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Abstract

5-axis milling processes are widely used in industries where complex surfaces
are machined, and cutter accessibility is limited due to geometrical constraints on the
workpiece. Additional motion capability increases the accessibility of the cutting tool,
so it becomes possible to machine complex surfaces despite the geometrical constraints.
In most of these industries dimensional tolerance integrity, surface quality, and
productivity are of great importance. Therefore, identification of optimal or near-
optimal process conditions, and selection of appropriate machining strategy for a given
workpiece are required. Increased motion capability in 5-axis complicates the geometry
and the mechanics of the process. Thus, optimization of 5-axis milling processes
becomes a complex engineering problem. In order to solve such a problem, process
models should be used together with geometrical analysis methods. In selection of
appropriate machining strategy, surface characteristics should be known together with
the process mechanics. In this thesis, a complete geometrical model is presented for 5-
axis milling processes using ball-end mills. The developed model is integrated with an
existing 5-axis process model in order to simulate the cutting forces throughout a given
toolpath. Also, the effect of lead and tilt angle pair on process mechanics is investigated,
and optimized values of those under various conditions are identified. In addition, a
model suggesting the most appropriate strategy among various machining strategies for
roughing and finishing operations for regular free form surfaces is presented. The
developed models are verified through experiments and their applications are
demonstrated on complex surfaces.
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5-EKSEN FREZELEME SURECLERININ GEOMETR K ANAL  VE
OPT ZASYONU

Lütfi Taner TUNÇ

Endüstri Mühendisli i, Yüksek Lisans Tezi, 2006

Tez Dan man : Doç. Dr. Erhan BUDAK

Anahtar Kelimeler: CL dosyas , 5-Eksen frezeleme, Kabartma yüzey i leme, Kesme

stratejisi, 5-Eksen frezeleme geometrisi, Süreç Eniyileme, Süreç benzetimi, Kesme

parametreleri seçimi

Özet

5 eksen frezeleme süreçleri karma k yüzeylerin ve parça üzerinde geometrik
tlar n oldu u, havac k, kal p ve otomotiv endüstrilerinde yayg n olarak

kullan lmaktad r. Yüksek hareket kabiliyeti, kesici tak n parçaya ula mas
kolayla rd ndan, geometrik k tlara ra men karma k yüzeylerin üretilmesi
mümkün hale gelmektedir. Bu tür endüstrilerde boyutsal tolerans bütünlü ü, yüzey
kalitesi ve üretim verimlili i çok önemlidir. Bu yüzden, en iyi ya da en iyiye yak n
süreç ko ullar n belirlenmesi ve en uygun kesme stratejisinin seçilmesi gereklidir. 5-
eksen frezeleme süreçlerindeki yüksek hareket kabiliyeti süreç geometrisini ve
mekani ini karma kla r. Bunun sonucu olarak, 5-eksen frezeleme süreçlerinin
eniyilemesi karma k bir mühendislik problemi haline dönü ür. Bu problemi çözmek
için süreç modelleri, geometrik çözümleme yöntemleriyle birlikte kullan lmal r.
Kesme stratejisi seçiminde ise yüzey karakteristi i ve süreç mekani i dikkate
al nmal r. Bu tezde, küresel uçlu tak m kullanan 5-eksen frezeleme süreçleri için tam
bir geometrik çözümleme modeli sunulmu tur ve 5-eksen süreç modeliyle birlikte
kullan p süreç benzetimi yap lm r. Süreç mekani ine etkisi olan tak m aç lar n
de ik ko ullar için en iyi de erleri ara lm r. Ayr ca, kesme stratejilerini çe itli
kriterlere göre kar la p en uygun stratejiyi bir model geli tirilmi tir. Geli tirilen
modeller deneysel olarak do rulanm  ve karma k yüzeyler üzerindeki uygulamalar
gösterilmi tir.
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Chapter 1

Introduction

Machining is one of the widely used manufacturing processes in industry. The

main idea is removing the desired amount of material volume in form of small chips by

means of a cutting tool. There are various types of machining operations such as

turning, broaching, milling, drilling etc. Milling operations are applied where high level

of manufacturing flexibility is needed. Therefore it is an important operation for

machining industry. One of the most widely used milling operations is 5-axis milling

which is an important process for aerospace, die-mold and automotive industries. It is

widely used in manufacturing of mechanical parts having free form, complex surfaces

such as turbine blades, dies-molds and aircraft structural parts. (See Figure 1-1) 5-axis

milling operations are performed using the machine tools shown in Figure 1-2. These

machine tools may be configured in various types; six of them are given in Figure 1-3

[8]. Since kinematics and dynamics of each configuration is different, each of them may

be used for particular industries or parts.
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Figure 1-1: Products machined using 5-axis milling.

There are several challenges in such industries. One of the most important

challenges is achieving high part quality. This leads high manufacturing tolerances and

dimensional tolerance integrity. Another challenge is increasing the productivity. In

order to increase the productivity the optimized values of machining parameters and

appropriate machining strategies should be identified for a given workpiece geometry.

Those can be identified using process models together with the geometrical models

developed for 5-axis milling processes.
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Figure 1-2: 5-axis machine tool

Figure 1-3: Possible configurations of 5-axis machine tools

Geometry of 5-axis milling processes depends on several geometrical

parameters which are mainly related to tool geometry and workpiece geometry.

Geometrical parameters are namely depths of cut and lead-tilt angles. Interaction

between the cutter and workpiece is illustrated in Figure 1-4. Since there is a complex

interaction between workpiece and tool having insight into the process beforehand is

beneficial to identify improved process conditions. For such a purpose, a process

simulation should be performed. In the simulation, process information is parsed from a

Cutter Location (CL) file where only the orientation and the center position of the tool

are given. The geometrical parameters required in the process simulations are not



4

explicitly given in the CL-file. Thus, it is required to extract those through geometrical

analysis.

Figure 1-4: Workpiece – cutter interaction in 5-axis milling

In 5-axis milling processes, various machining strategies can be applied.

Selection of the most appropriate machining strategy for a given workpiece is of great

importance from the productivity and the part quality points of view. In strategy

selection, both the surface characteristic and process mechanics play important roles.

Thus, it is required to develop a model which evaluates different strategies from process

mechanics and surface geometry points of view. In addition, it would be beneficial to

investigate whether a new strategy can be proposed for a given workpiece. In most of

the industrial applications, process parameters and machining strategies are decided

based on experience or trial and error methods. Therefore, models developed in this

thesis would be significantly useful for industrial applications.
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1.1 Research Objective

The main objective of this research is to develop methods and strategies for

modeling, analysis and optimization of 5-axis milling processes. In order to achieve and

implement this objective, the necessary steps can be summarized as follows:

i. Extract geometrical parameters from a given CL-file and workpiece

geometry for 5-axis milling operations.

ii. Simulate cutting forces throughout a given process using the extracted

geometrical information and the available process models.

iii. Determine the optimum tool orientation and other machining parameters

using simulations.

iv. Develop a method for evaluation and optimal selection of  common

machining strategies available in CAD/CAM systems

v. Integrate the geometry and process models for analysis, simulation and

optimization of 5-axis milling operations.

1.2 Organization of the Thesis

The thesis is organized as follows: Review of related literature is presented in

this chapter, followed by the geometry of ball-end mill and 5-axis milling geometry in

Chapter 2 where the required geometrical values related to the ball-end are calculated.

Depths of cut and lead-tilt angles are defined in a coordinate system which consists of

feed, crossfeed and surface normal vectors where surface normal vector is obtained

using a reference CL-file. Calculation methodology of the named geometrical

parameters is presented in Chapter 3. Depths of cut are calculated using the workpiece

geometry information together with the tool position and orientation where, lead-tilt

angles are calculated by applying matrix transformations. These are followed by

verification of the methods on different workpiece geometries and process simulation

methodology for a given toolpath and workpiece geometry in Chapter 4 where,

experimental verification is also provided. Process optimization is presented in Chapter

5. Optimum values for lead & tilt angles under various conditions are investigated and
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results are verified by experiments. Besides tool orientation, methodology developed for

optimization of other machining parameters such as depths of cut and feed rate is

presented. Machining strategy evaluation and selection methodology is also performed.

Methodology to evaluate various machining strategies from process mechanics and

surface characteristics points of view is given. In Chapter 6, applications of developed

methods are presented Thesis is concluded with the summary of contributions and

future work in Chapter 7.

1.3 Literature Review

The importance of process simulation has increased as a result of increased need

for productivity and quality in machining operations. However, process simulation

requires powerful geometrical and mechanics models. In literature, significant amount

of work is available in milling geometry modeling.  3-axis and 5-axis ball-end milling

of sculptured surface geometries are modeled using various methods. In addition, some

literature is also available in optimization and machining strategy selection. However,

only a very few of these studies consider a truly 5-axis process including the effects of

tool orientation. Also, the machining strategies are evaluated with respect to either

process mechanics or workpiece geometry. In this chapter an overview of the published

works are given.

1.4 Process Geometry

Milling process geometry can be modeled using both analytical and discrete

methods. Discrete methods are applicable to very complex geometries. However, they

are slower with respect to the analytical methods. As in other problems, there is a

compromise between the calculation time and the accuracy. Recent developments in

CAD techniques enable analytical methods to be applied although they are applicable to

limited complexity.
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One of the noted discrete methods is vector clipping which is proposed by

Chappel [5]. In this method, the part surface is approximated with cloud of points.

Then, the surface normal vectors are calculated at various points. In order to simulate

the machining process, the intersection of each vector with the tool swept envelope

should be calculated. Another discrete method is the CSG which was first applied by

Voelcker [31]. In this method, workpiece geometry is updated using Boolean

operations.

In the Z-mapping method, the corresponding height of each grid point is stored

as a Z-value.  For each movement of the tool, Z-values are compared with the tool

position and Z-values are updated. Anderson [1] proposed Z-mapping in collision

detection and elimination in NC machining. Kim et al. [15] used Z-mapping technique

to determine cutter contact area in 3-axis sculptured surface ball end milling. In

Lazoglu‘s study [18] Z-mapping is used to determine the chip load. Kyu et al. [20]

developed an enhanced Z-mapping method, by applying the super sampling technique.

