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Abstract: In this paper an analytical model for stability limit predictions in turning and 
boring operations is proposed. The multi-dimensional model includes the 3D geometry 
of the processes. In addition a model for the chip thickness at the insert nose radius is 
also proposed to observe the effect of the insert nose radius on the chatter stability limit. 
Chatter experiments are conducted for both turning and boring in order to compare with 
analytical results and good agreement is observed. 
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1. INTRODUCTION 

Chatter has been one of the most important problems in metal cutting operations due to 
the poor surface quality it leaves on the surface, and high cutting forces resulting in low 
dimensional quality. The self excited chatter vibrations have been studied by many 
researchers in the last half a century. The early work focused on the “micro” aspects of 
dynamic cutting process more, such as force coefficients, process damping etc., whereas 
“macro” aspects, such as effect of machine tool dynamics, vibration modes etc., were 
considered in later works. The modeling of chatter stability started with analysis of 
orthogonal cutting where a very simple process model was considered in order to 
understand its fundamental mechanisms (Tlusty, 1958; Tobias, 1963). The approach 
proposed by Tlusty, which is still used widely, reduces the multi-dimensional dynamic 
system in 1D by resolving and orientating the process dynamics in one direction using a 
simplified orthogonal cutting model and tool geometry. Reducing a 2D or multi-D 
cutting system, which can only be accurately represented as an eigenvalue problem, into 
a single algebraic equation would result in inaccurate stability predictions as presented 
in several works.  Later, the stability of other processes such as milling, where the 
process geometry and the system dynamics are more complex, were also investigated 
(Minis et al., 1993, Budak et al., 1998, Altintas et al., 1995). The multi-dimensional 
approach suggested by Minis et al. (1993) and Budak et al. (1998) eliminate the errors 
due to 1D approximation, which is applied for analytical stability predictions in milling 
operations. In addition to the analytical models, with the advent of the computers, 
numerical models have also been used heavily for stability analysis of chatter 
vibrations.  
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Although turning is one of the most common machining processes, and is usually 
considered as a simple case for chatter stability, one cannot find a analytical stability 
model in the literature which considers the correct physics and the geometry of the 
process. The orthogonal or similar simplified stability models are approximations which 
may yield erroneous results as they do not consider the practical aspects of the process 
such as tool angles and cutting tool nose radius. In one of the works, Kuster (1990) 
developed a model for the dynamic chip thickness in boring analytically, and use cross-
coupling terms in order to reflect the effect of deformation at one direction on the other. 
However, Kuster used an oriented approach, i.e. one dimensional, to model the dynamic 
system. Later, Rao et al. (1999) used Budak’s multi-directional approach (Budak et al., 
1998) to model the stability in turning, and calculated the dynamic chip area using a 
cross coupling term, which includes the effect of vibrations in one direction on the chip 
area in the other direction. Clancy et al. (2002) added tool wear and process damping 
modeling to the study above. However, in these studies the cross coupling term made 
the modeling complicated, solution is made numerically. Chandiramani et al. (2006) 
employed a multi-dimensional approach to model the turning dynamic system, 
however, the turning geometry was over simplified, and the stability solution was 
obtained numerically.  (Lazoglu et al., 2002) and (Atabey et al., 2003) proposed an 
analytical model for force prediction in boring, and using time domain numerical 
solutions they predicted the chatter vibrations and modulated workpiece topography. 

 
In this paper, a multi-dimensional stability model is proposed for stability analysis 

of turning and boring processes. Three dimensional geometry of the process is 
considered by including the tool angles as well as the cutting insert nose radius into the 
model. The paper is organized as follows. The basic stability model for turning 
operations and the procedure to obtain stability lobes is presented first. On the following 
section, the stability model for boring operations including the nose radius effect is 
derived in detail. The analytical results then compared with experiment results at the last 
section before conclusions.     

2. STABILITY MODEL FOR TURNING 

In this section the stability model for turning operations that includes the cutting 
geometry and transfer functions of the workpiece and the cutting tool is proposed. The 
model is formulated in detail which excludes the effect of the nose radius and is 
acceptable for rough turning operations with inserts having relatively small radii. This 
basic modeling is also a basis for boring stability model. The turning stability model 
that includes the insert nose radius effect can be found in detail in (Ozlu et al., 2006). 
   

