
An Efficient Hardware Architecture for H.264 Adaptive Deblocking Filter
Algorithm

 Mustafa Parlak Ilker Hamzaoglu
 Sabanci University Sabanci University
 Tuzla, Istanbul Tuzla, Istanbul
 34956, Turkey 34956, Turkey
 mparlak@su.sabanciuniv.edu hamzaoglu@sabanciuniv.edu

Abstract

This paper presents an efficient hardware
architecture for real-time implementation of adaptive
deblocking filter algorithm used in H.264 video coding
standard. This hardware is designed to be used as part
of a complete H.264 video coding system for portable
applications. We use a novel edge filter ordering in a
Macroblock to prevent the deblocking filter hardware
from unnecessarily waiting for the pixels that will be
filtered become available. The proposed architecture is
implemented in Verilog HDL. The Verilog RTL code is
verified to work at 72 MHz in a Xilinx Virtex II FPGA.
The FPGA implementation can code 30 CIF frames
(352x288) per second.

1. Introduction

Video compression systems are used in many
commercial products, from consumer electronic
devices such as digital camcorders, cellular phones to
video teleconferencing systems. These applications
make the video compression hardware devices an
inevitable part of many commercial products. To
improve the performance of the existing applications
and to enable the applicability of video compression to
new real-time applications, recently, a new
international standard for video compression is
developed. This new standard, offering significantly
better video compression efficiency than previous
International standards, is developed with the
collaborations of ITU and ISO standardization
organizations. Hence it is called with two different
names, H.264 and MPEG4 Part 10.

The video compression efficiency achieved in
H.264 standard is not a result of any single feature but
rather a combination of a number of encoding tools. As
it is shown in the top-level block diagram of an H.264

Figure 1 H.264 Encoder Block Diagram

encoder in Figure 1, one of these tools is the adaptive
deblocking filter (DBF) algorithm [1, 2, 3].

As shown in Figure 1, deblocking filter is applied to
each decoded Macroblock (MB) after inverse
quantization and inverse transform. Deblocking filter
improves the visual quality of decoded frames by
reducing the visually disturbing blocking artifacts and
discontinuities in a frame due to coarse quantization of
MBs and motion compensated prediction [4]. Since the
filtered frame is used as a reference frame for motion-
compensated prediction of future frames, deblocking
filter also increases coding efficiency resulting in bit
rate savings [4].

The deblocking filter algorithm used in H.264
standard is more complex than the deblocking filter
algorithms used in previous video compression
standards. First of all, the H.264 deblocking filter
algorithm is highly adaptive. Second, it is applied to
each edge of all the 4x4 luma and chroma blocks in a
MB. Third, it can update 3 pixels in each direction that
the filtering takes place. Fourth, in order to decide
whether the deblocking filter will be applied to an
edge, the related pixels in the current and neighboring
4x4 blocks must be read from memory and processed.
Because of these complexities, the deblocking filter

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11738899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

algorithm can easily account for one-third of the
computational complexity of an H.264 decoder [4, 5].

In this paper, we present an efficient hardware
architecture for real-time implementation of H.264
adaptive deblocking filter algorithm. This hardware is
designed to be used as part of a complete H.264 video
coding system for portable applications. The proposed
architecture is implemented in Verilog HDL. The
Verilog RTL code is verified to work at 72 MHz in a
Xilinx Virtex II FPGA. The FPGA implementation can
code 30 CIF frames (352x288) per second.

Several hardware architectures for real-time
implementation of H.264 adaptive deblocking filter
algorithm are presented in the literature [6, 7]. These
architectures achieve higher performance than our
hardware design at the expense of a much higher
hardware cost. Our hardware design is a more cost-
effective solution for portable applications. We
achieved real-time performance for portable
applications by only using one 12-bit adder, one 12-bit
comparator, a few shifters, two’s complementers and
multiplexers in our datapath.

The rest of the paper is organized as follows.
Section II presents a brief overview of adaptive
deblocking filter algorithm used in H.264. Section III
describes the proposed hardware architecture in detail.
The implementation results are given in Section IV.
Finally, Section V presents the conclusions.

2. Overview of H.264 Adaptive Deblocking
Filter Algorithm

H.264 adaptive deblocking filter removes visually
disturbing block boundaries created by coarse
quantization of MBs and motion compensated
prediction. MBs in a frame are filtered in raster scan
order. Filtering is applied to each edge of all the 4x4
luma and chroma blocks in a MB. The 4x4 luma and
chroma blocks in a MB are shown in Figure 2. The 4x4
block edges in a MB are filtered in the order specified
in the H.264 standard [3]. First, the vertical edges in
the MB are filtered in the order a, b, c, d, i and j. Then,
the horizontal edges in the MB are filtered in the order
h, g, f, e, l and k.

