalued test systems. Although there

are proposed algorithms in the literature [11,17] that can handle multivalued tests,

performance of algorithms in systems with multivalued tests may not be as high

as in systems with binary outcome tests, since these are more generalized systems.

Throughout this study we shall only deal with binary outcome tests because they

arise more frequently.
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Chapter 3

Tests with Uniform Costs

After the discussion of several proposed algorithms for sequential testing in chapter

2, it can be concluded that the need for fast and near optimal heuristics is of crucial

importance. Greedy heuristics are used not only to obtain fast and near optimal

results, but also to obtain upper bounds as in [16] or as HEFs in AND/OR graph

search methods as in [9, 11].

There is a certain degree of analogy between Noiseless Coding Problem and Test

Sequencing Problem that is discussed in section 2.4. However, it is well known

that traditional test sequencing heuristics suggest classification-separation whereas

Huffman’s algorithm [5] is based on tieing-binding together sets of states which are

two different perspectives.

3.1 A Note on Binding Strategy

In this section we shall provide a strategy for test sequencing problem that constructs

the decision tree bottom-up. This strategy is naturally based on binding two sets

of states at each iteration unlike the traditional methods that are based on dividing

a set of ambiguity at each iteration. Constructing the decision tree upwards (i.e.,

beginning from actual states, ending with the set of all states, S) is similar to the idea

of Huffman coding. We are not aware of any bottom-up based approach previously

proposed for the test sequencing problem. Advantages and disadvantages of using

a binding strategy can be described as follows:

One advantage of using binding strategy is that, it works fast. In the worst

case there are m iterations which is the same as the traditional greedy heuristics.

Second, and the most important, advantage of this strategy is that, unlike the
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Figure 3.1: Traditional approach vs. binding strategy

traditional approach, there are usually more than one path leading to the optimal

binary decision tree.

Suppose that the binary decision tree shown in Figure 3.1 is the optimal tree

for a specific test sequencing problem. If a greedy heuristic based on traditional

classification approach is employed, the algorithm should result with perform test

t∗ at the end of first iteration. On the other hand, if a heuristic based on binding

strategy that constructs the tree upwards is employed, the algorithm may result

with either bind states si∗ and sj∗ or bind states s∗
′

i and s∗
′

j both of which have

the possibility of constructing the optimal tree. The only situation that we can not

make use of this useful property is the case when the only optimal binary decision

tree is as shown in Figure 3.2.

The major disadvantage of using binding strategy is the additional computational

work at each iteration. In traditional approach, at any node of ambiguity, any test

is guaranteed to lead to a feasible solution, however, when an algorithm based on

binding strategy is employed, binding any two sets of states may not lead to a

feasible solution. In other words, allowance of binding decisions should be checked

at each iteration, since they are not guaranteed to give feasible test sequences.

It is crucial to note that when an algorithm based on binding strategy is em-

ployed, as long as the problem is feasible at any time, there always exists an al-
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Figure 3.2: One path leading the optimal solution using binding strategy

lowable pair of sets of states to be bound together using tests available. Note also

that, when defining the test sequencing problem, the standard assumption that the

problem should be feasible, is imposed. These statements and the following lemma

form a base for all of the proposed algorithms in this study.

Lemma 1 If the problem is feasible at any stage, then there exists at least one

pair of states, and at least one available test for this binding, which leads to a new

feasible problem.

Proof : Firstly, the term ”feasibility” should be defined. At any stage, if it is

possible to classify every state or sets of states using tests available, the problem is

feasible.

If the problem is feasible at any stage, then there exists at least one feasible

binary decision tree that can perform the classification of the problem.

If there exists such a feasible binary decision tree, intuitively every OR node in

this tree is feasible. Also if there exists a feasible binary decision tree, then there

exists at least one binding and a test that performs the binding at the bottom of

the tree. Since every OR node in this tree is feasible, this binding is guaranteed to

give a new feasible problem. 2

Suppose the diagnostic dictionary matrix in Table 3.1 is the case. It is easy
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Tests

t1 t2 t3

Test Costs

s 1 1 1

s1 1 1 0

s2 0 0 1

s3 0 1 1

Table 3.1: Disadvantage of using binding strategy

to see that the traditional approach may come up with any test at any iteration,

and that will lead to a solution. Therefore, no test1 is forbidden in any iteration.

On the other hand, if an algorithm based on binding strategy is employed, that

algorithm should not allow binding some sets of states in general. For instance,

at first iteration binding s1 and s2 should not be allowed. If binding s1 and s2 is

allowed and a new set is defined as s4 = s1 ∪ s2, the algorithm necessitates that all

other states (in this case s3 only) should be seperated from this new set s4 (i.e., the

problem should be feasible) before this binding, using any available test as in Figure

3.3. s1 and s2 may be classified using t1, t2, or t3 all of which have different values

for s1 and s2. This implies that none of these tests can be used in the following

iterations that considers binding s4 and any other set (i.e., test nodes above node

T ). At the same time it is necessary to bind s4 and remaining states, which means

that binding s1 and s2 leads to an infeasible result.

To overcome this difficulty, when two sets of states (say si∗ and sj∗) are consid-

ered to be bound together, we propose to update the diagnostic dictionary matrix

temporarily as follows:

• Insert a new state, say sk, where p(sk) = p(si∗) + p(sj∗).

