
ON APPLICATIONS OF ALGEBRAIC FUNCTION FIELDS TO CODES

by

MEHMET ÖZDEMİR
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ON APPLICATIONS OF ALGEBRAIC FUNCTION FIELDS TO CODES

Abstract

The relation between algebraic function fields over finite fields and coding the-

ory started with Goppa’s important code construction, which is nowadays called

geometric Goppa codes. He used Riemann-Roch spaces of divisors and degree one

(rational) places of a function field to write codes with good parameters.

Since Goppa’s work, interaction between function fields and codes has been in-

vestigated extensively and further applications in coding theory have been found.

The aim of this thesis is to describe two of these applications. The first is Goppa’s

idea and its generalization by Xing-Niederreiter-Lam and Heydtmann using higher

degree places of the function field. The second application is the use of number of

rational places of a function field to estimate the minimum distance of cyclic codes.

We give two examples of cyclic codes; binary Hamming and BCH codes.

Keywords: Algebraic function field, coding theory, geometric Goppa code, cyclic

code.

vii



CEBİRSEL FONKSİYON CİSİMLERİNİN KODLAMA

TEORİSİNE UYGULAMARI ÜZERİNE

Özet

Sonlu cisimler üzerinde tanımlanmış fonksiyon cisimleri ve kodlama teorisi arasındaki

ilişki Goppa’nın geometrik Goppa kodları olarak bilinen önemli gözlemiyle başladı.

Goppa, fonksiyon cisimlerinin Riemann-Roch uzayları ve bir dereceli (rasyonel) asal

bölenlerini kullanarak iyi parametrelere sahip kodlar oluşturdu.

Goppa’nın çalışmasından bu yana kodlar ve fonksiyon cisimleri arasındaki ilişki

yoǧun olarak çalışıldı ve kodlama teorisine başka uygulamalar da bulundu. Bu

tezin amacı özellikle iki uygulamayı anlamaktır. Birincisi Goppa’nın fikri ve yüksek

dereceli asal bölenler kullanarak Xing-Niederreiter-Lam ve Heydtmann tarafından

elde edilen genellemedir. Ikinci uygulama fonksiyon cisimlerinin rasyonel asal bölen

sayılarını kullanarak cyclic kod adı verilen kodların minimum uzaklıkları hakkında

sonuçlara varma metodur. Burda özellike iki kod örneǧi incelenmiştir; binary Ham-

ming ve BCH kodları.

Anahtar kelimeler: Cebirsel fonksiyon cismi, kodlama teorisi, geometrik Goppa

kodu, cyclic kod.
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CHAPTER 1

INTRODUCTION

Goppa found the so-called geometric Goppa codes ( [1]) using algebraic function

fields over finite fields. Using the Riemann-Roch theorem, one could find or estimate

the parameters of these codes. Soon after Tsfasman-Vladut-Zink ( [7]) showed that

this construction yields an improvement on the Gilbert-Varshamov bound (Theorem

5.1.9 in [4]), a bound which was thought best possible by coding theorists. Since then

there has been an extensive research on possible applications of algebraic function

fields over finite fields to coding theory.

In this chapter we summarize basic notions and necessary results related to

function fields and coding theory. We do not prove any results. The reader is

referred to [6] for function fields and to [4] for coding theory.

1.1. Algebraic Function Fields

Let K be a field. An algebraic function field F/K of one variable over K is an

extension F/K such that F is a finite algebraic extension of K(x) for some element

x ∈ F which is transcendental over K. We will simply call F/K a function field. The

set K̃ := {z ∈ F | z is algebraic over K} is a subfield of F , since sums, products and
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inverses of algebraic elements are also algebraic. We have K ⊆ K̃ ⊂ F . The field

K̃ is called the field of constants of F/K. The extension K̃/K is a finite extension

and K is called the full constant field of F if K̃ = K.

Example 1.1.1 The simplest example of an algebraic function field is the rational

function field F = K(x), where x is a transcendental element over K. Any element

0 6= z ∈ K(x) has a unique representation

z = a
∏

i

pi(x)ni , (1.1)

where 0 6= a ∈ K, pi(x) ∈ K[x] are monic, pairwise distinct irreducible polynomials

and ni ∈ Z for all i.

If K is taken to be a perfect field, i.e. every algebraic extension is separable,

then an arbitrary function field F/K can be represented as F = K(x, y), where

K(x) is the rational function field and y is separable over K(x). Such a function

field F/K is said to be separably generated. Note that if K is a finite field or a field

of characteristics zero, every function field F/K is separably generated.

Definition 1.1.1 A valuation ring of a function field F/K is a ring O ⊆ F with

the following properties :

(i) K ( O ( F ,

(ii) for any z ∈ F , z ∈ O or z−1 ∈ O.

A valuation ring O of F/K is a principal ideal domain. In fact, O is also a local

ring, i.e. a ring which has a unique maximal ideal. This unique maximal ideal is,

clearly, the set {z ∈ O | z 6∈ O∗} where O∗ denotes the group of units of O.

Definition 1.1.2 A place P of the function field F/K is the maximal ideal of some

valuation ring O of F/K. Any element t ∈ P such that P = tO is called a prime

element for P .

We denote the set of places of a function field F/K by PF . This set is known

to be an infinite set for any function field. Furthermore, a valuation ring O and a

place P of F/K uniquely determine each other with the following relation:
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for 0 6= x ∈ F , x ∈ P ⇐⇒ x−1 6∈ O.

Therefore, the valuation ring associated with the place P ∈ PF is denoted by OP .

Another notion which is in one to one correspondence with valuation rings, and

hence with places, of a function field is the so-called discrete valuation.

Definition 1.1.3 A discrete valuation of F/K is a function v : F −→ Z ∪ {∞}

with the following properties :

(i) v(x) = ∞⇐⇒ x = 0.

(ii) v(xy) = v(x) + v(y) for any x, y ∈ F .

(iii) (Triangle inequality) v(x + y) ≥ min{v(x), v(y)} for any x, y ∈ F .

(iv) There exists an element z ∈ F with v(z) = 1.

(v) v(a) = 0 for any 0 6= a ∈ K.

Triangle inequality becomes an equality in some cases.

Lemma 1.1.1 (Strict Triangle Inequality) Let v be a discrete valuation of F/K

and x, y ∈ F with v(x) 6= v(y). Then

v(x + y) = min{v(x), v(y)}. (1.2)

Now we will see how to relate discrete valuations and valuation rings (or equiv-

alently places). If t is a prime element for P , then every 0 6= z ∈ F has a unique

representation z = tnu for some u ∈ O∗
P and integer n. The number n is independent

of the prime element chosen. Hence, we define vP (z) = n. It is not difficult to see

that this function is a discrete valuation . Conversely, let v be a discrete valuation

of F/K. The set {z ∈ F | v(z) > 0} determines a place P of F/K. Corresponding

valuation ring OP is {z ∈ F | v(z) ≥ 0}. Therefore, discrete valuations, valuation

rings, and places of a function field are in one to one correspondence.

Example 1.1.2 If F/K is a function field, where K̃ = K, then note that any

0 6= k ∈ K is contained in O∗
P for any P ∈ PF . Therefore, k = t0k is the unique

representation mentioned above. Hence, vP (k) = 0, for any P ∈ PF and any

k ∈ K − {0}.
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For a valuation ring OP , the quotient ring OP /P is a field, since P is maximal

in OP . This field is denoted by FP and it is called the residue class field of P . For

an element z ∈ OP , we denote the coset z + P ∈ OP /P by z(P ). For z ∈ F −OP ,

we set z(P ) = ∞. Hence, we have a map from F to FP ∪ {∞} via the assignment

z 7−→ z(P ) for any z ∈ F . Under this map, K ⊂ OP is mapped injectively into FP ,

i.e. there exists an isomorphic copy of K in FP . Therefore, FP can be viewed as a

K-vector space. In fact, FP is a finite dimensional vector space over K.

Definition 1.1.4 For a place P of F/K, the degree of P is defined by

deg P = dimK FP .

Definition 1.1.5 Let 0 6= z ∈ F and P ∈ PF . We say that P is a zero of z of order

m if vP (z) = m > 0 and P is a pole of z of order m if vP (z) = −m < 0.

For a nonzero element x ∈ F , there are finitely many zeros and poles. Note that

there are, in fact, no zeros or poles for an element 0 6= k ∈ K, by Example 1.1.2. We

try to explain the meanings of these fundamental concepts for the simplest function

field, that is the rational function field.

Example 1.1.3 Let F = K(x) be the rational function field over K. It is clear

that K is the full constant field of K(x)/K since every element in K(x) − K is

transcendental over K. For any monic, irreducible polynomial p(x) ∈ K[x], there is

an affine place Pp(x) of K(x) defined by

Pp(x) =

{
f(x)

g(x)

∣∣∣ f(x), g(x) ∈ K[x], p(x) | f(x), p(x) - g(x)

}
. (1.3)

Its corresponding valuation ring is given by

Op(x) :=

{
f(x)

g(x)

∣∣∣ f(x), g(x) ∈ K[x], p(x) - g(x)

}
(1.4)

We can describe the corresponding discrete valuation vP for P = Pp(x) ∈ PK(x) as

follows: Note that p(x) is a prime element for Pp(x). Any z ∈ K(x) − {0} can

be uniquely written as z = p(x)n(f(x)/g(x)) with n ∈ Z and f(x), g(x) ∈ K[x]

both of which are not divisible by p(x). Then vP (z) = n. The residue class field
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K(x)P = OP /P of P is isomorphic to K[x]/(p(x)). Therefore, deg P = deg(p(x)).

