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Summary: In this work, analog application for the sliding mode control
(SMC) of piezoelectric actuators is presented. DSP application of the
algorithm suffers from ADC and DAC conversions and faces limitations
in sampling time interval. Moreover piezoelectric actuators are known to
have very large bandwidth close to the DSP operation frequency.
Therefore, with the direct analog application, improvement of the
performance is expected and high frequency operation will be achieved.
First an appropriate SMC is designed to have continuous control output
and then experimental results for position tracking using DSP and analog
application are presented for comparison.

1. INTRODUCTION

Piezoelectric actuators, based on crystalline effects, do not suffer from “stick
slip” effect and theoretically provide unlimited resolutions. Therefore, they are
already used in many applications to provide sub-micrometer resolution:
ultrasonic motors, sports materials like skis and bikes [1], aerospace [2], hard
disk drives [3] etc. Other main application of these ceramics is the scanning
tunneling microscope (STM) and atomic force microscope (AFM)[4].

Precision control of piezoelectric actuators is hardly acquired due to highly
nonlinear input/output behavior dominated by hysteresis behavior between
electrical voltage and strain [5-7]. Hysteresis yields a rate-independent lag and
residual displacement near zero input, significantly reducing the precision of the
actuators [8)]. Another undesired characteristic of piezoelectric actuators is the
“creep effect” [7].

Most of the piezoelectric actuator applications require high precision motion
control where closed loop control is the only answer. Despite that fact many
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attempts to drive the piezoelectric actuator as open loop system with
compensation of the nonlinearities are investigated [5-8].

In order to design a control scheme without precise dynamic modeling some
fuzzy logic and neural network solutions are investigated. However, due to the
limited performance, this research area did not find much popularity [9].

On the other hand, sliding-mode control (SMC) is one of the effective nonlinear
robust control approaches. One of the most important aspects is the ability to
force the system to stay on so-called “sliding mode” that exists in a manifold.
SMC provides system invariance to uncertainties once the system is in the
sliding mode [10, 11]. Sliding mode is originally designed as system motion for
dynamic systems whose essential open-loop behavior can be sufficiently
modeled with ordinary differential equations. The discontinuous control action
is generally defined as variable structure control (VSC). The resulting feedback
system is defined in continuous time domain and governed by differential
equations with discontinuous right hand sides.

Abidi et al. used SMC in conjunction with the disturbance observer for both
position and force tracking in piezoelectric actuators [11]. In their work, Abidi
et al. showed that discrete time SMC can track nanometer size references with
strain gage feedback in the presence of a disturbance observer. Proven that the
controller has error on the order of the square of the sampling time,
improvement on the operation frequency of the controller is required. Although
DSP based controliers are easier to build and run, the achievable sampling time
intervals are limited. Analog circuits based on large bandwidth op-amp circuits
on the other hand, promise much more speed.

The aim of this work is to design appropriate control to drive piezoelectric
actuators on analog control circuit to improve the tracking performance of
piezoelectric actuators.

2. THE SLIDING MODE CONTROL

In this paper we will consider dynamical systems that can be represented as a
class of nonlinear systems linear with respect of control as described by the
following equation

x=f(x)+B(x)u+d : )]

where x7 € R” is the state vector, e R™ is the control vector, f(x)e R" is

an unknown, continuous and bounded nonlinear function, B(x)e R™ is a
known input matrix whose elements are continuous and bounded and
rank(B(x)XVx =m, with deR"” being an unknown, bounded external
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disturbance. Both f(x)e R" and de R” satisfy the matching conditions and
all their components are bounded |f;(x)|,, <M and |d;(2)],, <N . Fully

actuated mechanical systems belong to the class of systems described by (1).
Such systems can be interpreted as m interconnected sub-systems
% =h,~(x,~,5c,~)+ b,.(x,-,t)-ui +g,.(x,-,x j), h,.(x,-,fc,.) in general represents Coulomb
friction term, g; (xi,x j) represents the interaction term and is regarded as a
disturbance.

The aim is to determine the control input u = [ul,...,um]T such that the system
states x;(t),...,x, (¢) track the desired trajectories xg (1), Xy (#) while control

error satisfies selected dynamical constraints.
2.1. Controller Design

The controller will be designed in the SMC framework by firstly selecting a
suitable sliding manifold that will ensure desired systems dynamics and then
selecting control such that the Lyapunov stability conditions are satisfied.
Selecting the Lyapunov function candidate in terms of the sliding function is a
natural way of guaranteeing the sliding mode existence on the selected manifold
and thus having desired closed loop dynamics. Finally, the necessary control
input should be selected that will fulfill the requirements of the Lyapunov
stability criteria.