• If di∗l 6= dj∗l, set dkl = 2 ∀l, otherwise set dkl = di∗l. Note that, a value of

2 in the diagnostic dictionary matrix implies that the test is not available in the

1Intuitively, a useless test that does not perform any separation (i.e., the values in diagnostic

matrix are the same for all states in current set or shows asymmetrical behavior) is not preferred,

but not forbidden because it leads to a feasible solution.
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S − (s1 ∪ s2)
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Figure 3.3: An unallowable binding for the case in Table 3.1

following steps.

• Delete rows corresponding to si∗ and sj∗ .

Allowance check for a pair, si∗ and sj∗ , is performed as follows:

Algorithm Allowance Check for i∗ and j∗

INPUT: Diagnostic dictionary matrix D = [dij ], i∗, j∗.

OUTPUT: Allowable or unallowable binding (i.e., 0 or 1)

Step 0: Construct a set of current states S′′ = S′ = S ∪ sk − (si∗ ∪ sj∗).

Temporarily update the diagnostic dictionary matrix for si∗ and

sj∗ .

Step 1: Construct a set of available tests, T ′ = {tl|dil 6= 2, i ∈ S′}. If

T ′ = ∅ ∨ dil = djl ∀i, j ∈ S′ ∀l ∈ T ′ go to Step 4.

Step 2: Using all tests in T ′ classify S′ into subsets Sa.

Step 3: For each subset Sa, set S′ = Sa and go to Step 1.

Step 4: If there exists one set of state in S′ or there exist sets of states all

of which originally belong to the same state, then S′′ = S′′ − S′.

Otherwise the binding is unallowable (i.e., output 0).

Step 5: If S′′ = ∅, the binding is allowable (i.e., output 1). Otherwise

continue with other subsets.
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After allowance check is completed, diagnostic dictionary martix is reverted back

to its original condition. As discussed earlier, it is guaranteed that after an allowable

binding, the problem is feasible, i.e., there exists at least one allowable pair of sets

of states to be bound. To sum up, using the technique above at each iteration, one

can construct feasible test sequences.

3.2 Inclusion of Asymmetrical Tests

When there exists asymmetrical tests, allowance check algorithm is applied similarly

but the diagnostic matrix should be converted to the appropriate form. For the

problem in Table 1.2, the appropriate form is shown in Table 3.2.

Tests

t1 t2 t3 t4 t5

Test costs cj

si 1 1 1 1 1 p(si)

s0

s1

s2

s2′

s3

s3′

s4

0 0 0 1 0

0 0 1 1 0

0 0 0 1 1

1 0 0 1 1

1 0 0 0 0

1 0 1 0 0

1 1 1 1 0

0.32

0.30

0.032

0.128

0.06

0.06

0.10

Table 3.2: Appropriate form to apply binding strategy

The expression ”sets of states all of which originally belong to the same state”

in allowance check algorithm implies that, when S ′ = {s2, s2′} in Step 4, although

there are two states in the set, since they originally belong to the same state s2, it

does not ruin the allowance of the binding. In other words, the decision tree does

not have to classify a set, consisting of si variants (i.e., si, si′ , si′′ and so on), further.
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3.3 A Heuristic Based on Huffman Coding

To benefit from the advantages of binding strategy, good and allowable decisions

should be made. When the tests have uniform costs, the logic behind Huffman

coding [5] can be used in binding procedure. We employed the following technique2

based on Huffman coding, which is known to give optimal solutions when 2m tests

are available3, where m is the number of states, as discussed in section 2.3.

Algorithm Modified Huffman Coding

INPUT: Diagnostic dictionary matrix D = [dij], prior conditional

probability vector P.

OUTPUT: Binary decision tree.

Step 0: Construct a set of current states Sc = S.

Step 1: For every pair of sets of states i and j in Sc, compute psum
ij =

pi + pj, and mark every pair.

Step 2: Choose a marked pair with smallest psum
ij value.

Step 3: Perform allowance check for i and j. If binding i and j is

allowable, go to Step 4. Otherwise unmark the pair and go

to Step 2.

Step 4: Set i∗ = i and j∗ = j.

Step 5: Permanently insert a new state, say sk, where p(sk) =

p(si∗) + p(sj∗).

Step 6: If di∗l 6= dj∗l, set dkl = 2, otherwise set dkl = di∗l.

Step 7: Permanently delete rows corresponding to si∗ and sj∗ .

Step 8: Set Sc = Sc ∪ sk − (si∗ ∪ sj∗). If Sc consists of one state

TERMINATE ALGORITHM, otherwise go to Step 1.

2It is crucial to note again that there always exists at least one allowable binding (i.e. marked

pair in the algorithm) at any iteration if the initial problem is feasible. See Lemma 1 for details.
3Note that, in this case every pair of sets of states to be bound at any iteration is allowable,

i.e., at any iteration ∃l, s.t. dil + djl = 1 ∀i, j.
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Figure 3.4: Application of separation heuristic for the case in Table 3.3

3.4 An Example

Tests

t1 t2 t3 t4 t5

Test Costs

s p(s) 1 1 1 1 1

s1 0.4 0 0 0 0 0

s2 0.248889 0 1 1 0 1

s3 0.328889 1 1 0 1 1

s4 0.022222 1 0 1 0 0

Table 3.3: An example for Huffman coding based algorithm

When separation heuristic is employed for the problem presented in Table 3.3

the binary decision tree is formed as in Figure 3.4 which gives a cost of 2.

