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Abstract 

Accurate position tracking control in a belt-driven servomechanism can experience vibrations and large 

tracking errors due to compliance and elasticity introduced by force transmission through the belt and 

nonlinear friction phenomenon. In this paper, a new control algorithm based on sliding mode control that 

is able to deal with these problems is proposed. In order to further optimize position tracking performance 

the control scheme has been extended by an asymptotic disturbance observer. It has been proven that 

robust and vibration-free operation of a linear belt-driven system can be achieved. The experiments 

presented in the paper show improved position tracking error response while maintaining vibration 

suppression.   
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I. INTRODUCTION 

Modern mechatronic products such as laser- or waterjet- cutting machines often require servodrives' 

operation at high speed and high accuracy. However, a frequency dependent characteristic of force 

transmission in a drive train prevents to achieve required performance. Moreover, control effort aiming to 

achieve rapid response and accurate position tracking causes vibrations in the mechanical drive system due 

to undesired resonance frequencies. Thus, a control algorithm has to be designed so to ensure wider 

frequency bandwidth of the position servo system while it has to be robust against parameters variations 

and unmodeled dynamics.  

The use of timing belts in drive trains is attractive due to their characteristics allowing high speed 

operation, high efficiency, long travel length and low-cost. On the other hand, drives with timing-belt 

transmission yield higher transmission error since they feature elasticity, compliance and often more 

friction than more rigid screw ball drives thus having lower repeatability and accuracy [1]. Consequently, 

position sensor in a linear belt drive may be often mounted on the load-side. In such setup an application of 

conventional control like PI, PD or PID approach often fails since belt drives introduce more resonance 

frequencies [2], which can cause vibrations if not properly suppressed. Such typical response is depicted 

by Fig.1. In order to attain high performance an advanced control strategy has to be developed. Hori [3] 

has given a review of advanced methods that deal with torsional vibrations. Various methods have been 

applied that use acceleration feedback [4][5] or joint torque feedback [6][7]. Furthermore, the well-known 

disturbance observer approach [6] has been also investigated in the problem of vibration suppression. It 

turns in “resonance ratio control” [8][9]. One of the important conclusions is that in order to succeed in the 

vibration controller design the resonance ratio of “anti-resonant frequency” and “resonant frequency” of 

the system should be considered. It has been shown that development of a general method that can be 

applicable to a wide variation resonance ratio is complicated. The problem is related to the dynamics of the 

resonance ratio estimation. The estimation of the resonance ratio plays an important role in the application 

of this method. 
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Although the research of a flexible joint or elastic link control is widely present in the robotics related 

works, only few reports address the load side disturbance compensation and position control problem 

[10][11], which is a key issue in position tracking of linear belt-driven servodrives. High performance of a 

linear belt-driven servomechanism requires that the plant parameter variations, uncertain dynamics, and 

disturbances have to be compensated to guarantee accurate vibration free positioning. Robust system 

behavior is a prerequisite to achieve this goal. As some authors already reported [10][13][14], one can 

apply Sliding Mode Control (SMC) [15] to achieve robustness of a belt-driven servosystem. The SMC 

approach guarantees robustness to model perturbation, parameter variations and exogenous disturbances. 

However, it requires discontinuous control action that will ensure the ideal performance. In motion control, 

it can cause well-known chattering and ultimately damage the drive train. Consequently, chattering-free 

SMC implementation with continuous control action is required [16]. Hace [17] and later Šabanovič [18] 

have shown that vibration-free performance can be achieved by introduction of belt-stretch control. In [17] 

the authors have proposed the position tracking control law that has involved the inner-loop with PD belt-

stretch controller for vibration suppression and robust position control scheme in the outer-loop (Fig.2-a). 

Although such engineering approach has been successfully applied in the industrial application [19], 

practice has shown that it suffers from “trial-and-error” parameter tuning method. Thus, the authors in [20] 

have presented a new, single-loop SMC algorithm with vibration suppression capability (Fig.2-b). The 

proposed method introduced improved parameter tuning approach, and furthermore extended closed-loop 

bandwidth. However, position tracking error peaks still appear at the points of velocity reversals due to 

nonlinear stiction and friction phenomenon.  