The deblocking filter algorithm for an edge is
shown in Figure 3 [3, 4]. This figure clearly shows the
adaptive nature of the deblocking filter algorithm.
There are several conditions that determine whether a
4x4 block edge will be filtered or not. There are

Figure 2 4x4 Blocks in a MB

additional conditions that determine the strength of the
filtering for the 4x4 block edges that will be filtered.
As shown in the figure, boundary strength (BS)
parameter, α and β threshold values and the values of
the pixels in the edge determine the outcomes of these
conditions, and the values of up to 3 pixels on both
sides of an edge can be changed depending on the
outcomes of these conditions.

The deblocking filter algorithm is adaptive in three
levels; slice level, edge level and sample level [3, 4].
Slice level adaptivity is used to adjust the filtering
strength in a slice to the characteristics of the slice
data. The filtering strength in a slice is adjusted by
encoder using the offset-a and offset-b parameters. The
α and β threshold values that determine whether a 4x4
block edge will be filtered or not and how strong the
filtering will be for an edge are a function of
quantization parameter (QP) and these two offset
parameters.

Edge level adaptivity is used to adjust the filtering
strength for an edge to the characteristics of that edge.
The filtering strength for an edge is adjusted using the
BS parameter. Every edge is assigned a BS value
depending on the coding modes and conditions of the
4x4 blocks. The conditions used for determining the
BS value for an edge between two neighboring 4x4
blocks are summarized in Table 1 [3, 4]. The strength
of the filtering done for an edge is proportional to its
BS value. No filtering is done for the edges with a BS
value of 0, whereas strongest filtering is done for the
edges with a BS value of 4.

Sample level adaptivity is used to adjust the
filtering strength for an edge to the characteristics of
the pixels in that edge in order to distinguish the true
edges from those created by quantization. The filtering
strength for an edge is therefore determined by
comparing pixel gradients in that edge with α and β
threshold values for that edge.

Figure 3 H.264 Deblocking Filter Algorithm

Table 1 Conditions for Determining BS Value

Coding modes and conditions BS value
One of the blocks is intra and the edge is a

macroblock edge 4

One of the blocks is intra 3
One of the blocks has coded residuals 2

Difference of block motion ≥ 1 luma sample
distance 1

Motion compensation from different
reference frames 1

Else 0

3. Proposed Hardware Architecture

The proposed DBF architecture is shown in Figure
4. It includes a datapath, a control unit, an address
generator, one 384x8 register file and two dual port
internal SRAMs to store partially filtered pixels. There
is also an input buffer to store the pixels that will be
filtered and an output buffer to store the filtered pixels.

In a complete H.264 video encoder, the input buffer
is loaded with the reconstructed MB generated by the
inverse transform and quantization hardware. The
inverse transform and quantization hardware generates
the reconstructed MB one 4x4 block at a time [8]. In
order for the DBF hardware start filtering the available
edges as soon as a new 4x4 block is ready, we
proposed a novel filtering order which is shown in
Figure 5. This filtering order allows overlapping the
execution of the inverse transform and quantization
hardware and the DBF hardware, and this improves the
encoder throughput. This filtering order produces the
same results as the filtering order specified in the
H.264 standard [3].

In a complete H.264 video encoder, the filtered
MBs generated by the DBF hardware form a reference
frame which is used for motion compensated
prediction of future frames. Since the pixels in a
reference frame have to be stored in raster scan order,
DBF hardware transfers the pixels in a filtered MB
from the output buffer to reference frame memory in
raster scan order.

Figure 4 DBF Hardware Block Diagram

Figure 5 Proposed Filtering Order for Luma

and Chroma Blocks

The DBF datapath is shown in Figure 6. It is
implemented as a two stage pipeline to improve the
clock frequency and throughput. The first pipeline
stage includes one 12-bit adder and two shifters to
perform numerical calculations like multiplication and
addition. The second pipeline stage includes one 12-bit
comparator, several two’s complementers and
multiplexers to determine conditional branch results.

As the DBF algorithm is highly adaptive, the
control unit and address generator designs are quite
complex. The address generator is implemented as a
two stage pipeline to improve the clock frequency.
Since the DBF algorithm includes several conditional
branches, control unit sometimes has to wait for a
branch outcome to continue its execution. In order to
avoid datapath pipeline stalls, pre-computation
calculations that are independent of these branch
outcomes are executed in these cycles.

Figure 6 DBF Datapath

Since each 4x4 block in a MB has 4 edges, a pixel
in a 4x4 block may be read or updated four times
before the 4x4 block is filtered completely. Since the
partially filtered pixels of a MB (256 luma and 128
chroma pixels) are accessed quite frequently during the
filtering process of that MB, in order to reduce the
power consumption, we used a 384x8 register file for
storing them instead of using a large internal SRAM.