However when our Huffman code based algorithm is employed, it gives a cost of

1.942222 and the algorithm proceeds as follows:

Sc = {s1, s2, s3, s4}. Choose s2 and s4 with psum
24 = 0.271111. To perform

allowance check, algorithm allowance check is applied, and the diagnostic dictionary

matrix is updated temporarily as in Table 3.4

t3 and t4 are applied immediately and each subset consists of one state. Therefore

the problem in Table 3.4 is feasible, and the binding is allowable.

Sc is updated as Sc = {s1, s3, s5} and Table 3.4 becomes permanent. Choose

s3 and s5 with psum
35 = 0.6. Allowance check should be performed again, and the

diagnostic dictionary matrix is updated temporarily as in Table 3.5
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Tests

t1 t2 t3 t4 t5

Test Costs

s p(s) 1 1 1 1 1

s1 0.4 0 0 0 0 0

s3 0.328889 1 1 0 1 1

s5 0.271111 2 2 1 0 2

Table 3.4: First allowance check for the case in Table 3.3

Tests

t1 t2 t3 t4 t5

Test Costs

s p(s) 1 1 1 1 1

s1 0.4 0 0 0 0 0

s6 0.6 2 2 2 2 2

Table 3.5: Second allowance check for the case in Table 3.3

No test can be applied and the subset S ′ = {s1, s6} does not consist of one

state. Hence the problem in Table 3.5 is infeasible, and binding s3 and s5 is not

allowed. Unmark that pair and choose the next best pair. s1 and s5 are chosen with

psum
15 = 0.671111, and the diagnostic dictionary matrix is updated temporarily as in

Table 3.6

Tests

t1 t2 t3 t4 t5

Test Costs

s p(s) 1 1 1 1 1

s3 0.328889 1 1 0 1 1

s6 0.671111 2 2 2 0 2

Table 3.6: Third allowance check for the case in Table 3.3

t4 is applied and each subset consists of one state. Therefore the problem in

Table 3.6 is feasible, and the binding is allowable. Finally s3 and s6 are bound
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Figure 3.5: Application of Huffman coding based algorithm for the case in Table 3.3

together and the algorithm terminates.

The binary decision tree formed by the algorithm is shown in Figure 3.5

The average cost of the decision tree in Figure 3.5 is

J = p(s1)[c3 + c4] + p(s2)[c1 + c3 + c4] + p(s3)[c4] + p(s4)[c1 + c3 + c4]

= 0.4[2] + 0.248889[3] + 0.328889[1] + 0.022222[3]

= 1.942222

3.5 Computational Results of Modified Huffman Coding

Computational results of modified Huffman coding is presented in Table 3.7. Those

results encouraged us to introduce a new algorithm based on binding strategy for

the case where test costs are non-uniform.

The details of problem sets such as probability distribution of system states,

number of runs, etc. are described in chapter 5. Note that, the results presented in

Table 3.7 are average results for each case and test costs are uniform.
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Number of

states

Number of

tests

Number of

optimal results

achieved

Average

Percentage

Error

6 4 29/40 1.006

10 8 11/40 3.291

15 10 3/40 3.894

20 12 3/40 4.407

30 15 0/40 4.287

Table 3.7: Computational results of modified Huffman coding
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Chapter 4

Tests with Non-Uniform Costs

A powerful tool to construct a decision tree for test sequencing problem is introduced

in section 3.3 for the case when costs are uniform. However, in general, when it is

considered to bind two sets of states, cost of binding those two states as well as

probabilities of those sets should be considered. Since the algorithm described in

chapter 3 performed well in the case with uniform costs, it is adapted to the case

where test costs are non-uniform, and this time the algorithm will also take ”cost

of tests” into account.

In this chapter, a basic algorithm is introduced that is applicable in the gen-

eral case where test costs are not uniform. Similar to the Huffman coding based

algorithm, the binary decision tree is constructed bottom-up with binding strategy

using allowance check algorithm described in section 3.1. At each iteration inputs

are probabilities of sets of states and minimum1 cost of binding sets of states.

Note that, in general Huffman coding based algorithm neither gives optimal

results nor has any tool to deal with asymmetrical tests. When it is applied to the

problem in Table 4.1, the algorithm will first bind s1′ and s2 with psum
1′2 = 0.4, which

is an allowable binding. The algorithm will obviously bind s1 at the next iteration

so the algorithm will result an average cost > 1, whereas the optimal solution gives

a cost of 1. Performing only t1 leads to the optimal solution because of the special

structure of the problem.

The algorithm based on Huffman coding deals only with probabilities, since every

binding (i.e., performing a test) costs 1 similar to the noiseless coding problem2.

1When two sets are considered to be bind together, and there exist multiple tests that can

perform binding operation, intuitively the test with minimum cost should be specified.
2Binding i and j increments the objective function by (pi + pj) · 1 in both problems
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Tests

t1 t2

Test Costs

s p(s) 1 1

s1

s2

0.8

0.2

0 0.75

1 0

Tests

t1 t2

Test Costs

s p(s) 1 1

s1 0.6 0 1

s2 0.2 1 0

s1′ 0.2 0 0

Table 4.1: An example to show that Huffman coding based algorithm lacks a tool

to deal with asymmetrical tests

However in the example presented in Table 4.1, binding s1 and s1′ is ”free”.