If p(x) is linear, i.e. p(x) = x − α for some α ∈ K, we denote its affine place by

Pα. In this case the degree of P = Pα is one. Another place of the rational function

field K(x) is the infinite place which is

P∞ =

{
f(x)

g(x)

∣∣∣ f(x), g(x) ∈ K[x], deg(f(x)) < deg(g(x))

}
. (1.5)

Valuation ring O∞ of the infinite place P∞ can be described by

O∞ :=

{
f(x)

g(x)

∣∣∣ f(x), g(x) ∈ K[x], deg(f(x)) ≤ deg(g(x))

}
. (1.6)

The element 1/x is a prime element for P∞, and corresponding discrete valuation v∞

for the infinite place is given by v∞(f(x)/g(x)) = deg(g(x)) − deg(f(x)). Another

fact is that deg P∞ = 1. All places of the rational function field K(x)/K are only the

infinite place P∞ and the affine places Pp(x) for irreducible polynomials p(x) ∈ K[x].

Therefore, the set of degree one places of K(x)/K is in one to one correspondence

with K
⋃
{∞}.

From here on F/K will always denote an algebraic function field of one variable

such that K is the full constant field of F/K, unless otherwise specified. We will

further assume that K is a perfect field. For our interests later, K will be a finite

field which is perfect.

Theorem 1.1.2 (Weak approximation Theorem) Let F/K be a function field,

P1, P2, ..., Pn be pairwise distinct places of F/K , x1, x2, ..., xn ∈ F and r1, r2, ...rn ∈

Z. Then there exists x ∈ F such that

vP (x− xi) = ri for i=1,2,...,n (1.7)

Definition 1.1.6 The (additively written) free abelian group which is generated

by the places of F/K is denoted by DF and it is called the divisor group of F/K.

The elements of DF are called divisors of F/K. In other words, a divisor is a formal

sum

D =
∑

P∈PF

npP, (1.8)

where nP ∈ Z and nP = 0 for almost all P ∈ PF .
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For Q ∈ PF and D =
∑

P∈PF
npP , we define vQ(D) = nQ. Note that vQ(D) = 0

for almost all Q ∈ PF , by definition of a divisor. This allows us to define a partial

order on the divisor group DF via the relation D1 ≤ D2 ⇔ vP (D1) ≤ vP (D2) for

all P ∈ PF . We call D ∈ DF a positive divisor if D ≥ 0. We extend the notion

of degree of a place to the divisor group by setting deg D = deg(
∑

P∈PF
npP ) =∑

P∈PF
np deg P =

∑
P∈PF

vP (D) deg P . Note that deg D is an integer.

We know that a nonzero element x ∈ F has finitely many zeros and poles. Denote

by Z (respectively N) the set of zeros (poles) of x in PF . Then we define the zero

divisor of x by

(x)0 :=
∑
P∈Z

vP (x)P, (1.9)

and the pole divisor of x by

(x)∞ :=
∑
P∈N

−vP (x)P. (1.10)

Note that both (x)0 and (x)∞ are positive divisors. Finally, we define the principal

divisor of x ∈ F by

(x) = (x)0 − (x)∞. (1.11)

An important fact is that deg(x)0 = deg(x)∞ = [F : K(x)] < ∞, if x ∈ F − K.

This means that any nonconstant function has as many poles as zeros, counted with

multiplicities. For a nonzero constant function k ∈ K, (k)0 = (k)∞ = (k) = 0 by

Example 1.1.2. We now associate an important space to a divisor of F/K.

Definition 1.1.7 For a divisor A ∈ DF we set

L(A) := {x ∈ F | (x) ≥ −A} ∪ {0}. (1.12)

L(A) is a finite dimensional K-vector space for any A ∈ DF . It is called the

Riemann-Roch space of A and we define the dimension of a divisor to be dim A :=

dimK L(A). If deg A < 0, then we have dim A = 0. It is also easy to see that

dim 0 = 1. Calculating the dimension of a divisor is a difficult problem in general.

The main tool for this is the Riemann-Roch Theorem, which will be stated after

more preperation.
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Definition 1.1.8 The genus of F/K is defined by

g(F ) = max{deg A− dim A + 1| A ∈ DF}. (1.13)

The genus of the rational function field is zero. In general, genus is a nonnegative

integer (if A = 0, then deg A = 0 and dim A = 1). The following genus formula for

the so-called Artin-Schreier extensions will be used in Chapter 3.

Proposition 1.1.3 Let F = Fqm(x, y) be defined by yq − y = f(x), where m > 1

and f(x) ∈ Fqm [x] such that gcd(deg f, charFq) = 1. Then the genus of F is

g =
(q − 1)(deg f − 1)

2
.

Here, we also mention a result of great importance which will be used in Chapter 3.

Theorem 1.1.4 (Hasse-Weil Bound) Let F be a function field over Fq of genus

g and let N denote the number of rational places of F . Then

| N − (q + 1) |≤ 2g
√

q.

For any A ∈ DF , the quantity i(A) = dim A− deg A + g − 1 is called the index

of speciality of A. Index of speciality of a divisor of a function field is always a

non-negative integer.

Definition 1.1.9 An adele of F/K is a mapping

α : PF → F

P 7→ αP

such that αP ∈ OP for almost all P ∈ PF .

An adele can be regarded as an element of the direct product
∏

P∈PF
F . We

will use the notation α = (αP )P∈PF
for an adele. The set of all adeles of F/K

forms a K-vector space and it is called the adele space of F/K, and denoted by

AF . The principal adele of an element x ∈ F is defined to be the adele all of

whose components equal to x. This way we can view F as a subspace of AF .
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Embedding of F into AF this way is called the diagonal embedding. We can extend

the valuation vP to AF by setting vP (α) := vP (αP ). For any A ∈ DF , the set

AF (A) := {α ∈ AF | vP (α) ≥ −vP (A) for all P ∈ PF} is a K-subspace of AF .

Definition 1.1.10 A Weil differential of F/K is a K-linear map ω : AF → K

vanishing on AF (A) + F for some divisor A ∈ DF .

The set ΩF := {ω | ω is a Weil differential of F/K} is called the module of Weil

differentials of F/K. Note that ΩF is a K vector space. For A ∈ DF we let

ΩF (A) := {ω ∈ ΩF | ω vanishes on AF (A) + F}

It is easy to see that ΩF (A) is a K-subspace of ΩF .

Lemma 1.1.5 For A ∈ DF we have

dim ΩF (A) = i(A). (1.14)

The following definition gives ΩF the structure of a vector space over F .

Definition 1.1.11 For x ∈ F , α ∈ AF and ω ∈ ΩF we set

(xω)(α) = ω(xα) (1.15)

where (xα) denotes the adele obtained by multiplying each component of α by

x ∈ F .

For any Weil differential ω of F/K there exists unique divisor (ω) of F/K such

that for every divisor A ∈ DF with A ≤ (ω), ω vanishes on AF (A)+F . This unique

divisor called the canonical divisor of ω. It follows immediately from this definition

that ΩF (A) = {ω ∈ ΩF | ω = 0 or (ω) ≥A} for A ∈ DF . The degree of a canonical

divisor is 2g − 2, and the dimension is g.

Theorem 1.1.6 Let A be an arbitrary divisor and W = (ω) a canonical divisor of

F/K. Then the mapping

α : L(W − A) → ΩF (A)

x 7→ xω

8



is an isomorphism of K-vector spaces.

Now we can state one of the most important theorems in the theory of algebraic

function fields.

Theorem 1.1.7 (Riemann-Roch Theorem) Let W be a canonical divisor of

F/K. Then for any A ∈ DF , we have

dim A = deg A + 1− g + dim(W − A). (1.16)

Note that dim A ≥ deg A+1−g in general. It follows that if deg A ≥ 2g−1 then

dim A = deg A+1−g. This is because deg(W −A) < 0 and hence dim(W −A) = 0.

In the following definition another embedding of the F into AF will be introduced

apart from the the diagonal embedding defined before. This leads to the definition

of a local component of a Weil differential.

Definition 1.1.12 (a) For x ∈ F, let iP (x) be the adele whose P -component is x,

and all other components are 0.

(b) For a Weil differential ω ∈ ΩF its local component at P is defined as

wP : F → K

x 7→ w(iP (x))

Lemma 1.1.8 Let ω ∈ ΩF and α = (αP ) ∈ AF . Then ωP (αP ) 6= 0 for at most

finitely many places P, and

ω(α) =
∑

P∈PF

ωP (αP ) (1.17)

In particular, ∑
P∈PF

ωP (1) = 0. (1.18)

The following is a useful lemma second part of which says that a Weil differential is

uniquely determined by any of its local components.
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Lemma 1.1.9 (a) Let ω 6= 0 be a Weil differential of F/K and P ∈ PF . Then

vP (ω) = max{r ∈ Z | ωP (x) = 0 for all x ∈ F with vP (x) ≥ −r}. (1.19)

(b) If ω, ω
′ ∈ ΩF and ωP = ω

′
P for some P ∈ PF , then ω = ω

′
.

Now we define algebraic extensions of function fields. We call a function field

F ′/K ′ an algebraic extension of F/K if F ′ ⊇ F is an algebraic field extension with

K ′ ⊇ K. If [F ′ : F ] < ∞, this algebraic extension is called a finite extension. For

any finite extension, we have [K ′ : K] < ∞. Let P ∈ PF and P ′ ∈ PF ′ . If P ⊆ P ′,

then a place P ′ ∈ PF ′ is said to lie over P ∈ PF . We also say P ′ is an extension of

P or P lies under P ′ and we denote this relation by P ′ | P .

