Some Remarks on the Hasse-Arf Theorem

Arnaldo Garcia* and Henning Stichtenoth

Abstract

We give a very simple proof of Hasse-Arf theorem in the particular case where the extension is Galois with an elementary-abelian Galois group of exponent p. It just uses the transitivity of different exponents and Hilbert's different formula.

Let E / F be a finite Galois extension with Galois group $G=\operatorname{Gal}(E / F)$. Let P be a place of F and let Q be a place of E lying above P. We assume that the corresponding valuations v_{P} (and hence also v_{Q}) are discrete valuations of rank 1 , and that the residue field extension E_{Q} / F_{P} is separable. We want to study the sequence of ramification groups $G_{i}=G_{i}(Q \mid P), i=0,1,2, \ldots$. We have the inclusions

$$
G \supseteq G_{0} \supseteq G_{1} \supseteq G_{2} \supseteq \ldots
$$

Let p denote the characteristic of the residue field F_{P}. We will always assume that $p>0$. It is well-known (see Serre [6]) that the order of G_{0} is equal to the ramification index $e=e(Q \mid P)$, that G_{1} is the unique p-Sylow subgroup of G_{0} and that G_{0} / G_{1} is cyclic of order prime to p. All groups G_{i} are normal subgroups of G_{0}, and for $i \geq 1$ the quotients G_{i} / G_{i+1} are elementary-abelian groups of exponent p.

For simplicity, we will assume from now on that $Q \mid P$ is totally ramified and that G is a p-group. Then we have

$$
\begin{equation*}
G=G_{0}=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \ldots \tag{1}
\end{equation*}
$$

and $G_{m}=\{1\}$ for m sufficiently large. An integer $s \geq 1$ is called a jump of $Q \mid P$ if $G_{s} \supsetneqq G_{s+1}$.

[^0]
Arnaldo Garcia and Henning Stichtenoth

The Hasse-Arf theorem states

Theorem 1. With notations as above, assume moreover that G is an abelian p-group. Let $s<t$ be two subsequent jumps of $Q \mid P$; i.e., we have

$$
G_{s} \supsetneqq G_{s+1}=\cdots=G_{t} \supsetneqq G_{t+1}
$$

Then it holds that

$$
t \equiv s \quad \bmod \left(G: G_{t}\right)
$$

Remark. Theorem 1 was firstly proved by Hasse for the case of finite residue fields (see [2] and [3]), and the general case is due to Arf [1]. A different proof of Theorem 1 was given by Serre [5]. See also [6], Chapter IV, $\S 3$ and [4], Chapter III, $\S 8$.

The aim of this note is to give a very simple group-theoretical proof of the Hasse-Arf theorem if the Galois group G is an elementary-abelian group of exponent p, see Theorem 2 below. Our method also yields some weaker results in the case of arbitrary (abelian or non-abelian) p-groups G, see Theorem 3 below. Other basic ingredients in the proofs below are the transitivity of different exponents and Hilbert's different formula.

Theorem 2. With notations as above, assume moreover that G is an elementaryabelian group of exponent p. Let $s<t$ be subsequent jumps of $Q \mid P$. Then it holds that

$$
t \equiv s \bmod \left(G: G_{t}\right)
$$

Remark. The idea of the proof of Theorem 2 becomes very transparent if we consider the special case of an elementary-abelian group G of order p^{2}. Then for two subsequent jumps $s<t$ of $Q \mid P$ we must have

$$
G=G_{0}=G_{1}=\cdots=G_{s} \supsetneqq G_{s+1}=\cdots=G_{t} \supsetneqq G_{t+1}=\{1\}
$$

and $\left(G: G_{t}\right)=$ ord $G_{t}=p$. The assertion of Theorem 2 in this special case is then:

$$
\begin{equation*}
t \equiv s \quad \bmod p \tag{2}
\end{equation*}
$$

In order to prove (2), we choose a subgroup $K \subseteq G$ such that $\operatorname{ord}(K)=p$ and $K \cap G_{t}=\{1\}$. Note that such a subgroup K of G exists, since the Galois group G is not cyclic. Let E^{K} denote the fixed field of K and let Q_{1} denote the restriction of Q to E^{K}. For all $i \geq 0$, the i-th ramification group of $Q \mid Q_{1}$ (denoted by $\left.G_{i}\left(Q \mid Q_{1}\right)\right)$ satisfies

$$
G_{i}\left(Q \mid Q_{1}\right)=G_{i}(Q \mid P) \cap K= \begin{cases}K, & \text { for } i \leq s \\ \{1\}, & \text { for } i \geq s+1\end{cases}
$$