Turning back to the discussion of tests with non-uniform costs, the algorithm

should consider cost of binding as well as probabilities of sets of states. A generic

algorithm that deals with cost of binding, can also deal with asymmetrical tests,

which is nothing but a zero cost test in certain iterations.

4.1 A Heuristic Based on Binding and Rollout Strategies

The heuristic described in this section is based on binding and rollout strategies.

At each iteration, allowance check algorithm described in section 3.1 is applied to

every pair of sets of states, and the allowable pairs are determined to be bound

together. Among this candidate set, an average cost ΩH
ij is estimated for each pair

via a heuristic test sequencing algorithm, H, and the most promising selection is

made which is similar to the rollout strategy of [14]. Heuristic test sequencing

algorithms employed in the algorithm are discussed in section 4.2. At each iteration

Ωij is calculated as
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ΩH
ij = (pi + pj)uij + H∗

i,j (4.1)

uij in equation 4.1 is the test with minimum cost that can bind sets i and j. If

sets i and j belong to the same state, uij = 0, otherwise

uij = min
k
{ck|dik + djk = 1} (4.2)

The term (pi + pj)uij in equation 4.1 gives the exact cost of binding i and j

and H∗
i,j gives an estimate for the cost the decision tree excluding the test used for

classifying i and j. This operation is simply performed by binding i and j, updating

diagnostic dictionary matrix, which is guaranteed to be feasible since binding i

and j is allowable, and applying a heuristic test sequencing algorithm, H for an

average cost estimate. Note that, the heuristic test sequencing algorithm is applied

in traditional way (i.e., tree is constructed normally, from top to bottom after i and

j are strictly bound together).
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Algorithm Modified Bind and Rollout

INPUT: Diagnostic dictionary matrix D = [dij], cost vector C, prior

conditional probability vector P.

OUTPUT: Binary decision tree.

Step 0: Construct a set of current states Sc = S.

Step 1: For every pair of sets of states i and j in Sc, perform al-

lowance check. If binding i and j is allowable, compute ΩH
ij ,

otherwise set ΩH
ij = ∞

Step 2: Choose the pair with smallest ΩH
ij value and set i∗ = i and

j∗ = j.

Step 3: Permanently insert a new state, say sk, where p(sk) =

p(si∗) + p(sj∗).

Step 4: If di∗l 6= dj∗l, set dkl = 2, otherwise set dkl = di∗l.

Step 5: Permanently delete rows corresponding to si∗ and sj∗ .

Step 6: Set Sc = Sc ∪ sk − (si∗ ∪ sj∗). If Sc consists of one state

TERMINATE ALGORITHM, otherwise go to Step 1.
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4.2 Heuristic Test Sequencing Algorithms Employed

Four greedy heuristics are employed to obtain an estimate in our algorithm. The

algorithm is applied from top to down and the set of ambiguity is represented by

SO at each step. Obviously a test tk where dik = 2 for any i ∈ SO is not evaluated,

since it is not applicable to that set of ambiguity. The heuristics used are:

1. Information heuristic developed by Johnson [6].

2. Modified separation heuristic [4]: A test tk is selected at each step, where

k = arg minj{ cj

p(xjp)·p(xjf )
}.

3. Cheapest test: A useful3 test tk is selected at each step, where k = arg minj{cj}.

4. New greedy algorithm: A test tk is selected at each step, where k = arg minα{ cα

λα
}.

λα =
∑

diα+djα=1∧i,j∈SO(pi + pj).

4.3 Computational Complexity of Bind and Rollout Algorithm

For a test sequencing problem with m states and n tests, there exist m iterations

(i.e. bindings) for bind and rollout algorithm in the worst case. At each iteration

the algorithm performs

• at most


 m

2


 allowance checks

• at most


 m

2


 heuristic test sequencing algorithm, H implementations

• selection of the minimum of these


 m

2


 estimates

Suppose that the complexity of heuristic test sequencing algorithm employed is

O(H) and allowance check algorithm is O(AC). The the computational complexity

of bind and rollout algorithm, O(B&R) is calculated as

O(B&R) = O(m(m2O(AC) + m2O(H) + m2)) = O(m3(O(AC) + O(H))) (4.3)

Allowance check algorithm consists of m iterations in the worst case and at each

iteration availability of tests are checked. Test availability is essentially checked by

3A test is useful if it performs seperation for the OR node in consideration (i.e., the values in

the diagnostic dictionary matrix are not the same for all states in that OR node).
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looking up the entries of an m×n matrix. Hence the complexity of this availability

check is O(mn).

O(AC) = O(m2n) (4.4)

and plugging into Equation 4.3

O(B&R) = O(m5n + m3O(H)) (4.5)

4.4 Proficiency of Bind and Rollout Algorithm

Lemma 2 When modified bind and rollout algorithm is used via any heuristic test

sequencing algorithm H, one would not obtain a worse solution than when H is

applied on its own.

