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Abstract

Focus is directed to a class of risk measures for portfolio optimization with two
types of disutility functions, where the random return variables of financial instru-
ments are assumed to be distributed by multivariate elliptical distributions. Recent
risk measures, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are consid-
ered under this setting. If the joint distribution function of the financial instruments
is elliptical and disutility is taken as linear reflecting the behavior of risk neutral in-
vestors, then the optimal solution of the mathematical models with objective functions
formed by VaR and CVaR measures, is equivalent to the solution of the corresponding
Markowitz model. To solve the Markowitz model, a very fast, finite step algorithm
proposed in the literature, has been modified and implemented . Finally, the CVaR
model with convex increasing disutility functions reflecting the behavior of risk averse
investors has been introduced. Although, a convex objective function exists in this
case, an analytic form cannot be obtained. However, unlike generating scenarios from
multivariate distributions as suggested in the literature, the objective function can be
closely estimated by simulating realizations only from univariate distributions. The
thesis concludes with a thorough computational study on a sample data collected from
the Istanbul Stock Exchange for each different class introduced.



GENEL BIR RISK YONETIMI MODELININ ELLIPTIK DAGILIMLI PORTFOY
PROBLEMLERINE UYGULAMASI

Bahar Kaynar
Endiistri Mithendisligi, Yiiksek Lisans Tezi, 2006

Tez Damigmant: Dog. Dr. S. Ilker Birbil

Anahtar Kelimeler: eliptik dagilimlar, risk yonetimi, lineer kayip fonksiyonlari, Riske

Maruz Deger, Kosullu Riske Maruz Deger, portfoy optimizasyonu, negatif fayda.

(3zet

Finansal yatirim araclarinin rasgele getiri degiskenlerinin ¢ok degiskenli eliptik dagi-
limlarla dagildiginin kabul edildigi iki tip negatif faydaya sahip portféy optimizas-
yonu icin bir dizi risk olg¢iitiine odaklanilmigtir. Bu baglamda giincel risk olgiitleri
olan Riske Maruz Deger (VaR) ve Kosullu Riske Maruz Deger (CVaR) g6z oniinde
bulundurulmugtur. Finansal yatirim araclarinin ortak dagilim fonksiyonunun eliptik
olmas1 ve negatif faydanin riske kars1 kayitsiz yatirimcilarin davranigini yansitacak
sekilde lineer kabul edilmesi halinde, VaR ve CVaR dlciitleriyle olusturulan objektif
fonksiyonlara sahip matematiksel modellerin optimum c¢ozumii ilgili Markowitz mo-
delinin ¢oziimiine egdegerdir. Markowitz modelini ¢ozebilmek icin literatiirde onerilen
oldukca hizli bir sonlu adim algoritmasi degistirilerek uygulanmigtir. Son olarak risk-
ten kacinan yatirimcilarin davranigini yansitan konveks artig sergileyen negatif faydaya
sahip CVaR modeli sunulmustur. Bu modelde konveks objektif fonksiyon mevcut ol-
masina ragmen analitik bir form elde edilememektedir. Ancak objektif fonksiyon, li-
teratiirde gectigi iizere ¢cok degigkenli dagilimlardan senaryolar tiretmeden farklh olarak
gerceklemelerin yalnizca tek degiskenli dagilimlardan simiile edilmesiyle yakinen tah-
min edilebilir. Bu tez sunulan farkli her sinif i¢in Istanbul Menkul Kiymetler Borsasi
kaynakli 6rneklem verileri baz alinarak gerceklestirilen kapsamli bir biligimsel caligma
ile sonlandirilmaktadir.
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CHAPTER 1

INTRODUCTION

In the world of finance and engineering, making decisions that minimize “risk” and, at
the same time, meet desired objectives. However, quantifying risk differs according to
the measure used. There are two central approaches for perceiving risk and quantifying
it. Risk can be identified as a function of deviation from expectation or a function of
absolute loss. The first approach, that has triggered the idea of using function of
standard deviation as the risk measure, is Markowitz’s modern portfolio theory, [9].
The second introduces the recent risk measures Value-at-Risk (VaR) and Conditional
Value-at-Risk (CVaR). This chapter, first concentrates on Markowitz approach and
then studies intermediate risk measures between variance and VaR.

Before detailing risk measures, portfolio should first be defined: A collection of
stocks or bonds, a book of derivatives, a collection of risky loans, or a financial institu-
tion’s overall position in risky assets. The definition of the portfolio changes with the
type of risk. There mainly are three types of risk: market, credit, and operational. For
example, if the credit risk of a bank is to be evaluated, then the portfolio of the bank
would be the credits given to institutions. In operational risk, portfolio is assessed
as internal or external frauds, failed processes, people, or computer systems as given
in the Basel IT amendment. After deciding on the portfolio, the uncertainty of each
component has to be defined over a probability space, since we would like to decide
according to future states of each component. Following the identification of random
events, the definition of the loss function must to be given since the risk of loss is the
desired quantity. Lastly, the selection of the risk measure is handled.

As Markowitz mentions in [9], the process of selecting a portfolio involves two
stages. The first stage begins with observations and ends with decisions about the
future performances of the components of portfolio, the behaviors of the random vari-
ables. The second stage, on the other hand begins with interpretation of these future

performances and ends with the choice of portfolio. This thesis is concerned with the



second stage as the decision maker would like to maximize the portfolio return as well
as minimize the risk of portfolio loss. Balancing the portfolio is therefore desired with
respect to return and loss according to the decision maker. There is a property that
the risk measure should satisfy; for the same amount of return, a diversified portfolio
is preferred to all non-diversified portfolios.

In Markowitz’s approach, the portfolio problem does not deal with loss function,
the presumption is accepted that the law of large numbers will insure that actual return
of the portfolio will be almost same as the expected return of the portfolio. Consider
a portfolio of n assets over a certain period of time. x; denotes the capital invested in
the asset 7, by x € R", the portfolio vector; and by Y € R"”, the random vectors of
asset returns, yielding x;Y; capitals for the financial instrument i. Suppose Y is given
by a joint probability distribution function with the expectation p = E(Y), and the
covariance matrix:

S=E[(Y-pu)(Y-nT].

Hence, the total return of the portfolio is x 'Y and the risk of the portfolio is taken as
the variance of the return, x ' x. The risk is taken as deviation of the portfolio’s return
from its expected return. The investor’s goal of splitting between risk and return can
be formulated as

min %XTZX

st e'x=1
pix=r
x > 0.

where e € R" denotes the vector of 1’'s. e'x = 1 is normalized budget equation.

Covariance matrix, ¥ is assumed to be positive definite and p is not a multiple of e.
The inability to use short selling brings up the nonnegativity constraints. Short selling
is the act of selling without actually owning an asset. To differentiate the problem, a
risk-free asset also can be added to the portfolio, where return of the asset is known
from the beginning.

The optimal portfolio for the above problem changes as the value of r. Markowitz
has used this problem to derive an efficient frontier where every portfolio on the frontier
maximizes the expected return for a given variance or minimizes the variance for a given
expected return. Thus, the investor must make a trade off between risk and return.

Criticisms the mean variance approach can be listed as:

¢ The model relies on the mean and the variance of the distribution of the re-



turns where the higher moments could give different kinds of interpretations and

informations.

o The model is sufficient for normally distributed returns and quadratic utility

functions however, stock prices are better fitted to non-normal distributions.

¢ The actual utility of the investors can be approximated by a quadratic curve only

for some relevant range of returns.
¢ A risk measure does not have to be symmetric.

¢ The returns of the portfolio higher than the expected return of the portfolio is

not taken as risk by the decision maker.

The obvious disadvantage of the Markowitz model is taking greater values of return of
portfolio as risk, emphasized by Markowitz himself, too. So, he proposes the idea of
lower semi variance as the risk measure. The lower semi variance of portfolio can be
defined as

E(E(Y) —x"Y[2)

where |u|, refers to max{0,u}. This risk measures handles the problem of taking
positive returns as risk however, we still use the first two moments of the portfolio, and
this risk measure is same as variance when x'Y follows a normal distribution. Hence,

the optimization problem would be

min E(E(Y) —x"Y[2)

st e'x=1

With the introduction of lower semi variance as risk measure, a period of downside risk
has started. Similar to the lower semi variance, the lower semi absolute deviation can

also be given as the risk measure;
E(|IE(Y) - x"Y]4). (1.1)

Roy [15], as mentioned in the article written by David Nawrocki [11], believes that
a mathematical utility function would not be sufficient for an investor to maximize
the portfolio return. He has stated that an investor will prefer the safety of principal

first and will set a minimum acceptable return that will conserve his principal. He



has called the minimum acceptable return “a disaster level” and the resulting method,
a “ Roy’s safety first method”. His belief is the investor prefers the investment with
the smallest probability of going below either the disaster level or the target return,
minye xP{x"Y < 7}. Actually this risk measure combines utility theory with downside
risk. If the disaster level is fixed by the decision vector as 7, then below target risk

measure can be given as
BT, (r,x) = E(j7 —x"Y[})"?. (1.2)
where the following optimization problem is formed,

min E(|7 — x"Y[R)Y?
st elx=1
plx=r

x > 0.

