
A New Tower Over Cubic Finite Fields

Alp Bassa∗, Arnaldo Garcia†‡and Henning Stichtenoth∗

We present a new explicit tower of function fields (Fn)n≥0 over the finite
field with ` = q3 elements, where the limit of the ratios (number of rational
places of Fn)/(genus of Fn) is bigger or equal to 2(q2 − 1)/(q + 2). This
tower contains as a subtower the tower which was introduced by Bezerra–
Garcia–Stichtenoth (see [3]), and in the particular case q = 2 it coincides
with the tower of van der Geer–van der Vlugt (see [12]). Many features of
the new tower are very similar to those of the optimal wild tower in [8] over
the quadratic field Fq2 (whose modularity was shown in [6] by Elkies).

1 Introduction

Let F/F` be an algebraic function field of one variable whose full constant field is the
finite field F` of cardinality `. We denote by g(F ) the genus and by N(F ) the number
of rational places (i.e., places of degree one) of F/F`. The classical Hasse–Weil Theorem
states that N(F ) ≤ ` + 1 + 2g(F )

√
`.

Ihara [13] was the first to observe that this inequality can be improved substantially
if the genus of F is large with respect to `. He introduced the real number

A(`) := lim sup
g(F )→∞

N(F )
g(F )

,

where F runs over all function fields over F`. This number A(`) is of fundamental
importance to the theory of function fields over a finite field, since it gives information
about how many rational places a function field F/F` of large genus can have. While
the Hasse–Weil Theorem gives that A(`) ≤ 2

√
`, Ihara showed that A(`) ≤

√
2` for any

` and that A(`) ≥
√

`− 1 for ` a square. Later Drinfel’d and Vlăduţ [4] showed that

A(`) ≤
√

`− 1 for any `. (1)

∗Sabancı University, MDBF, Orhanlı, 34956 Tuzla, İstanbul, Turkey
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Hence we have the equality A(`) =
√

`− 1 for ` a square (see also [5], [7], [17]).
Much less is known if ` is not a square. One knows that for any ` (see Serre [15])

A(`) ≥ c · log `, for some constant c > 0.

For ` = p3 (p a prime number), the best known lower bound for A(`) is due to Zink [18]:

A(p3) ≥ 2(p2 − 1)
p + 2

. (2)

Zink obtained this result using degenerations of Shimura modular surfaces. Zink’s bound
was generalized by Bezerra, Garcia and Stichtenoth [3] who showed that

A(q3) ≥ 2(q2 − 1)
q + 2

(3)

holds for all prime powers q. For more information and references concerning Ihara’s
quantity A(`) we refer to the recent survey article [11].

In order to obtain lower bounds for A(`), it is natural to study towers of function
fields; i.e., one considers sequences G = (G0, G1, G2, . . .) of function fields Gi over F`

with G0 ⊆ G1 ⊆ G2 ⊆ . . . such that g(Gi) →∞. It is easy to see that the limit

λ(G) := lim
i→∞

N(Gi)
g(Gi)

always exists (see [8]), and it is clear that 0 ≤ λ(G) ≤ A(`).
A particularly interesting example is the tower H = (H0,H1,H2, . . .) over the field F`

with ` = q2, which is defined recursively as follows (see [8]): H0 = F`(u0) is the rational
function field, and for all i ≥ 0 one considers the field Hi+1 = Hi(ui+1) with

uq
i+1 + ui+1 =

uq
i

uq−1
i + 1

. (4)

This tower over Fq2 has the limit λ(H) = q − 1 =
√

` − 1, and therefore it attains the
Drinfel’d–Vlăduţ bound (1). Elkies [6] has shown that H is in fact a modular tower.

In [3] the following tower E = (E0, E1, E2, . . .) over a cubic field F` with ` = q3 is
considered: again E0 = F`(v0) is the rational function field, and for i ≥ 0 one considers
the field Ei+1 = Ei(vi+1) with

1− vi+1

vq
i+1

=
vq
i + vi − 1

vi
. (5)

The limit λ(E) satisfies the inequality (thus proving Inequality (3)):

λ(E) ≥ 2(q2 − 1)
q + 2

. (6)

2



The tower H over the quadratic field F` with ` = q2 which is defined by Eqn. (4) has
some nice features which allow a rather simple proof of the equality λ(H) = q − 1, see
[9]. The most important one is that all extensions Hi+1/Hi are Galois of degree q, and
for all places Q|P with ramification index e = e(Q|P ) > 1 in Hi+1/Hi, the different
exponent is d(Q|P ) = 2(e− 1).

In contrast, the tower E over the cubic field F` with ` = q3 which is defined by Eqn. (5)
is much more complicated. Here (for q 6= 2) the extensions Ei+1/Ei are not even Galois,
and there occurs tame and also wild ramification in Ei+1/Ei. The determination of the
genus of En in [3] requires long and rather technical calculations. In [1] these calculations
were replaced by a structural argument, thus obtaining a simpler proof of Inequality (6)
without the explicit determination of g(En). In [14], Ihara provides a construction of an
infinite Galois extension, which contains the tower E and exhibits the splitting places of
E in a more natural way. He also introduces a higher order differential which is invariant
under the action of the associated infinite Galois group.