Proof : Suppose that TH is the binary decision tree constructed via heuristic

test sequencing algorithm H and the average cost is JH . Bind and rollout algo-

rithm starts to construct the decision tree, TB&R(H), bottom-up via heuristic test

sequencing algorithm H. Note that at any iteration

JH = (Total cost of bindings performed up to that iteration) + ΩH
ij (4.6)

if the bindings performed up to that iteration are consistent with TH and H proposes

to bind i and j at that iteration.

Bind and rollout algorithm calculates Ω values for each pair and therefore TB&R(H)

deviates from TH at an iteration only if

ΩH
i∗j∗ ≤ ΩH

ij (4.7)

where bind and rollout algorithm proposes to bind i∗ and j∗ and H proposes to

bind i and j. Suppose that J ′ is the cost of bindings performed up to that iteration.

Using Equation 4.7

ΩH
i∗j∗ ≤ ΩH

ij

ΩH
i∗j∗ + J ′ ≤ ΩH

ij + J ′

and from Equation 4.6

ΩH
i∗j∗ + J ′ ≤ ΩH

ij + J ′ = JH

ΩH
i∗j∗ + J ′ ≤ JH

35



Since Ω gives an upper bound for the upcoming cost in bind and rollout algorithm

JB&R(H) ≤ ΩH
i∗j∗ + J ′ ≤ JH

and finally

JB&R(H) ≤ JH (4.8)

2

4.5 An Example

Tests

t1 t2 t3 t4 t5

Test Costs

s

s1

s2

s3

s4

s5

s2′

s1′

30 28 28 30 21

0 1 1 1 1

0 0 0 0 1

1 0 1 1 1

0 1 0 1 0

0 1 1 0 1

0 0 0 0 0

1 0 1 0 1

p(s)

0.113111

0.123393

0.179949

0.241645

0.0462725

0.107969

0.187661

Table 4.2: An example with asymmetrical tests and non-uniform costs

When modified bind and rollout algorithm is applied to the case in Table 4.2,

binding allowance of every combination of set pairs and the resulting Ω estimates,

are calculated as in Table 4.3. New greedy algorithm is employed as heuristic test

sequencing algorithm. For example ΩH
2,2′ is calculated as

ΩH
2,2′ = (p2 + p2′)0 + H∗

2,2′

H∗
2,2′ is the average cost of the decision tree when new greedy test sequencing

algorithm, H is applied to the problem in Table 4.4. Diagnostic dictionary matrix

and probabilities in Table 4.4 are constructed by temporarily binding s2 and s2′ .

In the case represented in Table 4.4, test t5 is not available as the first test, since

there exists a 2 in the corresponding column. For all tests except t5,
cα

λα
is calculated
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i, j Allowance Check ΩH
ij

1, 2 - ∞
1, 3

√
73.9769

1, 4
√

76.8586

1, 5
√

74.0283

1, 2′ - ∞
1, 1′ - ∞
2, 3 - ∞
2, 4 - ∞
2, 5

√
74.5630

2, 2′
√

69.0026

i, j Allowance Check ΩH
ij

2, 1′
√

77.2211

3, 4 - ∞
3, 5 - ∞
3, 2′ - ∞
3, 1′

√
78.5578

4, 5 - ∞
4, 2′

√
74.0283

4, 1′ - ∞
5, 2′ - ∞
5, 1′

√
75.0617

2′, 1′ - ∞

Table 4.3: First iteration of modified bind and rollout algorithm

and the test with minimum value is selected. As an example, at the beginning

SO = {s1, s3, s4, s5, s1′ , s6} and λ1 is calculated as [p(1) + p(3)] + [p(1) + p(1′)] +

[p(3)+p(4)]+[p(3)+p(5)]+[p(3)+p(6)]+[p(4)+p(1′)]+[p(5)+p(1′)]+[p(1′)+p(6)].

After best test is selected, same greedy heuristic is applied for all nodes of ambiguity.

At the end of the first main iteration states s2 and s2′ are permanently bind

since it has the minimum ΩH
ij value. The algorithm proceeds with the same logic

and results with the binary decision tree shown in Figure 4.1, which is the optimal

solution. Note that, it is just a coincidence that the optimal test sequence has the

same average cost with the estimated cost at the first iteration.
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Tests

t1 t2 t3 t4 t5

Test Costs

s

s1

s3

s4

s5

s1′

s6

30 28 28 30 21

0 1 1 1 1

1 0 1 1 1

0 1 0 1 0

0 1 1 0 1

1 0 1 0 1

0 0 0 0 2

p(s)

0.113111

0.179949

0.241645

0.0462725

0.187661

0.225362

Table 4.4: The case when s2 and s2′ are temporarily bind

0

0

t2

t3 t5

110

t4

1

1

0

s5

s4

s1

t4

10

s3s′1

s2

s′2

Figure 4.1: Binary decision tree constructed using modified bind and rollout algo-

rithm
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Chapter 5

Computational Results

In this chapter, the results of experiments are reported. The experiments are con-

ducted with 3 heuristics; information heuristic developed by Johnson [6], modified

separation heuristic [4], and modified bind and rollout described in section 4.1. The

optimal solution is calculated using enumeration. Additionally a random solution

is found for benchmarking.

To obtain a standard set of problems for comparison of our heuristic, we devel-

oped a problem generator to generate random problem instances of various sizes.