The level of p defines the characteristic of the decision maker. If p < 1, then the
investor is risk seeking, if p = 1 risk neutral and if p > 1, the decision maker is risk
averse. Below target risk measure, a convex function with respect to x, for all values
of p, has also been called as Lower Partial Moments in the literature. Setting p to the
correct valuebis very important, since p affects the result directly [11]. If risk measure
is taken as,

E(jr —x"Y]?),

it is called, target semi-variance, the combination of Equations 1.1 and 1.2.

Following the lower partial moments, the idea of VaR measure is introduced. In
order to evaluate VaR, the decision maker should decide on a probability level, 5. VaR
is the lowest amount of loss such that, with the predefined probability level, loss will
not exceed the lowest amount. We denote that lowest amount as VaR, since the VaR
value depends on the chosen probability level. If function f(x,Y) defines loss, VaR
can be given as

P{f(x,Y) > VaRs(f(x,Y))} =1 - 5.

The definition of the VaRs(f(x,Y)) measure will be made clear in the following chap-
ters of this thesis. VaRg(f(x,Y)) is not a convex function of x; therefore, minimizing

VaRs(f(x,Y)) with respect to x is difficult. Financial institutions mainly use VaR



to measure their risk since VaR is a very popular risk measure, rather than deciding
upon the portfolio by minimizing VaR. There are many models established to mea-
sure VaR of the portfolio, such as time series models; ARCH and GARCH. However,
optimization through use is problematic.

Minimizing portfolio by using VaR also brought the notion of coherent risk measures
which measure, according to Artzner et.al. [1], as real valued risk measure p, on the
space of real-valued random variables depending only on the distribution. Coherent

risk measures fulfill the following properties as defined in Embrechts [1, 3]:

1. Monotonicity: For any two random variables X and Y we have

X>Y = p(X) > p(Y).

2. Subadditivity: For any two random variables X and Y we have

p(X+Y) < p(X) + p(Y).

3. Positive Homogeneity: For A > 0 and a random variable X we have

p(AX) = Ap(X).

4. Translation Invariance: For any a € R" and a random variable Y, we have
p(X +a) = p(X) + a.

VaR satisfies coherency properties under conditions discussed in the following chap-
ters. However, coherency is not a general property for VaR. It has some undesirable
mathematical properties as a lack of subadditivity and convexity. In the case of a finite
number of scenarios, which means a measure is taken with respect to realizations, VaR
also becomes nonsmooth, nonconvex, and multiextremum function.

CVaR, a related measure to VaR, is defined as the conditional expectation of losses

exceeding the corresponding VaR amount, that can be formulated as

CVaRy(/(x,Y)) = 1= B/ Y) | £6x,Y) = VaRs(/x.Y)))

CVaR is also defined as Expected Shortfall in the literature. CVaR not only maintains



the advantages of VaR, but also eliminates the computational disadvantages of VaR,
since CVaR is a coherent and a convex function over x, independent from the joint
distribution of random vector Y. Although VaR and CVaR do not use the higher
moments of the probability density function of the loss, f(x,Y), they give more in-
formation about the skewness and kurtosis of the distribution. If skewness of the
distribution is high, then these two values will be rather far away from each other,
whereas they will be closer if the kurtosis of distribution is high, as compared to the
relations between VaR and CVaR, when the underlying joint distribution function is
normal.

Besides risk measures, Stochastic Dominance, one other approach that decides upon
the efficient frontier of a portfolio is pointed out by Porter, Wart and Ferguson in (1973),
[12]. Stochastic Dominance converts the probability distribution of an investment into
a cumulative probability curve. Then the mathematical analysis of the cumulative
probability curve is used to determine if one investment is superior to another. The
advantages of stochastic dominance are: applicability for all probability distributions
and inclusion of all risk averse utility assumptions. The disadvantage of the method is
that operation research algorithms are not applicable to this method. The tests have
shown that below target semi-variance portfolios are members of stochastic dominance
efficient sets while the below mean semi-variance portfolios were not.

This thesis uses VaR and CVaR as the risk measure to decide upon the optimal
portfolio. Thus, the scope of this work is wider in terms of VaR and CVaR. Risk
measures are used in portfolio optimization problems. In the following section, the
disutility functions are introduced along with risk measures, VaR and CVaR, and the

details of their roles in portfolio management are discussed.

1.1 Portfolio Optimization Problem

In portfolio optimization, the decision maker tries to allocate his or her capital to n
financial instruments, so that considered risk is minimized. The loss of the decision
maker is given by the real-valued function f(x,Y), where x C R is the decision vector
denoting the allocations, X is a closed convex set; and Y € R" is a random vector
denoting the uncertain returns of the financial instruments. Hence, x denotes the

portfolio. X can simply be defined as;
x; >0 fori=1,...,n, with sz =1.
i=1

6



This thesis assumes that short-selling is not allowed: hence, allocations are nonnega-
tive. It should be reiterated that not allowing short selling exacerbates the problem as
compared to the allowed case, since if short selling is allowed, then the problem imme-
diately has an analytic solution. Since Y is a random vector, loss function f(x,Y) is
also a random variable. The cumulative distribution function of random loss is given
by

Uy(a) :=P{f(x,Y) < a}.

We assume that this cumulative distribution function of random loss is everywhere con-
tinuous with respect to a.. The corresponding inverse cumulative distribution function,

or the quantile function, then becomes
ag(x) == VaRg(f(x,Y)) := min{a € R: Uy(a) > §} = ¥ (F), (1.3)

where ““7 denotes the inverse of a function. Within risk management, the value az(x)
is known as the Value-at-Risk (VaR) of the loss f(x,Y) at the probability level
with 3 € (0,1). Since function oo — Uy () is continuous , it is well known for every

u € (0,1) that [17]
P{Ux(f(x,Y)) Su} =P{f(x,Y) < ¥ (u)} = Ux(¥5 (u)) = u. (1.4)

This property is given to emphasize the fact that U, (f(x,Y)) is uniformly distributed.
Therefore Uy (f(x,Y)) and U, where U stands for a standard uniformly distributed
random variable has the same distribution [3, 14]. Another recent risk measure is given
by

$5(x) = CVaRs(f(x,Y)) == (1= B) " E(f(x, Y)1{1(c¥)>0, (x)});

with probability level 3. This risk measure is called the Conditional Value-at-Risk
(CVaR) of the loss f(x,Y) at level § [13]. One main reason for introducing this new
risk measure is that as a function of x, CVaR is convex when loss function f(x,Y) is
also convex in x. Generally VaR does not have this property unless random vector Y
has an elliptical distribution, and a certain class of loss functions and decision makers
exist.

To show that ¢s(x) is convex in x, Function Fjs(x, ), first introduced in [13] is



used. For 0 < 8 < 1, function Fp(x, ) : X — R is given by,
Fy(x,0) = a+ (1 - ) B(max{f(x,Y) - a,0}).

Convexity of ¢g(x) will be shown by the help of the following lemma introduced in
[13]:

Lemma 1.1.1 It follows for every x € X that

Pp(x) = glellg F3(x, ).

Moreover, if the closed interval Sz(x) denotes the set of optimal solutions of the above

optimization problem, then the left end point of this interval is equal to VaRg(f(x,Y)).

Now, if f(x,7Y) is convex in x, then clearly the function (x, @) — max{f(x,Y)—
a,0} is also convex in (x,«). Since expectation is a linear operator, the function
Fj(x, @) is convex. By Lemma 1.1.1, the function ¢4(x) is also convex.

