

REAL-TIME DEFORMABLE OBJECTS

IN COLLABORATIVE VIRTUAL ENVIRONMENTS

by

SELÇUK SÜMENGEN

Submitted to the Graduate School of Engineering and Natural Sciences
 in partial fulfillment of

the requirements for the degree of
Master of Science

Sabancı University

August 2006

II

REAL-TIME DEFORMABLE OBJECTS

IN COLLABORATIVE VIRTUAL ENVIRONMENTS

APPROVED BY:

Asst. Prof. Selim Balcısoy ………………………….

(Thesis Advisor)

Asst. Prof. Serhat Yeşilyurt ………………………….

(Thesis Co-Advisor)

Asst. Prof. Erkay Savaş ………………………….

Asst. Prof. Albert Levi ………………………….

Asst. Prof. Ayhan Bozkurt ………………………….

DATE OF APPROVAL: ………………………….

III

© Selçuk Sümengen 2006

All Rights Reserved

IV

REAL-TIME DEFORMABLE OBJECTS

IN COLLABORATIVE VIRTUAL ENVIRONMENTS

Selçuk Sümengen

EECS, M.Sc. Thesis, 2006

Thesis Advisor: Asst. Prof. Selim Balcısoy
Thesis Co-Advisor: Asst. Prof. Serhat Yeşilyurt

Keywords: Distributed and Network Virtual Environments, Collaborative Virtual
Environments, Physically Based Modeling, Deformable Objects,

Real-time Simulation, Computational Geometry and Object Modeling.

Abstract

This thesis presents a method for deformations on closed surfaces in 3D over a
network, which is suitable for simulation of tissue and organs for training purposes, as
well as cloth simulation in collaborative virtual environments (CVE). CVE's are
extensively used for training, design and gaming for several years. To demonstrate a
deformable object on a CVE, we employ a real-time physical simulation of a uniform-
tension-membrane, based on linear finite-element-discretization of the surface
yielding a sparse linear system of equations, which is solved using the Runge-Kutta
Fehlberg method. The proposed method introduces an architecture that distributes the
computational load of physical simulation between clients. As our approach requires a
uniform-mesh representation of the simulated structure, we also designed and
implemented an algorithm that converts irregularly triangulated genus zero surfaces
into a uniform triangular mesh with regular connectivity. This algorithm uses spring-
embedders for stretch optimization of the spherical parameterization step. The
strength of our approach comes from the subdivision methodology that enables to use
multi-resolution surfaces for graphical representation, physical simulation, and
network transmission, without compromising simulation accuracy and visual quality.

V

İŞBİRLİKÇİ SANAL ORTAMLARDA

GERÇEK ZAMANLI DEFORME OLABİLEN NESNELER

Selçuk Sümengen

EECS, Yüksek Lisans Tezi, 2006

Tez Danışmanı: Yar. Doç. Selim Balcısoy
Yardımcı Tez Danışmanı: Yar. Doç. Serhat Yeşilyurt

Anahtar Kelimeler: Dağıtık ve Ağ Sanal Ortamları, İşbirliği Yapılabilen Sanal
Ortamlar, Fiziksel Tabanlı Modelleme, Deforme Olabilen Nesneler,

Gerçek Zamanlı Benzetim, Hesaplanabilir Geometri ve Nesne Modelleme.

Özet

Bu tez, network üzerinden çalışan, eğitim amaçlı doku ve organ simülasyonları veya
işbirliği yapılabilen sanal ortamlarda kumaş simulasyonları için kullanılabilecek, 3
boyutlu kapalı yüzeylerin deformasyonu için uygun bir metod sunuyor. İşbirliği
yapılabilen sanal ortamlar (İSO) uzun yıllardır çok yaygın olarak eğitim, dizayn ve
oyun amaçlı kullanılmaktadır. İSO da, deforme olabilen bir nesneyi canlandırabilmek
için, doğrusal sonlu eleman bölünmesine uğramış bir yüzeye dayanan eşit gerginlikte
bir zarın gerçek zamanlı fiziksel simulasyonu, yüzeyden çıkarılan seyrek denklem
sistemi Runge-Kutta Fehlberg methodu ile çözülerek yapılmıştır. Sunulan metod
fiziksel simulasyonun hesap yükünü kullanıcılar arasında bölen bir mimari ortaya
koyuyor. Yaklaşımımız benzetimi yapılan muntazam bir ağ yapısı gerektirdiği için
aynı zamanda düzensiz üçgenlenmiş sıfırıncı takımdan yüzeyleri, düzenli bağlantıları
olan muntazam işlenmiş ağ yapılarına çeviren bir algoritma dizaynı yapıldı ve
tamamlandı. Algoritma küresel parametrizasyon adımında esnetme optimizasyonu
için yay düzenekleri kullanmaktadır. Yaklaşımımız gücünü grafik gösterim, fiziksel
simulasyon ve network iletşimi sırasında kullanılan, simulasyon doğruluğu ve grafik
gösterminden ödün vermeyen, farklı çözünürlüklü alt bölümlere ayırma
metodolojisinden almaktadır.

VI

Acknowledgements

I would like to express my deepest gratitude and appreciation to my advisor, Selim

Balcısoy for his continuous support and excellent guidance. I am also thankful for his

trust in my abilities and for his efforts in motivating me to pursue graduate study.

I would like to thank my co-advisor Serhat Yeşilyurt, for helping me with my thesis

and assisted with the challenging research that lies behind it.

I have been honored to have Albert Levi, Erkay Savaş, and Ayhan Bozkurt as

members of my thesis committee. I am grateful for their valuable review and

comments on the thesis.

The members of Computer Graphics Laboratory have contributed immensely to my

personal and professional life. I add my sincere thanks to Can Özmen, Başak Alper,

Ceren Kayalar, and Ekrem Serin. I am indebted to all laboratory members for their

contribution, especially to Mustafa Tolga Eren, who helped me with the

implementation and experiments.

Thanks to all my friends and colleagues for their support. I am very grateful for the

time spent with the friends and memories.

Finally, I would like to thank my parents for their love and support.

This work was financially supported by TUBITAK (The Scientific and Technological

Research Council of Turkey) through a research fellowship.

VII

TABLE OF CONTENTS

LIST OF FIGURES ...IX

LIST OF TABLES...XI

LIST OF ABBREVIATIONS.. XII

LIST OF SYMBOLS ..XIII

1. INTRODUCTION ...1

1.1. Motivation..1

1.2. Outline of the thesis ...1

2. RELATED WORK ..3

2.1. Collaborative and Distributed Network Virtual Environments3

2.1.1. Introduction..3

2.1.2. Historical Timeline of Collaborative and Distributive Virtual

Environments ...5

2.2. Deformable Objects ...6

3. NUMERICAL METHODS ...8

3.1. Introduction..8

3.2. Initial Value Problems ...8

3.2.1. Euler Integration ..8

3.2.2. Explicit Integration (Forward Euler) ...8

3.2.3. Mid-point Method..9

3.2.4. Runge-Kutta-Fehlberg Method..9

3.3. Matrix Representation Schemes ..10

3.3.1. Diagonal Storage Scheme ..10

3.3.2. Coordinate Format Storage Scheme ..11

4. NETWORK DEFORMABLE OBJECTS..12

4.1. Introduction..12

4.2. Geometric Model ...12

4.2.1. Mesh Representation..13

4.2.2. Mesh Generation..14

4.2.2.1. Spherical Parameterization ..15

4.2.2.2. Model Re-meshing...18

4.2.3. Subdivision Scheme using Convolution Kernels.....................................20

VIII

4.3. Physical Model...24

4.3.1. Linear Finite-Element Model...25

4.3.2. Stiffness Matrix Generation...25

4.3.3. Handling Boundary Conditions and Domain Decomposition26

4.4. Network Model ..27

4.4.1. Network Architecture...28

4.5. Partitioning and Synchronization of Physical and Geometric Models

through the Network ..31

5. RESULTS & CONCLUSION ...35

5.1. Graphical Result & Performance ...35

5.2. Evaluation of the Physical Simulation Environment36

5.3. Evaluation of the Network Performance..39

5.4. Conclusion & Future Work..40

REFERENCES ..41

Appendix A..44

General and Sparse Matrix Classes..44

Appendix B ..47

Theoretical Background of the Membrane Model...47

Application of Damping ..49

Appendix C ..51

Implementation of Phong Shading and Vertex Texture Fetch.................................51

Vertex Shader GLSL (OpenGL Shading Language) Code..................................51

Fragment Shader GLSL Code..52

IX

LIST OF FIGURES

Figure 2.1: Dimensions of the Virtual Environment Technology. [5]...........................5

Figure 4.1: Examples of genus zero, genus one, and genus three surfaces.12

Figure 4.2: Five platonic solids and their flattened view...13

Figure 4.3: 2D Grid representation of tetrahedron, (a) n = 1, (b) n = 2.14

Figure 4.4: Gnomonic Projection of Tetrahedron..15

Figure 4.5: (a) Gnomonic Projection of Tetrahedron. (b) Stretched Gnomonic

Projection of Tetrahedron. ...17

Figure 4.6: (a) Irregular Input Mesh. (b) Stretched Gnomonic Projection of Input

Mesh...18

Figure 4.7: Intersecting Spherical Projections of Tetrahedral Domain and Input Mesh.

..19

Figure 4.8: Spherical projection of input mesh is, (a) rendered as 3D wireframe, (b)

3D colored surface, (c) 2D colored surface, and (d) 2D colored surface, where

the original positions of vertices are used as color components.19

Figure 4.9: Final comparison of (a) the input mesh with 1444 vertices, and (b) the

resulting regular mesh with 129*65 vertices. ..20

Figure 4.10: (a) Mask for interior odd vertices with regular neighbors, (b) Mask for

crease and boundary vertices, (c) mask for odd vertices adjacent to extraordinary

vertices. The coefficients si are 1/k (1/4 + cos(2iπ/k) + 1/2 cos(4iπ/k)) for k > 5.