The test bed of problems consists of a set of small problems and a set of larger

problems, whose sizes are shown in Table 5.1. Problems, whose number of classes

are marked with *, includes asymmetrical tests1. The test bed we have used consists

of problems from three categories:

1. The first category is a set of problems with costs equal to 1. [PROB1-PROB9]

2. The second category is a set of problems with costs ranging from 25 to 30.

[PROB11-PROB19]

3. The third category is a set of problems with costs ranging from 20 to 30.

[PROB21-PROB29]

Number of states in each problem set are especially larger than the number of

tests on purpose. The main reasons, why these types of problems are considered,

are:

1In all experiments with asymmetrical tests, there exist 1.2(m + 1) rows and (m + 1) states.
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Problems Number of Classes Number of Tests

PROB1, PROB11, PROB21 6 4

PROB2, PROB12, PROB22 8 4

PROB3, PROB13, PROB23 10 5

PROB4, PROB14, PROB24 15 8

PROB5, PROB15, PROB25 20 10

PROB6, PROB16, PROB26 25 15

PROB7, PROB17, PROB27 10* 6

PROB8, PROB18, PROB28 25* 15

PROB9, PROB19, PROB29 30* 20

Table 5.1: Size of test problems

• When there exist fewer tests, random solutions might give comparable results

and reach even the optimal solution for certain runs, because there are not so many

combinations of test sequences.

• When there exist fewer tests, it is harder for the heuristics to achieve good

solutions, because the flexibility of the heuristic reduces. In other words, once the

heuristic fails to find the correct move at any iteration, it is hard to compensate it.

• When there exist fewer tests, enumeration can be completed in reasonable

time.

We can conclude that, if the same study is performed with more tests, solution

quality of the random solution will decrease, time spent for enumeration will in-

crease, and heuristics will be more applicable. Hence, the conditions presented here

can be easily modified to obtain better results.

For each problem set, 10 random runs are performed where state probabilities

are uniform (i.e., p(si) = 1
m+1

∀i). Secondly, 10 random runs are performed where

state probabilities are uniformly distributed in the interval (0.3, 0.7). Thirdly, 10

random runs are performed where state probabilities are uniformly distributed in

the interval (0, 1). Finally, 10 random runs are performed where probabilities of half

of the states are uniformly distributed in the interval (0.1, 0.2) and other half of the

states are uniformly distributed in the interval (0.8, 0.9). Therefore each problem set

consists of 40 independent runs and their averages are reported as results in tables
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5.2, 5.3, and 5.4. Only PROB9, PROB19, and PROB29 consist of 8 runs (i.e., 2

runs for each probability distribution) since enumeration of these set of problems is

time consuming.

In Table 5.2, OPT is the number of times the heuristic reached the optimal

solution among 40 runs, MAX is the maximum percentage error of heuristic, and

AVG is the average percentage error of heuristic. In Table 5.3, average worst results

for each problem set are presented, which are obtained by inverting the objective

function and using the same enumeration technique used in finding the optimal

solution. Average worst results are calculated to demonstrate the experimental

conditions. In other words, if average worst results are (1 + b) optimal, a heuristic

that gives (1+a) optimal results on the average can not be considered as sufficiently

approximate, as long as b is much larger than a. For example, an algorithm that

gives 10% error on the average for a certain problem set may seem sufficiently

approximate. However if we know that, average worst result for the problem set is

1.12 · optimal, we may not consider the same results as sufficiently approximate and

look for improvements.

Note that, in modified bind and rollout heuristic, four greedy heuristic test se-

quencing algorithms are employed for estimation and the one that gives the best

result is reported in Table 5.2. Since modified bind and rollout is a polynomial time

heuristic, although the operation is performed four times using different greedy

heuristics, the algorithm was not time consuming as seen in Table 5.42. When costs

are uniform, modified Huffman coding algorithm described in section 3.3 is applied

and afterwards modified bind and rollout algorithm is run via two different greedy

heuristics: information heuristic3, and new greedy heuristic. On the other hand,

when cost are non-uniform, modified bind and rollout algorithm is run via four dif-

ferent greedy heuristics: information heuristic, modified separation heuristic, new

greedy heuristic, and selecting the test with minimum cost and the best results

obtained are reported as the results of main algorithm in Table 5.2.

As a conclusion, the bind and rollout algorithm is mostly suitable for middle-large

2Computer used in this study has Celeron 1.33 Ghz CPU and 256 MB RAM and the algorithm

is coded in C++.
3When costs are uniform, there is no need to use modified separation heuristic because infor-

mation heuristic gives the same result [9].
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sized problems, where number of tests is not small enough to perform enumeration.

For instance, when 4 runs are performed for 20 states with 25 asymmetrical tests4,

it takes 30332.8 seconds to perform complete enumeration on the average. The

average percentage error for the bind and rollout algorithm is 0.997 whereas the

average percentage error for other one step heuristics is 10.62.

