
An Online Handwriting Recognition System For Turkish

Esra Vural, Hakan Erdogan, Kemal Oflazer, Berrin Yanikoglu ∗

Sabanci University, Tuzla, Istanbul, Turkey 34956

ABSTRACT

Despite recent developments in Tablet PC technology, there has not been any applications for recognizing hand-
writings in Turkish. In this paper, we present an online handwritten text recognition system for Turkish, devel-
oped using the Tablet PC interface. However, even though the system is developed for Turkish, the addressed
issues are common to online handwriting recognition systems in general.

Several dynamic features are extracted from the handwriting data for each recorded point and Hidden Markov
Models (HMM) are used to train letter and word models. We experimented with using various features and HMM
model topologies, and report on the effects of these experiments. We started with first and second derivatives
of the x and y coordinates and relative change in the pen pressure as initial features. We found that using two
more additional features, that is, number of neighboring points and relative heights of each point with respect to
the base-line improve the recognition rate. In addition, extracting features within strokes and using a skipping
state topology improve the system performance as well. The improved system performance is 94% in recognizing
handwritten words from a 1000-word lexicon.

Keywords: online,handwriting, recognition, HMM, Turkish

1. INTRODUCTION

Online handwriting recognition and related applications received renewed interest with the introduction of the
Tablet PC. Online handwriting is collected using a pressure sensitive tablet and a special pen and the captured
pen position and pressure information is input to the online OCR system. In this work, we developed a prototype
Turkish language module for the Tablet PC.

There are several research articles on online handwriting recognition1–7 and the Tablet PC has online hand-
writing recognition support for more than 15 languages,8 however we are not aware of such a system for Turkish.
This is partly due to the difficulties associated with the agglutinative nature of the language. Typically, a fixed
vocabulary is assumed in many handwriting recognition systems; for instance, a 30,000-word lexicon for English
is sufficient for most applications. However, the agglutinative word structure in Turkish is an obstacle for hav-
ing such a small sized lexicon, as explained in.9 Yanikoglu and Kholmatov’s system for unlimited vocabulary
offline handwriting recognition system for Turkish uses a Turkish prefix recognizer developed by Oflazer and his
group.10 In this work, the first stage of an unlimited vocabulary system is developed using word list; however
in the future this system will be similarly extended.

2. SYSTEM

The recognition system consists of training and test stages. In the training stage, the collected training data is
used to train Hidden Markov Models (HMMs) representing handwriting units. HMM modeling is used extensively
for both speech and handwriting recognition in the literature. We experimented with letter and word HMM
models in this study.

2.1. User Interface

Input to the Tablet PC is via a pressure sensitive screen capturing the pen tip’s x and y coordinates and pressure
information. For every word, approximately 300 points are sampled. A user interface using the Tablet PC API
has been developed to access the collected data by the Tablet PC.

∗E-mail: esravural@su.sabanciuniv.edu, {haerdogan,oflazer,berrin}@sabanciuniv.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11739164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.2. Hidden Markov Models

Handwriting data collected by a Tablet PC is trained with Hidden Markov models. HMMs are very successful in
modeling speech and handwriting, where the visible observations and the hidden state transitions generating the
observations form a doubly stochastic process with a sequential nature. HMMs are defined with a finite number
of states where the features are assumed to be generated by a probability distribution depending on the current
state or transition. The non-stationarity of the features is explained by the state transitions. The parameters of
a Hidden Markov Model is as follows:

N : Number of States
A = [aij]N×N : State Transition Matrix
bj(ot) = P (ot, st = j): The observation probabilities at state j
ot: The observation at time t
st: The state at time t
πi = P (s1 = i) Initial probability at state i
λ: Whole set of model parameters.

For a particular model λ, the probability that the sequence of observations O = [o1o2o3....on] is generated by
the state sequence q = [s1s2s3....sn] is as follows:

P (O, q|λ) = P (O|q, λ)P (q|λ) =
T∏

i=1

bsi(oi)
T−1∏

i=1

asisi+1 . (1)

For all possible state sequences the probability of generating the observation sequence O in a particular model
λ is shown below. While testing the system the most probable model is chosen as the most probable word.