Chattering free implementation of SMC impairs the ideal robust behavior of a closed-loop system. The 

authors in [21] has combined SMC with linear robust control in order to achieve robust servo system. The 

undesired bang-bang control action still remain in the design, however, recently, a combination of 

chattering-free SMC design and disturbance observer has been proposed in order to improve performance 

of a closed-loop system [21]. Following this idea, in this paper, a new SMC control algorithm combined 
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with an asymptotic disturbance observer for a linear belt-driven servomechanism is proposed (Fig.2-c). 

The proposed algorithm has been experimentally investigated. It has been proven by experiments that it 

furthermore improve closed-loop performance of a linear belt-drive.  

The paper is organized as follows: the model of a linear belt-drive is developed in the 2nd section, the 

3rd section presents derivation of the proposed algorithm, experimental results are shown in the 4th 

section, which follows with conclusions in the 5th section. 

II. MATHEMATICAL MODEL 

A typical linear belt-drive is presented in Fig.3-a. It consists of a motor, a speed reducing gear and a 

belt. The belt drive converts rotation of the motor into linear motion of the carriage. The carriage, whose 

position is to be controlled, represents the load side of the system.   

A. Three-mass model 
The belt-drive as depicted by Fig.3-b consists of a timing belt, a carriage and two pulleys: a driving 

pulley and a driven pulley that stretch the belt, which transmits force from the driving pulley to the 

carriage. It represents a complex non-linear distributed parameter system. The mathematical model of the 

belt-driven servomechanism can be obtained using modal analysis. Detailed development of the model can 

be found in [18]. Under assumptions that (a) the motor can ensure a high-dynamic torque response with a 

negligible time delay, (b) link between motor shaft and the driving pulley is rigid, (c) no backlash is 

present in the system, (d) the belt can be modeled by linear mass-less spring, (e) friction that is 

concentrated in the motor and pulley bearings, the speed reducer (gearbox), and in the carriage guidance, 

are considered as an unknown exogenous disturbance, one can develop the sixth order mathematical model 

that is presented by the motion equations (1), 

 

( ) ( ) ( )
( ) ( )

( ) ( )

2
1 1 1 1 1 3 2 1

2 2 2 2 2 3 2 1

1 1 2 2

( ) ( )

( )

( ) ( )

G m f

f

c f

J G J J q G R K x Rq x K Rq Rq

J q R K x x Rq K Rq Rq

M x f K x Rq x K x x Rq

τ τ

τ

⎡ ⎤+ + ⋅ + = − ⋅ ⋅ − − ⋅ −⎣ ⎦
⎡ ⎤+ = ⋅ ⋅ − − ⋅ −⎣ ⎦

+ = ⋅ − − ⋅ −

 (1) 
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where: 

 1J , 2J : inertia moment of the driving and the driven pulley, respectively, 

 GJ , mJ : inertia moment of the speed reducer and the motor, respectively, 

 cM  : mass of the carriage, 

 G : speed reducer ratio, 

 R : radius of the pulleys, 

 1K , 2K , 3K : position dependant elasticity coefficients of the belt, 

 1q , 2q , ϕ : angular position of the driving pulley, driven pulley, and the motor, respectively,  

 x : carriage position, 

 τ : torque developed by the motor, 

 1fτ , 2fτ : friction torque which affects the pulleys, 

 ff : friction force on the carriage. 

B. Two-mass model 
The model (1) is a highly-coupled and nonlinear system with exogenous disturbances which enter at 

the driving side as well as the load side of the system. However, the pulley inertia is small in comparison 

with the motor and the load side inertia. Therefore, the model can be simplified and reduced to a two-mass 

system. One can obtain the 4th order linear model with constant parameters (2), 

 
reac

f

reac
f

J

Mx f f

ϕ τ τ τ+ = −

+ =
 (2) 

where J  and M  denote the motor inertia and the load mass, respectively, fτ  and ff  stands for friction 

that perturb the system (2). reac reacLfτ = ,  reacf Kw= , w L xϕ= −  denote reaction torque and force, and 

belt-stretch, respectively. K  is the elasticity coefficient of the belt, and /L R G=  is the transmission 

constant of the linear belt-drive. 
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C. Two-mass belt-stretch model 
The mathematical model (2) can be further rearranged according to the vibration analysis of belt-

drives [2]. One can express dynamics of the belt stretch w . If one assume unit transmission constant 

( 1L = ) to simplify further algebra, then (2) can be rewritten as in (3), 

 w wf

f

Jw K w
Mx f Kw

τ τ+ = −

+ =
 (3) 

where wf f ffτ τ κ= − , (1 )wK K κ= + . /J Mκ = stands for so called inertia ratio. Typical characteristics of 

an elastic system is the resonant frequency given by (4). 

