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ABSTRACT 
Propulsion mechanisms of microorganisms are based 

on either beating or screw-like motion of thin elastic 

biopolymers. Arguably, this motion is optimal for 

propulsion at very low Reynolds numbers.  Similar 

actuation mechanisms can be utilized in the design of 

an autonomous microswimmer or even a micropump. 

In principle, propagation of plane-wave deformations 

on a thin-membrane placed inside a channel can lead 

to a net flow in the direction of the wave propagation. 

In this study we present effects of the amplitude, 

frequency, and the width of the membrane on the 

time-averaged flow rate and the rate of work done on 

the fluid by the membrane by means of three-

dimensional transient simulations of flows induced 

by plane-wave deformations on membranes. Navier-

Stokes and continuity equations are used to model the 

flow on a time-varying domain, which is prescribed 

with respect to the motion of the membrane. Third 

party commercial software, COMSOL, is used in to 

solve the finite-element representation of the 3D 

time-dependent flow on moving mesh. Numerical 

simulations show that the flow inside the microchan-

nel depend on the square of the amplitude and is 

proportional to the excitation frequency. Lastly, char-

acteristic flow rate vs. pressure head curve and effi-

ciency of a typical pump are obtained from 3D tran-

sient simulations, and presented here. 

 

INTRODUCTION 
Time reversible reciprocating actuation mecha-

nisms can not sustain significant net flow under low 

Reynolds Numbers where shear forces are dominant 

over inertial forces as explained in ‘scallop theorem’ 

[1]. Microorganisms such as spermatozoa and bacte-

ria use their flagella to propel themselves [2]. Fla-

gella of spermatozoa and other eukaryotic cells re-

semble to elastic rods, whose stress-induced sudden-

bending deformations propagate in waves towards the 

tip in a way similar to beating motion [3]. Periodic 

traveling-wave deformations of the biopolymer tail of 

the microorganism are the result of the balance be-

tween the bending stresses of the structure and the 

total stress in the fluid [4].  

Propulsion mechanisms of microorganisms can 

be a viable option in producing controllable flows for 

micropump applications [5] as well as propulsion of 

autonomous micro swimming robots [6]. Continuous 

traveling sinusoidal waves on fully submerged thin 

membranes constitute as a time-irreversible actuation 

mechanism. It was shown that net propulsion can be 

obtained by magnetic filaments attached to blood-

cells driven by external magnetic fields [7]. More-

over, three-dimensional numerical investigation of 

surface acoustic waves created by inter-digital trans-

ducers on a thin membrane exhibits the dependence 

of the fluid flow on the wave amplitude and the ac-

tuation frequency in microfluidic applications [8].  

Vertical motion of the fully submerged elastic 

membrane causes dynamic high and low pressure 

regions resulting in a flow between them. As the 

deformation shifts position accordingly with the 

propagation of traveling waves, high and low pres-

sure regions in the vicinity of the membrane demon-

strate consequential shifts which result in a net flow 

in propagation direction. This relation between pres-

sure and deformation was deduced by means of work 

exerted on the fluid by the deforming membrane [9].  

Despite their limited deformation amplitude, thin 

piezoelectric sheets can be used to form plane-wave 

deformations [10,11]. Structural analysis of the thin-

membrane and its optimization are already discussed 
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elsewhere [12] partially, and beyond the scope of this 

work.   

Sir Taylor presented asymptotic solutions of the 

flow for a sinusoidal wave propagating on an infinite 

inextensible sheet immersed in viscous fluid [13]. 

Later, Katz presented an asymptotic solution for the 

infinite sheet placed inside a channel [14]. Our previ-

ous work verifies asymptotic results of Taylor [13] 

and Katz [14] by means of numerical solution of the 

two-dimensional time-dependent Stokes flow due to 

plane waves traveling on a finite-length thin mem-

brane inside a channel [15].  