2.1.1. Sliding Manifold

For system (1) the natural selection of the sliding manifold is in the following
form

o=Ge =0, )
where tracking error vector is defined as e, = [el,...,e,,]T eR", ¢ =x; —x;

and the sliding surface satisfies o =[0;,..,0, ' € R™, Ge k™"

2.1.2. Computing the Necessary Control Input

A Lyapunov function candidate can be selected as

I 7
V==0c'c 3
- ©)
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where, V'€ R. This function can also be stated as ¥ =(1/ 2X|0'"§ , where |o],

indicates Euclidian norm with ¥(0)=0. The time derivative ¥ of the candidate
Lyapunov function should be negative definite. In order to use this condition in

selection of the control, we may require that the ¥ satisfies some preselected
form. Equating the time derivative of this function to a negative definite
function as follows

V=-0"Do~pu—7— o
o’o
where D is a positive definite symmetric matrix, and g >0 thus Lyapunov

conditions are satisfied. By substituting (3) into (4), the following requirement
is found.

o (0'+D0'+,ui)=0 : 3)
oo

Therefore, for o #0, the control law can be calculated by satisfying the
following equation.

(G+Da+y%)=o (6)
g O

and the sliding mode conditions are satisfied. The discontinuous term can be
selected as small in order to avoid chattering. It had been proven [12, 13] that in
the discrete time implementation the sliding mode is guarantied with continuous
control action. We are targeting the computer controller systems for which
controller will be implemented in discrete-time so in our application the

. . o . . . -
discontinuous term #—— will be omitted and we will be determining the
oo

control action that satisfies conditions (6 +Dc)=0 but all further analysis can
be easily adopted for application of expression (6) if the term Do is replaced
with (DO’ + /10'/0'TO')

For system (1) with sliding mode manifold (2) the control that satlsﬁes
(6+Dc)=0 can be determined as

u=—~GB)(G(f +d -1, )-Do)=u,, +(GB)"' Do 7
where x; = lxd, — J and u,, is so-called equivalent control obtained as a
solution of the equation O'—GB( eq —u)=0. By substituting (7) into (1) the

equations of motion of system (1) in manifold (2) as o =Ge, =0 are obtained
and the approach to this solution is governed by equation (6). This is a result of
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the specific structure of the plant (1) in which states is selected as the
derivatives of the measurable outputs and each sub-block is represented in the
canonical form.

To implement this control input, information about the plant dynamics and
external disturbances are needed, which is hard to achieve. Hence, this solution
needs the information on the equivalent control thus may be applied for the
plants when u,, is known or can be estimated with sufficient accuracy. In this

paper we will be using a fact proven in [14, 15] that the solution of the
differential equation

Ti+z =(u ~(GB)™! -a‘) (8)
with small enough filtering time constant 7 is close to the equivalent control.
In this paper we will be using this result in order to avoid direct calculation of
the equivalent control from u,, =~—(GB)’l G(f +d —x,) but instead to use
approximated result u,, =z .

Equation (8) can be used for small enough filtering time = together with the
control presented in equation (7) to obtain the simplified controller equation;
u

" .
u=—2=2_+(GB)'Do= +K~[D0'+ g ) 9)
T-s+1 +1

7-s+1

where K = (GB)".
2.2. The Model of PZT

In this work a piezo-stage that consists of a piezo-drive integrated with a
sophisticated flexure structure for motion amplification is used. The flexure
structure is wire-EDM-cut and is designed to have zero stiction and friction.

In addition to the absence of internal friction, flexure stages exhibit high
stiffness and high load capacity. Flexure stages are also insensitive to shock and
vibration. However, since the piezo-drive exhibits non-linear hysteresis
behavior, the overall system will also exhibit the same behavior.