Theorem 1.1.10 Let F ′/K ′ be an algebraic extension of F/K. Let P (respectively

P ′) be a place of F/K (respectively F ′/K ′) and let OP ⊆ F (respectively OP ′ ⊆ F ′)

be the corresponding valuation ring. Suppose that vP , vP ′ are corresponding discrete

valuations. Then the following are equivalent:

(a) P ′ | P .

(b) OP ⊆ OP ′.

(c) There exists an integer e ≥ 1 such that vP ′(x) = evP (x) for all x ∈ F .

If P ′ | P , we have P = P ′ ∩ F and OP = OP ′ ∩ F . An important fact is that any

place P ∈ PF has finitely many places in PF ′ over it.

The number in part (c) can be defined as follows: If t ∈ F is a prime for P , then

e = vP ′ (t).

Definition 1.1.13 Let F ′/K ′ be an algebraic extension of F/K, and let P ′ ∈ P′F
be a place of F ′/K ′ lying over P ∈ PF .

(i) The integer e(P ′|P ) := e with vP ′(x) = evP (x) for any x ∈ F is called the

ramification index of P ′ over P .

(ii) f(P ′|P ) := [F ′
P ′ : FP ] is called the relative degree of P ′ over P .

An important fact related to the numbers e and f is:∑
P
′ |P

e(P
′ | P )f(P

′ | P ) = [F
′
: F ].
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The ramification index e(P ′|P ) is an integer which is greater than or equal to 1. We

say that P ′|P is unramified if e(P ′|P ) = 1. Otherwise, i.e. e(P ′|P ) > 1, we say P ′|P

is ramified. We say that P is ramified (respectively, unramified ) in F ′/F if there

is at least one P ′ ∈ PF over P such that P ′|P is ramified (respectively, if P ′|P is

unramified for all P ′|P ). P is totally ramified in F ′/F if there is only one extension

P ′ ∈ PF ′ of P and the ramification index is e(P ′|P ) = [F ′ : F ]. The following

definition allows us to define homomorphism from divisor group DF to DF ′

Definition 1.1.14 Let F
′
/K

′
be an algebraic extension of F/K. For a place

P ∈ PF , we define its conorm by

ConF ′/F (P ) =
∑
P ′ |P

e(P
′ | P )P

′
. (1.20)

The conorm map can be extended to homomorphism from DF to DF ′ by setting:

ConF ′/F (
∑

nP P ) =
∑

nP ConF ′/F (P ) (1.21)

Now we will associate any Weil differential of F/K with a Weil differential of

F
′
/K

′
, where F

′
/F is finite separable extension. For this we need to consider the

set AF ′/F = {α ∈ AF ′ | αP ′ = αQ′ whenever P
′ ∩ F = Q

′ ∩ F}. This set is a F
′

subspace of AF ′ . Note that trace mapping TrF ′/F : F
′ → F is nondegenerate since

F
′
/F is separable. This map can be extended to AF ′/F as

(TrF
′
/F (α))P := TrF

′
/F (αP

′ ) (1.22)

for α ∈ AF ′/F , where P
′
is any place lying over P .

Theorem 1.1.11 In accordance with the definition above, for every Weil differen-

tial ω of F/K, there exists a unique Weil differential ω
′
of F

′
/K

′
such that

TrK
′
/K(ω

′
(α)) = ω(TrF

′
/F (α)) for all α ∈ AF

′
/F (1.23)

This unique Weil differential is called the cotrace of ω in F
′
/F , and denoted by

CotrF ′/F (ω). The map CotrF ′/F (ω) can be constructed explicitly . For this, let’s
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consider the dual space K∗ = {ϕ : K
′ → K | ϕ is K-linear} of K

′
over K. If we set

λϕ(u) = ϕ(λu) for ϕ ∈ K∗ and λ, u ∈ K
′
, then K∗ is a K

′
-vector space of dimension

1. TrK′/K is also an element of K∗. So we can regard it as a K
′
-basis for K∗, which

implies that there exists a unique λ ∈ K
′

such that ϕ = λTrK
′
/K . Keeping this

fact in mind, we can state the following lemma which gives explicit construction of

Cotrace.

Lemma 1.1.12 Let F
′
/K

′
be a finite separable extension of function field F/K,

and consider ω ∈ ΩF . Define ω1 = ωoTrF ′/F : AF ′/F → K and ω2 : AF ′ →

K such that ω2(α
′
) = ω1(α) where α

′
= α + β such that α ∈ AF ′/F and β ∈

AF ′ (ConF ′/F ((ω))). For α
′ ∈ AF ′ define ϕα′ ∈ K∗ by ϕα′ (µ) = ω2(µα

′
) where

µ ∈ K
′
. Let λα′ ∈ K

′
such that ϕα′ = λα′TrK′/K. Then

CotrF ′/F (ω)(α
′
) = λα′ (1.24)

Now we define constant field extensions of function fields. For this we consider

the function field F/K where K is assumed to be perfect. Let K
′
/K be an algebraic

extension. The compositum F
′
:= FK

′
is a function field over K

′
, and it is called

the constant field extension of F/K.

Lemma 1.1.13 Let F = FK
′

be an algebraic constant field extension of F/K.

Then we have:

(a) K
′
is the full constant field of F

′
.

(b) Any subset of F that is linearly independent over K remains so over K
′
.

(c) [F : K(x)] = [F
′
: K

′
(x)] for any x ∈ F\K.

Next theorem states some of the most important properties of constant field

extensions.

Theorem 1.1.14 In an algebraic constant field extension F = FK
′
of F/K, the

following holds:

(a) F
′
/F is unramified, that is, e(P

′ | P ) = 1 for all P ∈ PF and all P
′ | P .

(b) F
′
/K

′
has the same genus as F/K.
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(c) For any divisor A ∈ DF , we have deg(ConF ′/K′ (A)) = degA.

(d) If W is a canonical divisor of F/K then ConF ′/F (W ) is also a canonical divisor

of F
′
/K

′
.

(e) The residue class field F
′

P
′ of any place P

′ ∈ PF ′ is the compositum FP K
′
, where

P = P
′ ∩ F.

(f) For any ω ∈ ΩF we have ConF ′/F ((ω)) = (CotrF ′/F (ω)).

When the base field is finite, we have:

Lemma 1.1.15 Consider a function field F/Fq and let Fr = FFqr/Fqr be a con-

stant field extension of F/Fq. Then, for any place P ∈ PF of degree m, we have

ConFr/F (P ) = P1 + ...+Pd with d = gcd(m, r) pairwise distinct places Pi ∈ PFr and

deg Pi = m/d.

An extension F
′
/K

′
of F/K is said to be Galois if F

′
/F is a Galois extension

of finite degree. The following lemma is about the action of automorphisms in

Gal(F
′
/F ) on the places of the function field F

′
/K

′
.

Lemma 1.1.16 Let F
′ ⊇ F be an algebraic extension of function fields, P ∈ PF

and P
′ ∈ PF ′ with P

′ | P . Consider an automorphism σ of F
′
/F. Then σ(P

′
) =

{σ(z) | z ∈ P
′} is a place of F

′
, and we have

(a) vσ(P ′ )(f) = vP ′ (σ−1(f)) for all f ∈ F
′

(b) σ(P
′
) | P

(c) The Galois group acts transitively on the set of extensions of P , i.e. if P1, P2 ∈

PF ′ such that P1 | P and P2 | P , then P2 = σ(P1) for some σ ∈ Gal(F
′
/F ).

We finish the introduction of algebraic function fields with the notion of differ-

entials and how these are related to the notion of Weil differentials. For this we

begin with the following definition.

Definition 1.1.15 Let M be a module over F . A mapping δ : F → M is said to

be a derivation of F/K if δ is K-linear and satisfies the product rule:

δ(uv) = uδ(v) + vδ(u), for any u, v ∈ F. (1.25)
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An element x ∈ F is called a separating element of F/K if F/K(x) is finite

separable extension. The following lemma helps us to determine whether an element

of a function field is separating or not.

Lemma 1.1.17 Let F/K be a function field where K is a perfect field of charac-

teristic p. Then any element z ∈ F satisfying vP (z) 6= 0 (mod p) for some place

P ∈ PF is a separating element of F/K.

Suppose x is a separating element of F/K and that δ1, δ2 : F → F are derivations

of F/K with δ1(x) = δ2(x). Then δ1 = δ2, i.e. a derivation is uniquely determined

by its value on a separating element. For any separating element x of F/K there

exist a unique derivation δ : F → F such that δ(x) = 1. This unique deriva-

tion of F/K is called the derivation with respect to x and denoted by δx. The set

DerF := {η : F → F | η is a derivation of F/K} is called the module of derivations

of F/K. For η1, η2 ∈ DerF we define

(η1 + η1)(z) := η1(z) + η2(z) and (uη1)(z) := uη1(z) for η1, η2 ∈ DerF , z, u ∈ F.

For any separating element x of F/K and η ∈ DerF , we have (η(x)δx)(x) =

η(x)δx(x) = η(x). So DerF is a one dimensional F - module. Furthermore, if x and

y are two separating elements of F/K, then δy = δy(x)δx. This is called the the

chain rule. Now the notion of the differential follows.

Definition 1.1.16 (a) On the set Z := {(u, x) ∈ F × F | x separating } we define

a relation ∼ by

(u, x) ∼ (υ, y) ⇐⇒ υ = uδy(x). (1.26)

By the chain rule, ∼ is a equivalence relation.

(b) The equivalence class of (u, x) with respect to ∼ is called a differential of F/K

and denoted by udx. We denote the equivalence class of (1, x) simply by dx.

Let 4F := {udx | u ∈ F and x ∈ F is separating} be the set of all differentials.