Thus the efficiency and accuracy of the Z-mapping method is increased. One of the

applications of this method in 5-axis milling is the one presented by Fussel et al. [12]. In

this study, tool-workpiece engagement was identified using an extended Z-buffer

method. They used swept envelope of the cutter, to determine the intersection between

the tool and Z-buffer elements. Also, the 5-axis movement of the tool was approximated

as a 3-axis motion by keeping a desired accuracy.

Voxel and Octree are 3-D solid discrete methods. Voxel has a simple database,

so its application is easy and fast. Also, workpiece stock update can be performed fast.

Walstra et al. [32] applied this method to simulate the material removal from the stock

in milling operations. Kim et al. [16] used Octree method to identify cutting regions in

milling operations.

In analytical methods information of the workpiece geometry is used together

with the tool position to analyze and simulate the process geometry. Book of Choi [7]

presents a detailed theory and application of surface modeling techniques for

CAD/CAM of complex surface geometries. One of the analytical studies in 3-axis

sculptured surface machining is the one presented by Meng et al., [23]. Another book of

Choi, et al. [8] presents a detailed theory and applications of 5-axis sculptured surface

machining. Du et al., [10] and Bailey et al., [2] developed analytical methods to

simulate 5-axis tool motion and process geometry. Ozturk et al., [25] analytically

modeled the chip load in ball-end milling of free form surfaces. Lee et al., [19]
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estimated the depth of cuts by positioning the tool axis coincident with the surface

normal at that point. Imania et al., [14] modeled the cutter-workpiece engagement

boundaries using a geometric simulation system which uses a commercial solid modeler

ACIS© [34] as the geometric engine.

In this thesis, a practical and powerful method for integration of process models

with machining geometry is proposed. In the proposed method, CL file is used as the

main information source. The ball-end of the tool is modeled as a sphere. Tool position

and orientation is used with the analytical information of the workpiece to perform

geometrical analysis. Information of the machined surface is obtained from a reference

CL file.

1.5 Process Optimization & Machining Strategy Evaluation

In production, process time and part quality vary conversely. Thus, optimization

methods should be used to compromise between them. By use of optimization methods,

cutting strategy and cutting conditions can be selected.

Optimization of process parameters such as the feed rate is one of the obvious

objectives of such studies. One of the noted works in feed rate scheduling for 3-axis

ball-end milling is presented by Lim, et al. [21]. In this study, the surface is divided into

grid points. At each grid point the maximum feed rate direction is determined.

Therefore, both cutting direction and feed rate optimization are performed. In another

study which is presented by Erdim, et al. [11], feedrate scheduling is performed for 3-

axis ball-end milling, based on both MRR and cutting forces. One of the first attempts

for feed rate scheduling in 5-axis milling is presented by Bailey, et al. [3] as seen from

the current studies, by applying feed rate scheduling techniques, cutting forces can be

kept under a desired level. In addition, machining time of a given process can be

decreased. In this respect such techniques are useful to improve 3 and 5-axis machining

processes.

Another challenge in 5-axis milling is the selection of the tool orientation. For

the optimization of the tool orientation, there are mainly two approaches. A common

one is based on the kinematics smoothing of the tool axis movement.  Another approach

is to evaluate the tool orientation by considering the process mechanics. Ming, et al.

[24] studied the former method, i.e. the tool orientation smoothing. They tried to
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prevent abrupt changes in the tool orientation by applying quaternion interpolation

algorithm. One of the studies which consider the effects of process mechanics on

resulting surface is presented by Lim, et al. [22]. In this study, various tool orientations

for a 5-axis turbine blade machining case are evaluated totally experimentally. This

study provides some idea on the effect of tool orientation on the resulting surface

quality. Though, the outcomes of this study can not be generalized over all workpiece

and tool combinations since the study is not based on any modeling approach. In this

respect, such a technique may be beneficial for only investigations on particular

workpiece and tool pair.  However, optimization of tool orientation is not enough by

itself other machining parameters such as depths of cut, feed rate etc. should be

optimized to minimize the overall machining time. This is not a straightforward task

since there are several limitations such as tool breakage, deformation, chatter vibrations,

available spindle torque and power. In the literature, Tekeli, et al. [30] developed a

model which maximizes chatter-free material removal rate in end milling operations. In

this study, optimal radial and axial depths of cut pairs are identified to minimize the

overall machining time for a 3-axis pocketing operation.

Machining strategy evaluation and optimization are performed using both

experimental and analytical methods in the literature. One drawback of experimental

method is that; they are applicable to only workpiece and tool pairs used in the

experiments. One of the experimental approaches is presented by Ramos et al. [27]

where the effects of machining strategies on complex surface machining are analyzed. .

Three different strategies namely, radial, raster and 3D offset, are compared from

surface quality and texture aspects. Baptista et al. [4] analyzed the effects of machining

parameters on surface roughness in 3 and 5-axis machining of complex surfaces

experimentally. Two of the analytical approaches in strategy optimization are carried

out by Giri, et al. [13] and Chu, et al.[9]. In both of the studies only the surface

characteristics are considered for selection of the appropriate machining strategy. For

finishing operations, consideration of surface characteristics is beneficial to improve

resulting surface quality and decrease machining time. In a recent study, Lopez, et al.

[17] determined local machining directions in finishing operations with respect to

deformation of the cutter. So, by choosing the direction which leads to minimum tool

deformation, overall surface error is reduced. For roughing operations, it is required to

investigate the effects of process mechanics since relatively high material removal rates

are approached and cutter is subjected to relatively high cutting forces.
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In this thesis, a methodology to optimize cutter orientation under various machining

conditions i.e. depths of cut, is proposed. The main idea is investigating the effect of

tool orientation on the process mechanics by performing simulations. For this purpose,

under different depths of cut values, process simulations are performed in a range of

lead and tilt angles. In addition, a model which determines optimum or near optimum

machining parameters to minimize machining time is proposed by considering the

previously mentioned limitations. Various machining strategies are evaluated and

compared considering both process mechanics and surface characteristics for roughing

and finishing operations respectively. For each strategy, machining time is estimated

and taken into account in comparison. In addition, optimal cutting directions are

determined. Also, the determined directions are partitioned in order to find possible sub-

regions where single machining pattern can be applied. By doing so, the surface can be

divided into various sub-regions and different patterns can be applied on the surface if

preferable.

1.6 Summary

In this chapter, an overview of studies on modeling of process geometry and

mechanics for 3-axis and 5-axis milling of sculptured surfaces is given. Also, studies on

machining parameter optimization and machining strategy evaluation are summarized.

In the literature both analytical and discrete methods are used in 5-axis milling

geometry modeling. Tool orientations are evaluated totally experimentally any process

modeling approach is not applied. Studies which consider process mechanics in cutter

path optimization and evaluation for roughing operations are limited to 3-axis ball end

milling.
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Chapter 2

Geometry of Ball-End Mill & 5-Axis Milling

2.1 Introduction

Due to increased contouring capability, ball-end mills are widely used in 5-axis

milling operations. Thus, the geometry of 5-axis milling processes and ball-end mill

tools are closely related. In this chapter, ball-end mill tool geometry and geometry of 5-

axis milling processes are presented.

Figure 2-1: Ball-end mill
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2.2 Geometry of Ball-End Mill

The detailed geometry of a ball-end mill tool is given in Figure 2-2. There are

several parameters which defined ball-end mill geometry. Though, the ones used in this

thesis are defined in this section. A Cartesian coordinate system is defined at the tool tip

point, O. Local radius, Ra, of the ball-end at any axial location, z is defined as follows:

2 2Ra(z)= R -(R-z)          (2.1)

Figure 2-2: Ball-end mill geometry

2.3 5-Axis Milling Geometry

From the process geometry point of view, as the tool immerses into the

workpiece, flutes on the tool start engaging with the workpiece material and generating

chips. Thus, the engagement boundaries are of great importance for cutting force

calculations. Tool-workpiece engagement boundaries are defined by four geometrical

parameters which are namely the axial and radial depths of cut and the lead-tilt angles.

Since these four parameters define the engagement boundaries, they should be

determined based on the available information. . In addition, the coordinate systems

where the process and the geometry are defined should also be formulated.  In this

section, coordinate systems used in calculations and geometrical parameters are defined.
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Figure 2-3: Tool immersion.

2.3.1 Coordinate Systems

Coordinate systems namely, workpiece coordinate system (WCS) and process

dependent coordinate system (FCN) are used in geometrical calculations. World

Coordinate System, WCS, consists of X, Y and Z where FCN is established by feed (F),

crossfeed (C) and surface normal (N). WCS and FCN are illustrated in Figure 2-4. Since

F, C, N vectors establish an orthogonal basis, coordinate transformation procedures

given in [8] are valid for FCN. In the CL file, the data is given in WCS coordinates. On

the other hand, geometrical parameters are defined in FCN coordinates. Thus, the

relation between these two coordinate systems should be established consistently.

Figure 2-4: Coordinate systems
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2.3.2 Definition of Lead and Tilt Angles

In 5-axis milling, the additional motions of the cutter are the two rotary axes.

Cutter orientation is defined by lead and tilt angles which are measured between the tool

axis and the surface normal. Lead angle is the rotation of the tool about the crossfeed

vector (C), where tilt angle is about the feed vector (F) with respect to machined surface

normal. Lead and tilt angles are shown in Figure 2-5. The lead and tilt angles are

defined in FCN.

(a) Lead Angle    (b) Tilt Angle

Figure 2-5: Lead and Tilt Angles

2.3.3 Definition of Depths of Cut

Besides the lead and tilt angles, the other required geometrical parameters are

the depth of cuts. From the process geometry aspect, as the tool immerses into the

workpiece, the flutes on the cutter start to engage with the workpiece. Force model

calculates the cutting forces using the engagement boundaries between each flute and

workpiece. These boundaries are identified by the depth of cuts, lead and tilt angles, and

the tool geometry. Depths of cut are the axial (a) and radial (r) immersions of the tool

into the workpiece, which are shown in Figure 2-6.