This follows immediately from the definition of ramification groups. By Hilbert's different formula (cf. Serre [6], Chapter IV, §1), the different exponents for $Q \mid P$ and for $Q \mid Q_{1}$ are given by

$$
d(Q \mid P)=\sum_{i=0}^{\infty}\left(\operatorname{ord} G_{i}-1\right)=(s+1)\left(p^{2}-1\right)+(t-s)(p-1)
$$

and

$$
d\left(Q \mid Q_{1}\right)=\sum_{i=0}^{\infty}\left(\operatorname{ord} G_{i}\left(Q \mid Q_{1}\right)-1\right)=(s+1)(p-1)
$$

By the transitivity of different exponents, we also have

$$
d(Q \mid P)=d\left(Q \mid Q_{1}\right)+p \cdot d\left(Q_{1} \mid P\right)
$$

and hence $d(Q \mid P) \equiv d\left(Q \mid Q_{1}\right) \bmod p$. Therefore we obtain

$$
(s+1)\left(p^{2}-1\right)+(t-s)(p-1) \equiv(s+1)(p-1) \quad \bmod p
$$

The congruence (2) now follows immediately.

We are now going to prove Theorem 2. Hence the Galois group G is an arbitrary elementary-abelian group of exponent p. Let $s_{1}, s_{2}, \ldots, s_{m}$ denote the ordered sequence of all jumps of $Q \mid P$. We also define $s_{0}:=0$, so

$$
0=s_{0}<s_{1}<s_{2}<\cdots<s_{m}
$$

and $G_{i}=\{1\}$ for all $i>s_{m}$. We have to show that

$$
\begin{equation*}
s_{n} \equiv s_{n-1} \quad \bmod \left(G: G_{s_{n}}\right) \tag{3}
\end{equation*}
$$

holds for all n with $1 \leq n \leq m$. We proceed by induction on n.
The case $n=1$ is trivial since $G_{s_{1}}=G$. Assume now that $1 \leq n \leq m-1$ and that (3) holds for all j with $1 \leq j \leq n$; i.e., it holds that $s_{j} \equiv s_{j-1} \bmod \left(G: G_{s_{j}}\right)$. We will show that (3) also holds for $n+1$. To simplify notation, we set $s:=s_{n}$ and $t:=s_{n+1}$ and we have to show that $t \equiv s \bmod \left(G: G_{t}\right)$. We have that

$$
\begin{equation*}
G=G_{0} \supseteq \cdots \supseteq G_{s} \supsetneqq G_{s+1}=\cdots=G_{t} \supsetneqq G_{t+1} \supseteq \cdots \tag{4}
\end{equation*}
$$

Since the Galois group G is assumed to be elementary-abelian of exponent p, the factor group G / G_{t+1} is also elementary-abelian of exponent p. Then there exists a subgroup $K \subseteq G$ with the following properties

$$
\begin{equation*}
G_{t+1} \subseteq K \subseteq G ; \quad K \cap G_{t}=G_{t+1} ; \quad\left(K: G_{t+1}\right)=\left(G: G_{t}\right) \tag{5}
\end{equation*}
$$

Let E^{K} denote the fixed field of K and let Q_{1} denote the restriction of Q to E^{K}. The i-th ramification group of $Q \mid Q_{1}$ is then $K \cap G_{i}$, and Hilbert's different formula for the different exponents of $Q \mid P$ and of $Q \mid Q_{1}$ gives

$$
\begin{array}{r}
d(Q \mid P)=\operatorname{ord} G_{0}-1+\sum_{j=1}^{n}\left(s_{j}-s_{j-1}\right)\left(\operatorname{ord} G_{s_{j}}-1\right) \tag{6}\\
+(t-s)\left(\operatorname{ord} G_{t}-1\right)+\sum_{\ell>t}\left(\operatorname{ord} G_{\ell}-1\right)
\end{array}
$$

and

$$
\begin{array}{r}
d\left(Q \mid Q_{1}\right)=\operatorname{ord} K-1+\sum_{j=1}^{n}\left(s_{j}-s_{j-1}\right)\left(\operatorname{ord} K \cap G_{s_{j}}-1\right) \tag{7}\\
+(t-s)\left(\operatorname{ord} G_{t+1}-1\right)+\sum_{\ell>t}\left(\operatorname{ord} G_{\ell}-1\right)
\end{array}
$$