P (O|λ) =
∑

∀q

P (O|q, λ)P (q|λ). (2)

We used the HTK software for HMM training and recognition.11 We experimented with word and letter
based HMM models. When word models are used, one model is trained for each word in the lexicon, using several
training samples of that word. When letter models are used, each word in the lexicon is labeled according to their
constituent letter models and the letter models are trained using the well-known forward-backward algorithm.
Then, a word model is created by consecutively lining up the letter models that represent the letters of that
word.

The letter or word models in this work use a left-to-right topology. This topology is suitable to model the
forward moving time dimension of the signal in speech and handwriting recognition. Hence, the state transition
probabilities and the initial state probabilities are constrained as follows: aij = 0, j < i, πi = 0, i > 1. We have
trained these models with or without skipping topology. Figure 1 shows a left-to-right model with skipping state
topology.

Figure 1. HMM representation for a left-to-right topology with skipping states shown in dashed arcs.

Initially, a constant number of states are used in our models: while using the letter model, a constant number
of states is used for each letter and similarly if word models are trained, a constant number of states is used
for every word. For observation probabilities, continuous Gaussian probability densities are used. We have tried
both a single Gaussian and a mixture of Gaussians. Unless otherwise specified, we used 20 states per letter
model with a single Gaussian, without skipping states, as the default setting. The results of the experiments
with different HMM settings are explained in Section 3.

The Turkish alphabet contains the letters: a b c ç d e f g ğ h i j k l m n o ö p r s ş t u ü v y z. Some of
the letters with a cedilla or accent, are represented by two unit models. For instance letter ç is modeled as a
c followed by ’. All remaining letters are represented by single letter models. Representing the similar written
parts of different written letters like s and ş aims to make better use of the available training data.

Figure 2 shows a sample word network that has word models in parallel. The most probable path taken in
the network gives us the most probable word.

Figure 2. A word network where each word model (“aba” “su”, “han”) is built up of its constituent letter models.

2.3. Feature Set
In this work, five main features are used: first and second derivatives of the x and y coordinates and percentage
change in the pressure. We do not use the value of x and y coordinates as features since they are not translation
invariant. For robustness against jitter, the first and second derivative of the coordinates are calculated using
equations (3) and (4) respectively:

dxt =
∑Θ

θ=1 θ × (xt+θ − xt−θ)

2
∑Θ

θ=1 θ2
, (3)

ddxt =
(dxt+1 − dxt−1)

2Θ
, (4)

where xt is the value of the x-coordinate at time t and Θ, is half the observation window width. The derivative
of y-coordinate is found similarly. We used Θ = 5 for this study. Unless otherwise specified, these features are
calculated considering the strokes in a word as connected. We experimented with using the stroke information
(not considering strokes as connected), as explained in Section 3.2.

The percentage change in pressure is calculated using equation (5) where likewise pt denotes the pressure
value at time t:

dpt =
(pt+1 − pt−1)

2pt
. (5)

3. EXPERIMENTS AND RESULTS

3.1. Database

System is developed and tested in two stages. In the first stage, a vocabulary consisting of 50 different words
has been determined and the handwriting samples of these words have been collected from 20 people, forming
the first database of 1000 words (50 words x 20 people). The interface used for data collection is similar to that
of the Tablet PC handwriting applications where users are expected to write on a baseline.

A larger vocabulary set consisting of 1000 words is compiled from e-mail messages, so as to represent the
daily vocabulary (of students). This 1000 word vocabulary, is separated into 10 sets, each containing 100 words.
Thirty people were recruited for writing one of the sets. Consequently, for each word set, handwriting data from
3 different people is collected, which resulted in a database of size 3000 handwritten words (10 sets x 100 words
x 3 people).

Figure 3. 10 different data sets totaling 1000 words form the second database.

Both vocabulary sets were designed to have an equal distribution of Turkish characters and the words were
selected from most frequently used Turkish words. Each word appears only once in the sets to avoid bias during
training and testing.

3.2. Experiments

We have studied the effects of several attributes, such as the HMM topology and different features, in terms of
their contribution to the word recognition performance.

Effects of Letter versus Word Models

In this first experiment, the first database is separated into training and test sets: data from 15 people (750
words) is used as the training set and data from the remaining 5 people (250 words) is used as the test set.
Hence, the words were common across training and test sets, but the writers were different.