VaR is a very popular risk measure and in risk management, originally the following
optimization problem is desired to be considered:

min as(x) = min VaRs(f(x,Y)) = min ¥.7(5). (VP)
Since this function depends on the cumulative distribution function of loss f(x,Y),
it may happen that even for convex loss function f(x,Y), VaRs(f(x,Y)) can be a
nonconvex function. Thus, the above problem belongs to the field of global optimization
and might be difficult to solve. However, minimizing the following may be considered

min ¢z3(x) = Lrg)r(l CVaRs(f(x,Y)). (CVP)

xeX

Since ¢p(x) is a convex function in x, the above problem is always a convex program.

Moreover, if x* is an optimal solution of (CVP), using Lemma 1.1.1, the corresponding

VaRg(f(x,Y)) can be identified quite quickly by implementing bisection methods.
Following [13], ¢5(x) is employed since this definition is more suitable for a prob-

abilistic interpretation of CVaR. Furthermore, applying Relation (1.3) and (1.4) with



B € (0,1), the following set equivalences are obvious

P{A(xY) 2 ap(x)} =P{f(x,Y) =¥ (6)}
=1-P{f(xY) <UL (B)}

(1.5)
=1-P{Ux(f(x,Y)) <}
=1-70.
Relation 1.5 shows that,
¢5(X) = (1 - 5)71 E(f(an)l{f(x,Y)Zaﬂ(x)})
=1 -0 E(f(xY) | f(x,Y) > as(x)) P(f(x,Y) > ag(x)) (1.6)
= (1 =B E(f(x,Y) | f(x.Y) 2 as(x)) (1-5)

The indicator function, 1{sxy)>as(x)}; €quals zero, unless the condition is satisfied.
Thus, in the second equation, only the probability that f(x,Y) > ag(x) is under
consideration. In the final step, Definition 1.3 is utilized. Observe that this property
justifies the name Conditional Value-at-Risk and now this expression fits definition
offered in the Introduction: CVaR measure is the conditional expectation of the losses
exceeding the corresponding VaR amount.

Hence, now all of the definitions are given for the risk management problem. The
portfolio x, consisting of n financial instruments, has the loss function f(x,Y), where

Y is a random vector. The risk measures taken are VaR and CVaR.

1.2 Outline

The outline of the thesis is as follows. Chapter 2, gives a brief literature review on
the Markowitz problem, VaR, and CVaR measures. Literature Review is followed in
Chapter 3 by the properties of VaR and CVaR in the elliptic world with risk neutral
and risk averse investors. The finite step algorithm is given in Chapter 4 together
with an extensive numerical study on a sample data collected from the Istanbul Stock

Exchange. The conclusion is consigned in Chapter 5.



CHAPTER 2

LITERATURE REVIEW

The concept of risk is actually part of our everyday lives. Risk can be thought as the
probability of the materialization of undesirable future events , which cannot be forecast
at the the time we actually make our decisions. We need to somehow rank choices with
respect to the probability of materialization in order to maximize our utilization. That
principle is the same with financial risks. When the investor decides to allocate capital
on several assets, the return of this investment is uncertain. However, in order for the
investor make a decision, a portfolio ranking measure is necessary. The first measure
that comes to mind is that the return of the investment should be high, along with risk
to differentiate, in case the returns of the two choices are the same. These thoughts
bring up the idea of “Modern Portfolio Theory”, introduced by Harry Markowitz in
1950s [9]. As Steinbach puts , “The classical mean-variance approach offered the first
systematic treatment of a dilemma that each investor faces: the conflicting objectives
of high profit versus low risk” [18].

Steinbach supplies all ideas behind the Markowitz Model, together with portfolio
problems consisting of risky, risk-free financial instruments and guaranteed loss along
with the same portfolios studied with downside risk measures [18]. Risky assets are the
financial instruments that have uncertain returns whereas risk-free assets have known
yield. Guaranteed loss offers the choice of not allocating all owned capital. The most
important difference between the feasible set examined in [18] and the feasible set of
the models introduced in this thesis is nonnegativity constraints. Since Short Selling
is allowed in [18], that means x > 0, the Markowitz problem, becomes a quadratic
problem that has an analytical solution. Additionally, multistage models are introduced
in [18]. Multistage is the case when a portfolio cannot be liquidated until after the
passage of a certain amount of time. The investor decides to invest how much to
which asset at time 0, and the decision maker can change this portfolio allocation

through the time horizon without turning the portfolio into cash. Since there are many
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decision stages in between, this model is called the multistage model. The approach
to multistage models contains forming a tree, where time 0 stage forms the root node
of the tree. Mainly, this work not only provided reference for this research, but also
offered a compact introduction to modern portfolio theory.

The introduction, visualizes the improvement of the risk measures ending with VaR
and CVaR upon which this study also concentrates. We have classified and analyzed
a general risk management model applied to portfolio problems where the returns of
the assets are elliptically distributed. We discuss linear loss functions as well as two
different characteristics of decision makers. The term elliptical world actually refers
to the returns of the financial instruments being elliptically distributed. For instance,
normal and student-t are two typical elliptical distributions. Most VaR models used
in finance are based on multivariate normal distribution due to normal distribution’s
analytical expression in portfolio calculation and simulation. The wider class of ellipti-
cal distributions, however, examines the kurtosis of return distributions in a relatively
more realistic way. Embrechts et.al thoroughly defines the elliptical world and also
discusses the properties of VaR and CVaR in the elliptical world. This work assisted in
classifying the elliptical world with respect to risk measures. On the other hand, most
significantly the discussion about characterization of decision makers is not entailed in
the work of Embrechts et.al., [3], which has drawn attention to in this work.

Jules Kamdem distinguishes portfolios with respect to dependence on portfolio loss
and joint distribution of the random returns of the assets [6]. The original RiskMetric
methodology for estimating VaR works well for linear portfolios where the loss is a
linear function of the returns, and the joint distribution of the financial instruments is
multivariate normal. Actually, under this setting, VaR reduces to variance introduced
in the Markowitz problem. Two adjustments exist: either a non-linear instead of
linear loss function will be introduced or portfolios of non-normally distributed financial
instruments will be scrutinized. Although Jules Kamdem provides the idea of changing
the linear loss function, his study involves the analysis of portfolios with non-normally
distributed returns. The most significant difference between this thesis and the work
by Jules Kamdem is implementation of the similar ideas. Jules Kamdem observes the
properties of VaR in the elliptic world as well, however he mainly uses calculus as a
tool, rather than probability theory, which is the main tool employed in this thesis to
examine disutility functions together with elliptical distributions.

In the literature, the minimization of VaR is not a common approach. Researchers
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focus mainly on estimating the joint distribution of the assets and then by using this
estimation, VaR is determined. In the calculation of VaR, the choice of risk horizons
and confidence level, which is also called by probability level, has an important effect.
Alternative risk horizons can be a day, a week, a month, or a quarter. Risk horizons
are established as the observation period of the random vector Y. In order to calculate
VaR, the distribution of rate of returns has to be known which is the complicated
part. If the distribution can be found or estimated, VaR can be calculated accordingly.

Generally there are three approaches for the estimation of the distribution:
1. Historical simulation
2. Estimation of portfolio mean and variance
3. Monte carlo simulation

This topic alone is another main issue in risk management. Regarding the estimation
of VaR, importance of minimizing risk needs to be emphasized.

As defined by Rockafellar and Uryasev [13], the VaR of the portfolio with respect
to a specified probability level § is the lowest amount « such that with probability
[, the loss will not exceed a. The CVaR is the conditional expectation of the losses
above the amount a. VaR risk performance measure is widely standardized because of
its acceptance as the common risk measure by the banks and also various estimation
techniques have been proposed, as mentioned above.

Apart from the two risk measures mentioned above, this study also focuses on two
disutility functions. At first discussing risk neutral decision makers, the return of the
portfolio is taken as the a linear function of the product of two independent random
variables, as the linear portfolio defined in [6]. The equivalence between the portfolio
problems with VaR and CVaR measures, and the corresponding Markowitz model is
also pointed out. A finite step algorithm proposed in the literature [10] is revised,
and applied to the Markowitz model. The core idea of Michelots algorithm, based on
projection of points on canonical simplices and elementary cones is preserved. Instead
of directly assigning variables to constants though, once again projections on canoni-
cal simplices are used. The algorithm introduced in [10] has never been programmed.
Although the core idea has been kept in the thesis, a new rule is given for the sim-
plification of the application of the algorithm. Since the algorithm is finite step, the
optimal portfolio is found quite quickly. The Michelot algorithm, though, is not intro-

duced for solving Markowitz problems beforehand. In the elliptical world with linear
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loss functions, CVaR measure can be estimated by generating univariate realizations.

