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Abstract One of the propulsion mechanisms of micro-

organisms is based on propagation of bending deformations

on an elastic tail. In principle, an elastic thin-film can be

placed in a channel and actuated for pumping of the fluid

by means of introducing a series of traveling-wave defor-

mations on the film. Here, we present a simulation-based

analysis of transient, two-dimensional Stokes flow induced

by propagation of sinusoidal deformations on an elastic

thin-film submerged in a fluid between parallel plates.

Simulations are based on a numerical model that solves

time-dependent Stokes equations on deforming finite-ele-

ment mesh, which is due to the motion of the thin-film

boundary and obtained by means of the arbitrary

Lagrangian Eulerian method. Effects of the wavelength,

frequency, amplitude and channel’s height on the time-

averaged flow rate and the rate-of-work done on the fluid

by the thin-film are demonstrated and grouped together as

the flow-rate and power parameters to manifest a combined

parametric dependence.

1 Introduction

The potential for low-cost mass-production of microfluidic

components such as micropumps has appeal for medical,

environmental, biotechnology, electronic packaging, space

exploration and energy applications where micropumps

can be used and dispensed, for example, for drug delivery,

sensor measurements, on-chip experiments, DNA

replication, micro-propulsion, microelectronic cooling, and

fuel delivery (Polla et al. 2000; Meyns et al. 2000;

Gardeniers and van den Berg 2004; Wang and Lee 2005;

Bruschi et al. 2002; Zhang et al. 2002; Zhang and Wang

2006). Especially for liquids, overwhelming dominance of

viscous forces compared to inertial forces in micro scales

limits the implementation of transduction mechanisms in

micropumps, which can be, in general, magnetic, electric

or mechanical (Laser and Santiago 2004). Electrically

conducting and magnetic fluids can be forced to flow by

means of a magnetic field (Lemoff et al. 1999; Jang and

Lee 2000; Homsy et al. 2005). However, the presence of

electric currents may not suitable for many applications

(Homsy et al. 2005). The charge distribution due to

polarization of the solid–liquid interface, as well as due to

free ions in the fluid results in a net controllable, steady,

electro-osmotic flow when the electric field is applied

externally (Dutta and Beskok 2001; Polson and Hayes

2000).

Mechanical reciprocating positive-displacement pumps

are more common than dynamic pumps as the latter cannot

perform adequately for highly viscous fluids, or at very low

Reynolds numbers of the microscopic world. Reciprocating

pumps consist of a diaphragm membrane or a piston, and at

least one or two check valves or nozzle-diffuser type

components to move and direct the flow (Van Lintel et al.

1988; Zengerle 1995). High flow rates are obtained only

with the application of large voltages to piezoelectric-

material drivers (Li et al. 2000; Feng and Kim 2005). A

few drawbacks of these mechanical pumps include com-

plexity of the design, and unsteady flow rates (Bourouina

et al. 1997). Producing controllable steady flows with

mechanical micropumps remains somewhat a challenge.

Propulsion mechanisms of microorganisms can be a

viable option in producing controllable flows with
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micropumps. Microorganisms such as spermatozoa and

bacteria use their flagella to propel themselves (Brennen

and Winet 1977; Purcell 1977). Bacterial flagella, which

create a screw-like motion, are usually helically shaped and

driven by a rotary engine at the base. Flagella of sperma-

tozoa and other eukaryotic cells resemble to elastic rods,

whose stress-induced sudden-bending deformations prop-

agate towards the tip in a way similar to beating motion

(Gray and Hancock 1955). Periodic traveling-wave defor-

mations of the biopolymer tail of the microorganism are the

result of optimal balance between the structural bending

and viscous forces that lead to the propulsion of the

organism (Lowe 2003). In principle, the mechanism that

enables the propulsion of these microorganisms can be

used as a pump when an elastic thin-film, on which the

deformation waves are formed and propagated, is placed in

a channel.

Sir Taylor presented an analysis of the flow that takes

place when an infinite inextensible sheet is immersed in

viscous fluid and propagated sinusoidal waves of small

constant amplitude (Sir Taylor 1951). In addition to Tay-

lor’s analysis of inextensible sheets, there is a body of work

on the hydrodynamics analysis of the low Reynolds num-

ber flow due to propagation of waves on a slender body

(hair-like structures), which is summarized by Brennen and

Winet (1977).