In this work, we present numerical solutions of 

3D time-dependent channel flows induced by the 

propagation of sine-wave deformations on thin-

membranes submersed in fluids inside channels. 

These flows are governed by incompressible Navier-

Stokes equations subject to continuity on time-

varying domains. Mesh displacement due to moving 

boundaries of the membrane is modeled using an 

arbitrary Lagrangian-Eulerian formulation [16]. Ef-

fects of the amplitude, frequency and the film’s width 

are demonstrated. Pressure head and efficiency 

against the flow rate curves are shown for a typical 

micropump that is actuated by traveling-sine-wave 

deformations on a thin-membrane.  

NOMENCLATURE 
Symbol  Description                                       

Latin Letters 

A  Area                                                    

Bo  Maximum wave amplitude      

H  Channel height            

I  Identity matrix                                 

L  Channel length                                  

P  Liquid pressure                                 

Q  Flow rate                                           

U  Fluid velocity vector                         

W   Width                              

dy  Mesh deformation in Ω                        

f  Excitation frequency [Hz]                            

k  Wave number                                    

ℓf   Membrane length                                                                   

n  Surface normal vector                        

t  Spatial time                                       

u  Mesh velocity vector                        

u,v,w  velocity components                       

x,y,z  Spatial coordinates                   

Functions and Groups                                                                          

B  Amplitude expression                          

min  Minimum function                           

Re  Reynolds Number  

Greek Letters                                                                

Π  Mechanical Power exerted on fluid 

Σ  Mono directional full stress tensor  

Ω  Domain occupied by fluid inside    

η  Percentage mechanical efficiency      

λ  Wave length                              

µ  Dynamic viscosity of liquid              

ρ  Liquid density                                   

ω  Angular frequency                                                 

Subscripts and Superscripts                                     
A.av  Area-averaged                                 

av  Time-averaged                               

ch  Channel parameter                             

f  Membrane parameter       

in,out  Inwards/outwards direction             

m  Mesh parameter                                 

T  Transpose                                        

0  Characteristic scale                        

 

 (a)        (b) 

Figure 1: (a) Plane-wave deformations traveling in the z-direction on the thin membrane placed in a channel; (b) 

Top-view in the y-direction on the x-z plane. 

METHODOLOGY 
Motion of the thin-membrane is limited to the y-

axis, which is perpendicular to the wave propagation 

in the x-direction as shown in Fig. 1. Y-axis motion of 

the membrane, which is due to traveling-wave de-

formations, is given by a sinusoidal wave-form as a 

function of time, t, x-position on the membrane, xf, 

excitation frequency, ω=2πf, wave number, k=2π/λ 

and the amplitude B, i.e. we have 

( ) ( ), sin ωf f fy x t B t kx= −  (1) 



                                                                                                                                                 Copyright © ASME 2007 

 

3 

In Eq. (1), B=B(x,t) defines an envelope for the 

extent of the deformations in the y-direction and 

keeps one end of the membrane. Furthermore, to 

ensure zero initial conditions, an initial ramp of the 

amplitude of deformations is defined and restricted to 

the first full period: 

( ) 1
, tanh( ) min ,f o fB x t B x t

f

 
=  

 
 (2)  

Although Stokes equation suffices to describe the 

flow, to allow local inertial effects incompressible 

Navier-Stokes equations are used to model the three-

dimensional time-dependent flow in the time-

dependent domain Ω(t) subject to the continuity 

equation: 

 ( ) 2ρ µm P
t

∂ 
+ − ⋅∇ = −∇ + ∇ 

∂ 

U
U u U U  (3) 

0∇ ⋅ =U  (4)   

where U=[u,v,w]T is the velocity vector, P is pressure, 

ρ is density, and µ is the viscosity of the fluid. The 

time-dependent deforming domain, Ω(t), is the vol-

ume occupied by the fluid inside the channel. The um 

in Eq. (3) is the deformation velocity of the domain 

Ω(t) [16], which is induced due to moving boundaries 

of the membrane. 