The idea of defining and minimizing VaR and CVaR by using operations research
techniques has been extensively studied by Rockafellar and Uryasev in [13]. They have
come up with three theorems about the relation between the optimization problems
enclosing VaR and CVaR measures. The approach in [13] not only estimates VaR, but
also brings up the idea of minimizing the portfolio problem with respect to CVaR. In the
elliptical world, VaR is estimated as well as the portfolio problem with respect to VaR is
minimized. Rockafellar and Uryasev discretisize the problem over scenarios; a scenario
stands for the different rates of returns of the assets. Even if only a single stage exists,
infinite scenarios can be constructed. While discretisizing the problem in order for the
law of large numbers to become applicable, as many scenarios as possible as possible
should be generated. It should be kept in mind that these scenarios are rare event
generations, since the larger value of probability level is under consideration. Although
the main classifications are the same, the exposition in this thesis uses probability
theory rather than integrals.

A special attention is paid to place the model introduced by Rockafellar and Urya-
sev in the elliptical world. The properties and the forms of the risk measures change
according to the loss function taken. If the investor is risk averse, the loss function
is therefore nonlinear. Rockafellar and Uryasev have used multidimensional scenario
generation for estimating the general CVaR objective in the portfolio problem. Their
generalized results that can be applied to all of the sectors of risk are however hard to
implement in practice. In the elliptical world, this work emphasizes most importantly
that scenario generation can simply be done using univariate realizations. This exten-
sion allows significant reduction in simulation time. Rockafellar and Uryasev [13] have
also dealt with financial concepts such as hedging, jumps and discontinuity, which are
beyond the scope of this thesis. CVaR is also discussed by Embrechts et.al. under the

name expected shortfall or mean excess loss.
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CHAPTER 3

PROPERTIES OF VaR AND CVaR IN THE ELLIPTIC WORLD

Elliptic world is a key issue in this work. First of all, since normal distribution is a
member, it is a rather important class. In addition to this, even if non-normal random
vectors are considered, if the distribution of the portfolio is conditioned on a certain
time, portfolio return behaves normally [5]. To analyze general risk model for portfolio
management first the following class of multivariate distributions are introduced [3, 4].
In order to understand the definitions, we need to remember orthogonality. A matrix
U is called an orthogonal matrix if U'U = UU'" = I. We also adopt the following

notation: X =; Y means that random variable X has the same distribution as Y.

Definition 3.0.1 A random vector X = (Xy,...,X,)" has a spherical distribution if

for any n x n orthogonal matrix U, it holds that,

UX =4 X.

The spherical distributions are actually the probability density functions of random
variables which are closed under rotational transformations. Namely, we are moving
on a sphere’s surface and have the same class of distributions. If a probability density
function (pdf) g(.) is spherical, the same function can be characterized in terms of the
radius of the sphere. Showing that the expectation of elliptically distributed random

vector X is always 0, is easy.

UX =4 X <= E(UX) = E(X)
— UE(X) = E(X)
= E(X) = U'E(X)
— UE(X) = U 'E(X)

— E(X) = 0.
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An important observation is that any spherically distributed random variable X can be
represented as the product SZ, of independent random variables S and Z, where Z is
a multivariate normally distributed random vector with mean 0 and covariance matrix
I, and S is a univariate nonnegative random variable with corresponding cumulative

distribution function G(-) that satisfies G(0) = 0 [3];
X =4 SZ. (3.1)

For example the multivariate t-distribution with v degrees of freedom can be con-
structed by taking S ~ /v/y/x2 as shown in [3]. X is related to known notions in
literature such as the characteristic function or Fourier transform of a random variable.

A related important class of multivariate distribution is given by the following, [3, 4];

Definition 3.0.2 A random vector Y = (Y1, ..., Y,,)" has an elliptical distribution if
there exists an affine mapping x — Ax+ i and a random vector X having a spherical

distribution such that Y = AX + p.

For convenience, an elliptically distributed random vector Y that is defined as above, is
denoted by (A, 1, X). Elliptical distributions are the elongated and translated versions
of the spherical distributions.

The portfolio x, consists of n financial instruments, has the loss function f(x,Y),
where Y is elliptically distributed. The risk measures taken are VaR and CVaR. The
properties of VaR and CVaR changes according to the loss function, f(x,Y), and
disutility function taken while defining the portfolio problem in Chapter 1. In this
study, only linear loss function is considered, where f(x,Y) = —x'Y for the rest of
the study. Two types of disutility functions are brought in. Linear disutility functions
correspond to decision makers being risk-neutral in utility theory and convex disutility
functions correspond to decision makers being risk averse. Risk-seeking decision makers
do not make a logical sense in credit’s risk or operational risk. Hence, these two classes
seem to be sufficient. The first subsection contains the analysis with risk neutral

decision makers, where as the second one entails the risk averse ones.

3.1 Risk Neutral Decision Maker

Loss is established as f(x,Y) = —x'Y and disutility function is linear. This kind of

portfolios are called linear portfolios. The interpretation of this form is quite intuitive;
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the return of a portfolio is the sum of the returns of the individual instruments weighted
by corresponding allocations. Then the loss is taken as the negative of the return. Thus,
in the elliptic world with linear portfolios, actually the linear combinations of ellipti-
cally distributed random variables are considered. One of the properties of elliptically
distributed random variables is that the marginal distributions of these random vari-
ables have the same characteristic function as the joint distribution function; i.e., both
marginal distributions and the linear convolutions are elliptically distributed. Showing

the following result is possible now.

Lemma 3.1.1 If Y has an elliptical distribution with representation (A, i, X) and
det(A) # 0, then it follows for every x € R" that

—x'Y =, ||Ax|SV —x"y,

with S having a cumulative distribution function G,where G(0) = 0. S is independent
of the univariate random variable V', which has a standard normal distribution with

mean (0 and variance 1.

Proof: If Y has an elliptical distribution with the above representation, then it

can be written as

Y = AX + p.

It is given that det(A) # 0, then it follows by relation (3.1) that there exists a non-
negative random variable S, with S ~ G satisfying G(0) = 0, and a multivariate
standard normally distributed random vector Z (with mean 0 and covariance matrix

I) independent of S, such that;

Y =4 ASZ + =4 SAZ + p. (3.2)
This shows for any x € X C R” that,

—x'Y =4 —SxTAZ —x"p. (3.3)

Since —x " AZ has a univariate normal distribution with mean 0 and positive variance,

xTAATx = || Ax|*. We obtain by relation (3.3) that

—x"AZ
—x'Y =, ||AX||S”}f47XH—XTM =4 ||Ax[| SV —x"p
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—xT . . . . .
where V = |’|‘Tf|‘|z is a univariate standard normal random variable, independent of S.

O

The above lemma allows us to represent the loss of the portfolio, which is also a ran-
dom variable, as a linear function of the product of two independent random variables,
where one of these random variables is multivariate standard normally distributed ran-
dom vector and the other one is a univariate nonnegative random variable. Now, this

representation will be used to define VaR and CVaR analytically.

Lemma 3.1.2 If Y has an elliptical distribution with det(A) # 0 and f(x,Y) =
—x Y, then the Value-at-Risk, as(x) or VaRz(—x'Y), is given by

VaRs(—xTY) = [|Ax|| F<(8) —xTn = WS (B),

X

where F is the cumulative distribution function of the random variable SV considered

in Lemma 3.1.1.

Proof: VaRs(—x'"Y) is defined as min{a € R : Uyx(a) > S} in Relation 1.3. If
U, (@) is continuous with respect to a, then this reduces to VaRs(—x'Y) ={a € R :
U, (a) = 3}.To compute VaRz(—x"Y) we observe ¥, by Lemma 3.1.1:

U, (o) =P{—x"Y <a} =P{||Ax||SV —x " < a}
= P{SV < [|Ax] (e +x" 1)}

= F(|Ax] " (a+x"p).
Now « is obtained out of the relation ¥y (a) = f.

Uy(a) =0
= F(|Ax]|(a+x"p) =3
= [lAx] (a+xTp) = F()

— o= AX|F(8) — xp

Hence as(x) = U5 (6) = || Ax|| F< () — x"p and the desired result is verified. O
Consequently, we have the analytical form for the VaR if Y has multivariate ellip-
tical distribution and f(x,Y) = —x'Y. Moreover, F* (3) can be simply calculated

using standard inversion. An analytical form also exists for CVaR whenever the same
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conditions are satisfied. The result is given by the following lemma.