 ( )0 1K
J

ω κ= +  (4) 

The block scheme of the linear belt-driven servomechanism model that will be employed in the control 

design is depicted by Fig.4.  

III. CONTROL DESIGN 

A. Chattering-free Sliding Mode Control Approach 
For systems with bounded control input SMC can be used if the uncertainties in the model structure 

are bounded [15] and full disturbance rejection is possible if so-called matching condition [23] is fulfilled. 

The system (3) can be described in the following form  

 1

( ) ( ) ( )
i i

n

z z
z f b u d t

+=
= + +z z

 

where 1,..., 1i n= − , [ ]1,...,
T

nz z=z  is a system state vector, u  is scalar input, and ( )f z , ( )b z  are 

nonlinear functions of the system state vector. In the SMC approach, the goal of control design is to find 

such control input u  that restricts the motion of the system states z  to a selected sliding manifold 

( , ) 0tσ =z . This motion is called sliding mode and convergence of the system states to the sliding 

manifold is referred to as reaching phase. ( , )tσ z  is switching function that can be often selected as a linear 
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combination of system states and time-variant reference, i.e.  ( , ) ( )t r tσ = −z Gz . It has been proven that 

control with discontinuities on the sliding manifold ( , ) 0tσ =z  such as 

 
( )
( )

, , 0
, , 0

u t
u

u t
σ
σ

+

−

⎧ >⎪= ⎨ <⎪⎩

z
z

  

can enforce sliding mode if +u and u−  are selected such that the derivative of Lyapunov function candidate 

2 / 2v σ=  is negative definite. Since in our case ( )f z  and ( )td  satisfy matching conditions, dynamics of 

the closed loop system in sliding mode are fully rejecting these disturbances. The SMC control reduces 

order of the closed loop system. However, the discontinuous control has disadvantages related to the bang-

bang control action. Such discontinues control must be strictly avoided in mechanical systems, since it 

causes well known chattering that may lead to increased wear of the actuators and to excitation of the high 

order unmodeled dynamics what can cause damage on mechanical parts of the servo system. 

Another solution can be found by augmenting the original system with an additional system state in 

order to eliminate discontinuities on the control signal. It yields 

 1

1 ( , ) ( ) ( )
i i

n

z z

z g u b u d t
+

+

=

= + +z z
 

where ( , ) ( ) ( )g u f b u= +z z z , 1,...,i n= . The derivative of v  may have form 2v Dσ= − , 0D >  [16]. From 

condition 2Dσσ σ= −  and by application of the equivalent control method [15] one can derive control u  

 0

t

eq

u ud

u u D

υ

σ

=

= +

∫   

that assures invariant system motion in sliding mode. The equivalent control equ  is solution of 
0

0
σ

σ
=
= .  

B. Derivation of Control Law 
The chattering-free SMC design presented in previous section suggests the use of a switching function 

of second order in motion control, e.g. 2 ( ) ( )v pr t x K x K xσ = − + + . However, as proposed in [20], the 

sliding mode manifold for the elastic system (3), can be constructed by the following switching function: 
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 ( ) ( )v pr t x K x K x w wσ γ α⎡ ⎤= − + + + +⎣ ⎦  (5) 

where vK , pK , α , and γ  are arbitrary chosen positive control gains.  The extended switching function (5) 

involves also non-rigid modes of the elastic servo system by introducing belt-stretch motion. It is selected 

in order to achieve asymptotically stable motion dynamics in sliding mode and to cope with the first 

resonance frequency 0ω . Indeed, by consideration of the model (3) and the switching function definition 

(5), where the signals w and w  are replaced by the first and second derivative of the expression  

