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Abstract 

This thesis presents a method for deformations on closed surfaces in 3D over a 
network, which is suitable for simulation of tissue and organs for training purposes, as 
well as cloth simulation in collaborative virtual environments (CVE). CVE's are 
extensively used for training, design and gaming for several years. To demonstrate a 
deformable object on a CVE, we employ a real-time physical simulation of a uniform-
tension-membrane, based on linear finite-element-discretization of the surface 
yielding a sparse linear system of equations, which is solved using the Runge-Kutta 
Fehlberg method. The proposed method introduces an architecture that distributes the 
computational load of physical simulation between clients. As our approach requires a 
uniform-mesh representation of the simulated structure, we also designed and 
implemented an algorithm that converts irregularly triangulated genus zero surfaces 
into a uniform triangular mesh with regular connectivity. This algorithm uses spring-
embedders for stretch optimization of the spherical parameterization step.  The 
strength of our approach comes from the subdivision methodology that enables to use 
multi-resolution surfaces for graphical representation, physical simulation, and 
network transmission, without compromising simulation accuracy and visual quality.    
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İŞBİRLİKÇİ SANAL ORTAMLARDA 

GERÇEK ZAMANLI DEFORME OLABİLEN NESNELER 

Selçuk Sümengen 

EECS, Yüksek Lisans Tezi, 2006 

Tez Danışmanı: Yar. Doç. Selim Balcısoy 
Yardımcı Tez Danışmanı: Yar. Doç. Serhat Yeşilyurt 

Anahtar Kelimeler: Dağıtık ve Ağ Sanal Ortamları, İşbirliği Yapılabilen Sanal 
Ortamlar, Fiziksel Tabanlı Modelleme, Deforme Olabilen Nesneler,  

Gerçek Zamanlı Benzetim, Hesaplanabilir Geometri ve Nesne Modelleme. 

Özet 

Bu tez, network üzerinden çalışan, eğitim amaçlı doku ve organ simülasyonları veya 
işbirliği yapılabilen sanal ortamlarda kumaş simulasyonları için kullanılabilecek, 3 
boyutlu kapalı yüzeylerin deformasyonu için uygun bir metod sunuyor. İşbirliği 
yapılabilen sanal ortamlar (İSO) uzun yıllardır çok yaygın olarak eğitim, dizayn ve 
oyun amaçlı kullanılmaktadır. İSO da, deforme olabilen bir nesneyi canlandırabilmek 
için, doğrusal sonlu eleman bölünmesine uğramış bir yüzeye dayanan eşit gerginlikte 
bir zarın gerçek zamanlı fiziksel simulasyonu, yüzeyden çıkarılan seyrek denklem 
sistemi Runge-Kutta Fehlberg methodu ile çözülerek yapılmıştır. Sunulan metod 
fiziksel simulasyonun hesap yükünü kullanıcılar arasında bölen bir mimari ortaya 
koyuyor. Yaklaşımımız benzetimi yapılan muntazam bir ağ yapısı gerektirdiği için 
aynı zamanda düzensiz üçgenlenmiş sıfırıncı takımdan yüzeyleri, düzenli bağlantıları 
olan muntazam işlenmiş ağ yapılarına çeviren bir algoritma dizaynı yapıldı ve 
tamamlandı. Algoritma küresel parametrizasyon adımında esnetme optimizasyonu 
için yay düzenekleri kullanmaktadır. Yaklaşımımız gücünü grafik gösterim, fiziksel 
simulasyon ve network iletşimi sırasında kullanılan, simulasyon doğruluğu ve grafik 
gösterminden ödün vermeyen, farklı çözünürlüklü alt bölümlere ayırma 
metodolojisinden almaktadır. 
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1. INTRODUCTION 

1.1. Motivation 

Collaborative Virtual Environments (CVE) are being extensively used for 

training, design and gaming for several years. They enable participants to get 

immersed into a Virtual Environment where they can perform a task or experience a 

story together. In most use cases such as gaming and education, current CVE’s are 

sufficient to address user expectations related to visual realism, animations and 

networking. However, CVE’s also involve substantial amount of interaction between 

the users and the objects in the synthetic worlds, which should be visually appealing 

and physically realistic as well. Current CVE’s are mostly limited to avatar-avatar 

interaction or the object interactions are animated using offline techniques and they 

are commonly hard-coded into the application. Real-time physical simulation of 

deformable bodies in CVE’s, enables accurate replication of the real world objects 

like cloth. 

On the other hand, medical and some engineering applications definitely 

require real-time accurate simulations. When users want to train on a surgical 

operation, a CVE should support accurate simulation and visualization of an organ’s 

deformation for each participant in real-time. Also, haptic devices are used in such 

simulations to enable force feedback and train the operator with the aid of visual 

display as well the sense of touch.  Haptic rendering necessitate real-time and accurate 

physical simulation, since it requires stable values of simulated environment to 

generate force feedback.  

1.2. Outline of the thesis 

This thesis proposes a deformable body simulation and visualization 

framework for collaborative virtual environments and distributed haptic platforms.  
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First, we summarize the parallel research fields with our approach, and give 

brief information about the related works in Chapter 2. Key concepts are also 

introduced in Chapter 2, and the models associated with the methods that we applied, 

are gathered together. 

In Chapter 3, we provide an agenda for the numerical methods that we used 

to perform physical simulation as a reference for the implementation details. 

Our approach is explored in detail and the methods that we adopted are 

examined in Chapter 4. We introduced a generic mesh representation for our 

deformable models and proposed a method for the conversion of irregular genus zero 

models into a regular mesh with a tetrahedral domain. We present a subdivision 

scheme for our mesh representation that allows fast refinement using convolution 

kernels, and enables high resolution surfaces for an enhanced visual display while 

maintaining the network and simulation models at optimal resolutions. Physical 

simulation characteristics and theoretical aspects of deformations are presented in the 

same chapter. Proposed linear finite element model is explained and theoretical 

background is reviewed. In the Chapter 4, we gave details of network architecture, 

and shared environment model that allows peer-to-peer (P2P) collaboration with 

distribution of simulation load among peers. The synchronization of graphics, 

network and physical simulation models is an important concept, and is clarified in 

the last section of this chapter. 

In Chapter 5, we present the results of our approach with the rendered 

images, and the numerical outputs of the physical simulation. We also tested the 

stability of the physical simulation and effects of the parameters. Network 

requirements and the performance are explored as well. 
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2. RELATED WORK 

2.1. Collaborative and Distributed Network Virtual Environments 

2.1.1. Introduction 

Collaborative Virtual Environments (CVE) became an active research area, especially 

after the rapid development and raising popularity of the Virtual Reality technology 

that enables users to interact with each other in a computer simulated environment. 

First international conference on CVE’s, CVE’96 was held in Nottingham, UK, and 

followed by CVE’98 at Manchester, UK. Definition of the collaborative virtual 

environments as an introduction to the CVE conferences was made by Churchill and 

Snowdon as follows: 

“A Collaborative Virtual Environment (CVE) is an application that 

uses a Virtual Environment to support human-human and human-

system communication. Within such virtual environments, multiple 

users can convene, communicate and collaborate.” [1] 

Given this broad definition of CVEs, the field is open for researchers from disciplines 

such as psychology, sociology, work practice studies, architecture, artificial 

intelligence and art [2] as well as computer scientists. According to this approach, 

shared spaces where people can communicate and collaborate, including text based 

environments can also be classified as CVEs.   

Four key features of the CVEs are stated as shared context, awareness of others, 

negotiation and communication, and flexible viewpoints [1]. Shared context can be 

interpreted as the shared knowledge of current and past activities, shared artifacts and 

environments that facilitates a common understanding between collaborators. 
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Awareness is an understanding of the activities of others, which provides a context for 

your own activity [3]. Awareness facilitates collaborative working of the group by 

preserving the relevance of individual contributions. Collaborative work requires 

negotiation on roles and activities as well as conversations between collaborators. 

