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Some Remarks on the
Hasse-Arf Theorem

ARNALDO GARCIA* AND HENNING STICHTENOTH

ABSTRACT: We give a very simple proof of Hasse-Arf theorem in the particular case
where the extension is Galois with an elementary-abelian Galois group of exponent
p. It just uses the transitivity of different exponents and Hilbert’s different formula.

Let E/F be a finite Galois extension with Galois group G = Gal(E/F). Let
P be a place of F' and let @ be a place of E lying above P. We assume that the
corresponding valuations vp (and hence also vg) are discrete valuations of rank
1, and that the residue field extension Eq/Fp is separable. We want to study
the sequence of ramification groups G; = G;(Q|P), i = 0,1,2,.... We have the
inclusions
G2Gy2G12G2 D ...

Let p denote the characteristic of the residue field Fip. We will always assume
that p > 0. It is well-known (see Serre [6]) that the order of Gy is equal to the
ramification index e = e(Q|P), that G is the unique p-Sylow subgroup of Gy and
that Go/G is cyclic of order prime to p. All groups G; are normal subgroups of
Gy, and for ¢ > 1 the quotients G;/G;+1 are elementary-abelian groups of exponent
p.

For simplicity, we will assume from now on that Q|P is totally ramified and
that G is a p-group. Then we have

G=Gy=G12G,2G5D... (1)

and G, = {1} for m sufficiently large. An integer s > 1 is called a jump of Q|P
if G 2 Gy
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The Hasse-Arf theorem states

Theorem 1. With notations as above, assume moreover that G is an abelian
p-group. Let s <t be two subsequent jumps of Q|P; i.e., we have

ngGerl:"':Gt;GtJrL

Then it holds that
t=s mod(G:Gy).

Remark. Theorem 1 was firstly proved by Hasse for the case of finite residue
fields (see [2] and [3]), and the general case is due to Arf [1]. A different proof of
Theorem 1 was given by Serre [5]. See also [6], Chapter IV, §3 and [4], Chapter
I1I, §8.

The aim of this note is to give a very simple group-theoretical proof of the
Hasse-Arf theorem if the Galois group G is an elementary-abelian group of expo-
nent p, see Theorem 2 below. Our method also yields some weaker results in the
case of arbitrary (abelian or non-abelian) p-groups G, see Theorem 3 below. Other
basic ingredients in the proofs below are the transitivity of different exponents and
Hilbert’s different formula.

Theorem 2. With notations as above, assume moreover that G is an elementary-
abelian group of exponent p. Let s < t be subsequent jumps of Q|P. Then it holds
that

t=s mod(G: Gy).

Remark. The idea of the proof of Theorem 2 becomes very transparent if we
consider the special case of an elementary-abelian group G of order p?. Then for
two subsequent jumps s < t of Q|P we must have

G=G0=G1:"':G52Gs+l:"':Gt;th-H:{l}’

and (G : Gt) = ord Gy = p. The assertion of Theorem 2 in this special case is
then:

t=s mod p. (2)
In order to prove (2), we choose a subgroup K C G such that ord(K) = p and
KNG ={1}. Note that such a subgroup K of G exists, since the Galois group G
is not cyclic. Let E*X denote the fixed field of K and let Q1 denote the restriction
of Q to EX. For all i > 0, the i-th ramification group of Q|Q; (denoted by
G;(Q|Q1)) satisfies

K, for i <,

Gi(QIQ1) = Gi(QIP)NK = {{1}, fori>s+1.

This follows immediately from the definition of ramification groups. By Hilbert’s
different formula (cf. Serre [6], Chapter IV, §1), the different exponents for Q|P
and for Q|Q; are given by

o

d(QIP) = (ord Gi = 1) = (s + 1)(p* = 1) + (t — s)(p — 1),

=0
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and
oo

d(QIQ1) =D _(ord Gi(QIQ1) —1) = (s + 1)(p — 1).
i=0
By the transitivity of different exponents, we also have

d(Q[P) = d(Q|Q1) +p - d(Q1]P)
and hence d(Q|P) = d(Q|Q1) mod p. Therefore we obtain
(s+1)@* =1+ (t=s)p-1)=(s+1)(p—1) modp.

The congruence (2) now follows immediately. O

We are now going to prove Theorem 2. Hence the Galois group G is an arbitrary
elementary-abelian group of exponent p. Let si,S$o,...,5, denote the ordered
sequence of all jumps of Q|P. We also define sg := 0, so

0=s9< 81 <8< < Sy,
and G; = {1} for all ¢ > s,,. We have to show that
Spn = S$p—1 mod(G : Gg,) (3)

holds for all n with 1 < n < m. We proceed by induction on n.

