v

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by Sabanci University Research Database

Analytical Stability Models for
Turning and Boring Oper ations

Emre Ozu, Erhan Budak*
Sabanci University, Faculty of Engineering and Nati8eiences, Orhanli, Tuzla
34956, Istanbul, Turkey,
* Corresponding Author: ebudak@sabanciuniv.edu

Abstract: In this paper an analytical model for stability limregdictions in turning and
boring operations is proposed. The multi-dimensional moaéldes the 3D geometry
of the processes. In addition a model for the chigktieéss at the insert nose radius is
also proposed to observe the effect of the insert rmabes on the chatter stability limit.
Chatter experiments are conducted for both turnimgbaming in order to compare with
analytical results and good agreement is observed.
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1. INTRODUCTION

Chatter has been one of the most important problemmetal cutting operations due to
the poor surface quality it leaves on the surface hagtd cutting forces resulting in low
dimensional quality. The self excited chatter vibmagichave been studied by many
researchers in the last half a century. The early faoksed on the “micro” aspects of
dynamic cutting process more, such as force coefficiprisess damping etc., whereas
“macro” aspects, such as effect of machine tool dynamibsation modes etc., were
considered in later works. The modeling of chatterikalstarted with analysis of
orthogonal cutting where a very simple process moded eansidered in order to
understand its fundamental mechanisms (Tlusty, 1958; 3otk263). The approach
proposed by Tlusty, which is still used widely, redudes multi-dimensional dynamic
system in 1D by resolving and orientating the procesgamijcs in one direction using a
simplified orthogonal cutting model and tool geometReducing a 2D or multi-D
cutting system, which can only be accurately represeas an eigenvalue problem, into
a single algebraic equation would result in inaceustability predictions as presented
in several works. Later, the stability of other pssss such as milling, where the
process geometry and the system dynamics are more com@exalgo investigated
(Minis et al., 1993, Budak et al., 1998, Altintasakt 1995). The multi-dimensional
approach suggested by Minis et al. (1993) and Budak €1998) eliminate the errors
due to 1D approximation, which is applied for anatistability predictions in milling
operations. In addition to the analytical models, wite advent of the computers,
numerical models have also been used heavily for stahkalitalysis of chatter
vibrations.
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Although turning is one of the most common machining ggees, and is usually
considered as a simple case for chatter stability, oneotdind a analytical stability
model in the literature which considers the correotspts and the geometry of the
process. The orthogonal or similar simplified stability eledare approximations which
may Yield erroneous results as they do not considgpratical aspects of the process
such as tool angles and cutting tool nose radius. Inobriee works, Kuster (1990)
developed a model for the dynamic chip thickness imbanalytically, and use cross-
coupling terms in order to reflect the effect of defation at one direction on the other.
However, Kuster used an oriented approach, i.edonensional, to model the dynamic
system. Later, Rao et al. (1999) used Budak’s mulégetional approach (Budak et al.,
1998) to model the stability in turning, and calceththe dynamic chip area using a
cross coupling term, which includes the effect of uibres in one direction on the chip
area in the other direction. Clancy et al. (200@&Jel tool wear and process damping
modeling to the study above. However, in these stuie<ioss coupling term made
the modeling complicated, solution is made numericallyar@iramani et al. (2006)
employed a multi-dimensional approach to model the rigrndynamic system,
however, the turning geometry was over simplified, #imel stability solution was
obtained numerically. (Lazoglu et al.,, 2002) andafey et al., 2003) proposed an
analytical model for force prediction in boring, anding time domain numerical
solutions they predicted the chatter vibrations andutabed workpiece topography.

In this paper, a multi-dimensional stability model is msgd for stability analysis
of turning and boring processes. Three dimensionaingey of the process is
considered by including the tool angles as well astiing insert nose radius into the
model. The paper is organized as follows. The basic lisgalbnodel for turning
operations and the procedure to obtain stabilitg$al presented first. On the following
section, the stability model for boring operations udahg the nose radius effect is
derived in detail. The analytical results then comghavith experiment results at the last
section before conclusions.