Table 1 shows the success rates of the letter and word model experiments that are carried out using the
set mentioned above. Letter model and word models have success performance of 97% and 95% consecutively.
Given enough training data, one would expect the word model to give better results. Here, the reason for worse
performance may be due to the lack of enough training data and unoptimized number of states for the word
model.

Even though we have experimented with word models for this small-vocabulary experiment, as the number
of words in the vocabulary increases, using word HMM models becomes infeasible due to the increased number
of models that need to be trained (requiring large amounts of data and computation time).

Model # of Writers # of Words # of States Writer Independent Correct
Letter 20 50 20 Yes 97 %
Word 20 50 60 Yes 95 %

Table 1. Performance rates for the letter and word models using the first database.

Effects of Number of States on Letter & Word Models

In the second experiment the relationship between the number of states and performance accuracy is studied,
keeping the other parameters as in the first experiment. A one Gaussian mixture is used for modeling the
observation densities. The recognition results are summarized in Table 2, where the best number of states for
the letter model is found to be 20. Optimal number of states for the word models is found to be 70 states on the
average (word length average for Turkish is 8-10 letters). Note that the word model performance is improved
when more states are used. Nonetheless, as mentioned before, in order to deal with very large lexicons, letter
models are necessary; therefore in all of the remaining experiments we use letter models.

Model # of Writers # of Words # of States Correct
Letter 20 50 10 92 %
Letter 20 50 20 97 %
Letter 20 50 30 94 %
Word 20 50 30 89 %
Word 20 50 50 94 %
Word 20 50 70 96 %

Table 2. Impact of number of states in the letter and word model performance using the first database.

Results for the Second Database

After the development of the prototype phase of the project where the above experiments have been conducted,
more realistic results have been obtained with the 1000-word sized database. As we have mentioned before, this
second database (shown in Figure 3), was separated into 10 sets of 100 words and 30 different people participated
in writing one of the sets.

In the third experiment, the second database is split into training and test sets such that they have common
words but different writers. Since the second database consists of 10 groups x 100 words x 3 people, for every
group two people were used for training and one person was used for testing. The success rate in this experiment
is found to be 90.4%, as shown in Table 3. This experiment gives us a baseline performance for the next few
experiments that also use the same training and test sets.

Model Training Set Test Set Correct
of Writers # of Words # of Writers # of Words

Letter 20 1000 10 1000 90.4%

Table 3. The performance for the third experiment where the 2nd database was split so that the words are common
whereas the writers are different, between the training and test sets.

Skipping State HMM Topology

In this experiment, missing strokes are handled by trying a new topology for the letter HMM models. For this,
we allowed for the possibility of skipping states as shown in Figure 1, to allow for more flexible models. As can
be seen in Table 4, the success rate is increased by 1% compared to Experiment 3 where skipping states was not
allowed.

Model Training Set Test Set Topology Correct
of Writers # of Words # of Writers # of Words

Letter 20 1000 10 1000 non-skipping 90.4%
Letter 20 1000 10 1000 next state skip allowed 91.4%

Table 4. The performance of HMMs with skipping state topology.

Using Different Feature Sets

Since we have limited training data, it makes sense to reduce the dimensionality of the features. In order to
study the effects of different feature sets on the performance of the system, we measured the system performance
using different subsets of the features described in Section 2.3: the first derivative of the x coordinate (dx), the
first derivative of the y coordinate (dy), the second derivative of the x coordinate (ddx), the second derivative
of the y coordinate (ddy), and the percentage change in pressure (pressure) between consecutive points.

As can be seen in Table 5, the best performance was obtained using the full set of features, as in Experiment
3. In other words feature reduction was not found to be useful, in this case. Therefore, in all of the remaining
experiments, we use all of the five features (dx, dy, ddx, ddy, pressure).

Model Training Set Test Set Features Correct
of Writers # of Words # of Writers # of Words

Letter 20 1000 10 1000 dx,dy,ddx,ddy,pressure 90.4%
Letter 20 1000 10 1000 dx,dy 89.3%
Letter 20 1000 10 1000 dx,dy,ddx,ddy 88.7%

Table 5. Performance rates for different feature sets.