For k = 3, s0 = 1/12, s1,2 = -1/12; for k = 4, s0 = 3/8, s1 = 1/8, s1,3 = 0 [33]..........21

Figure 4.11: Figure 4.10: Modified 2D Grid Structure..22

Figure 4.12: (a) Modified 2D Grid Structure. (b) Application of mask for interior odd

vertices with regular neighbors. (c) Equivalent convolution kernel. (d) Three

convolution kernels generated for three edges...23

Figure 4.13: Comparison of resulting mesh refined by subdivision and rendered at

different level of details, (a) 129x65=8335 vertices (b) 257x129=33153

vertices (c) 512x257=131841 vertices. ..24

X

Figure 4.14: Network Protocol: (a) Individual peers having separate VE’s. (b)

Connected peers, fist peer sending object description and state info, second peer

specifying point of interest. (c) Synchronized peers after domain division. (d)

Third peer is introduced. (e) Third peer is receiving object description and state

info from first peer, also introduced to second peer by first peer. (f) Third peer is

specifying point of interest, first pair performs domain division. (e) Synchronized

peers after domain division..30

Figure 4.15: (a) Minimal tree structure for tetrahedral domain. (b) Sample tree

structure having depth of two. ...31

Figure 4.16: Demonstration of the partitioning algorithm...32

Figure 5.1: (a) Surface rendered using the Phong shading model; (b) Surface rendered

using the Phong shading model, and a cloth texture..35

Figure 5.2: Stiffness parameter k (N/m) versus time step h(s), at the divergence points,

where the simulation losts stability..36

Figure 5.3: Deformation on the tetrahedral domain with wavy surface parameters,

applying sinusoidal forces with frequency f on the selected faces, colors

represents peers and k=1.0 N/m, b=0.1, f=2.4 N. ..37

Figure 5.4: Large deformation on the tetrahedral domain, applying sinusoidal forces

on the selected faces, colors represents peers k=6.25 N/m b=0.1 f=1.2 N.37

Figure 5.5: Demonstration of 2-party large deformation on the tetrahedral domain,

applying sinusoidal forces on the selected faces with frequency f, colors

represents peers and k=6.25 (N/m), b=0.1, f=1.2 N. ...38

Figure 5.6: : Demonstration of 2-party deformation on the tetrahedral domain with

wavy surface parameters, applying sinusoidal forces with frequency f on the

selected faces, colors represents peers and k=1.0 (N/m), b=0.1, f=2.4 N.38

Figure 5.7: Demonstration of 2-party deformation on the regular mesh applying

sinusoidal forces with frequency f on the selected faces, colors represents peers

and k=1.0 (N/m) b=0.05 f=1.2 N. ..39

Figure B.0.1: Uniform tension membrane model. ...47

XI

LIST OF TABLES

Table 4.1: The pseudo code of the partitioning algorithm...33

Table 5.1: Rendering Performance Evaluation..36

Table 5.2: Network Bandwidth Requirements...39

XII

 LIST OF ABBREVIATIONS

CVE : Collaborative Virtual Environment

P2P : Peer-to-peer

UK : United Kingdom

DVE : Distributed Virtual Environment

DIVE : The Distributed Interactive Virtual Environment

3D : Three Dimensional

NPSNET : Naval Post Graduate School Network

MASSIVE : Model, Architecture and System for Spatial Interaction in

Virtual Environments

KHz : Kilohertz

DOF : Degree of Freedom

BEM : Boundary Element Method

FEM : Finite Element Method

2D : Two Dimensional

LAPACK : Linear Algebra Package

BLAS : Basic Linear Algebra Subprograms

UDP : User Datagram Protocol

FPS : Frames per Second

CPU : Central Processing Unit

GPU : Graphics Processing Unit

XIII

LIST OF SYMBOLS

O () : Big O Notation

χ : Euler Characteristics

φ : Mapping Function

→ : Transformation

Θ : Longitude

Φ : Colatitude

r : Radius

C1 : Continuous First Derivative

1

1. INTRODUCTION

1.1. Motivation

Collaborative Virtual Environments (CVE) are being extensively used for

training, design and gaming for several years. They enable participants to get

immersed into a Virtual Environment where they can perform a task or experience a

story together. In most use cases such as gaming and education, current CVE’s are

sufficient to address user expectations related to visual realism, animations and

networking. However, CVE’s also involve substantial amount of interaction between

the users and the objects in the synthetic worlds, which should be visually appealing

and physically realistic as well. Current CVE’s are mostly limited to avatar-avatar

interaction or the object interactions are animated using offline techniques and they

are commonly hard-coded into the application. Real-time physical simulation of

deformable bodies in CVE’s, enables accurate replication of the real world objects

like cloth.

On the other hand, medical and some engineering applications definitely

require real-time accurate simulations. When users want to train on a surgical

operation, a CVE should support accurate simulation and visualization of an organ’s

deformation for each participant in real-time. Also, haptic devices are used in such

simulations to enable force feedback and train the operator with the aid of visual

display as well the sense of touch. Haptic rendering necessitate real-time and accurate

physical simulation, since it requires stable values of simulated environment to

generate force feedback.

1.2. Outline of the thesis

This thesis proposes a deformable body simulation and visualization

framework for collaborative virtual environments and distributed haptic platforms.

2

First, we summarize the parallel research fields with our approach, and give

brief information about the related works in Chapter 2. Key concepts are also

introduced in Chapter 2, and the models associated with the methods that we applied,

are gathered together.

In Chapter 3, we provide an agenda for the numerical methods that we used

to perform physical simulation as a reference for the implementation details.

Our approach is explored in detail and the methods that we adopted are

examined in Chapter 4. We introduced a generic mesh representation for our

deformable models and proposed a method for the conversion of irregular genus zero

models into a regular mesh with a tetrahedral domain. We present a subdivision

scheme for our mesh representation that allows fast refinement using convolution

kernels, and enables high resolution surfaces for an enhanced visual display while

maintaining the network and simulation models at optimal resolutions. Physical

simulation characteristics and theoretical aspects of deformations are presented in the

same chapter. Proposed linear finite element model is explained and theoretical

background is reviewed. In the Chapter 4, we gave details of network architecture,

and shared environment model that allows peer-to-peer (P2P) collaboration with

distribution of simulation load among peers. The synchronization of graphics,

network and physical simulation models is an important concept, and is clarified in

the last section of this chapter.

In Chapter 5, we present the results of our approach with the rendered

images, and the numerical outputs of the physical simulation. We also tested the

stability of the physical simulation and effects of the parameters. Network

requirements and the performance are explored as well.

3

2. RELATED WORK

2.1. Collaborative and Distributed Network Virtual Environments

2.1.1. Introduction

Collaborative Virtual Environments (CVE) became an active research area, especially

after the rapid development and raising popularity of the Virtual Reality technology

that enables users to interact with each other in a computer simulated environment.

First international conference on CVE’s, CVE’96 was held in Nottingham, UK, and

followed by CVE’98 at Manchester, UK. Definition of the collaborative virtual

environments as an introduction to the CVE conferences was made by Churchill and

Snowdon as follows:

“A Collaborative Virtual Environment (CVE) is an application that

uses a Virtual Environment to support human-human and human-

system communication. Within such virtual environments, multiple

users can convene, communicate and collaborate.” [1]

Given this broad definition of CVEs, the field is open for researchers from disciplines

such as psychology, sociology, work practice studies, architecture, artificial

intelligence and art [2] as well as computer scientists. According to this approach,

shared spaces where people can communicate and collaborate, including text based

environments can also be classified as CVEs.

Four key features of the CVEs are stated as shared context, awareness of others,

negotiation and communication, and flexible viewpoints [1]. Shared context can be

interpreted as the shared knowledge of current and past activities, shared artifacts and

environments that facilitates a common understanding between collaborators.

4

Awareness is an understanding of the activities of others, which provides a context for

your own activity [3]. Awareness facilitates collaborative working of the group by

preserving the relevance of individual contributions. Collaborative work requires

negotiation on roles and activities as well as conversations between collaborators.

Flexible and multiple viewpoints provide different representations for individuals

having different tasks.

Although the debate on conceptual definition of CVEs among scientists and

researchers continues, such a collaborative virtual environment should be

synchronized and distributed to all participating sites in order to give the users the

illusion of being located in the same place at the same time [4]. Distributed Virtual

Environments, also referred in the literature as Network Virtual Environments,

provide a framework for CVEs. The terms, CVEs and DVEs are often mistakenly

taken identical, but they are complementary, where the CVEs give emphasize to the

interaction among individuals and joint activities in a shared space, DVEs mostly

deals with the maintenance of a virtual worlds synchronized and distributed over

participants.

One of the reasons that motivate the research on DVEs, is the need for a virtual

environment that looks accurate, and it is accurate in details, thus individual

computers are incapable of representation of such an environment, and it requires

multiple computer systems [5]. Approaching to the reality, the virtual environment

should approximate the complexity of the real world. Human-computer interactions

using the representations of real world objects should be consistent with real world

physical constraints.

Stytz [5], states the display of a virtual environment must accurately express the real

world objects that it portrays, and introduces notion of fidelity in the DVE. Sensory

fidelity requires the accurate replication of real world, using visual, auditory and

tactile information. Accurate depiction of the gravity, motion, energy consumption

and conservation is the physical fidelity. Objects having the correct relative scales and

velocities among each other within each a computer and the distributed environments

is the modeling fidelity. Assuring the limits of the latency and lag between one action

and a notification of it by other participants is the time fidelity. All of these

5

classifications of fidelity and the later ones that are not mentioned here address the

desire of making virtual environments “real” (Figure 2.1).