In this paper we present a new tower F over the cubic field F` with ` = q3, whose
limit also satisfies the inequality λ(F) ≥ 2(q2−1)/(q+2) and which has nicer properties
than the tower given by the recursion in Eqn. (5). This new tower F = (F0, F1, F2, . . .)
over F` is defined as follows: F0 = F`(x0) is the rational function field over F`, and for
n ≥ 0 one sets Fn+1 = Fn(xn+1) with

(xq
n+1 − xn+1)q−1 + 1 =

−x
q(q−1)
n

(xq−1
n − 1)q−1

. (7)

We would like to point out that our proof, that the limit of this new tower also satisfies
the inequality λ(F) ≥ 2(q2 − 1)/(q + 2), is much easier, shorter and less computational
than the proofs in [3] and [1] for the tower E . Moreover, since we show that E is a
subtower of F we also get a new and simpler proof of Inequality (6); in fact, it follows
from [8] that λ(E) ≥ λ(F) when E is a subtower of F .

Another remark is that while for the two towers over Fq2 presented in [7] and [8] the
subtower (i.e., the tower H in [8]) was easier to handle, for the two towers E and F over
Fq3 the supertower (i.e., the tower F) turns out to be much easier to handle.

Finally we note that the tower F coincides with the van der Geer–van der Vlugt tower
in [12] when q = 2, and also that the towers F and H have surprising similarities (see
Section 8).

This paper is organized as follows: In Sec. 2 we introduce the sequence of function
fields F0, F1, F2, . . . over a field K ⊇ Fq recursively given by Eqn. (7) and we show in
Theorem 2.2 that they define a tower F over K (i.e., F0 ( F1 ( F2 ( . . ., and K is the
full constant field of all fields Fn). In Sec. 3 it is shown that for K = Fq3 there exist q3−q
rational places of F0 which split completely in all extensions Fn/F0, thus providing many
rational places of the function fields Fn/Fq3 . In Sec. 4 and Sec. 5 we study ramification
in the first steps F0 ⊆ F1 ⊆ F2 of the tower. We note that the methods in Sec. 4 and
Sec. 5 involve just simple calculations about ramification in certain Galois extensions
K(x)/K(w) of rational function fields. Section 6 is the core of this paper. The results
from Sec. 4 and Sec. 5 are used in Sec. 6 to give an upper bound for the genus of the

3



n-th function field Fn of the tower (see Thm. 6.5). The main tool here is a variant of
Abhyankar’s Lemma (see Lemma 6.2) dealing with ramification in composites of certain
wildly ramified extensions. Putting together the results from Sec. 3 and Sec. 6 we obtain
in Sec. 7 the inequality λ(F) ≥ 2(q2−1)/(q +2) for K = Fq3 , which is the main result of
the paper. Finally, in Sec. 8 we point out some surprising analogies between the tower
F over Fq3 and the tower H over Fq2 which is defined by Eqn. (4). We also show that
the above-mentioned tower E is a subtower of F .

NOTATIONS : We consider function fields F/K where K is the full constant field of
F . In most cases K will be a finite field or the algebraic closure Fq of a finite field.
We denote by P(F ) the set of places of F/K. For P ∈ P(F ), we will denote by vP the
corresponding discrete valuation of F/K and by OP the valuation ring of P . For z ∈ OP

we denote by z(P ) the residue class of z in OP /P . We denote by deg(P ) the degree of
P . In particular, if P is a place of degree one, then z(P ) ∈ K.

For a finite separable extension E of F and a place Q ∈ P(E) we will denote by Q|F
the restriction of Q to F . We write Q|P if the place Q ∈ P(E) lies over the place
P ∈ P(F ). In this situation, we denote by e(Q|P ) and d(Q|P ) the ramification index
and the different exponent of Q|P , respectively. The place P ∈ P(F ) is said to be totally
ramified in E/F if there is a place Q ∈ P(E) above P with e(Q|P ) = [E : F ]. It is said
to be completely splitting in E/F if there are n = [E : F ] distinct places of E above P .

Let E/F be a Galois extension of function fields, let P ∈ P(F ) and Q ∈ P(E) above
the place P . We say that Q|P is weakly ramified if the second ramification group
G2(Q|P ) = 1; in other words, if e(Q|P ) = e0 ·e1 where (e0, p) = 1 and e1 = pj is a power
of the characteristic p of F , then d(Q|P ) = (e0e1 − 1) + (e1 − 1).

If F = K(x) is a rational function field, we will write (x = α) for the place of F which
is the zero of x− α (where α ∈ K), and (x = ∞) for the pole of x in K(x)/K.

2 The tower

Let K be a field of characteristic p > 0, let q be a power of p and assume that Fq ⊆ K.
We study the sequence F = (F0, F1, F2, . . .) of function fields Fi/K which is defined
recursively as follows: F0 = K(x0) is the rational function field, and for n ≥ 0 let
Fn+1 = Fn(xn+1) where xn+1 satisfies the equation over Fn below:

(xq
n+1 − xn+1)q−1 + 1 =

−x
q(q−1)
n

(xq−1
n − 1)q−1

. (8)

Remark 2.1. We set
f(T ) := (T q − T )q−1 + 1 ∈ K[T ]. (9)

Then Eqn. (8) can be written as

f(xn+1) =
1

1− f(1/xn)
. (10)
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We also remark that f(T ) = (T q2 − T )/(T q − T ), hence the roots of f(T ) are exactly
the elements β ∈ Fq2\Fq. This property of the polynomial f(T ) will play an important
role in Sections 3 and 4.

Theorem 2.2. Let F be the sequence of function fields Fn over K which is defined by
Eqn. (8). Then F is a tower over K, and more precisely the following hold:

(i) The extensions Fn+1/Fn are Galois for all n ≥ 0.

(ii) [F1 : F0] = q(q − 1) and [Fn+1 : Fn] = q for all n ≥ 1.