2. STABILITY MODEL FOR TURNING

In this section the stability model for turning opesas that includes the cutting
geometry and transfer functions of the workpiece tlwedcutting tool is proposed. The
model is formulated in detail which excludes the effettthe nose radius and is
acceptable for rough turning operations with inseagryg relatively small radii. This
basic modeling is also a basis for boring stability modlee turning stability model
that includes the insert nose radius effect can beadfoudetail in (Ozlu et al., 2006).

In order to determine the stable cutting conditions tiarning operations, a
relationship between the dynamic chip thickness anmdamyc turning forces must be
established as a starting point. Figures 1.a andHoty different views of a turning
process and insert where the depth ofl;ubhe chip thicknesh, and cutting angleg



(the normal rake angle),(the inclination angleandc (side edge cutting angle) define
the geometry of the process. The latter two anglesmassured on the rake face. Since
the dynamic displacements zxdirection do not affect the dynamic chip thicknessyt
can be neglected in the formulation. Then, the naaddl chip thickness in terms of
lathe coordinates(y) can be written as follows.

ha(t)= fcosc+ (X +x4 —x° = x%)cosc+ [~y = y4 +y° +yS)sinc (1)

where, f represents the feed per revolutigr," ,x,") and (y¢', y') are the cutter and
workpiece dynamic displacements for the currenspesspectively, an@k’ ,x,”) and
(v, w) are the cutter and workpiece dynamic displacenfentthe previous pass
andy directions, respectively. The feed term in Equatlorepresents the static part of
the chip thickness which does not contribute torégeneration mechanism. Therefore,
it can be ignored for the purpose of stability ge&. Hence, the dynamic chip
thickness in turning can be defined as follows.

h(t) = Axcosc — Aysinc )
where

Ax=xt+x, —x%-x°

DY =Y+ Yy~ Ye ~Ya
ris the delay term which is equal to one spindi®lion period in seconds.

®3)

\ Workpicee\/  y(Zed)

/},,/ ‘ /h \\ 1*(]'(/‘(('[({/) Rake Face
( T | /% i “ g3 K:(cu///'ng)
~lc, \ Insert culling e I X s o e
24 ) G5 Hfeed) ~ yradial) Xeed) - S V(radial)
(a) (b) (©)

Figure 1 ; Schematic description of (a) chip thieks, (b) cutting angles , and (c)
turning forces in turning.

Equations (1-4) and the cutting force coefficientsn be used to express the
relationship between the dynamic chip thicknegténlathe coordinates as follows.

F, b |-cosc sinc | K, . 1[AX
=— . [cosc —smc] 4)
F,| cosc| sinc cosc| K, Ay
It should be noted here that the cutting force foa@ehts K; andK, can be directly
obtained from calibration tests, as well as usihg mechanics of cutting method
proposed by Armarego et al. (1985) and Budak €18P6). The stability limit solution

of Equation 4 can be found in detail in (Budak let1898) and in (Ozlu et al. 2006).
Basically, the solution results in the following s& equations,



Bim :_%/\R(l-'-/(z) (5)

K:i: sinw.T (6)
Ng 1-cosw.r

E=n-2Y, Y =tank (7)

w.r=&+2km, n=60/1 (8)

where, bi, is the stability limit,/ is the eigenvalue of the dynamic systesris the
phase difference between the inner and outer modulakamsn integer corresponding

to the number of waves in a period, ani$ the spindle speed in rpm. The stable depth
of cut of the system can be obtained using Equation 5 for differetiecfr@quencies
around the most flexible structural mode. Then, the corresponding spindle cpedxs
determined from Equation 8 for different lobes, kel,2,3..etc. Thus, the stability
diagram of the dynamic system can be obtained by plotting thke stepth of cut vs.

the corresponding spindle speeds for different lobes (Budak et al. 1998; Altintas 2000).