Figure 2.1: Dimensions of the Virtual Environment
Technology. [5]

2.1.2. Historical Timeline of Collaborative and Distributive Virtual Environments

DIVE [6] is one of the first Distributed Virtual Environment that allows

participants to collaborate in a 3D virtual world which facilitates audio, video and text

transmission for communication. DIVE also allows interaction with virtual objects.

On the other hand, NPSNET [7] is designed for military training and simulation for

networked environments and each participant machine acts as a military vehicle or a

dismounted person and is able to interact in the virtual world. NPSNET also

introduced virtual humans which area actually human like avatars. MASSIVE is

especially used for public participation and performance [8].

There are only a few approaches that in particularly deal with the

significance of physical simulation in collaborative virtual environments. A recent

work by Jorissen [9], gives a detailed survey on state of the art of dynamic

interactions and physical simulations in CVE’s. Jorissen et al. introduces a

collaborative virtual environment, where the object-object interaction is allowed in

6

addition to avatar-object and avatar-avatar interactions using a non-commercial

physics engine.

There are few attempts to introduce deformable objects into CVE’s: Dequidt

et al. [10] propose a system based on Ghost objects to handle network latency. Ghost

objects are associated to objects manipulated over the network and introduced into the

client side to perform physical simulations asynchronously at each user.

Collaborative Haptics Environments are also introduced to handle surgical

training and simulations with the use of special architectures [11]. Haptic rendering

must be performed at simulation rates higher than 1 KHz and most approaches require

particular hardware or a computer architecture running real-time operating systems

[12]. Distributed and collaborative haptic visualization of a 1 DOF crank model is

also achieved using client-server architecture building a haptic communication library

allowing real-time communication needed for haptic rendering only on Intranets [13].

2.2. Deformable Objects

Simulation of deformable objects is a significant research area for over two

decades since it enables the cloth animations, tissue modeling, virtual surgery, and

many more applications in the field of computer graphics. Early approaches on the

visualization of deformable models used non-physical and purely geometric

techniques, most of which is classified as Free-Form-Deformations [14]. Physics

based approaches appeared afterwards and gained a popular attention by enabling

cloth animations [15]. This approach, which is a linear model based on energy

minimization and continuing approaches using explicit integration schemes, are

suffering from stability issues for large body deformations. Baraff and Witkin [16],

introduced an implicit integration scheme for stable simulations using large time

steps. On the other hand, real-time simulation of deformable models is an other

challenge, and linear mass-spring models introduced at first [17]. As an alternative,

Boundary Element Method (BEM) is introduced, which is inspired by Finite Element

Method (FEM), however, considers only the surface of the model [18]. Non-linear

7

FEM’s models are not suitable for real-time simulations since they are

computationally intensive, so deformable objects simulfations for cloth simulations in

virtual environment continued to use improved mass-spring models [19, 20]. Also,

pre-computed models for real-time dynamic deformations are considered [21]. Since

medical applications require real-time and accurate simulations some approaches used

FEM to parameterize the mass-spring model to improve accuracy [22].

8

3. NUMERICAL METHODS

3.1. Introduction

In the Numerical Methods Chapter, we introduce the key concepts defining

the mathematical procedure and computations handled for a typical physical

simulation. Further reference can be found in Siggraph Course notes on Physically

Based Modeling [23] by Baraff and Witkin, Numerical Recipes text book [24] as well

as LAPACK and BLAS software libraries.

3.2. Initial Value Problems

When the behavior of a system is described with an ordinary differential

equation of the form:

),(txfx =& , (3.1)

where, f is a known function, x is the state of the system, x& is the time derivative. x

has a starting value given 00)(xtx = , and it is desired to find ix& at some final point

fx or at some discrete list of points.

3.2.1. Euler Integration

3.2.2. Explicit Integration (Forward Euler)

Forward Euler Integration is a basic numerical integration scheme,

approximating the true integral by fallowing the trajectory as a polygonal path.

9

),()()(txtftxttx Δ+=Δ+ (3.2)

Euler’s integration is not accurate and error introduced by Euler integration can be

found by the Taylor series expansion of)(ttx Δ+ .

)()(
2
1)()()(3

0
2

000 tOtxttxttxttx Δ+Δ+Δ+=Δ+ &&& (3.3)

and the difference between the Euler integration is the error introduced,

)()(
2
1 3

0
2 tOtxt Δ+Δ && (3.4)

In the expression 2tΔ is the domination term and the error introduced by the

integration is of order 2tΔ .

)(2tOrrorE Δ= (3.5)

3.2.3. Mid-point Method

Error bound in the equitation 2.4 can be easily reduced to 3tΔ by slight

modification of the Forward Euler Integration,

)),
2

,
2

(()()(ttttxfftxttx Δ+Δ+
+=Δ+ (3.6)

This method is called mid-point method since uses a midpoint evaluation

of f . Mid-Point Method is a second order solution method and has an error bound

of 2tΔ .

3.2.4. Runge-Kutta-Fehlberg Method

Runga-Kutta methods propagate a solution over an interval by evaluating

f for several steps. Fehlberg has developed a fifth order Runge-Kutta method that has

an error bound of 5tΔ .

10

),(1 txfq = (3.7.a)

)
4

,
4

(1
2

tqxttfq Δ
+

Δ
+= (3.7.b)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +Δ+

Δ
+=

32
9

32
3,

8
3 21

3
qqtxttfq (3.7.c)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−Δ+

Δ
+=

2197
7296

2197
7200

2197
1932,

13
12 321

4
qqqtxttfq (3.7.d)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++−Δ+Δ+=

4104
845

513
36808

216
439, 43

2
1

5
qqqqtxttfq (3.7.e)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+−+
−

Δ+
Δ

+=
40

11
4104

1859
2565

35442
27
8,

2
543

2
1

6
qqqqqtxttfq (3.7.f)

⎟
⎠
⎞

⎜
⎝
⎛ +−++Δ+=Δ+

55
2

50
9

56430
28561

12825
6656

135
16)()(65431 qqqqqttxttx (3.7.g)

3.3. Matrix Representation Schemes

Real-time operation of our approach is strictly depended on matrix-vector

multiplications. Finite element discretization step results in very large sparse matrices

and these matrices are updated regularly. Accessing matrix elements in a shorter time

is an important constraint while keeping the matrix in a compact form.

3.3.1. Diagonal Storage Scheme

Finite element of finite state discretization generally produces diagonal

matrices that are mostly sparse. Efficient storage of these matrices is also important

for an efficient multiplication. This storage scheme is simple and stores the diagonals

having non-zero elements. Non-empty diagonals are stored consecutively on an array,

and an index array is maintained to identify the diagonal by their distance from the

11

main diagonal.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

3000
0620
9020
0801

M ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

*30
*62
920
81*

Values , Distance []201−= (3.8)

For an n × n matrix having d non zero diagonals, when multiplied by a

vector, this storage scheme performs O(dn) multiplications. Accessing a matrix

element takes O(1) time, however insertion of a non-zero element is O(n) and this

scheme also keeps redundant zero elements on the diagonals having any non-zero

value.

3.3.2. Coordinate Format Storage Scheme

This scheme is designed for sparse matrices having no regular structure. It

keeps the non-zero elements consecutively on a data array and maintains two index

arrays to identify row, and column number of the elements on the data array.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

3000
0620
9020
0801

M ,

[]

[]

[]4433221

4332211

3629281

=

=

−=

columns

rows

values

 (3.9)

For an n x n matrix having k non zero elements, when multiplied by a vector,

this storage scheme performs O(kn) multiplications. Accessing a matrix element takes

O(log(n)) time, and insertion is O(n) and completely forming the matrix is O(nlog(n))

time.

However, we make a modification to existing scheme, introducing additional

pointers exploiting the geometric affinity of stored elements and reducing access time

to O(n), also on k consecutive insertions, if k > log(n), we form the matrix again to

reduce insertion time (Appendix A).

12

4. NETWORK DEFORMABLE OBJECTS

4.1. Introduction

Our method applies a collaborative deformation on a linear membrane model

over network, which is appropriate for simulation of tissue and organs for training

purposes, as well as cloth simulation in the virtual environments. 3D models of these

objects with reasonable parameters are necessary for a realistic visualization and

simulation. Our approach works with genus zero surfaces, which are suitable for

representing such objects (Figure 4.1).

Figure 4.1: Examples of genus zero, genus one, and genus
three surfaces.

4.2. Geometric Model

Since the proposed approach requires a uniform representation of the

simulated structure, restriction on the genus of the model allows us to construct a

regular 2D grid that corresponds to the surface of the model.

The genus of a connected, orientable surface is an integer representing the

maximum number of cuttings along closed simple curves without rendering the

13

resultant manifold disconnected [25]. In other words, genus is the number of holes or

handles on a closed surface. Sphere has genus zero, and torus has genus one.

Also, the following relationship holds for the genus of a surface,

χ = 2 − 2g, (4.1)

where the Euler characteristic χ for a polyhedron defined as,

χ = V − E + F, (4.2)

and V is the number of vertices, E is the number of edges and F is the number of the

faces [26].

The surface of any convex polyhedron is homeomorphic to a sphere and has

Euler characteristic of 2. Homeomorphic spaces are identical from the viewpoint of

the topology [27], therefore genus zero surfaces preserve their topological properties

under spherical parameterization and can be mapped onto a convex regular

polyhedron.

4.2.1. Mesh Representation

Figure 4.2: Five platonic solids and their flattened view.

There are five convex regular polyhedrons that are also called platonic solids

(Figure 4.2). Tetrahedron, cube and octahedron can be unfolded onto a plane easily

and they are good candidates to form a domain for regular meshes while

dodecahedron and icosahedron have much more complex flattened structure having

14

twelve and twenty faces respectively.