(iii) K is the full constant field of Fn, for all n ≥ 0.

The proof of Thm. 2.2 is given in several steps.

Lemma 2.3. Fn+1/Fn is Galois and [Fn+1 : Fn] divides q(q − 1), for all n ≥ 0.

Proof. We set

un :=
−x

q(q−1)
n

(xq−1
n − 1)q−1

. (11)

Then xn+1 is a root of the polynomial fn(T ) := (T q−T )q−1 +1−un ∈ Fn[T ]. The other
roots of fn(T ) are the elements axn+1 + b with a ∈ F×q and b ∈ Fq. Therefore Fn+1 is
the splitting field of fn(T ) over Fn and the extension Fn+1/Fn is Galois.

Let Gn+1 be the Galois group of Fn+1/Fn. Every element σ ∈ Gn+1 acts on the
function xn+1 as σ(xn+1) = aσxn+1 + bσ, and the map

σ 7→
(

aσ 0
bσ 1

)
is a monomorphism of Gn+1 into the group of invertible 2 × 2-matrices over Fq of the

form
(

a 0
b 1

)
. This group has order q(q−1), and hence ord(Gn+1) divides q(q−1).

Lemma 2.4. Let P0 = (x0 = ∞) be the pole of x0 in F0 and let Pn be a place of Fn

above P0. For i = 1, . . . , n we set Pi := Pn|Fi and e(i) := e(Pi|Pi−1). Then the place Pi

is a pole of xi. Moreover, vPi(xi) divides (q − 1)i, and e(i) ≡ 0 mod q, for 1 ≤ i ≤ n.

Proof. Let ui ∈ Fi be defined as in Eqn. (11). We prove the lemma by induction. For
the case i = 1, we have vP1(u0) = e(1) · vP0(u0) = −e(1) · (q − 1). From the equation
(xq

1 − x1)q−1 + 1 = u0, it follows that vP1(x1) < 0 and therefore

vP1

(
(xq

1 − x1)q−1 + 1
)

= q · (q − 1) · vP1(x1).

We conclude that q · vP1(x1) = −e(1). To finish this case, notice that e(1) divides the
degree [F1 : F0], and [F1 : F0] divides q(q − 1) (by Lemma 2.3). Hence it follows that
vP1(x1) divides (q − 1) and that e(1) ≡ 0 mod q.
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Now we assume that vPi(xi) < 0 and vPi(xi) divides (q−1)i for some i ∈ {1, . . . , n−1}.
From Eqn. (11) we obtain vPi(ui) = (q − 1) · vPi(xi), hence

vPi+1(ui) = e(i+1) · (q − 1) · vPi(xi) < 0.

Since (xq
i+1 − xi+1)q−1 + 1 = ui, it follows that Pi+1 is a pole of xi+1 and

q(q − 1) · vPi+1(xi+1) = e(i+1) · (q − 1) · vPi(xi).

Now we finish as in the case i = 1; we conclude that e(i+1) ≡ 0 mod q and that
vPi+1(xi+1) divides (q − 1)i+1.

Lemma 2.5. [Fn+1 : Fn] ≡ 0 mod q for all n ≥ 0.

Proof. Follows directly from Lemmas 2.3 and 2.4.

Lemma 2.6. [F1 : F0] = q(q − 1), and K is the full constant field of F1.

Proof. By definition, F1 = K(x0, x1) with

(xq
1 − x1)q−1 + 1 =

−x
q(q−1)
0

(xq−1
0 − 1)q−1

= u0. (12)

It follows that
[K(x0) : K(u0)] = [K(x1) : K(u0)] = q(q − 1). (13)

From Eqn. (12) it is obvious that the place (u0 = 0) of K(u0) is totally ramified in the
extension K(x0)/K(u0). The place of K(x0) above (u0 = 0) is the place (x0 = 0), and
we have e((x0 = 0)|(u0 = 0)) = q(q − 1).

However, in the extension K(x1)/K(u0) the place (u0 = 0) is unramified, since the
polynomial (xq

1 − x1)q−1 + 1 does not have multiple roots. Let Q be a place of K(x1)
lying above (u0 = 0) and let R be a place of K(x0, x1) above Q. It follows from above
that e(R|Q) = q(q− 1). Therefore [K(x0, x1) : K(x1)] = q(q− 1), and K is algebraically
closed in K(x0, x1) = F1 (as there is a place which is totally ramified in F1/K(x1)). The
assertion [F1 : F0] = q(q − 1) follows since [F1 : F0] = [F1 : K(x1)] by Eqn. (13).

The next lemma shows a striking property of the recursion in Eqn. (8) for n ≥ 1. It
gives a simple Artin-Schreier equation for the extension Fn+1/Fn of degree q.

Lemma 2.7. For each n ≥ 1 there is some µ ∈ F×q such that

xq
n+1 − xn+1 = µ ·

xq
n−1

(xq−1
n−1 − 1) · (xq−1

n − 1)
.

Proof. By Eqn. (8) we have

(xq
n+1 − xn+1)q−1 + 1 =

−x
q(q−1)
n

(xq−1
n − 1)q−1

and (xq
n − xn)q−1 + 1 =

−x
q(q−1)
n−1

(xq−1
n−1 − 1)q−1

. (14)
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Hence we get

(xq
n+1 − xn+1)q−1 =

−x
q(q−1)
n

(xq−1
n − 1)q−1

− 1 =
−

(
(xq

n − xn)q−1 + 1
)

(xq−1
n − 1)q−1

=
x

q(q−1)
n−1

(xq−1
n−1 − 1)q−1 · (xq−1

n − 1)q−1
=

(
xq

n−1

(xq−1
n−1 − 1) · (xq−1

n − 1)

)q−1

.

