Some Remarks on the Hasse-Arf Theorem

Arnaldo Garcia^{*} and Henning Stichtenoth

ABSTRACT: We give a very simple proof of Hasse-Arf theorem in the particular case where the extension is Galois with an elementary-abelian Galois group of exponent *p*. It just uses the transitivity of different exponents and Hilbert's different formula.

Let E/F be a finite Galois extension with Galois group G = Gal(E/F). Let P be a place of F and let Q be a place of E lying above P. We assume that the corresponding valuations v_P (and hence also v_Q) are discrete valuations of rank 1, and that the residue field extension E_Q/F_P is separable. We want to study the sequence of ramification groups $G_i = G_i(Q|P), i = 0, 1, 2, \ldots$ We have the inclusions

$$G \supseteq G_0 \supseteq G_1 \supseteq G_2 \supseteq \dots$$

Let p denote the characteristic of the residue field F_P . We will always assume that p > 0. It is well-known (see Serre [6]) that the order of G_0 is equal to the ramification index e = e(Q|P), that G_1 is the unique p-Sylow subgroup of G_0 and that G_0/G_1 is cyclic of order prime to p. All groups G_i are normal subgroups of G_0 , and for $i \ge 1$ the quotients G_i/G_{i+1} are elementary-abelian groups of exponent p.

For simplicity, we will assume from now on that Q|P is totally ramified and that G is a p-group. Then we have

$$G = G_0 = G_1 \supseteq G_2 \supseteq G_3 \supseteq \dots \tag{1}$$

and $G_m = \{1\}$ for m sufficiently large. An integer $s \ge 1$ is called a jump of Q|P if $G_s \supseteq G_{s+1}$.

^{– 2000} Math. Subject Classification - 11S15, 11S20, 14H05 and 14H37.

 $^{^{*}}$ – A. Garcia was supported by CNPq-FAPERJ (PRONEX) and also by $\#307569/2006\text{-}3(\mathrm{CNPq}).$

The Hasse-Arf theorem states

Theorem 1. With notations as above, assume moreover that G is an abelian p-group. Let s < t be two subsequent jumps of Q|P; i.e., we have

$$G_s \supseteq G_{s+1} = \dots = G_t \supseteq G_{t+1}.$$

Then it holds that

 $t \equiv s \mod(G:G_t).$

Remark. Theorem 1 was firstly proved by Hasse for the case of finite residue fields (see [2] and [3]), and the general case is due to Arf [1]. A different proof of Theorem 1 was given by Serre [5]. See also [6], Chapter IV, $\S3$ and [4], Chapter III, $\S8$.

The aim of this note is to give a very simple group-theoretical proof of the Hasse-Arf theorem if the Galois group G is an elementary-abelian group of exponent p, see Theorem 2 below. Our method also yields some weaker results in the case of arbitrary (abelian or non-abelian) p-groups G, see Theorem 3 below. Other basic ingredients in the proofs below are the transitivity of different exponents and Hilbert's different formula.

Theorem 2. With notations as above, assume moreover that G is an elementaryabelian group of exponent p. Let s < t be subsequent jumps of Q|P. Then it holds that

$$t \equiv s \mod(G:G_t).$$

Remark. The idea of the proof of Theorem 2 becomes very transparent if we consider the special case of an elementary-abelian group G of order p^2 . Then for two subsequent jumps s < t of Q|P we must have

$$G = G_0 = G_1 = \dots = G_s \underset{\neq}{\supseteq} G_{s+1} = \dots = G_t \underset{\neq}{\supseteq} G_{t+1} = \{1\},$$

and $(G:G_t) = \text{ord } G_t = p$. The assertion of Theorem 2 in this special case is then:

$$t \equiv s \mod p. \tag{2}$$

In order to prove (2), we choose a subgroup $K \subseteq G$ such that $\operatorname{ord}(K) = p$ and $K \cap G_t = \{1\}$. Note that such a subgroup K of G exists, since the Galois group G is not cyclic. Let E^K denote the fixed field of K and let Q_1 denote the restriction of Q to E^K . For all $i \geq 0$, the *i*-th ramification group of $Q|Q_1$ (denoted by $G_i(Q|Q_1)$) satisfies

$$G_i(Q|Q_1) = G_i(Q|P) \cap K = \begin{cases} K, & \text{for } i \le s, \\ \{1\}, & \text{for } i \ge s+1. \end{cases}$$

This follows immediately from the definition of ramification groups. By Hilbert's different formula (cf. Serre [6], Chapter IV, §1), the different exponents for Q|P and for $Q|Q_1$ are given by

$$d(Q|P) = \sum_{i=0}^{\infty} (\text{ord } G_i - 1) = (s+1)(p^2 - 1) + (t-s)(p-1),$$

and

$$d(Q|Q_1) = \sum_{i=0}^{\infty} (\text{ord } G_i(Q|Q_1) - 1) = (s+1)(p-1).$$

By the transitivity of different exponents, we also have

$$d(Q|P) = d(Q|Q_1) + p \cdot d(Q_1|P)$$

and hence $d(Q|P) \equiv d(Q|Q_1) \mod p$. Therefore we obtain

$$(s+1)(p^2-1) + (t-s)(p-1) \equiv (s+1)(p-1) \mod p.$$

The congruence (2) now follows immediately.

