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Abstract: The interaction of a highly focused beam of light with spherical
nanoparticles is investigated for linear and radial polarizations. An analyt-
ical solution is obtained to calculate this interaction. The Richards-Wolf
theory is used to express the incident electric field near the focus of an apla-
natic lens. The incident beam is expressed as an integral where the integrand
is separated into transverse-electric (TE) and transverse-magnetic (TM)
waves. The interaction of each TE and TM wave with a spherical nanopar-
ticle is calculated using the Mie theory. The resulting analytical solution
is then obtained by integrating the scattered waves over the entire angular
spectrum. A finite element method solution is also obtained for comparison.
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1. Introduction

The interaction of focused light with spherical particles has been of interest for various appli-
cations, such as optical levitation [1], particle sizing [2], and Raman scattering diagnostics [3].
Since optical tweezers allow manipulation of small spherical particles without any mechanical
contact, the calculation and measurement of optical trapping forces have been of special inter-
est. Strong trends toward nanoscience and nanotechnology make it necessary to achieve easy
and cost-effective fabrication and manipulation of nanostructures. Therefore, the extension of
the aforementioned applications to nanoscale particles is of great interest. These tools can help
achieve easy assembly of nano-particle arrays, which has a number of potential applications
ranging from optical communication systems to data storage. This requires a thorough under-
standing of the interaction of focused light with nanoparticles of various materials and shapes.
At visible and infrared frequencies, the underlying physics of the interaction of focused light
and nano-particles is complicated due to the behavior of metals as strongly coupled plasmas.

Although there has been much effort to understand the effect of various parameters related
to the surface plasmon resonances on nanoparticles, the modeling studies in the literature do
not include detailed descriptions of a focused beam of light. A plane wave is usually used to
represent the incident beam of light to understand this interacton. Although, proper models of a
highly focused beam of light have largely been omitted in the context of surface plasmons, there
is considerable literature for the interaction of Gaussian beams with large dielectric spheres that
does not support surface plasmon resonances. The interaction of Gaussian beams and homoge-
neous spheres has been studied [4, 5, 6, 7]. These studies mainly concentrate on the far field
scattering from the spheres. Barton et al. [8] calculated internal and near-field electric field
distributions by using a first-order focused fundamental Gaussian model of a laser beam devel-
oped by Davis [9]. Barton et al. investigated the dependence of structural resonance behavior
on focal point positioning [10]. Barton and Alexander [11] obtained a mathematical expression
for a fifth-order corrected Gaussian beam. Using these models, Barton et al. [12] calculated
the net radiation force and torque for a spherical particle illuminated by a focused laser beam.
Barton [13, 14] investigated the interaction between laser beams with various polarizations (ra-
dial, angular, arched, and helix) and spherical particles. Higher order Hermite-Gaussian modes
were used to represent these polarizations, and scattering from spheres were investigated in
the near-field [13] and far-field [14]. If the beams become more tightly focused, the aforemen-
tioned Gaussian beam representations become inaccurate for modeling a highly focused beam
of light. Although a Gaussian beam is a more accurate representation of a highly focused beam
compared to a plane wave representation, a Gaussian beam is still an inadequate model of a
highly focused beam.

The Richards-Wolf theory [15, 16] provides an accurate representation for the incident beam
near the focus of an aplanatic lens. A solution for the interaction of spherical particles with
incident beams described by Richards-Wolf theory is necessary for applications that utilize a
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highly focused beam of light. This is particularly crucial for applications that utilize metallic
spheres supporting surface plasmons, since the interaction of different spectral components of
the incident beam with metal plasma varies significantly.

This study addresses the interaction of spherical nanoparticles with highly focused incident
beams defined by Richards-Wolf theory [15, 16]. Both metallic and dielectric nanoparticles are
investigated. Another important contribution of this paper is the utilization of both linear and
radial polarizations. Analytical studies in the literature have mostly concentrated on linearly
polarized light. However, more sophisticated polarizations such as radially polarized focused
beams have been used extensively to excite surface plasmons in experimental studies. There
has been increasing interest in radially polarized focused light due to its favorable configu-
ration to excite surface plasmons on cylindrical particles [17]. The analytical models in this
study can be used to validate complicated 3-D modeling tools, such as finite-difference time
domain (FDTD) [18] and finite element method (FEM) [19], which can later be used to model
more complicated nanostructures. We also compare the results of a 3-D FEM model with the
analytical model presented in this study.

