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Abstract 
Unstable cutting due to chatter vibrations is one of the most important problems during 
metal cutting operations. Chatter can be a limitation for productivity and surface quality 
in turning operations, especially when long and slender tools and parts are involved. In 
this study, an analytical stability method for turning process is presented. The model 
takes the cutting geometry into consideration, and proposes a new solution procedure 
for the dynamic chip thickness at the insert nose. The analytically calculated absolute 
stable depth of cuts are compared with the chatter test results, and a good agreement is 
observed.  

 
1 INTRODUCTION 
Instability of cutting processes is an important 
problem due to resulting high cutting forces, 
poor surface quality and reduced productivity. 
Although chatter is a more common problem in 
milling operations, it can be a limiting factor in 
some turning operations where slender and 
flexible tools and parts are involved. The ana-
lytical prediction of stability lobes for orthogonal 
cutting is well established, however only a few 
attempts have been made for modeling and 
analysis of turning stability considering the true 
geometry of the process. This study focuses on 
the analytical treatment of the process dynam-
ics, and stability predictions in turning opera-
tions.  
 
The mechanics of instability in cutting proc-
esses was first understood by Tlusty [1] and 
Tobias [2]. They observed that the modulated 
chip thickness due to vibrations affect cutting 
forces dynamically, which in return increases 
vibration amplitudes yielding a process named 
as the regenerative chatter. They also ob-
served that the depth of cut was the key proc-
ess parameter in the cutting process stability.  
Tlusty [1] analytically showed that for the depth 
of cuts higher than the stability limit, the magni-
tude of the dynamic forces and oscillations in-
creases yielding instability, thus chatter vibra-
tions. In his orthogonal stability model, Tlusty 
[1] used an oriented model resolving cutting 
forces and structural dynamics into one direc-
tion, i.e. the chip thickness direction, reducing 
the dynamic problem into a 1-dimensional (1D) 
case. Although this is a valid model for a truly 
1D operation such as plunge turning or straight 
turning without side-cutting-edge angle and 
nose radius, it is not an accurate model for 

many cases where multi dimensional cutting 
and/or dynamics are involved. This is similar to 
the case of vibration analysis of 2 degree-of-
freedom (DOF) system. This system has 2 
natural modes which can be determined by a 
simple 2D eigenvalue analysis. Lumping or re-
solving the system parameters in one direction 
would result in a 1D system, and one natural 
mode which is different than any one of the two 
actual natural frequencies. Thus, reducing the 
true dynamic order of the system results in er-
roneous predictions. Similarly, in dynamic cut-
ting process analysis, reducing a 2D or multi-D 
cutting system, which can only be accurately 
represented as an eigenvalue problem, into a 
single algebraic equation would result in inac-
curate stability predictions. This has been dem-
onstrated in the analysis of milling stability by 
Minis and Yanushevsky [3] and Budak and 
Altintas [4]. Later, Rao et al. [5] used Budak’s 
multi directional approach  [6] to model the sta-
bility in turning, and calculated the dynamic 
chip area with a cross coupling term, which in-
cludes the effect of vibrations in one direction 
on the chip area in the other direction. Clancy 
et al.[7] added wear and process damping 
modeling to the study above. However, in these 
studies cross coupling term made the modeling 
complicated. Atabey et al.[8] and Lazoglu et al. 
[9] proposed an analytical model for force pre-
diction in boring, and using time domain solu-
tions they predicted workpiece topography as 
well. Ozdoganlar and Endres [10] presented an 
analytical chip-area representation for corner-
radiused tools under both depth-of-cut and feed 
variation with a precise but complicated model. 
The studies summarized above (except [7]) 
solved the stability equations in time domain, 
i.e. numerically. 



In this paper, an analytical model for prediction 
of stability limits in turning is proposed. The 
model includes all important parameters of 
turning geometry, i.e. cutting angles and tool 
nose radius, in addition to the tool and work-
piece dynamics. The model proposed is a step 
ahead from the previous studies as it includes 
dynamics of cutter and workpiece in multi direc-
tional form (not oriented in one direction), an 
accurate but practical modeling of tool nose 
radius and dynamic chip thickness, and a sta-
bility limit solution in frequency domain rather 
than time domain simulations.  
 
