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Abstract: We give a very simple proof of Hasse-Arf theorem in the particular case
where the extension is Galois with an elementary-abelian Galois group of exponent
p. It just uses the transitivity of different exponents and Hilbert’s different formula.

Let E/F be a finite Galois extension with Galois group G = Gal(E/F ). Let
P be a place of F and let Q be a place of E lying above P . We assume that the
corresponding valuations vP (and hence also vQ) are discrete valuations of rank
1, and that the residue field extension EQ/FP is separable. We want to study
the sequence of ramification groups Gi = Gi(Q|P ), i = 0, 1, 2, . . . . We have the
inclusions

G ⊇ G0 ⊇ G1 ⊇ G2 ⊇ . . . .

Let p denote the characteristic of the residue field FP . We will always assume
that p > 0. It is well-known (see Serre [6]) that the order of G0 is equal to the
ramification index e = e(Q|P ), that G1 is the unique p-Sylow subgroup of G0 and
that G0/G1 is cyclic of order prime to p. All groups Gi are normal subgroups of
G0, and for i ≥ 1 the quotients Gi/Gi+1 are elementary-abelian groups of exponent
p.

For simplicity, we will assume from now on that Q|P is totally ramified and
that G is a p-group. Then we have

G = G0 = G1 ⊇ G2 ⊇ G3 ⊇ . . . (1)

and Gm = {1} for m sufficiently large. An integer s ≥ 1 is called a jump of Q|P
if Gs % Gs+1.
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The Hasse-Arf theorem states

Theorem 1. With notations as above, assume moreover that G is an abelian

p-group. Let s < t be two subsequent jumps of Q|P ; i.e., we have

Gs % Gs+1 = · · · = Gt % Gt+1.

Then it holds that

t ≡ s mod(G : Gt).

Remark. Theorem 1 was firstly proved by Hasse for the case of finite residue
fields (see [2] and [3]), and the general case is due to Arf [1]. A different proof of
Theorem 1 was given by Serre [5]. See also [6], Chapter IV, §3 and [4], Chapter
III, §8.

The aim of this note is to give a very simple group-theoretical proof of the
Hasse-Arf theorem if the Galois group G is an elementary-abelian group of expo-
nent p, see Theorem 2 below. Our method also yields some weaker results in the
case of arbitrary (abelian or non-abelian) p-groups G, see Theorem 3 below. Other
basic ingredients in the proofs below are the transitivity of different exponents and
Hilbert’s different formula.

Theorem 2. With notations as above, assume moreover that G is an elementary-

abelian group of exponent p. Let s < t be subsequent jumps of Q|P . Then it holds

that

t ≡ s mod(G : Gt).

Remark. The idea of the proof of Theorem 2 becomes very transparent if we
consider the special case of an elementary-abelian group G of order p2. Then for
two subsequent jumps s < t of Q|P we must have

G = G0 = G1 = · · · = Gs % Gs+1 = · · · = Gt % Gt+1 = {1},

and (G : Gt) = ord Gt = p. The assertion of Theorem 2 in this special case is
then:

t ≡ s mod p. (2)

In order to prove (2), we choose a subgroup K ⊆ G such that ord(K) = p and
K ∩Gt = {1}. Note that such a subgroup K of G exists, since the Galois group G
is not cyclic. Let EK denote the fixed field of K and let Q1 denote the restriction
of Q to EK . For all i ≥ 0, the i-th ramification group of Q|Q1 (denoted by
Gi(Q|Q1)) satisfies

Gi(Q|Q1) = Gi(Q|P ) ∩ K =

{

K, for i ≤ s,

{1}, for i ≥ s + 1.

This follows immediately from the definition of ramification groups. By Hilbert’s
different formula (cf. Serre [6], Chapter IV, §1), the different exponents for Q|P
and for Q|Q1 are given by

d(Q|P ) =
∞
∑

i=0

(ord Gi − 1) = (s + 1)(p2 − 1) + (t − s)(p − 1),
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and

d(Q|Q1) =
∞
∑

i=0

(ord Gi(Q|Q1) − 1) = (s + 1)(p − 1).

By the transitivity of different exponents, we also have

d(Q|P ) = d(Q|Q1) + p · d(Q1|P )

and hence d(Q|P ) ≡ d(Q|Q1) mod p. Therefore we obtain

(s + 1)(p2 − 1) + (t − s)(p − 1) ≡ (s + 1)(p − 1) mod p.

The congruence (2) now follows immediately.

We are now going to prove Theorem 2. Hence the Galois group G is an arbitrary
elementary-abelian group of exponent p. Let s1, s2, . . . , sm denote the ordered
sequence of all jumps of Q|P . We also define s0 := 0, so

0 = s0 < s1 < s2 < · · · < sm

and Gi = {1} for all i > sm. We have to show that

sn ≡ sn−1 mod(G : Gsn
) (3)

holds for all n with 1 ≤ n ≤ m. We proceed by induction on n.
The case n = 1 is trivial since Gs1

= G. Assume now that 1 ≤ n ≤ m − 1 and
that (3) holds for all j with 1 ≤ j ≤ n; i.e., it holds that sj ≡ sj−1 mod(G : Gsj

).
We will show that (3) also holds for n + 1. To simplify notation, we set s := sn

and t := sn+1 and we have to show that t ≡ s mod(G : Gt). We have that

G = G0 ⊇ · · · ⊇ Gs % Gs+1 = · · · = Gt % Gt+1 ⊇ . . . (4)