Flexible and multiple viewpoints provide different representations for individuals 

having different tasks. 

Although the debate on conceptual definition of CVEs among scientists and 

researchers continues, such a collaborative virtual environment should be 

synchronized and distributed to all participating sites in order to give the users the 

illusion of being located in the same place at the same time [4]. Distributed Virtual 

Environments, also referred in the literature as Network Virtual Environments, 

provide a framework for CVEs. The terms, CVEs and DVEs are often mistakenly 

taken identical, but they are complementary, where the CVEs give emphasize to the 

interaction among individuals and joint activities in a shared space, DVEs mostly 

deals with the maintenance of a virtual worlds synchronized and distributed over 

participants.  

One of the reasons that motivate the research on DVEs, is the need for a virtual 

environment that looks accurate, and it is accurate in details, thus individual 

computers are incapable of representation of such an environment, and it requires 

multiple computer systems [5]. Approaching to the reality, the virtual environment 

should approximate the complexity of the real world. Human-computer interactions 

using the representations of real world objects should be consistent with real world 

physical constraints.  

Stytz [5], states the display of a virtual environment must accurately express the real 

world objects that it portrays, and introduces notion of fidelity in the DVE. Sensory 

fidelity requires the accurate replication of real world, using visual, auditory and 

tactile information. Accurate depiction of the gravity, motion, energy consumption 

and conservation is the physical fidelity. Objects having the correct relative scales and 

velocities among each other within each a computer and the distributed environments 

is the modeling fidelity. Assuring the limits of the latency and lag between one action 

and a notification of it by other participants is the time fidelity. All of these 
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classifications of fidelity and the later ones that are not mentioned here address the 

desire of making virtual environments “real” (Figure 2.1).  

 

Figure 2.1: Dimensions of the Virtual Environment 
Technology. [5] 

2.1.2. Historical Timeline of Collaborative and Distributive Virtual Environments 

DIVE [6] is one of the first Distributed Virtual Environment that allows 

participants to collaborate in a 3D virtual world which facilitates audio, video and text 

transmission for communication. DIVE also allows interaction with virtual objects. 

On the other hand, NPSNET [7] is designed for military training and simulation for 

networked environments and each participant machine acts as a military vehicle or a 

dismounted person and is able to interact in the virtual world. NPSNET also 

introduced virtual humans which area actually human like avatars. MASSIVE is 

especially used for public participation and performance [8].  

There are only a few approaches that in particularly deal with the 

significance of physical simulation in collaborative virtual environments. A recent 

work by Jorissen [9], gives a detailed survey on state of the art of dynamic 

interactions and physical simulations in CVE’s. Jorissen et al. introduces a 

collaborative virtual environment, where the object-object interaction is allowed in 
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addition to avatar-object and avatar-avatar interactions using a non-commercial 

physics engine.  

There are few attempts to introduce deformable objects into CVE’s: Dequidt 

et al. [10] propose a system based on Ghost objects to handle network latency. Ghost 

objects are associated to objects manipulated over the network and introduced into the 

client side to perform physical simulations asynchronously at each user. 

Collaborative Haptics Environments are also introduced to handle surgical 

training and simulations with the use of special architectures [11]. Haptic rendering 

must be performed at simulation rates higher than 1 KHz and most approaches require 

particular hardware or a computer architecture running real-time operating systems 

[12]. Distributed and collaborative haptic visualization of a 1 DOF crank model is 

also achieved using client-server architecture building a haptic communication library 

allowing real-time communication needed for haptic rendering only on Intranets [13].  

2.2. Deformable Objects 

Simulation of deformable objects is a significant research area for over two 

decades since it enables the cloth animations, tissue modeling, virtual surgery, and 

many more applications in the field of computer graphics. Early approaches on the 

visualization of deformable models used non-physical and purely geometric 

techniques, most of which is classified as Free-Form-Deformations [14]. Physics 

based approaches appeared afterwards and gained a popular attention by enabling 

cloth animations [15]. This approach, which is a linear model based on energy 

minimization and continuing approaches using explicit integration schemes, are 

suffering from stability issues for large body deformations. Baraff and Witkin [16], 

introduced an implicit integration scheme for stable simulations using large time 

steps. On the other hand, real-time simulation of deformable models is an other 

challenge, and linear mass-spring models introduced at first [17]. As an alternative, 

Boundary Element Method (BEM) is introduced, which is inspired by Finite Element 

Method (FEM), however, considers only the surface of the model [18]. Non-linear 
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FEM’s models are not suitable for real-time simulations since they are 

computationally intensive, so deformable objects simulfations for cloth simulations in 

virtual environment continued to use improved mass-spring models [19, 20]. Also, 

pre-computed models for real-time dynamic deformations are considered [21]. Since 

medical applications require real-time and accurate simulations some approaches used 

FEM to parameterize the mass-spring model to improve accuracy [22].   
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3. NUMERICAL METHODS 

3.1. Introduction 

In the Numerical Methods Chapter, we introduce the key concepts defining 

the mathematical procedure and computations handled for a typical physical 

simulation. Further reference can be found in Siggraph Course notes on Physically 

Based Modeling [23] by Baraff and Witkin, Numerical Recipes text book [24] as well 

as LAPACK and BLAS software libraries.  

3.2. Initial Value Problems 

When the behavior of a system is described with an ordinary differential 

equation of the form: 

),( txfx =& ,                                                      (3.1) 

where, f is a known function, x  is the state of the system, x& is the time derivative. x 

has a starting value given 00 )( xtx = , and it is desired to find ix& at some final point 

fx or at some discrete list of points. 

3.2.1. Euler Integration 

3.2.2. Explicit Integration (Forward Euler) 

Forward Euler Integration is a basic numerical integration scheme, 

approximating the true integral by fallowing the trajectory as a polygonal path.  
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),()()( txtftxttx Δ+=Δ+                                                       (3.2) 

Euler’s integration is not accurate and error introduced by Euler integration can be 

found by the Taylor series expansion of )( ttx Δ+ . 

)()(
2
1)()()( 3

0
2

000 tOtxttxttxttx Δ+Δ+Δ+=Δ+ &&&                                (3.3) 

and the difference between the Euler integration is the error introduced, 

)()(
2
1 3

0
2 tOtxt Δ+Δ &&                                        (3.4) 

In the expression 2tΔ  is the domination term and the error introduced by the 

integration is of order 2tΔ . 

)( 2tOrrorE Δ=                                        (3.5) 

3.2.3. Mid-point Method 

Error bound in the equitation 2.4 can be easily reduced to 3tΔ  by slight 

modification of the Forward Euler Integration, 

)),
2

,
2

(()()( ttttxfftxttx Δ+Δ+
+=Δ+                             (3.6) 

This method is called mid-point method since uses a midpoint evaluation 

of f . Mid-Point Method is a second order solution method and has an error bound 

of 2tΔ . 

3.2.4.  Runge-Kutta-Fehlberg Method 

Runga-Kutta methods propagate a solution over an interval by evaluating 

f for several steps. Fehlberg has developed a fifth order Runge-Kutta method that has 

an error bound of 5tΔ . 
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),(1 txfq =                                                            (3.7.a) 

)
4

,
4

( 1
2

tqxttfq Δ
+

Δ
+=                                                  (3.7.b) 
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3.3. Matrix Representation Schemes 

Real-time operation of our approach is strictly depended on matrix-vector 

multiplications. Finite element discretization step results in very large sparse matrices 

and these matrices are updated regularly. Accessing matrix elements in a shorter time 

is an important constraint while keeping the matrix in a compact form. 