4In this set of experiments there exist 1.5(m + 1) rows and (m + 1) states. 1 run is performed

for each probability distribution and test costs are uniform.
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Random Solution
Modified Bind

and Rollout Heuristic

Modified

Separation Heuristic
Information Heuristic

Problems

PROB1

PROB2

PROB3

PROB4

PROB5

PROB6

PROB7

PROB8

PROB9

PROB11

PROB12

PROB13

PROB14

PROB15

PROB16

PROB17

PROB18

PROB19

PROB21

PROB22

PROB23

PROB24

PROB25

PROB26

PROB27

PROB28

PROB29

OPT AVG MAX

7 8.295 69.411

7 7.332 31.646

1 6.831 21.607

1 9.25 21.282

1 9.117 19.599

0 9.708 22.614

1 10.72 21.338

0 12.756 25.525

0 15.198 30.605

4 8.895 38.957

1 6.665 22.104

0 9.043 24.205

0 11.495 33.158

0 13.133 28.566

0 16.368 31.48

0 13.308 29.68

0 17.433 32.236

0 18.179 21.737

2 9.706 26.602

1 7.983 22.325

0 10.03 20.475

0 16.053 40.992

0 17.56 34.329

0 22.741 37.278

0 15.451 36.083

0 24.618 37.743

0 26.399 38.359

OPT AVG MAX

40 0 0

40 0 0

38 0.024 0.58

30 0.113 1.692

27 0.108 1.309

29 0.101 0.914

37 0.024 0.513

20 0.424 2.797

4 0.336 1.093

40 0 0

38 0.082 2.914

38 0.014 0.363

31 0.128 1.866

27 0.044 0.385

27 0.076 0.758

38 0.021 0.761

13 0.255 1.779

4 0.26 1.197

40 0 0

38 0.026 0.591

38 0.034 1.172

33 0.053 0.735

25 0.141 1.645

20 0.088 0.529

36 0.052 1.437

16 0.162 0.814

1 0.46 1.366

OPT AVG MAX

33 0.392 5.914

29 0.523 6.362

21 0.877 7.544

10 1.95 7.816

15 1.032 4.824

11 1.127 4.289

13 2.796 11.04

0 5.176 11.014

0 5.787 8.971

26 1.041 11.573

26 0.71 6.196

20 0.649 6.966

10 1.362 7.14

6 1.033 3.537

2 1.149 3.877

9 3.087 9.896

0 2.964 7.207

0 3.905 6.321

28 0.578 6.646

26 0.781 4.22

14 1.18 4.584

9 0.999 4.08

5 1.099 4.681

4 0.867 3.015

4 3.8 14.513

2 2.027 5.803

0 2.626 4.554

OPT AVG MAX

33 0.392 5.914

29 0.523 6.362

21 0.877 7.544

10 1.95 7.816

15 1.032 4.824

11 1.127 4.289

13 2.796 11.04

0 5.176 11.014

0 5.787 8.971

22 1.305 11.573

20 1.249 6.196

14 1.525 8.792

3 2.475 7.48

3 1.967 4.849

3 1.936 5.148

3 3.519 13.496

0 4.526 10.812

0 4.348 6.28

25 1.029 8.861

21 1.422 7.03

6 2.361 6.966

3 2.908 9.116

1 2.915 8.718

0 2.657 6.274

2 4.824 14.596

0 3.947 7.611

0 3.94 6.836

Table 5.2: Information heuristic, modified separation heuristic, random solution,

and modified bind and rollout heuristic versus optimal solution

43



Problems WORST

PROB1 1.18448 · optimal

PROB2 1.14351 · optimal

PROB3 1.17998 · optimal

PROB4 1.29119 · optimal

PROB5 1.32621 · optimal

PROB6 1.41222 · optimal

PROB7 1.26649 · optimal

PROB8 1.44883 · optimal

PROB9 1.54114 · optimal

Problems WORST

PROB11 1.19146 · optimal

PROB12 1.15919 · optimal

PROB13 1.20283 · optimal

PROB14 1.3471 · optimal

PROB15 1.39283 · optimal

PROB16 1.50093 · optimal

PROB17 1.29931 · optimal

PROB18 1.53053 · optimal

PROB19 1.61134 · optimal

Problems WORST

PROB21 1.20243 · optimal

PROB22 1.14979 · optimal

PROB23 1.24834 · optimal

PROB24 1.4074 · optimal

PROB25 1.48952 · optimal

PROB26 1.6514 · optimal

PROB27 1.3405 · optimal

PROB28 1.65755 · optimal

PROB29 1.76806 · optimal

Table 5.3: Average worst results

Problems Random Solution
One Step

Greedy Heuristics

Modified Bind

and Rollout Heuristic
Optimal Solution

PROB1, PROB11, PROB21 0.0020 sec/run 0.0002 sec/run 0.0147 sec/run 0.0002 sec/run

PROB2, PROB12, PROB22 0.0022 sec/run 0.0010 sec/run 0.0170 sec/run 0.0002 sec/run

PROB3, PROB13, PROB23 0.0115 sec/run 0.0007 sec/run 0.0691 sec/run 0.001 sec/run

PROB4, PROB14, PROB24 0.0062 sec/run 0.0017 sec/run 0.1137 sec/run 0.0646 sec/run

PROB5, PROB15, PROB25 0.0182 sec/run 0.0030 sec/run 0.5204 sec/run 0.55 sec/run

PROB6, PROB16, PROB26 0.0140 sec/run 0.0060 sec/run 2 sec/run 74.9 sec/run

PROB7, PROB17, PROB27 0.0170 sec/run 0.0015 sec/run 0.1112 sec/run 0.0042 sec/run

PROB8, PROB18, PROB28 0.0090 sec/run 0.0045 sec/run 8.625 sec/run 212.82 sec/run

PROB9, PROB19, PROB29 0.14 sec/run 0.0047 sec/run 55.75 sec/run 8049.38 sec/run

Table 5.4: Average time spent for test problems
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Chapter 6

Conclusion and Extensions

Bind and rollout approach in this study is an initial attempt to construct the decision

tree bottom-up. However it is accurate and delivers near-optimal test sequences in

reasonable time, even for large problems. When evaluating the running time of

the algorithm, it is important to note that this algorithm is run only once for an

application and the rule returned by the algorithm is then used repeatedly by the

user for classification.