 1M
fK Kw x f= + , (6) 

respectively, one can derive (7), 

 ( )( ) /v p f fr t x x x K x K x f f Mβ α β β β βσ α⎡ ⎤− + + + + = + +⎣ ⎦  (7) 

where 1 / 0K Mβ γ −= > . The right-hand side of (7) involves not only the switching function signal σ , 

which should disappear in sliding mode, but also another component, i.e. friction of the load-side ff , or 

more precisely, its first and second derivative. This component should not be involved in case of robust 

sliding mode control, however, the load-side friction can not be considered as matched disturbance signal 

[23]. Therefore, the system motion in sliding mode can not be decoupled from this signal. Nevertheless, in 

our case, it will be compensated in steady state. 

However, if one choose ( ) ( )p rr t K x t=  then it is easy to show that the system motion dynamics on the 

sliding manifold (5) will be specified by the following transfer function: 

 
4 3 2

( )
( )

p

r v p

Kx p
x p p p p K p K

β
α β β β

=
+ + + +

 (8) 

The parameters of the transfer function (8) can be selected arbitrary in order to prescribe the dynamics of 

the position closed-loop (the control gain γ  from (5) must be calculated as 1 /K Mγ β −= ). In sliding 

mode, the belt-stretch dynamics, which determines vibrations in the drive response, will be characterized 

by the transfer function (9), 
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2

( )wH p
p p

β
α β

=
+ +

 (9) 

where β  determines the natural frequency of the closed-loop. One can notice that by adoption of the 

transfer function (9) the dynamics (7) can be described by the following form 

 ( ) ( )2 ( ) 1 ( ) /c
w w fp x H p a H p f Mσ= − + − , (10) 

where  

 ( )( )c
v pa r t K x K x= − + . (11) 

The desired dynamics (8) of our closed-loop system that is to be enforced in the ideal sliding mode, 

that is decoupled from every disturbance signal, are featured by the block diagram in Fig.5. Note that the 

shape of the transfer functions from (8)-(9), and consequently the belt-stretch response, and furthermore 

the closed-loop bandwidth of the position control, can be arbitrarily chosen by the control gains.  

The control law can be derived following the SMC procedure described in Section III.A. One can find 

the derivative of the switchng function (5) as follows in (12). 

 ( ) ( )ca x w wσ γ α= − − +  (12) 

From the first equation in (3) one can express w  (13), 

 2
0

wfw w
J

τ τ
ω

−
= − +  (13) 

and insert /dw dt  into (12). It yields equation (14). 

 ( ) 2
0

wfca x w w
J

τ τ
σ γ α ω

−⎛ ⎞
= − − − +⎜ ⎟

⎝ ⎠
 (14) 

From condition ( ) 0eqσ τ τ= =  one can find the equivalent control: 

 
( ) ( )

0

2
02

0

( )

t

eq eq

c
eq wf

d

J M a x J w w

τ τ υ

βτ α ω τ
ω

=

= + − − − +

∫
 (15) 

and the σ  velocity can be now expressed by (16). 
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2
0 eq

J M
τ τωσ

β
−

= −
+

 (16) 

Here, it can be assumed that at 0t =  the system is relaxed, i.e. (0) 0eqτ = . From (15) one can note that the 

acceleration signal x  is required for the computation of the equivalent control signal eqτ . However, the use 

of an acceleration signal should be avoided in practice where only position and/or velocity sensing devices 

are available. Therefore, x  will be replaced in the formulation of eqτ . From (3), the second equation, one 

can express x : 

 fKw f
x

M
−

=  (17) 

and insert it into (15). The equation of the equivalent control signal is now expressed by 

 ( )2
02

0

( ) ( )c dist
eq J M a J w wβτ α β ω τ

ω
= + − + − +  (18) 

 dist
f ffτ τ ζ= +  (19) 

where 2 2
0 0

( 1)β β
ω ωζ κ= − + , and distτ  stands for the system disturbance signal. The parameter ζ  is related 

both to the plant model parameters and the parameters of the enforced belt-stretch dynamics: if 2
0β ω=  

then 1ζ =  and distτ  reduces to the sum of total friction present in the uncontrolled system: dist
f ffτ τ= + .  

