
214

An Optimistic Fair E-Commerce Protocol for Large

E-Goods

Cagil Can Oniz, Erkay Savas, Albert Levi
Faculty of Engineering and Natural Sciences, Sabanci University

Orhanli - Tuzla, TR-349656 Istanbul, Turkey
cagilogsu.sabanciuniv.edu, {erkays, levi}gsabanciuniv.edu

Abstract- Suppose two entities that do not trust each other
want to exchange some arbitrary data over a public channel. A
fair exchange protocol ensures that both parties get what they
want or neither gets anything. In this paper, a fair e-commerce
protocol for large e-goods is proposed and implemented. The
proposed protocol provides a method for the fair exchange of
e-money for e-products, and a method for verifying the
contents of the exchanged items. The protocol is optimistic and
efficient such that when none of the parties tries to cheat, only
three messages are sufficient. In case of disputes, three more
messages are needed. Furthermore, the customer remains
anonymous after the transaction; thus, no information about
the customers' shopping habits can be gathered through the
protocol. The implementation results show that the protocol is
efficient and secure and that only a small number of
cryptographic operations is sufficient.

I. INTRODUCTION

The purpose of a fair exchange protocol is to barter data
between two entities, as a result of which either both parties
get what they want or they both get nothing. Fair exchange
protocols have been given special names depending on the
contents of exchanged items. Some examples are given
below.

* In a contract signing protocol [2, 4, 5, 11, 12 and
19], digital signatures of two entities that bind them
to the terms stated on a contract are exchanged.

* In a certified mail protocol [4, 12 and 16], an e-mail
message is exchanged for a receipt of this e-mail.
The receipt proves that the intended receiver of the
e-mail has obtained the e-mail.

* In an e-commerce protocol [6, 7, 8, 9, 10, 13 and
14], payment (a token) is exchanged for an electronic
good (e-good) or a service.

Four essential requirements of exchange protocols,
namely fairness, quality control, client anonymity, and the
number of e-good transfer are explained as follows.

1. Fairness: An exchange protocol is considered fair if
the protocol has only two possible outcomes: either
both entities obtain the items that they expect from
the other entity or neither entity obtains any items.

2. Quality Control: An exchange protocol must allow
participating entities to verify that a declared

definition of an item truly defines the contents of that
item.

3. Client Anonymity: Entities that perform the exchange
may decide to remain anonymous. Anonymity
ensures that the identity of an entity is not revealed
during the transaction. For instance, a customer may
not want a merchant to discover his/her pattern of
shopping habits after performing a transaction. This
is ensured through client anonymity.

4. Number ofE-Good Transfer: There must not be any
assumptions on the size of exchanged items.
Therefore, the exchanged items may be very large
and hence transferring these large items multiple
times could be costly. Consequently, large items
should be transferred only once per protocol run.

Exchange protocols can be examined in two categories: i)
online thirdparty protocols [3, 5, 9, 13 and 14] and ii) baby-
step protocols [11 and 12]. In online third party protocols,
the exchange is achieved via a trusted third party. Each party
submits his/her own item to the trusted third party that
forwards the items to the appropriate recipient entity. In
baby-step protocols where there is no trusted third party,
items are divided into smaller partial items. Two entities
achieve the exchange by swapping multiple partial items one
by one. In other words, one of the entities sends one of
his/her partial item to the other entity and waits for the other
side to send a partial item as well. If the latter does not send
its partial item in return, the algorithm terminates, leaving
both parties in a situation where neither obtains the desired
item. This act of swapping partial items continues until the
items are completely exchanged; hence, the solution is
obtained through "baby steps".

Both approaches have drawbacks [9]. Online third party
protocols require that the third party always be online;
therefore, the third party needs bandwidth to handle large
amounts of traffic. The large amount of traffic routed to the
third party creates a bottleneck in the network. Online third
party protocols have a client/server architecture, which
causes a single point of failure and requires expensive
measures for continuous service. On the other hand, baby-
step protocols, which have peer-to-peer architecture, may
have a large overhead. In some cases, they provide a lower
degree of fairness.