We have chosen tetrahedron as the domain for our mesh representation, since

it has four equilateral triangular faces that can be represented as a 2D grid having (2n

+ 1) x (2n+1 + 1) nodes where n >= 0 (Figure 4.3).

Figure 4.3: 2D Grid representation of tetrahedron, (a) n = 1,
(b) n = 2.

4.2.2. Mesh Generation

We propose an algorithm that converts irregularly triangulated genus zero

surfaces into a uniform mesh with regular connectivity. Previous approach for

constructing regular meshes with fixed and simple topology by Hoppe [28], generates

a spherical parameterization of the surface and the domain. Surface, projected on the

15

sphere, mapped on to the domain, and unfolded to generate the geometry image. We

apply a similar procedure, but we introduce different techniques for spherical

parameterization and model re-meshing. It allows adjusting the tradeoff between face

area uniformity of the generated mesh, and preserving the accuracy with the original

mesh.

4.2.2.1. Spherical Parameterization

In our approach, success of the regular mesh generation strictly depends on

the spherical parameterization step, and the parameterization of a detailed input mesh

is a computationally intensive process that often requires reasonably large amount of

time. Our method combines some of well known techniques and introduces several

improvements, and taking the advantage of recently available graphics hardware.

Given a triangle mesh M, the problem of spherical parameterization is to

form a continuous invertible map φ : S→M from the unit sphere to the mesh [28].

Spherical parameterization of regular tetrahedral domain D, and irregular input mesh

M are necessary to generate Sphere to Mesh (S→M) and Sphere to Domain (S→D)

mappings that will allow us to perform Mesh to Sphere and Sphere to Domain

(M→S→D) transformation.

Figure 4.4: Gnomonic Projection of Tetrahedron.

Any convex polyhedron can easily be projected onto a unit sphere switching

to spherical coordinate system (Θ, Φ, r) and setting a unit radius for all vertices

16

(Gnomonic Projection), however translation between each mesh triangle and spherical

triangle might introduce a certain amount of distortion (Figure 4.4). Spherical triangle

mapping alters the uniformity of domain tessellation and there are certain mapping

methods other than “Gnomonic Projection”. Some of these methods [28] focus on

different uniformity measures such as area or edge length uniformity and some of

them apply several stretch optimization techniques. Since the aim of spherical

parameterization is to perform mesh conversation from an irregularly triangulated

input mesh, it has been shown that the under sampling is directly related to the stretch

of a parameterization [29].

 Previous approaches define a stretch norm to measure the stretch efficiency

and concludes that minimizing the stretch norm is a non-linear optimization problem

[28, 29]. We attack this problem by a modification of well known technique used for

graph drawing. Graph drawing using force directed placement methods, which are

also called spring-embedders, distributes vertices evenly in the frame and minimize

edge crossings while favoring uniformity of the edge lengths [30]. Since we

implemented a deformable physics engine that can handle mass spring systems

efficiently, we introduce a variant of spring-embedders for stretch optimization.

A spring-embedder model is generated from the gnomonic projection of the

domain. Every vertex has a constant mass, and springs are introduced in between

neighboring vertices. An external force field (Equitation 4.3) is applied from the

center of the domain that limits displacements of vertices on the unit sphere.

() .0,1 nNodesiixxf iiExternali
≤≤∀×−=

∧

 (4.3)

Springs between the vertices tend to preserve initial edge lengths and resists

movements that change the topology; however we need to establish a tension on these

springs to perform stretch optimization. We scale down the positions of the vertices

that are projected onto unit sphere (Equitation 4.4), and external force which is

applied continuously expands the vertices onto the unit sphere again while producing

a tension on the springs.

17

10,0,, <<≤≤∀×= CnNodesiixCx iinew
 (4.4)

Tensions on the springs do not affect the vertex placements on the unit

sphere unless the stiffness parameters are adjusted. Given that we are seeking a

uniform spherical parameterization, stiffness of each spring is re-adjusted proportional

to the areas of neighboring faces (Equitation 4.6). Stiffness parameters are updated

continuously to achieve area uniform tessellation over the unit sphere (Figure 4.6).

nFacesareaarea
nFaces

i
facemean i∑

=

=
0

/ , () nFacesareaareaarea
nFaces

i
averagefacedeviation i

/
0

2∑
=

−= ,

() .0,,/ nNodesiiareaareaareaarea deviationmeanfaceface ii
≤≤∀−= (4.5)

()
.

0,
,12/

10
10 iedgetoadjacentarefaceandface

nEdgesii
areaareastiffness

ii
facefacei ii

≤≤∀
++=

(4.6)

Figure 4.5: (a) Gnomonic Projection of Tetrahedron. (b)
Stretched Gnomonic Projection of Tetrahedron.

Our proposed force model is a feasible stretch optimization technique for

domain to sphere mapping; however, it is insufficient for mesh to sphere mappings

where the projection of non-convex polyhedron into a unit sphere results in edge

18

crossings and does not preserve initial surface topology. We use a vertex

displacement procedure that is similar to the relaxation method (Equation 4.7) of

previous spherical parameterization approaches [31] for each time step to overcome

this problem (Figure 4.6).

.
,0,

,/
0 ithij

nNeighbors

j
iiji xofneighbourjisx

nNodesii
nNeighborsxx

i

new

≤≤∀
= ∑

=

 (4.7)

Figure 4.6: (a) Irregular Input Mesh. (b) Stretched Gnomonic
Projection of Input Mesh.

4.2.2.2. Model Re-meshing

After spherical parameterization of convex polyhedron domain (D→S) and

the input mesh (M→S), it is straightforward to generate inverse function of the

domain to sphere (S→D) mapping. Combining the spherical mappings mesh to sphere

(M→S) and sphere to domain (S→D) to derive mesh to domain mapping (M→D),

requires intersection of the sets on the sphere. However, transformed vertex

coordinates of the mesh and domain might not intersect on the sphere, and vertices of

the domain might fall inside of a mesh facet. For each vertex of the domain,

intersecting face of the parameterized mesh should be found out and 3D coordinates

of domain vertex should be computed by interpolating the vertices of the intersecting

19

face (Figure 4.7).

Figure 4.7: Intersecting Spherical Projections of Tetrahedral
Domain and Input Mesh.

Since determining the intersecting faces of the parameterized mesh for each

vertex on the domain and computing the interpolated coordinates are costly

procedure, we introduce a fast method taking the advantage of recent advances in

graphics hardware [32].

Figure 4.8: Spherical projection of input mesh is, (a) rendered
as 3D wireframe, (b) 3D colored surface, (c) 2D colored
surface, and (d) 2D colored surface, where the original
positions of vertices are used as color components.

20

Using OpenGL and programmable shaders, we render the faces of the

parameterized mesh onto the frame buffer using the two dimensional spherical

coordinates (Θ and Φ) of the transformed vertices (Figure 4.8). Initial Cartesian

coordinates (x, y, and z) of the parameterized mesh vertices are attached to color

attributes (r, g, and b) at the vertex shader, and inside of each face is filled with the

interpolated Cartesian coordinates at the fragment level. Rendered image is then

fetched from the frame buffer as a 2D texture and used like a lookup table to generate

3D coordinates of the domain vertices (Figure 4.9).

Figure 4.9: Final comparison of (a) the input mesh with 1444
vertices, and (b) the resulting regular mesh with 129*65
vertices.

4.2.3. Subdivision Scheme using Convolution Kernels

Subdivision methodology is appropriate for our approach since it allows

multi-resolution representation of a surface and fast switching between detail levels. It

also favors numerical stability [33], so it is highly suitable for physical simulation of

deformations using finite element and finite difference methods.

We used a variant of butterfly subdivision scheme [34] that generates a C1

smooth triangular mesh. Modified Butterfly Scheme is an interpolating subdivision

scheme, where the original vertices (control points) are also the vertices of the refined

surface and surface is interpolating to a limit surface. This behavior makes it possible

to use surfaces with different resolutions for graphical representation, physical

21

simulation, and network transmission, without compromising the integrity of

simulation accuracy and the rendered image.

There are two different methods of refinement for subdivision schemes.

Subdivision schemes that perform face split for each refinement level are defined as

primal schemes, and the other schemes that perform vertex split are called dual

schemes. Primal subdivision schemes introduce new vertices at each refinement

which are called odd vertices, and vertices inherited from the previous level are called

even vertices. Moreover, this naming convention comes from the node numbering of

the one dimensional case. Also vertices are identified as regular and extraordinary

vertices depending on their valances. Subdivision schemes, that are defined for

triangular meshes create new vertices of valance 6 in the interior of the surface, and 4

on the boundaries. These vertices having valance 4 and valance 6 are defined as

regular vertices and vertices of other valances are called extraordinary vertices.

Figure 4.10: (a) Mask for interior odd vertices with regular
neighbors, (b) Mask for crease and boundary vertices, (c)
mask for odd vertices adjacent to extraordinary vertices. The
coefficients si are 1/k (1/4 + cos(2iπ/k) + 1/2 cos(4iπ/k)) for k
> 5. For k = 3, s0 = 1/12, s1,2 = -1/12; for k = 4, s0 = 3/8, s1 =
1/8, s1,3 = 0 [33].

Modified butterfly scheme is a primal subdivision scheme, and masks are

used to generate odd vertices from the values of even vertices at each refinement

22

(Figure 4.10). There are two groups of masks for odd vertices. Interior odd vertices

that are adjacent to regular vertices and odd vertices that are adjacent to boundary or

crease vertices have generated by two masks having constant coefficients. Masks for

odd vertices that are adjacent to an extraordinary vertex have changing structure and

varying coefficients depending on the valance of extraordinary vertex.

Figure 4.11: Figure 4.10: Modified 2D Grid Structure.