Lemma 3.1.3 If Y has an elliptical distribution with det(A) # 0 and f(x,Y) =

—x"Y, then
CVaRs(—x"Y) = ¢3(x) = || Ax| 6 — x " p,

with 0 := E(SV | SV > F*(f)) and F which is the cumulative distribution function

of the random variable SV.

Proof: We know by Lemma 3.1.1 that
—x'Y =4 [[Ax||SV —x"p,

and by relation (1.6) that

CVaRg(—x"Y) =E(f(x,Y) | f(x,Y) > VaRsf(x,Y)).

If we plug in the result obtained by Lemma 3.1.2, then

CVaRg (— )

E(—x"Y | —x"Y > a(x))

E(|| Ax|| SV = x"p | [Ax[|SV = xTp > U (8))
E(|| Ax[| SV | [|Ax|| SV —x "y > || Ax|| F* () —
= E(||Ax|| SV | SV = F<(8)) —x"pu

= [|Ax||E(SV | SV > F<(8)) —x"n

So, if we label 6 := E(SV | SV > F*(f3)), the desired result follows.

1) —x"p

O

Since VaR and CVaR are defined analytically by Lemmas 3.1.2 and 3.1.3, respec-

tively, now the optimization problems (VP) and (CVP) defined in Section 1.1, can be

rewritten.
min || Ax|| F<(8) - x p
s.t Z?:l I, = 1
x; >0 Vi=1,...,n.
and

min ||Ax|| (E(SV | SV > F<(8))) —x"pu
s.t Z?:l I, = 1

(VP)

(CVP)

VaR and CVaR may be used for ranking the risks or determining the optimal risk-

minimizing portfolios. Within the elliptic world, using VaR or CVaR is equivalent to
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using the Markowitz approach under the condition that a certain return is attained.
These measures may give different objective function values but they all yield the same

optimal decision vector x. We next formalize this discussion.

Lemma 3.1.4 If Y has an elliptical distribution with the presentation (A, u, X) where
det(A) # 0, f(x,Y) = M(-x"Y) +a for A > 0 and a € R and the risk measure

p:R* x R" — R satisfies the following two properties:
cp((=x"TY) +a) =a+p(—x"Y),
p(AM(=xTY)) = Ap(—xTY).

Then for any two portfolios x; 'Y and x, 'Y having the same expectation, it follows
that

p(x1"Y) < p(x'Y) <= 0%(x,'Y) < 0?(x2Y).

Proof: E(x;'Y) = E(x, Y) is given.
p(x1Y) < p(x2"Y) if and only if p(x;TY —E(x; ' Y)) < p(x2Y —E(x;, ' Y))

by the first property of the risk measure given above. Since Y has an elliptical distri-

bution, we know by Lemma 3.1.1 that x'Y — E(x"Y) =, || Ax|| SV, therefore;
p([[Ax,[| SV) = [|[Ax[| p(SV) < [[ A%, p(SV) = p([| A% SV)

which is equivalent with ||Ax;|| < ||Axs|| by the second property of the risk measure

given above. Thus, we have the desired result under the condition that E(x; 'Y) =

E(x:'Y). O
By Lemma 3.1.4 and [3] we have

- TV — 2 T
arg min p(x; ' Y) =arg min o (x1'Y)

with the feasible region
X={x:e'x=1pu"x=rx>0}

where 7 is the predetermined expected return of the portfolio. We now easily show
that VaR and CVaR also belong to the special class of risk measures that are given in

Lemma 3.1.4.
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Lemma 3.1.5 It follows for p(Z) := E(Z | Z > VaRg(Z)) with Z, a univariate random
variable, and for every random vector Y not necessarily elliptically distributed,that we
have p(=Ax"Y) = Ap(—x"Y) for every A > 0 and p(—x"Y +a) = a+ p(—x"Y) for

every a € R

Proof: For every A > 0 and a € R, to compute VaRz(—Ax"Y + a), we observe by
Lemma 3.1.1 and Lemma 3.1.2 that ¥y(a) = P{—Xx'Y +a < a} = P{—x"Y <

Tt} = Fx(u® (a)). This implies;

a—a a—a

5 ) =<

Uy(a) = = Fx( = F(B) <= a =\ (A +a

)\ X

Therefore, VaRg(—Ax"Y + a) = AVaRs(—x"Y) + a is proven. This property of VaR

will be used to show that CVaR has the above properties.

p(—2x"Y)=E(-Mx"Y | = Ax"Y > VaRz(—\x'Y))
=E(-Ax"Y | —x'Y > VaRs(—x"Y))
= AE(-X\x"Y | —x"Y > VaRg(—x"Y))

= Mp(—x"Y)

we have shown the first property. Moreover, Va € R it follows that ,

p(—x"Y +a) =FE(—x"Y +a|—x"Y +a>VaRs(—x"Y +a))
=E(—x"Y +a|—x"Y +a>VaRs(—x"Y) +a)
=E(—x"Y +a| —x"Y > VaRs(—x"Y))
=a+E(—x"Y|-x"Y > VaRs(—x"Y))
=a+p(—2'Y)

and the second property is also shown. O

The first property is called positive homogeneity and the second one is translation
invariance [3]. Actually, these two properties are the same as the following property:
if the function u is an increasing affine function given by u(t) = At + a, where A > 0,
then

p(u(—x"Y)) = u(p(—x"Y))

where p is the risk measure that is defined in Lemma 3.1.4. This section concludes the
fact that, if we are in the elliptic world, Y has multivariate elliptical distribution, and

f(x,Y) is an increasing affine function, then minimizing VaR and CVaR measure is
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equivalent to solving the corresponding Markowitz optimization problem given by

min{x' ¥x :x > O,in =1,u'x =1},
i=1
where r is the expected return. To solve the resulting Markowitz problem, a finite
stepped algorithm proposed in [10] is modified and implemented. The algorithm and

the implementation is given in the computational approach section.

3.2 Risk Averse Decision Maker

In the last subsection we have simply taken linear disutility function. However the
investor can have an increasing, right continuous and convex disutility function u :

R+ R. In this case it follows that f(x,Y) = u(-x"Y).

Definition 3.2.1 An investor is called risk-averse if its disutility is given by u(—x"Y)
with u(.) an increasing convex function. The investor is called risk-neutral if its loss

function is given by —x'Y.

The investor is not supposed to be risk neutral. As an example of a risk-averse measure
we mention the so called downside risk given by f(—x"Y) with f(¢) = (max{t—7,0})?
with p > 1. In this case 7 > 0 represent a fixed positive number representing the
acceptable loss for an investor (cf. [3]). Clearly for p > 1 the function is convex.
By lemma 3.1.1, it follows immediately, for the disutility function u(.) and elliptically
distributed Y, that

u(—x"Y) =4 u(]|Ax|| SV —x" ). (3.4)

By the above relation we fathom the distribution of the random variable u(—x"Y)

formed by disutility function u(.), if u(.) is an increasing, right continuous function.

Lemma 3.2.2 If u(.) is a strictly increasing continuous function and Y has an elliptical

distribution with det(A) # 0, then the Value-at-Risk VaRg(u(—x"Y)) is given by
VaRg(u(—x"Y)) = u(||Ax[[ F<(8) — x ") = ¥ ()

with F' being the cumulative distribution function of the random variable SV consid-

ered in Lemma 3.1.1.
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Proof: To compute VaRz(u(—x"Y)) we observe by Lemma 3.1.1 that

U, (a) = P{u(—x"Y) < a}
= P{||Ax[|SV —x " < u(a)}
=P{SV < || Ax| " (u"(e) + x"p)}

= F(JAx]| ™ (u" (a) + x"p).

This shows
Uy(a) =0
= F(|Ax] " (u (@) +xTp)) = 8
= [ Ax| " (u(a) +x"p) = F(5)
= a=u(|Ax||[F<(8) —xp)
and so the desired result follows. a

By the above lemma, we obtain the following important result;
VaRg(u(—x"Y)) = u(VaRs(—x"Y)) (3.5)

Actually, this relation does not hold only for elliptically distributed Y. Observation
3.5 is a rather general result for VaR measure. Consider a random vector Y with an
arbitrary multivariate distribution and the distribution of the random variable —x 'Y
is denoted by Fyx. Since u(.) is an increasing and continuous function, the cumulative
distribution function can be illustrated as Uy (a) = P{u(—x"Y) < a} =P{—x"Y <
u* ()} = Fx(u* («)). Therefore, the following equivalence can be observed:

Ux(a) = = F(u” () = § <= u" (o) = FT(§) <= a=u(F ().