Figure 2-6: Depth of cuts, (r) and (a).
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2.4 Summary

In this chapter, ball-end mill geometry and 5-axis milling geometry are

presented. The coordinate systems used in geometrical analysis and geometrical

parameters are defined. Two coordinate systems are used in calculations, namely FCN

and WCS. The information parsed from the CL file is in WCS coordinates, where the

geometrical parameters are defined in FCN. Lead angle is the rotation angle of the tool

axis around cross feed direction with respect to surface normal. Tilt angle is rotation

about feed direction. Depths of cut are defined with respect to radial and axial

immersions of the tool into the workpiece.
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Chapter 3

Calculation of Geometrical Parameters

3.1 Introduction

Geometrical parameters, namely depth of cuts and lead-tilt angles are required

by the force and deformation models for process simulation. Moreover, even when it is

not intended to perform a process simulation, it is convenient to have the information on

those parameters, in order have a foresight into a given 5-axis milling process.

Geometrical parameters are calculated by gathering the information on the tool position,

process dependent vectors and workpiece geometry. In calculation of those geometrical

parameters 2 coordinate systems are used and several coordinate transformations are

performed between those. Tool position and process information are obtained from a

CL file where, the information on the geometrical parameters is not given explicitly.

Therefore, the CL file can not be used directly in the simulations but can be used

together with the workpiece geometry information to extract the required parameters.

Calculation procedure of geometrical parameters is illustrated in Figure 3-1.

Figure 3-1: Geometrical calculation procedure
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3.2 Processing of CL-File

In this thesis, CL file is used as the main geometric information source. In order

to use the tool position and orientation in the geometrical calculations a separate module

is created to parse the data from the CL file. In this section, the methodology for parsing

the data is presented. The limitations of the developed methodology are discussed, and

suggestions for improvement are given.

3.2.1 Parsing the Tool Position and Orientation

In general, CL file contains several motion commands such as “GO TO”,

“CIRCLE” and “RAPID”. However, in 5-axis machining of sculptured surfaces, tool

traverses point to point on the surface. This is performed by “GO TO” and “RAPID”

commands when the cutter is in cut and out of cut respectively. (See Figure 3-2) The CL

file also provides the tool tip coordinates and unit tool axis vector following the motion

command.

Figure 3-2: Portion of a CL File
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3.2.2 Distinguishing Cutting Steps and Passes

In almost all of the generated CL files, there are several cutting steps. Cutting

step is illustrated as the black lines in Figure 3-4. However, this information is not

explicitly provided in the CL file. This is tackled in the following manner. CL files

include the color index for in cut, air cut and step over etc. portions of a tool path. For

each type of motion unique color index is provided by the “PAINT” command as shown

in Figure 3-2. By tracking the color index following each “PAINT” command, start and

end of each cutting step is identified.

Figure 3-3: Illustration of cutting step.

In most of the applications, the CL files for roughing, semi-finishing and

finishing passes are generated separately. However they may be in the same CL file in

some cases. If there are multiple passes on the same surface stock, at the start of each

cutting step, the tool position and the orientation are compared with the values of the 1st

point of the 1st cutting step. If compared values are within the pre-defined tolerances

this is considered as the start of a new pass. Besides the tool position and the

orientation, feed rate, spindle speed and tool geometry are also available in the CL file.

Information on those parameters is also parsed for further use in the geometrical

calculations and process simulations.

3.3 Establishing FCN Coordinate System

As mentioned before, tool position and process information are obtained from a

CL file where, data is given in WCS. On the other hand, lead and tilt angles are defined
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in FCN. Therefore, FCN should be established and the values in the CL file should be

transformed into FCN in order to attain uniformity in coordinate systems. In this

manner calculating feed, cross feed and surface normal vectors accurately is vital. In 5-

axis milling, coordinates of the tool tip, i.e. the CL point, is available in the CL file.

Since tool has a continuously changing spatial motion, cutter contact point, i.e. the CC

point, differs from CL point as shown in Figure 3-4. Due to this difference, it is required

to calculate (f) between consecutive CC points. Besides, calculation of CC point

requires (n) vector. This creates a recursive relation between (n) and (f) as shown in

Figure 3-5. This recursive relation could be solved by using iterative methods. Since

iterative methods compromise between time and calculation accuracy, instead of using

iterative methods, this situation is tackled in the following manner. A reference file is

generated where lead and tilt angles are chosen to be zero and all other process

parameters being same with the original file. So, in the reference file, CL and CC points

are obtained same, besides tool axis (ta) is coincident with (n). The benefit of this

method is obtaining CC points and (n) without loss of accuracy. Finally, (f) and (c) are

calculated as follows:

( ) ( ) ( )n +1 n n +1 n n +1 n

n n +1

x -x ; y -y ; z -z
( ) =

norm P P
  f       (3.1)

( ) = ( )  x  ( )c n f           (3.2)

where, Pn=(xn, yn, zn) , is the nth CC point and Pn+1=(xn+1, yn+1, zn+1) is the (n+1)st  CC

point. By calculating unit (f) (c) and (n) vectors, FCN is established. Any vector, (u)

given in WCS is transformed into FCN as follows:

f X Y Z X

c X Y Z Y

n X Y Z Z(FCN) (WCS)

f f f
= c c c

n  n  n

u u
u u
u u

   
   
   
   
   

 
 
 
  

       (3.3)

Where,
X

Y

Z (WCS)

( ) =
i
i
i

 
 
 
  

i and (i) = (f), (c), (n).
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Figure 3-4: CC and CL points.

Figure 3-5: CC, CL and (n) relation.

3.4 Calculating Tool Axis by Given Lead & Tilt Angles

The major difference between 3-axis and 5-axis milling is the existence of lead

and tilt angles. As mentioned previously, two of the required geometrical parameters are

those. Before investigating the lead-tilt calculation method, it is convenient to analyze

the calculation of tool axis (ta) by given lead and tilt angles for completeness. Tool axis

is coincident with surface normal when those are both zero. So, it is considered that, the

surface normal is rotated by the lead and tilt about crossfeed and feed vectors

respectively. The rotation is concatenation of two basic rotations, where first by lead,

then by tilt. In WCS, rotation about any unit vector (u) is performed using the following

transformation matrix [5].

2 2(1 )

2 2( , ) (1 )

2 2(1 )

u u C u u V u S u u V u Sx x x y z x z y

R u u u V u S u u C u u V u Sx y z y y y z x

u u V u S u u V u S u u Cx z y y z x z z

θ

 
 
 
 
 
 
  

+ − + −

= − + − +

+ − + −

   (3.4)

If u = i or j, rotation matrix given in (3.4) reduces to the following form [5] :
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1 0 0
( , ) 0

0
R i C S

S C
θ

 
 =  
  

0
( , ) 0 1 0

0

C S
R j

S C
θ

− 
 =  
  

      (3.5)

Where, θcos=C , θsin=S , )cos1( θθ −== versV ,
X

Y

Z

u
u
u

 
 =  
  

u( ) .

Since FCN is an orthogonal basis, rotation matrices given in (3.5) are valid when

(u)=(f) or (c). Finally, the rotation is performed as follows.

( ) ( )

0 1 0 0 0
0 1 0 0 0 ( )

0 0 1

      
      − = =       
      − −       

g

ftilt tilt

lead lead c

tilt tilt lead lead nFCN FCN

taC S
C S ta

S C S C ta
ta (3.6)

The rotation transformation matrix T, is given as below

lead lead

tilt lead tilt tilt lead

tilt lead tilt tilt lead

C 0 S
S S C -S C
-C S S S C

T
 
 =  
  

       (3.7)

3.5 Calculating Lead & Tilt Angles by Given Tool Axis

Problem of lead-tilt calculation resembles an inverse kinematics problem. Once

FCN is established, the tool axis (ta) vector in WCS is obtained from CL file; lead-tilt

angles are calculated in the following manner. First, the tool axis vector is transformed

into FCN as follows.

f X Y Z X

c X Y Z Y

n X Y Z Z(FCN) (WCS)

f f f
= c c c

n n n

ta ta
ta ta
ta ta

   
   
   
   
   

 
 
 
          (3.8)

Then, equating (3.6) and (3.8) the following equation is obtained.
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lead leadX Y Z X

X Y Z Y tilt lead tilt tilt lead

X Y Z Z tilt lead tilt tilt lead(WCS) (FCN)

f  f  f
c c c
n n n

C 0 S 0ta
ta = S S C -S C 0
ta -C S S S C 1

 
 
 
 
 

    
    
    
         

   (3.9)

leadX Y Z X

X Y Z Y tilt lead

X Y Z Z tilt lead(WCS) (FCN)

f  f  f
c c c
n n n

Sta
ta = -S C
ta S C

 
 
 
 
 

  
  
  
     

      (3.10)

Finally, the lead and tilt angles are extracted by solving (3.10) as follows.

( )
2 2lead = arctan2(a, b + c )

tilt = arctan2 -b, c
        (3.11)

where, a = dot ( ), ( ) , b = dot ( ), ( )      ta f ta c and c = dot ( ), ( )  ta n .

3.6 Depths of Cut Calculation

Depths of cut can be calculated using discrete methods such as Z-map, Z-buffer

and Octree. The main benefit of those is the applicability on very complex workpiece

geometries where abrupt changes on the surface are seen. In those methods, calculation

accuracy and time are compromised. In most of the sculptured surface geometries,

abrupt changes are not observed. In addition, surface and workpiece information can

easily be obtained analytically by the help of the recent developments in 3-D CAD

systems. Due to these reasons, depths of cut are calculated by analytical methods. CC

point and the surface normal are obtained from the reference file, and the rough

geometry information of the workpiece is obtained from the CAD system.
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3.6.1 Axial Depth of Cut Calculation

It must be noticed that the stock material in general differs in roughing and

finishing operations, thus different cases are taken into account. In Figure 3-7, stock

material amount for different process steps on a bumped surface is illustrated. Axial

depth of cut is calculated by considering tool axis coincident with stock surface normal

(rn). Axial depth of cut is defined as the distance between the stock surface and the tool

position along the stock plane normal as shown in Figure 3-6, points P1, P2 and P3

defines the rough surface as a plane. Axial depth of cut is the distance between the

given points P4 and P6 where, P6 is the intersection point of the rough surface and the

imaginary line coincident with the rough surface normal (rn).  P4 and  P5 are the two

points defining the imaginary line, and derived using CL point, tool axis (ta) and tool

radius (r) as follows.