 

Channel walls are subjected to no-slip boundary 

conditions, 

 

( )
( )

( )
( )

,0, , , , , 0

,0, , , , , 0

( ,0, , ) ( , , , ) 0

( , ,0, ) ( , , , ) 0

( , ,0, ) ( , , , ) 0

( , ,0, ) ( , , , ) 0

ch

ch

ch

u x z t u x H z t

v x z t v x H z t

w x z t w x H z t

u x y t u x y W t

v x y t v x y W t

w x y t w x y W t

     
     

= =     
         

    
    

= =    
        

 (5) 

where H is the channel height and Wch is the channel 

width. Thin-membrane moves in the y-direction only 

leading to zero tangential components of the velocity 

on the membrane: 

 
( )
( )

, , , 0

, , , 0

f f f

f f f

u x y z t

w x y z t

=

=
  (6) 

In Eq. (6), xf , yf and zf constitute the time-dependent 

position vector on the membrane; yf is given by Eq. 

(1).  

Y-velocity on the membrane is given by the time 

derivative of the displacement in Eq. (1) and (2): 

( ) ( ) 1
, ω cos ω min ,f f fv x t B t kx t

f

 
= −  

 
 (7) 

Inlet and outlet pressures are specified as zero in 

all simulations but for the ones used to obtain the the 

flow rate as a function of the pressure head for a 

typical pump: 

[ ]
0, , ,

0inx y z t
P P

=
− ⋅ = =I n  (8) 

[ ]
, , ,

0outx L y z t
P P

=
− ⋅ = =I n  (9) 

 For the flow at rest, all velocity components are 

specified as  zero initially. 

 ( ) ( ), , ,0 , , , 0 ( , , , 0) 0u x y z v x y z w x y z= = =  (10) 

Displacement of the deforming mesh is calcu-

lated from the prescribed displacement given in Eq. 

(1) and (2), and expressed only for a limited domain 

surrounding the thin membrane: 

2

0,

0, 0.5

1
4 ,  otherwise

4

m m

f

m

f

x z

x

y y
y

H

= =

 >



=    
 −      

ℓ

 (11) 

The mesh displacement velocity, um, in Eq. (3) is 

found directly from the prescribed mesh deformation:  

 
2

0

1
4

4

m m

m
m f

u w

dy y
v v

dt H

= =

  
 = = −     

 (12) 

Once um is obtained from Eq. (12), finite-

element representation of Navier-Stokes and continu-

ity equations, which are given by Eq. (3) and (4) are 

solved subject to boundary conditions in Eq. (5-9), 

and initial conditions in Eq. (10) with the commercial 

software COMSOL [17].   

The instantaneous flow rate is computed by in-

tegrating the x-velocity over the inlet, or outlet of the 

channel: 

 ( ) ( ) { , }

0 0

0, , ,

chW H

in out

y

Q t u y z t dydz

=

= ∫ ∫ n  (14) 

where nin and nout correspond to inlet and outlet sur-

face normal vectors respectively. Time-averaged flow 

rate is computed from the integration of the instanta-

neous flow rate over at least two full cycles after the 

flow reaches to the steady-periodic state: 

 ( )
0

0

2

2

t f

av

t

f
Q Q t dt

+

= ∫  (15) 

The y-component of the stress exerted on the 

fluid due to the membrane’s motion on its surface is 

determined from the full stress tensor [18]: 
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( )

µ

, , , 2µy m m m

u v

y x

v
x y z t P

y

v w

z y
µ

  ∂ ∂
+  

∂ ∂  
  ∂ Σ = − ⋅ 
 ∂ 
 
 ∂ ∂ 

+  ∂ ∂  

n  (16) 

where n is the outward normal of the membrane’s 

surface.  

Instantaneous rate of work done on the fluid by 

the deforming membrane is the area integration of the 

product of the total y-stress and the y-velocity on the 

membrane, i.e. 