Proof of Theorem 2.2 . Putting together the results of the lemmas above, one gets the
assertions of Thm. 2.2.

3 Splitting places in the tower over K = F` for ` = q3

In this section we consider the tower F = (F0, F1, F2, . . .) which was introduced in Sec. 2,
over the field K = F` with ` = q3. We will show that many rational places of the field
F0 = F`(x0) split completely in F ; i.e., they split completely in all extensions Fn/F0.
This means that the function fields Fn/F` have “many” rational places. As in Sec. 2, let

f(T ) = (T q − T )q−1 + 1 ∈ Fq[T ]. (15)

For q = 2 we have obviously that f(T )− c is separable for all elements c ∈ F2.

Lemma 3.1. Let c ∈ Fq be an element of the algebraic closure of Fq. Then

f(T )− c is inseparable if and only if q 6= 2 and c = 1.

For an element β ∈ Fq we have that f(β) = 1 if and only if β belongs to Fq.

Proof. Just notice that the derivative of f(T ) satisfies f ′(T ) = (T q − T )q−2.

Lemma 3.2. For an element β ∈ Fq we have that f(β) = 0 if and only if β ∈ Fq2 \ Fq.

Proof. Just notice that we have (see Rem. 2.1)

f(T ) = (T q2 − T )/(T q − T ). (16)

Now we consider the recursive equation for the tower F (see Eqn. (10)):

f(Y ) =
1

1− f(1/X)
. (17)

We will show that if X = α belongs to Fq3 \Fq then all solutions Y = β ∈ Fq of Eqn. (17)
with X = α are such that β ∈ Fq3 \ Fq. The assertion that β /∈ Fq follows directly from
Eqn. (17) and the lemmas above.

Using Eqn. (16) we have:
1

1− f(T )
=

T − T q

T q2 − T q
. (18)
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Lemma 3.3. For an element β ∈ Fq we have that

f(β)q =
1

1− f(β)
if and only if β ∈ Fq3 \ Fq.

Proof. Straightforward using Eqn. (16) and Eqn. (18).

Eqn. (17) can also be written as below:

f(
1
X

) = 1− 1
f(Y )

. (19)

Consider now a solution (α, β) of Eqn. (17) with α ∈ Fq3 \ Fq. Then 1/α ∈ Fq3 \ Fq. We
have:

f(β) =
1

1− f( 1
α)

= f(
1
α

)q = 1− 1
f(β)q

.

In the last two equalities above we have used Lemma 3.3 and Eqn. (19), respectively.
Hence we obtained that f(β)q = 1/(1− f(β)); i.e., β ∈ Fq3 \ Fq.

We have thus proved the main result of this section:

Theorem 3.4. Let F = (F0, F1, . . . ) be the tower over Fq3 given recursively by Eqn. (17).
Then the places (x0 = α) with α ∈ Fq3 \ Fq split completely in all extensions Fn/F0. In
particular the number of Fq3-rational places satisfies:

N(Fn) ≥ (q3 − q) · [Fn : F0] for all n ∈ N.

4 The extensions K(x)/K(w) and K(x)/K(u)

Throughout this section, K is a field with Fq2 ⊆ K. Let K(x)/K be a rational function
field over K. We will consider certain subfields K(w) ⊆ K(x) and K(u) ⊆ K(x) which
are related to the recursive definition of the tower F . Detailed information about ram-
ification in K(x)/K(w) and in K(x)/K(u) will enable us to study in Sec. 5 and Sec. 6
the ramification behaviour in the tower F .

As in Sec. 2 we consider the polynomial f(T ) = (T q − T )q−1 + 1 ∈ K[T ], and we set

w := f(x) = (xq − x)q−1 + 1 ∈ K(x). (20)

Lemma 4.1. (i) The extension K(x)/K(w) is Galois of degree q(q − 1).

(ii) The place (w = ∞) of K(w) is totally ramified in K(x)/K(w); the place above it is
the place (x = ∞). We have d((x = ∞)|(w = ∞)) = q2−2; i.e., (x = ∞)|(w = ∞)
is weakly ramified.

(iii) Above the place (w = 1) there are the q places (x = θ) of K(x) with θ ∈ Fq, with
ramification index e((x = θ)|(w = 1)) = q − 1.

(iv) All other places of K(w) are unramified in K(x)/K(w).
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(x = ∞)

e=q(q−1)

(x = θ) with θ ∈ Fq (x = β) with β ∈ Fq2\Fq

(w = ∞) (w = 1)

e=q−1

......

&&&&&

!!!!!

...
e=q−1

������
(w = 0)

e=1

......

&&&&&

!!!!!

...
e=1

������

Figure 1: Ramification and splitting in K(x)/K(w).

(v) The places above (w = 0) are exactly the places (x = β) with β ∈ Fq2\Fq.

Proof. i) One checks easily that K(w) is the fixed field of the following group H of
automorphisms of K(x)/K:

H := {σ ∈ Aut(K(x)/K) | σ(x) = ax + b, a ∈ F×q , b ∈ Fq}.

ii) It is clear from Eqn. (20) that (x = ∞) is the only place of K(x) lying above
(w = ∞), and that the ramification index is e((x = ∞)|(w = ∞)) = q(q − 1). Since
K(x)/K(w) is Galois, it follows from ramification theory (cf. [16, Sec. III.8]) that
d((x = ∞)|(w = ∞)) ≥ (q(q − 1) − 1) + (q − 1) = q2 − 2. We will show below that
equality holds; i.e., that (x = ∞)|(w = ∞) is weakly ramified.

iii) This assertion is obvious from the equation w − 1 = (xq − x)q−1.
iv) It follows from above that the degree of the different Diff(K(x)/K(w)) satisfies

deg Diff(K(x)/K(w)) ≥ d((x = ∞)|(w = ∞)) +
∑
θ∈Fq

d((x = θ)|(w = 1))

≥ (q2 − 2) + q(q − 2) = 2(q2 − q − 1).