After having a regular mesh representation as a 2D grid structure, we

introduce some modifications (Figure 4.11) to apply a fast and robust refinement

strategy using modified butterfly scheme. Taking advantage of having a regular

domain, we have no boundary or crease vertices, but there are 4 extraordinary vertices

of valances 3 on the corners of the tetrahedral domain. However, if we duplicate the

edges of these vertices, they can be treated as regular vertices having valances of 3×2.

Since the duplicate edges are symmetric to existing edges, resulting odd vertices will

have same values. This modification allows us to use the mask for interior odd

23

vertices with regular neighbors for all the grid nodes. We also introduce offsets to 2D

grid representation. Offsets are the copies of grid nodes, assuring existing neighboring

properties and they are updated before the convolution process (Figure 4.12).

Figure 4.12: (a) Modified 2D Grid Structure. (b) Application
of mask for interior odd vertices with regular neighbors. (c)
Equivalent convolution kernel. (d) Three convolution kernels
generated for three edges.

With a 2D grid representation and a mask with constant coefficients, odd

vertices can be generated by consecutive convolutions with three kernels, which are

created by rotating the subdivision mask three times (Figure 4.12.d). Necessity for the

grid offsets arises from the application of the mask to the grid boundaries, and

modified subdivision scheme requires first neighbors of even vertices that are next to

generated vertex. Offset width does not change according to the grid dimensions and

time required for the update of the offsets is negligible. After three times convolutions

of the nth level subdivision surface, resulting 2D grids are merged to generate n+1th

24

level subdivision surface having (2n+1 + 1) x (2n+2 + 1) nodes (Figure 4.13).

Figure 4.13: Comparison of resulting mesh refined by
subdivision and rendered at different level of details, (a)
129x65=8335 vertices (b) 257x129=33153 vertices (c)
512x257=131841 vertices.

4.3. Physical Model

Simulation of deformable objects is an extensive research area, where several

methods are present, varying from fast and simple methods favoring speed and

scalability, to much more complex methods favoring accuracy and stability. Linear

methods such as mass-spring models for dynamic deformations are suitable for use in

real-time applications; however, they are not capable of handling large deformations

and small time steps are required to guarantee stability. On the other hand, non-linear

models incorporating large viscoelastic and plastic deformations are computationally

intensive, and despite their physical accuracy, real-time simulation of large

deformations is only possible with massively parallel computers.

For the demonstration of the deformable object on a collaborative virtual

environment, we use a real-time physical simulation of a uniform-tension-membrane,

based on linear finite-elements. We introduced finite element discretization to form

the global stiffness matrix, which is updated frequently to handle large deformations

with enhanced accuracy and we used Runge-Kutta-Fehlberg method for integration to

achieve bigger time steps and improved stability.

25

4.3.1. Linear Finite-Element Model

Application of the finite-element method for the wave equation [35, 36],

describing the time-dependent small deformations of a uniform-tension membrane

results in a standard system of equations [37]:

,externalfKxxBxM +−−= &&& (4.8)

where, x is the normal deformation of each node, M is the diagonal mass

matrix, externalf is the external force vector due to user interactions, B is the diagonal

damping matrix, and K is the stiffness matrix. In our implementation, we separate

normal deformation and the velocity of each node to improve the stability of the

Runge-Kutta method used to solve the linear system. Namely, we have

vx =& , (4.9)

and the resulting equation of motion:

externalfKxBvvM +−−=& (4.10)

The finite element method works well with an arbitrary triangulation of a

surface as well as a proposed regular grid structure. In our implementation we apply

the damping matrix directly on the nodal velocities, so as to model a permeable

membrane placed in a fluid. In some standard formulations, the damping is applied to

relative nodal velocities. The two yields in similar solutions, however our

implementation results in simpler sparse structures and faster simulation times via

improved stability of nodal damping.

4.3.2. Stiffness Matrix Generation

Finite Element Method is defined as a powerful numerical procedure, where

a body is subdivided into a discrete number of finite elements [38]. According to our

mesh representation and subdivision methodology, each group of vertices forming a

triangle on the mesh is taken as an element. Global stiffness matrix K is assembled

26

using the element stiffness matrices eK , which identifies the relation between nodal

displacements and the force exerted on the element nodes maintaining the linear

elasticity model [39, 40].

∑=
e

eKK , (4.11)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−
−+−
−−+

=
eeee

eeee

eeee

e

kkkk
kkkk
kkkk

K

3131

3322

2121

, (4.12)

Members e
ik of the element stiffness matrix are derived using the material

properties of the object (Appendix B).

4.3.3. Handling Boundary Conditions and Domain Decomposition

In the finite element methodology, there are two classes of boundary

conditions. The essential boundary conditions are also called geometric boundary

conditions and correspond to prescribed displacements and rotations, while the

natural boundary conditions or also called force boundary conditions correspond to

prescribed forces and moments [35]. The natural boundary conditions are introduced

to the system as external forces in the equation 4.10; however, handling the essential

boundary conditions is not straightforward.

In our approach, essential boundary conditions arise from two circumstances.

First, the membrane model should have some of its nodes with fixed displacements in

the simulated environment. A membrane model having no geometric boundary

conditions will float like a rigid body and it is impossible to solve the system in eq.

4.10, since the global stiffness matrix K is singular. Second, we are aiming to

distribute computational load of the simulation among clients, which requires

partitioning of the membrane domain between participants. Every client is responsible

for solving the system in its local domain and local solutions stay consistent by

distributing the states of the nodes on the domain boundaries.

Simplest method used for the application of essential boundary conditions is

27

to remove ith row and column of the stiffness matrix K to introduce ith node as a fixed

node. Consequently, ith equation in the system that we are trying to solve will be

deleted. After unfolding the system in eq. 4.10,

nnnnnnnnnnnn

nn

nn

fvBvMxKxKxK

fvBvMxKxKxK
fvBvMxKxKxK

−−=+++

−−=+++
−−=+++

&

&

&

...
....

...
...

2211

22212212222121

11111111212111

 (4.13)

It’s obvious that the balances of the equations are lost, because ith column is

also removed on the left hand side of the system. The terms iji xK− should also be

added to the right hand side before attempting to solve the system. This method is

computationally intensive and requires significant modification of global stiffness

matrix K.

Payne and Irons method introduces an alternative technique for maintaining

the essential boundary conditions [41]. Instead of deleting the ith row and column, a

very large number α added to diagonal element of the stiffness matrix iiK and other

elements of the ith row is set to 0. Also, left hand side of the ith equitation

iiiiiii fvBvM −−& is replaced with ixα , so that the ith equitation becomes ii xx αα = , and

the system in eq. 4.18 remains symmetric and solvable.

Payne and Irons method is a feasible candidate for our approach to handle

essential boundary conditions. Since the vertices of the regular mesh structures have

valances of 6, there are 6 non-zero elements in the each row of the stiffness matrix.

We have a sparse matrix structure that bounds the complexity of matrix operations

with the order of non-zero element count instead of matrix dimensions. Each essential

boundary condition reduces the required computation by eliminating 5 non-zero

elements out of 6 from the stiffness matrix.

4.4. Network Model

In our approach, we build a simple but effective network model, which is

28

capable of satisfying the needs of a small scale collaborative virtual environment and

a distributed physical simulation among participants.

4.4.1. Network Architecture

Our approach is implemented with a peer-to-peer architecture working on

local and wide area networks. We don’t introduce any dedicated server, and peer

nodes are functioning as both clients and servers. Every peer should have a listening

port and address which can be used by other peers by directly specifying connection

request through the command listener. User Datagram Protocol (UDP) used for the

communication, since the speed and bandwidth requirements are essential for a real

time simulation and have a greater priority over packet integrity because proposed

synchronization model can handle packet loss to a certain degree.

Peers can run on different computers on the network or can be started in the

same application as separate threads sharing the command listener and rendering

windows. Handshaking protocol is also simple. As the main purpose of this thesis is

to propose a method for the simulation of deformable objects over network, while

distributing the computational load, there is no security measure and the peer

requesting the connection is always accepted by the listener. They add each other to

the list of connected peers. In the proposed method, every peer has an individual

virtual environment before the establishment of a connection. The goal is to

synchronize these virtual environments and to enable interaction over deformable

objects that will lead to collaboration among participants.

Although the peer-to-peer model is accepted, there is one condition, where

one of the peers is acting as a server. While determining the domains on the mesh to

distribute the simulation, the environment in which the deformable object is first

created acts as a master and decides the partitioning. Partitioning occurs after sending

a request by slave which selects a face and identifies it as the point of interest where

the peer is going to introduce an external force.

29

Figure 4.14 demonstrates the third-party case of distributed simulation with

one deformable object. Initially (a), there exists two virtual environments and one has

an object while the other one is empty. One of the environments sends a connection

request and both environments add each other to connected environments list.

Environments having objects send object description messages (b) after the

connection establishment. This message contains a unique object identifier and object

subdivision level. After sending the object description, they immediately start sending

object state information. Object state information includes the recent state of the

deformed object and will be described in detail at the next section. At this stage,

second peer renders the object in the first virtual environment without any calculation

and interaction. If the user decides to interact with an object by applying a force on

any face, send this face id as point of interest. (c) Partitioning algorithm runs on both

clients, however object owner is the authority and manages the partitioning among the

connected peers. After the partitioning, connected peers start to broadcast state

information belonging to their domain, and receive state information of other domains

of the object. If a third pair (d) sends a connection request to any of the connected

peers, its request is accepted and it receives peers list connected to this virtual

environment to establish connection to them immediately. (e) Object owner sends the

deformable object description and state to the connected peer and second peer starts

broadcasting state belonging to its domain. If the third party receives state information

from second peer before receiving object description, simply ignores this package

since, the default behavior for receiving irrelevant packages is ignoring. (f) Third part

may chose to observe the deformation or send a point of interest describing face id

where the interaction is requested. Object owner notifies second peer and domains are

re-partitioned to allow third party interaction. Finally, (e) every peer has a domain and

broadcasting state of this domain, while receiving the remaining states from

connected peers. If any of the peers except for the object owner disconnects from the

system, object owner handles the re-partitioning. If the object owner quits, simulation

for this object is ended.