Proceedings of the Seventh IEEE International Symposium on Computer Networks (ISCN' 06)
1-4244-0491-6/06/$20.00 © 2006 IEEE

215

In order to overcome the problems of the online third
party protocols, another approach, using so-called optimistic
protocol [4, 7, 8, 9 and 16], has been proposed. In an
optimistic protocol, two entities want to perform an
exchange. The entity that starts the protocol is the initiator
and the other one is the receiver. First, the initiator takes a
risk by sending its own item to the receiver. Second, the
receiver either sends its own item or tries to cheat by not
sending anything. If the receiver behaves honestly by
sending its own item, the protocol is complete since both
entities obtained the items that they expected. If the initiator
does not receive the expected, it contacts the trusted third
party for dispute resolution. The trusted third party resolves
this dispute by sending the correct item to the initiator.
Optimistic protocols use a trusted third party only in case of
disputes. Optimistic protocols discourage cheating, since
cheating is of no gain. Therefore, attempts of cheating and
consequently the participation of a trusted third party would
be rare. This property of keeping the trusted third party out
of normal execution reduces network traffic to the third
party.

In this paper, an optimistic fair e-commerce protocol for
large e-goods is presented. The proposed protocol provides a
method not only for fair exchange of e-money for e-goods,
but also for the verification of the contents of the exchanged
items for quality control purposes. The proposed protocol is
efficient; when none of the parties tries to cheat, only three
messages are sufficient. To resolve disputes, if any, only
three more messages are needed. In most of the previously
proposed protocols in the literature, e-goods are transferred
multiple times, which is too costly when the e-goods are
large. In the presented protocol, e-goods are transferred only
once. Another important property of the protocol is the
anonymity of the customer; thus, no information about the
customer's shopping habits can be gathered through the
protocol.

The rest of the paper is structured as follows. We state
our system assumptions and give some definitions and
notations in Section II. In Section III, we explain some of the
preliminary information required to understand the protocol
description. In Section IV, we describe our e-commerce
protocol. Implementation issues have been explained in
Section V and we conclude the paper in Section VI.

II. ASSUMPTIONS AND NOTATION
The assumptions for the proposed protocol are as

follows:

* There are three players involved: the client, the
merchant, and the trusted third party.

* The client and the merchant do not trust each other
but they both trust the third party.

* The public keys of the merchant and the trusted third
party are publicly accessible (e.g. through the use of
certificates).

* The customer has already browsed the merchant's
web page and selected the item to be purchased
before the protocol run.

* The merchant and the trusted third party accept
tokens (see Purchase Request Message in Secure
Electronic Transaction (SET) [1], which is a world
wide standard for payment tokens) as a valid
payment method and both can verify whether a token
is valid (whether the claimed credit card number
exists and has enough money in the account) or not.
The merchant contacts a trusted bank entity in order
to verify a token. These types of tokens are
idempotent; in other words, processing the same
token multiple times does not mean that the amount
ofmoney to be transferred will also multiply.

* Before the protocol starts, the trusted third party
certifies each product in terms of its price,
description, and contents (See Section III.B for
details).

* The integrity and authentication of each message is
provided by appending the digital signature of that
message. For the sake of simplicity, these signatures
are not shown in the protocol.

* Encryptions are strong enough so that it is not
possible to decrypt a message without the correct
decryption key.

* Communication between the trusted third party and
the other players can be delayed by an arbitrary but
finite amount of time by an attacker. However, the
trusted third party will eventually receive the
messages.

* An attacker may gain complete control of the
communications between the merchant and the
customer. In other words, the attacker may prevent
the customer from sending messages to the merchant
and vice versa for an indefinite period.

* Communication failures between the customer and
the merchant are considered as misbehavior of an
entity and therefore dispute resolution commences.
In other words, if for any reason the communication
between the customer and the merchant is disrupted,
the client will assume that the merchant is cheating
and, therefore, the client will apply to the third party
for dispute resolution.

* Each of the players is able to compute and verify
digital signatures and to compute collision resistant
one-way hash functions [15, 17, 18, 19, and 20].

Notations used in the protocol are given in Table I.

TABLE I. NOTATIONS

Symbol Meaning

CERT 1th Certificate of a product signed by trusted third
TP party

H(X) Hash ofX

EK(data) Encryption of data with key K
E-product or electronic item such as, database or

e-good multimedia file
Price Price of e-good

Description String describing contents of product

KUx Public key of identity X

KRx Private key of identity X

SIGx(Data)
Data signed by identity X; equivalent to

SIxDt) EKR(H(Data))
TP Trusted third party

M Merchant

C Customer or Client

11 Concatenation Operation

PID Product Identifier

B. Offline E-Good Certification Process
Before the protocol runs, an offline certification process

is employed in order to certify each product in terms of its
price, description, and contents. In the offline certification
process, the merchant demands n certificates from the trusted
third party for a certain e-product.