The paper is organized as follows. First, the 
dynamic cutting model is presented where the 
stability solution procedure is also formulated. 
This procedure is then modified and adapted to 
include the insert nose radius as well. The 
simulations are followed by experimental re-
sults and conclusions.     
�

2 ANALYTICAL MODEL 
In order to study the stability of turning proc-
esses, first the dynamic chip thickness and cut-
ting forces are modeled. Then, the derived dy-
namic equations are solved as an eigenvalue 
problem to obtain the stability limits. The chip 
thickness, h, and cutting angles in turning can 
be seen in Fig.1, where α is the normal rake 
angle, and i and c are the inclination and side 
edge cutting angles, respectively, both meas-
ured on the rake face. 
2.1 Dynamic Chip Thickness and Forces 
In order to formulate the relationship between 
dynamic turning forces and dynamic chip thick-
ness, all components of the dynamic problem 
are transformed into the global coordinate sys-
tem (lathe axes; x, y, and z) which can be seen 
in Figure 1.b. Observing Figure 1.a and 1.b one 
can deduce that the dynamic displacements at 
cutting (z) direction do not affect the dynamic 
chip thickness. By this observation, the dy-
namic problem is reduced to a 2D model. The 
modulated chip thickness resulting from vibra-
tions of the tool and workpiece can be written 
as follows; 

( ) ( ) +−−++= cxxxxcfth wcwcm coscos 0011  
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respectively, and (xc
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for the previous pass in x and y directions, re-
spectively. The feed term in eqn. 1 represents 
the static part of the chip thickness. Since the 
static chip thickness does not contribute to re-
generation mechanism, it can be ignored for 
the purpose of stability analysis. Therefore, the 
dynamic chip thickness in turning can be de-
fined as follows; 
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τ is the delay term which is equal to one spindle 
revolution period in seconds.  

 
(a) 

 
(b) 

Figure 1: (a) Chip thickness in turning, b) 3D 
view of the three cutting angles on the insert. 

Although the dynamic problem can be consid-
ered as 2D, the cutting process is 3D due to the 
existence of the inclination angle. Then, the 
forces at the cutting edge need to be modeled 
by an oblique cutting model [11].The total force 
acting on the cutting edge is divided into three 
components: one parallel to the cutting velocity 
direction, Ft, one perpendicular to the plane 
formed by the cutting velocity or Ft and the cut-
ting edge, Ff, and the last one perpendicular to 
the other two, Fr, (Figure 2).The dynamic cut-
ting forces on the tool can be expressed using 
eqn.2 as follows; 
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where, Kf, and Kr are the corresponding cutting 
force coefficients and b is the depth of cut (Fig-
ure 1.a). Note that Ft is not included in the for-
mulation as it does not take part in the regen-
eration mechanism. However, it is affected by 



the regeneration, and if needed it can be de-
termined using the value of the dynamic chip 
thickness and the force coefficient in the cutting 
speed direction, Kt. These coefficients can be 
directly obtained from calibration tests, or by 
using the method proposed by Armarego et 
al.[12] and Budak et al. [13]. In the latter ap-
proach, the cutting data obtained in orthogonal 
tests are used to determine the force coeffi-
cients using an oblique transformation, and 
thus they include the effects of inclination and 
rake angles. 

 
Figure 2: Three components of the total cutting 

force acting on the insert. 

By coordinate transformation the cutting forces 
can be written in the lathe coordinates as fol-
lows: 
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where, Fx and Fy are the cutting force compo-
nents in x and y directions, respectively. Substi-
tuting eqn. 5 into eqn. 4 we obtain the following 
relationship; 

{ } [ ]{ }dAbF ∆=     (6) 

where { }F is the force vector and { }d∆  is the 

dynamic displacement vector both defined in 
the machine coordinates. The directional coef-
ficients matrix can be expressed as: 

[ ] [ ]c
K

K

cc

cc
A

r

f tan1
cossin

sincos
−�

�

	


�

�
�
�

	


�

�−
=  (7) 

The relationship between the dynamic cutting 
forces and dynamic chip thickness are given by 
eqn. 6. 