For a separating element t ∈ F and udx, υdy ∈ 4F , we have udx = (uδt(x))dt and

14



υdy = (υδt(y))dt. So, we define:

udx+υdy := (uδt(x)+υδt(y))dt and z(udx) := (zu)dx for udx, υdy ∈ 4F , z ∈ F.

By these definitions,4F turns out to be an F -module. In fact,4F is a 1-dimensional

F -module just like ΩF .

We have defined the notion of discrete valuation of a function field in Definition.

1.1.3. We can define a discrete valuation on any field F . In general, it is a map

v : F → Z ∪ {∞} satisfying properties (i)-(iv) in Definition. 1.1.3. Given a field F

and a discrete valuation v on F , we call the pair (F, v) a valued field. We say that

a sequence (xn)n≥0 ∈ F is convergent if there exists an element x ∈ F such that for

any c ∈ R there is an index n0 such that v(x−xn) ≥ c whenever n ≥ n0. A sequence

(xn)n≥0 is called a cauchy sequence if for any c ∈ R there is an index n0 such that

v(xm − xn) ≥ c whenever n, m ≥ n0. It can be easily verified that if a sequence is

convergent, then its limit is unique. Also, all convergent sequences are cauchy but

the converse is not true in general. A valued field is said to be complete if all cauchy

sequences are convergent. The valued field (F̃ , ṽ) is said to be a completion of the

valued field (F, v) if

(a) F ⊆ F̃ and v is restriction of ṽ to F ,

(b) F̃ is complete with respect to ṽ,

(c) F is dense in F̃ .

It can be shown that a completion can be found for every valued field (F, v). For

a place P of a function field F/K, (F, vp) is a valued field. The completion of F

with respect to vp is called the P-adic completion of F . We denote this completion

by F̃P and the valuation of F̃P by vP .

Theorem 1.1.18 Let P ∈ PF be a place of degree one and t ∈ F be a P-prime

element. Then any element z ∈ F̃P has a unique representation of the form

z =
∞∑

i=n

ait
i with n ∈ Z and ai ∈ K. (1.27)

This is called the P -adic power series expansion of z with respect to t.
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Conversely, if (ci)i≥n is a sequence in K, then the series
∑∞

i=n cit
i converges in

F̃P and we have

vP

( ∞∑
i=n

cit
i
)

= min{i | ci 6= 0}. (1.28)

Definition 1.1.17 Assume P is a place of F/K of degree one, and let t ∈ F be a

P -prime element. If z ∈ F has the P -adic expansion z =
∑∞

i=n ait
i with n ∈ Z and

ai ∈ K, we define the residue of z with respect to P and t by

resP,t(z) = a−1. (1.29)

Likewise, we can define the residue of a differential ω ∈ 4F with respect to a place

P of degree one. For this, we choose a P -prime element t ∈ F and write ω = udt

with u ∈ F . Note that we can write ω in this form since 4F is a one dimensional

F -module. Then we define residue of ω at P by

resP (ω) = resP,t(u). (1.30)

It is easy to see that (1.30) is independent of the choice of prime element t for P.

Lemma 1.1.19 Consider the rational function field K(x). There exists a unique

Weil differential η ∈ ΩK(x) with (η) = −2P∞ and ηP∞(x−1) = −1.

Now we will consider the map δ : F → ΩF which is defined as

δ : F → ΩF (1.31)

x 7→ δ(x),

where δ(x) = CotrF/K(x)(η) for a separating element x of F/K and δ(x) := 0 if x is

not a separating element.

Theorem 1.1.20 Let F/K be an algebraic function field over the perfect field K

and x ∈ F be separating element. Then

(a) The map δ defined above is a derivation of F/K.

(b) The map
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µ : 4F → ΩF

zdx → zδ(x)

is an isomorphism of differential module 4F onto ΩF .

As a consequence of this theorem, we can identify the differential module 4F

with the module ΩF of Weil differentials of F/K, where K is a perfect field. So any

differential ω = zdx ∈ 4F is the same as the Weil differential ω = zδ(x) ∈ ΩF ,

where x is separating, z ∈ F, and δ is defined as in (1.31).

1.2. Coding Theory

Let Fq be a finite field with q elements. We consider the n-dimensional vector

space Fn
q . For a = (a1, a2, ...., an) and b = (b1, b2, ..., bn) ∈ Fn

q , let

d(a, b) =| {i | ai 6= bi} | . (1.32)

This is called the Hamming Distance on Fn
q . We define the weight of a ∈ Fn

q as

w(a) =| {i | ai 6= 0} |= d(a, 0). (1.33)

A q-ary linear code C is a linear subspace of Fn
q . Elements of C are called

codewords. We call n the length of C and dimFq C the dimension of C. The minimum

distance d(C) of a code C 6= 0 is defined as

d(C) = min{d(a, b) | a, b ∈ C, a 6= b} = min{w(c) | c 6= 0}. (1.34)

So, an [n, k, d] code is a code with length n, dimension k and minimum distance d.

The dual code of C, denoted by C⊥, is the orthogonal of C with respect to the

usual inner product on Fn
q , i.e.

C⊥ = {(a1, ..., an) ∈ Fn
q |

∑
i

aici = 0 for all (c1, ..., cn) ∈ C}.

17



Obviously, dim C⊥ = n− dim C.

The weight distribution of an [n, k] code is the (n+1)−tuple (A0, ...An) given by

Ai :=| {c ∈ C | w(c) = i} | .

It is often given by a polynomial WC(X) ∈ Z[X] which is called the weight enumer-

ator :

WC(X) =
n∑

i=0

AiX
i

The following theorem gives a relation between the weight distribution of the

codes C and its dual C⊥.

Theorem 1.2.21 (The MacWilliams Identity) Let C be a q-ary code of length

n with weight enumerator WC(X). Then,

WC⊥(X) = q−k(1 + (q − 1)X)nWC

( 1−X

1 + (q − 1)X

)
.

A q-ary linear code C of length n which is closed under cyclic shift is called a

cyclic code, i.e.

(c0, ..., cn−1) ∈ C =⇒ (cn−1, c0, ..., cn−2) ∈ C.

In general, one assumes that gcd(n, q) = 1. Note the following Fq-linear isomor-

phism:

Fn
q → R = Fn

q [t]/(tn − 1)

(c0, ..., cn−1) 7→
n−1∑
i=0

cit
i

Under this correspondence, a cyclic code can be viewed a subset of R. In fact, it

is an ideal in the quotient ring. Since R is a principal ideal ring, C has a unique

generating polynomial g(x), called the generator polynomial of C. An important

fact is that dim C = n− deg(g(t)).
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CHAPTER 2

GENERALIZED GEOMETRIC GOPPA CODES

In this chapter, we will first present Goppa’s construction [1] of the codes using

algebraic function fields. In his construction, Goppa used rational places. The codes

could be defined both in terms of Riemann-Roch spaces or spaces of Weil differen-

tials. Later, the notion of generalized geometric Goppa codes were introduced by

Xing-Niederreiter-Lam [9] using places of arbitrary degree, and Heydtmann [2] in-

vestigated the duals of the generalized codes. These works are explained in Sections

2 and 3.

2.1. Geometric Goppa Codes

We refer to Section II.2 in [6] for the proofs of the results in this section. We fix

some notation:

F/Fq is an algebraic function field of genus g,

P1, P2, .., Pn are pairwise distinct rational places of F/Fq,

D = P1 + P2... + Pn,

G is a divisor of F/Fq with SuppG ∩ SuppD = ∅,
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Now we consider the map

α : L(G) → Fn
q (2.1)

f 7→ (f(P1, f(P2), ..., f(Pn)). (2.2)

Since f ∈ L(G) and SuppG ∩ SuppD = ∅, vPi
(f) ≥ 0 and this definition makes

sense. The image of α is called Geometric Goppa Code associated with the divisors

D and G. It is denoted by CL(D, G). One can calculate its parameters k and d by

means of Riemann-Roch theorem (Theorem 1.1.7).

Theorem 2.1.1 CL(D, G) is a q-ary [n, k, d] code with parameters

k = dim G− dim(G−D) and d ≥ n− deg G. (2.3)

If deg G < n then the map α in (2.1) is injective and

k = dim G ≥ deg G + 1− g. (2.4)

Furthermore, k = deg G + 1− g if deg G ≥ 2g − 1.

Another code associated with the divisors G and D is introduced now. Let G

and D = P1 +P2 + ...+Pn be divisors as before. Then the code CΩ(D, G) is defined

as

CΩ(D, G) = {(ωP1(1), ωP2(1), ..., ωPn(1)) | ω ∈ ΩF (G−D)}. (2.5)

The following theorem is analogous to Theorem 2.1.1.

Theorem 2.1.2 CΩ(D, G) is a q-ary [n
′
, k

′
, d

′
] code with parameters

k
′
= i(G−D)− i(G) and d

′ ≥ deg G− (2g − 2). (2.6)

If deg G > 2g − 2, then we have

k
′
= i(G−D) ≥ n + g − 1− deg G. (2.7)

Furthermore, k
′
= n + g − 1− deg G if 2g − 2 < deg G < n.
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There is a close relation between CΩ(D, G) and CL(D, G), which is that they are

dual to each other with respect to canonical inner product on Fn
q . That is,

CL(D, G) = CΩ(D, G)⊥. (2.8)

Furthermore, CΩ(D, G) can be written as CL(D, H) for a suitable divisor H. The

following lemma states how we choose H.

Lemma 2.1.3 (a) Let F/K be an algebraic function field. Then there exists a Weil

differential η such that vPi
(η) = −1 and ηPi

(1) = 1 for i = 1, 2, ..., n.