Figure 2 shows the product certificate format. The first
field in the certificate is the hash of the encrypted e-product.
This field is employed in order to certify the contents of the
product. The encryption is performed with a symmetric
session key KSi. This symmetric session key is produced
using a special method; Chain Keys (see Section III.A and
[22] for details). In this method a chain of keys is produced
using two keys: the RootKey and HMAC Key. Each one of
the n certificates of a certain e-product will contain a
different hash value of the encrypted product since the
product will be encrypted with a different session key in each
copy. The second field is a numeric value indicating the price
of the product. The third field is a string that describes the
product. The fourth field is a unique identifier for each
product. The fifth field is the chain key index. The last field
is the signature of the previous fields of the certificate by the
trusted third party.

III. PRELIMINARIES
In order to understand the proposed protocol, two

preliminary concepts are presented: chain keys and offline e-

good certification process.

A. Chain Keys
In the proposed protocol for each purchase of a product, a

separate symmetric key is needed. In order to reduce the total
number of keys to be stored, the third party will generate n

session keys, KSi (i = 1... n), using a special method called
chain keys introduced in [22].

Figure 1 shows the steps involved in producing chain
keys. Firstly, the third party generates a random symmetric
session key called the Root Key or KS1. Secondly, the third
party computes the HMAC [1, 11] of the Root Key using a

key, HMAC Key, and obtains the second key of the chain,
which is KS2. Thirdly, the third party computes the HMAC
of KS2 again using the same HMAC Key and obtains KS3.
This process continues until all keys (i.e. KSi (i = 1... n)) are

produced. The aim of this method is to generate multiple
keys derived from the Root Key and a single HMAC Key.

RootKey=KS, HIH HA

HMAC Key HMAC Key HMAC Key

Figure 1. Production of Chain Keys

Where i1l..n

Figure 2. Product Certificate Format

In order to resolve disputes, the third party does not have
to save the copies of the certificates but has to save a Root
Key and a HMAC Key per product (See Section III.A for
details). At the end of this offline certification process, the
trusted third party will send the n certificates and keys in the
chain (or alternatively the Root Key and the HMAC Key) to
the merchant through a secure channel.

IV. E-COMMERCE PROTOCOL DESCRIPTION

Figure 3 shows the steps involved in the protocol. The
protocol starts with the merchant sending the encrypted e-
good and the certificate of that product. The customer
receiving this message wants to be sure that he/she is really
buying the product that the merchant has promised and that
the merchant has not changed the price or contents. In order
to do so, the client will check the certificate for the Price and
Description fields. If satisfied, the encrypted product is
hashed and compared to the first field of the certificate. If
these two digests (hash values) are equal, then the customer
is sure that the merchant is providing the correct product.
Knowing that the merchant is not cheating, the client sends

216

217

the token and his/her public key to the merchant in the
second message. Subsequently, the merchant checks the
validity of this token. If the token is valid, the merchant
sends the product decryption key KSi encrypted with the
public-key of the customer in the third message. The
customer, receiving this encrypted product decryption key,
decrypts it using its private key in the following manner:
DKR,(EKu,(KSi)) = KSi. Subsequently, the customer

acquires the e-good by decrypting the encrypted e-good
using the product decryption key KSi in the following way:
D KS (E KS (e-good)) e-good. Up to this point, the normal

X i

execution of the protocol has been described. Below the
motive for dispute resolution is depicted.

Figure 3. Fair Optimistic E-Commerce Protocol Description

Assume that the normal execution of the protocol runs
and that the merchant sends the first message. After
receiving the first message, if the client does not send the
second message, the fairness property of the protocol is not
violated. This fact is true since in the first message, the e-

good is sent encrypted and therefore neither has the customer
has received the e-good he/she expected nor did the merchant
receive a token. However, if the customer sends the second
message (token) in a legitimate way and the merchant does
not reply with the encrypted product decryption key (third
message), the fairness property is violated. This fact is true
since, although the merchant has received the token, the
customer has not received the e-good he/she expected. In
order to solve this problem, the customer applies to the third
party for dispute resolution. Below, the dispute resolution
phase has been described.