In order to determine the stable cutting conditions for turning operations, a 
relationship between the dynamic chip thickness and dynamic turning forces must be 
established as a starting point.  Figures 1.a and 1.b show different views of a turning 
process and insert where the depth of cut b, the chip thickness h, and cutting angles α 



(the normal rake angle), i (the inclination angle) and c (side edge cutting angle) define 
the geometry of the process. The latter two angles are measured on the rake face. Since 
the dynamic displacements in z-direction do not affect the dynamic chip thickness they 
can be neglected in the formulation.  Then, the modulated chip thickness in terms of 
lathe coordinates (x, y) can be written as follows. 

( ) ( ) +−−++= cxxxxcfth wcwcm coscos 0011 ( ) cyyyy wcwc sin0011 ++−−  (1) 

where, f represents the feed per revolution, (xc
1 ,xw

1) and (yc
1, yw

1) are the cutter and 
workpiece dynamic displacements for the current pass, respectively, and (xc

0 ,xw
0) and 

(yc
0, yw

0) are the cutter and workpiece dynamic displacements for the previous pass in x 
and y directions, respectively. The feed term in Equation 1 represents the static part of 
the chip thickness which does not contribute to the regeneration mechanism. Therefore, 
it can be ignored for the purpose of stability analysis. Hence, the dynamic chip 
thickness in turning can be defined as follows. 

( ) cycxth sincos ∆−∆=        (2) 

where  

0011

0011

wcwc

wcwc

yyyyy

xxxxx

−−+=∆

−−+=∆
       (3) 

τ is the delay term which is equal to one spindle revolution period in seconds.  

 

       (a)          (b)        (c) 

Figure 1 ; Schematic description of (a) chip thickness, (b) cutting angles , and (c) 
turning forces in turning. 

Equations (1-4) and the cutting force coefficients can be used to express the 
relationship between the dynamic chip thickness in the lathe coordinates as follows. 
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It should be noted here that the cutting force coefficients Kf and Kr can be directly 
obtained from calibration tests, as well as using the mechanics of cutting method 
proposed by Armarego et al. (1985) and Budak et al. (1996). The stability limit solution 
of Equation 4 can be found in detail in (Budak et al. 1998) and in (Ozlu et al. 2006). 
Basically, the solution results in the following set of equations, 
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where, blim is the stability limit, Λ is the eigenvalue of the dynamic system, ε is the 
phase difference between the inner and outer modulations, k is an integer corresponding 
to the number of waves in a period, and n is the spindle speed in rpm.  The stable depth 
of cut of the system can be obtained using Equation 5 for different chatter frequencies 
around the most flexible structural mode. Then, the corresponding spindle speeds can be 
determined from Equation 8 for different lobes, i.e. k=1,2,3…etc. Thus, the stability 
diagram of the dynamic system can be obtained by plotting the stable depth of cut vs. 
the corresponding spindle speeds for different lobes (Budak et al. 1998; Altintas 2000).     

3. STABILITY MODEL FOR BORING PROCESS 

The stability model for boring operations is similar to the turning operations except a 
few differences. Firstly, since the stable depth of cuts in boring are comparable to the 
insert nose radius, the effect of insert nose radius becomes critical. Secondly, the boring 
process coordinates are different which results in modification of the dynamic chip 
thickness relationship (see Figure 2.a). Thus, in order to formulate the stability in boring 
operations, an insert nose model is proposed. Then, a similar procedure is followed in 
order to obtain the dynamic system equations. It is also shown that the stability limit for 
boring operations reduces to a 1D equation even including the nose radius effect.  
  

3.1. Insert Nose Model 
In order to model the insert nose, 2D trapezoidal elements are used to mesh the chip 
thickness (Figure 2.b). Each element is defined by its height be, side edge length bdi and 
angular orientation θi as follows (Figure 2.c). 
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where r is the nose radius.  
 

 
(a) 

 
   (b)         (c) 
Figure 2; (a) Schematic description of chip thickness and lathe coordinates in boring, 
(b) meshing of the chip thickness by trapezoidal elements, (c)defining parameters of an 

element and cutting forces acting on it. 

In this model, n+1st element represents the straight cutting edge of the insert. As it 
can be seen from Figure 2.a, its angular orientation is equal to the side edge cutting 
angle, i.e cn =+1θ . 

 
It should be noted here that the element heights do not have to be equal, although 

equal heights bring smoother mesh and faster solution algorithm. By using θi, the 
dynamic chip thickness for the j th element, similar to the turning case, can be defined as 
follows (Figure 2.c). 