The case n =1 is trivial since G5, = G. Assume now that 1 <n <m — 1 and
that (3) holds for all j with 1 < j <n; i.e., it holds that s; = s;_1 mod(G : G,).
We will show that (3) also holds for n + 1. To simplify notation, we set s := s,
and ¢ := s,41 and we have to show that t = s mod(G : G¢). We have that

G=GyD DG 2C1==G 2G12... (4)

Since the Galois group G is assumed to be elementary-abelian of exponent p, the
factor group G/Gyy1 is also elementary-abelian of exponent p. Then there exists
a subgroup K C G with the following properties

Gt+1 g K Q G N Kme = Gt+1 N (K : Gt+1) = (G : Gt) (5)

Let EX denote the fixed field of K and let 1 denote the restriction of Q to EX.
The i-th ramification group of @Q|Q1 is then K NG;, and Hilbert’s different formula
for the different exponents of Q|P and of Q|Q; gives

d(Q|P) = ord Gy — 1 + zn:(sj —sj_1)(ord Gy, — 1)
+(t— s)(oril_;t — 1)+ (ord G, — 1), )
and ) .
d(Q|Q1) =ord K =14 (s; —s;_1)(ord KNGy, — 1)
+ (t— s)(oi:c:t+1 —1)+ Y (ord G, —1). v

>t
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Since d(Q|P) = d(Q|Q1) + ord(K) - d(Q1|P), we obtain by subtracting Equations
(6) and (7):

(s—t)(ord Gy—ord Gyy1) =

J

(sj—sj—1)(ord G5, —ord(KNG,,;)) mod(ord K).

1

(8)
Now we use the induction hypothesis which implies that there exist integers c¢; > 1
such that

n

S]‘—Sj,1:Cj~(GZGSj), forj:1,2,...,n.
It follows that

(sj —8j-1)- ord Gy, =¢; - (G:Gy,) - ord Gy,
=¢j-ordG =0 mod(ord K)

and

(sj —sj-1)- ord(KNGy,) =¢;-(G:Gg,)- ord(KNGy,)
ord K - ord G,

= Cj . (G : GS]') . —ord(K : st)
ord(Q)
—e X d K = K).
c; ord(K - G ord 0 mod(ord K)
It now follows from (8) that
(t—s)- ord Gey1 - ((Gy: Gey1) —1) =0 mod(ord K). 9)

Since (K : Gi41) = (G : Gt) holds by (5), we have
ord(K) = ord G411 - (G : Gy),
and we then conclude from (9) that
(t—3)-(Gi:Gi41) —1)=0 mod(G: Gy).

Since (Gt : Giy1) — 1 is relatively prime to the characteristic p and (G : Gy) is a
power of p, we get
t—s=0 mod (G:Gy).

This finishes the proof of Theorem 2. O

We can apply the method of the proof of Theorem 2 to obtain a congruence
condition for subsequent jumps, for arbitrary p-groups G. This congruence is
slightly weaker than the one in the Hasse-Arf Theorem.

Theorem 3. Let E/F be a finite Galois extension with Galois group G =
Gal(E/F). Suppose that Q|P is totally ramified in E/F and that G is a p-group,
where p is the characteristic of the residue field of the place P. Suppose that s <t
are subsequent jumps of Q|P and assume one of the following two conditions:

(i) (Gi:Giyr) = p*
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(ii)) (Gt : Gig1) = p and G3/Gy1 contains at least two distinct subgroups of
order p.

Then it holds that
t=s mod p.

Proof: We first show that there exists a subgroup K C G with the following
properties:
GH_nggGs, Gthth, Gth%K (10)

If condition (ii) holds, this is clear: one chooses K C G such that ord(K/Giy1) =
p and K/Giy1 # Gi/Giqq. If condition (i) holds, we take a € G\ Gy and we
set K := (Gy41,a). Since K/Gy4q is cyclic and G;/Gyy1 is elementary-abelian of
order at least p?, it follows that G is not contained in K and hence the subgroup
K satisfies all conditions of (10).

Now we proceed as in the proof of Theorem 2: Let EX be the fixed field of K
and let Q1 be the restriction of Q to EX. We have

S

d(Q|P) = Z(ord G;—1)4 (t—s)(ord Gy — 1)

=0

+ Z(ord G; - 1),

i>t
and using (10), we have

S

d(Q[Q1) =) (ord K — 1)+ (t — s)(ord(K N Gy) — 1)

=0

+ Z(ord G;,—1).

i>t
Since d(Q|P) = d(Q|Q1) + ord(K) - d(Q1|Q) = d(Q|Q1) mod(ord K), we see that
(t—s)(ord Gy —ord(K NGy)) =0 mod(ord K).
Observing that K NGy & K and K NG S Gy, we obtain that
t=s mod (K :KNGy). (11)

This finishes the proof of Theorem 3. O

Remark. Equation (11) can also be written as
t=s mod(K - Gy:Gy).

The bigger is the order of the subgroup K -G, of Gy, the finer is the information in
the congruence relation above. We stress that the subgroup K is chosen satisfying
Eq.(10). Assume that (G5 : G;) > p* and we can ask the following question: Find
general conditions on the factor group G4/Gy41 implying that one can choose K
satisfying Eq.(10) such that K - G; = Gs.
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