On the other hand, by Hurwitz genus formula for K(x)/K(w) we have

deg Diff(K(x)/K(w)) = −2 + 2[K(x) : K(w)] = 2(q2 − q − 1).

Now the assertions iv) and ii) follow immediately.
v) Observing that (see Eqn. (16)) w = f(x) = (xq2 − x)/(xq − x), we see that the

places above (w = 0) are exactly the places (x = β) with β ∈ Fq2\Fq.

Next we consider the subfield K(u) ⊆ K(x) where u is defined by

u :=
−xq(q−1)

(xq−1 − 1)q−1
. (21)

Lemma 4.2. (i) The extension K(x)/K(u) is Galois of degree q(q − 1).

(ii) The place (u = 0) of K(u) is totally ramified in K(x)/K(u); the place above it is
the place (x = 0). We have d((x = 0)|(u = 0)) = q2 − 2; i.e., (x = 0)|(u = 0) is
weakly ramified.
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(iii) Above the place (u = ∞) lie exactly q places P of K(x); namely the places (x = ∞)
and (x = α) with α ∈ F×q . We have e(P |(u = ∞)) = q − 1.

(iv) No other place of K(u) is ramified in K(x).

(v) The places above (u = 1) are exactly the places (x = β) with β ∈ Fq2\Fq.

(x = 0)

e=q(q−1)

(x = ∞), (x = α) with α ∈ F×q (x = β) with β ∈ Fq2\Fq

(u = 0) (u = ∞)

e=q−1

------

&&&&&

!!!!!

...
e=q−1

������
(u = 1)

e=1

------

&&&&&&

!!!!!

...

e=1

������

Figure 2: Ramification and splitting in K(x)/K(u).

Proof. Note that u = 1/(1 − f(1/x)) by Rem. 2.1 and therefore f(1/x) = (u− 1)/u.
The result follows directly from Lemma 4.1 with the change of variables

x 7→ 1/x and w 7→ (u− 1)/u.

5 The fields F1 and F2

In this section we assume again that Fq2 ⊆ K. We want to study ramification in the first
two steps of the tower F over K. So we consider the fields F0 = K(x0), F1 = K(x0, x1)
and F2 = K(x0, x1, x2) where

(xq
1 − x1)q−1 + 1 =

−x
q(q−1)
0

(xq−1
0 − 1)q−1

and (xq
2 − x2)q−1 + 1 =

−x
q(q−1)
1

(xq−1
1 − 1)q−1

. (22)

Lemma 5.1. The extensions F1/K(x0) and F1/K(x1) are both Galois of degree q(q−1).

Proof. We proved the assertion for F1/K(x0) in Thm. 2.2. As in Eqn. (11) we set

u0 :=
−x

q(q−1)
0

(xq−1
0 − 1)q−1

.

The field F1 is the compositum of K(x0) and K(x1) over K(u0) as in Figure 3. By
Lemma 4.2 the extension K(x0)/K(u0) is Galois, hence F1/K(x1) is Galois as well.

Lemma 5.2. Let Ω := Fq2 ∪ {∞}.

(i) For a place P ∈ P(F1) the following are equivalent:

10



K(x0)

�����

??
??

?

F1 = K(x0, x1)

??
??

?

K(u0)

�����

K(x1)

Figure 3: The extension F1/K(u0)

a) P |K(x0) = (x0 = ω) for some ω ∈ Ω.

b) P |K(x1) = (x1 = ω′) for some ω′ ∈ Ω.

(ii) If a place Q ∈ P(F1) does not lie above a place (x0 = ω) with ω ∈ Ω then Q is
unramified over K(x0) and over K(x1).

(iii) The ramification indices of the places (x0 = ω) and (x1 = ω′) with ω, ω′ ∈ Ω in the
extensions F1/K(x0) and F1/K(x1) are as depicted in Figure 4. All places of F1

are weakly ramified over K(x0) and over K(x1).

• •

(x0 = 0)

e=1

������������������
(x1=β)

β∈Fq2\Fq

e=q(q−1)

?????????????????

(x0 = ∞)

e=q

������������������
(x1 = ∞)

e=1

??????????????????

• •

(x0=α)

α∈F×q

e=q

�����������������

(x1 = ∞)

e=1

??????????????????
(x0=β)

β∈Fq2\Fq

e=q−1

�����������������
(x1=θ)
θ∈Fq

e=1

?????????????????

Figure 4: Ramification in F1/K(x0) and in F1/K(x1).

Proof. According to the notations in Sec. 4 we write u0 := −x
q(q−1)
0 /(xq−1

0 − 1)q−1 and
w1 := (xq

1 − x1)q−1 + 1. Hence u0 = w1 by Eqn. (22). We consider the diagram of fields

11



in Figure 3 where all extensions are Galois of degree q(q − 1). We have

P |K(x0) = (x0 = ω) for some ω ∈ Ω
⇔ P |K(u0) ∈ {(u0 = 0), (u0 = 1), (u0 = ∞)} (by Lemma 4.2)
⇔ P |K(x1) = (x1 = ω′) for some ω′ ∈ Ω (by Lemma 4.1).