Assume that the normal execution flows and that after the
customer sends the token in the second message, the
customer waits and does not get the product decryption key
or he/she gets a wrong product decryption key. The customer
applies to the trusted third party for dispute resolution. In the
fourth message, the customer sends the token, the certificate
index i, the product identifier PID and his/her public key to
the trusted third party. In this message, the customer
specifies the product decryption key that he/she expects by
sending the PID and i pair, since the PID specifies the
product and i specifies the product decryption key
corresponding to that PID. Furthermore, the third party must

also obtain the token in this message. This fact is true since
the third party is willing to perform the exchange by sending
the appropriate item to the appropriate entity. It is important
to remember that tokens are idempotent (see Purchase
Request Message in Secure Electronic Transaction (SET) [1]
for details); therefore, although the token may be processed
two times, the money transferred to the merchant's account
will not double. Subsequently, the trusted third party checks
the validity of the token. Moreover, it also checks whether
the value of the token matches the price of the product. If the
token is valid and sufficient to cover the price of the product,
in the fifth message, the trusted third party sends the product
decryption key, KSi, related to the product identified by the
PID and the chain key index i to the customer encrypted with
the customers public key. The customer, receiving this
encrypted product decryption key, decrypts it using its
private key as follows: DKRc(EKuc(KSi)) KSi.
Subsequently, the customer acquires the e-good by
decrypting the encrypted e-good using the product
decryption key KSi as follows: DKS.(E KS(e-good)) == e-

good. Finally, the merchant must be informed about this
transaction. In order to do so, in the sixth message, the third
party forwards the token and the purchased product
information (fifth message) to the merchant. The merchant,
upon receiving this message, processes the token and
removes the it certificate from its database.

A malicious user may try to exhaust the product
decryption keys by skipping the normal execution of the
protocol and by directly applying to the third party for
dispute resolution. However, in order to do so, the malicious
user must send a legitimate token. In other words, the
malicious user must pay in order to perform this attack. This
attack is to the benefit of the merchant and is undesirably
costly and infeasible for the attacker.

Another attack may be performed by a malicious user in
order to create a bottleneck in the third party's network. The
attacker's aim is to include the third party in the normal
execution of the protocol and therefore to increase the traffic
directed to the third party. First, the attacker downloads the
first message from the merchant. Second, the attacker skips
the second and third messages and directly applies to the
third party for dispute resolution. Subsequently, the attacker
sends the fourth message in a legitimate way; in other words,
the token, i, and PID values are consistent with the first
message and the customer's public-key field is appropriate.
In this way, the third party is included in the normal
execution of the protocol and traffic to the third party is
increased. However, this attack is similar to the previous type
of attack in the way that it also requires payment by the
malicious user and benefits the merchant. Furthermore, the
most costly operation is downloading the encrypted e-good
(first message). The cost required to perform dispute
resolution is much lower than the cost required for
downloading the first message. In reality, in the proposed
protocol, the merchant and customer exchange the product
decryption key for the token (not the e-good for the token).
Excluding the download operation of the encrypted e-good
(which can be large) from the dispute resolution phase
minimizes the damage of this attack.

CERT
T

= H(EKS (e-good)) 11 Price 11 Description 11 PID 11 i 11 Signature
1) M-C: EKS (e-good) || CERTTP
2) C-M: token 11 KUc
3) M-C: EKU (KSi)

Dispute Resolution Phase

Customer claims that helshe has not received Message 3

4) C-TP: token 11 i 11 PID KUc
5) TP-C: EKU (KS1)
6) TP-M: token 11 i 11 PID KUC
7)

218

V. IMPLEMENTATION

The presented protocol has been implemented with C#
programming language using Microsoft Visual Studio .Net
2003 [21]. The implementation has been tested on an Intel
Celeron 1333 MHz computer with 240 MB RAM.

Tables II, III and IV show the cryptographic operation
count for the client, merchant, and third party per protocol
run, respectively. In Table III and IV, i is the chain key
index. The trusted third party's dispute resolution phase takes
0,3 seconds on average of ten runs of the protocol.