Arnaldo Garcia and Henning Stichtenoth

Since $d(Q \mid P)=d\left(Q \mid Q_{1}\right)+\operatorname{ord}(K) \cdot d\left(Q_{1} \mid P\right)$, we obtain by subtracting Equations (6) and (7):
$(s-t)\left(\operatorname{ord} G_{t}-\operatorname{ord} G_{t+1}\right) \equiv \sum_{j=1}^{n}\left(s_{j}-s_{j-1}\right)\left(\operatorname{ord} G_{s_{j}}-\operatorname{ord}\left(K \cap G_{s_{j}}\right)\right) \quad \bmod (\operatorname{ord} K)$.
Now we use the induction hypothesis which implies that there exist integers $c_{j} \geq 1$ such that

$$
s_{j}-s_{j-1}=c_{j} \cdot\left(G: G_{s_{j}}\right), \quad \text { for } j=1,2, \ldots, n
$$

It follows that

$$
\begin{aligned}
\left(s_{j}-s_{j-1}\right) \cdot \operatorname{ord} G_{s_{j}} & =c_{j} \cdot\left(G: G_{s_{j}}\right) \cdot \operatorname{ord} G_{s_{j}} \\
& =c_{j} \cdot \operatorname{ord} G \equiv 0 \quad \bmod (\operatorname{ord} K)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(s_{j}-s_{j-1}\right) \cdot \operatorname{ord}\left(K \cap G_{s_{j}}\right) & =c_{j} \cdot\left(G: G_{s_{j}}\right) \cdot \operatorname{ord}\left(K \cap G_{s_{j}}\right) \\
& =c_{j} \cdot\left(G: G_{s_{j}}\right) \cdot \frac{\operatorname{ord} K \cdot \operatorname{ord} G_{s_{j}}}{\operatorname{ord}\left(K \cdot G_{s_{j}}\right)} \\
& =c_{j} \cdot \frac{\operatorname{ord}(G)}{\operatorname{ord}\left(K \cdot G_{s_{j}}\right)} \cdot \operatorname{ord} K \quad \equiv 0 \quad \bmod (\operatorname{ord} K)
\end{aligned}
$$

It now follows from (8) that

$$
\begin{equation*}
(t-s) \cdot \operatorname{ord} G_{t+1} \cdot\left(\left(G_{t}: G_{t+1}\right)-1\right) \equiv 0 \quad \bmod (\operatorname{ord} K) \tag{9}
\end{equation*}
$$

Since $\left(K: G_{t+1}\right)=\left(G: G_{t}\right)$ holds by (5), we have

$$
\operatorname{ord}(K)=\operatorname{ord} G_{t+1} \cdot\left(G: G_{t}\right)
$$

and we then conclude from (9) that

$$
(t-s) \cdot\left(\left(G_{t}: G_{t+1}\right)-1\right) \equiv 0 \quad \bmod \left(G: G_{t}\right)
$$

Since $\left(G_{t}: G_{t+1}\right)-1$ is relatively prime to the characteristic p and $\left(G: G_{t}\right)$ is a power of p, we get

$$
t-s \equiv 0 \quad \bmod \left(G: G_{t}\right)
$$

This finishes the proof of Theorem 2.

We can apply the method of the proof of Theorem 2 to obtain a congruence condition for subsequent jumps, for arbitrary p-groups G. This congruence is slightly weaker than the one in the Hasse-Arf Theorem.

Theorem 3. Let E / F be a finite Galois extension with Galois group $G=$ $\operatorname{Gal}(E / F)$. Suppose that $Q \mid P$ is totally ramified in E / F and that G is a p-group, where p is the characteristic of the residue field of the place P. Suppose that $s<t$ are subsequent jumps of $Q \mid P$ and assume one of the following two conditions:
(i) $\left(G_{t}: G_{t+1}\right) \geq p^{2}$.
(ii) $\left(G_{t}: G_{t+1}\right)=p$ and G_{s} / G_{t+1} contains at least two distinct subgroups of order p.
Then it holds that

$$
t \equiv s \quad \bmod p
$$

Proof: We first show that there exists a subgroup $K \subseteq G$ with the following properties:

$$
\begin{equation*}
G_{t+1} \subseteq K \subseteq G_{s} ; \quad G_{t} \cap K \varsubsetneqq G_{t} ; \quad G_{t} \cap K \varsubsetneqq K \tag{10}
\end{equation*}
$$