X

Hence the relation (3.5) holds. Therefore, with VaR measure the decision maker choses
the same portfolio whether he is risk averse or risk-neutral. Only the objective function
value, the quantity of risk changes.

min VaR(u(—x'Y)) = minu(VaRs(—x"Y))

x€X xeX
For the risk seeking decision makers the disutility function is not a strictly increasing

function. If u(.) has this kind of property, u(mingex VaRg(—x"Y)) becomes a concave

function and the Relation (3.5) does not hold. Nonetheless, it seems more logical for
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the risk-averse decision makers to minimize their risk measure. Irrelevancy of VaR with
respect to the types of disutility functions can be considered as an argument to use
CVaR instead of VaR. We have shown in Lemma 3.1.3 that, in case of a linear disutility
function and elliptically distributed random vector Y, CVaR has an analytical solution.
The following lemma illustrates that CVaR does not have an analytical solution for

general disutility functions, even if the random vector Y is elliptically distributed.

Lemma 3.2.3 If u(.) is a strictly increasing, continuous function and Y has an ellip-

tical distribution with det(A) # 0, then;
CVaRgs(u(—x"Y)) # u(CVaRs(—x"Y))

Proof: We observe by Lemma 3.1.1 that,

CVaRs(u(—x"Y)) =E(u(—x"Y) | u(—x"Y) > asz(x))
E(u(||Ax|[SV = x"p) | u(|Ax[|SV = x ") > u(||Ax[|[F(8) — xpn))
E

(u(l|Ax[|SV —xTp) | SV > F<(3))

since we cannot change the places of u(.) and E(.), the desired result is obtained. O

Although the analytical form of the solution does not exist, the objective function
can be closely estimated by simulations from two independent univariate distributions,
the distributions of S and V. The CVaR measure is estimated in [13] by generating
scenarios from multivariate distributions. Thus, in the elliptic world, simulation from

multivariate distributions is reduced to univariate simulation.
CVaRﬂ(u(—XTY)) = E(u(||Ax||SV — XT/L) | SV > F<(5)). (3.6)

is used to estimate the objective function of CVP when the decision maker is risk
averse, by generating realizations for S and V. Illustration and the comparison of the

technique is given in the Computational Results, Chapter 4.
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CHAPTER 4

COMPUTATIONAL RESULTS

We devote this section to introduce the modified algorithm as well as to illustrate our
analysis with the proposed solution approach. We first give a finite step algorithm to
solve problem (MP). Then, we present a thorough numerical study on a set of data

compiled from the Istanbul Stock Exchange.

4.1 Modified Michelot Algorithm

At the end of Section 3.1, we have emphasized that when Y has a multivariate elliptical
distribution and f(x,Y) is a bilinear, then minimizing VaR and CVaR measures are
equivalent to solving the corresponding Markowitz problem (MP) with the predeter-
mined expected return r.

The algorithm introduced by Michelot finds in finite steps the projection of a given
vector onto a special polytope [10]. The main idea of this algorithm is to use the
analytic solutions of a sequence of projections onto canonical simplices and elementary
cones. To apply Michelot’s algorithm, we use a transformationy = Y2x. Then problem
(MP) becomes

min{y'y |d'y =1, n'y =r, Ay >0}, (4.1)

where d" = e™S 12 nT = 4" "Y/2 and A = ¥'/2. Note that the matrix A is the
same as the matrix used for elliptical distributions in Chapter 3. To modify Michelot’s

algorithm according to our problem, we need to introduce several sets. Let

V={yeR|d'y=1, n'y=r},

Vr=VNJr,
where Z C {1,2,--- ,n} denotes an index set and (Ay); denotes the ith component of

vector Ay. Algorithm 4.1.1 gives the steps of the Modified Michelot Algorithm. The
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algorithm starts with solving the quadratic programming problem min{y "y | y € V}.

It is easy to show that the analytic solution for this quadratic program [2] is given by

.
ar d’d dTy | |1

y = . (4.3)
n' n'd n'n T

Notice that some of the components (Ay); may be negative. After identifying the most
negative component and initializing the index set Z, the algorithm iterates between
projections of the incumbent solution X onto subspace )7, and then onto subspace
V7 until none of the components are negative; i.e., the solution is optimal. The first

projection [2] is given by

Py,(y) = argmin{z|y —y| |y € Yz}

. (4.4)
- (I - [A]iTGI ([A]iez [A]ZTEI) [A]zTGI> Y

where [A],_; denotes the submatrix formed by the rows i € 7 of A. Similarly, the

second projection [2] yields

Py, (y) = argmin{|ly —y| |y € Vz},
T T\ !
d’ d’ d’ d’ 1
= y-| 7 n' n' nto |y |
[Aliez [Alier [Alier [Al;er 0
(4.5)

Since we have a finite number of assets, the dimension of the index set Z is also finite.

This shows that the modified algorithm terminates in at most n iterations (see also;
[10]).

Algorithm 1 Modified Michelot Algorithm
1. Set y as in (4.3). If Ay > 0 then stop; y is optimal. Otherwise, select i with
most negative (Ay);, set Z < {i}, and then go to Step 2.

2. Set y <+ Py_(y) as in (4.4), and then go to Step 3.

3. Set y < Py, (¥) as in (4.5). If Ay > 0 then stop; ¥ is optimal. Otherwise, select
i with most negative (Ay);, update Z <— Z U {i}, and then go to Step 2.
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4.2 Sample Data

To conduct the experiments, a portfolio with 26 financial instruments from seven sectors
is compiled from Istanbul Stock Exchange. The data is collected over 48 months
starting from July 2001 until June 2005. Table 4.1 shows the data of the instruments.
The first column gives the individual instruments that are grouped into their respective
sectors. The last two columns correspond to average monthly returns and variance
of monthly returns, respectively, which are given as percentages. Monthly returns
are calculated by proportioning the difference between the initial and the final prices
of the corresponding stocks with the initial prices for the respective months. The
interpretation of negative monthly return is given as the decline of stock price for that
month. The exact formulation for monthly return can be found in the Istanbul Stock
Exchange website. The second column refers to mainly the sample variance of monthly
returns for the corresponding stock. All the figures in the table are calculated by using
TL currency.

Before conducting experiments, we need to test that the returns are indeed ellipti-
cally distributed. Moreover we should also use the point estimator of the covariance
matrix. However, the test and estimation assume that the data is not time dependent.
Therefore, we have first shown by Von-Neumann test that our data is time indepen-
dent. The details of this test are given in Appendix A. After establishing that, we have
used a macro named %MULTINORM in SAS to show that the data is coming from a mul-
tivariate normal distribution [19]. Appendix B includes the details about multivariate
normality test. In the subsequent part of this section, ¥ denotes the point estimator
of the covariance matrix, and A := ¥/2 is found by the Cholesky decomposition of the
covariance matrix. To implement the solution procedure we have used MATLAB 14 on a

Xeon-2 GHz personal computer.

4.3 Risk Neutral Decision Maker

As we have discussed in Section 3.1, for risk neutral decision makers and returns ellip-

tical distributed, the optimal solution of problems (MP), (VP), and (CVP) coincide,

x._ Ty : S - T
X" = argminx Zx—argirg)r(lHAxHVaRﬂ(Z) X [ arggg)rg”AxHCVang(Z) X L.

Since Y has a multivariate normal distribution, S = 1, V is a standard normal variable,

and F* is the inverse cumulative distribution function of V.
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Stocks Average Variance of
Within Sectors | Monthly Returns (%) Monthly Returns (%)
B1 3.06 286.97
B2 4.55 314.18
B3 2.60 397.98
B4 5.82 431.77
B5 3.45 352.04
B6 4.16 181.15
IC1 3.48 233.79
IC2 4.87 309.87
IC3 3.70 471.92
H1 2.75 274.13
H2 2.65 244.09
H3 2.07 222.58
H4 4.18 265.7
IT1 4.89 847.75
T2 4.90 418.91
NM1 5.04 241.85
NM2 4.70 219.40
NM3 1.32 227.32
NM4 4.85 185.10
NM5 6.83 228.76
CP1 1.40 182.92
CP2 3.91 237.57
CP3 3.79 353.87
CP4 3.10 186.92
CP5 6.05 342.24
T1 1.48 335.80

B1,...,B6 : Banks and Special Finance Corporations

IC1,...,IC3 : Insurance Companies

H1,....H4 : Holding and Investment Companies

IT1,IT2 : Investment Trusts

NM1,...,NM5 : Manufacture of Chemicals and of Petroleum, Rubber and Plastic Products

T1 : Telecommunication

Table 4.1: Main statistics of financial instruments.
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Notice that problem (MP) is a convex optimization problem that can be solved
by off-the-shelf nonlinear optimization solvers. To compare the performance of the
modified Michelot Algorithm with a standard solver, we have also solved problem
(MP) with fmincon function in MATLAB. We initially set the expected return, r =
(max{,ui 01 < i <26 +min{y 1 <i< 26})/2. Both fmincon and Algorithm
4.1 return the same optimal solution. There are only six nonzero allocations to the

financial instruments,
B6 = 36.41%, NM3 = 0.29%, NM4 = 7.51%, NM5 = 9.57%, CP3 = 15.34%, CP4 = 30.87%.