2.2 Chatter Stability Limit 
For the stability analysis of the dynamic turning 
process, a procedure similar to the one used by 
Budak and Altintas [4, 15] for the milling stabil-
ity is followed. The response of the cutter and 
the workpiece at the chatter frequency, ωc can 
be expressed as follows; 

( ){ } ( )[ ]{ } ti
cjcj

ceFiGid ωωω =    wcj ,=         (8) 

where {F} represents the dynamic milling force 
and the transfer function matrix is given as, 
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where  Gjxx and Gjyy are the transfer functions in 
x and y directions ,respectively, and Gjxy and 
Gjyx are the cross transfer functions.  The vibra-
tions in the previous pass, at time (t-τ) can be 
defined as follows; 

{ } ( ){ }c
i

j ided c ωτω−=0   wcj ,=          (10) 

By substituting eqn. 8 into eqn. 6, we obtain 

{ } ( )[ ] ( )[ ]{ } τωτωτω ω ccc i
c

ii eFiGAebeF −−= 1       (11) 

The geometry of tool and workpiece in most of 
the turning operations are symmetrical and 
beam like structures, thus for many cases the 
cross transfer functions are negligible. Then,   
the transfer matrix can be further simplified as 
follows: 
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where, Gxx and Gyy are the systems total trans-
fer functions in x and y directions. Eqn.11 has a 
non-trivial solution if and only if its determinant 
is zero, 

[ ] ( )[ ][ ] 0det 0 =Λ+ ciGI ω             (13) 

where,  ( )[ ] [ ] ( )[ ]cc iGAiG ωω =0 ,  and the eigen-

value Λ is given as, 

( )1−=Λ − τωcieb                                            (14) 

The solution of eqn. 13   results in the following: 
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From eqn. 14, on the other hand, the stability 
limit, blim, at a certain chatter frequency can be 
obtained as follows; 
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Since b is a real number, the imaginary part of 
eqn. 16 has to vanish yielding,  
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Eqn. 18 can be used to obtain a relation be-
tween the chatter frequency and the spindle 
speed [4, 14, 15]: 

ψπε 2−= , κψ 1tan−=             (19) 

πετω kc 2+= , τ/60=n                        (20) 

where, ε is the phase difference between the 
inner and outer modulations, k is an integer 
corresponding to the number of waves in a pe-
riod, and n is the spindle speed in rpm.  
The stable depth of cut of the system can be 
obtained from by eqn. 17 for different chatter 
frequencies. These frequencies can be 
searched around the natural frequency of the 
most flexible structural mode of the system. 
Then, the corresponding spindle speeds can be 
determined from eqn. 20 for different lobes, i.e. 
for k=1,2,3…etc. Thus, the stability diagram of 
the dynamic system can be obtained by plotting 
the stable depth of cut vs. the corresponding 
spindle speeds for different lobes [4].     

3 MODELING OF THE DYNAMIC CHIP 
THICKNESS AT THE INSERT NOSE 

In the foregoing analysis, the chip thickness   
and the forces on the straight cutting edge are 
considered only. In practice, however, turning 
processes are conducted using cutting inserts 
with nose radii varying from 0.1 mm to as large 
as 7-8 mm for better finished surface and cut-
ting performance. For stability analysis, when 
the (stable depth of cut /nose radius) ratio in-
creases, the importance of including nose ra-
dius in the model increases as well. In this 
study, the chip area at the nose of the tool and 
at the straight edge is divided into many ele-
ments in modeling of the dynamic chip thick-
ness. The chip area in the nose region is di-
vided into n trapezoids as shown in Figure 3. 
The parameters below are used to describe the 
chip thickness for each element up to element 
n. 
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where be is the element height or elemental 
depth of cut, bdi is the edge length of the trape-

zoid, r is the nose radius and θi is the angle that 
defines the orientation of an element edge. By 
using θi, the dynamic chip thickness for the jth 
element can be defined as follows; 

( ) jjj yxth θθ sincos ∆−∆=             (25) 

 
Figure 3: Division of chip thickness by trapezoi-

dal elements. 