C = CL + r.( )ta          (3.12)

4P = C - r.( )rn          (3.13)

5 4P = P + ( )rn          (3.14)

The main issue is the calculation of the intersection point, i.e. P6. Using the line-

plane intersection analysis [35] P6 can be determined by solving the general plane

equation and the line equations simultaneously. Equation of the plane passing through

P1, P2 and P3 is given below [35]:

1 1 1

2 2 2

3 3 3

x y z 1
x y z 1

0
x y z 1
x y z 1

=         (3.15)

Similarly, the parametric equation of the line passing through P4 and  P5 is given as

follows.

( )
( )
( )

6 4 5 4

6 4 5 4

6 4 5 4

x = x x x

y = y y y

z = z z z

+ - t

+ - t

+ - t

         (3.16)
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i

i

i

x
y , 1, 2,...,6
z

iP i
 
 = = 
  

. Simultaneous solution of (3.15) and (3.16) gives (t).

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 5 4

1 2 3 5 4

1 2 3 5 4

1 1 1 1
x x x x
y y y
z z z

1 1 1 0
x x x x - x
y y y
z z z

y
z

t

y y
z z

=

−
−

        (3.17)

This value is substituted back into (3.16) to calculate the point of intersection, P6.

Finally, axial depth of cut is calculated as the distance between P4 and P6 as follows.

2 2 2
6 4 6 4 6 4(a) = y y= (x - x ) + ( - ) + (z - z )4 6P P      (3.18)

Figure 3-6: Calculation of (a)
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Figure 3-7: Difference of stock material

3.6.2 Radial Depth of Cut Calculation

As in the case of axial depth of cut, different should be considered in calculation

of radial depth of cut. For example, (r) is different in the first cut step and the other cut

steps as shown in Figure 3-8. In the first cut step, (r) is seen to be the distance from

point RP1 to RP2 in Figure 3-9a. RP1 is the intersection point of (c) and tool envelope

at that cross section. RP2 is the intersection point of (c) and the side surface.

2 1 2 1 2 1(r) = y y(x - x + ( - (z - z= +1 2RP RP 2 2 2) ) )     (3.19)

where
i

i

i

x
y , 1,2
z

iRP i
 
 = = 
  

RP1 is calculated as follows and RP2 is similar to (3.16).

RP = P + a.( ) + R .( )1 an c         (3.20)

In the following cutting steps, (r) is taken to be the step size of the tool, which is

defined as the distance from point 1,kCC  to 2,kCC  along the crossfeed vector as shown

in Figure 3-9b.  In this case radial depth of cut is calculated using the corresponding CC

points at the consecutive cut steps as follows.

1,k 2,k(r) = (CC - CC ).(c)         (3.21)
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Figure 3-8: Illustration of cut steps

(a)       (b)

Figure 3-9: Calculation of (r)

3.7 Summary

In this chapter, calculation methodologies for FCN coordinate system and the

geometrical parameters are presented. Surface normal vector which is needed to

establish the FCN is obtained by a generated reference CL file. After calculating feed

vector between consecutive CC points, cross feed vector is calculated by cross

multiplication of the surface normal and the feed vectors. Lead and tilt angles are

calculated using matrix transformation. Moreover, in calculation of depths of cut,

different cases are observed in the first and other cut steps. In order to calculate depths

of cut, the tool position must be known together with workpiece geometry.
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Chapter 4

Verification of Geometrical Analysis Methods & Process Simulation

4.1 Introduction

In order to meet the increased demand for part quality in manufacturing

environments, it is required to prevent undesired results such as high cutting forces and

tool breakages. For this purpose, the process planner should have insight into the

process beforehand. At this point, process simulation comes into consideration. By the

help of process simulation, cutting forces can be estimated and counter action can be

taken by the process planner. For such a purpose process model is integrated with the

geometrical model. In this section, the proposed methods are applied on example tool

paths and workpiece geometries. After the geometrical analysis methods are verified,

process simulation technique is presented and verified by machining experiments. Tool

paths are generated using the CAM software Unigraphics NX 3.0 © [36]. In the first

example the methods are applied on machining of an airfoil surface given in Figure

4-10. The next example is machining of a complex surface. Calculated geometrical

parameters and the exact values obtained from the CAD package are compared.
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4.2 Example 1: Machining of an Airfoil Surface

In this example, the proposed methods are applied on an airfoil shaped surface,

which is shown in Figure 4-1. Toolpath is generated under conditions given in Table

4-1. Machining is performed in two passes, i.e. rough and finish. The geometrical

parameters at each point along the toolpath are calculated, and the variation of the

extracted geometrical values along the toolpath is plotted.

Figure 4-1: Surface to be machined in case 2.

Rough Finish

Tool Diameter 8 mm (ball-end) 8 mm (ball-end)
Tool Axis Lead =8, Tilt=5 deg. Lead =12, Tilt=3 deg.
Scallop Height 0.05 mm 0.005 mm
Left Stock 2 mm 0 mm
Passes 1 1
Points per Step 100 150
Cut Pattern Linear / Zig Linear / Zig

Table 4-1: Machining parameters for example 1.

In this example, the number of steps is decided considering the scallop height

left on the surface. One way (Zig) cut pattern is applied on the surface. In order to keep

an acceptable level of accuracy, relatively high number of points per step is chosen. In

addition, 2 mm of stock material is left for the finish pass on the design surface. The

toolpath is presented in Figure 4-1. In Figure 4-2 to Figure 4-9 calculated parameters

along the toolpath are plotted.

In Figure 4-2, the variation of axial depth of cut is shown. It is at the maximum

level (2.2mm) at the start and end of each step and minimum (0.98 mm) at the middle of

each step. For the finish pass, axial depth of cut is constant (2 mm).
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Figure 4-2: Variation of axial depth of cut in roughing.

Figure 4-3: Variation of axial depth of cut in finishing.

Radial depth of cut changes with the position of the tool at the first and the last

steps, and it remains constant along other steps. At first and last steps, the tool machines

the flat side of the rough material. Thus, radial immersion is relatively higher with

respect to other steps. In finishing pass, since the stock on the surface is constant the

radial depth of cut does not vary along the first and last steps.

Figure 4-4: Variation of radial depth of cut in roughing.
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Figure 4-5: Variation of radial depth of cut in finishing.

Lead and tilt angles are calculated accurately as seen in the following figures.

The calculated values are around the nominal values with tight tolerances.

Figure 4-6: Calculated lead angle for roughing (nominal 8 deg).

Figure 4-7: Calculated lead angle for finishing (nominal 12 deg).
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Figure 4-8: Calculated tilt angle for roughing (nominal 5 deg).

Figure 4-9: Calculated tilt angle for roughing (nominal 3 deg).

4.3 Example 2: Machining of a Free Form Surface

In this example, geometrical analysis and modeling methods are applied on

machining of the complex surface shown in Figure 4-10. Machining is performed in two

steps, i.e. rough and finish. Finishing is performed in 2 passes. Zig-zag cut pattern is

applied where the process parameters are given in Table 4-2.

Figure 4-10: Surface for example 2
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Rough Finish
Tool Diameter 6 mm (ball-end) 6 mm (ball-end)
Tool Axis Lead =15, Tilt=5 deg. Lead =10, Tilt=5 deg.
Scallop Height 0.1 mm 0.02 mm
Left Stock 2 mm 0 mm
Passes 1 2
Points per Step 150 200
Cut Pattern Linear / Zig-Zag Linear / Zig-Zag

Table 4-2: Machining parameters for example 2.

Number of steps is decided considering the scallop height left on the surface.

For this case two way (Zig-Zag) cut pattern is applied on the surface. Since the surface

has more complex characteristics higher number of points per step is chosen. 2 mm of

stock material is left on the design surface for finish pass.  Finishing pass is performed

in 2 passes. The toolpath is presented in Figure 4-10.

In Figures 8.11 – 8.18 calculated parameters along the toolpath are plotted as in

example 1. Axial depth of cut continuously varies along each step and also among the

steps. At five positions of the tool along the 1st step, the axial depth of cut values are

compared with the values directly measured from the CAD software. The comparison is

given in Table 4-3.

Axial (mm)
Position (mm)

Measured Calculated

1)X=0.016,Y=0.013 2.96 2.96

2)X=11.490,Y=0.296 2.02 2.02

3)X=14.760,Y=0.448 1.36 1.36

4)X=25.920,Y=0.001 3.53 3.53

5)X=28.190,Y=0.013 3.13 3.13

Table 4-3: Measured and Calculated Axial Depth of Cut Values.
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Figure 4-11: Variation of axial depth of cut in roughing.

Figure 4-12: Variation of axial depth of cut in finishing.

Since the surface has complex characteristics both in u-v directions, the distance

between the steps varies on the surface. This is to generate uniform scallop distribution

on the surface. Consequently the variable radial depth of cut varies along steps

contrarily to the first example. At first and last steps, the tool cuts flat side of the rough

material. Thus, radial immersion is relatively higher with respect to other steps.

Figure 4-13: Variation of radial depth of cut in roughing.
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Figure 4-14: Variation of radial depth of cut in finishing.

As seen in Figure 4-15 to Figure 4-18 lead and tilt angles are calculated

accurately. The maximum error is about 0.5 degrees for lead angle and 0.15 degrees for

tilt angle.

Figure 4-15: Calculated lead angle in roughing (nominal 15 deg).

Figure 4-16: Calculated lead angle in finishing (nominal 10 deg).
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Figure 4-17: Calculated tilt angle in roughing (nominal 5 deg).

Figure 4-18: Calculated tilt angle in finishing (nominal 5 deg).