Here, we aim to demonstrate and analyze the mecha-

nism of shear-induced pumping due to large deformations

traveling as sinusoidal waves on an elastic thin-film

immersed in a fluid by means of parametric transient

simulations of the flow. Since the moving boundary is

completely immersed in the fluid, the net volumetric

change is zero, and the flow is merely due to dynamic

effects, namely, shear interactions as in the case of pro-

pulsion of microorganisms (Gray and Hancock 1955). In

particular, vertical motion of the elastic film brings about

high and low pressure regions in the fluid and a flow

between them. As the deformations shift position, say in

the y-direction, according to the propagation of traveling

waves in the x-direction, so does the high and low pressure

spots, which, in turn, lead to a net flow in the same

direction as the waves propagate.

We assume that it is plausible to manufacture an elastic

thin-film and an actuation mechanism that will yield useful

traveling-wave deformations. For example, piezoelectric

components with large shear modes sandwiched between

structural components are capable of causing large bending

deformations, which can be manipulated to travel on the

structure (Piefort 2001; Piefort and Henrioulle 2000).

Alternatively, electrostatic actuators, which are designed

for extended displacement such as described in Zhang and

Dunn (2002), are very promising as they also operate at

low voltages.

The unsteady flow over the thin-film that constitutes

moving boundaries between parallel plates has very low

Reynolds number, and, hence, is modeled using two-

dimensional time-dependent Stokes equations. The fluid–

structure interaction due to moving boundary is modeled

with the arbitrary Lagrangian Eulerian (ALE) method

incorporating the Winslow smoothing (Duarte et al. 2004).

Using commercial software, COMSOL (COMSOL AB

2007), we carried out a number of simulations to find out

and describe the parametric dependence of the flow rate

and the rate-of-work done on the fluid by the film with

respect to amplitude, wavelength and frequency of the

waves, and the channel’s height. In this analysis, we

focused on the maximum mean flow rate and the power

exerted on the fluid, detailed simulations with respect to

varying pressure loads and efficiency calculations are

presented elsewhere (Tabak and Yesilyurt 2007). More-

over, our emphasis is on the analysis of the flow enabled by

the motion of the actuator boundary, rather than the

structural analysis of the deformation of the thin film and

the design of the mechanism for the actuation of this

motion, which are discussed in part by (Tabak 2007).

2 Methodology

Consider an elastic-thin film, which is immersed in a fluid

halfway between parallel plates of separation H as shown

in Fig. 1. The film moves only in the y-direction vertically

according to traveling plane-wave bending deformations

that propagate in the x-direction and are described by

traveling sine-waves

yf xf;t
� �

¼ B xf ; tð Þ sin xt � kxfð Þ; ð1Þ

where yf is the time and position-dependent vertical dis-

placement of the film, B(xf,t) is the amplitude of the wave

that depends on the local x-position, xf, which is measured

from the tip on the film, and time t, x = 2p f is the angular

frequency, f is the frequency, and k = 2p/k is the wave-

number of plane-wave deformations. The thickness of the

film is neglected compared to its length and width, which is

in the z-direction and not shown in Fig. 1. Our analysis is

based on a generic shape and propagation of deformations

on the thin-film regardless of structural manipulations

required to obtain this type of traveling displacements. In

fact, the time and position dependent amplitude, B in (1),

may vary based on the limits of the actual thin-film

structure and its actuation mechanism.

Flow induced by the motion of boundaries according to

(1) is governed by Stokes equations, which neglect the

inertial term in the Navier–Stokes equations as the viscous

forces dominate and the incompressible flow in the channel

has a very low Reynolds number. Namely, we have
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q
oU

ot
� umesh � rU

� �
¼ �rpþ lr2U in X tð Þ; ð2Þ

and

r � U ¼ 0 in X tð Þ; ð3Þ

In (2), U = [u,v]0 is the velocity vector, which comprises

of its x and y components, i.e. u and v, p is the pressure, q is

fluid’s density, l is the dynamic viscosity of the fluid, and

X(t) is the volume occupied by the fluid at time t. The

domain, X(t), is defined with fixed boundaries, which

correspond to the channel’s walls, inlet and outlet, and

moving boundaries that coincides with the film’s surface.