( )
f

y f f

A

t v dAΠ = Σ∫   (17) 

Similarly to Eq. (15), time-averaged rate of work 

done by the membrane is calculated from: 

 ( )
0

0

2

2

t f

av

t

f
t dt

+

Π = Π∫  (18) 

Hydraulic efficiency, η,  of a typical micropump 

that consists of a thin-membrane, which deforms 

according to traveling-plane waves is calculated from 

the ratio of the fluid power, which is given by the 

multiplication of the total pressure head and the flow 

rate, and the rate of work done by the membrane as 

follows [19]:  

η av

av

PQ∆
=

Π
 (19) 

RESULTS 
Numerical results that are presented here are ob-

tained for water flow in a pump whose dimensions 

are presented in Table 1. Nondimensional equations 

are used in the simulations. Characteristic scales used 

in the nondimensionalization are presented in Table 

2. For each simulation, about 250000 linear equations 

are solved for at least 5 time units that correspond to 

5 full cycles and between 500 to 1000 time steps. 

Simulation outputs converge to the steady-periodic 

state within the first cycle. Each simulation takes 

between 1 to 6 hours on a double dual-core 3.7 GHz 

64-bit Xeon workstation with 16GB of RAM running 

on SUSE Linux 10.0 operating system depending on 

flow conditions characterized by the wave-amplitude, 

B0, excitation frequency, f, and the ratio of the widths 

of the membrane and the channel, Wf /Wch. Time-

averaged quantities are obtained from integration 

over the last two cycles. Unless otherwise noted the 

base case used in the simulations corresponds to λ = 

50 µm, B0 = 5 µm, f = 112 Hz, and Wf /Wch = 0.5.  

In Fig. 2 and Fig. 3, pressure distribution on the 

center symmetry plane with deformed membrane 

structure and instantaneous streamlines are shown for 

the base case at t = 6. Pressure variations take place 

in the vicinity of the membrane away from the top 

and bottom walls of the channel parallel to the flow 

direction and away from the channel entrance and 

exit. Therefore it is reasonable to claim that there is a 

uniform flow at the channel entrance and exit owing 

to this localization of the pressure variations in the 

membrane’s vicinity. Instantaneous streamlines are 

uniform near the inlet, exit and away from the mem-

brane. Furthermore, having sides of the membrane 

exposed to the flow results in downstream vortex 

formations around and behind the membrane.  

Figures 4, 5 and 6 demonstrate the velocity pro-

files on different sections of the half-channel as arrow 

plots for λ = 50 µm, B0 = 5 µm, f = 112 Hz, and 

Wf/Wch = 0.5 with Wch = 200 µm at simulation time t 

= 6. Velocity field is steady in both inlet and outlet of 

the channel despite the large vortices formed by the 

free end of the membrane.  

 

Name, symbol Values/dimensions 

Wch Wf +10
-4

 [m] 

Channel Height, H 10
-4  

[m] 

Channel Length, L 4x10
-4  

[m] 

Membrane Length, ℓf 10
-4  

[m] 

Wave Length, λ 0.5ℓf 
 
[m] 

Dynamic Viscosity of  

water, µ 

1.12x10
-3

 [Pa.s] 

Density of water, ρ 999 [kg/m
3
] 

Table 1: Standard simulation parameters and 

their units 

 

Characteristic scales Representative 

values/dimensions 

Length,
0
ℓ  10

-4  
[m] 

Time,
0

t  1/f [s] 

Velocity,
0

U  
0 0

tℓ  [m/s] 

Pressure and shear, p0 
2

0
Uρ  [Pa] 

Power, Π0 
2

0 0 0
p Uℓ  [W]  

Table 2: Characteristic scales and their values 

 



                                                                                                                                                 Copyright © ASME 2007 

 

5 

 

Figure 2: Snapshot of the streamlines from inlet and outlet of the channel both ending on bottom surface of the 

membrane, pressure distribution on the symmetry plane, and the exit velocity distribution at t = 6. First color bar 

stands for the nondimensional velocity profile on outlet half plane; second color bar stands for nondimensional pres-

sure profile on the symmetry plane.  