TABLE II. CLIENT CRYPTOGRAPHIC OPERATION COUNT

Normal Protocol Run Dispute Resolution Run

RSA Signature 2 1
Generation

RSA Signature 3 1
Verification

MD5 Hash 1 0

AES Decryption 1 1

RSA Decryption 1 1

TABLE III. MERCHANT CRYPTOGRAPHIC OPERATION COUNT

Normal Dispute
Protocol Run Resolution Run

RSA Signature 2 0
Generation

RSA Signature 2 1
Verification

SHA1 HMAC i-1 0
Generation

MD5 Hash i-1 0

RSA 0
Encryption10

TABLE IV. THIRD PARTY CRYPTOGRAPHIC OPERATION COUNT

RSA Signature Generation 1

RSA Signature Verification 1

SHAI HMAC Generation i-I

MD5 Hash i-I

RSA Encryption 1

Table V shows the cryptographic operation count of the
third party's certification process per product. In Table V, n

is the number of requested certificates. Certification times
for different file sizes are shown in Table VI. Each of the
results obtained in Table VI is the average of 10 runs of the
certification process over certain files. The trusted third party
has to save only 526 bytes per product. The time of the third
party's dispute resolution phase and the time to certify a

product consist of cryptographic operations, file input/output
operations, time to read/write from/to a remote Microsoft
SQL Server 2000 Table and network socket operations
(read/write). Note that since the e-goods are large, most of
the time is spent on file input/output operations. Note also
that certificate production time spent on cryptographic
operations can be significantly reduced by using a state-of-
the-art implementation of cryptographic library.

TABLE V. THIRD PARTY CERTIFICATION CRYPTOGRAPHIC
OPERATION COUNT

Operation Count

RSA Signature Generation n

SHAI HMAC Generation n-I

MD5 Hash n

Rijndael Encryption n

TABLE VI. THIRD PARTY CERTIFICATION TIMES

File Size I/O Read Certificate Total Time
(MB) Write Time Production time (Seconds)(Seconds) (Seconds)

716 277.97 185.63 463.6

470 223.3 126.94 350.24

250 122.21 77.41 199.62

157 79.21 55.79 135

Table VII and VIII show the comparison of several
optimistic protocols with the proposed e-commerce protocol
for cryptographic operations that occur during online
transactions. Note that in Table VII and VIII the symbol [*]
represents the proposed e-commerce protocol. Table VII
shows the cryptographic operation count in case of no
disputes and Table VIII illustrates the cryptographic
operation count in case of disputes. In [4 and 7], the authors
omitted the authentication and integrity of each message for
the sake of simplicity. For this reason, in Table VII, the
cryptographic operation count due to message authentication
and the integrity of the proposed e-commerce protocol has
also been omitted. Furthermore, all assumptions on digital
envelopes [1, 11] have been taken into consideration while
calculating the cryptographic operation count, if applicable.
In Tables VII and VIII, i is the chain key index (see Section
III.A for details). Note that in Table VIII, column [7] has
different outcomes of the asymmetric encryption/decryption
operation count because of the different types of disputes
(see [7] for details).

TABLE VII. COMPARISON OF SEVERAL PROTOCOLS FOR
CRYPTOGRAPHIC OPERATION COUNT (NO DISPUTES)

T [*] T [4] [7]
Symmetric Enc/Dec 1 3 1

Asymmetric Enc/Dec 2 5 13

Hash i 4 4

MAC i-l 0 0

Dispute Resolution Run

219

TABLE VIII. COMPARISON OF SEVERAL PROTOCOLS FOR
CRYPTOGRAPHIC OPERATION COUNT (DISPUTES)

[1*1 [4] [7]
Symmetric Enc/Dec 2 4 1

Asymmetric Enc/Dec 4 7 12 or 13 or 15

Hash 2i -1 5 4

MAC 2i -2 0 0

VI. CONCLUSION AND FUTURE WORK
In this paper, an optimistic fair e-commerce protocol for

large e-goods has been presented. The optimistic fair e-
commerce protocol is efficient since, even in case of
disputes, the large product is transferred only once to the
customer and a small number and size of messages are
needed to establish the protocol. Disputes are resolved by the
third party within the protocol, not by gathering evidence and
taking them to a court afterwards. The third party does not
have to store e-goods or protocol messages even in case of
disputes. Furthermore, the client's identity is kept
anonymous; no information about the customer's preferences
can be gathered through the protocol. The experimental
results show that the protocol requires low resource usage
and therefore has good performance. Moreover, dispute
resolution has a low load on the trusted third party in terms
of both the amount of data to be stored and the cryptographic
operations to be computed. As a result, the trusted third party
does not create a bottleneck in the network.