The umesh = [umesh, vmesh] in (2) represents the deformation

velocity of the time-varying domain X(t) and its coordinates

with respect to the initial fixed frame, X(0), i.e. umesh = qx/

qt, and vmesh = qy/qt, where x and y are the coordinates in

X(t) (Duarte et al. 2004; COMSOL AB 2007).

Boundary conditions for the Stokes equation are no-slip

conditions on the plate walls,

u x; 0; tð Þ
v x; 0; tð Þ

� �
¼ u x;H; tð Þ

v x;H; tð Þ

� �
¼ 0

0

� �
; ð4Þ

velocity on moving boundaries of the actuator film is zero

in the x-direction, and equal to the time-derivative of the

vertical deformation given by (1) for the vertical

component

u xf ;yf ; tð Þ¼0; v xf ;yf ; tð Þ

¼dyf

dt
¼ dB x; tð Þ

dt

� �
sin xt�kxfð ÞþxB x;tð Þcos xt�kxfð Þ

ð5Þ

In (5), xf and yf represent the time-dependent position of

the thin-film with respect to the reference frame. Note that,

although partial derivatives of yf and B with respect to xf

are non-zero, since xf does not change with time, vertical

component of the film velocity can be calculated from (5).

At the channel inlet and outlet, unless otherwise noted,

we use the neutral flow boundary conditions (COMSOL

AB 2007), which correspond to vanishing total forces

acting on the surface

�pIþ s½ � � njx¼ 0;Lf g;y;t¼ 0; ð6Þ

where n is the outward normal of the surface, and s is the

viscous stress tensor (Landau and Lifshitz 2005).

Note that we can specify the total pressure force on inlet

and outlet boundaries alternatively, however solution may

not always converge as the pressure constraint becomes too

stringent on the flow for all wavelengths, amplitudes, and

frequencies. Therefore, we relaxed that condition in our

general parametric study, with neutral boundary conditions

that the flow is not restricted at the inlet and the outlet of

the micropump.

Initial condition for (2) is the flow at rest, i.e. the

velocity components and the pressure are all equal to zero

at t = 0:

u x; y; 0ð Þ ¼ v x; y; 0ð Þ ¼ p x; y; 0ð Þ ¼ 0: ð7Þ

Stokes equations (2), which are subject to

incompressibility (3), boundary (4–6), and initial

conditions (7) are discretized using triangular Lagrange

elements that use quadratic basis functions for the velocity

and linear ones for pressure.

Apparent velocity of the mesh umesh in (2), needs to be

calculated due to the propagation of the motion of the

boundary into the fluid domain. The ALE method that

incorporates Winslow smoothing (Duarte et al. 2004;

COMSOL AB 2007; Winslow 1967) is used to obtain the

velocity of the deforming mesh on which the Stokes

equations are solved. The mesh velocity umesh, is calculated

from the solution of the Laplace equation in the reference

frame, which allows smooth deformation of internal nodes

according to the deformation of boundary nodes (Duarte

et al. 2004):

r2umesh ¼ 0 in X tð Þ; ð8Þ

Alternatively, one can prescribe an appropriate

distribution of internal nodes as long as it leads to a

smooth distribution of the nodal points inside X(t) without

solving (8) (COMSOL AB 2007). In two-dimensional

calculations, solution of (8) is not costly, however in three-

dimensional calculations adoption of the latter strategy

may prove more practical (Tabak 2007).