Using a Mixture Model

Table 6 shows the effects of using a Gaussian mixture, increasing the number of Gaussians and varying the
number of states accordingly. Given enough training data and sufficient number of states, one would expect
increased number of Gaussians to better model the observation probabilities, however for this small experiment,
we did not obtain a significant performance increase. Using a three-Gaussian mixture and 7 states we had 90.5%
performance compared to the baseline performance of 90.4% where a single Gaussian was used (default setting).
Since this is a very small performance increase, we did not use multiple Gaussians in the following experiments.

Model Training Set Test Set # Of States # Of Mixtures Correct

of Writers # of Words # of Writers # of Words

Letter 20 1000 10 1000 20 1 90.4%
Letter 20 1000 10 1000 7 3 90.5%
Letter 20 1000 10 1000 10 3 89.7%

Table 6. The performance of different mixture and state numbers.

Variable Number of States for Different Letters

In this experiment, we grouped the letters roughly according to their shape, complexity and number of strokes
into seven groups and varied the number of states used in the corresponding HMM models between 7 and 25,
such that simpler groups had smaller number of states.

Compared to the baseline performance of Experiment 3 where 20 states were used for each letter model, the
use of different number of states for letters did not bring any significant improvement (increase from 90.4% to
90.5%). Even though one would expect to obtain better results with this approach, the clustering of the letters
and assignment of states was done in an ad hoc manner; grouping the letters into 2 or 3 groups and using a
smaller range for the number of states (around 20) may be useful. For the remaining experiments, we kept the
number of states a constant (20) across different letter models.

Different Partitioning of the DataBase

For this experiment, we split the second database into training and testing as follows: two sets (total of 200
words) have been used for testing and 8 sets (total of 800 words) have been used for training. The goal was to
increase the number of training data (from 66% from the previous experiments to 80%). Note that this way, both

the words and the writers differ between the training and the tests sets, since the sets of 100-words are mutually
exclusive.

In order to measure the performance robustly, the database is split into training and test sets in 5 different
ways and the average performance is computed (e.g. Data Sets 1 and 2 are used for testing, and the rest are used
for training). Table 7 shows the results for different distributions: one can see that variations across different
splits is small, with an average performance of 91.1%.

As we expected, the increased training data gave a better performance compared to the baseline performance
(90.4%) of Experiment 3, even though words in the test are not included in the training set. Note that word
models are not convenient for this experiment, since using word models, the domain of test words should be a
subset of train words.

Model Training Set Test Set Correct

of Writers # of Words Data Sets # of Writers # of Words Data Sets

Letter 24 800 DS3..DS10 6 200 DS1,DS2 92.6%
Letter 24 800 DS1,DS2,DS5..DS10 6 200 DS3,DS4 92.5%
Letter 24 800 DS1..DS4,DS7..DS10 6 200 DS5,DS6 89.6%
Letter 24 800 DS1..DS6,DS9,DS10 6 200 DS7,DS8 89.8%
Letter 24 800 DS1..DS8 6 200 DS9,DS10 91.2%

Average: 91.1%

Table 7. Different test set performance rates using letter models and the second database. Both writers and words are
different between the training and test sets.

Extracting Features Within a Stroke

In online handwriting recognition, letters written in multiple strokes increase the complexity of the problem, due
to the transitions between the strokes. In our case, we have also noticed that the features used (dx,dy,ddx,ddy)
vary significantly according to whether a word is written cursively or discretely, or whether the second stroke
was done without lifting the pen.

If the first and second derivatives of the stroke starts are initialized to zero, features are calculated within
a stroke. When the stroke transition points are not considered, the adjacent strokes have no effect in stroke
feature values, decreasing the variability across different realizations of the same letter, especially in discrete
handwriting. As a result, the complexity and variability coming from different pre-strokes and post-strokes are
eliminated.

A disadvantage of this approach occurs in letters written with multiple strokes, such as i, ç, ǧ, ş, t, k. These
letters lose the relationship (relative location etc.) between their strokes and consecutively the recognition rate
for these letters might decrease.

Overall, the performance of the system with strokewise feature extraction is 91.8%, showing a 2% increase in
performance. Table 8 shows the result compared to the previous experiment with the same train and test sets.