The dynamics of the piezo-stage can be represented by the following second-
order differential equation coupled with hysteresis in the presence of external
forces

Mg %+ Cop X+ oy x = T(u(t) = h(x,u)) = F (10)
where m,; denotes the effective mass of the stage, x denotes the displacement

of the stage, c,;, denotes the effective damping of the stage, k., denotes the
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effective stiffness of the stage, T denotes the electromechanical transformation
ratio, u denotes the input voltage and #(x,u) denotes the non-linear hysteresis
that has been found to be a function of x and u, and F,,, is the external force
acting on the stage [6, 16]. '

The model represented by (10) shows that from the mechanical motion the
hysteresis may be perceived as a disturbance force that satisfies matching
conditions. This means that the sliding mode based control should be able to
reject the influence of the hysteresis nonlinearity on the mechanical motion. At
the same time it is obvious that the lumped disturbance consisting of the
external force acting on the system and the hysteresis can be estimated, thus
allowing the application of the disturbance rejection method in the overall
system design.

3. ANALOG SOLUTION DESIGN AND EXPERIMENTS

3.1. Analog Solution Design

xL . "
| ™ {d\ /' ‘ a, s //,
— o P pa
xﬂ“l

Fig. 1. Draft analog circuit scheme to calculate the control.

For the control of the piezoelectric actuator with lumped model presented in
section 2.2, using system states x = [x J'c]T e R?, the sliding manifold can be

defined as;
o=Ge, eR ) an

where tracking error vector is defined as e, =[¢, e, IFex?, e; =x; —x; and

Gel[Cc 1] with CeR.

For the analog application of the equation (9), using operatiohal amplifier
blocks, one must further simplify the equation before circuit design. Using
equation (8), ‘
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u=a+K-(DCe+(D+Ce+e)
@=DCe+(D+Cle+e (12)
u=u+K-¢

is obtained by using # =

e=e =x;—xand é=e; =Xg —X.
T-s+1°

Using this last equation, the design of the analog circuit starting from the
calculation of the error is straight forward as depicted in Fig. 1. However there
is one key issue about the signal magnitudes: the amplifier outputs (or signal
strengths) cannot be numerically equal to the problem variables they represent,
except in very special cases, since the outputs of the amplifiers are limited to the
supply voltage which is generally smaller than the problem variables.
Therefore, represented signals may reach higher values than the supply voltage
and saturate the outputs. Moreover, some gains used in the algorithm, namely
the problem variables, may be too high or too small for a practical realization.
Therefore, signal strengths cannot be numerically equal to the program
variables, but merely proportional to them. They must be multiplied by
appropriate coefficients, called “scale factors” to assure that the amplifier output
or magnitude of the parameters is realistic.

Table 1
Assumed maximum values for signals and parameters
Parameter Determined Signal Assumed

Value & Max Value
¢ 400 > 500 | e 0,05V
D 400500 | e v
K o) | @ 100V
4 500V
v 1\

To determine the scaling factors, so called “analog scaling” technique is used as
it was once used in analog computers. In this technique each signal is
normalized according to its estimated maximum value presented on the Table 1.
Then signal equations are rewritten to find actual operational amplifier gains.

3.1.1. Circuit Design

Control described by equation (12) can be applied using operational amplifier
blocks. The designed circuit will be presented in three steps: preparation of the
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necessary variables (e, ¢ and é), summation to find ¢ and calculation of the
control u.

100k +¥CC
| +¥CC
X R 2> + )
X 1
R3 3 I ~ Py
Xd Sk Ula 7] l
TLE2T2CP +
« U2
TLE2072CP
00K HCC -«

Fig. 2. Preparation of the necessary variables (e, € and € ) from the desired and actual
inputs; x, and x
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Fig. 3. Calculation of ¢ from previously found variables; e, é and €
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Fig. 4. Calculation of u =1 + K - ¢ where # is found through the first order filtering
of the control and K is obtained by the tuning of the resistor R,; since
K =Rys5 / Ry

The preparation of the variables e, ¢ and é for the calculation of the ¢ consist
of a difference amplifier that calculates the error e from the desired and actual
position data, x,; and x respectively, and two derivative blocks to calculate the
first and second derivatives of the error. The variable ¢ is then calculated using
a summing amplifier block with appropriate gains for each of the variables e,
é and €.

At the last part, the calculation of the control u is realized by u=w +K - ¢ as
obtained in equation (12). The variable # is found through the first order
filtering of the control where the filtering time constant has the order of 0 (10%.
The tuning of the parameters C, D and K are realized with variable resistors.