(b) If η is the Weil differential as above and H = D −G + (η), then

CΩ(D, G) = CL(D, G)⊥ = CL(D, H). (2.9)

2.2. Generalization

In order to define the generalization of geomtric Goppa codes, we first need to

extend the notion of a code, which was defined in Chapter 1, Section 2.

Let Fq be a finite field with q elements, and k1, ..., kn be natural numbers. Let∏n
i=1 Fqki denote the cartesian product of extensions of Fq. A code C (over a mixed

alphabet) is an Fq- subspace of
∏n

i=1 Fqki . The length of C is n and the dimension k

of C is dimFq C. Note that k > n could happen in this case, unlike the situation in

the usual linear codes. For a = (a1, ..., an), b = (b1, ..., bn) ∈
∏n

i=1 Fqki , we define the

distance of a to b by

d(a, b) =| {i | ai 6= bi} |,

the weight of a by

w(a) =| {i | ai 6= 0} |,

and the minimum distance of C by

d = min{w(a) | a 6= 0}.
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Note that when k1 = k2 = ... = kn = 1, all these definitions reduce to the case of the

usual linear codes over Fq. The context will make it clear whether we are dealing

with a code in the sense of Chapter 1 or as above (over a mixed alphabet).

We have seen in the previous section that classical geometric Goppa codes are

constructed via rational places of a function field. Unlike these codes, generalized

geometric Goppa codes are constructed using places of arbitrary degree of a function

field F/K. Before the construction, let’s fix some notation which will be valid for

the rest of this chapter:

F/Fq is an algebraic function field of genus g,

P1, P2, .., Pn are pairwise distinct places of F/Fq,

ki = degPi for 1 ≤ i ≤ n,

D = P1 + P2... + Pn,

G is a divisor of F/Fq with SuppG ∩ SuppD = ∅.

Now we define generalized geometric Goppa code as follows.

Definition 2.2.1 The image of the following map is called a generalized geometric

Goppa code associated with the divisor D and G.

α : L(G) →
n∏

i=1

Fqki (2.10)

f 7→ (f(P1), ..., f(Pn)) (2.11)

Note that this definition makes sense: for f ∈ L(G), we have vPi
(f) ≥ 0 because

suppG ∩ suppD = ∅, and for a place P of F of degree ki and a function f ∈ F

with vp(f) ≥ 0, the residue class f(P ) of f in the residue class field of P can be

associated with an element of Fqki . The image of α is obviously a Fq vector space.

The following lemma states the parameters of this code. Note the similarity of the

results to those of Theorem 2.1.1.

Lemma 2.2.4 CL(D, G) is an [n, kL, dL] code with the parameters

kL = dim G− dim(G−D) and dL ≥ n− deg G. (2.12)

In addition, if deg G < N where N =
∑n

i=1 ki, then kL = dim G ≥ deg G − g + 1,

and consequently we have kL = deg G− g + 1 if 2g − 2 < deg G < N.
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Proof : For the proof we consider the kernel of the associated mapping.

Ker(α) = {f ∈ L(G) | f(Pi) = 0 for i = 1, ..., n}

= {f ∈ L(G) | f ∈ Pi for i = 1, ..., n}

= {f ∈ L(G) | vPi
(f) > 0 for i = 1, ..., n}

= L(G−D).

So, we have dim CL(D, G) = dim G− dim(G−D). If deg G < deg D then deg(G−

D) < 0 and dim(G−D) = 0. Therefore, kL = dim G ≥ deg G− 1 + g with equality

holding if 2g − 2 < deg G < N by the Riemann-Roch Theorem (Theorem 1.1.7).

For the minimum distance, let us take 0 6= f ∈ L(G) with w(α(f)) = dL. Then

there exists n − dL places Pi1 , ..., Pin−dL
such that f(Pij) = 0 for 1 ≤ j ≤ n − dL.

Therefore,

0 6= f ∈ L(G− (Pi1 + Pi2 ... + Pin−dL
)).

Since it is a non-zero element, we have

0 ≤ deg(G− (Pi1 + Pi2 ... + Pin−dL
)) = deg G−

n−dL∑
j=1

kij

= deg G−
n−dL∑
j=1

(kij − 1)− n + dL

which yields,

dL ≥ n− deg G +

n−dL∑
J=1

(kij − 1) ≥ n− deg G.

2

Xing, Nedereiter and Lam were the first to introduce generalization of classical

geometric Goppa codes using higher degree places (see [9]). Their generalization

via a q-ary code in the sense of Chapter 1 and can be recovered from our general

code (over mixed alphabet) definition. For this, let C1, ..., Cn be q-ary linear code

with parameters [ni, ki, di] for i = 1, ..., n. Since dim Ci = ki, Fqki and Ci are

Fq−isomorphic for all i. Let π1, ..., πn be fixed isomorphisms from Fqki to Ci ⊆ Fni
q .
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This way, an element of Fqki can be viewed as an element of Ci, i.e. ni-tuple over

Fq for each i. This idea is called concetenation in coding theory. Now the Xing

-Nedereiter-Lam construction can be given.

Definition 2.2.2 The image of the following map is called the concatenated gener-

alized geometric Goppa code:

α : L(G) → Fm
q

f → (π1(f(P1)), ..., πn(f(Pn)))

where m =
∑n

i=1 ni.

We denote this concatenated code by C(P1, ..., Pn; G; C1, ..., Cn).

Theorem 2.2.5 If deg G <
∑n

i=1 ki then C(P1, ..., Pn; G; C1, ..., Cn) is a q-ary [m, k, d]

code with

k ≥ deg G− g + 1, equality holding if deg G ≥ 2g − 1

and

d ≥
s∑

i=1

di − deg G−max
{ ∑

i∈R

(di − ki) | R ⊆ {1, ...n}
}
,

where the empty sum is defined to be 0 as usual.

Proof : We consider the kernel of α again.

Ker(α) = {f ∈ L(G) | πi(f(Pi)) = 0 for 1 ≤ i ≤ n}

= {f ∈ L(G) | f(Pi)) = 0 for 1 ≤ i ≤ n} (πi’s are isomorphisms)

= L(G−D).

Since deg G < deg D we have dim(G − D) = 0, which implies k = dim G. So, it

is again an immediate consequence of Riemann-Roch Theorem that the dimension

k satisfies k = dim G ≥ deg G − g + 1 with equality if deg G ≥ 2g − 1. For the
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minimum distance, let’s take an arbitrary nonzero function f ∈ L(G). We define

the following subset of {1, ..., n} :

R = {i | f(Pi) = 0} (2.13)

Let T be complement of R in {1, ..., n}. Then,

w(α(f)) =
∑
i∈T

w(πi(f(Pi))) ≥
∑
i∈T

di. (2.14)

( 2.13) implies that f ∈ L(G−
∑

i∈R Pi). So we have

deg G ≥
∑
i∈R

deg Pi =
∑
i∈R

ki =
∑
i∈R

di −
∑
i∈R

(di − ki). (2.15)

Adding the equations (2.14) and (2.15) we get

w(α(f)) + deg G ≥
n∑

i=1

di −
∑
i∈R

(di − ki).

Taking the maximum of both sides over all the subsets of {1, ..., n}, we obtain the

desired result. 2

An immediate corollary of this theorem is that if we have ki ≥ di for 1 ≤

i ≤ n with the inequality deg G <
∑n

i=1 ki, then the minimum distance d of the

C(P1, ..., Pn; G; C1, ..., Cn) satisfies

d ≥
n∑

i=1

di − deg G.

2.3. Dual of the Generalized Geometric Goppa Code

We know that the dual of the classical geometric Goppa code CL(D, G), which is

constructed via rational places, is CΩ(D, G) (2.8). The code CΩ(D, G) was defined

as an evaluation of local components of Weil differentials of ΩF (G−D) at rational
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places. Now we will define a new code which is again denoted by CΩ(D, G) without

restrictions on the degrees of the places P1, ..., Pn.

As before, let P1, ..., Pn be arbitrary places of F/Fq with degrees ki, for 1 ≤ i ≤ n,

and let Fq` be smallest field containing all Fqki for i = 1, .., n. We will consider

the constant field extension F
′

= FFq`/Fq` . We will also consider the conorms

D
′

= ConF
′
/F (D) and G

′
= ConF

′
/F (G). Since suppG ∩ suppD = ∅ the code

CL(D
′
, G

′
) ⊆ FN

q` is a q`-ary classical geometric Goppa code, where N =
∑n

i=1 ki. We

will also need the constant field extensions Fki
= FFqki/Fqki and the corresponding

conorms Dki
= ConFki

/F (D) and Gki
= ConFki

/F (G) for i = 1, ...n.

Throughout the section, we let P ∗
i be a fixed place of Fki

/Fqki above Pi for

i ≤ 1 ≤ n. Since deg P ∗
i = 1, the residue class fields of these places FPi

and FkiP ∗
i

satisfy FPi
∼= FkiP ∗

i

∼= Fqki . If Q∗
i ∈ PFki

is an arbitrary place above Pi then there

exists only one place of degree 1 in F
′
above Q∗

i , which will be denoted by Q
′
i. Then

the residue class fields FPi
, FkiP ∗

i
can be considered as subfields of the residue class

field of P
′
i , which implies we can identify f(Pi) = f(P ∗

i ) = f(P
′
i ) ∈ Fqki for any

f ∈ L(G) ⊆ L(Gki
) ⊆ L(G

′
). Keeping these facts in mind we have the following

construction.

Definition 2.3.3 We define the code CΩ(D, G) as follows:

CΩ(D, G) = {(CotrFk1
/F (ω)P ∗

1
, ..., CotrFkn/F (ω)P ∗

n
) | ω ∈ ΩF (G−D)}.