Model Training Sets Test Sets Strokewise Correct
Letter DS1..DS6,DS9,DS10 DS7,DS8 No 89.8%
Letter DS1..DS6,DS9,DS10 DS7,DS8 Yes 91.8%

Table 8. The performance of within stroke feature extraction technique, compared to its baseline.

Previous Neighboring Points as a New Feature

In the error analysis we have noticed that the pairs “u” and “a”, “y” and “g”, “b” and “k”, and other similar
character pairs were frequently confused by the system. To overcome this problem, we added another feature,
computed at each point along the word: number of neighboring points. That is the number of previous points

along the stroke which are close (within a fixed distance) to the current point are counted and used, in addition
to dx, dy, ddx, ddy, and pressure features.

Using previous neighboring points as a new feature we had 91.3% performance compared to the same experi-
ment without this feature (with performance of 89.8%), as shown in Table 9. Overall performance of the system
is increased about 1.5%. Some words that are predicted correctly by this new feature and were previously not
recognized are shown in Figure 4.

Model Training Sets Test Sets Previous Pts. Correct
Letter DS1..DS6,DS9,DS10 DS7,DS8 No 89.8%
Letter DS1..DS6,DS9,DS10 DS7,DS8 Yes 91.3%

Table 9. The effect of the previous neighboring points feature, compared to its baseline. Performance of the system is
increased by 1.5%.

Figure 4. The word “grubu” was recognized as “gruba” and the word “banal” was predicted as “kabul” prior to adding
the previous neighboring points-feature. Similarly the word “yönelik” was recognized as “gelip” and the word “çıkarmaya”
was recognized as “yıkamaya”. These words are correctly recognized with the new feature.

Relative Height as a New Feature

Another noticeable error in the system was that some letter pairs, such as “b” and “p” , are imperceptible to
the system if they are written in two strokes, without knowing the relative height information. Similarly the
characters “a” and “d” are difficult to differentiate if the hook of “d” is not discernible.

This problem is partly solved by the addition of the previous feature, but another useful feature would be
the relative height of each point with respect to the baseline. Hence the top points on the ascender of the “b”
would have a large relative height compared to the top points of the descender of “p”. In order to compute this
feature, the baseline, topline and ascender and descender lines are extracted by the system.

Some new errors can occur because of this feature since it is impossible to extract these lines without knowing
the underlying word, in some instances. For example when writing the word “şu” one can take below the cedilla
as the baseline or below the letter “u”. Although there can be some complications, most of the time the correct
ascender and descender lines are extracted and the overall performance is increased, as shown in Table 10. Figure
5 shows some words that were not correctly recognized before, which now are recognized.

Model Training Sets Test Sets Relative Height Correct
Letter DS1..DS6,DS9,DS10 DS7,DS8 No 89.8%
Letter DS1..DS6,DS9,DS10 DS7,DS8 Yes 92.5%

Table 10. The performance of relative height feature, compared to its baseline. Performance of the system is increased
by about 2.5%

Figure 5. The word “Son” was recognized as “son” and the word “planın” was predicted as “bunun” prior to adding pre-
vious intersecting points features Similarly, the words “bilgisayarımdan”, “danışmanımla”, “hissetmek”, “ayrılıyor” were
predicted as “bilgisayarıma”, “adımlarla”, “hissettiǧimiz”, “duruyor” respectively. These words are correctly recognized
with the new feature.

Combining Features

Table 11 shows the results after combining the new features in one test. For this experiment, we used the previous
neighbors and the relative height along with strokewise feature extraction. The performance of these features
add up and overall performance is increased by 3%. The average performance is 94.0% compared to experiment
three (91.1%).

Test Set Performance (5 features) Performance (7 features + strokewise extraction)
DS1,DS2 92.6% 95.2%
DS3,DS4 92.5% 95.4%
DS5,DS6 89.6% 91.7%
DS7,DS8 89.8% 94.3%
DS9,DS10 91.2% 93.4%
Average: 91.1% 94.0%

Table 11. Effects of combining various features with respect to the baseline system.

Combining the New Features and the Skipping State Topology

We have also combined the new features and the skipping state topology and measured the performance on the
baseline experiment on data sets DS7 and DS8, with a performance of 89.8%.