Solution of problem (MP) decides on the nonzero allocations by looking at the variance
and covariance of the assets. We observe from Table 4.1 that the variances of the chosen
assets are relatively low. Among the correlated assets, (MP) selects the one which has
the minimum variance. Table 4.2 shows the comparison of the computation times.
Clearly, the modified Michelot Algorithm outperforms fmincon. This is an expected
result, since Algorithm 4.1 is customized to solve problem (MP). This improvement is
especially important when the number of assets is huge. Notice also that it is interesting
in finance to see the efficient frontier. In this case many problems need to be solved for
different values of r. Therefore, the speed of the algorithm used to solve this sequence

of problems becomes important.

Computation Times
fmincon ‘ Modified Michelot

| 3.078125 sec. | 0.09375 sec. |

Table 4.2: Comparison of Algorithm4.1 with fmincon function in terms of computation
times.

The objective function values in problems (MP), (VP) and (CVP) are in percent-
ages and as risk measures they illustrate at what percentage the optimal portfolio is
going to lose. The problem (MP) deals with expected returns, where as (VP) and
(CVP) investigate unexpected returns, where numerical objective function values can
be helpful to visualize the unexpected situation and to compare portfolios. We have
the analytic forms of the objective functions in problems (MP) and (VP). On the other
hand, to compute the optimal objective function value of problem (CVP), generating

realizations V; such that V; > F*< (), is needed. Then 6 can be estimated by



where N is the sample size of the realizations that satisfy the condition V; > F* ().
This estimation becomes more precise for higher N values. Table 4.3 illustrates the im-
provement in the estimation as /V increases. Here we set § = 0.95. The second column
shows the change in 6 as NN increases. Similarly, the last column gives the convergence
of the objective function value of problem (CVP). We note that the convergence can

be observed after a large number of points is sampled.

[ N [ 0 [ éx) |
100 | 2.0426 | 17.9175
500 | 2.0938 | 18.4689
1000 | 2.0871 | 18.3964
5000 | 2.0664 | 18.1742
25000 | 2.0639 | 18.1494

100000 | 2.0636 | 18.1454

Table 4.3: Estimation of the optimal objective function value of problem (CVP); =
0.95.

Naturally the time required to generate realizations for estimating 6 becomes larger
as N increases. In addition, the number of samples that pass the condition V; > F*< ()
decreases as [ increases. Therefore, we conduct another test to see the effect of N and
( in computation times. Table 4.4 shows that as expected, the computation times
rapidly increases when N and [ are increased. A remedy for decreasing the large

computation times may be using some rare event generation techniques [14].

| B || N=100 | N=500 | N=1000 | N=5000 | N=25000 | N=100000
0.90 || 0.12 sec. | 0.28 sec. | 0.53 sec. 2.77 sec. 25.81 sec. | 361.52 sec.
0.95 || 0.08 sec. | 0.42 sec. | 0.86 sec. 4.83 sec. 37.17 sec. | 398.41 sec.
0.99 || 0.34 sec. | 2.09 sec. | 4.31 sec. | 22.12 sec. 123.62 sec. | 749.20 sec.
0.999 || 4.01 sec. | 21.95 sec. | 44.41 sec. | 220.50 sec. | 1120.08 sec. | 4677.50 sec.

Table 4.4: Time required to estimate # for different N and [ values.

The optimal objective function value of problem (CVP) is an upperbound for the
optimal objective function value of problem (VP) [13]. One expects that the difference
between these two optimal objective function values decrease as 3 increases, especially
when the distribution function is not highly skewed. However, we should note that
this is not always the case, since the difference is expected to increase as the skewness
of the underlying joint distribution increases. Table 4.5 shows for our data that the

optimal values for problems (VP) and (CVP) indeed decreases as ( increases. Since
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the returns are multivariate normal, and hence elliptic, the joint distribution is not

highly skewed.

| B [ as(x) [ ds(x) |
0.90 | 9.7226 | 14.8322
0.95 | 13.6347 | 18.1494
0.99 | 20.9730 | 24.6247
0.999 | 29.1986 | 32.1890

Table 4.5: Difference between optimal objective function values of problems (VP) and
(CVP); N = 25000.

To this end we have used a fixed expected return value, r. In the analysis of
portfolio optimization problems, it is quite common to construct the efficient frontier
of r versus the considered risk measure. Figure 4.1 illustrates the minimum-variance
sets for all three risk measures [8]. Far left point of the minimum-variance set is
called the minimum-variance point. Most investors will prefer the portfolio with the
smallest variance for the given mean. This type of investors is said to be risk averse.
Additionally, most investors will prefer the portfolio with the largest mean for a given
level of variance. This property of investors is termed nonsatiation. Thus, only the
upper part from the minimum-variance point of the minimum-variance set will be of
interest to investors who are risk averse and satisfy nonsatiation. This upper portion

is named as efficient frontier.

4.4 Risk Averse Decision Maker

As we have defined in Chapter 3.2, an investor is called risk averse if its disutility
function is an increasing, convex function. Hence, the rate of change of disutility of
a risk averse investor increases as the loss increases. In addition to this, loss is more
significant than gain for a risk averse investor. Exponential utility function is one of the
four types of utility functions that are mostly preferred, [8]. Therefore, u(t) = e — 1
is chosen for the disutility function, where ¢ is a scale parameter and 1 is subtracted in
order to have zero disutility in case of zero loss. We initially set the scale parameter,
c = 1/(max{p; : 1 > i > 26}. It is logical in the sense that the maximum level of
return is attained as all of the capital is allocated to the asset with the highest expected
return.

As discussed in Section 3.2, when the investor is risk averse and the returns are

elliptically distributed, the optimal solutions of problems (VP) and (MP) with affine
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loss function coincide.

* T _ T _
X _argirél)r(lx Yx = argirél)r(lVang( u(—x'Y)) = argirél)r(lu(Vang( x'Y)).

However, the optimal solution of problem (CVP) for risk averse decision makers de-
pends on N and [ values taken. Thus, the optimal solution of problem (CVP) is
denoted by x4 (N, 3).

We have the analytic form of the objective function in problem (VP). On the other
hand, the objective function of problem (CVP) needs to be estimated to solve the
model. To obtain CVaRg(u(—x"Y)), generating realizations S; and V; which satisfy
S;V; > F< (), is necessary. Then, CVaRg(u(—x"Y)) can be estimated by

N N
1 1
322 OVaRa(u(—xTY) = 5 3 ullaxlS; - (46)
where N is the sample size of the realizations that satisfy S;V; > F*<(3). Accordingly,

problem (CVP) is shown as
L
min{N ;u(HAxHS]V} —x"p) : e'x=1,x>0}.

Since Y has a multivariate normal distribution, S = 1, V is a standard normal
random variable and F* is the inverse cumulative normal distribution function. This
estimation, thus the optimal portfolio of problem (CVP), becomes more accurate for
higher N values. Table 4.6 points up the improvement in the estimation of objective
function and the optimal portfolio as NV increases. Here we set = 0.95. The second
column illustrates the change in 6§ as N increases, similar to Table 4.3 in the previous
section. Correspondingly, the third column provides the convergence of the objective
function value of problem (CVP). The nonzero allocations, x,(N, ) values, are given

in the last column. Note that, xi, (N, 3) also converges as N increases.
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| N | 0 | gs(xt(NV, D)) | Nonzero Allocations! |

100 | 9.7226 16.5148 | 35.52% , 7.80%, 12.84%, 14.58%, 29.27%
500 | 13.6347 185219 | 35.63%, 7.77%, 12.44%, 14.68%, 29.49%
1000 | 20.9730 18.2439 | 35.62%, 7.77%, 12.46%, 14.67%, 29.48%
5000 | 29.1936 17.1857 | 35.56%, 7.79%, 12.66%, 14.62%, 29.36%

tB6, NM4, NM5, CP3, CP4

Table 4.6: Estimation of the optimal objective function value of problem (CVP)and
x5 (N, B) values; = 0.95.

x5 (N, §) values differ from x*. Problem (CVP) does not allocate to the financial
instrument NM3. Since, in the objective function of problem (CVP), x is multiplied
by p, the problem tries to balance mean and variance of the financial instruments. We
observe from Table 4.1 in the previous section that, among the six nonzero allocations,
the model eliminates the one with the lowest return and the highest variance; NM3.
Subsequently, the model tries to allocate more to the asset with the highest return;
NMS5.