3.3.1. Diagonal Storage Scheme 

Finite element of finite state discretization generally produces diagonal 

matrices that are mostly sparse. Efficient storage of these matrices is also important 

for an efficient multiplication. This storage scheme is simple and stores the diagonals 

having non-zero elements. Non-empty diagonals are stored consecutively on an array, 

and an index array is maintained to identify the diagonal by their distance from the 
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main diagonal.  
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For an n × n matrix having d non zero diagonals, when multiplied by a 

vector, this storage scheme performs O(dn) multiplications. Accessing a matrix 

element takes O(1) time, however insertion of a non-zero element is O(n) and this 

scheme also keeps redundant zero elements on the diagonals having any non-zero 

value. 

3.3.2. Coordinate Format Storage Scheme 

This scheme is designed for sparse matrices having no regular structure. It 

keeps the non-zero elements consecutively on a data array and maintains two index 

arrays to identify row, and column number of the elements on the data array. 
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For an n x n matrix having k non zero elements, when multiplied by a vector, 

this storage scheme performs O(kn) multiplications. Accessing a matrix element takes 

O(log(n)) time, and insertion is O(n) and completely forming the matrix is O(nlog(n)) 

time. 

However, we make a modification to existing scheme, introducing additional 

pointers exploiting the geometric affinity of stored elements and reducing access time 

to O(n), also on k consecutive insertions, if k > log(n), we form the matrix again to 

reduce insertion time (Appendix A). 
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4. NETWORK DEFORMABLE OBJECTS 

4.1. Introduction 

Our method applies a collaborative deformation on a linear membrane model 

over network, which is appropriate for simulation of tissue and organs for training 

purposes, as well as cloth simulation in the virtual environments. 3D models of these 

objects with reasonable parameters are necessary for a realistic visualization and 

simulation. Our approach works with genus zero surfaces, which are suitable for 

representing such objects (Figure 4.1).  

 

Figure 4.1: Examples of genus zero, genus one, and genus 
three surfaces. 

4.2. Geometric Model 

Since the proposed approach requires a uniform representation of the 

simulated structure, restriction on the genus of the model allows us to construct a 

regular 2D grid that corresponds to the surface of the model.  

The genus of a connected, orientable surface is an integer representing the 

maximum number of cuttings along closed simple curves without rendering the 
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resultant manifold disconnected [25]. In other words, genus is the number of holes or 

handles on a closed surface. Sphere has genus zero, and torus has genus one.  

Also, the following relationship holds for the genus of a surface,  

χ = 2 − 2g,     (4.1) 

where the Euler characteristic χ for a polyhedron defined as,  

χ = V − E + F,     (4.2) 

and V is the number of vertices, E is the number of edges and F is the number of the 

faces [26].  

The surface of any convex polyhedron is homeomorphic to a sphere and has 

Euler characteristic of 2. Homeomorphic spaces are identical from the viewpoint of 

the topology [27], therefore genus zero surfaces preserve their topological properties 

under spherical parameterization and can be mapped onto a convex regular 

polyhedron. 

4.2.1. Mesh Representation 

 

Figure 4.2: Five platonic solids and their flattened view. 

There are five convex regular polyhedrons that are also called platonic solids 

(Figure 4.2). Tetrahedron, cube and octahedron can be unfolded onto a plane easily 

and they are good candidates to form a domain for regular meshes while 

dodecahedron and icosahedron have much more complex flattened structure having 
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twelve and twenty faces respectively.  

We have chosen tetrahedron as the domain for our mesh representation, since 

it has four equilateral triangular faces that can be represented as a 2D grid having (2n 

+ 1) x (2n+1 + 1) nodes where n >= 0 (Figure 4.3). 

 

Figure 4.3: 2D Grid representation of tetrahedron, (a) n = 1, 
(b) n = 2. 

4.2.2. Mesh Generation 

We propose an algorithm that converts irregularly triangulated genus zero 

surfaces into a uniform mesh with regular connectivity. Previous approach for 

constructing regular meshes with fixed and simple topology by Hoppe [28], generates 

a spherical parameterization of the surface and the domain. Surface, projected on the 
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sphere, mapped on to the domain, and unfolded to generate the geometry image. We 

apply a similar procedure, but we introduce different techniques for spherical 

parameterization and model re-meshing. It allows adjusting the tradeoff between face 

area uniformity of the generated mesh, and preserving the accuracy with the original 

mesh. 

4.2.2.1. Spherical Parameterization 

In our approach, success of the regular mesh generation strictly depends on 

the spherical parameterization step, and the parameterization of a detailed input mesh 

is a computationally intensive process that often requires reasonably large amount of 

time. Our method combines some of well known techniques and introduces several 

improvements, and taking the advantage of recently available graphics hardware. 

Given a triangle mesh M, the problem of spherical parameterization is to 

form a continuous invertible map φ : S→M from the unit sphere to the mesh [28]. 

Spherical parameterization of regular tetrahedral domain D, and irregular input mesh 

M are necessary to generate Sphere to Mesh (S→M) and Sphere to Domain (S→D) 

mappings that will allow us to perform Mesh to Sphere and Sphere to Domain 

(M→S→D) transformation. 

 

Figure 4.4: Gnomonic Projection of Tetrahedron. 

Any convex polyhedron can easily be projected onto a unit sphere switching 

to spherical coordinate system (Θ, Φ, r) and setting a unit radius for all vertices 
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(Gnomonic Projection), however translation between each mesh triangle and spherical 

triangle might introduce a certain amount of distortion (Figure 4.4). Spherical triangle 

mapping alters the uniformity of domain tessellation and there are certain mapping 

methods other than “Gnomonic Projection”. Some of these methods [28] focus on 

different uniformity measures such as area or edge length uniformity and some of 

them apply several stretch optimization techniques. Since the aim of spherical 

parameterization is to perform mesh conversation from an irregularly triangulated 

input mesh, it has been shown that the under sampling is directly related to the stretch 

of a parameterization [29]. 

 Previous approaches define a stretch norm to measure the stretch efficiency 

and concludes that minimizing the stretch norm is a non-linear optimization problem 

[28, 29]. We attack this problem by a modification of well known technique used for 

graph drawing. Graph drawing using force directed placement methods, which are 

also called spring-embedders, distributes vertices evenly in the frame and minimize 

edge crossings while favoring uniformity of the edge lengths [30].  Since we 

implemented a deformable physics engine that can handle mass spring systems 

efficiently, we introduce a variant of spring-embedders for stretch optimization.  

A spring-embedder model is generated from the gnomonic projection of the 

domain. Every vertex has a constant mass, and springs are introduced in between 

neighboring vertices. An external force field (Equitation 4.3) is applied from the 

center of the domain that limits displacements of vertices on the unit sphere.  

( ) .0,1 nNodesiixxf iiExternali
≤≤∀×−=

∧

   (4.3) 

Springs between the vertices tend to preserve initial edge lengths and resists 

movements that change the topology; however we need to establish a tension on these 

springs to perform stretch optimization. We scale down the positions of the vertices 

that are projected onto unit sphere (Equitation 4.4), and external force which is 

applied continuously expands the vertices onto the unit sphere again while producing 

a tension on the springs.  
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10,0,, <<≤≤∀×= CnNodesiixCx iinew
   (4.4) 

Tensions on the springs do not affect the vertex placements on the unit 

sphere unless the stiffness parameters are adjusted. Given that we are seeking a 

uniform spherical parameterization, stiffness of each spring is re-adjusted proportional 

to the areas of neighboring faces (Equitation 4.6). Stiffness parameters are updated 

continuously to achieve area uniform tessellation over the unit sphere (Figure 4.6). 
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Figure 4.5: (a) Gnomonic Projection of Tetrahedron. (b) 
Stretched Gnomonic Projection of Tetrahedron. 