4.4 Process Simulation Methodology

In the literature, two simulation approaches are considered to serve different

purposes. In the first approach, desired machining conditions are simulated individually

to have an insight into the process mechanics under different conditions. By doing so,

some guidelines, e.g. selection of best combination of lead and tilt angles, may be

provided to the process planner beforehand. The second approach considers a whole

process where machined surface topology and cutting conditions vary continuously. In

this approach, mechanics of the process is simulated along the tool path to predict the

variation of forces throughout the process. Thus, undesired results can be prevented and

process can be improved or optimized. Besides, feed rate scheduling can be applied in

order to keep the cutting forces below a desired level. This may be beneficial to

decrease machining time while preventing the tool from being subjected to high cutting

forces.
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In this thesis, the second approach is performed in the following manner.

Geometrical parameters are calculated at each or desired points throughout the toolpath.

Once depths of cut and lead-tilt angles at each point are determined, they are used in the

force model [26]. By doing so, force simulation is performed for one revolution of the

tool at each point and forces are obtained as in Figure 4-19 . Finally, the maximum

value of forces in each direction is plotted. Hence, variation of the maximum cutting

forces along the toolpath is simulated. Process simulation procedure is summarized in

Figure 4-20.
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Figure 4-19: Forces for one revolutions of tool.

Figure 4-20: Simulation procedure.

4.5 Experimental Verification & Simulation Results

Applicability of the proposed method is verified by machining experiments. As

an example, the surface given in Figure 4-21 is machined. The forces along the first cut
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step is measured and simulated. Results are compared in Figure 4-22. Experiment

parameters are given in Table 4-4.

Figure 4-21: Machined surface in experiments

Side Step (mm) 1
Spindle Speed(rpm) 3000
Feed (mm/rev/tooth) 0.1
Lead (deg) [-10,..10]
Tilt (deg) 0

Table 4-4: Experiment conditions.

Figure 4-22: Simulated and measured cutting forces

As seen in Figure 4-22 measured and simulated forces in X-Y-Z directions show

acceptable agreement. However, some discrepancy is seen in the force in Z direction.

This is due to the indentation forces created at the tool tip where the cutting edge can

not cut to due to the fact that the cutting speed reduces to zero at the center. However,

these forces can also be identified and included in the ball end milling model which is

currently an on going research in our laboratory.
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4.6 Summary

In this chapter, the methods proposed in the previous chapter are applied on two

different surface geometries and the results are given. Smooth variation is seen in

calculated axial depth of cut values in rough passes. In addition, the difference in radial

depth of cut between the first cut and the following cut steps are seen obviously. Lead

and tilt angles are calculated in acceptable tolerances around the given nominal values.

In addition, process simulation methodology is presented. The methodology is verified

by machining of a bumped surface. The simulated and measured cutting forces are

compared. A good agreement between simulated and measured values is seen.

However, some amount of discrepancy is observed in forces in Z direction. Thus, it can

be concluded that the proposed methods are applicable to analyze 5-axis milling

geometry of regular sculptured surfaces. Moreover, by integrating the process model

with the geometrical analysis methods, cutting force simulation of a given process can

be performed.
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Chapter 5

Process Optimization

5.1 Introduction

Increasing productivity and part quality are the main challenges in machining

industry. From process mechanics point of view, productivity may decrease due to

undesired results such as tool breakage or excessive form errors. This may occur due to

high cutting forces if the process parameters are not selected properly. In order to

overcome such problems, either an existing process may be improved or optimized

parameters may be provided to the process planner beforehand. For such purposes,

machining parameters such as feed rate, depths of cut and tool orientation may be

optimized considering the process mechanics. Effect of those named parameters on the

process mechanics can be investigated experimentally or by using process models.

Applying the appropriate machining strategy is of great importance. This is

because of the fact that machining time, surface quality and texture, tool trajectory on

the surface and variation of the cutting forces along the trajectory directly depend on the

applied machining strategy. Thus, the best strategy for a given surface should be

investigated. The geometry and mechanics of such processes are complicated; therefore

models should be constructed for such a purpose. There are mainly two objectives; the

first one  is proposing a new strategy and latter is selection of the most appropriate

strategy among various existing default strategies such as the ones available in CAM

system.

Milling operations are performed generally in two passes which are finishing

and roughing. Requirements for each type of operation are different. In roughing

relatively high cutting forces occur and the resulting surface quality is not so important

resulting in higher material removal rate. The aim is removing as much material as
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possible while preventing excessive cutting forces. On the other hand, finishing requires

high surface quality. Therefore, appropriate machining strategy should be evaluated

with respect to different criteria for each type of operation. In this study, process

mechanics and the surface characteristics are considered together with machining time

for roughing and finishing, respectively. Though, since the process optimization is

based on process simulations, the proposed methods do not guarantee the global optimal

conditions.

5.2 Optimization of tool orientation

In literature, there are important studies on optimization of tool orientation [24],

[4]. Effect of feed rate and other parameters on process mechanics and part quality is

quite obvious. On the other hand effect of tool orientation i.e. lead and tilt angles, is not

that obvious. In most of the cases, even when other cutting parameters are known,

selection of lead and tilt angles is an important challenge in 5-axis milling. It is not

straight forward to choose optimal lead and tilt angles due to many possible

combinations and their non-linear effects on the process mechanics. Therefore, foresight

about the effect of those on the process mechanics is required in order to select

appropriate values.

In this thesis, the effect of lead and tilt angles on the process mechanics is

investigated under different machining conditions in order to provide a general idea.

This is performed in the following manner. Under various radial depths of cut, forces

are simulated in a range of lead-tilt angle combinations using the existing force model

[26]. Variation of the maximum resultant force in the transversal direction along the

tool axis, Fxy, (see Figure 5-2) is plotted as a surface among the lead-tilt angle

combinations as shown in Figure 5-3. Finally, the combination which leads the

minimum value of the force, Fxy, is selected as the optimum combination. Optimization

procedure is summarized in Figure 5-1.
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Figure 5-1: Orientation optimization procedure.

Figure 5-2: Representation of Fxy.

Figure 5-3: Variation of Fxy among lead-tilt combinations

By applying the proposed methodology, appropriate pairs of lead and tilt angles

can be selected once other machining parameters are set. In order to verify the proposed

approach, machining experiments are conducted. In the following section simulation

and experimental results are compared.

Process
Model

Parameters
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Cutting Force
Simulation
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on Cutting
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5.2.1 Simulations Results and Experimental Verification

For various radial depths of cuts simulations are performed under conditions

given in Table 5-1. In order to verify the simulation results machining experiments are

conducted under various radial depth of cuts values. Simulation results and

experimental results are presented in Figure 5-4 to Figure 5-8 and in Table 5-2

respectively. A 2 fluted, 12 mm diameter, carbide, ball-end mill is used in the

experiments. For machining experiments three pairs of lead and tilt angles are selected

for each case, where Fxy is at minimum, medium and high levels respectively. By doing

so, also the estimation on the trend of Fxy is verified.

Spindle Speed(rpm) 3000
Feed (mm/rev/tooth) 0.1

Lead (deg) [6,9..30]
Tilt (deg) [-30,-27…30]

Axial depth (mm) 1.5
Local Radius, Ra (mm) 3.69

Table 5-1: Simulation & experiment conditions.

Figure 5-4: Variation of Fxy (r =1.2 mm)
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Figure 5-5: Variation of Fxy (r =2.4 mm)

Figure 5-6: Variation of Fxy (r =3.6 mm)

Figure 5-7: Variation of Fxy (r =4.6)



44

Figure 5-8: Variation of Fxy (r =slot)

Radial (mm) 1.2 2.4
Lead (deg) 6 6 27 6 6 24
Tilt (deg) 0 -21 -12 15 -12 -27

Sim. 98 141 222 207 294 326
Fxy,max (N)

Exp. 150 180 210 255 317 335

Radial (mm) 3.6 4.6
Lead (deg) 6 6 24 6 6 18
Tilt (deg) 24 -6 -27 24 -15 -30

Sim. 300 357 444 365 410 495
Fxy,max (N)

Exp. 310 405 440 385 420 460

Radial (mm) Slot
Lead (deg) 0 10 5
Tilt (deg) -5 -15 -30

Sim. 404 479 620
Fxy,max (N)

Exp. 450 500 630

Table 5-2: Experimental v simulation results.

In the simulation results it is seen that the optimal value of lead angle does not

show significant change by radial depth of cut. On the contrary, optimum value of tilt

angle changes with radial depth of cut. Until the half immersion of the tool, the

optimum value of tilt angle increases, and then decreases as radial depth of cut exceeds

half immersion. In general, experiments show good agreement with the simulations

results. Some discrepancy is observed between the measured and simulated cutting

forces for low radial depth of cut values.
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5.3 Optimization of Other Machining Parameters

Machining operations are subject to several limitations which are cutting torque,

cutting power, tool breakage, tool deformation, and chatter vibrations. In addition the

tool life should be longer than the operation time since it is not preferred to change tool

during the operation. This may decrease the resulting workpiece quality. Therefore,

other machining parameters such as feed rate, cutting speed, and depths of cut should be

compromised such that total machining time is minimized. Those parameters have non

linear effect on process mechanics. Moreover, there is not an analytical process model

to simulate cutting forces for 5-axis milling processes. Thus, most of the non linear

optimization methods are not applicable to such processes.

In this thesis, a method is proposed to minimize the total machining time of a

roughing process by compromising between the named machining parameters. Total

machining time is given as follows;

(TMT) = (NOP)*(TPP)        (5.1)

where, TMT is the total machining time, NOP is the number of passes, and TPP is

machining time per pass. The chosen machining parameters should satisfy the below

conditions,

i. Process should be stable under chosen axial and radial depths of cut and

cutting speed.

ii. Chosen feed per tooth (fpt) should be less than maximum available feed per

tooth for a given tool.

iii. Maximum stress on the tool should not exceed tool rupture stress

iv. Required cutting power and torque should not exceed available torque and

power on the spindle.

v. Tool life must be greater than the machining time.