The numbers of samples that pass the condition V; > F* () decreases as ( in-
creases, as mentioned in the previous section. Naturally, the time required to generate
realizations for estimating € becomes larger as N increases. In addition, the model
solves an optimization problem with the estimated objective function that lengthen
the required time even more. Table 4.7 illustrates the effect of N and  on computa-
tion times to estimate 6 and to solve for x5 (N, 3). Table 4.7 also demonstrates that
as expected the effective increment in the time requirements when the model estimates
the objective function and minimize over it compared to the Table 4.4 in the previous

section.

| B | N=100 | N=500 | N=1000 | N =5000 |
0.90 | 24.8594 sec. | 120.6563 sec. | 215.9063 sec. | 1181.2969 sec.
0.95 | 29.1875 sec. | 162.7031 sec. | 304.6719 sec. | 1692.8281 sec.
0.99 | 30.7813 sec. | 137.5313 sec. | 272.2813 sec. | 1755.5156 sec.
0.999 | 45.8125 sec. | 218.2500 sec. | 482.7188 sec. | 1963.4531 sec.

Table 4.7: Time required to estimate ¢g(x% (N, 5)) and to minimize for different N
and [ values.

ag(x*) and ¢g(x5(N, §)) values are given in Table 4.8. Here we set N = 5000.
Observe that ag(x*) increases rapidly as [ values increase, where as the increment of 3
does not effect the level of ¢3(x¢ (XN, 5)) that much. Similarly, the difference between

the two optimal objective function values decreases as [ increases. There is a clear
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difference between the objective function values in Tables 4.4 and 4.8. Actually, this is
a guessable observation, since disutility of risk averse investor increases exponentially

as the loss increases.

| B [ as(xs) [ ds(xp(N, 5)) |

0.90 | 3.1507 123.8318
0.95 | 6.3593 128.2890
0.99 | 20.5465 126.9068
0.999 | 70.8327 124.8263

Table 4.8: Difference between optimal objective function values of problems (VP) and
(CVP) for risk averse investors; N = 5000.
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CHAPTER 5

CONCLUSION

In this study we classify and analyze a general risk management model applied to
portfolio problems. Two recent risk measures are considered; Value-at-Risk (VaR) and
Conditional Value-at-Risk (CVaR)and two types of disutility functions are considered;
for risk neutral and risk averse decision makers. In this classification, the distributions
of the asset returns are taken as elliptical, which allows us to represent the return of the
portfolio as a linear function of the product of two independent random variables, where
one of these random variables is multivariate standard normally distributed random
vector and the other one is a univariate nonnegative random variable. Thus, if disutility
function is linear in loss and the joint return distribution is elliptical, both VaR and
CVaR measures are convex functions and have analytic forms. In utility theory, linear
loss functions can be interpreted as the investors being risk neutral. However, in this
case it can be shown that both optimization problems (objective functions formed by
VaR and CVaR measures) are equivalent to classical Markowitz model. If the investor
is risk averse and the risk measure is VaR, we show that investor’s decision is not
affected by the utility. Nonetheless, under the same setting this observation does not
hold for CVaR measure. Although, a convex objective function exists in this case,
an analytic form can not be defined with CVaR measure. However, unlike generating
scenarios from multivariate distributions as suggested in the literature, we show that
the objective function can be closely estimated by simulating realizations only from
univariate distributions.

Computational experience is given with the mathematical analysis of the problem.
For linear disutility functions where the random vector has elliptical distribution, a fi-
nite step algorithm in literature is modified and implemented to solve the corresponding
Markowitz problem. The comparison of the computational times of the algorithm with
fmincon function of MATLAB is shown. Simulation from multivariate distributions is

reduced to generating univariate realizations for convex disutility functions. Numerical
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results for both sections are discussed.

There are several directions in which this research can be extended. We have
stabilized the loss function as —x'Y. The loss function can be changed. The same
type of classification can be made through non elliptical world. In the non elliptical
world, if CVaR is chosen as the risk measure, it is still a convex function for linear
disutility functions. VaR measure still entails irrelevancy property to characteristic
of decision makers. Analytic forms of VaR and CVaR do not exist in non elliptical
world. Therefore, the notion of copulas can be implemented to simulate realizations
from n-dimensional multivariate distribution, [3]. Additionally, mathematical finance
approaches, such as hedging, can be implemented in the model. Marginal contribution
of each sector within the portfolio and each financial instrument can be evaluated. A
multistage model can be given by using same classification. Lastly, since multivariate

asset returns is a random vector, stochastic or time series models can be applied.
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Appendix A

Time Dependency Test

Each financial instrument’s data must be tested for time dependency by using Von-
Neumann ratio. The Von-Neumann ratio can be given as

fll (Yz't+1 - th)
Sy -

i —

for each asset i, where ¢ denotes the observations and Y; denotes the average monthly
returns for each financial instrument 2. Then,
di -2 iV 49
and t; = ——
2 Vv1— 7"1'2

are calculated, where ¢; is a t-statistic, that will be compared by #(0.005, 49+ 3) = 2.68.

T, =

We will reject the null hypothesis that the data is independent if |¢;| > £(0.005,49 + 3).
t; figures are given in Table A.1. According to Table A.1, we do not reject the null
hypothesis since all test statistics are less than the given amount ¢(0.005,49 + 3).

B1 B2 B3 B4 B5 B6 IC1 I1C2 IC3 H1 H2 H3 H4
—0.25 | —0.17 | 0.61 —0.87 | —1.00 | 1.54 1.78 1.41 0.36 1.42 0.96 0.97 0.07
IT1 IT2 NM1 | NM2 | NM3 | NM4 | NM5 | CP1 | CP2 | CP3 | CP4 | CP5 | T1
—1.10 | —0.08 | 1.15 2.21 1.59 1.59 0.13 0.57 1.52 0.44 0.91 1.44 -0.08

Table A.1: Von-Neumann statistics for each financial instrument.
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Appendix B

Multivariate Normality Test

The process of testing multivariate normality involves assessment of marginal normality
of each variable at a time and then evaluation of the multivariate skewness and kurtosis
statistics. Romeu and Ozturk’s simulation study illustrates that the multivariate tests
of skewness and kurtosis proposed by Mardia are the most stable and reliable tests for
evaluating multivariate normality [19]. The Mardia’s skewness test statistic is

48

31,26 = Z 248 [(yz — y)'E_l(yj — y)]3 /48?

i=1 j=1
for the data given, where y is a 26-dimensional vector and X is the estimated covariance
matrix. Mardia proved that 4831’26 /6 has a chi-square distribution with v degrees of
freedom, where v = p(p + 1)(p + 2)/6 and for this context p = 26. The Mardia’s
kurtosis test statistic is given as

48

Boos =D [(vi—5)S (v — 9)] /48

i=1
distributed normally with mean p = 26(26 + 2) and variance 0% = 8 x 26(26 + 2)/48.
The results of these tests can be found in Table B.1. The tests are rejected if they have
small p-values, for example less than 0,05. We do not reject the null hypothesis.

Q-Q plot is the most popular way of observing the distribution function of a random
variable. Q-Q plots are usually used for observing normality. If the plot is linear on
x = y line, then the data is assumed to be normal, where as nonlinear plot indicates that
the distribution is nonnormal. Obviously, the test based on the Q-Q plot is subjective.
However, it gives intuitive ideas about the distribution, even if the distribution is non-
normal. The Q-Q plot of the data can be found in Figure B.1. The linearity of the

plot can be seen immediately.
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| Observations | Test | Skewness and Kurtosis | Test Statistic Value [ p-value |

48 Mardia Skewness 398.534 3402.97 0.06
48 Mardia Kurtosis 709.029 -1.72 0.09

Table B.1: Multivariate Normality Tests.
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Figure B.1: Chi-Square Q-Q plot.
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