Future work that will increase the efficiency and security
of the proposed optimistic fair e-commerce protocol can be
outlined as follows: In order to speed up the offline
certification process of the proposed protocol, a method for
corrupting the file by encrypting some bytes of the product
file may be implemented instead of encrypting the entire
product file, which is the most time consuming operation in
the certification process.

REFERENCES

[1] W. Stallings, "Cryptography and Network Security Principles and
Practices", Third Edition, Prentice Hall, 2003

[2] M. Ben-Or, 0. Goldreich, S. Micali, and R.L. Rivest, "A Fair
Protocol for Signing Contracts", IEEE Transactions on Information
Theory, v. 36, n.1, Jan 1990, pp.40-46.

[3] M. K. Franklin and M. K. Reiter, "Fair exchange with a semi-trusted
third party", 4th ACM Conference on Computer and Communications
Security, 1997, pp. 1-5.

[4] S. Micali, "Simple and Fast Optimistic Protocols for Fair Electronic
Exchange", Annual ACM Symposium on Principles of Distributed
Computing, 2003, pp. 12- 19.

[5] C.P. Pfleeger, "Security in Computing", Prentice-Hall, Englewood
Cliffs, N.J., 1989.

[6] I. Ray and I. Ray, "Fair Exchange in E-commerce", ACM SIGEcomm
Exchange, September 2001.

[7] I. Ray and I. Ray, "An Optimistic Fair-exchange E-commerce
Protocol with Automated Dispute Resolution", Proceedings of the
First International Conference on Electronic Commerce and Web
Technologies, Greenwich, UK, September 2000.

[8] I. Ray and I. Ray, "An Anonymous Fair-exchange E-commerce
Protocol", In Proceedings of the 1st International Workshop on
Internet Computing and E-Commerce, San Francisco, CA., 2001.

[9] I. Ray and I. Ray, "A Fair-Exchange Protocol with Automated
Dispute Resolution", In Proceedings of the 14th Annual IFIP WG
11.3 Working Conference on Database Security. Schoorl, The
Netherlands, 2000.

[10] I. Ray and I. Ray, " Failure Analysis of an E-commerce Protocol
Using Model Checking", Proceedings of the Second International
Workshop on Advanced Issues of E-Commerce and Web-based
Information Systems, Milpitas, CA, June 2000.

[11] B. Schneier, "Applied Cryptography", 1996.
[12] S. Even, 0. Goldreich, and A. Lempel, "A Randomizing Protocol for

Signing Contracts," Communications of the ACM, v.28, n.6, Jun
1985, pp. 637-647.

[13] B. Cox, J. D. Tygar, and M. Sirbu, "NetBill Security and Transaction
Protocol", In Proceedings of the 1st USENIX Workshop in Electronic
Commerce, 1995, pp.77-88.

[14] S. Ketchpel. 1995." Transaction Protection for Information Buyers
and Sellers", In Proceedings of the Dartmouth Institute for Advanced
Graduate Studies: Electronic Publishing and the Information
Superhighway, 1995.

[15] W. Trappe, L. C. Washington, "Introduction to Cryptography with
Coding Theory", Prentice Hall, 2001.

[16] N. Asokan, V. Shoup, and M. Waidner, "Asynchronous protocols for
optimistic fair exchange", In Proceedings of the IEEE Symposium on
Research in Security and Privacy, May 1998, pp. 86-99.

[17] R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining
Digital Signatures and Public Key Cryptosystems", Communications
of the ACM, vol. 21, no. 2, February 1978, pp. 120-126.

[18] S. G. Akl, "Digital Signatures: A Tutorial Survey", IEEE Computer,
vol.16, no. 2, February 1983, pp. 15-24.

[19] U.S. Department of Commerce, "Digital Signature Standard (DSS)",
Federal Information Processing Standards Publication 186, 1994.

[20] NIST, "Digital Signature Standard (DSS)", FIPS PUB 186-2, 27
January 2000.

[21] Microsoft, "Visual Studio .Net", http://msdn.microsoft.com/vstudio/
[22] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar, "SPINS:

Security protocols for sensor networks," in Proceedings of Mobile
Networking and Computing, 2001.