Further derivation of the control law applies condition Dσ σ= −  in order to obtain continuous control 

signal τ . Application of the equivalent control method yields control that explicitly involves eqτ  along 

with distτ  that is not a measurable signal in real applications. Hence, the equivalent control signal eqτ  is 

replaced with its estimated value êqτ , 

 ( )2
02

0

ˆ ( ) ( )c
eq J M a J w wβτ α β ω

ω
= + − + −  (20) 

and the control signal τ  is given by (21), 

 
0 0

ˆ
t t

eq SMCd dτ τ υ τ τ υ= = +∫ ∫  (21) 
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where  

 2
0

( )SMC J M Dβ
ωτ σ= + .  (22) 

The control law (21) has two components. One is representing estimation of the equivalent control. 

Another can be referred to as robust controller that is representing the disturbance estimation and the 

convergence to the selected sliding mode manifold. With the insertion of the control algorithm (20)-(22) 

into (16) one can yield the system motion projection on the σ-space that is governed by (23), 

 
2
0

dist

D
J M

ω τσ σ
β

+ =
+

 (23) 

which gives for 0D >  asymptotically stable reaching phase: convergence to steady state is dictated by the 

value of the right hand side in (23). In order to have stable solution 0σ =  the disturbance should satisfy 

the requirement 0distτ = , or in other words, it should be constant. If disturbance changes slowly ( 0distτ ≈ ), 

the control law keeps the system states in the vicinity of the sliding mode manifold ( 0σ ≈ ). 

An important characteristic of a closed-loop system is also a relation, which describes influence of 

disturbance signal on system state variables. In this paper, such relation between the system state σ  and 

the disturbance signal distτ  is determined by the disturbance sensitivity function ( )distF p .The disturbance 

sensitivity transfer function can be derived from (23) in the form described by (24), 

 ( )dist

pF p
p D

=
+

 (24) 

i.e. high-pass filter of first order, which guarantees elimination of steady state error. More details about the 

control law defined by (20)-(22) can be found in [20]. The authors have also shown that acceleration is not 

required for calculation of the control signal τ  though involved in the switching function (5). Thus noise 

problems related to the acceleration measurement are eliminated from the implementation. 

C. SMC With Disturbance Observer 
The estimation of the equivalent control signal (20) does not contain any information about the 

disturbance signal distτ . Although the closed-loop system dynamics can have asymptotic convergence to 

the equilibrium in steady state, it will not guarantee zero tracking error if the fast changes in the 



TIE-00024-2006 

 12

disturbance signal exist (as it is shown by (23)). In addition, the disturbance signal in servo systems will 

inevitably involve friction and stiction phenomenon (dynamic and static friction) that will cause 

discontinuous change at the points of velocity reversals. The proposed control law (20)-(21) will not be 

able to compensate the friction effects instantaneously though it shows robustness against the dynamic 

friction. The error peaks can be minimized in amplitude as well as in time duration by selecting large D , 

however, in practice upper limit always exists, which depends on unmodeled dynamics, measurement 

noise, and finite control rate. Very high gain can cause oscillations or even unstable plant response. In [21] 

a combination of the disturbance observer and standard SMC scheme has been proposed to eliminate the 

problems with friction and fast changing disturbances.  

In order to eliminate the drawbacks of the control (20)-(21) that yields closed loop motion (23), it is 

proposed in this paper to construct the control signal as depicted by Fig.6. In the proposed solution assume 

that the system dynamics can be represented by nominal plant dynamics which is perturbed by the system 

disturbance signal. The equivalent control êqτ  that is designed by the model-based estimation approach is 

now combined with an additional disturbance estimation signal ˆdistτ  that may be obtained by an application 

of a disturbance observer scheme. The proposed control law, which is introduced by (25), 

 ( )
0

ˆ ˆ
t

dist
eq SMCdτ τ τ τ υ= + + ∫  (25) 

has three components. The model based equivalent control estimation and the disturbance observer output 

signal are constituting the estimation of the equivalent control, and another is signal from the robust sliding 

mode controller that is now representing the mismatch in the disturbance estimation and the convergence 

to the selected sliding mode manifold. Thus, with the control (25) the σ -dynamics from (23) converts to 

(26), 

 
2
0

dist

D
J M

ω τσ σ
β

Δ
+ =

+
 (26) 
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where distτΔ   stands for disturbance estimation error ˆdist dist distτ τ τΔ = − . It is obvious that by selecting 

proper convergence rate of the disturbance observer, the right hand side of the equation (26) will vanish 

and the robust asymptotic reaching phase will be established as it is described by (27).  