The boundary conditions, which (8) is subject to, are

moving boundary conditions on the thin-film, akin to (5),

and the zero mesh-displacement elsewhere. Namely,

umesh xf ; yf ; tð Þ ¼ 0;

vmesh xf ; yf ; tð Þ ¼ dyf

dt
¼ dB x; tð Þ

dt

� �
sin xt � kxfð Þ

þ xB x; tð Þ cos xt � kxfð Þ;

ð9Þ

and

Fig. 1 Wave propagation on a elastic thin film placed in a

microchannel filled with an incompressible fluid
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umesh 0; y; tð Þ
vmesh 0; y; tð Þ

� �
¼

umesh L; y; tð Þ
vmesh L; y; tð Þ

� �
¼

umesh x; 0; tð Þ
vmesh x; 0; tð Þ

� �

¼
umesh x;H; tð Þ
vmesh x;H; tð Þ

� �
¼

0

0

� �

ð10Þ

Having calculated the mesh velocity umesh, from (8), one

can find the updated mesh in X(t) and solve Stokes equations

given by (2). The Laplace equation in (8) is solved using the

same triangulation of the domain as the one used for the

solution of the Stokes equations. Quadratic basis functions

are used for the mesh velocity components as well in the

finite-element procedure (COMSOL AB 2007).

Time and position-dependent amplitude of the traveling-

wave deformations on the thin film is specified by a simple

parabola that reaches to its full shape during the first per-

iod, and thereafter remains steady

B xf ; tð Þ ¼ 4B0 1� xf=‘fð Þ xf=‘fð Þmin t; 1=fð Þ; ð11Þ

where f is the frequency of the oscillations ‘f is the length

and, and B0 is the maximum deformation of the thin-film.

Time-averaged quantities are calculated for periods in

which a steady-periodic state is achieved after the initial

ramp.

The instantaneous flow rate per unit depth delivered by

the pump for a given set of inputs {B0, f, k, H }, is com-

puted by the integration of the x-component of the velocity

over the inlet or outlet of the channel as given by

Q tð Þ ¼ Q in;outf g tð Þ ¼
ZH

y¼�H

u tð Þ � �n in;outf g
� �

dy; ð12Þ

where nin and nout correspond to inlet and outlet surface

normals (outward), due to which the ‘+’ sign applies for the

outlet flow, and ‘–’ for the inlet flow. In practice, we also

check the conservation of mass by comparing inlet and

outlet flow rates, the relative difference of which always

remains well below the tolerance of the numerical proce-

dure, i.e. 2|Qin – Qout|/| Qin + Qout| & 10�8 < 10�3.

The time-averaged flow rate is computed from the

integral of instantaneous flow rate given by (12) over at

least three full periods of plane-wave deformations after a

steady-periodic state is observed

�Q ¼ �Q in;outf g ¼
1

k � ið Þ=f

Ztk¼k=f

ti¼i=f

Q in;outf g tð Þdt;

i; k 2 N; i\k � 2

ð13Þ

Due to relatively short length of the channel and the

dominance of viscous effects the flow becomes steady-

periodic within the first period following the initial ramp of

plane-wave deformations.

The rate of work done on the fluid by the deforming

motion of the film is calculated by the area integral of the

product of the film’s y-velocity and the y-component of the

total stress tensor on the film

P tð Þ ¼
Z

Film surface

Ry xf ; yf ; tð Þv xf ; yf ; tð ÞdA ð14Þ

where P is the rate of work (power) done on the fluid (also

called ‘‘shaft power’’ in classical texts such as in Munson

et al. 2006), Ry is the y-component of the stress tensor,

which is exerted by the structure on the fluid, and v is the y-

velocity of the film given by (5). Total y-stress on the fluid

is given by Batchelor (2000)

Ry xf ; yf ; tð Þ ¼ 2l
ov

oy
� p

� �
ny þ l

ou

oy
þ ov

ox

� �
nx; ð15Þ

where, l is the viscosity of the fluid, nx and ny are x- and

y-component of the surface normals. The time-averaged

power is calculated the same way as the time-averaged

flow rate, which is calculated by (13).

3 Results

Our numerical results are presented in terms of dimen-

sionless quantities, which are scaled with appropriate

characteristic scales of length, time and velocity and fluid

properties; the base case is as shown in Table 1. Unless

otherwise noted, these scales are used in the simulations.

Moreover, default values of dimensionless geometric

variables are listed in Table 2; where the superscript ‘*’

denotes nondimensional quantities.

The film actuator is defined as an ellipsoid with the

small axis being 5 · 10�3 units, and the large one 5 units.

This small thickness is introduced to distinguish between

the upper and lower normals of the film.