The steps of the proposed method are given in Figure 5-9. Once the tool

geometry is determined, CL file with small axial increments and radial step over is

generated in order to calculate machining time for a given pass at future steps. Since the

tool is assumed to be more flexible than the workpiece in roughing operations machine

tool dynamics are measured.  Pairs of stable axial and radial depths of cut, i.e. alim, blim,

are obtained using the methodology proposed by Tekeli et al. [30] where, b= r / 2R It

may not lead to minimum machining time to directly use obtained alim, blim values with a
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given feed per tooth(fpt). Thus, it may be required to search for better fpt for each pair.

So, the obtained pairs of stable depths of cut values are used as initial values to search

feasible fpt, a, b values. For such a purpose a search algorithm is developed considering

the limitations mentioned previously for given initial alim,  and blim values. The pseudo

codes of developed algorithms are given in Figure 5-10 and Figure 5-11.

Figure 5-9:  Overview of the proposed method.

Obtain “spindle speed” and stable “alim vs. blim” pairs.
FOR pair=1: number_of_pairs

Set fpt fpt_max
ok=0
WHILE ok=0

Calculate cutting Force, Torque, Power, Tool Stress, and Deflection
Torque ratio = Torque available / Calculated Torque
Power ratio = Power available / Calculated Power
Stress ratio = Tool Rupture Limit / Calculated Stress
Deflection ratio = Deflection Limit / Calculated Deflection
Min ratio= min (Torque, Power, Stress, Deflection ratio)

IF Min_ratio>1 & fpt=fpt_max THEN
feasible_max_fpt (pair) =fpt
ok=1

END IF
IF Min_ratio < 1 & fpt > min. available fpt THEN

fpt=exp (1.2*(min_ratio-1))*fpt
 ELSE IF fpt<min. available fpt THEN

feasible_max_fpt (pair)=0;
ok=1

END IF
IF 1.05>Min_ratio>1 & fpt<fpt_max THEN

feasible_max_fpt (pair) =fpt
ok=1

END IF
IF Min_ratio>1.05 & fpt<fpt_max THEN

Generate CL file with
small increments of

axial and radial depth
of cuts

Determine
Tool Geometry,

dt, lt

Measure
Machine tool

Dynamics

Obtain stable a
vs. b pairs for
given RPM

Obtain feasible
fpt, a, b values.

Choose a, b, fpt to
minimize

(TMT) = (NOP)*(TPP)
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fpt=exp (1.2*(min_ratio-1))*fpt
END IF

END WHILE
Calculate MRR (pair)

NEXT pair

Figure 5-10:  Pseudo code for max feasible feed rate determination.

Figure 5-11:  Pseudo code for minimum machining time determination

5.4 Machining Strategy Evaluation and Selection

In evaluation various strategies on free form surfaces, surface information

should be obtained from the CAD software. In this thesis, surface is represented in

Bezier surface form which is defined by equation (5.2). Pole point coordinates and

surface information in u-v directions are obtained from CAD software (see Figure

5-12).

n

i,j i,n j,m
i=0 0

(u, v) = (u) (v)P P B B
m

j=
∑∑        (5.2)

Set mean_MRR=average of MRR (pairs)

FOR pair=1:number_of_pairs
IF MRR (pair)>=mean_MRR

Initialize machining_time(pair)=0

Calculate tool life
Calculate linear feed rate = rpm(pair) * feasible_fpt(pair)*teeth
number_of_passes=ceil(depth/axial)
FOR pass=1:number_of_passes

Calculate the machining time for the corresponding axial layer
NEXT pass
Update machining_time(pair)

END IF
NEXT pair

Choose the pair with minimum total machining time.
Compare the operation time with the tool life at that cutting speed.
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where;

n
B (u) = (1 )i,n i

i n iu u − 
− 

 

m
B (v) = (1 )j, m j

j m jv v − 
− 

 

Figure 5-12:  Pole points of a Bezier surface

5.4.1 Machining Strategy Evaluation for Roughing

Material removal rate is high in roughing operations and cutting tool is exposed

to relatively high forces. Thus, primarily process mechanics should be taken into the

consideration in strategy evaluation and selection. In addition, high variation in the

cutting forces is not desired. Therefore, magnitude and variation of forces is taken into

account.

5.4.1.1 Proposing a New Strategy

 In some cases, a new strategy or cutting direction other than the default ones is

needed. So, it is required to investigate for a new strategy or cut direction. For such a

purpose, the procedure summarized in Figure 5-13 is followed. Firstly, control points

are selected on the surface in u-v range as shown in Figure 5-14. At each control point,

Puv, force simulation is performed along several local cutting directions d( ) and at the

point Puv itself. According to the simulation results, the penalty function is calculated

for each local direction and the direction with minimum penalty value is selected as the

local direction at point P.
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Figure 5-13:  Machining strategy selection procedure.

The penalty function is defined as follows:

M D
P,d P,d
mag dev. (d) . (d)Dir _ Penalty(d) w F w F= +       (5.3)

where;

M

D
P,d d
mag u,v

P,d P P,d
mag mag mag

M M D

w :Weight of the force magnitude
w :Weight of the force deviation

F (d):Magnitude of the force at point P

F (d)= F F

0<w 1 and w w 1

−

< + =

Figure 5-14: Control points in u-v range.

cos
du k.max(m, n)

d( )
dv sin

k.max(m, n)

θ 
    θ = =  θ  
  

       (5.4)
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By use of such an approach, forces are kept under a desired level while

preventing high deviations along the machining direction. This methodology is applied

on different surface geometries and the results are presented in the following chapter.

5.4.1.2 Comparison of Given Strategies

Recent CAM software offers various milling strategies by default. Generally, it

is a big challenge to decide the right strategy in CAM programming. Therefore, the

machining strategies provided by the CAM software should be compared and the

appropriate strategy should be identified.  For such a purpose, the given strategies

should be compared from process mechanics and machining time aspects.

5.4.1.2.1 Process Mechanics

In comparison of given strategies an approach similar to the one presented in the

previous section is followed. Control points are created with respect to the considered

strategy pattern as shown in Figure 5-14. Global machining directions are applied on

each control point and local directions are determined as shown in Figure 5-15. At each

point itself and along the local directions, geometrical parameters are calculated and a

force simulation is performed. Then, penalty function at each control point is calculated

with respect to force magnitudes and variations as follows:

M mag D devPt_Penalty(p)=w .F w .FP D+        (5.5)

where,
P P P-1
dev dev dev
P
dev

F (F F ) for p > 1

F 0 for p = 1

abs= −

=
S

Finally, total penalty due to forces is calculated as follows,

C

p 1

F _ Penalty Pt _ Penalty(p)
=

= ∑         (5.6)

where, C denotes total number of control points.
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Figure 5-15: Local directions at control points

5.4.1.2.2 Machining Time Comparison

Besides the cutting forces, machining time is another criterion in strategy

selection. Moreover, in some cases it may be the most important criterion. Thus,

machining time should be calculated for a given surface and strategy pair, and must be

taken into consideration together with the penalty due to cutting forces.

For given machining strategy and machining conditions, machining time

calculation procedure is summarized in Figure 5-16. Desired number of points per each

cut step is created on the surface with respect to the machining strategy pattern.

Incremental distance between consecutive points along the cut steps is calculated as

follows:

i, j 1 i, j i, j 1 i, ji, j 1 i, j

y yx x 2 2 z z 2
i, j i, j 1dp P P (P P ) (P P ) (P P )

+ +++= = − + − + −    (5.7)

All incremental distances are summed for each step to calculate the toolpath

length. Path length for rapid and feed moves is calculated separately where clearance,

step over and retract moves are considered as rapid. In addition, step size of the tool is

pre defined.

Figure 5-16: Machining time calculation procedure
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Figure 5-17: Points on the surface

After calculating the total force penalty and the machining time, the strategy

which has minimum overall weighted penalty with respect to cutting forces and

machining time is selected.

5.4.2 Strategy Evaluation for Finishing Operations

Contrary to roughing, material removal rate is low in finishing operations and

the cutter is not subjected to high cutting forces. Besides, resulting surface quality is of

great importance in finishing. Sculptured surfaces are bounded by edges. However,

those define its parametric coordinates. Surface characteristics are related to its intrinsic

properties at any point (see Figure 5-18). Those intrinsic properties can be named as, the

surface normal, curvature etc. In conventional methods, one of the edges is chosen as

the master cutter path and the other steps are derived from that edge. By doing so, the

tool trajectory becomes unrelated with surface characteristics. On the other hand, if the

toolpath is derived with respect to the intrinsic properties, some machining parameters

and the surface quality may be optimized. In the literature, it is reported that the

machining time decreases when the cutting directions are chosen in the maximum
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convex curvature direction [13]. This is because, larger side step can be applied for a

given scallop height. Besides, it may be beneficial to evaluate machining strategies

considering the tool deformations [17]. By doing so, machining error on the surface can

be minimized. The methodology used for roughing operations can be used for this

purpose. It is required to re-define the penalty function to be related to tool deflection.

Moreover, maximum available tool diameter can be determined that can be used in

machining of a given surface by knowing the intrinsic properties of the surface.

Figure 5-18: Representation of intrinsic properties

5.4.2.1 Mathematical Formulation

As mentioned previously, surfaces are represented in Bezier surface form. In this

section, derivation of intrinsic properties is presented. Normal curvature in a direction

dv
du

 [13] is given as follows:

2

11 12 22

n 2

11 12 22

dv dvd 2d d
du du
dv dvg 2g g
du du

   + +   
   κ =
   + +   
   

       (5.8)

where, ijd and ijg are the elements of first and second fundamental forms, which are

given below. In the following matrices u v uu uv vvr , r , r , r , r represent the partial derivatives.

Derivations of the partial derivatives are given as follows:

11 12

21 22

11 12

21 22

 first fundamental form

. .
second fundamental form

. .