CΩ(D, G) is an Fq subspace of
∏n

i=1 Fqki , i.e. a code over mixed alphabet. The

following lemma gives us information about the parameters of this code.

Lemma 2.3.6 CΩ(D, G) is an [n, kΩ, dΩ] code with parameters,

kΩ = i(G−D)− i(G) and dΩ ≥ deg G− (N − n)− (2g − 2),

where N = deg D =
∑n

i=1 ki.

In addition, if degG > 2g − 2 then

kΩ = i(G−D) ≥ N − deg G + g − 1
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and as a result, we have

kΩ = N + g − 1− degG if 2g − 2 < degG < N.

Proof : Let P ∈ PF be a place of degree one and ω be a Weil differential with

vP (ω) ≥ −1. Then we claim

ωP (1) = 0 ⇐⇒ vP (ω) ≥ 0.

The implication ⇐ is an immediate result of Lemma 1.1.9 by choosing r = 0.

Conversely, let’s assume that ωP (1) = 0. Let x ∈ F with vP (x) ≥ 0. Since deg P =

1, we can write x = a + y with a ∈ Fq and vP (y) ≥ 1. Then we have,

ωP (x) = ωP (a + y) = ωP (a) + ωP (y) = aωP (1) + 0 = 0. (2.16)

So, again by Lemma 1.1.9 we have vP (ω) ≥ 0.

Now we will consider the following mapping

α : ΩF (G−D) → CΩ(D, G)

ω 7→ (CotrFk1
/F (ω)P ∗

1
(1), ..., CotrFkn/F (ω)P ∗

n
(1))

We know that (CotrFki
/F (ω)) = ConFki

/F (ω) in constant field extensions by The-

orem 1.1.14. Since ω ∈ ΩF (G − D) and constant field extensions are unramified,

we have vPi
(ω) = vP ∗

i
(CotrFki

/F (ω)) ≥ −1. Now we can consider the kernel of the

mapping α:

Ker(α) = {ω ∈ ΩF (G−D) | CotrFki
/F (ω)P ∗

1
(1) = 0 for 1 ≤ i ≤ n}

= {ω ∈ ΩF (G−D) | vP ∗
i
(CotrFki

/F (ω)) = vPi
(ω) ≥ 0 for 1 ≤ i ≤ n}

= ΩF (G)

Thus, kΩ = dim ΩF (G − D) − dim ΩF (G) = i(G − D) − i(G). If deg G > 2g − 2

then i(G) = dim G− deg G + g− 1 = 0 by the Riemann-Roch theorem. Therefore,

kΩ = i(G−D) = dim(G−D)−deg(G−D)+g−1 = dim(G−D)− degG+deg D+

g−1 ≥ N −deg G+ g−1. In addition, if 2g−2 < deg G < N then dim(G−D) = 0

which implies kΩ = N − deg G + g − 1.
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For the minimum distance, let’s choose ω ∈ ΩF (G−D) such that w(α(ω)) = dΩ.

Then there exists n − dΩ places P1, ..., Pn−dΩ
such that CotrFkij

/F (ω)P ∗
ij
(1) = 0 for

j = 1, ..., n− dΩ. Then we have

0 6= ω ∈ ΩF (G−D +

n−dΩ∑
k=1

Pik),

which implies that

2g − 2 ≥ deg(G−D +

n−dΩ∑
n=1

Pik) = deg G−N +

n−dΩ∑
j=1

kij

= deg G−N +

n−dΩ∑
j=1

(kij − 1) + n− dΩ

Hence

dΩ ≥ degG− (N − n)− (2g − 2).

2

Remark 2.3.1 We can obviously concatenate these codes as we did with the gener-

alized geometric Goppa codes CL(D, G). Let’s take again n distinct codes C1, ..., Cn

with parameters [ni, ki, di] for 1 ≤ i ≤ n, and let π1, ...πn be Fq-linear isomorphisms

mapping Fqki onto C
i
. Then define

CΩ(D; G; C1, ..., Cn) = {(π1(c1), ..., πn(cn)) | (c1, ..., cn) ∈ CΩ(D, G)}.

The length m of this code is obviously
∑i=n

i=1 ni . By an argument similar to that of

Theorem 2.2.5, it can be easily shown that CΩ(D; G; C1, ..., Cn) is an [m, k, d] code

with

k ≥ N − deg G + g − 1 equality holding if deg G < deg D = N,

and we also have

d ≥ deg G− (2g − 2)−
n∑

i=1

(ki − di)−max
{ ∑

i∈R

(di − ki) | R ⊆ 1, ..., n
}
.

In analogy with the classical geometric Goppa code CL(D, G) and its dual CΩ(D, G),

we want to show that the generalized geometric Goppa code CL(D, G) (Definition

2.2.1) and the code CΩ(D, G) (Definition 2.3.3) are “dual” to each other. For this,

we introduce an inner product on
∏n

i=1 Fqki .
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Definition 2.3.4 (a) For a = (a1, ..., an) and b = (b1, ..., bn) ∈
∏n

i=1 Fqki , we define

< a, b >=
n∑

i=1

TrF
qki

/Fq(aibi). (2.17)

(b) The dual of a code C ⊆
∏n

i=1 Fqki with respect to above inner product is

defined in the usual manner, i.e.

C⊥ = {a ∈
n∏

i=1

Fqki |< a, c >= 0, ∀c ∈ C}.

It is clear that dim C⊥ = N − dim C.

Before we state and prove the main theorem, i.e. CL(D, G)⊥ = CΩ(D, G), we

will need some lemmas. Note that for each i = 1, ..., n, the extension Fki
/F is galois,

and hence the galois group acts transitively on the set of the extensions of Pi by

Lemma 1.1.16.

Lemma 2.3.7 Let ω ∈ ΩF and f ∈ F . Then for any σ ∈ Gal(Fki
/F ), we have

σ(CotrFki
/F (ω)P ∗

i
(f)) = CotrFki

/F (ω)σ(P ∗
i )(f).

Proof : We prove this lemma using the construction of Cotr(ω) in Lemma 1.1.12.

So the notation will be consistent with that lemma. For µ ∈ Fqki , we define α∗µ =

(α∗µQ∗) = iP ∗
i
(µf) ∈ AFki

. Then by the weak approximation theorem, there exists

xPi
∈ Fki

such that

vQ∗
i
(α∗µQ∗ − xPi

) ≥ −vQ∗
i
(ConFki

/F ((ω))) for all Q∗
i | Pi (2.18)

Now we let β∗µ = (β∗µQ∗) =
∑

Q∗
i |Pi

iQ∗
i
(xPi

). Since Q∗
i ∩ F = Pi for all Q∗

i | Pi we

have β∗µ ∈ AFki
, and α∗µ − β∗µ ∈ AFki

(ConFki
/F ((ω)) . Thus, in accordance with the

Lemma 2.3.6, we get ϕα∗1
= ω2(µα∗1) = ω1(β

∗
µ). For a fixed σ ∈ Gal(Fki

/F ), the

following hold

vσ(Q∗
i )(σ(α∗µQ∗

i
)− σ(xPi

)) = vQ∗
i
(σ−1(σ(α∗µQ∗

i
)− σ(xPi

))) (by Lemma 1.1.16)

= vQ∗
i
(α∗µQ∗ − xPi

) ≥ −vQ∗
i
(ConFki

/F ((ω))) (by (2.18))

= −vσ(Q∗
i )(ConFki

/F ((ω))), for all Q∗
i | Pi.
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The last equation is due to the fact that a constant field extension is unramified.

Likewise, we let v = σ(µ) and define α◦v = (α◦vQ∗) = iσ(P ∗
i
)(vf) = iσ(P ∗

i )(σ(µf). By

the same argument above we have

vQ∗
i
(α◦vQ∗ − σ(xPi

)) = vQ∗
i
(σ(α∗µσ−1(Q∗

i ))− σ(xPi
)) ≥ −vQ∗

i
(ConFki

/F ((ω))),

for all Q∗
i | Pi. Now, let β◦v = (β◦vQ∗) =

∑
Q∗

i |Pi
iQ∗

i
(σ(xPi

)). Then we have β◦v ∈

AFki
/F and α◦v − β◦v ∈ AFki

(ConFki
/F ((ω)), so

ϕα◦1
= ω2(vα◦1) = ω1(β

◦
v) = ω(TrFki

/F (β◦v) = ωPi
(TrFki

/F (σ(xPi
)))

= ωPi

( ∑
σ′∈Gal(Fki

/F )

σ
′
oσ(xPi

)
)

= ωPi

( ∑
σ′∈Gal(Fki

/F )

σ
′
(xPi

)
)

= ωPi
(TrFki

/F (xPi
)) = ω1(β

∗
µ) = ω2(µα∗1) = ϕα∗1

(µ)

In the above equations, we use again Lemma 1.1.12 and the extended definition of

trace. We continue as follows,

ϕα◦1
(µ) = ϕα∗1

(σ−1(µ)) = λα∗1
.T rF

qki
/Fq(σ

−1(µ)) = TrF
qki

/Fq(λα∗1
.σ−1(µ))

=
∑

σ
′∈Gal(Fki

/F )

σ
′
(λα∗1

.σ−1(µ))

=
∑

σ′∈Gal(Fki
/F )

σ
′
oσ−1(σ(λα∗1

).(µ))

=
∑

σ′∈Gal(Fki
/F )

σ
′
(σ(λα∗1

).(µ))

= TrF
qki

/Fq(σ(λα∗1
).µ)

= σ(λα∗1
).T rF

qki
/Fq(µ)

In the end we have CotrFki
/F (ω)P ∗

i
(f) = λα∗1

and CotrFki
/F (ω)σ(P ∗

i )(f) = σ(λα∗1
) so

the proof is completed. 2

Lemma 2.3.8 Let F/K be an algebraic function field, and F
′
/K

′
be a finite sepa-

rable extension of F/K. For any ω ∈ ΩF and P ∈ PF , we have∑
P ′ |P

CotrF ′/F (ω)P ′ (f) = ωP (f), for all f ∈ F .
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Proof : Note that by Lemma 1.1.8, we have∑
P ′ |P

CotrF ′/F (ω)P ′ (f) = CotrF ′/F (ω)
( ∑

P ′ |P

iP ′ (f)
)
.