Our proposed force model is a feasible stretch optimization technique for 

domain to sphere mapping; however, it is insufficient for mesh to sphere mappings 

where the projection of non-convex polyhedron into a unit sphere results in edge 
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crossings and does not preserve initial surface topology. We use a vertex 

displacement procedure that is similar to the relaxation method (Equation 4.7) of 

previous spherical parameterization approaches [31] for each time step to overcome 

this problem (Figure 4.6).  
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   (4.7) 

 

Figure 4.6: (a) Irregular Input Mesh. (b) Stretched Gnomonic 
Projection of Input Mesh. 

4.2.2.2. Model Re-meshing 

After spherical parameterization of convex polyhedron domain (D→S) and 

the input mesh (M→S), it is straightforward to generate inverse function of the 

domain to sphere (S→D) mapping. Combining the spherical mappings mesh to sphere 

(M→S) and sphere to domain (S→D) to derive mesh to domain mapping (M→D), 

requires intersection of the sets on the sphere. However, transformed vertex 

coordinates of the mesh and domain might not intersect on the sphere, and vertices of 

the domain might fall inside of a mesh facet. For each vertex of the domain, 

intersecting face of the parameterized mesh should be found out and 3D coordinates 

of domain vertex should be computed by interpolating the vertices of the intersecting 
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face (Figure 4.7).  

 

Figure 4.7: Intersecting Spherical Projections of Tetrahedral 
Domain and Input Mesh. 

Since determining the intersecting faces of the parameterized mesh for each 

vertex on the domain and computing the interpolated coordinates are costly 

procedure, we introduce a fast method taking the advantage of recent advances in 

graphics hardware [32]. 

 

Figure 4.8: Spherical projection of input mesh is, (a) rendered 
as 3D wireframe, (b) 3D colored surface, (c) 2D colored 
surface, and (d) 2D colored surface, where the original 
positions of vertices are used as color components. 
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Using OpenGL and programmable shaders, we render the faces of the 

parameterized mesh onto the frame buffer using the two dimensional spherical 

coordinates (Θ and Φ) of the transformed vertices (Figure 4.8). Initial Cartesian 

coordinates (x, y, and z) of the parameterized mesh vertices are attached to color 

attributes (r, g, and b) at the vertex shader, and inside of each face is filled with the 

interpolated Cartesian coordinates at the fragment level. Rendered image is then 

fetched from the frame buffer as a 2D texture and used like a lookup table to generate 

3D coordinates of the domain vertices (Figure 4.9). 

 

Figure 4.9: Final comparison of (a) the input mesh with 1444 
vertices, and (b) the resulting regular mesh with 129*65 
vertices. 

4.2.3. Subdivision Scheme using Convolution Kernels 

Subdivision methodology is appropriate for our approach since it allows 

multi-resolution representation of a surface and fast switching between detail levels. It 

also favors numerical stability [33], so it is highly suitable for physical simulation of 

deformations using finite element and finite difference methods.  

We used a variant of butterfly subdivision scheme [34] that generates a C1 

smooth triangular mesh. Modified Butterfly Scheme is an interpolating subdivision 

scheme, where the original vertices (control points) are also the vertices of the refined 

surface and surface is interpolating to a limit surface. This behavior makes it possible 

to use surfaces with different resolutions for graphical representation, physical 
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simulation, and network transmission, without compromising the integrity of 

simulation accuracy and the rendered image. 

There are two different methods of refinement for subdivision schemes. 

Subdivision schemes that perform face split for each refinement level are defined as 

primal schemes, and the other schemes that perform vertex split are called dual 

schemes. Primal subdivision schemes introduce new vertices at each refinement 

which are called odd vertices, and vertices inherited from the previous level are called 

even vertices. Moreover, this naming convention comes from the node numbering of 

the one dimensional case. Also vertices are identified as regular and extraordinary 

vertices depending on their valances. Subdivision schemes, that are defined for 

triangular meshes create new vertices of valance 6 in the interior of the surface, and 4 

on the boundaries. These vertices having valance 4 and valance 6 are defined as 

regular vertices and vertices of other valances are called extraordinary vertices.  

 

Figure 4.10: (a) Mask for interior odd vertices with regular 
neighbors, (b) Mask for crease and boundary vertices, (c) 
mask for odd vertices adjacent to extraordinary vertices. The 
coefficients si are 1/k (1/4 + cos(2iπ/k) + 1/2 cos(4iπ/k)) for k 
> 5. For k = 3, s0 = 1/12, s1,2 = -1/12; for k = 4, s0 = 3/8, s1 = 
1/8, s1,3 = 0 [33]. 

Modified butterfly scheme is a primal subdivision scheme, and masks are 

used to generate odd vertices from the values of even vertices at each refinement 
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(Figure 4.10). There are two groups of masks for odd vertices. Interior odd vertices 

that are adjacent to regular vertices and odd vertices that are adjacent to boundary or 

crease vertices have generated by two masks having constant coefficients.  Masks for 

odd vertices that are adjacent to an extraordinary vertex have changing structure and 

varying coefficients depending on the valance of extraordinary vertex.  

 

Figure 4.11: Figure 4.10: Modified 2D Grid Structure. 

After having a regular mesh representation as a 2D grid structure, we 

introduce some modifications (Figure 4.11) to apply a fast and robust refinement 

strategy using modified butterfly scheme. Taking advantage of having a regular 

domain, we have no boundary or crease vertices, but there are 4 extraordinary vertices 

of valances 3 on the corners of the tetrahedral domain. However, if we duplicate the 

edges of these vertices, they can be treated as regular vertices having valances of 3×2. 

Since the duplicate edges are symmetric to existing edges, resulting odd vertices will 

have same values. This modification allows us to use the mask for interior odd 
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vertices with regular neighbors for all the grid nodes. We also introduce offsets to 2D 

grid representation. Offsets are the copies of grid nodes, assuring existing neighboring 

properties and they are updated before the convolution process (Figure 4.12).  

 

Figure 4.12: (a) Modified 2D Grid Structure. (b) Application 
of mask for interior odd vertices with regular neighbors. (c) 
Equivalent convolution kernel. (d) Three convolution kernels 
generated for three edges. 

With a 2D grid representation and a mask with constant coefficients, odd 

vertices can be generated by consecutive convolutions with three kernels, which are 

created by rotating the subdivision mask three times (Figure 4.12.d). Necessity for the 

grid offsets arises from the application of the mask to the grid boundaries, and 

modified subdivision scheme requires first neighbors of even vertices that are next to 

generated vertex. Offset width does not change according to the grid dimensions and 

time required for the update of the offsets is negligible. After three times convolutions 

of the nth level subdivision surface, resulting 2D grids are merged to generate n+1th 
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level subdivision surface having (2n+1 + 1) x (2n+2 + 1) nodes (Figure 4.13). 

 

Figure 4.13: Comparison of resulting mesh refined by 
subdivision and rendered at different level of details,           (a) 
129x65=8335 vertices (b) 257x129=33153 vertices (c) 
512x257=131841 vertices. 

4.3. Physical Model 

Simulation of deformable objects is an extensive research area, where several 

methods are present, varying from fast and simple methods favoring speed and 

scalability, to much more complex methods favoring accuracy and stability. Linear 

methods such as mass-spring models for dynamic deformations are suitable for use in 

real-time applications; however, they are not capable of handling large deformations 

and small time steps are required to guarantee stability. On the other hand, non-linear 

models incorporating large viscoelastic and plastic deformations are computationally 

intensive, and despite their physical accuracy, real-time simulation of large 

deformations is only possible with massively parallel computers.  