( ) jjj yxth θθ sincos ∆+∆=        (13) 

 

3.2. Stability Limit Solution for Stable Depth of Cuts Higher Than the 
Nose Radius 

In order to model the dynamic system’s stability, the relationship between the dynamic 
boring forces and the dynamic chip thickness is defined. Then, the problem is reduced 
to a 1D eigenvalue problem by the help of a reduced transfer function matrix, and is 
solved analytically. 
 



Similar to the turning model, the relationship between the dynamic forces and the 
chip thickness in lathe coordinates can be written as follows: 
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where, 

bj=be                  j=1,2,…,n 

bj=bm   j=n+1  

and [Aj]’s are the directional coefficient matrices which are defined for each element as 
follows.  
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Note that in Equation 14 the dynamic displacements ∆x and ∆y are the total 
dynamic displacement of the insert in cut, and can be defined as follows  
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where the transfer function matrix [G(iωc)] is assumed to include only the transfer 
function in y-direction, because at almost all of the boring operations the tool and the 
workpiece is much more rigid at the x-direction. Therefore, the transfer function matrix 
is given as, 
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Substituting Equation 16 into Equation 14 the dynamic elemental force for the j th 
element can be obtained as follows. 
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As it can be seen from the above equation there are now (n+1) equations to solve. 
The first (n) equations that models the nose radius have the same depth of cut be, which 
is known. However the last equation that models the straight edge, has the depth of cut 
bm which is to be solved for stability.  Adding up all the equations we get, 
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Let define matrix [C] as follows. 
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The solution of Equation 19 is possible if and only if its determinant is equal to 0.  

[ ] [ ] ( )[ ][ ] 0det =+ ciGCI ω        (22) 

Solution of Equation 22 results in the following, 
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Letting C22 be Λ and rewriting Equation 19 the below is obtained: 
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Now the problem reduces to a 1D eigenvalue problem, and Equation 20 reduces to the 
following. 

( ) 221 Be ci −=Λ − τω         (25) 

Aj22 can also be calculated from Equation 15 as follows. 

( ) jrjjj KA θθθ tancossin22 +−=       (26) 

And at the chatter frequency B22 should reach to its stability limit as follows. 
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Since B22lim should be a real number, the imaginary part of Equation 27 has to vanish 
yielding, 
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where, κ is defined in Equation 6 which then results in Equations 7 and 8 in order to 
obtain a relationship between the chatter frequency and spindle speed. Substituting 
Equation 28 into Equation 21 the following is obtained, 
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Note that bm,lim is the limiting stable depth of cut for only the straight edge. Thus, the 
stable depth of cut of the dynamic system blim can be obtained by adding up the rest of 
the insert in cut as follows:  

em nbbb += lim,lim         (30) 

Once the stability limit is obtained, the stability lobes can be derived using the method 
described in section 2. 
  

3.3. Stability Limit Solution for Stable Depth of Cuts Smaller Than the 
Nose Radius 

The solution method presented in Section 3.2. is also applicable for the case where the 
stable depth of cut of the dynamic system is inside the nose section of the insert. 
However, a step by step search is needed, i.e. the method presented above should be 
applied for each element incrementally until instability is obtained. For instance, at the 
j th element Equation 29 takes the following form: 
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If the elemental stable depth of cut bi,lim is smaller than be, the solution is obtained, 
otherwise the solution is continued with the (i+1)st  element. Again, once the stability 
limit is obtained, the stability lobes can be derived using the method presented in 
section 2. 

4. EXPERIMENTS 

Chatter tests were conducted in order to obtain the absolute stability limit of the 
dynamic system, in both turning and boring operations. The stability lobes in turning 
and boring operations are very narrow compare to milling stability lobes due to the 
lower spindle speeds and single cutting tooth. Thus, only the absolute stability limits are 
considered in the experiments.  
  

A conventional manual lathe is used in the experiments, which allows for specific 
spindle speeds, i.e. 700, 1000, 1400 rpm. A modal test setup is used to measure the 
transfer functions of the workpiece and the tool. In addition, a frequency measurement 
setup was prepared in order to measure the chatter frequency.  In all experiments, coated 
carbide triangular inserts having zero rake angle are used. The desired inclination and 
rake angles are provided using the ground insert seats. The side edge cutting angle in 
the turning experiments is obtained by rotating the tool holder from its clamped end. 
The workpiece material was AISI 1040 steel, and an existing orthogonal database was 
used for the cutting force coefficients. A feed rate of 0.08 mm/rev is used for all tests. 