We are now going to prove Theorem 2. Hence the Galois group G is an arbitrary elementary-abelian group of exponent p. Let s_1, s_2, \ldots, s_m denote the ordered sequence of all jumps of Q|P. We also define $s_0 := 0$, so

 $0 = s_0 < s_1 < s_2 < \dots < s_m$

and $G_i = \{1\}$ for all $i > s_m$. We have to show that

$$s_n \equiv s_{n-1} \mod(G:G_{s_n}) \tag{3}$$

holds for all n with $1 \le n \le m$. We proceed by induction on n.

The case n = 1 is trivial since $G_{s_1} = G$. Assume now that $1 \le n \le m - 1$ and that (3) holds for all j with $1 \le j \le n$; i.e., it holds that $s_j \equiv s_{j-1} \mod(G : G_{s_j})$. We will show that (3) also holds for n + 1. To simplify notation, we set $s := s_n$ and $t := s_{n+1}$ and we have to show that $t \equiv s \mod(G : G_t)$. We have that

$$G = G_0 \supseteq \cdots \supseteq G_s \supsetneq G_{s+1} = \cdots = G_t \supsetneq G_{t+1} \supseteq \dots$$
(4)

Since the Galois group G is assumed to be elementary-abelian of exponent p, the factor group G/G_{t+1} is also elementary-abelian of exponent p. Then there exists a subgroup $K \subseteq G$ with the following properties

$$G_{t+1} \subseteq K \subseteq G$$
; $K \cap G_t = G_{t+1}$; $(K : G_{t+1}) = (G : G_t).$ (5)

Let E^K denote the fixed field of K and let Q_1 denote the restriction of Q to E^K . The *i*-th ramification group of $Q|Q_1$ is then $K \cap G_i$, and Hilbert's different formula for the different exponents of Q|P and of $Q|Q_1$ gives

$$d(Q|P) = \text{ord } G_0 - 1 + \sum_{j=1}^n (s_j - s_{j-1}) (\text{ord } G_{s_j} - 1) + (t-s)(\text{ord } G_t - 1) + \sum_{\ell > t} (\text{ord } G_\ell - 1),$$
(6)

and

$$d(Q|Q_1) = \text{ord } K - 1 + \sum_{j=1}^n (s_j - s_{j-1}) (\text{ord } K \cap G_{s_j} - 1) + (t - s) (\text{ord } G_{t+1} - 1) + \sum_{\ell > t} (\text{ord } G_\ell - 1).$$
(7)

Since $d(Q|P) = d(Q|Q_1) + \operatorname{ord}(K) \cdot d(Q_1|P)$, we obtain by subtracting Equations (6) and (7):

$$(s-t)(\text{ord } G_t - \text{ord } G_{t+1}) \equiv \sum_{j=1}^n (s_j - s_{j-1})(\text{ord } G_{s_j} - \text{ord}(K \cap G_{s_j})) \mod(\text{ord } K).$$
(8)

Now we use the induction hypothesis which implies that there exist integers $c_j \ge 1$ such that

$$s_j - s_{j-1} = c_j \cdot (G : G_{s_j}), \quad \text{for } j = 1, 2, \dots, n.$$

It follows that

$$(s_j - s_{j-1}) \cdot \text{ ord } G_{s_j} = c_j \cdot (G : G_{s_j}) \cdot \text{ ord } G_{s_j}$$
$$= c_j \cdot \text{ ord } G \equiv 0 \mod(\text{ord } K)$$

and

$$\begin{split} (s_j - s_{j-1}) \cdot & \operatorname{ord}(K \cap G_{s_j}) = c_j \cdot (G : G_{s_j}) \cdot & \operatorname{ord}(K \cap G_{s_j}) \\ &= c_j \cdot (G : G_{s_j}) \cdot \frac{\operatorname{ord} K \cdot & \operatorname{ord} G_{s_j}}{\operatorname{ord}(K \cdot G_{s_j})} \\ &= c_j \cdot \frac{\operatorname{ord}(G)}{\operatorname{ord}(K \cdot G_{s_j})} \cdot & \operatorname{ord} K \quad \equiv 0 \quad \operatorname{mod}(\operatorname{ord} K). \end{split}$$

It now follows from (8) that

$$(t-s) \cdot \text{ ord } G_{t+1} \cdot ((G_t : G_{t+1}) - 1) \equiv 0 \mod(\text{ord } K).$$
 (9)

Since $(K : G_{t+1}) = (G : G_t)$ holds by (5), we have

$$\operatorname{ord}(K) = \operatorname{ord} G_{t+1} \cdot (G : G_t),$$

and we then conclude from (9) that

$$(t-s) \cdot ((G_t:G_{t+1})-1) \equiv 0 \mod(G:G_t)$$

Since $(G_t : G_{t+1}) - 1$ is relatively prime to the characteristic p and $(G : G_t)$ is a power of p, we get

$$t - s \equiv 0 \mod (G : G_t).$$

This finishes the proof of Theorem 2.