 0Dσ σ+ =  (27) 

D. Construction of The System Disturbance Observer 
The disturbance observer paradigm [6] has attracted lots of attention among the motion control 

research community. It has been also successfully applied in the torsional elastic servosystems where the 

motor shaft is affected by reaction torque as well. The disturbance rejection framework in conjunction with 

“resonance ratio controller” [8][9] can be used in the stabilization and control of systems with elastic links.  

The asymptotic disturbance observer [6] has a well known structure in motion control. Its application, 

as depicted in Fig.7-a, satisfies the dynamics described by (28), if estimated reaction torque ˆreacτ  matches 

the actual value of reacτ . 

 ˆ ˆdist dist distg gτ τ τ+ =  (28) 

It can estimate the motor side disturbance but cannot estimate the system disturbance distτ  which is given 

by (19). It appears in our closed-loop system described by (3), (20), (21), and is a combination of friction 

as well as plant and control parameters. In order to determine it not only motor side friction but also the 

load side friction should be estimated. One solution is to form the system disturbance estimation signal 

ˆdistτ  as given by (29). 

 ˆˆ ˆdist
f ffτ τ ζ= +  (29) 

In the design of motor side disturbance observer, one can consider that driving torque (or motor 

current) and velocity are measurable signals. In order to properly estimate friction on the motor side, the 

observer must be compensated for the reaction torque (see (2)) that is not a measurable signal, but from 

stretch measurement it can be estimated by (30).  

 ˆˆreac reacLfτ = , ˆ ˆreacf Kw=  (30) 
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Having available belt-stretch signal, then the motor friction can be estimated by the disturbance observer 

depicted by Fig.7-a. Its output is constructed as described by (31). 

 ( )ˆ ˆ( )reac
f

g J
p g

τ τ τ ϕ= − −
+

 (31) 

The similar disturbance observer can be applied for estimation of the load-side friction. The belt-

stretch and the position (and the velocity) of the carriage are assumed to be available signals. The load-side 

driving force is the reaction force due to the stretch of the belt. Hence, it can be estimated as in (30). The 

structure of the proposed load-side disturbance observer is depicted in Fig.7-b. The observer output is 

given by equation (32). 

 ( )ˆ ˆ reac
f

gf f Mx
p g

= −
+

 (32) 

Finally, the estimated system disturbance signal ˆdistτ  is synthesized as described by (29). The block 

diagram of the proposed system disturbance observer structure is shown in Fig.7-c. 

E. Closed-loop analysis 
After short algebra by combination of (2) and (29)-(32) one can yield the equation of the system 

disturbance observer output signal (33), 

 ( ) ( )ˆ (1 ) (1 )dist reac dist reac
f f

g gf
p g p g

τ τ ζ ζ τ τ ζ τ= + + − Δ = + − Δ
+ +

 (33) 

where ˆreac reac reacτ τ τΔ = − . Obviously, the proposed observer will estimate the required system disturbance 

signal with the prescribed first order dynamics. The disturbance observer estimation delay can be tuned 

arbitrarily by the observer gain g . The disturbance estimation error of the proposed observer can be 

expressed by (34)  

 (1 )dist dist reacp g
p g p g

τ τ ζ τΔ = − − Δ
+ +

 (34) 

and thus (26) can be rewritten as shown by (35). 

 
2
0

dist reacp g
p g p gD

J M
τ τωσ σ

β
+ +− Δ

+ =
+

 (35) 
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To analyze the closed-loop behavior, firstly, let assume ideal reaction force estimation ( 0reacτΔ = ). 