 

 

Figure 3: Snapshot of the streamlines from inlet and outlet of the channel both ending on top surface of the 

membrane with the circulation formed behind the membrane ending on outlet, pressure distribution on the symmetry 

plane, and the velocity distribution at the exit. First color bar stands for nondimensional velocity profile on outlet 

half plane; second color bar stands for nondimensional pressure profile on the symmetry plane. 

 

 

 

 

 

 

 

 

 

Figure 4: Normalized velocity vectors on yz-planes at x = -2, -1, 0, 1, 2. 
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Figure 5: Normalized velocity vectors xz-plane at y = -0.1. 

 

 

 

 

 

 

 

 

 

Figure 6: Normalized velocity vectors on xy-plane at z = 0.6. 

 

Figure 7, demonstrates the relationship between 

the amplitude and the average flow rate for all the 

variables fixed at the base case except the amplitude. 

As amplitude increases the average flow rate in-

creases quadratically with the amplitude which is in 

agreement with the asymptotical predictions [13,14] 

and our earlier 2D numerical results [15]. Slight de-

viation from quadratic relationship at large ampli-

tudes is due to increased interaction of the three-

dimensional flow with the channel walls. Further 

simulations are necessary to elucidate this deviation.. 

Figure 8 demonstrates the relationship between 

the wave-amplitude, B0 and the time-averaged power 

consumption, Πav, which is also quadratic with the 

amplitude, and in accordance with the asymptotic 

solutions given by Childress [9] and two-dimensional 

simulation results [15].  

Figure 9 demonstrates the relationship between 

the average flow rate and the frequency for all the 

variables fixed at the base case except the frequency. 

In Fig. 9 a linear relationship between the frequency 

and the flow rate is observed as observed in 2D simu-

lations also [15]. 

 

 

Figure 7: Amplitude vs. average flow rate for 

Wf/Wch =0.5 and f = 112 Hz. 

The average rate of work done on the fluid Πav 

varies quadratically with the frequency as depicted in 

Fig. 10. The effect of the frequency, also, agrees well 

with the asymptotic results [13,14], where small 

amplitude choice was mathematically justified, and 

numerical results provided by our previous 2D simu-

lations [15].  
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Figure 8: Amplitude vs. average power con-

sumption for Wf/Wch =0.5 and f = 112 Hz. 

 

Figure 9: Frequency vs. average flow rate for    

λ = 0.5ℓf = 0.5H = 0.5Wf = 50 µm, Wf/Wch =0.5 and 

Bo = H/20 = 5 µm. 

 

Figure 10: Frequency vs. average power con-

sumption for Wf /Wch = 0.5 and Bo = 5 µm. 

Figures 11 and 12, display the effect of the ratio 

of the membrane’s width to the channel width on the 

average flow rate and the rate of work done on the 

fluid. In simulations that correspond to data points on 

the graph width ratio is adjusted by means of adjust-

ing the membrane’s width and fixing the other vari-

ables at the base case. As the width of the channel 

approaches to the width of the membrane, i.e. 

1f chW W → , not only the flow rate (Fig. 11) but 

also the average power increases rapidly, hinting that 

the gap between the membrane and the channel’s side 

walls play a very important role in addition to in-

creasing membrane area. In fact, when the ratio goes 

to zero, i.e. 0f chW W → , both the power and the 

flow rate increases almost linearly.  

 

Figure 11: Wf/Wch vs. average flow rate for Bo = 

5 µm and f = 112 Hz. 

 

Figure 12: Wf/Wch vs. average power consump-

tion for Bo = 5 µm and f = 112 Hz. 

The average flow velocity, which is given by Qav 

/Ach, is plotted against the width ratio in Fig. 13. 