Table 1 Characteristic scales and their base values used in simula-

tions and comparison of results

Characteristic scales Representative values

Length ( ‘0) 2.5 · 10�4 m

Velocity (U0) 5 · 10�4 m/s

Time (t0) 0.5 s

Pressure and shear (p0) qU0
2, 2.5 · 10�4 Pa for water

Power (P) q‘2
0U3

0 ; 7:81� 10�15 W for water
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3.1 Flow regimes

In Fig. 2, a series of snapshots of the pressure and velocity

distribution in the channel is shown for

f � ¼ 1:0; k� ¼ ‘�f ¼ 5 and B0
* = 0.365. First half of the

full period between t* = 3.9 and 4.9 is covered in the

snapshots. The other half of the period is mirror-symmetric

with respect to the channel centerline. At a given instant,

such as any snapshot shown in Fig. 2a–e, higher pressure

takes place on the side of the film that pushes the fluid than

the side which pulls the fluid. In other words, a particular

point on the film is exposed to a higher pressure above the

film than below when the slope of the film at that point is

negative and lower pressure than the one below when the

slope is positive as the waves travel in the x-direction.

These high and low pressure couples move downstream at

the same velocity as the speed of wave propagation. Once

the high (low) pressure point on the film passes the mid-

point, it starts decreasing its intensity; and reaches to its

lowest when the film takes the shape of a ‘Mexican hat’

(see Fig. 2c), which corresponds to the largest deformation

of the midpoint. As the wave travels further downstream

and the slope of the film changes, high and low pressure

regions switch sides; high pressure takes place under and

low pressure above the film. Note that Fig. 2d (t* = 4.3) is

the mirror image of 2b (t* = 4.0) and 2e (t* = 4.4) of 2a

(t* = 3.9).

Furthermore, in combination with the local vertical

motion of the film, net pressure difference across the film

introduces a moment and accompanied recirculation in the

fluid. As the recirculation moves downstream it results in a

net flow rate in the channel albeit smaller than the local

flow rate takes place above or below the film. The relative

size of the velocity arrows indicates the local speed in

Fig. 2a–e.

At any given instant and x-position on the film xf, the

sum of the two flows on both sides of the film must be

equal to the total flow rate

Q tð Þ ¼ Qtop xf ; t
� �

þ Qdown xf ; tð Þ; ð16Þ

where

Qtop xf ; tð Þ ¼
ZH

yf

u x0 þ xf ; tð Þdy; ð17Þ

and

Qdown xf ; tð Þ ¼
Zyf

0

u x0 þ xf ; tð Þdy: ð18Þ

Hence, for the flow rate to be positive at all times, either

both Qup and Qdown must be positive at any position on the

film, or when one is negative the other must be positive and

have a larger magnitude. In Fig. 3, total flow rate and

relative variations of Qtop
* and Qdown

* for xf ¼ ‘f=2 are

shown with respect to time. The net flow rate Q* (t),

remains always positive, but oscillates between its

minimum, 0.77, and maximum values, 0.99. The partial

flow rate above and below the film, are also steady-periodic

but oscillates between �1.25 and 2.02 for the case shown

in Fig. 3. When the flow rate above the film reaches its

maximum, the flow rate below the film becomes the

minimum and vice versa.

The y-profile of the x-component of the velocity at the

midpoint of the channel is shown for t* = 4.15, 4.3, 4.35,

4.4, 4.45, 4.5, and 4.65 in Fig. 4. The y-position of the film

at the midpoint, yf ‘f =2; t
� �

, is maximum when t* = 4.15

and minimum when t* = 4.65. At t* = 4.15, the x-compo-

nent of the velocity is in the negative direction above the

film, and in the positive direction below confirming what is

observed in Fig. 3. At t* = 4.3, the flow passing the mid-

point slows down in magnitude both above and below the

film; this corresponds to diminishing intensity of the high

and low pressures. At t* = 4.35, flow above the film

changes its direction near the film; net flow rate above the

film at that time is about zero (see Fig. 3). At t* = 4.40,

deformation of the film at the midpoint is zero and the x-

velocity profiles above and below the film are almost

identical and positive corresponding to Qtop
* = Qdown

* =

0.494 (Fig. 3). At t* = 4.45, velocity profile above (below)

the film is similar to the velocity profile below (above) the

film at t* = 4.35. This is also valid for t* = 4.50 and 4.30,

and t* = 4.65 and 4.15. From that time forward, the evo-

lution of the velocity profile is reversed until t* = 5.15,

when the cycle is completed.