Then, the disturbance estimation error reduces as in (36). 

 dist distp
p g

τ τΔ =
+

 (36) 

The closed-loop dynamics are now described by equations (36), (26), and (7), that is the disturbance 

estimation error dynamics, the dynamics equation of the convergence to the sliding manifold, and finally, 

the dynamics of the system output, respectively. One can rewrite the disturbance sensitivity function from 

(24) considering the proposed control law with the disturbance observer. It can be derived from (26) and 

(36).  

 
( )( )

2

( )dist

pF p
p D p g

=
+ +

 (37) 

The disturbance sensitivity function can be now described as a second order high-pass filter, which 

suppresses disturbance in low-pass frequency domain. By application of the proposed disturbance observer 

the order of disturbance suppression rate is now increased by one in comparison with (24). Typically, (37) 

suggests to tune both gains D  and g  as large as possible in order to increase cut-off frequency and to 

achieve good disturbance rejection. 

However, a portion of the reaction torque will be present in the signal if the mismatch between the real 

and estimated value of the reaction torque exists. The velocity of the reaction torque mismatch signal 

reacτΔ  appears on the right-hand side of the σ -dynamics equation. The influence of reacτΔ  on the system 

state σ  can be determined by the reaction torque mismatch sensitivity transfer function ( )reacF p  derived 

from (35). ( )reacF p  can be given by (38). 

 ( )reac

p gF p
p D p g

=
+ +

 (38) 

Obviously, it is important to ensure the reaction torque compensation as good as possible since it has a 

large impact on the disturbance estimation accuracy. If one can rely on the reaction force estimation signal, 

the disturbance output will follow the real friction value with the prescribed dynamics as required by the 
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equation (28). However, in practice this is hardly possible due to the parameters variation and model 

uncertainties. Accuracy of the disturbance estimation signal will affect the control performance though 

every mismatch between the real disturbance signal and the observer output will be compensated by the 

SMC part of the proposed control law. However, it can be shown, that the presence of the reaction torque 

in the observed disturbance signal, creates an additional virtual loop in the closed-loop system (as shown 

by (35) and (38) σ  and reacτΔ  are related by ( )reacF p , but on the other hand reacτΔ  is again related to σ  

by ( )wH p , i.e. reacτΔ  is obviously directly connected to w , and w  is in turn linked to σ  by ( )wH p , as 

follows from (6) and (10)). Stability of this virtual loop can not be always guaranteed. Thus it can 

destabilize the closed-loop system or allow for poor performance only. Hence, ( )reacF p  should be also 

considered in the design the disturbance observer filter. The sensitivity transfer function ( )reacF p  can be 

described as a second order filter with two first-order filters in series: the first portion is related to the 

robust SMC design and contributes a high-pass filter whereas the second portion is the disturbance 

observer filter that contributes a low-pass filter. ( )reacF p  should be designed to suppress the reaction 

torque mismatch signal as much as possible in the entire frequency domain. This implies that the cut-off 

frequencies of the low-pass filter and high-pass filter should be wide apart. Hence, the trade-off between 

the speed of the disturbance observation and system stability will dictate the disturbance observer design.  

IV. EXPERIMENTAL RESULTS 

The experiments were carried out on a low-cost linear timing-belt servomechanism. A DC-motor was 

attached to the linear belt-drive via a gearbox with speed reduction ratio G=29, and the pulley diameter of 

12cm. The traveling path of the carriage was about 2m. The motor angle was measured by optical 

incremental encoder which assured 5000 p/rev, whereas the carriage position was measured by a magnetic 

tape that enabled measurement resolution of 0.01 mm. The diagram of the control system used in the 

experiments is shown by Fig.8. Typical characteristic of the linear belt drive is depicted by Fig.9 (though it 

varies over the traveling path). The drive features high friction and backlash that can be observed in the 
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belt-stretch response.  Tables I, II give the parameters of the experimental system used in the experiments. 

The model parameters Mm and Ml stand for the reflected mass of motor inertia and the load mass (carriage), 

respectively. ω0 is the first resonance frequency of the drive-train, that was determined on the basis of 

frequency analysis of the belt-stretch signal shown by Fig.9-b. K is estimated value of the belt-stiffness 

coefficient that was calculated by the following equation 

 ( )2 1 1
0 /

m lM MK ω= +  

that can be derived from (4). The controller gains are actually parameters of the prescribed closed-loop 

dynamics that is best it could be achieved. The controller was executed with the sampling period of 2ms. 