3. STABILITY MODEL FOR BORING PROCESS

The stability model for boring operations is similar to the turropgrations except a
few differences. Firstly, since the stable depth of cuts imgare comparable to the
insert nose radius, the effect of insert nose radius becomesalc®&econdly, the boring
process coordinates are different which results in modificatiothefdynamic chip
thickness relationship (see Figure 2.a). Thus, in order to forenthlatstability in boring
operations, an insert nose model is proposed. Then, a similar procedoliewed in
order to obtain the dynamic system equations. It is also showthéhatability limit for
boring operations reduces to a 1D equation even including the nose radius effect.

3.1. Insert Nose M odel
In order to model the insert nose, 2D trapezoidal elements adetauseesh the chip
thickness (Figure 2.b). Each element is defined by its hbigktde edge lengthy; and
angular orientatio® as follows (Figure 2.c).

be = bnose/n H

_ I=1,...,n 9)
Bhose =1 —FSINC
by =b,/cosd i=1,...,n (10)

9 :E—tan'l(m] i=1,...,n (11)
2 ns



i-1

S:\/rz_(r—i—n(r—rsim)j ->.s; i=l..,n and &0 (12)

j=1

wherer is the nose radius.
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Figure 2; (a) Schematic description of chip thicke@nd lathe coordinates in boring,
(b) meshing of the chip thickness by trapezoidahents, (c)defining parameters of an
element and cutting forces acting on it.

In this modeln+1° element represents the straight cutting edgeeoirtbert. As it
can be seen from Figure 2.a, its angular oriemaoequal to the side edge cutting

angle, i.eg,,, =c.

It should be noted here that the element heightsadldnave to be equal, although
equal heights bring smoother mesh and faster saoludigorithm. By usingd, the
dynamic chip thickness for th& element, similar to the turning case, can be defias
follows (Figure 2.c).

h, (t) = Axcosf, +Aysing; (13)

3.2. Stability Limit Solution for Stable Depth of Cuts Higher Than the
Nose Radius
In order to model the dynamic system'’s stabilibg telationship between the dynamic
boring forces and the dynamic chip thickness isneéef Then, the problem is reduced
to a 1D eigenvalue problem by the help of a reducaadsfer function matrix, and is
solved analytically.



Similar to the turning model, the relationship beé&n the dynamic forces and the
chip thickness in lathe coordinates can be wrigtefollows:

F. AX _
{ ' }: b, [AJ. ]{ } i=1,2,...,n+1 (14)
ij Ay
where,
bJ:be j:1,2,...,n
bi=bm j=n+1

and [A]’s are the directional coefficient matrices white defined for each element as

follows.

A, A cosd;, sind | K

LN E A S e 1| 1 [cosd, Icoss, sing, Icosd,]  (15)
Ao Ay -sing, cosd, | K,

Note that in Equation 14 the dynamic displacemeftsand 4y are the total
dynamic displacement of the insert in cut, andlmadefined as follows

I i S

where the transfer function matriG(ia)] is assumed to include only the transfer
function iny-direction, because at almost all of the boringrapens the tool and the
workpiece is much more rigid at tiedirection. Therefore, the transfer function matrix
IS given as,

[Gliea.)] = B ﬂ (17)

Substituting Equation 16 into Equation 14 the dyitaetemental force for th¢
element can be obtained as follows.

n+l

[F e« =b [i-e" A [Gliw )];[Fp]e‘wct (18)

As it can be seen from the above equation there@se(n+1) equations to solve.
The first (n) equations that models the nose raldave the same depth of dit which
is known. However the last equation that modelsstreght edge, has the depth of cut
bm Which is to be solved for stability. Adding up thle equations we get,

n+l

Sk =b-e fulal-nSla eIl b a9

Let define matrix €] as follows.



c]=| & Clz}:(e"“‘“—llB] (20)

_CZl C22
where,
B, B n

= 0 5 |=nalen 3l @
The solution of Equation 19 is possible if and afiys determinant is equal to 0.

def[i]+[c]G(iw )] =0 (22)
Solution of Equation 22 results in the following,

C,=-1g, (23)

Letting Co2 be A and rewriting Equation 19 the below is obtained:

n+l n+l

it — it
Z F,,e“ = /\goyyz Fo,€ (24)
p=1 p=1

Now the problem reduces to a 1D eigenvalue probémd, Equation 20 reduces to the
following.