Figure 5a, b depict the pressure distribution and Fig. 5c

shows the u-velocity and streamlines in the channel for the

case which corresponds to small wavelengths compared to

the length of the film. Namely, we have

k�=‘�f ¼ 1=11; f � ¼ 1; and B0
* = 0.058. In this simulation,

Table 2 Default values for geometric variables used in simulations,

unless otherwise noted

Geometric variables (dimensionless) Value

Channel height (H*) 2.5

Channel length (L*) 9.0

Film’s length, ‘�f 5.0

Maximum amplitude of the

deformation for general case (B0
*)

0.0581

Wavelength (k*) 5.0

Frequency (f*) 1.0

Wave speed (c*) 5.0
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Fig. 2 H*=2.5, B0* = 0.365,

k� ¼ ‘f� ¼ 5,f* = 1; snapshots

of the pressure distribution

(color shading), and flow

velocity (arrows) for

t* = 3.9,4.0,4.15,4.3, and 4.4,

respectively from a to e. The

length of the arrows is

proportional to local magnitude

of the velocity
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the length scale is kept the same as in Table 1, and the time

scale is, ts = 5.5 s. According to Fig. 5a, high and low

pressure regions are distributed in the close vicinity of the

film on both sides. Similarly to what is shown in Fig. 2a–e,

pressure is higher when the slope of the surface is positive

and lower when negative above the film. However there are

multiple pairs of high and low pressure regions on both

sides of the film corresponding to a multitude of waves on

the film as shown in Fig. 5a. Maximum and minimum

pressures are closer to deformation peaks. We omitted

multiple snapshots, as the pressure changes locally near the

film only. In fact, in Fig. 5b, the pressure distribution along

the channel is shown at y* = 2.0 and t* = 4.0 (along the

line in Fig. 5a)—note that, this profile remains almost

steady and does not change significantly in time.

The pressure profile in Fig. 5b is typical for a dynamic

pump placed in a channel, where the pressure first drops

due to friction in the channel prior to the position where

pumping takes place, increases due to pumping action, and,

finally, decreases again due to friction in the exit portion.

Corresponding u-velocity distribution and streamlines are

shown in Fig. 5c, which does not vary significantly in time

near the walls confirming a steady flow in that region and

varies with respect to traveling waves near the film. Inlet

and exit portions of the channel correspond to almost

steady-laminar parabolic profiles as indicated by color

shading of the u-velocity. Moreover, there is a steady cir-

culation pair in the middle of the channel on both sides of

the film near the walls indicating that average u-velocity

must be higher near the film. In essence, instantaneous

streamlines indicate that the time-averaged velocity dis-

tribution is similar to that of converging-diverging nozzles.

A special case of the flow regime takes place when the

amplitude of the waves is comparable to the height of the

channel. In the limit, when B0 = H/2 the pump in fact

works as a displacement pump, where the deformation

waves on the film carries the fluid steadily.

Another flow regime is a trivial case when the wave-

length is much larger than the length of the film. In this

case, the net flow rate goes to zero and the effectiveness of

the pump diminishes. The film simply deforms according

to (1) with a parabolic deformation profile not yielding a

significant net flow.

3.2 Parametric dependence of flow rate and power

In what follows, characteristic scales that are presented in

Table 1 are used to obtain dimensionless quantities.

Figure 6a depicts the relationship between the channel-

height-to-amplitude ratio, H/B0, and the time and area-

averaged velocity, �U
� ¼ �Q

�
=H�; which decreases with the

square of the H/B0 ratio. This behavior is consistent with

what is reported by Katz (1974) in the analysis of the

propulsion of an infinitely extending sheet placed between

parallel plates and subject to traveling deformation-waves.