4. PRELIMINARY EXPERIMENTS
4.1. Experimental Setup

For experimental purposes, the setup shown in Fig. 5 is constructed. The
voltage amplifier is the Piezomechanik SVR 150-3, PEA is the piezoelectric
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actuator with embedded strain gage for position measurement and the strain
gage amplifier is the BAS0I strain gage amplifier from Vishay's Measurement
Group. Here SMC is the designed sliding mode control algorithm implemented
in DSP (for DSP experiments) or is the analog circuit (for analog controller
experiments).

Reference
v Signal

Voltage

SMC 1 Amplifier

PEA

A 4

Strain Gage

Strain Gage
Amplifier

ES

Fig. 5. Piezoelectric actuator control setup

Both in DSP and analog control experiments, the unknown structure of the high
voltage amplifier assumed to be limited with a low pass filter.

The data is captured by Agilent Technologies 54622D digital oscilloscope. The
reference and actual signals are given without offset to have better feeling on
the tracking error. The third channel shown in figures is the difference between
the signals, namely the error, as calculated by the oscilloscope. The scale of the
signals is shown on the top left hand side part of the figures.

Naturally voltages seen by the scope are the readings of the strain gage
amplifier in terms of voltages. The performance can be better understood when
those values are converted to metric correspondents: 17.96um (micrometers)
corresponds to 1V of the strain gage amplifier reading, or in other words lum
position deflection results 55.68mV.

4.2. Position Tracking Experiments Using DSP

For comparison of the results DSP application of the control is realized on
dSpace DS1102 platform which possesses TMS320C31 DSP chip running at 40
MHz with 50ns cycle time. The platform does have two 16-bit ADC (Input)
+10V and four 12-bit DAC (Outputs) £10V. The algorithm runs at 10kHz.
Discretisation is made based on Euler’s method.

Position tracking of 1Hz sinusoidal inputs is studied. First 4.5um peak to peak
and then 10.8um peak to peak inputs are tested. Results are shown on Fig. 6 and
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on Fig. 7 respectively. The errors for comparison are 110nm and 200nm,
corresponding to 2.5% and 1.9% respectively.

4.3. Analog Circuit, Position Tracking Experiments

Similar experiments are conducted for analog circuit realization of the SMC.
The tracking of a 10.8um peak to peak 1Hz sinusoidal reference is successfully
tracked with 360nm peak to peak tracking error corresponding to 3.3%.
Compare to 2.5% tracking error of the DSP implementation, this result is
acceptable. The main source of the error is the noise that interferes starting from
strain gage measurement to the calculation of the control. Derivative blocks on
the other hand are known to amplify noise. Another source of the error is the
offset introduced by the operational amplifiers. The offsets propagate through
the circuit as a summation and cause a drift at the control output.

For better understanding of the performance the step response and tracking of a
triangular wave are also presented. Fig. 9 shows that with careful adjustment of
the circuit offset errors can be handled. Moreover with tuning of the control
parameters (C , D and K ) tracking can be achieved for different plants.

Finally Fig. 10 is supplied to show the circuit performance on non-continuous
reference tracking.

" Reference & Actual
" 900nm/Div.

Error t ISR WO NS .S e e U P w§
90nnm/Div : : :

e TN A v \/

Fig. 6. DSP tracking experiment for 4.5um peak to peak 1Hz sinusoidal reference
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Fig. 8. Analog circuit tracking experiment for 10.8pum peak to peak
reference sinus of 1Hz
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Fig. 9. Analog circuit tracking experiment for 10.8um peak to peak
reference sinus of 1Hz
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Fig. 10. Analog circuit tracking experiment for 4.5um peak to peak
reference triangular wave
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S. CONCLUSIONS

In this paper we have formulated a SMC with continuous control output, based
on [11, 13-15], applicable in analog electronics for the position tracking of the
piezoelectric actuators. The use of such a controller in systems controlled by
digital controllers, including DSP, PC, microchip and FPGA, will help users to
save from heavy computational load. Moreover, due to the operation frequency
limitation in digital systems mainly due to the analog to digital conversion, the
controller is expected to have better performance than the DSP application.
Experimental results proved that the analog production of the proposed SMC is
possible and that the controller can track a reference signal with a good degree
of accuracy. However, due to the fine tuning difficulties together with noise
interference the tracking error is almost equal to results obtained with the DSP.
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