For the demonstration of the deformable object on a collaborative virtual 

environment, we use a real-time physical simulation of a uniform-tension-membrane, 

based on linear finite-elements. We introduced finite element discretization to form 

the global stiffness matrix, which is updated frequently to handle large deformations 

with enhanced accuracy and we used Runge-Kutta-Fehlberg method for integration to 

achieve bigger time steps and improved stability. 
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4.3.1. Linear Finite-Element Model 

Application of the finite-element method for the wave equation [35, 36], 

describing the time-dependent small deformations of a uniform-tension membrane 

results in a standard system of equations [37]:  

,externalfKxxBxM +−−= &&&                                                 (4.8) 

where, x is the normal deformation of each node, M is the diagonal mass 

matrix, externalf  is the external force vector due to user interactions, B is the diagonal 

damping matrix, and K is the stiffness matrix. In our implementation, we separate 

normal deformation and the velocity of each node to improve the stability of the 

Runge-Kutta method used to solve the linear system. Namely, we have 

vx =& ,                                                        (4.9) 

and the resulting equation of motion: 

externalfKxBvvM +−−=&                                        (4.10) 

The finite element method works well with an arbitrary triangulation of a 

surface as well as a proposed regular grid structure.  In our implementation we apply 

the damping matrix directly on the nodal velocities, so as to model a permeable 

membrane placed in a fluid. In some standard formulations, the damping is applied to 

relative nodal velocities. The two yields in similar solutions, however our 

implementation results in simpler sparse structures and faster simulation times via 

improved stability of nodal damping. 

4.3.2. Stiffness Matrix Generation 

Finite Element Method is defined as a powerful numerical procedure, where 

a body is subdivided into a discrete number of finite elements [38]. According to our 

mesh representation and subdivision methodology, each group of vertices forming a 

triangle on the mesh is taken as an element. Global stiffness matrix K  is assembled 
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using the element stiffness matrices eK , which identifies the relation between nodal 

displacements and the force exerted on the element nodes maintaining the linear 

elasticity model [39, 40].  

∑=
e

eKK ,                                                            (4.11) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−
−+−
−−+

=
eeee

eeee

eeee

e

kkkk
kkkk
kkkk

K

3131

3322

2121

,                                            (4.12) 

Members e
ik  of the element stiffness matrix are derived using the material 

properties of the object (Appendix B).  

4.3.3. Handling Boundary Conditions and Domain Decomposition  

In the finite element methodology, there are two classes of boundary 

conditions. The essential boundary conditions are also called geometric boundary 

conditions and correspond to prescribed displacements and rotations, while the 

natural boundary conditions or also called force boundary conditions correspond to 

prescribed forces and moments [35]. The natural boundary conditions are introduced 

to the system as external forces in the equation 4.10; however, handling the essential 

boundary conditions is not straightforward. 

In our approach, essential boundary conditions arise from two circumstances. 

First, the membrane model should have some of its nodes with fixed displacements in 

the simulated environment. A membrane model having no geometric boundary 

conditions will float like a rigid body and it is impossible to solve the system in eq. 

4.10, since the global stiffness matrix K is singular. Second, we are aiming to 

distribute computational load of the simulation among clients, which requires 

partitioning of the membrane domain between participants. Every client is responsible 

for solving the system in its local domain and local solutions stay consistent by 

distributing the states of the nodes on the domain boundaries. 

Simplest method used for the application of essential boundary conditions is 
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to remove ith row and column of the stiffness matrix K to introduce ith node as a fixed 

node. Consequently, ith equation in the system that we are trying to solve will be 

deleted. After unfolding the system in eq. 4.10,   
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It’s obvious that the balances of the equations are lost, because ith column is 

also removed on the left hand side of the system. The terms iji xK−  should also be 

added to the right hand side before attempting to solve the system. This method is 

computationally intensive and requires significant modification of global stiffness 

matrix K. 

Payne and Irons method introduces an alternative technique for maintaining 

the essential boundary conditions [41]. Instead of deleting the ith row and column, a 

very large number α added to diagonal element of the stiffness matrix iiK  and other 

elements of the ith row is set to 0. Also, left hand side of the ith equitation 

iiiiiii fvBvM −−& is replaced with ixα , so that the ith equitation becomes ii xx αα = , and 

the system in eq. 4.18 remains symmetric and solvable. 

Payne and Irons method is a feasible candidate for our approach to handle 

essential boundary conditions. Since the vertices of the regular mesh structures have 

valances of 6, there are 6 non-zero elements in the each row of the stiffness matrix. 

We have a sparse matrix structure that bounds the complexity of matrix operations 

with the order of non-zero element count instead of matrix dimensions. Each essential 

boundary condition reduces the required computation by eliminating 5 non-zero 

elements out of 6 from the stiffness matrix.  

4.4. Network Model 

In our approach, we build a simple but effective network model, which is 
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capable of satisfying the needs of a small scale collaborative virtual environment and 

a distributed physical simulation among participants.  

4.4.1. Network Architecture 

Our approach is implemented with a peer-to-peer architecture working on 

local and wide area networks. We don’t introduce any dedicated server, and peer 

nodes are functioning as both clients and servers. Every peer should have a listening 

port and address which can be used by other peers by directly specifying connection 

request through the command listener. User Datagram Protocol (UDP) used for the 

communication, since the speed and bandwidth requirements are essential for a real 

time simulation and have a greater priority over packet integrity because proposed 

synchronization model can handle packet loss to a certain degree. 

Peers can run on different computers on the network or can be started in the 

same application as separate threads sharing the command listener and rendering 

windows. Handshaking protocol is also simple. As the main purpose of this thesis is 

to propose a method for the simulation of deformable objects over network, while 

distributing the computational load, there is no security measure and the peer 

requesting the connection is always accepted by the listener. They add each other to 

the list of connected peers. In the proposed method, every peer has an individual 

virtual environment before the establishment of a connection. The goal is to 

synchronize these virtual environments and to enable interaction over deformable 

objects that will lead to collaboration among participants. 

Although the peer-to-peer model is accepted, there is one condition, where 

one of the peers is acting as a server. While determining the domains on the mesh to 

distribute the simulation, the environment in which the deformable object is first 

created acts as a master and decides the partitioning. Partitioning occurs after sending 

a request by slave which selects a face and identifies it as the point of interest where 

the peer is going to introduce an external force. 
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Figure 4.14 demonstrates the third-party case of distributed simulation with 

one deformable object. Initially (a), there exists two virtual environments and one has 

an object while the other one is empty. One of the environments sends a connection 

request and both environments add each other to connected environments list. 