Since the Galois group G is assumed to be elementary-abelian of exponent p, the
factor group G/Gt+1 is also elementary-abelian of exponent p. Then there exists
a subgroup K ⊆ G with the following properties

Gt+1 ⊆ K ⊆ G ; K ∩ Gt = Gt+1 ; (K : Gt+1) = (G : Gt). (5)

Let EK denote the fixed field of K and let Q1 denote the restriction of Q to EK .
The i-th ramification group of Q|Q1 is then K∩Gi, and Hilbert’s different formula
for the different exponents of Q|P and of Q|Q1 gives

d(Q|P ) = ord G0 − 1 +

n
∑

j=1

(sj − sj−1)(ord Gsj
− 1)

+ (t − s)(ord Gt − 1) +
∑

`>t

(ord G` − 1),

(6)

and

d(Q|Q1) = ord K − 1 +

n
∑

j=1

(sj − sj−1)(ord K ∩ Gsj
− 1)

+ (t − s)(ord Gt+1 − 1) +
∑

`>t

(ord G` − 1).

(7)
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Since d(Q|P ) = d(Q|Q1) + ord(K) · d(Q1|P ), we obtain by subtracting Equations
(6) and (7):

(s−t)(ord Gt−ord Gt+1) ≡
n

∑

j=1

(sj−sj−1)(ord Gsj
−ord(K∩Gsj

)) mod(ord K).

(8)
Now we use the induction hypothesis which implies that there exist integers cj ≥ 1
such that

sj − sj−1 = cj · (G : Gsj
), for j = 1, 2, . . . , n.

It follows that

(sj − sj−1) · ord Gsj
= cj · (G : Gsj

) · ord Gsj

= cj · ord G ≡ 0 mod(ord K)

and

(sj − sj−1) · ord(K ∩ Gsj
) = cj · (G : Gsj

) · ord(K ∩ Gsj
)

= cj · (G : Gsj
) ·

ord K · ord Gsj

ord(K · Gsj
)

= cj ·
ord(G)

ord(K · Gsj
)
· ord K ≡ 0 mod(ord K).

It now follows from (8) that

(t − s) · ord Gt+1 · ((Gt : Gt+1) − 1) ≡ 0 mod(ord K). (9)

Since (K : Gt+1) = (G : Gt) holds by (5), we have

ord(K) = ord Gt+1 · (G : Gt),

and we then conclude from (9) that

(t − s) · ((Gt : Gt+1) − 1) ≡ 0 mod(G : Gt).

Since (Gt : Gt+1) − 1 is relatively prime to the characteristic p and (G : Gt) is a
power of p, we get

t − s ≡ 0 mod (G : Gt).

This finishes the proof of Theorem 2.

We can apply the method of the proof of Theorem 2 to obtain a congruence
condition for subsequent jumps, for arbitrary p-groups G. This congruence is
slightly weaker than the one in the Hasse-Arf Theorem.

Theorem 3. Let E/F be a finite Galois extension with Galois group G =
Gal(E/F ). Suppose that Q|P is totally ramified in E/F and that G is a p-group,

where p is the characteristic of the residue field of the place P . Suppose that s < t
are subsequent jumps of Q|P and assume one of the following two conditions:

(i) (Gt : Gt+1) ≥ p2.
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(ii) (Gt : Gt+1) = p and Gs/Gt+1 contains at least two distinct subgroups of

order p.

Then it holds that

t ≡ s mod p.

Proof: We first show that there exists a subgroup K ⊆ G with the following
properties:

Gt+1 ⊆ K ⊆ Gs ; Gt ∩ K $ Gt ; Gt ∩ K $ K. (10)

If condition (ii) holds, this is clear: one chooses K ⊆ Gs such that ord(K/Gt+1) =
p and K/Gt+1 6= Gt/Gt+1. If condition (i) holds, we take a ∈ Gs \ Gt and we
set K := 〈Gt+1, a〉. Since K/Gt+1 is cyclic and Gt/Gt+1 is elementary-abelian of
order at least p2, it follows that Gt is not contained in K and hence the subgroup
K satisfies all conditions of (10).

Now we proceed as in the proof of Theorem 2: Let EK be the fixed field of K
and let Q1 be the restriction of Q to EK . We have

d(Q|P ) =

s
∑

i=0

(ord Gi − 1) + (t − s)(ord Gt − 1)

+
∑

i>t

(ord Gi − 1),

and using (10), we have

d(Q|Q1) =

s
∑

i=0

(ord K − 1) + (t − s)(ord(K ∩ Gt) − 1)

+
∑

i>t

(ord Gi − 1).

Since d(Q|P ) = d(Q|Q1) + ord(K) · d(Q1|Q) ≡ d(Q|Q1) mod(ord K), we see that

(t − s)(ord Gt − ord(K ∩ Gt)) ≡ 0 mod(ord K).

Observing that K ∩ Gt $ K and K ∩ Gt $ Gt, we obtain that

t ≡ s mod (K : K ∩ Gt). (11)

This finishes the proof of Theorem 3.

Remark. Equation (11) can also be written as

t ≡ s mod(K · Gt : Gt).

The bigger is the order of the subgroup K ·Gt of Gs, the finer is the information in
the congruence relation above. We stress that the subgroup K is chosen satisfying
Eq.(10). Assume that (Gs : Gt) ≥ p2 and we can ask the following question: Find
general conditions on the factor group Gs/Gt+1 implying that one can choose K
satisfying Eq.(10) such that K · Gt = Gs.
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