30

Figure 4.14: Network Protocol: (a) Individual peers having
separate VE’s. (b) Connected peers, fist peer sending object
description and state info, second peer specifying point of
interest. (c) Synchronized peers after domain division. (d)
Third peer is introduced. (e) Third peer is receiving object
description and state info from first peer, also introduced to
second peer by first peer. (f) Third peer is specifying point of
interest, first pair performs domain division. (e) Synchronized
peers after domain division.

31

4.5. Partitioning and Synchronization of Physical and Geometric Models

through the Network

In our approach, partitioning the deformable object and synchronizing among

peers is an important issue, since it enables collaboration in the virtual environments

with distributed computational load. For the purpose of efficient communication and

separation we introduce a quad tree based data structure (Figure 4.15) over 2D grid

structure proposed on the previous sections.

Figure 4.15: (a) Minimal tree structure for tetrahedral domain.
(b) Sample tree structure having depth of two.

This structure (Figure 4.14) is a natural formation for the tetrahedral domain

because it has (2n + 1) x (2n+1 + 1) nodes, and 2n x 2n+1 faces that can be divided

hierarchically. Tree nodes can be transferred efficiently via network since a tree node

contains a range identifier which is actually the combination of upper left and lower

right node index numbers, and state information of corresponding region as a 2D

array. Minimum depth level for the tree can be adjusted to keep the packaged tree

node size smaller then the maximum packet size allowed by the network protocol. It

32

may look like the boundaries of node regions that are included on more than one tree

node occupies wasted space as they might be transferred more than one time via

network on the different packages, but the order of wasted space is 4n where the

package size is n2, and this amount is negligible for high resolution meshes, having a

tree divided up to a certain level. Also, including boundaries while division has a

special importance in physical simulation where the domains are divided in the same

manner and states of nodes at the domain boundaries must updated regularly to

synchronize the simulations as stated in the previous sections.

Figure 4.16: Demonstration of the partitioning algorithm.

Domain divisions are designed upon this tree structure. While dividing the

domain into sub-domains, equivalence of the sets is an important criterion, however,

keeping the domain boundaries shorter for an accurate synchronization for the

physical simulation and partitioning minimal for an efficient network transmission are

essential.

33

Table 4.1: The pseudo code of the partitioning algorithm.

This algorithm (Table 4.1) works well for the two parties, partitions the

domain equally on the average case, and with a ratio of 7/9 on the worst case. For the

third party case, sub domain areas are still very close to equal, however, partitioning

occurs if the selected facets are close to each other. Investigation of n-party case of

the algorithm is left for the future work; however, choosing close facets is not very

probable in such a crowded environment and it will provide a reasonable partitioning.

Peers traverse the proposed tree structure and broadcast the state information

of the associated nodes after each simulation step. Every peer simulates the nodes of

local domain at time ‘t’ using the position and velocity values of the nodes on

boundaries at time ‘t-1’. There is no guarantee that the packages arrive on time, but

system can handle network lag or packet loss for a certain degree depending on the

for each peer
 peer->current_node = root
 while peer->current_node is expandible
 expand peer->current_node
 for each peer->current_node ->child AND peer->current_node ->child
covers selected face
 peer->current_node = peer->current_node ->child
 end for
 end while
end for

for each peer_area = 1
while the grid is not full
 while peer[all]current_node != root
 current_peer = minArea(all_peers)
 if current_peer->siblings are empty,current_peer->siblings=current_peer->ID
 else closestEmpty(current_peer->siblings) =current_peer->ID
 update(peer_area)
 current_node = current_node->parent
 end while
 if root->next not expanded
 expand next
 for each peer->current_node = closest(next->child)
 end if
end while

34

simulation parameters. After a certain degree it might become a stability issue and

simulation can fail completely. Quantification of error and stability rates is performed

on the next chapter.

35

5. RESULTS & CONCLUSION

5.1. Graphical Result & Performance

Figure 5.1: (a) Surface rendered using the Phong shading
model; (b) Surface rendered using the Phong shading model,
and a cloth texture.

Our graphical sub-system can handle very large meshes efficiently, taking

advantage of regular-mesh and subdivision methodology as presented in the previous

chapter. The system renders meshes using the Phong shading model (Figure 5.1) at

interactive frame rates (20 fps) with resolution up to twelve thousand polygons on

Intel Dual Xeon 3.4 GHz PC equipped with NVIDIA Quadro FX3400 GPU (Table 1).

We implemented Phong shading model on the GPU (Appendix C). Vertex positions

are uploaded to texture memory and vertex normals are computed on the fly using

texture lookups.

Detail level (n) # of nodes # of polygons Fps.
4 33 X 17 1024 66.67
5 (half res.) 33 X 33 2048 66.67

36

5 65 X 33 4096 66.67
6 (half res.) 65 X 65 8192 62.25
6 129 X 65 16384 21.27
7 (half res.) 129 X 129 32768 12.10
7 257 X 129 65536 5.81

Table 5.1: Rendering Performance Evaluation.

5.2. Evaluation of the Physical Simulation Environment

We tested the performance our physical deformation engine with the

configuration above, and evaluated effects of physical parameters on the stability of

the simulation (Figure 5.2). Our solver is using Runge-Kutta Fehlberg method for

integration and it allows taking moderately large time steps up to a certain stiffness

level defined for the simulated material. Stiff objects require small time steps to

maintain the stability of the system.

k versus h at divergence points

0,0000000

0,0200000

0,0400000

0,0600000

0,0800000

0,1000000

0,1200000

0,1400000

0,1600000

3,1250000 6,2500000 12,5000000 25,0000000 50,0000000

k

h

Figure 5.2: Stiffness parameter k (N/m) versus time step h(s),
at the divergence points, where the simulation losts stability.

We also tested the performance of the system by comparing computational

load and number of simulated nodes. Our deformation engine can handle multi-

37

resolution meshes up to 33153 vertices, and maintains interactivity at less than %30

CPU utilization.

Figure 5.3: Deformation on the tetrahedral domain with wavy
surface parameters, applying sinusoidal forces with frequency
f on the selected faces, colors represents peers and k=1.0 N/m,
b=0.1, f=2.4 N.

Figure 5.4: Large deformation on the tetrahedral domain,
applying sinusoidal forces on the selected faces, colors
represents peers k=6.25 N/m b=0.1 f=1.2 N.

38

Figure 5.5: Demonstration of 2-party large deformation on the
tetrahedral domain, applying sinusoidal forces on the selected
faces with frequency f, colors represents peers and k=6.25
(N/m), b=0.1, f=1.2 N.

Figure 5.6: : Demonstration of 2-party deformation on the
tetrahedral domain with wavy surface parameters, applying
sinusoidal forces with frequency f on the selected faces, colors
represents peers and k=1.0 (N/m), b=0.1, f=2.4 N.

39

5.3. Evaluation of the Network Performance

Our network communication model can handle synchronous simulation

among two peers up to a surface with 8385 vertices at the local area network. This

level has a bandwidth requirement of 10.75 M Bits per second without any

compression. Less detailed surfaces are much more convenient for efficient

communication requiring less bandwidth. As a future work, we also consider on the

fly compression which might significantly reduce the bandwidth requirement but also

can increase the computational load. Optimization of the system for the Internet is out

of scope of this paper. It is safe to predict that the network lag on public networks will

have an impact on performance.

Detail level (n) # of nodes Bandwidth
4 33 X 17 735 KBits/sec
5 65 X 33 2.75 MBits/sec
6 129 X 65 10.75 MBits/sec
7 257 X 129 42.49 MBits/sec

Table 5.2: Network Bandwidth Requirements

Figure 5.7: Demonstration of 2-party deformation on the
regular mesh applying sinusoidal forces with frequency f on
the selected faces, colors represents peers and k=1.0 (N/m)
b=0.05 f=1.2 N.

40

5.4. Conclusion & Future Work

We have proposed a new technique for deformable body simulations in the

field of collaborative virtual environments and also introduced several improvements

over methods that we adopted. Our approach enables real-time simulation of

deformable objects in the collaborative environments, and results for two party cases

are successful. We found that adaptive refinement and multilevel meshing strategies is

a open ended research subject that can be further exploited for increasing network

efficiency, and better physical accuracy for CVE’s.

Our method needs to be tested and optimized in the Internet over long

physical distances for network effects. It needs to be investigated in detail and the

system must be tested properly to ensure its robustness and efficiency. The techniques

implemented are coming from various research areas including computational

geometry, physical based modeling and computer networking, as well as computer

graphics.

41

REFERENCES

1. Churchill, E.F. and D. Snowdon (1998) CVE'98: collaborative virtual
environments 1998. ACM SIGGROUP Bulletin Volume, 21-22

2. Churchill, E.F., D.N. Snowdon, and A.J. Munro, Collaborative virtual
environments : digital places and spaces for interaction. Computer supported
cooperative work. 2001, London ; New York: Springer. xx, 316 p.

3. Dourish, P. and V. Bellotti, Awareness and coordination in shared
workspaces, in Proceedings of the 1992 ACM conference on Computer-
supported cooperative work. 1992, ACM Press: Toronto, Ontario, Canada.

4. Singhal, S. and M. Zyda, Networked virtual environments : design and
implementation. SIGGRAPH series. 1999, Reading, MA: Addison-Wesley.
xvi, 331 p.