Environments having objects send object description messages (b) after the 

connection establishment. This message contains a unique object identifier and object 

subdivision level. After sending the object description, they immediately start sending 

object state information.  Object state information includes the recent state of the 

deformed object and will be described in detail at the next section. At this stage, 

second peer renders the object in the first virtual environment without any calculation 

and interaction. If the user decides to interact with an object by applying a force on 

any face, send this face id as point of interest. (c) Partitioning algorithm runs on both 

clients, however object owner is the authority and manages the partitioning among the 

connected peers.  After the partitioning, connected peers start to broadcast state 

information belonging to their domain, and receive state information of other domains 

of the object. If a third pair (d) sends a connection request to any of the connected 

peers, its request is accepted and it receives peers list connected to this virtual 

environment to establish connection to them immediately. (e) Object owner sends the 

deformable object description and state to the connected peer and second peer starts 

broadcasting state belonging to its domain. If the third party receives state information 

from second peer before receiving object description, simply ignores this package 

since, the default behavior for receiving irrelevant packages is ignoring. (f) Third part 

may chose to observe the deformation or send a point of interest describing face id 

where the interaction is requested. Object owner notifies second peer and domains are 

re-partitioned to allow third party interaction. Finally, (e) every peer has a domain and 

broadcasting state of this domain, while receiving the remaining states from 

connected peers. If any of the peers except for the object owner disconnects from the 

system, object owner handles the re-partitioning. If the object owner quits, simulation 

for this object is ended. 
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Figure 4.14: Network Protocol: (a) Individual peers having 
separate VE’s. (b) Connected peers, fist peer sending object 
description and state info, second peer specifying point of 
interest. (c) Synchronized peers after domain division. (d) 
Third peer is introduced. (e) Third peer is receiving object 
description and state info from first peer, also introduced to 
second peer by first peer. (f) Third peer is specifying point of 
interest, first pair performs domain division. (e) Synchronized 
peers after domain division. 
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4.5. Partitioning and Synchronization of Physical and Geometric Models 

through the Network 

In our approach, partitioning the deformable object and synchronizing among 

peers is an important issue, since it enables collaboration in the virtual environments 

with distributed computational load. For the purpose of efficient communication and 

separation we introduce a quad tree based data structure (Figure 4.15) over 2D grid 

structure proposed on the previous sections. 

 

Figure 4.15: (a) Minimal tree structure for tetrahedral domain. 
(b) Sample tree structure having depth of two. 

This structure (Figure 4.14) is a natural formation for the tetrahedral domain 

because it has (2n + 1) x (2n+1 + 1) nodes, and 2n x 2n+1 faces that can be divided 

hierarchically. Tree nodes can be transferred efficiently via network since a tree node 

contains a range identifier which is actually the combination of upper left and lower 

right node index numbers, and state information of corresponding region as a 2D 

array. Minimum depth level for the tree can be adjusted to keep the packaged tree 

node size smaller then the maximum packet size allowed by the network protocol. It 
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may look like the boundaries of node regions that are included on more than one tree 

node occupies wasted space as they might be transferred more than one time via 

network on the different packages, but the order of wasted space is 4n where the 

package size is n2, and this amount is negligible for high resolution meshes, having a 

tree divided up to a certain level. Also, including boundaries while division has a 

special importance in physical simulation where the domains are divided in the same 

manner and states of nodes at the domain boundaries must updated regularly to 

synchronize the simulations as stated in the previous sections. 

 

Figure 4.16: Demonstration of the partitioning algorithm. 

Domain divisions are designed upon this tree structure. While dividing the 

domain into sub-domains, equivalence of the sets is an important criterion, however, 

keeping the domain boundaries shorter for an accurate synchronization for the 

physical simulation and partitioning minimal for an efficient network transmission are 

essential.  
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Table 4.1: The pseudo code of the partitioning algorithm. 

This algorithm (Table 4.1) works well for the two parties, partitions the 

domain equally on the average case, and with a ratio of 7/9 on the worst case. For the 

third party case, sub domain areas are still very close to equal, however, partitioning 

occurs if the selected facets are close to each other. Investigation of n-party case of 

the algorithm is left for the future work; however, choosing close facets is not very 

probable in such a crowded environment and it will provide a reasonable partitioning. 

Peers traverse the proposed tree structure and broadcast the state information 

of the associated nodes after each simulation step. Every peer simulates the nodes of 

local domain at time ‘t’ using the position and velocity values of the nodes on 

boundaries at time ‘t-1’. There is no guarantee that the packages arrive on time, but 

system can handle network lag or packet loss for a certain degree depending on the 

for each peer 
     peer->current_node = root 
     while peer->current_node is expandible 
           expand peer->current_node 
           for each peer->current_node ->child  AND peer->current_node ->child 
covers selected face 
                 peer->current_node =  peer->current_node ->child 
           end for 
     end while 
end for 
 
for each peer_area = 1 
while the grid is not full 
    while peer[all]current_node != root 
        current_peer = minArea(all_peers) 
        if current_peer->siblings are empty,current_peer->siblings=current_peer->ID 
        else closestEmpty(current_peer->siblings) =current_peer->ID 
        update(peer_area) 
        current_node = current_node->parent 
    end while 
    if  root->next not expanded 
          expand next 
          for each peer->current_node =  closest(next->child) 
     end if 
end while 
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simulation parameters. After a certain degree it might become a stability issue and 

simulation can fail completely. Quantification of error and stability rates is performed 

on the next chapter. 
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5. RESULTS & CONCLUSION 

5.1. Graphical Result & Performance 

 

Figure 5.1: (a) Surface rendered using the Phong shading 
model; (b) Surface rendered using the Phong shading model, 
and a cloth texture. 

Our graphical sub-system can handle very large meshes efficiently, taking 

advantage of regular-mesh and subdivision methodology as presented in the previous 

chapter. The system renders meshes using the Phong shading model (Figure 5.1) at 

interactive frame rates (20 fps) with resolution up to twelve thousand polygons on 

Intel Dual Xeon 3.4 GHz PC equipped with NVIDIA Quadro FX3400 GPU (Table 1). 

We implemented Phong shading model on the GPU (Appendix C). Vertex positions 

are uploaded to texture memory and vertex normals are computed on the fly using 

texture lookups. 

Detail level (n) # of nodes # of polygons Fps. 
4 33 X 17 1024 66.67 
5 (half res.) 33 X 33 2048 66.67 



    

36 

  

5 65 X 33 4096 66.67 
6 (half res.) 65 X 65 8192 62.25 
6 129 X 65 16384 21.27 
7 (half res.) 129 X 129 32768 12.10 
7 257 X 129 65536 5.81 

Table 5.1: Rendering Performance Evaluation. 

5.2. Evaluation of the Physical Simulation Environment 

We tested the performance our physical deformation engine with the 

configuration above, and evaluated effects of physical parameters on the stability of 

the simulation (Figure 5.2). Our solver is using Runge-Kutta Fehlberg method for 

integration and it allows taking moderately large time steps up to a certain stiffness 

level defined for the simulated material. Stiff objects require small time steps to 

maintain the stability of the system. 

k versus h at divergence points
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Figure 5.2: Stiffness parameter k (N/m) versus time step h(s), 
at the divergence points, where the simulation losts stability. 

We also tested the performance of the system by comparing computational 

load and number of simulated nodes. Our deformation engine can handle multi-
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resolution meshes up to 33153 vertices, and maintains interactivity at less than %30 

CPU utilization. 

 

Figure 5.3: Deformation on the tetrahedral domain with wavy 
surface parameters, applying sinusoidal forces with frequency 
f on the selected faces, colors represents peers and k=1.0 N/m, 
b=0.1, f=2.4 N. 

 

Figure 5.4: Large deformation on the tetrahedral domain, 
applying sinusoidal forces on the selected faces, colors 
represents peers k=6.25 N/m b=0.1 f=1.2 N. 
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Figure 5.5: Demonstration of 2-party large deformation on the 
tetrahedral domain, applying sinusoidal forces on the selected 
faces with frequency f, colors represents peers and k=6.25 
(N/m), b=0.1, f=1.2 N. 

 
Figure 5.6: : Demonstration of 2-party deformation on the 
tetrahedral domain with wavy surface parameters, applying 
sinusoidal forces with frequency f on the selected faces, colors 
represents peers and k=1.0 (N/m), b=0.1, f=2.4 N. 
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5.3. Evaluation of the Network Performance 

Our network communication model can handle synchronous simulation 

among two peers up to a surface with 8385 vertices at the local area network. This 

level has a bandwidth requirement of 10.75 M Bits per second without any 

compression. Less detailed surfaces are much more convenient for efficient 

communication requiring less bandwidth. As a future work, we also consider on the 

fly compression which might significantly reduce the bandwidth requirement but also 

can increase the computational load. Optimization of the system for the Internet is out 

of scope of this paper. It is safe to predict that the network lag on public networks will 

have an impact on performance. 