  
= =   

   
  

= =   
   

u u u v

u v v v

uu uv

uv vv

r r r rg g
r r r rg g

r n r nh h
r n r nh h

G

H
    (5.9)
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First partial derivative of P(u,v) with respect to “u” and “v” leads to ur and vr

respectively.

u j j,m
0

(u, v)r = = (v)
u

P B
m

j

C
=

∂
∂ ∑        (5.10)

v i i,n
0

P(u, v)r = = (u)B
n

i
v

C
=

∂
∂ ∑         (5.11)

where

m-1
1

0,
j=0

0, 0, 1 0,

m -1
= (1 )i j

j m j
j

j j j

v v a

a P P

C − −

+

 
− 

 

= −

∑ ,

n-1
1

,0
i=0

,0 1,0 ,0

n -1
= (1 )j i

i n i
i

i i i

u u a

a P P

C − −

+

 
− 

 

= −

∑

Second partial derivatives of ur and vr  with respect to “u” and “v” lead uur , uvr and vvr .

2

uu j j,m2
0

(u, v)r = = (v)
u

P B
m

j

D
=

∂
∂ ∑        (5.12)

2

vv i i,n2
0

(u, v)r = = (u)P B
n

iv
D

=

∂

∂ ∑        (5.13)
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uv vu j j,m
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where,

n-2
2

,0
i=0

,0 1,0 ,0

n - 2
= (1 )j i

i n i
i

i i i

u u b

b a a

D − −

+

 
− 

 
= −

∑ ,

m-2
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0,
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0, 0, 1 0,

m - 2
= (1 )i j

j m j
j

j j j

v v b

b a a

D − −

+

 
− 

 

= −

∑

Finally, principal curvatures are obtained [8] as follows.
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1 2

2 2( 4 ) ( 4 ),+ − − −
= =n n

b b ac b b ac
a a

κ κ      (5.15)

where,

( )11 22 22 11
12 12

. .
.

2

a G

c D

g d g d
b g d

=

=

+
= −

       (5.16)

For the surface given in Figure 5-19, first and second principal curvatures are

calculated. The calculated values are plotted in 2-D and 3-D space in Figure 5-20 and

Figure 5-21.

Figure 5-19: Example surface.

Figure 5-20: First principal curvature,
1nκ .
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Figure 5-21: Second principal curvature,
2nκ .

Maximum available tool radius for a given surface is determined with respect to the

maximum and minimum principal curvatures of the surface. If the maximum normal

curvature of the surface,
1nκ , is positive, curvature of the cutter must be greater than

1nκ

in order to have a gouge-free machining at that cutter contact point. For ball-end mill

cutters, curvature is given as follows:

1
Tool

ToolR
κ =           (5.17)

Therefore the following condition should hold

,1n Toolκ κ≤           (5.18)

So, maximum available tool radius is determined as below.

max
,1

1

n
R

κ
=           (5.19)

5.5 Clustering the Local Machining Directions

The vector field of the optimal cutting directions, F, needs to be partitioned into

sub-regions on which a single machining pattern can be applied. In the literature,

several clustering and partitioning algorithms are proposed. A clustering algorithm

based on graph theory is efficient when applied on vector field clustering [6],[28]. In
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this thesis, Normalized Cuts algorithm proposed by Shi, et al. [28] is applied for

clustering purpose. The normalized cuts algorithm is a non-average technique.

Therefore the resulting number of clusters does not depend on initial choice of number

of clusters unlike other algorithms such as K-means. The normalized cuts algorithm

solves an eigensystem in order to cluster given vector field.

The vector field F is considered as a weighted graph G, where nodes correspond

to the vectors and the connections are constructed by every pair of nodes. Similarity

between nodes “i” and “j” is defined as the weight value wij, where wij is the elements

of the weight matrix, W. The aim is maximizing the similarity of nodes within a subset

while minimizing the similarity of nodes across different sub-sets. The normalized cuts

algorithm defines Ncut as criterion to partition the graph G, into groups G1 and G2,

which is given as follows:

1 2 1 2
1 2

1 2

cut(G ,G ) cut(G ,G )Ncut(G ,G )= +
assoc(G ,G) assoc(G ,G)

      (5.20)

where, 1 2 lk 1 lt
l G ,k G l G ,t G1 2 1

cut(G ,G )= w ,assoc(G ,G)= w
∈ ∈ ∈ ∈

∑ ∑ . Since Ncut is the criterion

for measuring the goodness of a partition it is intended to minimize the value of Ncut. In

order to do this, the initial graph G should be partitioned such that 1 2cut(G ,G ) is

minimized and 1assoc(G ,G) is maximized. This is performed by solving the following

standard eigensystem.

1 1
2 2.( ). z= z

− −
C C - W C         (5.21)

where,

1
N

2
i ij

j=1

N

c 0 ... 0
0 c ... ...

c = w and =
... ... ... 0
0 ... 0 c

 
 
 
 
 
 

∑ C .

Signs of the components of the second smallest eigenvector are used as the

indicators to partition the vector field. Vectors associated with the same sign are

assigned to the same sub-group. This procedure is repeated recursively until Ncut is

below a pre-defined value. Although the partitioning is controlled by threshold value of
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Ncut, in some cases it may be required to apply a refinement algorithm on the partitioned

graph. The weight matrix, W is calculated as follows:

Let fi=[fix fiy fiz]T is located at xi==[xi yi zi]T

-dist -diffij ij
ijw = .e +(1- ).e         (5.22)

where,

0< <1, 2 2 2
ij i j i j i jdist = (x -x ) +(y -y ) +(z -z ) , and 2 2 2

ij ix jx iy jy iz jzdiff = (f -f ) +(f -f ) +(f -f )

Parameter  is used to adjust the emphasis on difference in vectors and vector locations.

5.6 Summary

In this section, the methodologies for evaluation and selection of machining strategies

are presented. Since material removal rate is relatively high in roughing operations the

tool is subjected to high cutting forces. Thus, while evaluating machining strategies

process mechanics is taken into consideration. Several number of control points are

selected on the surface. At each control point, several local machining directions are

evaluated based on force simulations. The direction with the lowest penalty is chosen to

be the local machining direction at that control point. On the other hand, material

removal rate is relatively low and resulting surface quality is of great importance.

Therefore, the intrinsic properties of the given surface are considered in machining

strategy evaluation for finishing operations. The methodology used for roughing

operations can be extended to finishing operations by relating the penalty function to

tool deflection. Besides, the determined vector field of local machining directions is

clustered using the normalized cuts algorithm.
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Chapter 6

Applications

6.1 Introduction

In this chapter, application of the proposed methodologies on different cases is

illustrated. Machining strategy evaluation for roughing is applied on 2 example

geometries which are shown in Figure 6-2 and Figure 6-4. For each case force

simulations are performed under the machining conditions given in Table 6-1 and Table

6-4 respectively. Two different radial depth of cut value are considered in the second

example, where machining strategy for a complex surface is investigated. This is to

examine the effect of radial depth of cut on machining strategy selection. Also, 3

machining strategies, Zig, Zig-Zag and Follow periphery are applied on both surfaces.

The strategies are illustrated in Figure 6-1. The strategies are compared from process

mechanics and machining time points of view. The proposed method for minimization

of the total machining time is applied on roughing pass of a die shown in Figure 6-9.

Figure 6-1: Applied strategies.
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6.2 Machining Strategy Evaluation

6.2.1 Application 1: Airfoil Surface

In this application, the proposed methodology is applied on an airfoil surface

shown in Figure 6-2. Machining conditions are given in Table 6-1.

Figure 6-2: Airfoil surface.

Tool 6 mm (ball-end), 2 fluted
Tool Axis Lead =5, Tilt=5 deg.
Grid Size 15 X 15

Radial depth of cut (% of
tool diameter) 80

Milling mode Down
WD 0.5

# of steps for time
calculation 20

# of points per step for time
calculation 100

Table 6-1: Machining conditions for 1st application.

The selected local directions are shown in Figure 6-3. As it is seen, the proposed

machining strategy has linear pattern and in “v” direction. The vector field of selected

cutting directions does not require any clustering as it is seen. Thus, the clustering

algorithm is not applied on the determined vector field.
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Figure 6-3: Selected local directions.

Three machining strategies are applied on the surface and the results are

compared. Simulations are performed under the machining conditions given in Table

6-2. For zig and zig-zag patterns two different cases are considered, where the cutting

directions are in “u” and “v”. In other words, for zig and zig-zag strategies cutting steps

are parallel to “x” axis in the first case and “y” axis in the second case. Also, the

approximate machining time for each strategy is calculated. The comparison is given in

Table 6-3.

Tool 6 mm (ball-end), 2 fluted
Tool Axis Lead =5, Tilt=5 deg.

# of grid points 10 X 10
Radial depth of cut

(% of tool diameter) 50

Table 6-2: Machining conditions in strategy comparison

Zig Zig-Zag Follow Periphery
“u” “v” “u” “v”

Machining
Time 0.81 0.77 0.60

Total penalty
Due to Force

deviation
2183  0 2245 0 1304

Total penalty
due to force
magnitude

9744 9721 9750 9721 9600

Total Penalty 11927 9721 11995 9721 10905
Average
Penalty 119.27 97.21 119.95 97.21 109.05

Table 6-3: Strategy comparison
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As it is seen in Table 6-3 even the machining strategy is known, the cutting

direction is also important from process mechanics point of view. Force penalty values

are smaller when cutting direction is in “v”. It should be noticed that results of strategy

comparison and strategy determination shows agreement in cutting direction and

strategy pattern. It is also seen that, the minimum machining time is obtained by follow

periphery pattern.

6.2.2 Application 2: Complex Surface

In this application, the proposed methodology is applied on a complex surface

shown in Figure 6-4. Machining conditions are given in Table 6-4. In this case, two

different radial depth of cuts values are used in order to investigate the effect of radial

depth of cut on selection of local machining directions.

Figure 6-4: Complex surface

Tool 12 mm (ball-end), 2 fluted
Tool Axis Lead =5, Tilt=5 deg.

# of grid points 15 X 15
Radial depth of cut

(% of tool diameter) 50 and 80

Milling mode Down
WD 0.5

# of steps for time
calculation 20

# of points per step
for time calculation 100

Table 6-4: Machining conditions for 2nd application

The selected local directions are plotted in Figure 6-3 and Figure 6-7 for 50%

and 80% radial depth of cut values respectively. As it is seen, it is required to apply
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clustering on the vector field. The clusters after a first level clustering is plotted in

Figure 6-6 and Figure 6-8 for 50 % and 80 % radial depth of cut values respectively.