5. Stytz, M.R., Distributed virtual environments. Computer Graphics and
Applications, IEEE, 1996. 16(3): p. 19-31.

6. Hagsand, O., Interactive multiuser VEs in the DIVE system. Multimedia,
IEEE, 1996. 3(1): p. 30-39.

7. Macedonia, M.R., et al., NPSNET- A network software architecture for large-
scale virtual environments. Presence: Teleoperators and Virtual Environments,
1994. 3(4): p. 265-287.

8. Benford, S., et al., Collaborative virtual environments. Commun. ACM, 2001.
44(7): p. 79-85.

9. Jorissen, P. and Z.M.W.L. Maarten Wijnants, Dynamic Interactions in
Physically Realistic Collaborative Virtual Environments. IEEE Transactions
on Visualization and Computer Graphics %@ 1077-2626, 2005. 11(6): p. 649-
660.

10. Dequidt, J., L. Grisoni, and C. Chaillou, Collaborative interactive physical
simulation, in Proceedings of the 3rd international conference on Computer
graphics and interactive techniques in Australasia and South East Asia %@
1-59593-201-1. 2005, ACM Press: Dunedin, New Zealand. p. 147-150.

11. Xiaojun, S., et al. A heterogeneous scalable architecture for collaborative
haptics environments. 2003.

12. Zhou, J., X. Shen, and N.D. Georganas. Haptic tele-surgery simulation. 2004.
13. Goncharenko, I., et al. Cooperative control with haptic visualization in shared

virtual environments. 2004.
14. Sederberg, T.W. and S.R. Parry, Free-form deformation of solid geometric

models, in Proceedings of the 13th annual conference on Computer graphics
and interactive techniques. 1986, ACM Press.

15. Terzopoulos, D., et al., Elastically deformable models, in Proceedings of the
14th annual conference on Computer graphics and interactive techniques.
1987, ACM Press.

16. Baraff, D. and A. Witkin, Large steps in cloth simulation, in Proceedings of

42

the 25th annual conference on Computer graphics and interactive techniques.
1998, ACM Press.

17. Desbrun, M., Peter Schröder, and A. Barr, Interactive animation of structured
deformable objects, in Proceedings of the 1999 conference on Graphics
interface '99. 1999, Morgan Kaufmann Publishers Inc.: Kingston, Ontario,
Canada.

18. James, D.L. and D.K. Pai, ArtDefo: accurate real time deformable objects, in
Proceedings of the 26th annual conference on Computer graphics and
interactive techniques. 1999, ACM Press/Addison-Wesley Publishing Co.

19. Kang, Y.-M. and H.-G. Cho, Complex deformable objects in virtual reality, in
Proceedings of the ACM symposium on Virtual reality software and
technology. 2002, ACM Press: Hong Kong, China.

20. Choi, K.-J. and H.-S. Ko, Stable but responsive cloth, in Proceedings of the
29th annual conference on Computer graphics and interactive techniques.
2002, ACM Press: San Antonio, Texas.

21. James, D.L. and K. Fatahalian, Precomputing interactive dynamic deformable
scenes. 2003, ACM Press. p. 879-887.

22. Choi, K.-S., et al., Deformable simulation using force propagation model with
finite element optimization. Computers & Graphics, 2004. 28(4): p. 559-568.

23. Baraff, D. and A. Witkin, Physically based modeling, in Proceedings of the
conference on SIGGRAPH 2003 course notes. 2003, ACM Press: Los
Angeles, CA.

24. Press, W.H., Numerical recipes in C++ : the art of scientific computing. 2nd
ed. 2002, Cambridge [England] ; New York: Cambridge University Press.
xxviii, 1002 p.

25. Wikipedia, c. Genus (mathematics). 22 July 2006 08:39 UTC [cited 1 August
2006 17:57 UTC]; Available from:
http://en.wikipedia.org/w/index.php?title=Genus_%28mathematics%29&oldid
=65180879

26. Wikipedia, c. Euler characteristic. 29 July 2006 13:32 UTC [cited 2 August
2006 14:51 UTC]; Available from:
http://en.wikipedia.org/w/index.php?title=Euler_characteristic&oldid=665211
71

27. Gamelin, T.W. and R.E. Greene, Introduction to topology. 2nd ed. Dover
books on mathematics. 1999, Mineola, N.Y.: Dover Publications. xii, 234 p.

28. Praun, E. and H. Hoppe, Spherical parametrization and remeshing. 2003.
22(3): p. 340-349.

29. Sander, P.V., et al., Texture mapping progressive meshes, in Proceedings of
the 28th annual conference on Computer graphics and interactive techniques.
2001, ACM Press.

30. Fruchterman, T. and E. Reingold, Graph Drawing by Force-directed
Placement. Software - Practice and Experience, 1991. 21(11): p. 1129-1164.

31. Alexa, M., Recent Advances in Mesh Morphing. 2002, Blackwell Synergy. p.
173-196.

32. David, L., et al., GPGPU: general purpose computation on graphics
hardware, in Proceedings of the conference on SIGGRAPH 2004 course
notes. 2004, ACM Press: Los Angeles, CA.

33. 2000 SIGGRAPH Full Day Course: Subdivision for Modeling and Animation.
34. Zorin, D., Peter Schröder, and W. Sweldens, Interpolating Subdivision for

43

meshes with arbitrary topology, in Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques. 1996, ACM Press.

35. Bathe, K.-J. and K.-J. Bathe, Finite element procedures. 1996, Englewood
Cliffs, N.J.: Prentice Hall. xiv, 1037 p.

36. Reddy, J.N., An introduction to nonlinear finite element analysis. 2004,
Oxford ; New York: Oxford University Press. xv, 463 p.

37. Hughes, T.J.R., The finite element method : linear static and dynamic finite
element analysis. 1987, Englewood Cliffs, N.J.: Prentice-Hall. xxvii, 803 p.

38. Popov, E.P. and T.A. Balan, Engineering mechanics of solids. 2nd ed. 1999,
Upper Saddle River, N.J.: Prentice Hall. xvi, 864 p.

39. Atanackovic, T.M. and A. Guran, Theory of elasticity for scientists and
engineers. 2000, Boston: Birkhäuser. xii, 374 p.

40. Landau, L.D., et al., Theory of elasticity. 3rd English ed. 1986, Oxford
[Oxfordshire] ; New York: Pergamon Press. viii, 187 p.

41. Zienkiewicz, O.C. and R.L. Taylor, The finite element method. 5th ed. 2000,
Oxford ; Boston: Butterworth-Heinemann.

44

 Appendix A

General and Sparse Matrix Classes

class matrix {
public:

 matrix(): row(0), clmn(0), mtrx(NULL){};
 matrix(int rows, int cols);
 matrix(const matrix& rhs);
 matrix(const matrix& Rotation , const triple & Position);
 ~matrix();
 matrix & setIdentity();
 matrix & scale(double c);
 matrix inverse() const;
 const matrix &operator=(const matrix &rhs);
 const matrix &operator=(const quaternion &rhs);
 matrix operator* (const matrix& x) const;
 vector operator* (const vector& x) const;
 matrix operator- (const matrix& x) const;
 double &operator[](int rhs) const;
 double & operator()(int row, int clmn) const;
 quaternion toQuaternion() const;
 matrix transpose() const;
 matrix conv(const matrix& x) const;
 matrix conv(const matrix& x, const matrix& z, int cell = 0, int xOffset = 0, int
yOffset = 0) const;
 matrix copy(const matrix& z, int cell=0, int xOffset=0, int yOffset=0) const;
 void saveBin(FILE * output);
 void loadBin(FILE * input);
 const matrix & print() const;
 void DumpFile();
 double average();
protected:
 double* mtrx;
 int row;
 int clmn;
 friend class matrix_ssd;
};

45

class matrix_ssd
{
public:
 matrix_ssd(): row(0), clmn(0), idiag(NULL), ndiag(0), val(NULL), lval(0){};
 matrix_ssd(int rows, int cols): row(rows), clmn(cols), idiag(NULL), ndiag(0),
val(NULL), lval(rows){};
 matrix_ssd(const matrix& rhs);
 const matrix_ssd &operator=(const matrix_ssd &rhs);
 double & operator()(int clmn, int row);
 vector operator* (vector x) const;
 void print() const;
protected:
 int row;
 int clmn;
 int *idiag;
 int ndiag;
 double *val;
 int lval;
};

46

class matrix_coord
{
public:

 matrix_coord(int rows = 0, int cols = 0);
 const matrix_coord &operator=(const matrix_coord &rhs);
 double & operator()(int row, int clmn);
 vector operator* (const vector &x);
 void syncronise();
 void print();
 void DumpFile();
protected:
 int row;
 int clmn;
 std::vector<coord_element> values;
 int sorted_end;
 double *val;
 int *rows;
 int *cols;
 int capacity;
 bool sync;
};

struct coord_element
{
 coord_element(int *row = NULL, int *clmn = NULL, double *value =
NULL):row(row),clmn(clmn),value(value){};
 bool operator== (const coord_element &rhs) const { return *row == *rhs.row
&& *clmn == *rhs.clmn; } ;
 bool operator!= (const coord_element &rhs) const { return *row != *rhs.row ||
*clmn != *rhs.clmn; };
 bool operator< (const coord_element &rhs) const { return (*row == *rhs.row ?
*clmn < *rhs.clmn : *row < *rhs.row);};
 double *value;
 int *row;
 int *clmn;
};

47

Appendix B

Theoretical Background of the Membrane Model

Consider an infinitesimal circular membrane element of radius r, and

thickness of δ, subject to a uniform tension of σ [2m
N

ap =]. When a distributed load

is applied to the membrane in the normal direction, the element will deflect in the

normal direction according to the figure B.1.a.

Figure B.0.1: Uniform tension membrane model.