Katz observed that velocity normalized with the speed of

wave propagation is proportional to the square of B0/H

ratio when H/k * O(1) according to,

�U1
c
¼ C1

H=B0ð Þ2 þ C2

; ð19Þ

where C1 and C2 are positive constants, and �U1 is the

time-averaged velocity of the infinite sheet. Relationship

given by (19) is predominant regardless whether the

amplitude or the channel height is varied in simulations.

Moreover, in Fig. 6a, it is shown that the average velocity

converges to the displacement-pump limit, which is char-

acterized by the amplitude of the waves being equal to the

4 4.2 4.4 4.6 4.8 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

∗

∗

Q
top
*

Q
down
*

Q*

Fig. 3 Flow rates through top and down side of the elastic film and

the net flow

−2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

u*

y*

 t* =  4.15
 t* =  4.30
 t* =  4.35
 t* =  4.40
 t* =  4.45
 t* =  4.50
 t* =  4.65

Fig. 4 The y-profile of the x-component of the velocity on the

midpoint of the film
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half of the channel’s height. In that case, essentially, the

average velocity of the flow is the same as the propagation

speed of the waves.

In Fig. 6b, time-averaged nondimensional rate of work

done on the fluid by the elastic film is calculated from

(14,15) based on dimensionless quantities, and plotted

against the H/B0 ratio. Rate of work decreases with the

square of H/B0 especially in the case for variable amplitude

runs. In effect, this result agrees qualitatively well with the

asymptotic analysis presented by (Childress 1981) for the

time-averaged work per unit horizontal area per time for

the infinite sheet, which results in quadratic dependence of

power on the amplitude:

�P1 ¼ CP2l
x2B2

0

k
ð20Þ

where the proportionality constant, CP is equal to one for

the infinite sheet. Furthermore, variable height runs deviate

from the square dependence due to the relative change in

other variables such as k, which has a profound effect on

the flow regime as discussed in Sect. 3.1 and shown in Figs.

2a–e and 3a–c.

In Fig. 7a, the relationship between the time-averaged

flow rate and the frequency of the deformation waves is

shown. It is clear that the average flow rate tends to

increase linearly with the frequency. This is also observed

by Sir Taylor in the analysis of swimming microorganisms,

which is modeled as having a sheet of infinite extension

that propagates deformation waves in the opposite direc-

tion to the swimming direction in an infinite medium

without walls (Sir Taylor 1951). In Taylor’s analysis the

average velocity of the microswimmer has a leading term

proportional to the frequency of deformations on the film

�Us;1 � k2B2c�B2x
k

ð21Þ
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Fig. 5 For

k=‘f ¼ 11; f � ¼ 1;B�0 ¼ 0:058

at t* = 4.0: a color shaded

pressure distribution; b pressure

plot along the line in a; c color

shaded u-velocity distribution

and streamlines
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Based on (19) and (21), it is plausible to expect the

average velocity, hence the flow rate for constant channel

height, constant amplitude and constant wavelength to have

a linear dependence on the frequency.

Figure 7b demonstrates the behavior of time-averaged

nondimensional power exerted on the fluid, which is cal-

culated from (14), with respect to driving frequency. Power

exerted by elastic thin film tends to increase with the square

of frequency, which qualitatively agrees well with the

result of the analysis presented in (Childress 1981) and

given by (20).

In Fig. 8a, average flow rate is plotted against the

wavelength. As reported in Figs. 2 and 3, the wavelength,

in fact, determines the flow regime that takes place in the

channel. For small wavelengths, almost-steady flow rate

in the channel decreases slowly with the wavelength

agreeing well with the Taylor’s result given in (21). As

the wavelength becomes comparable with the separation

of channels, which is half of the length of the film,

steady-periodic flow rate increases proportional to the

square root of the wavelength rather than the linear

dependence suggested by (19). Note that the analysis,

which is the basis of the result presented in (19), is for an

infinitely long sheet unlike the finite film considered here

and for which k/H & O(1). It is presumable to suggest

that the deviation is due to film’s finite-length, and further

studies are necessary to elucidate this behavior. Moreover,

due to the finite length of the film further increase of the

wavelength is expected to reduce the flow rate as the

envelope given in (11) reduces the effectiveness of the

wave propagation.