We also have
∑

P ′ |P iP ′ (f) ∈ AF ′/F , so we can use Lemma 1.1.12 for calculating the

value of this adele at CotrF ′/F (ω). With the same notation as in this lemma, we

have

ϕ∑
P
′ |P i

P
′ (µ) = ω2(µ

∑
P ′ |P

iP ′ (f)) = ω1(
∑
P ′ |P

µiP ′ (f))

= ωoTrF ′/F (
∑
P
′ |P

iP ′ (µf))

= ω(iP (TrF ′/F (µf))) (Definition of Trace function)

= ω(iP (fTrK′/K(µ))) (since f ∈ F and µ ∈ K
′
)

= ω(iP (f)TrK′/K(µ))

= ω(iP (f))TrK′/K(µ) (since ω is K-linear)

= ωP (f)TrK′/K(µ)

So, we have

CotrF
′
/F (ω)

( ∑
P ′ |P

iP ′ (f)
)

= ωP (f) =
∑
P ′ |P

CotrF ′/F (ω)P ′ (f).

2

Now the main theorem follows.

Theorem 2.3.9 The codes CL(D, G) and CΩ(D, G) are dual to each other with

respect to inner product defined in Definition 2.3.4.

Proof : First we will prove the inclusion CL(D, G)⊥ ⊇ CΩ(D, G). For this, let

a = (CotrFk1
/F (ω)P ∗

1
(1), ..., CotrFkn/F (ω)P ∗

n
(1)) ∈ CΩ(D, G) and let’s take b =

(f(P1), ..., f(Pn)) = (f(P ∗
1 ), ..., f(P ∗

n)) ∈ CL(D, G). Then, by definition of inner
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product, given in Definition 2.3.4, we have

< a, b > =
n∑

i=1

TrF
qki

/Fq(CotrFki
/F (ω)P ∗

i
(1).f(Pi))

=
n∑

i=1

TrF
qki

/Fq(CotrFki
/F (ω)P ∗

i
(1).f(P ∗

i ))

=
n∑

i=1

∑
σ∈Gal(Fk1

/F )

σ(CotrFki
/F (ω)P ∗

i
(1).f(P ∗

i ))

=
n∑

i=1

∑
σ∈Gal(Fk1

/F )

σ(CotrFki
/F (ω)P ∗

i
(1)).σ(f(P ∗

i ))

=
n∑

i=1

∑
σ∈Gal(Fk1

/F )

CotrFki
/F (ω)σ(P ∗

i )(1).(f + σ(P ∗
i )) (by lemma 2.3.7)

=
n∑

i=1

∑
Q∗

i |Pi

CotrFki
/F (ω)Q∗

i
(1).f(Q∗

i )

=
n∑

i=1

∑
Q∗

i |Pi

CotrF ′/Fk1
(CotrFki

/F (ω)Q
′
i
(1).f(Q

′

i) (by lemma 2.3.8)

=
n∑

i=1

∑
Q∗

i |Pi

CotrF ′/F (ω)Q
′
i
(1).f(Q

′

i)

= 0.

To prove the converse, it is enough to show that the dimension of two spaces are

equal.

dim CΩ(D, G) = i(G−D)− i(G) (by lemma 2.3.6)

= dim(G−D)− deg(G−D) + g − 1− (dim G− deg G + g − 1)

= deg D + dim(G−D)− dim G

= N − dim CL(D, G) = dim CL(D, G)⊥.

2

After establishing the duality, our next aim is to show that CΩ(D, G) can be

represented as CL(D, H) with an appropriate divisor H as it is the case for the dual

of a classical geometric Goppa code (Lemma 2.1.3). For this we begin with the

following lemma.
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Lemma 2.3.10 Let P1, ..., Pn be distinct places of F/Fq as before. Then there exists

z, t ∈ F such that

vPi
(z) = 0, z(Pi) = 1 and vPi

(t) = 1 for i = 1, ..., n.

Proof : We know that there exists z ∈ F such that vPi
(z − 1) > 0 for i = 1, ...n,

by the Weak Approximation Theorem (Theorem 1.1.2). If vPi
(z) < 0 , then

by the Strict Triangle Inequality (Lemma 1.1.5), we would have vPi
(z − 1) =

min{vPi
(z), vPi

(−1)} < 0, which is a contradiction. If vPi
(z) > 0 then we would

have, again by Strict Triangle Inequality, vPi
(z − 1) = 0 which is also a contradic-

tion. So we have vPi
(z) = 0 for i = 1, ..., n. Since z − 1 ∈ Pi for i = 1, ..., n we

have z(Pi) = 1(Pi) = 1. Existence of the t with vPi
(t) = 1 for i = 1, ..., n is again an

immediate result of the Weak Approximation Theorem. 2

Lemma 2.3.11 Let P1, ..., Pn be rational places of a function field F/K and z and

t be elements of F with the properties in previous lemma. Then the differential

ω = z.dt/t satisfies

vPi
(ω) = −1 and resPi

(ω) = 1 for i = 1, ..., n. (2.19)

Proof : Since vPi
(t) = 1, t is a P -prime element. Then, we have resPi

(ω) =

resP,t(z/t). So we look at the P -adic expansion of z/t with respect to t. As vPi
(z) = 0

this expansion has the form

(1 + a1t + .....)
1

t
= (

1

t
+ a1 + ......) by Theorem 1.1.18.

So we get vPi
(ω) = −1 and resPi

(ω) = 1 by Theorem 1.1.18. 2

Lemma 2.3.12 Let z, t ∈ F with the properties in the previous lemmas. Then the

Weil differentials ω = z/t.dt ∈ ΩF and ω
′
= z/t.dt ∈ ΩF ′ satisfy

ω
′
= CotrF ′/F (ω).

Proof : As vPi
(t) = 1, dt is a non-trivial element of both function fields F/Fq and

F
′
/Fq` , by Lemma 1.1.17. Let η and η

′
be the the unique Weil differentials of the
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rational function fields Fq(t)/Fq and Fq`(t)/Fq` with the properties

(η) = −2P∞ and (η
′
) = −2P

′

∞

ηP∞(t−1) = −1 and η
′

P
′
∞

(t−1) = −1

where P∞ and P
′
∞ are the infinite places of the rational function fields Fq(t)/Fq

and Fq`(t)/Fq` , respectively. The existence of these Weil differentials is assured by

Lemma 1.1.19.

The function field Fq`(t)/Fq` is a constant field extension of Fq(t)/Fq. So (η
′
) =

(CotrF
q` (t))/Fq(t)(η) for deg P∞ = 1 , and we have CotrF

q` (t)/Fq(t)(η)P∞(t−1) = −1 by

Lemma 2.3.8. This shows that ContrF
q`/t)/Fq(t)(η) has the same two properties as

η
′
. As η

′
is the unique Weil differential of ΩF ′ satisfying these properties we have

η
′
= CotrF

q` (t)/Fq(t)(η) (2.20)

Keeping this fact in mind, we have

ω
′
= z/t.dt = z/t.CotrF ′/F

q` (t)(η
′
) (by Theorem 2.3.6)

= z/t.ContrF ′/F
q` (t)(ContrF

q` (t)/Fq(t)(η
′
) (by Equation (2.20))

= z/t.CotrF ′/Fq(t)(η) (by Definition 1.1.11)

= CotrF ′/F (z/t.ContrF/Fq(t)(η))

2

The following lemma gives us the existence of a Weil differential which we will

need for writing CΩ(D, G) as a generalized geometric Goppa code CL(D, H) for

some divisor H.

Lemma 2.3.13 Let z, t ∈ F with vPi
(z) = 1, z(Pi) = 1 and vPi

(t) = 1 for i =

1, ..., n. Then the Weil differential ω = z/t.dt ∈ ΩF has the following properties

vPi
(ω) = −1 and CotrFki

/F (ω)P ∗
i
(1) = 1, for all i = 1, ..., n.

34



Proof : Let z, t ∈ F with properties as stated. Since F
′
/Fq` is a constant field

extension of F/Fq, these elements also satisfy vP
′
i
(z) = 0, z(P

′
i ) = 1 and vP

′
i
(t) = 1

for i = 1, ..., n. Since all P
′
i ’s are rational, the Weil differential ω

′
= z/t.dt ∈ ΩF ′

satisfies

vP
′
i
(ω

′
) = −1 and resP

′
i
(ω

′
) = 1.

by Lemma 2.3.11 hence,

−1 = vP
′
i
(ω

′
) = vP

′
i
(CotrF ′/F (ω)) = vPi

(ω).

by Lemma 2.3.12. We also have

1 = resP
′
i
(ω

′
) = ω

′

P
′
i
(1) = CotrF

′
/F (ω)P

′
i
(1) = CotrFki

/F (ω)P ∗
i
(1).

These equalities complete the proof. 2

After we assure the existence of the Weil differential in Lemma 1.1.19, we can

state the following lemma.