The force balance in the normal direction yields:

απδσπ sin).2.(.).(2 rrp = (B.1)

αδσ sin).1.(..2
r

p = (B.2)

So, that the deformation of the membrane element is locally spherical and as shown in

the figure B.1.b. Then we have:

48

R
r=αsin (B.3)

Hence the equation B.2 yields:

)2.(.
r

p σδ= (B.4)

Since the curvature in the x-direction is equal to the curvature in the y-direction for

the spherical deformation under the uniform load (local),

RRR yx == , (B.5)

Equation B.4 becomes:

)11.(.
yx RR

p += σδ (B.6)

The local curvature of the membrane is given by the 2nd derivative of the deformed

membrane surface:

2

21
x
u

Rx ∂
∂

= , and 2

21
y
u

Ry ∂
∂

= (B.7)

Thus the equation of motion (B.6) becomes:

).(. 2up ∇= σδ (B.8)

0).(. 2 =∇− up σδ (B.9)

For a membrane element under dynamic loads and deforming in time, we have:

up
t
upAc

2
2

2

.. ∇−=
∂
∂ σδ (B.10)

Note that force balance can be simply written down as instead of B.1:

απδσπδπ sin).2.(.).()...(2
2

2
2 rrp

t
urp −=

∂
∂ (B.11)

49

where,).(2 δπr is the volume and 2

2

t
u

∂
∂ is the acceleration of the element.

Application of Damping

If the membrane is permeable allowing transfer of a fluid through the membrane such

as a piece of cloth under tension, the viscous damping due to the relative motion of

the fluid through the membrane can be written as:

t
ubFviscous ∂
∂

−= (B.12)

where the damping coefficient can be determined the Darcy’s Law governing the flow

through a porous medium, according to which, the pressure drop accretes the

permeable membrane thickness is given by:

t
u

k
p

∂
∂

=
Δ μ
δ (B.13)

where μ is the viscosity of the fluid and, k is the permeability of the membrane.

Thus, the final form of the governing equation of motion reaches:

t
u

k
up

t
up

∂
∂

−∇−=
∂
∂ μσ

δ
2

2

2

. (B.14)

Note that in our discretization the equation of motion we use the finite-element

method only for the second-order term, laplaciani on the right hand side.

We use the augmented state equations,

⎥
⎦

⎤
⎢
⎣

⎡
=

u
u

w
&

 (B.15)

to solve the system. In a sense, we use a finite-difference scheme for the time-

integration based on the nodal points with a diagonal-only mass matrix:

50

2

2

t
up

∂
∂ → []w

dt
dp (B.16)

Similarly the damping force is also implemented using the state

representation and the diagonal damping matrix. The linear system of equations that

we solve is given by:

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
u

I
k

u
Kp

u
u

dt
dIp

&&

μσ
δ

. (B.17)

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛−=⎥

⎦

⎤
⎢
⎣

⎡
u
u

Ik

Kp
u
u

dt
dIp

&&
μ

σ

δ 0
0

. (B.18)

where I is the identity matrix.

51

Appendix C

Implementation of Phong Shading and Vertex Texture Fetch

Vertex Shader GLSL (OpenGL Shading Language) Code

varying vec3 View;
varying vec4 color_in;
varying vec2 position_in;
uniform sampler2DRect pos;

void main() {

 vec4 v0 = texture2DRect(pos,vec2(gl_Vertex.x,gl_Vertex.y));

 color_in = gl_Color;
 position_in = gl_Vertex.xy;

 gl_Position = gl_ModelViewProjectionMatrix * v0;
}

52

Fragment Shader GLSL Code

varying vec4 color_in;
varying vec2 position_in;
uniform sampler2DRect pos;
uniform sampler2D tex, nrm;

void main(void)
{
 vec3 lightDir = normalize(vec3(gl_LightSource[0].position));
 vec3 halfVector = normalize(gl_LightSource[0].halfVector.xyz);
 float noise = sin(13.0*cos(position_in.y*11.0))+
cos(11.0*sin(position_in.x*13.0));
 float specnoise = mod(noise,0.6);
 float diffnoise = mod(noise,0.3) + 0.7;

 vec4 material = texture2D(tex, position_in/32.0)*color_in;
 vec4 ambient = (gl_FrontMaterial.ambient*material)*
(gl_LightSource[0].ambient + gl_LightModel.ambient);
 vec4 diffuse = (gl_FrontMaterial.diffuse*material) *
gl_LightSource[0].diffuse* diffnoise;
 vec4 specular = (gl_FrontMaterial.specular*material) *
gl_LightSource[0].specular * specnoise;

 vec2 center = floor(position_in + vec2(0.5,0.5));
 vec2 position = position_in - center + vec2(0.5,0.5);
 vec3 v0 = vec3(texture2DRect(pos,vec2(center.x,center.y)));
 vec3 v1 = vec3(texture2DRect(pos,vec2(center.x,center.y-1.0)));
 vec3 v2 = vec3(texture2DRect(pos,vec2(center.x-1.0,center.y-1.0)));
 vec3 v3 = vec3(texture2DRect(pos,vec2(center.x-1.0,center.y)));
 vec3 v4 = vec3(texture2DRect(pos,vec2(center.x-1.0,center.y+1.0)));
 vec3 v5 = vec3(texture2DRect(pos,vec2(center.x,center.y+1.0)));
 vec3 v6 = vec3(texture2DRect(pos,vec2(center.x+1.0,center.y+1.0)));
 vec3 v7 = vec3(texture2DRect(pos,vec2(center.x+1.0,center.y)));
 vec3 v8 = vec3(texture2DRect(pos,vec2(center.x+1.0,center.y-1.0)));

 vec3 n0, n1, n2, n3;

 //face 0: v1 v2 v3 v0
 n0.x = (v0.y - v3.y) * (v0.z + v3.z) + (v3.y - v2.y) * (v3.z + v2.z) +
 (v2.y - v1.y) * (v2.z + v1.z) + (v1.y - v0.y) * (v1.z + v0.z);
 n0.y = (v0.z - v3.z) * (v0.x + v3.x) + (v3.z - v2.z) * (v3.x + v2.x) +
 (v2.z - v1.z) * (v2.x + v1.x) + (v1.z - v0.z) * (v1.x + v0.x);
 n0.z = (v0.x - v3.x) * (v0.y + v3.y) + (v3.x - v2.x) * (v3.y + v2.y) +
 (v2.x - v1.x) * (v2.y + v1.y) + (v1.x - v0.x) * (v1.y + v0.y);
 //face 1: v5 v4 v3 v0
 n1.x = (v5.y - v4.y) * (v5.z + v4.z) + (v4.y - v3.y) * (v4.z + v3.z) +

53

 (v3.y - v0.y) * (v3.z + v0.z) + (v0.y - v5.y) * (v0.z + v5.z);
 n1.y = (v5.z - v4.z) * (v5.x + v4.x) + (v4.z - v3.z) * (v4.x + v3.x) +
 (v3.z - v0.z) * (v3.x + v0.x) + (v0.z - v5.z) * (v0.x + v5.x);
 n1.z = (v5.x - v4.x) * (v5.y + v4.y) + (v4.x - v3.x) * (v4.y + v3.y) +
 (v3.x - v0.x) * (v3.y + v0.y) + (v0.x - v5.x) * (v0.y + v5.y);
 //face 2: v7 v6 v5 v0
 n2.x = (v7.y - v6.y) * (v7.z + v6.z) + (v6.y - v5.y) * (v6.z + v5.z) +
 (v5.y - v0.y) * (v5.z + v0.z) + (v0.y - v7.y) * (v0.z + v7.z);
 n2.y = (v7.z - v6.z) * (v7.x + v6.x) + (v6.z - v5.z) * (v6.x + v5.x) +
 (v5.z - v0.z) * (v5.x + v0.x) + (v0.z - v7.z) * (v0.x + v7.x);
 n2.z = (v7.x - v6.x) * (v7.y + v6.y) + (v6.x - v5.x) * (v6.y + v5.y) +
 (v5.x - v0.x) * (v5.y + v0.y) + (v0.x - v7.x) * (v0.y + v7.y);
 //face 3: v1 v8 v7 v0
 n3.x = (v1.y - v8.y) * (v1.z + v8.z) + (v8.y - v7.y) * (v8.z + v7.z) +
 (v7.y - v0.y) * (v7.z + v0.z) + (v0.y - v1.y) * (v0.z + v1.z);
 n3.y = (v1.z - v8.z) * (v1.x + v8.x) + (v8.z - v7.z) * (v8.x + v7.x) +
 (v7.z - v0.z) * (v7.x + v0.x) + (v0.z - v1.z) * (v0.x + v1.x);
 n3.z = (v1.x - v8.x) * (v1.y + v8.y) + (v8.x - v7.x) * (v8.y + v7.y) +
 (v7.x - v0.x) * (v7.y + v0.y) + (v0.x - v1.x) * (v0.y + v1.y);

 n0 = normalize(n0);
 n1 = normalize(n1);
 n2 = normalize(n2);
 n3 = normalize(n3);

 n0 = n0*(1.0-position.x) + n3*position.x;
 n1 = n1*(1.0-position.x) + n2*position.x;

 vec3 normal = n0*(1.0-position.y) + n1*position.y;
 normal = normalize(gl_NormalMatrix * normal);
 normal += vec3(texture2D(nrm, position_in/32.0)*0.5- 0.25);
 normal = normalize(normal);

 vec3 halfV;
 float NdotL,NdotHV;

 /* The ambient term will always be present */
 vec4 color = ambient;
 /* compute the dot product between normal and ldir */
 NdotL = max(dot(normal,lightDir),0.0);
 if (NdotL > 0.0) {
 color += diffuse * NdotL;
 halfV = normalize(halfVector);
 NdotHV = max(dot(normal,halfV),0.0);
 color += specular *
 pow(NdotHV, gl_FrontMaterial.shininess);
 }
 gl_FragColor = color;
}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