By Lemma 4.1 and Lemma 4.2 we know that only the places (u0 = 0), (u0 = 1)
and (u0 = ∞) are ramified in K(x0)/K(u0) or in K(x1)/K(u0). We will consider here
only the case (u0 = ∞); the other two cases are similar (even easier). Denote by
Q a place of F1 above (u0 = ∞). The situation is depicted in Figure 5. It follows

(x0=∞) or

(x0=α),α∈F×q

�������

e=q−1 ??
??

?

Q

??
??

??
?

(u0 = ∞)
e=q(q−1)

��������

(x1 = ∞)

Figure 5: Ramification in F1/K(u0)

from Abhyankar’s Lemma (see [16, Prop. III.8.9]) that Q is unramified over K(x1) and
that the ramification index of Q over K(x0) is e = q. Since (x1 = ∞)|(u0 = ∞) is
weakly ramified by Lemma 4.1, it follows from the transitivity of different exponents in
F1 ⊇ K(x0) ⊇ K(u0) that Q is weakly ramified over K(x0).

Lemma 5.3. The extensions F2/K(x0, x1) and F2/K(x1, x2) are Galois extensions of
degree q. All places that are ramified in F2/K(x0, x1) or in F2/K(x1, x2) are totally and
weakly ramified.

Proof. The field F2 is the compositum of K(x0, x1) and K(x1, x2) over K(x1). Since the
extensions K(x0, x1)/K(x1) and K(x1, x2)/K(x1) are Galois by Lemma 5.1, it is clear
that F2/K(x0, x1) and F2/K(x1, x2) are Galois. The assertion about the degrees follows
from Lemma 2.7. Now we consider a place Q ∈ P(F2) which is ramified in F2/K(x1, x2).
Then the place P := Q|K(x0,x1) is ramified over K(x1) and therefore Q|K(x1) = (x1 = β)
with some β ∈ Fq2 \ Fq, by Lemma 5.2. So we have the situation depicted in Figure 6,
where R denotes the restriction of Q to K(x1, x2).

As in the proof of Lemma 5.2, we use Abhyankar’s lemma to get that e(Q|R) = q,
and the transitivity of different exponents to get that d(Q|R) = 2 · (q − 1).

Now if Q is a place of F2 which is ramified over F1, then one also concludes (and it is
simpler) that it is totally and weakly ramified over F1.

Remark 5.4. It is clear that all statements in this section remain valid when the fields
K(x0), K(x0, x1) and K(x0, x1, x2) are replaced by the fields K(xn), K(xn, xn+1) and
K(xn, xn+1, xn+2), respectively.
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K(x0, x1)

�����

??
??

?

K(x0, x1, x2)

??
??

?

K(x1)

�����

K(x1, x2) P

�������

e=q(q−1)
??

??
??

Q

??
??

??
?

(x1=β)
β∈Fq2\Fq

e=q−1

�����

R

Figure 6:

6 The genus of Fn

In order to estimate the limit λ(F) of the tower F over Fq3 we need an upper bound
for the genus of the n-th function field Fn; therefore one has to study ramification in
the extension Fn/F0. Without changing the ramification behaviour (i.e., ramification
index and different exponent) and the genus, we can extend the constant field such that
it contains Fq2 . So we assume in this section that Fq2 ⊆ K and denote char(K) = p.

A place P ∈ P(F0) is said to be ramified in the tower F if P is ramified in Fm/F0 for
some m ≥ 1, and the ramification locus V (F/F0) is defined as

V (F/F0) := {P ∈ P(F0) | P is ramified in F}.

Lemma 6.1. The ramification locus of F over F0 satisfies

V (F/F0) ⊆ {(x0 = ω) | ω ∈ Fq2 or ω = ∞}.

Proof. Assume that a place Q ∈ P(Fn) is ramified in Fn+1/Fn. Then the restriction
Q|K(xn) ramifies in the extension K(xn, xn+1)/K(xn). We conclude from Lemma 5.2 ii)
that Q|K(xn) = (xn = ω′) with ω′ ∈ Fq2 ∪ {∞}. By induction it follows from Lemma 5.2
i) that Q|F0 = (x0 = ω) with ω ∈ Fq2 ∪ {∞}. This proves the lemma. We remark that
in fact V (F/F0) = {(x0 = ω) | ω ∈ Fq2 or ω = ∞} but we do not need this here.

In the proof of Lemma 6.3 below, the following result is crucial:

Lemma 6.2. Consider an extension E/F of function fields over K such that E = E1 ·E2

is the composite field of two intermediate fields F ⊆ Ei ⊆ E, i = 1, 2 and the extensions
E1/F and E2/F are Galois p-extensions. Let Q be a place of E, and let Qi := Q|Ei and
P := Q|F be the restrictions of Q. Suppose that Q1|P and Q2|P are weakly ramified.
Then Q|Q1 and Q|Q2 are also weakly ramified.

Proof. See [10, Prop. 1.10] and also [9, Lemma 1].

A Galois extension E/F is weakly ramified if all places are weakly ramified in E/F .

Lemma 6.3. Let n ≥ 1. Then the extension Fn+1/Fn is weakly ramified.
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Proof. For 0 ≤ i ≤ j ≤ n + 1 we define the subfield Ei,j ⊆ Fn+1 by

Ei,j := K(xi, xi+1, . . . , xj).