The power of this approach is that it tries to see the whole picture. In traditional

methods, the algorithms are myopic, because the test which seems currently the best

is selected at each iteration. However, there may not exist the desired tests with

reasonable costs to use later. These methods usually don’t care about the next

move, hence may come up with solutions far away from optimum. In bind and

rollout approach, the algorithm performs a move considering the next moves. Exact

cost of current move is added to average estimated cost of upcoming moves, which

is the typical property of rollout strategy.

Algorithms described in the literature construct the tree starting from first test

to perform which is the most critical one. It is obvious that, in a classification

problem, a test that is performed earlier in sequential progress (i.e., in upper parts

of decision tree) is more critical than a test performed later. Since there exist more

states in a node of ambiguity in upper parts of tree, cost contribution in that part is

more than the lower parts of the tree. Also the corresponding column of diagnostic

dictionary matrix affects the solution much more if a test is performed earlier. It is

not a good idea to guess the answer without binding the pieces together. In bind

and rollout algorithm, relatively unimportant decisions are performed first, which
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makes it much more flexible compared to the traditional methods. This strategy

also provides the possibility of existence of multiple correct decisions that lead to

good results.

The drawback of this algorithm is the additional computational work to per-

form at each iteration. But considering that this algorithm is run only once for an

application, the increase in quality of solutions may be worth the increase in time

required for certain applications.

Bind and rollout approach is easily applicable to any test sequencing problem.

The approach may be used with any one-step or multistep look-ahead algorithm

and it will obviously improve the performance of the look-ahead algorithm. In this

study we employed four simple one-step look-ahead algorithms in bind and rollout

approach but inclusion of a more approximate algorithm as heuristic test sequencing

algorithm will improve the results. To sum up, bind and rollout approach guarantees

to give better results than any look-ahead algorithm by employing that algorithm

as heuristic test sequencing algorithm, H.

The algorithm described here can be used not only to obtain fast-near optimal

results, but also to obtain upper bounds in heuristic AND/OR graph search methods.

Combining that algorithm with a heuristic that constructs tight lower bounds, may

lead to quickly found optimal solutions via a search method.
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Appendix A

Failure Probability Computation

Note that the techniques described here are taken from Raghavan et al. [11].

A.1 Prior Probabilities of Failures

Let F (t) represent the Cumulative Density Function (CDF) of the time to failure

of a given component si. It is known that the component si was put into operation

at time t = 0. Furthermore, si was known to be good at time t = t1. It is desired

to compute the probability p′i of it being faulty at time t = t2, where t2 > t1. This

implies that the failure of si could have occured at any time in the interval (t1, t2],

in case it did occur. Hence we need to compute

p′i = Prob (si failed at t = t2|si is good at t = t1)

= Prob (t1 < x ≤ t2|t1 < x)
(A.1.1)

where x is the time at which s1 failed. In terms of the CDF Fi(t) of the failure

time, we can write p′i as

p′i =
Fi(t2)− Fi(t1)

1− Fi(t1)
(A.1.2)

Thus, given the cumulative distribution function of the failure time of a compo-

nent, we can compute the a priori probability of failure for that component.

A.2 Conditional Failure Probabilities

For well-maintained systems, it is assumed that at most a single failure exists in the

system at the time of testing. This is a valid assumption for many mission critical

systems, which are frequently tested for faults and refurbished regularly. Let S =
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{s1, s2, . . . , sm} be the set of failure states in the system. Let P ′ = {p′1, p′2, . . . , p′m}
be the set of a priori probabilities of the failure sources. We assume that the failure

states si for 1 ≤ i ≤ m are independent.

Let us assume that SI ⊆ S denotes a set of failure states such that, all failure

states si ∈ SI have occured and all states sj /∈ SI have not occured. By our

assumption of system state independence, the probability of above event is given

by P (SI) =
∏

si∈SI
p′i

∏
sj /∈SI

(1 − p′j). Therefore, the probability that the system is

fault free is p′0 =
∏

sj∈S(1− p′j).

Now, if we assume that only a single fault or no fault could be present in the

system at any given time, then the set of admissible events include only those

involving SI = {si} ∀si ∈ S, and SI = ∅. Therefore the single fault probabilities of

the various system states (s0 being the fault-free state) are given via

p(si) =

p′i
1−p′i

1 +
∑m

j=1

p′j
1−p′j

∀1 ≤ i ≤ m

p(s0) =
1

1 +
∑m

j=1

p′j
1−p′j

(A.2.3)

Thus the test sequencing problem with single fault assumption can be formulated

with the failure state probability vector P = {p(s0), p(s1), . . . , p(sm)}, starting from

the a priori probability vector P ′ = {p′1, p′2, . . . , p′m}.
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