Lemma 2.3.14 Suppose ω ∈ ΩF is a Weil differential with the properties in previ-

ous lemma. Namely,

vPi
(ω) = −1 and CotrFki

/F (ω)P ∗
i
(1) = 1, for i = 1, ..., n. (2.21)

Then we have

CL(D, G)⊥ = CΩ(D, G) = CL(D, D −G + (ω)).

Proof : Note that D =
∑n

i=1 Pi and vPi
(ω) = −1, for all i = 1, ..., n. This implies

supp(D−G+(ω))∩SuppD = ∅. Hence the code CL(D, D−G+(ω)) is well-defined.

By Theorem 1.1.6 we know that there exists an isomorphism

α : LG(D −G + (ω)) → ΩF (G−D)

x 7→ xω.
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So,

CotrFki
/F (xω)P ∗

i
(1) = xCotrFki

/F (ω)P ∗
i
(1)

= CotrFki
/F (ω)P ∗

i
(x)

= x(P ∗
i )CotrFki

/F (ω)P ∗
i
(1)

= x(Pi).

2
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CHAPTER 3

ON THE WEIGHTS OF SOME CYCLIC CODES

In this chapter we exhibit an application of algebraic function fields over finite

fields to codes, which is different than the idea in Chapter 2. The method is to

relate the weights of codewords to the number of rational places of function fields.

Then, using the Hasse-Weil Bound one can write a lower bound on the minimum

distance of the codes studied. Our main reference is Schoof’s nice paper [5].

Throughout this chapter we will assume the following fact: If f(x, y) ∈ Fq(x, y) is

an irreducible polynomial, then the number of the Fq-rational points of f(x, y) = 0

is the same as the number of degree one (rational) places of the function field

F = Fq(x, y) defined by f(x, y) = 0. The reader is referred to Appendix B in [6].

3.1. Subfield Subcodes and Trace Codes

In this short section we introduce two ways of constructing linear codes over Fq

from a given linear code C over Fqm , m > 1. Let C be a qm-ary linear [n, k, d] code

and for simplicity let Tr denote the trace map TrFqm/Fq : .Fqm → Fq, for.

Definition 3.1.1 Let C ⊂ (Fqm)n be a code over Fqm.

(a) C |Fq= C ∩ Fn
q is called the subfield subcode (or restriction of C to Fq).

(b) Tr(C) = {Tr(c) | c ∈ C} is called the trace code of C
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Note that both C |Fq and Tr(C) are q-ary linear codes of length n. An important

theorem which relates these codes is due to Delsarte (see Theorem VIII.1.2 in [6]).

Theorem 3.1.1 (Delsarte) For any code C over Fqm, we have

(C |Fq)
⊥ = Tr(C⊥).

3.2. On the Weights of Binary Hamming and Dual BCH Codes

Let q = 2m, where m > 1. Let α be a primitive element, i.e. < α >= F∗q.

Let fα(t) ∈ F2[t] be the minimal polynomial of α over F2. We define the binary

Hamming Code as the cyclic code of length q − 1 = 2m − 1, where the generator

polynomial is fα(t), i.e.

Hm =< fα(t) >⊂ F2[t]/(t
q−1 − 1).

We know that dim Hm = q − 1 −m since deg fα(t) = m. Let C be the cyclic code

over Fq of length q − 1 with the generator polynomial (t− α) ∈ Fq[t], i.e.

C =< t− α >⊂ Fq[t]/(t
q−1 − 1).

Note that C consists of the polynomials a(t) =
∑q−2

i=0 ait
i ∈ Fq[t] which vanish at

α. Hence, C |F2= Hm as the restriction consists exactly of the polynomials with

binary coefficients that vanish at α, i.e. they are multiples of fα(t). Therefore, by

Delsarte’s theorem, we have

H⊥
m = Tr(C⊥).

Note that if a(t) = a0 + a1t + ... + aq−2t
q−2 ∈ C then by the above discussion we

have

0 = a(α) = a0 + aα + ... + aq−2α
q−2

= (a0, ..., aq−2).(1, α, ..., αq−2),
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where . denotes the usual dot product in Fq−1
q . Hence (1, α, ..., αq−2) ∈ C⊥. Note

that dim C⊥ = deg(t− α) = 1. Hence,(1, α, ..., αq−2) is a basis for C⊥ and we have

C⊥ = {λ(1, α, ..., αq−2) | λ ∈ Fq}

= {(λx)x∈F∗q | λ ∈ Fq},

where (λx)x∈F∗q denotes a vector of length q − 1 whose coordinates are obtained by

evaluating x at the elements of F∗q. Then, Delsarte’s theorem implies that

H⊥
m = {(Tr(λx))x∈F∗q | λ ∈ Fq}.

At this point, we need to recall a well known fact.

Theorem 3.2.2 (Hilbert’s Theorem 90) Given Fq and an extension Fqs, we

have

TrFqs/Fq(β) = 0 ⇐⇒ thereexistsµ ∈ Fqssuchthatµq − µ = β.

Proof : See Theorem 2.5 in [3].2

Lemma 3.2.3 Let cλ = (Tr(λx))x∈F∗q ∈ H⊥
m be a codeword, where λ ∈ F∗q. Then

the weight of cλ is

w(cλ) = q − 1−N/2

where N is defined by

N = {(x, y) ∈ F2
q | y2 − y = λx and x ∈ F∗q}.

Proof : By Hilbert’s Theorem 90, for x ∈ F∗q, Tr(λx) = 0 if and only if there exists

y ∈ F∗q such that y2 − y = λx. In this case, note that

(y + 1)2 − (y + 1) = y2 + 1− y − 1 = y2 − y = λx

is also true, i.e. each x ∈ F∗q with Tr(λx) = 0 brings two solutions to the equation

y2 − y = λx. Hence

w(Tr(λx)) = q − 1− | {x ∈ F∗q | Tr(λx) = 0} |

= q − 1−N/2.
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2

If λ 6= 0, then studying Fq-solutions of y2 − y = λx is the same as studying

Fq-rational places of the function field F = Fq(x, y) defined by y2 − y = λx, by our

discussion at the beginning of the chapter. The genus of F is (2 − 1)(1 − 1)/2 =

0 by Proposition 1.1.3, i.e. F is a rational function field. Hence, it has q + 1

rational places. Disregarding the unique place at infinity and the two rational places

corresponding to x = 0, we have N = q − 2 in Lemma 3.2.3. Hence, we obtained

Corollary 3.2.4 The code H⊥
m has q − 1 codewords of weight q/2.

Proof : Put N = q − 2 in Lemma 3.2.3. This implies that

w(cλ) = q − 1− q − 2

2
=

q

2

for any λ ∈ F∗q. 2

Corollary 3.2.4 gives us the weight enumerator of the dual of Hm. Hence, one

can find the weight enumerator of Hm via the McWilliams Identity. Namely:

WHm(x) =
1

q

(
(1 + x)q−1 + (q − 1)(1− x)q−2(1 + x)

q
2
−1

)
.

The numbers A1, ..., Aq−1 can be found by expanding the polynomial above.

The method mentioned above can also be used for other cyclic codes. As an

example, we briefly discuss the double error correcting BCH codes. Again, q = 2m,

with m > 1, α ∈ F∗q is a primitive element and fα(t), fα3(t) ∈ F2[t] are the minimal

polynomials of α and α3 over F2, respectively. We define the code Bm as a binary

code of length q − 1 = 2m − 1 whose generator polynomial is fα(t)fα3(t), i.e.

Bm =< fα(t)fα3(t) >⊂ F2[t]/(t
q−1 − 1).

Since deg(fα(t)) = deg(fα3(t)) = m, we have dim Bm = q−1−2m and dim B⊥
m = 2m.

Arguing as in the case of Hamming code, one can show that

B⊥
m = {(Tr(λ1x + λ2x

3))x∈F∗q | λ1, λ2 ∈ Fq}.

Note that B⊥
m has q2 = 22m codewords, which is consistent with the fact that

dim Bm = 2m. If cλ1,λ2 ∈ B⊥
m such that λ2 = 0, then the weight of cλ1,λ2 is q/2, since
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it is just a codeword associated with the rational field as in Hm. If λ2 6= 0, then the

related equation via Hilbert’s Theorem 90 is

y2 − y = λ1x + λ2x
3. (3.1)

If F denotes the function field F = Fq(x, y) defined by (3.1), then the genus is

g = (2 − 1)(3 − 1)/2 = 1. This time we do not know the exact number of rational

places, the Hasse -Weil bound gives us the upper bound of q +1+2
√

q. The weight

of cλ1,λ2 is as before,

w(cλ1,λ2) = q − 1− N

2

where N is the number of rational places except the place at infinity and the two

places corresponding to x = 0. Hence, N ≤ q − 2 + 2
√

q. Therefore, we have

w(cλ1,λ2) = q − 1− N

2

≥ q − 1−
q − 2 + 2

√
q

2

=
2q − 2− q + 2− 2

√
q

2
=

q − 2
√

q

2
.

So, for some of the codes in B⊥
m (those with λ2 = 0) we know that the exact weight

is q/2. For other codewords (λ2 6= 0), we just know the weight is at least
q−2

√
q

2
,

which is a number less than q/2. In this case, what we can conclude is that the

minimum distance of B⊥
m satisfies

d(B⊥
m) ≥

q − 2
√

q

2
.

Remark 3.2.1 Using properties of genus 1 (elliptic) function fields, Schoof [5] ob-

tains the complete weight enumerator of B⊥
m (and hence of Bm).

Remark 3.2.2 Using the method described here, Wolfmann [8] gives a lower bound

on the minimum distance of a large class of cyclic codes.
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