The extensions Ei,i+2/Ei,i+1 and Ei,i+2/Ei+1,i+2 are weakly ramified Galois p-extensions
by Lemma 5.3 (see Figure 7). By induction it follows for all j ≥ i+2 that Ei,j/Ei,j−1 and
Ei,j/Ei+1,j are weakly ramified Galois p-extensions (using Lemma 6.2). Since Fn = E0,n

and Fn+1 = E0,n+1, the assertion of Lemma 6.3 follows.

Lemma 6.4. Let E1/F be a Galois extension of function fields over K and let E/E1 be
a finite and separable extension. Let Q be a place of the field E and denote by P1 and
P the restrictions of Q to E1 and F , respectively. Suppose that we have:

(i) e(Q|P1) is a power of p = char(K) and d(Q|P1) = 2 e(Q|P1)− 2.

(ii) The place P1 is weakly ramified over P .

Then the different exponent d(Q|P ) satisfies

d(Q|P ) = (e0e1 − 1) + (e1 − 1) < e(Q|P ) ·
(
1 +

1
e0

)
,

where e(Q|P ) = e0e1 with (p, e0) = 1 and e1 is a p-power.

Proof. Straightforward, using transitivity of different exponents.

F4 = E0,4

??
??

??

�����

E1,4

??
??

?

�����

E2,4 = K(x2, x3, x4)

??
??

?

??
??

?

�����

E3,4 = K(x3, x4)

�����
�����

F3 = E0,3

??
??

??

�����

E1,3

??
??

??

??
??

??

�����

E2,3

�����
�����

F2 = E0,2

??
??

??

??
??

??

�����

E1,2

�����
�����

F1 = E0,1

�����
�����

Figure 7: Double lines denote weakly ramified Galois p-extensions

Theorem 6.5. The genus of the n-th function field of the tower F = (F0, F1, F2, . . .)
defined by Eqn. (8), satisfies

g(Fn) ≤ q2 + 2q

2
· [Fn : F0].
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Proof. Let n ≥ 1. First we observe that for a place Q ∈ P(Fn) and the restriction
P1 := Q|F1 of Q to F1 we have that

e(Q|P1) is a p-power and d(Q|P1) = 2e(Q|P1)− 2.

This follows from Lemma 6.3 and repeated applications of Lemma 6.4.
Now we consider the places P ∈ P(F0) which are in the ramification locus V (F/F0).

According to item (iii) of Lemma 5.2 we distinguish 2 cases:

Case 1: P = (x0 = θ) with θ ∈ Fq or P = (x0 = ∞).

By Lemma 5.2 and Lemma 6.4 we obtain∑
Q∈P(Fn)

Q|P

d(Q|P ) · deg Q <
∑

Q∈P(Fn)
Q|P

2e(Q|P ) · deg Q = 2[Fn : F0]. (23)

Case 2: P = (x0 = β) with β ∈ Fq2\Fq.

In this case, Lemma 5.2 and Lemma 6.4 yield∑
Q∈P(Fn)

Q|P

d(Q|P ) ·deg Q <
∑

Q∈P(Fn)
Q|P

(
1+

1
q − 1

)
e(Q|P ) ·deg Q =

q

q − 1
[Fn : F0]. (24)

There are q + 1 places P ∈ P(F0) as in Case 1, and q2 − q places as in Case 2. By
Hurwitz genus formula for the extension Fn/F0 we obtain

2g(Fn) ≤ −2[Fn : F0] + (q + 1) · 2[Fn : F0] + (q2 − q) · q

q − 1
[Fn : F0]

= (q2 + 2q)[Fn : F0].

7 The limit of the tower over K = F` with ` = q3

Putting together the results of the previous sections we obtain our main result:

Theorem 7.1. Let K = F` with ` = q3, and let F = (F0, F1, F2, . . .) be the tower over
K which is recursively defined by F0 = K(x0) and Fn+1 = Fn(xn+1), where

(xq
n+1 − xn+1)q−1 + 1 =

−x
q(q−1)
n

(xq−1
n − 1)q−1

for all n ≥ 0.

Then the limit λ(F) = limn→∞ N(Fn)/g(Fn) satisfies

λ(F) ≥ 2(q2 − 1)/(q + 2).

15



Proof. By Thm. 3.4 and Thm. 6.5 we have

N(Fn) ≥ (q3 − q) · [Fn : F0] and g(Fn) ≤ q2 + 2q

2
· [Fn : F0].

Hence
N(Fn)
g(Fn)

≥ (q3 − q) · 2
q2 + 2q

=
2(q2 − 1)

q + 2
for all n ≥ 0.

8 Remarks

We finish this paper with a few remarks.

Remark 8.1. Our tower F = (F0, F1, F2, . . .) over K = Fq3 bears remarkable analogy
to the tower H = (H0,H1,H2, . . .) over the quadratic field K = Fq2 which is defined
recursively by the equation

uq
i+1 + ui+1 =

uq
i

uq−1
i + 1

and which attains the Drinfel’d–Vlăduţ bound (1). The analogies between H and F
become even more evident if we substitute ui = ξyi with ξq−1 = −1; then the above
equation becomes yq

i+1 − yi+1 = −yq
i /(yq−1

i − 1). We now compare some features of the
towers F over Fq3 and H over Fq2 , see [8].

1) The tower H = (H0,H1,H2, . . .) is defined recursively over the field K = Fq2 by
H0 = K(y0) and Hi+1 = Hi(yi+1), where

yq
i+1 − yi+1 =

−yq
i

yq−1
i − 1

for all i ≥ 0. (25)

2) Setting h(T ) := T q − T , Eqn. (25) can be written as

h(yi+1) =
1

h(1/yi)
. (26)

3) The extensions Hi+1/Hi (for i ≥ 0) are weakly ramified Galois extensions of degree
[Hi+1 : Hi] = q.