Clearly, as the ratio increases, i.e. the membrane 

width increases, the membrane becomes more effec-

tive in propulsion. For large width ratios, Wf /Wch > 

0.5, as the width ratio decreases momentum flux into 

the z-direction drains the available mechanical energy 

and reduces the net propulsion. On the other hand, for 

small width ratios, the average velocity tends to ap-

proach a limit, which, presumably, corresponds to the 

average velocity of the swimmer in an infinite me-

dium.  

Area averaged power consumption, which is 

given by Πav/Af, is plotted against the width ratio in 

Fig. 14. Even though total power consumption in-

creases, power consumption per unit area drops al-
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most linearly for small width ratios, which may be 

due to decreasing flow in the z-direction. For large 

width ratios, area-averaged rate-of-work done on the 

fluid does not vary significantly. 

 

Figure 13: Wf/Wch vs. average velocity for Bo = 5 

µm and f = 112 Hz. 

 

Figure 14: Wf/Wch vs. power consumption per 

unit area for Bo = 5 µm and f = 112 Hz. 

Pressure head and efficiency versus the flow rate 

are shown in Fig. 15 for the micropump that operates 

at the base case, for which B0 = 5 µm, Wf/Wch = 0.5 

with and f = 112 Hz. For simulations that correspon 

to the date points in the figure, outlet pressure is kept 

at zero and the inlet pressure is varied. Calculated 

flow rates for the prescribed pressure difference be-

tween the exit and the inlet, ∆P= Pout –Pin, are shown 

in Fig. 15. Furthermore, the efficiency of the micro-

pump is calculated from Eq. (19) and plotted as a 

function of the average-flow rate on the right-axis of 

the plot in Fig. 15. Similarly to an ideal pump, the 

pressure head vs. the flow rate is linear, and the effi-

ciency is parabolic. The maximum flow rate for zero 

pressure head and the maximum pressure head for 

zero flow rate are about 0.04 µl/min and 40 mPa 

respectively. Moreover, the maximum efficiency 

takes place at the half of the maximum flow rate, i.e. 

Qav = 0.02 µl/min, and is 0.085%. Note that, in gen-

eral, micro fluidic devices have small efficiencies 

because of the dominance of the viscous effects [5]. 

 

Figure 15: Pressure head (blue circles, left 

axis) and efficiency (green circles, right axis) of the 

micropump as a function of the flow rate. Each data 

point corresponds to a numerical simulation for 

which pressure boundary conditions are specified 

according to the corresponding pressure head. 

CONCLUSION 
A biologically inspired micropump actuation 

mechanism is reported here. The effects of some of 

the performance variables such as the wave ampli-

tude, excitation frequency and width ratio between 

membrane and channel are demonstrated by means of 

three-dimensional time-dependent simulations of the 

flow. Flow induced by traveling-plane-wave defor-

mations on the thin-membrane that has finite dimen-

sions and is placed inside a channel is modeled by 

incompressible Navier-Stokes equations on a deform-

ing mesh due to moving boundaries. Deformation of 

the mesh is prescribed and an arbitrary Lagrangian 

Eulerian method is used to ensure the physical solu-

tion.  

Based on our numerical results, the flow rate in-

creases linearly with the excitation frequency and 

quadratically with the amplitude. Similarly, the de-

pendence of the rate-of-work done on the fluid is 

quadratic with both the frequency and the amplitude. 

The average velocity of the flow increases almost 

linearly with the increasing width of the membrane. 

However, the area-averaged power tends to converge 

to a limit as the width ratio increases. Therefore, from 

the geometric design point-of-view, it is recom-

mended to limit the space between the membrane and 

the channel’s side walls for better efficiency and 

higher flow rates.  

Finally, the performance of a typical micropump 

that uses traveling-plane-wave deformations on a thin 

membrane inside a channel for flow and pressure 

head is obtained and reported. The micropump has 

similar characteristics compared to its counterparts 

using other mechanisms.    
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