A=[g"e -1B,, (25)
A2, can also be calculated from Equation 15 as follows
A, = (— sing, +cosf,K, )tané?j (26)

And at the chatter frequen8g, should reach to its stability limit as follows.
Ag +il\,
cosw.T —isinw.r -1

BZinm -

(27)

SinceByaim should be a real number, the imaginary part ofagn 27 has to vanish
yielding,

Bo2iim :_%/\R(1+K2) (28)

where, « is defined in Equation 6 which then results in &tpns 7 and 8 in order to
obtain a relationship between the chatter frequemay spindle speed. Substituting
Equation 28 into Equation 21 the following is obtd,

n

1
bm,|im = _E/\R(1+K2)_bezAp22:|/A‘n22 (29)
=1

p



Note thatbmim is the limiting stable depth of cut for only thigasght edge. Thus, the
stable depth of cut of the dynamic system can be obtained by adding up the rest of
the insert in cut as follows:

Bim = Brim N0

lim m,lim e

(30)

Once the stability limit is obtained, the stabiliobes can be derived using the method
described in section 2.

3.3. Stability Limit Solution for Stable Depth of Cuts Smaller Than the
Nose Radius
The solution method presented in Section 3.2.98 applicable for the case where the
stable depth of cut of the dynamic system is inglt® nose section of the insert.
However, a step by step search is needed, i.em#tbod presented above should be
applied for each element incrementally until ingigbis obtained. For instance, at the

j™ element Equation 29 takes the following form:

p=1

1 1
bj,lim = _E/\R(1+K2)_bezAp22:|/Aj22 (31)

If the elemental stable depth of duif, is smaller thaie, the solution is obtained,
otherwise the solution is continued with thel()* element. Again, once the stability
limit is obtained, the stability lobes can be dedvusing the method presented in
section 2.

4. EXPERIMENTS

Chatter tests were conducted in order to obtain absolute stability limit of the
dynamic system, in both turning and boring operaiolrhe stability lobes in turning
and boring operations are very narrow compare ttingistability lobes due to the
lower spindle speeds and single cutting tooth. Thuoky the absolute stability limits are
considered in the experiments.

A conventional manual lathe is used in the expamnisiewhich allows for specific
spindle speeds, i.e. 700, 1000, 1400 rpm. A maoeit setup is used to measure the
transfer functions of the workpiece and the tooeladldition, a frequency measurement
setup was prepared in order to measure the cliegtgrency. In all experiments, coated
carbide triangular inserts having zero rake anggeused. The desired inclination and
rake angles are provided using the ground insatss&he side edge cutting angle in
the turning experiments is obtained by rotating tib@ holder from its clamped end.
The workpiece material was AISI 1040 steel, andaisting orthogonal database was
used for the cutting force coefficients. A feederat 0.08 mm/rev is used for all tests.