4.1. Turning Chatter Experiments 
In turning chatter experiments main aim was to verify the proposed stability model. 
Therefore, the analytically derived stability diagram is compared with experiments for 
the case where the workpiece is the most flexible component of the dynamic system. 
The workpiece diameter was 39 mm and the length was 75 mm. The modal parameters 
of the workpiece are measured as natural frequency of 770 Hz, damping of 0.025, and 
stiffness of 6.6x106 N/m. A 0.4 mm nose-radius insert with 5° of rake, 5° inclination 
(provided by the insert seats) and 30 ° of side edge cutting angle is used during the 
experiments. Cutting coefficients values of Kt=1240 MPa and Kr=44 MPa are used in 
the simulations.  In the analytical calculation of the stability lobes the insert nose is also 
taken into account. The method used is based on the stability model presented in this 
paper with an additional solution procedure that includes nose radius effect which can 
be found in detail at (Ozlu et al. 2006).  

 
Figure 3; Turning chatter experiment results vs. analytically solved stability lobes, 

where “Ο” represents stable cut, “•” represents chatter, and “—“ is the analytical 
solution. And cut surface of a stable and unstable cut. 

The result of the experiments and analytically derived stability limit diagram can 
be found in Figure 3. The difference at 700 and 1000 rpm’s can be due to process 
damping. The predicted stability limit and experimental results show reasonable 
agreement.    
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Figure 4; FFT of the chatter sound measured for 1.2 mm depth of cut at 1000 rpm. 



An example of a finished surface of stable and unstable cut for the tests conducted 
in 1400 rpm can also be seen in Figure 3. Another way to identify the unstable cut is to 
measure the sound data. An example of a measured chatter sound can be found in 
Figure 4. 

4.2. Boring Chatter Experiments 
The main objective of the boring chatter experiments is to obtain the absolute stability 
limit for different nose radiuses; 0.4, 0.8 and 1.2 mm in this case. In boring chatter 
experiments, the boring tool is selected to be more flexible than the workpiece, as it is 
the most common problem in practice. All the cutting angles are selected to be 0°. The 
tool is clamped by a tool radius/length ratio of 1/3 in order to obtain measurable stable 
depth of cuts. The modal parameters of the boring bar are measured as follows: natural 
frequency of 3690 Hz, damping of 0.012 and stiffness of 2.3x107 N/m. Cutting 
coefficients values of Kt=1400 MPa and Kr=0 MPa are used in the simulations.   
 

The absolute stable depth-of-cuts are also obtained analytically by the model in 
section 3. 20, 30 and 40 elements are used for 0.4, 0.8, and 1.2 mm insert nose radiuses, 
respectively.  
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Figure 5; Boring chatter experiment results vs. analytically calculated absolute stable 

depth of cuts for inserts having different nose radiuses, where “Ο” represents stable cut, 
“ •” represents chatter and “—“ is the analytical solution. And cut surface of a stable 

and unstable cut  
The analytically derived absolute stability limits vs. experimental results for 

inserts having 0.4, 0.8 and 1.2 mm nose radius can be seen in Figure 5. The analytically 
calculated absolute stability limit for the insert having 0.4 mm nose radius is around 8 
mm. However, during the tests it was decided to stop at a depth of cut of 1mm in order 
to avoid high cutting forces and consequently high deformation that the slender boring 
bar will face, which is also appropriate for a practical case. For other inserts having 0.8 
and 1.2 mm nose radius, the results are satisfactory. It should also be noted here that the 



trend of the absolute stability limit within insert nose radius is as expected. Increase in 
the nose radius has the same effect as the increase in side edge cutting angle, i.e. the 
increase in the nose radius, increases the effect of tool’s flexibility on the dynamic 
system which reduces the absolute stability limit.             

 
An example of a finished surface of stable and unstable cut for the boring tests 

conducted in 1400 rpm can also be seen in Figure 5. In addition, an example of a 
measured chatter sound can be found in Figure 6. 
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Figure 6; FFT of the chatter sound measured for insert having 0.8 mm nose radius and 

at a 0.4 mm depth of cut with 1000 rpm spindle speed. 

5. CONCLUSIONS 

A multi-dimensional stability model which analytically predicts the stability limit in 
turning and boring operations is proposed in this study. Another model that meshes the 
dynamic chip thickness into many elements that helps to include the effect of the nose 
radius on the stability is also proposed. Combining both models, an analytical stability 
solution for boring processes in a 1D form is derived. Chatter experiments in turning 
verify the analytical model. The analytical boring stability model is compared with 
boring chatter experiments by various insert nose radiuses, and a reasonably good 
agreement is observed.         
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