4) The ramification locus of H over H0 is

V (H/H0) = {(y0 = ω) | ω ∈ Fq ∪ {∞}}.

5) The places (y0 = α) with α ∈ Fq2\Fq are completely splitting in the extensions
Hn/H0, for all n ≥ 0.

The analogous properties of the tower F are:
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1∗) The tower F = (F0, F1, F2, . . .) is defined recursively over the field K = Fq3 by
F0 = K(x0) and Fi+1 = Fi(xi+1), where

(xq
i+1 − xi+1)q−1 + 1 =

−x
q(q−1)
i

(xq−1
i − 1)q−1

for all i ≥ 0. (27)

2∗) Setting f(T ) := (T q − T )q−1 + 1, Eqn. (27) can be written as

f(xi+1) =
1

1− f(1/xi)
. (28)

3∗) The extensions Fi+1/Fi (for i ≥ 1) are weakly ramified Galois extensions of degree
[Fi+1 : Fi] = q.

4∗) The ramification locus of F over F0 is

V (F/F0) = {(x0 = ω) | ω ∈ Fq2 ∪ {∞}}.

5∗) The places (x0 = α) with α ∈ Fq3\Fq are completely splitting in the extensions
Fn/F0, for all n ≥ 0.

We also note that the polynomials h(T ) and f(T ) in Eqn. (26) and Eqn. (28) are
defined in a very similar manner:

6) The polynomial h(T ) ∈ Fq[T ] generates the fixed field of K(T ) under the group of
automorphisms

G = {σ : K(T ) → K(T )
∣∣ σ(T ) = T + b with b ∈ Fq}.

6∗) The polynomial f(T ) ∈ Fq[T ] generates the fixed field of K(T ) under the group of
automorphisms

G∗ = {σ : K(T ) → K(T )
∣∣ σ(T ) = aT + b with a ∈ F×q and b ∈ Fq}.

Another interesting observation is that the generators xi of the tower F satisfy

xq
i+2 − xi+2 =

−xq
i

(xq−1
i − 1)(xq−1

i+1 − 1)
(29)

for all i ≥ 0 (with an appropriate choice of the roots xi+1, xi+2 of Eqn. (27); see
Lemma 2.7). Compare with Eqn. (25).

Remark 8.2. The first explicit tower over a field with cubic cardinality ` = q3 which
attains the Zink bound (Inequality (2)) was found by van der Geer–van der Vlugt [12].
It is a tower over the field Fp3 with p = 2, recursively defined by the equation

x2
i+1 + xi+1 = xi + 1 +

1
xi

. (30)

This is the special case q = 2 of Eqn. (27) (after the change of variables xi → xi + 1).
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Remark 8.3. Again we consider the tower F = (F0, F1, F2, . . .) over K = Fq3 . We set

vi := − 1

xq−1
i − 1

for all i ≥ 0. (31)

It follows by straightforward calculations from Eqn. (27) that

1− vi+1

vq
i+1

=
vq
i + vi − 1

vi
, for all i ≥ 0. (32)

This means that F contains as a subtower the tower E = (E0, E1, E2, . . .) (see [3]) with
E0 = K(v0) and Ei+1 = Ei(vi+1), where vi+1 satisfies Eqn. (32) over Ei. Since the limit
of a subtower is at least as big as the limit of the tower itself (see [8]), we obtain that

λ(E) ≥ λ(F) ≥ 2(q2 − 1)
q + 2

.

This gives another (in fact, much simpler) proof of the main result of [3].

Here is another striking analogy between F and H; again we consider the tower
H = (H0,H1,H2, . . . ) over K = Fq2 given recursively by

uq
i+1 + ui+1 =

uq
i

uq−1
i + 1

. (33)

Performing the analogous change of variables as in Eqn. (31); i.e., setting

wi := − 1

uq−1
i + 1

for all i ≥ 0,

it follows by straightforward calculations from Eqn. (33) that

wi+1 + 1
wq

i+1

=
wq

i + 1
wi

, for all i ≥ 0. (34)

The subtower G of H given recursively by Eqn. (34) was studied in [2].

Remark 8.4. We end up this paper with a closer look on the relations between the
towers F and E given by Eqns. (27) and (32), respectively. One can show that F1/E1 is
a Galois extension of degree (q− 1)2 with group F×q × F×q ; in fact the automorphisms of
F1 = Fq3(x0, x1) over the subfield E1 = Fq3(v0, v1) are given by:

x0 7→ ax0 and x1 7→ bx1, with a, b ∈ F×q .

Moreover the n-th field Fn of the tower F is the compositum with F1 of the n-th field
En of the tower E ; i.e., we have

Fn = En · F1, for all n ≥ 1.
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The assertions above follow from Eqns. (31) and (29). We note however that for q 6= 2
the towers F and E are not K-isomorphic; i.e., there is no K-isomorphism

σ :
∞⋃
i=0

Fi −→
∞⋃

j=0

Ej .

In order to prove this we assume that such an isomorphism σ exists. Then we find
integers n ≥ 2 and s ≥ 2 such that

σ(F1) ⊆ En ⊆ En+1 ⊆ σ(Fs) .

In the extension σ(Fs)/σ(F1) there occurs only wild ramification by Theorem 2.2, but
in the extension En+1/En there is also some tame ramification with ramification index
e = q − 1, cf. [3], p.177, Fig.1.
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