4.1. Turning Chatter Experiments
In turning chatter experiments main aim was tofyetiie proposed stability model.
Therefore, the analytically derived stability diagr is compared with experiments for
the case where the workpiece is the most flexiblapmonent of the dynamic system.
The workpiece diameter was 39 mm and the length@Basm. The modal parameters
of the workpiece are measured as natural frequeh@y0 Hz, damping of 0.025, and
stiffness of 6.6x1DN/m. A 0.4 mm nose-radius insert with 5° of rake,inclination
(provided by the insert seats) and 30 ° of sideeetigiting angle is used during the
experiments. Cutting coefficients valueskagf1240 MPa an&K,=44 MPa are used in
the simulations. In the analytical calculatioriloé stability lobes the insert nose is also
taken into account. The method used is based ostétity model presented in this
paper with an additional solution procedure thatudes nose radius effect which can
be found in detail at (Ozlu et al. 2006).
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Figure 3; Turning chatter experiment results vs. analytically solved stalobss,
where “J’ represents stable cut,¢” represents chatter, and “—* is the analytical
solution. And cut surface of a stable and unstable cut.

The result of the experiments and analytically =i stability limit diagram can
be found in Figure 3. The difference at 700 and0188m’'s can be due to process
damping. The predicted stability limit and expenta results show reasonable
agreement.
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Figure 4; FFT of the chatter sound measured for 1.2 mm depth of cut at 1000 rpm.
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An example of a finished surface of stable andabistcut for the tests conducted
in 1400 rpm can also be seen in Figure 3. Anotheer W identify the unstable cut is to
measure the sound data. An example of a measumdteicisound can be found in
Figure 4.

4.2. Boring Chatter Experiments
The main objective of the boring chatter experimastto obtain the absolute stability
limit for different nose radiuses; 0.4, 0.8 and i in this case. In boring chatter
experiments, the boring tool is selected to be nfleseble than the workpiece, as it is
the most common problem in practice. All the cygftangles are selected to be 0°. The
tool is clamped by a tool radius/length ratio & il order to obtain measurable stable
depth of cuts. The modal parameters of the borargabe measured as follows: natural
frequency of 3690 Hz, damping of 0.012 and stiffnes 2.3x16 N/m. Cutting
coefficients values df;=1400 MPa an&,=0 MPa are used in the simulations.

The absolute stable depth-of-cuts are also obtaamedytically by the model in
section 3. 20, 30 and 40 elements are used foOB4and 1.2 mm insert nose radiuses,
respectively.
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Figure 5; Boring chatter experiment results vs. analytically calculated absoalikest
depth of cuts for inserts having different nose radiuses, wh@&reepresents stable cut,
“ " represents chatter and “—*" is the analytical solution. And cut surface of a stable
and unstable cut
The analytically derived absolute stability limits. experimental results for
inserts having 0.4, 0.8 and 1.2 mm nose radiudeaseen in Figure 5. The analytically
calculated absolute stability limit for the ins@eving 0.4 mm nose radius is around 8
mm. However, during the tests it was decided tp stoa depth of cut of 1mm in order
to avoid high cutting forces and consequently ldgformation that the slender boring
bar will face, which is also appropriate for a piead case. For other inserts having 0.8
and 1.2 mm nose radius, the results are satisfadt@whould also be noted here that the



trend of the absolute stability limit within inserbse radius is as expected. Increase in
the nose radius has the same effect as the incireasgée edge cutting angle, i.e. the
increase in the nose radius, increases the effetwotis flexibility on the dynamic
system which reduces the absolute stability limit.

An example of a finished surface of stable andabistcut for the boring tests
conducted in 1400 rpm can also be seen in Figure &ddition, an example of a
measured chatter sound can be found in Figure 6.
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Figure 6; FFT of the chatter sound measured for insert having 0.8 mm nose radius and
at a 0.4 mm depth of cut with 1000 rpm spindle speed.

5. CONCLUSIONS

A multi-dimensional stability model which analytilyapredicts the stability limit in
turning and boring operations is proposed in thislys Another model that meshes the
dynamic chip thickness into many elements thatshadpinclude the effect of the nose
radius on the stability is also proposed. Combirboth models, an analytical stability
solution for boring processes in a 1D form is dedivChatter experiments in turning
verify the analytical model. The analytical boristpbility model is compared with
boring chatter experiments by various insert naadiuses, and a reasonably good
agreement is observed.
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