The organization of the luminance and chrominance
components of the MBs in a CIF frame is shown in
Figure 7. During the filtering process of a MB, the
bottom edges of the 4x4 blocks in the last row of the
MB (blocks 10, 11, 14 and 15 of the luminance
component, and blocks 2 and 3 of the chrominance Cb
and Cr components) cannot be filtered, because the
lower neighboring reconstructed MB is not yet
generated by the inverse transform and quantization
hardware. Therefore, until the lower neighboring
reconstructed MBs become available for filtering, the
partially filtered pixels in the luminance components of
all the MBs in one row of the frame are stored in one
internal dual port SRAM and the partially filtered
pixels in the chrominance components of all the MBs
in the same row of the frame are stored in another
internal dual port SRAM.

 (a) Luma (b) Chroma Cb and Cr

Figure 7 Macroblocks in a CIF Frame

Similarly, during the filtering process of a MB, the

right edges of the 4x4 blocks in the last column of the
MB (blocks 5, 7, 13 and 15 of the luminance
component, and blocks 1 and 3 of the chrominance Cb
and Cr components) cannot be filtered, because the
right neighboring reconstructed MB is not yet
generated by the inverse transform and quantization
hardware. Therefore, until the right neighboring
reconstructed MB becomes available for filtering, the
partially filtered pixels in the luminance and
chrominance components of the current MB are stored
in the same 384x8 register file which is used for
storing the partially filtered pixels in a MB during the
filtering process of that MB.

4. Implementation Results

The proposed architecture is implemented in
Verilog HDL. The implementation is verified with
RTL simulations using Mentor Graphics ModelSim
SE. The Verilog RTL is then synthesized to a
2V8000ff1157 Xilinx Virtex II FPGA with speed
grade 5 using Mentor Graphics Leonardo Spectrum.
The resulting netlist is placed and routed to the same
FPGA using Xilinx ISE Series 7.1i. The FPGA
implementation is verified to work in a Xilinx Virtex II
FPGA on an Arm Versatile Platform development
board.

The FPGA implementation including input and
output register files as well is placed and routed at 72
MHz under worst-case PVT conditions. It takes 6144
clock cycles in the worst-case to process a MB. The
FPGA implementation can process a CIF frame in 33.8
msec. (396 MB * 6144 clock cycles per MB * 13.9 ns
clock cycle = 33.8 msec) Therefore, it can process
1000/33.8 = 30 CIF frames (352x288) per second.

The FPGA implementation including input and
output register files as well used the following FPGA
resources; 3909 Function Generators, 1955 CLB
Slices, 313 DFFs, and 2 Block RAMs, i.e. 4.19% of
Function Generators, 4.20% of CLB Slices, 0.32% of
DFFs, and 1.19% of Block RAMs.

5. Conclusion

In this paper, we presented an efficient hardware
architecture for real-time implementation of H.264
adaptive deblocking filter algorithm. This hardware is
designed to be used as part of a complete H.264 video
coding system for portable applications. The proposed
architecture is implemented in Verilog HDL. The
Verilog RTL code is verified to work at 72 MHz in a
Xilinx Virtex II FPGA. The FPGA implementation can
code 30 CIF frames (352x288) per second.

References

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A.
Luthra “Overview of the H.264/AVC Video Coding
Standard”, IEEE Trans. on Circuits and Systems for Video
Technology vol. 13, no. 7, pp. 560–576, July 2003
[2] I. Richardson, H.264 and MPEG-4 Video Compression,
Wiley, 2003
[3] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC
MPEG, Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification, ITU-T
Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003
[4] Peter List, Anthony Joch, Jani Lainema, Gisle
Bj0ntegaard, and Marta Karczewicz, "Adaptive Deblocking
Filter", IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 13, pp.614-619, 2003
[5] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro,
"H.264/AVC baseline profile decoder complexity analysis",
IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, 715-727, 2003
[6] Yu -Wen Huang, To-Wei Chen, Bing-Yu Hsieh, Tu-
Chih Wang, Te-Hao Chang, and Liang-Gee Chen,
"Architecture Design for Deblocking Filter in
H.264/JVT/AVC", Proc. IEEE Conf. on Multimedia and
Expo, pp. 693-696, 2003
[7] Bin Sheng, Wen Gao and Di Wu, "An Implemented
Architecture of Deblocking Filter for H.264/AVC", IEEE
International Conference on Image Processing (ICIP'04),
Vol.1, 24-27, pp. 665-668, October 2004
[8] Ozgur Tasdizen and Ilker Hamzaoglu, "A High
Performance and Low Cost Hardware Architecture for
H.264 Transform and Quantization Algorithms", Proc.
European Signal Processing Conference, September 2005