The experimental results are shown in Fig.10. Firstly, the disturbance estimation performance was 

tested by comparison between the control by the pure SMC algorithm (21) and the control with the 

proposed observer (25) at D=0, i.e. the disturbance estimation by SMC was off. In the first case, the system 

disturbance observer was also implemented, but not connected in the loop. The results are shown by 

Fig.10-a and Fig.10-b, respectively. In Fig.10-a the disturbance estimation signals are practically 

overlapped. However, the observer dynamics was actually slower though g=D=75. Consequently, higher 

position error peaks appeared as shown in Fig.10-b (here g=75, D=0). The position error peaks appeared at 

the points of velocity reversals due to nonlinear friction effect. These results show that the pure SMC 

algorithm performs better then control with the proposed disturbance observer.  

Fig.10-c and  Fig.10-d show results obtained by the proposed SMC with observer (25). Here, D=75 

and the observer dynamics was set with g=10 and g=20 in Fig.10-c and Fig.10-d, respectively. Both, the 

disturbance estimation by SMC and the proposed observer with slower dynamics were connected in the 

control loop. As could be expected, the SMC estimated only the difference distτΔ , i.e. the portion which 

the observer failed to output. It converged to zero value after the transient period. In comparison with the 

results shown in Fig.10-a, position error peaks are lowered in both cases. Faster dynamics of the observer 

caused lower position error, however, as noted by the theoretical analysis in Section III.E, only a 

conservative disturbance observer dynamics could be set up in order to preserve stability of the system. 
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Larger values of the observer gain g caused oscillations in the system and ultimately led to instability. 

Thus, the disturbance observer cut-off frequency was rather limited in the experiments. 

Finally, experimental results at high reference speed are also presented. The results obtained by the 

pure SMC algorithm are shown in Fig. 10-e (the disturbance observer is implemented but not connected in 

the loop as in Fig.10-a), whereas Fig.10-f includes the results obtained by the proposed SMC with observer 

at g=20. The diagrams show that the proposed control scheme extended by the system disturbance 

observer lower position error peaks in amplitude and time duration both at low-speed and high speed 

experiments.  

V. CONCLUSION 

The paper has proposed a new SMC control algorithm that is extended with the asymptotic 

disturbance observer in order to improve position tracking performance at the points of velocity reversals, 

where error peaks appear due to nonlinear friction characteristic. The disturbance observer has been 

designed to estimate the system disturbance signal identified by the equivalent control that is not 

measurable. It requires the reaction force signal for the realization, which is often not available in practice. 

Thus, it should be estimated as proposed in this paper. It has been shown, that the compensation of the 

reaction force is of significant importance for accuracy of the disturbance estimation, stability and 

performance improvement of the closed-loop system. The estimated disturbance signal, which is perturbed 

by the reaction force, can destabilize the system or only slow disturbance estimation dynamics can be 

achieved. However, the experimental results have shown that even in the case of the erroneous model used 

in the determination of the reaction force signal, improvement in the position error response has been 

evident. The proposed scheme lower position error peaks in amplitude and time duration both at low-speed 

and high speed experiments. 
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Figure 1. Vibrated response of a linear belt-drive
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Figure 2. Different control structures of a linear belt-drive:  
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Figure 7. Proposed disturbance observer structure: a) Motor disturbance observer, b) Load disturbance observer, c) System disturbance observer 
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Figure 8. Experimental control system 
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Figure 9. Typical response of the experimental linear drive: a) friction characterics, b) open-loop belt-stretch response 
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Figure 10. Experimental results:  

a) SMC without dist. observer; b) control with dist. observer at D=0 and g =75; SMC with dist. observer at c) g=10, and d) g=20; 
test at high speed e) SMC without dist. observer, and f) SMC with dist. observer 
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TABLE I.
MODEL PARAMETERS  

Mm Ml ω0 K 
(kg) (kg) (rad/s) (N/m) 
57 33 62.8 2.7e5 

 

 

TABLE II. 
CONTROLLER GAINS 

D α β Kv Kp 
75 125.6 7888 50 625 

 