In Fig. 8b, time-averaged power calculated by (14) is

plotted as a function of the wavelength k. For small
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wavelengths, k	 ‘f =2; nondimensional power exerted on

fluid by the film decreases linearly with respect to the

wavelength according to (21). But for k
 ‘f =2 ¼ H; a

different pattern emerges and the power linearly increases

with the wavelength. According to the analysis carried out

by (Katz 1974), when the wavelength is comparable to the

separation between the channel walls, leading order of the

average rate of work is given by

�P1;k�H�lc2kB2 ¼ lx2B2k: ð22Þ

For that regime, the pressure itself varies proportional to

the wavelength. For very large wavelengths compared to

the film’s length, uniform steady flow can not be

maintained since the motion of the finite film turns into a

simple uniform vertical motion of a parabolic curve given

by (11) (see Fig. 1), and the propagation of waves

diminishes. This behavior manifests itself as leveling off

of the curve for large wavelengths in Fig. 8b.

In Fig. 9a, combined effects of amplitude, frequency,

wavelength and channel height are put together to char-

acterize the flow rate. From what are depicted in Figs. 6a,

7a and 8a, a flow rate parameter is defined as follows,

CQ ¼
B0

H

� �
B�0x

�� � ffiffiffiffiffi
k�
p

: ð23Þ

Dimensionless average flow rate which is based on the

scales provided in Tables 1 and 2 scales with the flow rate

parameter, CQ, given in (23). As the wavelength dictates

the flow regime of the finite-length film, only a portion of

the wavelength simulations match to this general behavior

for wavelengths comparable to the base case, which is used

in parametric simulations for amplitude, frequency and the

channel height.
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In Fig. 9b, time-averaged power exerted on the fluid is

plotted against a power parameter that puts together the

parametric behavior of nondimensional power, which is

shown in Figs. 6b, 7b and 8b, as given by,

CP ¼
B0

H

� �2 k
H

� �
x�2: ð24Þ

All four curves coincide except for the parametric

wavelength curve, which follows the trend only partially,

as also observed in Fig. 9b and discussed above.

The power coefficient given by (24), in effect, is derived

for constant viscosity. Based on (14) and (15) it is clear that

the power exerted on the fluid must scale with the viscosity

of the fluid linearly. In fact, an alternate and common

nondimensionalization of the pressure and shear stress is

based on the scale, lU0=‘0: If the viscosity were used in

nondimensionalization of stress variables and the power,

then, without loss of generality (24) would have been used

directly without including the effect of viscosity addition-

ally in practical calculations.

4 Conclusion

A dynamic pump, which uses the propulsion mechanism of

microorganisms such as spermatozoa, is demonstrated and

analyzed by means of numerical simulations. The mecha-

nism, which relies on the effectiveness of traveling-wave

deformations on an elastic-thin film immersed in the fluid

inside a channel, is a viable option for the actuation of

micropumps and propulsion of autonomous microrobots.

The steady-periodic flow due to traveling-wave deforma-

tions on the film is modeled with Stokes equations and

solved on a deforming mesh with the ALE method using

commercial software, COMSOL.

Use of a finite-length film results in two different flow

regimes as the wavelength varies: (1) for small wave-

lengths, k� ‘f ; variations in the pressure and the velocity

away from the film are small compared to the mean flow,

which sustains an almost-steady rate through the channel;

(2) for wavelengths comparable to the length of the film,

k�‘f ; the pressure and the velocity vary throughout the

channel as the deformation-wave propagates on the film

resulting in large circulations in the channel and an oscil-

latory flow.

Parametric dependence of the flow rate and the rate-of-

work done on the fluid by the film with respect to the ratio

of the deformation amplitude to the channel height, fre-

quency and wavelength is obtained by means of a number

of numerical simulations. The relative effect of the

amplitude-to-channel-height ratio and the frequency (wave

speed for constant wavelength) is found to be in

accordance with the former asymptotic analytical results

for the infinite-film qualitatively. Independent effects of the

amplitude, channel height, frequency and partially the

wavelength are grouped into two parameters, one for the

flow rate, CQ ¼ B0=Hð Þ B�0x
�� � ffiffiffiffiffi

k�
p

; and one for the rate-

of-work, CP = (B0/H)2 (k/H)x*2.
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