This paper is organized as follows: In Sect. 2 we present the formulations for the linearly and
radially polarized electric fields. Different components of the electric field vector are identified
and plotted for both linear and radial polarizations. In Sect. 3, the formulation for the interaction
of focused light with spherical nanoparticles is presented. A verification of the implementation
is presented in Sect. 4 by comparing the analytical and FEM solutions. The results for different
spherical nanoparticles are presented and discussed in Sect. 4. Concluding remarks appear in
Sect. 5.

2. Focused field formulation

Many applications, such as optical storage and optical levitation, use highly focused optical
beams. An accurate prediction of three-dimensional distributions of various polarizations re-
quires proper analysis of the vector nature of the incident electromagnetic fields. Richards and
Wolf developed a method for calculating the electric field semi-analytically near the focus of
an aplanatic lens [15, 16]. Using Richards-Wolf method, we can obtain both transverse and lon-
gitudinal components near the focus. As we describe below, Richards and Wolf method can be
used to obtain the electric field components for different polarizations. In this study, we utilize
linear and radial polarizations. A highly focused beam with a linear polarization has a stronger
transverse component than a longitudinal component. Radial polarization, on the other hand,
has a stronger component in the longitudinal direction than the transverse direction. Due to this
difference, linearly and radially polarized focused beams interact differently with the particles
that are placed around the focal region.

The total electric field in the vicinity of the focus is given by

E(rp) = − i
λ

∫ α

0
dθ sinθ

∫ 2π

0
dφ a(θ ,φ)exp(−ik · rp) (1)

where α is the half angle of the beam, r p is the observation point

rp = xpx̂+ ypŷ+ zpẑ = rp cosφpx̂+ rp sinφpŷ+ zpẑ (2)

and

k =
2π
λ

(sinθ cosφ x̂+ sinθ sinφ ŷ− cosθ ẑ). (3)

In Eqs. (2) and (3) λ is the wavelength in the medium, r p =
√

x2
p + y2

p, and φp = arctan(yp/xp).
In Eq. (1), a(θ ,φ) is the weighting vector for a plane wave incident from the (θ ,φ) direction.
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Here it should be noted that a(θ ,φ) is a polarization dependent quantity. a(θ i,φ j) is given as

a(θ ,φ) =

⎡
⎣ cosθ cos2 φ + sin2 φ

cosθ cosφ sinφ − cosφ sinφ
sinθ cosφ

⎤
⎦√

cosθ , (4)

a(θ ,φ) =

⎡
⎣ cosθ cosφ

cosθ sinφ
sinθ

⎤
⎦√

cosθ , (5)

for linear and radial polarizations, respectively. In Eqs. (4) and (5), the
√

cosθ factor is applied
to the incident beam for energy conservation in a solid immersion lens (SIL), but no other
apodization is applied.

To obtain the electric field distributions for radial and linear polarizations, Eq. (1) can be
evaluated using a numerical integration. Equation (1) is discretized as

E(rp) = − i
λ

Nθ +1

∑
i=1

Nφ +1

∑
j=1

ωi j sinθi

√
cosθia(θi,φ j)exp(−iki j · rp) (6)
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Fig. 1. Various electric fields components for the linearly polarized focused beam at the
focal plane. The results are normalized with the maximum value of the total electric field.
(a) Ex (x,y), (b) Ey (x,y), (c) Ez (x,y), and (d) Et (x,y).
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where ωi j are the numerical quadrature coefficients,

θi =
(i−1)θmax

Nθ
, (7)

φ j =
( j−1)2π

Nφ
, (8)

and

ki j =
2π
λ

(sinθi cosφ j x̂+ sinθi sinφ j ŷ− cosθiẑ). (9)

Using Eq. (6) along with Eqs. (4) and (5), we can now obtain the electric field distributions
around the focus. Equation (6) can also be interpreted as a summation of plane waves propa-
gating in the ki j direction with an amplitude of − i

λ ωi j sinθi
√

cosθia(θi,φ j). Linear and radial
polarizations are distinguished by the scaling factor a(θ i,φ j) of the plane wave in the ki j direc-
tion.