Figure 6-5: Selected local directions. (Radial = 50 %)

Figure 6-6: Clustered local directions. (Radial = 50 %)

Figure 6-7: Selected local directions. (Radial = 80 %)
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Figure 6-8: Clustered local directions. (Radial = 50 %)

When the determined directions for each radial depth of cut value are examined it is

seen that radial depth of cut affects the selection of optimal local cutting direction.

Therefore, it can be concluded that, before performing a strategy evaluation, radial

depth of cut value should be known beforehand.

Zig Zig-Zag Follow Periphery
“u” “v” “u” “v”

Machining
Time (min) 0.48 0.44 0.33

Total penalty
Due to Force
deviation (N)

2082  3421 1732 3452 2665

Total penalty
due to force

magnitude (N)
8916  8452 9012 8634 8413

Total Penalty
(N) 10988  11874 10744 12086 11078

Average
Penalty (N) 109.88  118.74 107.44 120.86 110.78

Table 6-5: Strategy comparison

In Table 6-5 it is again seen that, the cutting direction is important from process

mechanics point of view. Force penalty values are smaller when cutting direction is in

“u” in this application. It should be noticed that results of strategy comparison and

strategy determination shows agreement in cutting direction. It is also seen that, the

minimum machining time is obtained by follow periphery pattern.
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6.3 Total Machining Time Minimization

6.3.1 Optimization of Roughing Process

The die geometry shown in Figure 6-9 is selected as the workpiece which is

scaled to 1/4 of its original size. Tool path is generated for the blower section of the die

with 1 mm of axial depth of cut increments and 0.1 mm radial depth of cut. Tool path is

illustrated in Figure 6-10. The geometry has a maximum depth of 22 mm. Thus, there

are 22 axial layers in the tool path. Stable depth of cut pairs for axial depths 1, 2…, 5

mm are obtained. Pairs of stable limits of axial and radial depths of cut and feasible feed

per tooth for spindle speed around 9000 rpm are presented in Table 6-8. Since slotting

causes accelerated tool wear, blim values greater than 0.8 are chosen as 0.8. Larger axial

depth of cut values could be used; however the force model is applicable to cases where

the ball-end mill of the cutter is in contact with the workpiece. Thus, only the axial

depth of cut values smaller or equal to tool radius are taken into consideration.

However, the force model can also be extended to the cases where the cylinder part of

the tool is in cut which is currently an on going research in our laboratory.

Figure 6-9: Workpiece geometry.

Figure 6-10: The generated tool path.
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In stability analysis, the milling system with the dynamic properties given in

Table 6-6 is taken into consideration [33].

nx 600 Hz
ny 660 Hz

kx 5600 kN /m
ky 5600 kN /m

x 0.035
y 0.035

Kt 600MPa
Kr 0.07

Milling mode Up milling
# of flutes 2

Table 6-6: Parameters for the milling system used in stability analysis.

For 2 mm of axial depth of cut variation of stable radial depth of cut with the

spindle speed is given in Figure 6-11.

Figure 6-11: Spindle speed vs. radial depth of cut diagram (a=2 mm)

Available feed per tooth range, cutter geometry, and mechanical properties of

the machine tool are given in Table 6-7.

Max fpt 0.1
Min fpt 0.02

Tool diameter 10 mm
Spindle Torque (~9000 rpm) 15 Nm
Spindle Power (~9000 rpm) 20 W

Tool Life (~9000 rpm) 50 min.

Table 6-7: System parameters.
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Axial
Depth
(mm)

b_lim
Feasible

fpt
(mm/rev)

1 1 0.1
2 1 0.1
3 1 0.1
4 0.83 0.1
5 0.57 0.1

Table 6-8: Pairs of stable limits of axial and radial depths of cut (around 9000 RPM)

The optimized values are compared with a conventional case in Table 6-9. The

conventional case presents the values chosen without any insight in process dynamics

and mechanics. Therefore, the chosen values are conservative. On the other hand, once

the process dynamics and mechanics are taken into consideration, those conservative

parameters can be improved.

Conventional Optimized

Axial Depth 2 4
Radial Dept 60 % 80%

Feed
(mm/tooth/rev) 0.05 0.1

Machining Time 2 min 0.72 min

Table 6-9: Comparison of optimized and conventional cases

6.4 Correcting Actual Feed Rate Problem in Simultaneous 5-Axis Milling

In Computer Aided Manufacturing (CAM) software environment, always the

tool is in motion and the workpiece is stationary. However, in real simultaneous 5-axis

milling operations, the workpiece may have absolute motion depending on the

configuration of the machine tool. In such cases the resultant relative velocity, i.e. the

cutting feed rate, is a result of the absolute movements of the individual axis. Although

these two are equivalent for 3 axis applications involving linear motions only, in case of

5-axis motions significant differences may result yielding incorrect feed rates depending

on the way the CNC interprets the 5-axis feed rate commands. In general, the feedrate

can be defined by the “F” command in three modes which are mm/min (G94), rev/min

(G93), and mm/rev (G95). The first two of those are used when the machining axes are
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translational and the last one is used when rotational respectively. In most of the cases,

machining axes are translational ones. If feed rate is provided in G94 mode, the

programmed feed rate value does not apply for the synchronized rotational axes [29]. In

G94 mode, feed rate is defined once and it is kept constant until the motion is

completed. Since the defined feed rate does not apply for the synchronized rotational

axes, the relative cutting feed between the tool and workpiece decreases. On the other

hand, in G93 mode, instead of feed rate, the inverse of time required to complete each

line of the part program is defined. For example, “F2” means that the completion time

for that line is ½ minutes. Thus, the relative cutting velocity is kept constant. In order to

solve such a problem, the CL file is used and the following steps are applied.

i. The CL file is parsed.

ii. The distance between each tool position is calculated

iii. Time required to complete each program line is calculated by diving the

distance to linear feed rate which is defined beforehand

iv. The inverse of the time is calculated as inverse time feed rate.
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Chapter 7

Conclusions and Future Work

5-axis milling is widely used in high precision complex surface machining

industries. It provides high motion capability and increased cutter accessibility, which

complicates the geometry and mechanics of 5-axis milling processes. The geometry of

5-axis milling operations is modeled and an existing process model is integrated with

the geometrical analysis methods in order to perform cutting force simulation along a

given toolpath. In addition, optimization models are developed in order to optimize

those processes.

There are several constraints which have to be considered in optimization of 5-

axis milling operations. Those can be named as, cutting force, cutting torque, cutting

power, chatter vibrations, tool & part deflections and maximum chip thickness. Cutting

torque and power are limited to the available cutting torque and power on the spindle.

Also, the process should be chatter-free. In order to keep dimensional quality above a

certain level tool deflections must be limited.

In this study, as the first step process geometry is analyzed. CL-file is used as

the main information source. Position and orientation of the tool is parsed using the

developed CL-file parser module. Then, those are used together with the analytical

information of workpiece geometry in order to extract geometrical parameters such as

depth of cuts, lead and tilt angles. The proposed geometrical analysis methods are

applied on two complex surfaces for verification purpose. It is observed that, the desired

parameters are calculated accurately. In addition, the geometrical model is integrated

with the process model and cutting force simulation is performed along a toolpath

which is generated for a bumped surface. The simulation is verified by cutting

experiments. A good agreement is observed between the simulated and measured

cutting forces. However some amount of discrepancy is observed in cutting force in Z
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direction. This is due to the indentation forces created at the tool tip where the cutting

edge can not cut to due to the fact that the cutting speed reduces to zero at the center.

However, these forces can also be identified and included in the ball end milling model

which is currently an on going research in our laboratory.

A process optimization model is developed to optimize tool orientation,

machining parameters and machining strategy. This study is recognized as a first

attempt to optimize 5-axis milling processes considering various limitations. In

optimization of the tool orientation, variation of the resultant transversal cutting force,

Fxy, is simulated among several combinations of lead and tilt angles under various radial

depth of cut values. The simulations are verified by experimental results. It is observed

that, as the radial immersion increases optimal value of tilt angle changes, where

optimal value of lead angle does not change significantly. Machining parameters, such

as feed rate, axial and radial depth of cuts are compromised to minimize the total

machining time of roughing operations. Limitations such as chatter vibrations, tool life,

spindle power, spindle torque and available feed per tooth are considered while

minimizing the total machining time. In machining strategy optimization, roughing

operations and finishing operations are considered separately since the requirements for

each type of operation are different. In optimization of machining strategy in roughing

operations, several grid points are formed on the surface. The required geometrical

parameters are calculated along various cutting directions at each control point using the

developed geometrical model in the first step of the thesis. Then, the cutting forces are

simulated. With respect to the simulation results, penalty functions are calculated by

assigning weight factors to force deviation and force magnitude along each direction.

For finishing operations, the intrinsic properties of the given surface are examined. The

developed method for roughing operations can be applied on finishing operations, by re-

defining the penalty function as tool deflection. In addition, a model in order to

calculate the machining time for a given surface and machining conditions is proposed.

Finally, the proposed methods are applied on various workpiece geometries and

results are presented. It is shown that, cutting direction and machining strategy patterns

is of great importance from process mechanics point of view. Machining time of each

strategy is calculated and presented. As a real world problem in 5-axis simultaneous

milling, actual cutting feed rate problem is solved by using the CL file parser module.

As a future work, the geometrical model can be integrated with a geometrical

engine in order to add visualization to the geometrical analysis. This may be beneficial
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to extend the geometrical model to more complex cases where holes, key ways, sharp

corners etc. exist on the workpiece surface. The process simulation technique can easily

be integrated with a commercial CAD/CAM system in order to add extra capabilities to

current CAD/CAM systems. In addition, the model developed for process optimization

can be extended in order to perform a larger scale optimization for 5-axis milling

operations.

In this thesis, a geometrical model for 5-axis milling operations is developed for

process simulation and optimization purposes considering various limitations. This is

not present in the literature. It is seen that by using the methodologies proposed in this

thesis the productivity and part quality can be improved. This thesis forms a basis for

the forthcoming studies in simulation and optimization of 5-axis milling processes.
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