Detail level (n) # of nodes Bandwidth 
4 33 X 17 735 KBits/sec 
5 65 X 33 2.75 MBits/sec 
6 129 X 65 10.75 MBits/sec 
7 257 X 129 42.49 MBits/sec 

Table 5.2: Network Bandwidth Requirements 

 

Figure 5.7: Demonstration of 2-party deformation on the 
regular mesh applying sinusoidal forces with frequency f on 
the selected faces, colors represents peers and k=1.0 (N/m) 
b=0.05 f=1.2 N. 
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5.4. Conclusion & Future Work 

We have proposed a new technique for deformable body simulations in the 

field of collaborative virtual environments and also introduced several improvements 

over methods that we adopted. Our approach enables real-time simulation of 

deformable objects in the collaborative environments, and results for two party cases 

are successful. We found that adaptive refinement and multilevel meshing strategies is 

a open ended research subject that can be further exploited for increasing network 

efficiency, and better physical accuracy for CVE’s. 

Our method needs to be tested and optimized in the Internet over long 

physical distances for network effects. It needs to be investigated in detail and the 

system must be tested properly to ensure its robustness and efficiency. The techniques 

implemented are coming from various research areas including computational 

geometry, physical based modeling and computer networking, as well as computer 

graphics. 
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 Appendix A 

General and Sparse Matrix Classes 

class matrix { 
public: 
 
 matrix(): row(0), clmn(0), mtrx(NULL){}; 
 matrix(int rows, int cols); 
 matrix(const matrix& rhs); 
 matrix(const matrix& Rotation , const triple & Position); 
 ~matrix(); 
 matrix & setIdentity(); 
 matrix & scale(double c); 
 matrix inverse() const; 
 const matrix &operator=(const matrix &rhs); 
 const matrix &operator=(const quaternion &rhs); 
 matrix operator* (const matrix& x) const; 
 vector operator* (const vector& x) const; 
 matrix operator- (const matrix& x) const; 
 double &operator[](int rhs) const; 
 double & operator()(int row, int clmn ) const; 
 quaternion toQuaternion() const; 
 matrix transpose() const; 
 matrix conv(const matrix& x) const; 
 matrix conv(const matrix& x, const matrix& z, int cell = 0, int xOffset = 0, int 
yOffset = 0) const; 
 matrix copy(const matrix& z, int cell=0, int xOffset=0, int yOffset=0) const; 
 void saveBin(FILE * output); 
 void loadBin(FILE * input); 
 const matrix & print() const; 
 void DumpFile(); 
 double average(); 
protected: 
 double* mtrx;    
 int  row;     
 int  clmn; 
 friend class matrix_ssd; 
}; 
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class matrix_ssd 
{ 
public: 
 matrix_ssd(): row(0), clmn(0), idiag(NULL), ndiag(0), val(NULL), lval(0){}; 
 matrix_ssd(int rows, int cols): row(rows), clmn(cols), idiag(NULL), ndiag(0), 
val(NULL), lval(rows){}; 
 matrix_ssd(const matrix& rhs); 
 const matrix_ssd &operator=(const matrix_ssd &rhs); 
 double & operator()(int clmn, int row); 
 vector operator* (vector x) const; 
 void print() const; 
protected:   
 int  row;     
 int  clmn; 
 int *idiag; 
 int ndiag; 
 double *val; 
 int lval; 
}; 
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class matrix_coord 
{ 
public: 
 
 matrix_coord(int rows = 0, int cols = 0); 
 const matrix_coord &operator=(const matrix_coord &rhs); 
 double & operator()(int row, int clmn); 
 vector operator* (const vector &x); 
 void syncronise(); 
 void print(); 
 void DumpFile(); 
protected: 
 int  row;     
 int  clmn; 
 std::vector<coord_element> values; 
 int sorted_end; 
 double *val; 
 int *rows; 
 int *cols; 
 int capacity; 
 bool sync; 
}; 
 
struct coord_element 
{ 
 coord_element(int *row = NULL, int *clmn = NULL, double *value = 
NULL):row(row),clmn(clmn),value(value){}; 
 bool operator== (const coord_element &rhs) const { return *row == *rhs.row 
&& *clmn == *rhs.clmn; } ; 
 bool operator!= (const coord_element &rhs) const { return *row != *rhs.row || 
*clmn != *rhs.clmn; }; 
 bool operator< (const coord_element &rhs) const { return (*row == *rhs.row ? 
*clmn < *rhs.clmn : *row < *rhs.row);}; 
 double *value; 
 int *row; 
 int *clmn; 
}; 
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Appendix B 

Theoretical Background of the Membrane Model 

Consider an infinitesimal circular membrane element of radius r, and 

thickness of δ, subject to a uniform tension of σ [ 2m
N

ap = ]. When a distributed load 

is applied to the membrane in the normal direction, the element will deflect in the 

normal direction according to the figure B.1.a. 

 

Figure B.0.1: Uniform tension membrane model. 

The force balance in the normal direction yields: 

απδσπ sin).2.(.).( 2 rrp =      (B.1) 

αδσ sin).1.(..2
r

p =       (B.2) 

So, that the deformation of the membrane element is locally spherical and as shown in 

the figure B.1.b. Then we have: 
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R
r=αsin       (B.3) 

Hence the equation B.2 yields: 

)2.(.
r

p σδ=       (B.4) 

Since the curvature in the x-direction is equal to the curvature in the y-direction for 

the spherical deformation under the uniform load (local), 

RRR yx == ,      (B.5) 

Equation B.4 becomes: 

 

)11.(.
yx RR

p += σδ       (B.6) 

The local curvature of the membrane is given by the 2nd derivative of the deformed 

membrane surface: 

2

21
x
u

Rx ∂
∂

= ,  and 2

21
y
u

Ry ∂
∂

=      (B.7) 

Thus the equation of motion (B.6) becomes: 

).(. 2up ∇= σδ       (B.8) 

0).(. 2 =∇− up σδ       (B.9) 

For a membrane element under dynamic loads and deforming in time, we have: 

up
t
upAc

2
2

2

.. ∇−=
∂
∂ σδ      (B.10) 

Note that force balance can be simply written down as instead of B.1: 

απδσπδπ sin).2.(.).()...( 2
2

2
2 rrp

t
urp −=

∂
∂     (B.11) 
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where, ).( 2 δπr  is the volume and 2

2

t
u

∂
∂ is the acceleration of the element. 

Application of Damping 

If the membrane is permeable allowing transfer of a fluid through the membrane such 

as a piece of cloth under tension, the viscous damping due to the relative motion of 

the fluid through the membrane can be written as: 

t
ubFviscous ∂
∂

−=     (B.12) 

where the damping coefficient can be determined the Darcy’s Law governing the flow 

through a porous medium, according to which, the pressure drop accretes the 

permeable  membrane thickness is given by: 

t
u

k
p

∂
∂

=
Δ μ
δ     (B.13) 

where μ  is the viscosity of the fluid and, k is the permeability of the membrane. 

Thus, the final form of the governing equation of motion reaches: 

t
u

k
up

t
up

∂
∂

−∇−=
∂
∂ μσ

δ
2

2

2

.     (B.14) 

Note that in our discretization the equation of motion we use the finite-element 

method only for the second-order term, laplaciani on the right hand side.  