The result of this experiment is 94.8% which is a 5% increase from the baseline. However as can be seen in
Table 11, the new features alone gave a performance of 94.3%, so the skipping state topology only gave 0.5%
additional increase.

4. RESULTS AND CONCLUSION

We have presented an online handwriting recognition system for Turkish. The results are quite good and show
the promise of the features and the overall approach of the system.

Sample handwritings from the database are shown in Figure 6. Most words were written discretely (non-
cursive), with occasional touching characters, which, unlike offline handwriting, do not pose extra difficulty for
the recognizer. However, on close inspection of the errors made by the system, we have seen that while writing
a word, many people have gone back and rewritten a bad character somewhere in the word. Since our word
models are composed of concatenated letter models of its constituent letters, in order, this writing behavior may
account for a significant part of the error rate.

We have discovered that more than 35% of the errors are due to the mixed order of strokes or letters, not
modeled by the current system (indicated in Table 4 as accented letters and delayed strokes). Mixed stroke order
in accented Turkish letters ç, ǧ, ş,ü, ö account for 22.7% of the total error. These accents or cedillas are written
either right after the main letter body or at the end of the word, or something in between. Stroke ordering is a
problem in online word recognition in general, but it is more so in Turkish where many of the characters of the
alphabet have dots or cedillas. For further research in letter model the delayed strokes are planned to be handled
with a separate model which can be used to extend the word models to allow for alternative orders. Another

Figure 6. Sample handwritings from the database.

Error Type Percentage
Accented Letters 22.7%
Delayed Strokes 13.6%
Similar Letters 31.8%

Wrong Baseline, Topline Extraction 13.6%
Miswriting 4.5%

Not Writing Ascenders or Descenders Very Long 13.6%

Table 12. Error Types

form of mixed order is caused by writers correcting a word, after writing the last letter (delayed strokes). This
accounts for 13.6% of the total error. As mentioned before, the current word models do not handle this situation,
however one can preprocess the word to detect and reorder the letters to some extent, prior to recognition.

Similar to speech recognition systems the system’s performance is inversely proportional with the word count
so as the vocabulary increases the system’s performance as expected decreases. But this 1000 word dataset is
compiled from e-mail messages and already covers the different extensions of the same root word. (example:
bize, bizler). For the above reason, the system’s performance is not expected to decrease significantly as the
number of words increase. This prototype system consisting of 1000-word vocabulary will be integrated with the
language models and language processing tools for an unlimited vocabulary system, as in the offline handwriting
recognition system.9

REFERENCES
1. P. Artieres, “Stroke level HMM for on-line handwriting recognition,” Proc. of IWFHR-8, 2002.
2. D. Li, A. Biem, and J. Subrahmonia, “Hmm topology optimization for handwriting recognition,” Proc. of

IEEE 3, pp. 1521–1524, 2001.
3. S. Connell and A. K. Jain, “Template-based online character recognition,” Pattern Recognition Vol. 34 (1),

pp. 1–14, 2001.
4. J. Hu, S. G. Lim, and M. K. Brown, “Writer independent on-line handwriting recognition using an HMM

approach,” Pattern Recognition , 2000.
5. F. Wang, L. Vuurpijl, and L. Schomaker, “Support vector machines for the classification of Western hand-

written capitals,” Proc. of IWFHR-7, pp. 167–176, 2000.
6. R. Plamondon, D. P. Lopresti, L. R. B. Schomaker, and R. Srihari, “On-line handwriting recognition,” in

Wiley Encyclopedia of Electrical & Electronics Engineering, J. Webster, ed., pp. 123–146, 1999.
7. E. J. Bellegarda, J. R. Bellegarda, D. Nahamoo, and K. S. Nathan, “A fast statistical mixture algorithm

for on-line handwriting recognition,” IEEE Trans. PAMI 16, pp. 1227 – 1233, 1994.
8. “http://msdn.microsoft.com/msdnmag/issues/03/10/ tabletpc/default.aspx,”
9. B. Yanikoglu and A. Kholmatov, “Turkish handwritten text recognition: A case of agglutinative languages,”

Proc. SPIE, 2003.
10. K. Oflazer, “Two-level description of Turkish morphology,” Literary and Linguistic Computing 9(2), p. 1994.
11. S. Young, The HTK Book v3.0., Cambridge University, 1999.