Different components of the electric field are presented at the focal plane in Figs. 1 and
2 for linear and radial polarizations, respectively. In the calculations, the refractive index of
the medium is 1, and the half angle of the beam is 60 ◦. In both figures, the field quantities are
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Fig. 2. Various electric fields components for the radially polarized focused beam at the
focal plane. The results are normalized with the maximum value of the total electric field.
(a) Ex (x,y), (b) Ey (x,y), (c) Ez (x,y), and (d) Et (x,y).
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normalized with the maximum value of the total electric field. For the linearly polarized focused
wave, the x-component of the electric field is much stronger than the other two components as
shown in Fig. 1. The radially polarized wave has a strong z-component in the focal region as
shown in Fig. 2.

3. Analytical treatment of the interaction of focused light with spherical nanoparticles

In this section, the formulation for the interaction of focused light with spherical nanoparticles
is presented. The incident focused light is described by Eq. (6) along with Eqs. (4) and (5)
for linear and radial polarizations, respectively. In Eq. (6), a focused incident beam of light
is expressed as an integral where the integrand can be separated into TE and TM polarized
plane wave components. In our formulation, the interaction of each TE and TM plane wave
component with a spherical nanoparticle is calculated using Mie theory. The resulting analytical
solution is then obtained by integrating the scattered waves over the entire angular spectrum.

The technique summarized in this section is based on the Mie series solution for TE and
TM plane waves. The interaction of plane waves with spheres has been thoroughly studied [20,
21] in the literature. In this study, we will not give explicit expressions for the Mie scattering
problem, since it is well documented in the literature. However, we will utilize the results of
Mie scattering problem to extend the formulations to scattering problems where the incident
beam is defined by Richards-Wolf theory.

The most common solution for the Mie scattering solution has been given in the literature
for a simple plane wave. A linearly polarized (in the x-direction) plane wave can be expressed
as

Ex
inc(r) = x̂exp(ik · r). (10)

The presence of a spherical particle generates scattered fields. The solution of this problem
is expressed as a total (incident + scattered) electric field Ex

tot (r). Explicit expressions for the
Ex

tot (r) are given in the literature [21] as a summation of spherical harmonics, and will not be
repeated here.

The TEinc and TMinc polarized incident plane waves, shown in Fig. 3, can be expressed as

ETE
inc (r) =

(− sinφincx̂+ cosφincŷ
)

exp(ik · r), (11)

k

E

H

x

z

k

x

z

H

E

(a) (b)

Fig. 3. Spherical particle illuminated by (a) TM polarized plane wave, and (a) TE polarized
plane wave.
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and
ETM

inc (r) =
(

cosθinc cosφincx̂+ cosθinc sinφincŷ+ sinθincẑ
)

exp(ik · r), (12)

respectively. The incident ETE
inc (r) and ETM

inc (r) polarized plane waves in Eqs. (11) and (12) can
be obtained from Ex

inc(r) in Eq. (10) by simple coordinate transformations. E TM
inc (r) is obtained

from Ex
inc(r) by subsequent θ = θinc, and φ = φinc transformations. Similarly, ETE

inc (r) is ob-
tained from Ex

inc(r) by subsequent φ = −π/2, θ = θinc, and φ = φinc transformations. Since
the incident fields ET M

inc (r) and ETE
inc (r) can be obtained from linear transformations of E x

inc(r),
the total fields ETM

tot (r) and ETE
tot (r) can be obtained from Ex

tot (r) by the same transformations
due to the linearity of the system. In summary, the total electric fields due to the presence of the
sphere ETM

tot (r) and ETE
tot (r) are obtained as

ETM
tot (r) =

⎡
⎣ cosθ cosφ −sinφ −sinθ cosφ

cosθ sinφ cosφ −sinθ sinφ
sinθ 0 cosθ

⎤
⎦Ex

tot (r) (13)