We can apply the method of the proof of Theorem 2 to obtain a congruence condition for subsequent jumps, for arbitrary p-groups G. This congruence is slightly weaker than the one in the Hasse-Arf Theorem.

Theorem 3. Let E/F be a finite Galois extension with Galois group G = Gal(E/F). Suppose that Q|P is totally ramified in E/F and that G is a p-group, where p is the characteristic of the residue field of the place P. Suppose that s < t are subsequent jumps of Q|P and assume one of the following two conditions:

(i) $(G_t: G_{t+1}) \ge p^2$.

(ii) $(G_t : G_{t+1}) = p$ and G_s/G_{t+1} contains at least two distinct subgroups of order p.

Then it holds that

$$t \equiv s \mod p.$$

Proof: We first show that there exists a subgroup $K \subseteq G$ with the following properties:

$$G_{t+1} \subseteq K \subseteq G_s ; \quad G_t \cap K \subsetneqq G_t ; \quad G_t \cap K \subsetneqq K.$$

$$(10)$$

If condition (ii) holds, this is clear: one chooses $K \subseteq G_s$ such that $\operatorname{ord}(K/G_{t+1}) = p$ and $K/G_{t+1} \neq G_t/G_{t+1}$. If condition (i) holds, we take $a \in G_s \setminus G_t$ and we set $K := \langle G_{t+1}, a \rangle$. Since K/G_{t+1} is cyclic and G_t/G_{t+1} is elementary-abelian of order at least p^2 , it follows that G_t is not contained in K and hence the subgroup K satisfies all conditions of (10).

Now we proceed as in the proof of Theorem 2: Let E^K be the fixed field of K and let Q_1 be the restriction of Q to E^K . We have

$$d(Q|P) = \sum_{i=0}^{s} (\text{ord } G_i - 1) + (t - s)(\text{ord } G_t - 1) + \sum_{i>t} (\text{ord } G_i - 1),$$

and using (10), we have

$$d(Q|Q_1) = \sum_{i=0}^{s} (\text{ord } K - 1) + (t - s)(\text{ord}(K \cap G_t) - 1) + \sum_{i>t} (\text{ord } G_i - 1).$$

Since $d(Q|P) = d(Q|Q_1) + \operatorname{ord}(K) \cdot d(Q_1|Q) \equiv d(Q|Q_1) \mod(\operatorname{ord} K)$, we see that

$$(t-s)(\text{ord } G_t - \text{ord}(K \cap G_t)) \equiv 0 \mod(\text{ord } K).$$

Observing that $K \cap G_t \subsetneqq K$ and $K \cap G_t \gneqq G_t$, we obtain that

$$t \equiv s \mod (K : K \cap G_t). \tag{11}$$

This finishes the proof of Theorem 3.

Remark. Equation (11) can also be written as

$$t \equiv s \mod(K \cdot G_t : G_t).$$

The bigger is the order of the subgroup $K \cdot G_t$ of G_s , the finer is the information in the congruence relation above. We stress that the subgroup K is chosen satisfying Eq.(10). Assume that $(G_s : G_t) \ge p^2$ and we can ask the following question: Find general conditions on the factor group G_s/G_{t+1} implying that one can choose Ksatisfying Eq.(10) such that $K \cdot G_t = G_s$.

References

- C. Arf Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1940), 1–44.
- [2] H. Hasse Führer, Diskriminante und Verzweigunsgskörper relativ Abelscher Zahlkörper, J. Reine Angew. Math. 162 (1930), 169–184.
- H. Hasse Normenresttheorie galoisscher Zahlkörper mit Anwendungen auf Führer und Diskriminante abelscher Zahlkörper, J. Fac. Sci. Tokyo 2 (1934), 477–498.
- [4] J. Neukirch Class Field Theory Grundlehren der Math. Wissenschaften 280, Springer-Verlag, Berlin, 1986.
- [5] J.-P. Serre Sur les corps locaux à corps résiduel algébriquement clos, Bull. Soc. Math. France 89 (1961), 105–154.
- [6] J.-P. Serre Local Fields Graduate Texts in Math. 67, Springer-Verlag, New York, 1979.

Arnaldo Garcia IMPA Estrada Dona Castorina 110 22460-320, Rio de Janeiro, Brazil Email- garcia@impa.br

Henning Stichtenoth Sabanci University MDBF, Orhanli, 34956 Tuzla, Istanbul, Turkey Email- henning@sabanciuniv.edu