If condition (ii) holds, this is clear: one chooses $K \subseteq G_{s}$ such that $\operatorname{ord}\left(K / G_{t+1}\right)=$ p and $K / G_{t+1} \neq G_{t} / G_{t+1}$. If condition (i) holds, we take $a \in G_{s} \backslash G_{t}$ and we set $K:=\left\langle G_{t+1}, a\right\rangle$. Since K / G_{t+1} is cyclic and G_{t} / G_{t+1} is elementary-abelian of order at least p^{2}, it follows that G_{t} is not contained in K and hence the subgroup K satisfies all conditions of (10).

Now we proceed as in the proof of Theorem 2: Let E^{K} be the fixed field of K and let Q_{1} be the restriction of Q to E^{K}. We have

$$
\begin{aligned}
d(Q \mid P)= & \sum_{i=0}^{s}\left(\operatorname{ord} G_{i}-1\right)+(t-s)\left(\operatorname{ord} G_{t}-1\right) \\
& +\sum_{i>t}\left(\operatorname{ord} G_{i}-1\right)
\end{aligned}
$$

and using (10), we have

$$
\begin{aligned}
d\left(Q \mid Q_{1}\right)= & \sum_{i=0}^{s}(\operatorname{ord} K-1)+(t-s)\left(\operatorname{ord}\left(K \cap G_{t}\right)-1\right) \\
& +\sum_{i>t}\left(\operatorname{ord} G_{i}-1\right)
\end{aligned}
$$

Since $d(Q \mid P)=d\left(Q \mid Q_{1}\right)+\operatorname{ord}(K) \cdot d\left(Q_{1} \mid Q\right) \equiv d\left(Q \mid Q_{1}\right) \bmod ($ ord $K)$, we see that

$$
(t-s)\left(\operatorname{ord} G_{t}-\operatorname{ord}\left(K \cap G_{t}\right)\right) \equiv 0 \quad \bmod (\operatorname{ord} K)
$$

Observing that $K \cap G_{t} \varsubsetneqq K$ and $K \cap G_{t} \varsubsetneqq G_{t}$, we obtain that

$$
\begin{equation*}
t \equiv s \quad \bmod \left(K: K \cap G_{t}\right) \tag{11}
\end{equation*}
$$

This finishes the proof of Theorem 3.

Remark. Equation (11) can also be written as

$$
t \equiv s \quad \bmod \left(K \cdot G_{t}: G_{t}\right)
$$

The bigger is the order of the subgroup $K \cdot G_{t}$ of G_{s}, the finer is the information in the congruence relation above. We stress that the subgroup K is chosen satisfying Eq.(10). Assume that $\left(G_{s}: G_{t}\right) \geq p^{2}$ and we can ask the following question: Find general conditions on the factor group G_{s} / G_{t+1} implying that one can choose K satisfying Eq.(10) such that $K \cdot G_{t}=G_{s}$.

References

[1] C. Arf - Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1940), 1-44.
[2] H. Hasse - Führer, Diskriminante und Verzweigunsgskörper relativ Abelscher Zahlkörper, J. Reine Angew. Math. 162 (1930), 169-184.
[3] H. Hasse - Normenresttheorie galoisscher Zahlkörper mit Anwendungen auf Führer und Diskriminante abelscher Zahlkörper, J. Fac. Sci. Tokyo 2 (1934), 477-498.
[4] J. Neukirch - Class Field Theory - Grundlehren der Math. Wissenschaften 280, Springer-Verlag, Berlin, 1986.
[5] J.-P. Serre - Sur les corps locaux à corps résiduel algébriquement clos, Bull. Soc. Math. France 89 (1961), 105-154.
[6] J.-P. Serre - Local Fields - Graduate Texts in Math. 67, Springer-Verlag, New York, 1979.

Arnaldo Garcia
IMPA
Estrada Dona Castorina 110
22460-320, Rio de Janeiro, Brazil
Email- garcia@impa.br

Henning Stichtenoth
Sabanci University
MDBF, Orhanli, 34956
Tuzla, Istanbul, Turkey
Email- henning@sabanciuniv.edu

[^0]: - 2000 Math. Subject Classification - 11S15, 11S20, 14H05 and 14H37.
 * - A. Garcia was supported by CNPq-FAPERJ (PRONEX) and also by \#307569/2006$3(\mathrm{CNPq})$.