ET E
tot (r) =

⎡
⎣ sinφ cosθ sinφ −sinθ cosφ

cosφ cosθ sinφ −sinθ sinφ
0 sinθ cosθ

⎤
⎦Ex

tot (r) (14)

So far, we have established how to obtain ET M
tot (r) and ETE

inc (r) starting from the expression
in the literature. Equations (13) and (14) will be utilized to find the solution scattering from
spherical particles when the incident field is given by Richards-Wolf theory. In Eq. (1), a highly
focused incident beam of light is expressed as an integral where the integrand is a plane wave
propagating in the k direction. A linearly polarized incident focused wave

Elin
inc(r) = − iA

π

∫ α

0
dθ

∫ 2π

0
dφ sinθ

√
cosθ exp(ik · r)

⎡
⎣ cosθ cos2 φ + sin2 φ

cosθ cosφ sinφ − cosφ sinφ
sinθ cosφ

⎤
⎦ (15)

can be rearranged to obtain

Elin
inc(r) = − iA

π

∫ α

0
dθ

∫ 2π

0
dφ sinθ

√
cosθ

⎡
⎣cosφ exp(ik · r)

⎡
⎣ cosθ cosφ

cosθ sinφ
sinθ

⎤
⎦

−sinφ exp(ik · r)
⎡
⎣ −sinφ

cosφ
0

⎤
⎦
⎤
⎦ (16)

The first and second terms in brackets in Eq. (16) can be recognized as TM inc and TEinc incident
plane waves, respectively. We can write the total (incident + scattered) electric field due to
scattering from spherical particles when the incident field is given by Eq. (15) as

Elin
tot (r) = − iA

π

∫ α

0
dθ

∫ 2π

0
dφ sinθ

√
cosθ

[
cosφETM

tot (r)− sinφET E
tot (r)

]
(17)

where ETM
tot (r) and ETE

tot (r) are defined in Eqs. (13) and (14), respectively.
A similar procedure can be applied when the incident beam is radially polarized, which is

given by

Erad
inc (r) = − iA

π

∫ α

0
dθ

∫ 2π

0
dφ sinθ

√
cosθ exp(ik · r)

⎡
⎣ cosθ cosφ

cosθ sinφ
sinθ

⎤
⎦ . (18)
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In this equation, the expression
(

cosθinc cosφincx̂ + cosθinc sinφincŷ+ sinθincẑ
)

exp(ik · r) is a
representation of the TM polarized incident plane waves. Using the linearity of the integration
operation, we can write the total field due to the radially polarized focused light as

Erad
tot (r) = − iA

π

∫ α

0
dθ

∫ 2π

0
dφ sinθ

√
cosθET M

tot (r) (19)

where ETM
tot (r) is defined in Eqs. (13).

In addition to the analytical solution, a three-dimensional finite element method (FEM) based
solution is also obtained to calculate the response of spherical nanoparticles when they are
illuminated with a focused beam of light. The FEM based solution will be validated using
the analytical solution given in Section 3. The finite element method (FEM) is a well-known
numerical algorithm for the solution of Maxwell’s equations [22]. In this study, a frequency-
domain based FEM is used for the solution of Maxwell’s equations. Tetrahedral elements are
used to discretize the computational domain, which allow modeling of arbitrarily shaped three-
dimensional geometries. Over the tetrahedral elements, edge basis functions and second-order
interpolation functions are used to expand the functions. Adaptive mesh refinement is employed
to improve the coarse solution regions with high field intensities and large field gradients. To
represent the focused incident beam, Eq. (6) along with Eqs. (4) and (5) are used with the FEM.
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Fig. 4. Interaction of a radially polarized focused beam with a silver sphere with a 50 nm
radius. The total electric field is plotted on the x̂-ẑ plane. (a) Solution using Mie series for
|Ex (x,y)|2, (b) FEM solution for |Ex (x,y)|2, (c) Solution using Mie series for |Ez (x,y)|2,
(d) FEM solution for |Ez (x,y)|2. |Ey (x,y)|2 components for both solutions are negligible.
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4. Results