We use the augmented state equations, 

⎥
⎦

⎤
⎢
⎣

⎡
=

u
u

w
&

     (B.15) 

to solve the system. In a sense, we use a finite-difference scheme for the time-

integration based on the nodal points with a diagonal-only mass matrix: 
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2

2

t
up

∂
∂   → [ ]w

dt
dp     (B.16) 

Similarly the damping force is also implemented using the state 

representation and the diagonal damping matrix. The linear system of equations that 

we solve is given by: 

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−=⎥

⎦
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⎣
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k
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u
u

dt
dIp

&&

μσ
δ

.     (B.17) 
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⎦
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⎣
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δ 0
0

.     (B.18) 

where I is the identity matrix. 
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Appendix C 

Implementation of Phong Shading and Vertex Texture Fetch 

Vertex Shader GLSL (OpenGL Shading Language) Code 

varying vec3 View;  
varying vec4 color_in; 
varying vec2 position_in; 
uniform sampler2DRect pos; 
 
void main() { 
  
 vec4 v0 = texture2DRect(pos,vec2(gl_Vertex.x,gl_Vertex.y)); 
 
 color_in = gl_Color; 
 position_in = gl_Vertex.xy; 
 
 gl_Position = gl_ModelViewProjectionMatrix * v0; 
} 
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Fragment Shader GLSL Code 

varying vec4 color_in; 
varying vec2 position_in; 
uniform sampler2DRect pos; 
uniform sampler2D tex, nrm; 
 
void main(void) 
{  
 vec3 lightDir = normalize(vec3(gl_LightSource[0].position)); 
 vec3 halfVector = normalize(gl_LightSource[0].halfVector.xyz); 
 float noise = sin(13.0*cos(position_in.y*11.0))+ 
cos(11.0*sin(position_in.x*13.0)); 
 float specnoise = mod(noise,0.6); 
 float diffnoise = mod(noise,0.3) + 0.7;  
   
 vec4 material = texture2D(tex, position_in/32.0)*color_in;   
 vec4 ambient = (gl_FrontMaterial.ambient*material)* 
(gl_LightSource[0].ambient + gl_LightModel.ambient); 
 vec4 diffuse = (gl_FrontMaterial.diffuse*material) * 
gl_LightSource[0].diffuse* diffnoise; 
 vec4 specular = (gl_FrontMaterial.specular*material) * 
gl_LightSource[0].specular * specnoise; 
   
     
 vec2 center = floor(position_in + vec2(0.5,0.5)); 
 vec2 position = position_in - center + vec2(0.5,0.5);  
 vec3 v0 = vec3(texture2DRect(pos,vec2(center.x,center.y))); 
 vec3 v1 = vec3(texture2DRect(pos,vec2(center.x,center.y-1.0))); 
 vec3 v2 = vec3(texture2DRect(pos,vec2(center.x-1.0,center.y-1.0))); 
 vec3 v3 = vec3(texture2DRect(pos,vec2(center.x-1.0,center.y))); 
 vec3 v4 = vec3(texture2DRect(pos,vec2(center.x-1.0,center.y+1.0)));  
 vec3 v5 = vec3(texture2DRect(pos,vec2(center.x,center.y+1.0))); 
 vec3 v6 = vec3(texture2DRect(pos,vec2(center.x+1.0,center.y+1.0))); 
 vec3 v7 = vec3(texture2DRect(pos,vec2(center.x+1.0,center.y))); 
 vec3 v8 = vec3(texture2DRect(pos,vec2(center.x+1.0,center.y-1.0)));  
    
 vec3 n0, n1, n2, n3; 
 
 //face 0: v1 v2 v3 v0 
 n0.x = (v0.y - v3.y) * (v0.z + v3.z) + (v3.y - v2.y) * (v3.z + v2.z) +  
  (v2.y - v1.y) * (v2.z + v1.z) + (v1.y - v0.y) * (v1.z + v0.z); 
 n0.y = (v0.z - v3.z) * (v0.x + v3.x) + (v3.z - v2.z) * (v3.x + v2.x) +  
  (v2.z - v1.z) * (v2.x + v1.x) + (v1.z - v0.z) * (v1.x + v0.x); 
 n0.z = (v0.x - v3.x) * (v0.y + v3.y) + (v3.x - v2.x) * (v3.y + v2.y) +  
  (v2.x - v1.x) * (v2.y + v1.y) + (v1.x - v0.x) * (v1.y + v0.y);   
 //face 1: v5 v4 v3 v0 
 n1.x = (v5.y - v4.y) * (v5.z + v4.z) + (v4.y - v3.y) * (v4.z + v3.z) +  
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  (v3.y - v0.y) * (v3.z + v0.z) + (v0.y - v5.y) * (v0.z + v5.z); 
 n1.y = (v5.z - v4.z) * (v5.x + v4.x) + (v4.z - v3.z) * (v4.x + v3.x) +  
  (v3.z - v0.z) * (v3.x + v0.x) + (v0.z - v5.z) * (v0.x + v5.x); 
 n1.z = (v5.x - v4.x) * (v5.y + v4.y) + (v4.x - v3.x) * (v4.y + v3.y) +  
  (v3.x - v0.x) * (v3.y + v0.y) + (v0.x - v5.x) * (v0.y + v5.y);   
 //face 2: v7 v6 v5 v0 
 n2.x = (v7.y - v6.y) * (v7.z + v6.z) + (v6.y - v5.y) * (v6.z + v5.z) +  
  (v5.y - v0.y) * (v5.z + v0.z) + (v0.y - v7.y) * (v0.z + v7.z); 
 n2.y = (v7.z - v6.z) * (v7.x + v6.x) + (v6.z - v5.z) * (v6.x + v5.x) +  
  (v5.z - v0.z) * (v5.x + v0.x) + (v0.z - v7.z) * (v0.x + v7.x); 
 n2.z = (v7.x - v6.x) * (v7.y + v6.y) + (v6.x - v5.x) * (v6.y + v5.y) +  
  (v5.x - v0.x) * (v5.y + v0.y) + (v0.x - v7.x) * (v0.y + v7.y);   
 //face 3: v1 v8 v7 v0 
 n3.x = (v1.y - v8.y) * (v1.z + v8.z) + (v8.y - v7.y) * (v8.z + v7.z) +  
  (v7.y - v0.y) * (v7.z + v0.z) + (v0.y - v1.y) * (v0.z + v1.z); 
 n3.y = (v1.z - v8.z) * (v1.x + v8.x) + (v8.z - v7.z) * (v8.x + v7.x) +  
  (v7.z - v0.z) * (v7.x + v0.x) + (v0.z - v1.z) * (v0.x + v1.x); 
 n3.z = (v1.x - v8.x) * (v1.y + v8.y) + (v8.x - v7.x) * (v8.y + v7.y) +  
  (v7.x - v0.x) * (v7.y + v0.y) + (v0.x - v1.x) * (v0.y + v1.y);  
             
 n0 = normalize(n0); 
  n1 = normalize(n1); 
  n2 = normalize(n2); 
  n3 = normalize(n3); 
    
  n0 = n0*(1.0-position.x) +  n3*position.x;  
   n1 = n1*(1.0-position.x) +  n2*position.x; 
     
   vec3 normal = n0*(1.0-position.y) + n1*position.y; 
   normal = normalize(gl_NormalMatrix * normal);    
   normal += vec3(texture2D(nrm, position_in/32.0)*0.5- 0.25);      
 normal = normalize(normal); 
  
 vec3 halfV; 
 float NdotL,NdotHV; 
 
 /* The ambient term will always be present */ 
 vec4 color = ambient; 
 /* compute the dot product between normal and ldir */ 
 NdotL = max(dot(normal,lightDir),0.0);   
 if (NdotL > 0.0) { 
  color += diffuse * NdotL; 
  halfV = normalize(halfVector); 
  NdotHV = max(dot(normal,halfV),0.0); 
  color += specular *  
    pow(NdotHV, gl_FrontMaterial.shininess); 
 } 
 gl_FragColor = color; 
} 
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