In this section, we provide the results based on the methods outlined in Section 3. The analyt-
ical results are first compared with the FEM. Near-field electric field distributions of various
dielectric and metallic spherical nanoparticles are investigated for highly focused linearly and
radially polarized beams. The optical properties of materials in this section are taken from the
literature [23].

To compare the results of the analytical solution with the FEM, three different spheres are
considered: silver spheres with 50 and 250 nm radii, and a dielectric sphere with a 250 nm
radius. The comparison of the results for the metallic spheres is crucial when investigating
surface plasmons. Electromagnetic fields do not penetrate much into metallic spheres due to
the small skin-depth of metal. Therefore, metallic sphere do not provide strong fields within the
particles for comparison. Since electromagnetic fields penetrate better into a dielectric sphere,
a comparison involving dielectric spheres provides an opportunity to validate the results within
the sphere. Therefore, we will obtain the results for a dielectric sphere in addition to silver
spheres. The wavelength for the calculations is 700 nm. The refractive index of the silver at
this wavelength is taken from the literature [23] as 0.14+ i×4.523. The wavelength is selected
around the plasmonic resonances of larger nanoparticles. However, no particular attempt is
made to optimize the response of the nanoparticles as a function of wavelength when they are
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Fig. 5. Interaction of a linearly polarized focused beam with a silver sphere with a 50 nm
radius. The total electric field is plotted on the x̂-ẑ plane. (a) Solution using Mie series for
|Ex (x,y)|2, (b) FEM solution for |Ex (x,y)|2, (c) Solution using Mie series for |Ez (x,y)|2,
(d) FEM solution for |Ez (x,y)|2. |Ey (x,y)|2 components for both solutions are negligible.
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illuminated with a focused beam of light.
In all simulations, the light propagates in the +ẑ direction. In Figs. 4 and 5, the results of a

silver sphere with a 50 nm radius are presented for radial and linear polarizations, respectively.
The half beam angle of the optical lens is 60◦. In Figs. 4 and 5, |Ex|2 and |Ez|2 are plotted. The
|Ey|2 component was negligible for both linear and radial polarization. The Mie series solution
agrees well with the FEM results. For the 50 nm sphere the results for radial polarization and
linear polarization are very similar, except for a 90 ◦ rotation, which is consistent with the di-
rection of the incident field at the focus, as shown in Figs. 1 and 2. In this case the sphere is too
small to interact with field components in other directions.

The results for a silver sphere with a 250 nm radius is illustrated in Figs. 6 and 7 for radial and
linear polarizations, respectively. The results again show agreement. The electromagnetic field
distributions and the locations of maxima and minima are similar, especially for radially polar-
ized wave. The amplitude of the electromagnetic field is in agreement both in the x̂-direction
and the ẑ-direction for radially polarized light. Although the amplitude of the electromagnetic
wave in ẑ-direction is similar for linear polarization, there is some difference in the amplitude
of the x̂-component for linear polarization.

In the previous set of results for a 50 nm sphere in Figs. 4 and 5, we observed that the results
of the radial and linear polarizations were similar, except for the 90 ◦ rotation. However, this
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Fig. 6. Interaction of a radially polarized focused beam with a silver sphere with a 250 nm
radius. The total electric field is plotted on the x̂-ẑ plane. (a) Solution using Mie series for
|Ex (x,y)|2, (b) FEM solution for |Ex (x,y)|2, (c) Solution using Mie series for |Ez (x,y)|2,
(d) FEM solution for |Ez (x,y)|2. |Ey (x,y)|2 components for both solutions are negligible.
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Fig. 7. Interaction of a linearly polarized focused beam with a silver sphere with a 250 nm
radius. The total electric field is plotted on the x̂-ẑ plane. (a) Solution using Mie series for
|Ex (x,y)|2, (b) FEM solution for |Ex (x,y)|2, (c) Solution using Mie series for |Ez (x,y)|2,
(d) FEM solution for |Ez (x,y)|2. |Ey (x,y)|2 components for both solutions are negligible.

similarity is not observed for the 250 nm sphere. For the 250 nm sphere case in Figs. 6 and 7, the
results for the radial and linear polarizations are not rotated versions of each other. As the sphere
gets larger, the nanoparticle at the focal area is more affected by the wide range of k vectors. The
larger sphere feels the effect of various k vectors of the incident field outside the focal point,
producing different electric field distributions in the scattered field. In the area around the focus,
the main contribution for the linear and radial polarized light comes from the x-component
and z-components, respectively. As shown in Figs. 1 and 2, the x-component for the linear
polarization and the z-component of the radial polarization are similar. The other polarization
components are small at the focus, therefore, a very small sphere does not feel the impact of
these components. However, as the sphere becomes larger, it starts to feel the effect of the other
polarization components. As shown in Figs. 1 and 2, the other polarization components have
differences for linear and radial polarizations, which result in different response of the sphere
for linear and radial polarizations. The amplitude of the |E z(x,z)|2 component is stronger than
the |Ex(x,z)|2 component.

In the analytical solution, the fields are represented using different spherical harmonics. The
electromagnetic fields inside and outside the sphere in a Mie series solution is represented
using different spherical harmonics. The continuity of the fields at the spherical boundary is
enforced by the boundary conditions of the Maxwell’s equations. Therefore, it is crucial to
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Fig. 8. Interaction of a radially polarized focused beam with a dielectric sphere with a 250
nm radius. Dielectic index of the sphere is 2. The total electric field is plotted on the x̂-
ẑ plane. (a) Solution using Mie series for |Ex (x,y)|2, (b) FEM solution for |Ex (x,y)|2,
(c) Solution using Mie series for |Ez (x,y)|2, (d) FEM solution for |Ez (x,y)|2. |Ey (x,y)|2
components for both solutions are negligible.

check the validity of the results both inside and outside the sphere. Due to small skin-depth of
metals, the electric field does not penetrate much into metallic spheres as shown in Figs. 4-7.
It is, therefore, crucial to check the implementation inside the sphere for the analytical result
by comparing it with the FEM. To test the electric field distributions inside the sphere, the
interaction of a focused beam of light with a sphere with a radius of 250 nm and a dielectric
index of 2 was calculated. Similar to the previous set of calculations, the half beam angle of the
optical lens is 60◦. Figures 8 and 9 illustrate the electric field distributions in the x̂-ẑ plane for
radial and linear polarized incident light, respectively. The results are in agreement.

5. Conclusion

In this study, the interaction of spherical nanoparticles with highly focused incident beams was
modeled using Richards-Wolf theory, which provides an accurate representation for a highly
focused beam near the focus of an aplanatic lens. Both analytical and FEM-based models were
developed to study this interaction. Formulations were given for both linearly and radially po-
larized focused beams. Analytical model and results in this study can be used by other scientists
to validate more complicated 3-D modeling tools, such as FDTD and FEM involving linear and
radial polarizations. In this study, the analytical model was also utilized to validate a 3-D FEM
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Fig. 9. Interaction of a linearly polarized focused beam with a dielectic sphere with a 250
nm radius. Dielectic index of the sphere is 2. The total electric field is plotted on the x̂-
ẑ plane. (a) Solution using Mie series for |Ex (x,y)|2, (b) FEM solution for |Ex (x,y)|2,
(c) Solution using Mie series for |Ez (x,y)|2, (d) FEM solution for |Ez (x,y)|2. |Ey (x,y)|2
components for both solutions are negligible.

solution. There has been increasing interest in radially polarized focused beams to excite sur-
face plasmons on nanoparticles. The tools developed in this study are crucial to validate and
analyze the interaction of particles with linear and radial polarizations.
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