In this model, n+1st element and the following 
elements up to element m are located at the 
straight cutting edge of the insert; therefore 
eqn. 21 and 22 is also valid for these elements. 
But, as it can be seen from Figure 3, their an-
gular orientations are equal to the side edge 
cutting angle: 

ci =θ    i=n+1,n+2,…,m         (26) 

3.1 Procedure for Solution of Stability Limit 
with Elemental Nose Model  

The nose radius alters the dynamic effects of 
tool and workpiece on the stability limit by 
changing the contributions of the tool and 
workpiece transfer functions on the process 
dynamics, similar to the effect of side cutting 
edge angle.  Therefore, the dynamic displace-
ments and dynamic forces acting on all ele-
ments must be considered in the solution. 
Assuming m number of element are in the cut, 
elemental dynamic forces acting on each ele-
ment that is in cut can be written from eqn. 6 as 
follows; 
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where, [Aj]’s are the directional coefficients that 
are defined by eqns. 7 and 23. Note that in eqn. 
27 the dynamic displacements ∆x and ∆y rep-
resent the total dynamic displacement of the 
insert in cut, and can be defined as follows, 
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Thus, the dynamic elemental forces can be 
written by substituting eqn. 28 into 27 as fol-
lows: 
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where, j=1,2,…m. Finally, the total depth of cut 
of the insert can be calculated as b=mxbe.      
Since the dynamic system has now m number 
of degrees of freedom, it can only be solved 
accurately by a simultaneous solution. There-
fore, as Budak et al. [4] applied it for milling sta-
bility, it is proposed to merge the dynamic 
equations into a matrix form which will then be 
reduced to an eigenvalue problem:    

[ ]

[ ]
( )[ ]

[ ]

[ ]
τωτωτω ccc i

ms

s
i

e
i

ms

s

e

F

F

Gebe

F

F

�
�

�
�

�

�
�

�
�

�

−=
�
�

�
�

�

�
�

�
�

�
−

��

1

0

1

1  (30) 

where, s=x, y. [G0] can be considered as the 
elemental oriented transfer function and de-
fined as follows: 
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and the solution is possible if and only if the 
determinant of eqn. 30 is equal to zero. The 
eigenvalue Λ is defined as follows. 

( )τωci
e eb −−=Λ 1            (31) 

As a result of eqn. 31 and 30, the dynamic 
problem is reduced to the same eigenvalue 
problem as discussed in section 2.2. Thus, in 
order to solve the chatter stability limit the same 
procedure can be followed.  
One can notice from eqn. 30 that the solution 
provides the elemental stability limit, belim, which 
is the stability limit for only one element. How-
ever the stability limit for the whole system, blim, 
is needed to determine the stability limit for all 
elements that are in the cut. This limit, can be 
determined by multiplying the elemental stabil-
ity limit with the number of elements, i.e. 
blim=mxbelim. This creates one more unknown, 
m, for eqn. 30. Moreover, blim should be smaller 
than the total depth of cut of all elements in cut, 
b. In order to calculate b, be is needed which 
brings a second unknown. In order to overcome 
the difficulty created by these two unknowns, 

an iterative procedure is proposed. The main 
idea of the iteration is to guess m and be at the 
beginning, and check whether blim is smaller 
than b. If blim is found to be grater than b, then 
the iteration continues by increasing m or de-
creasing be at the next step. It should be noted 
here that, selecting bigger m values or smaller 
be values increases the precision of the solu-
tion. Once the stability limit for the system is 
found, stability diagrams can be constructed 
with the method discussed at section 2.2. 
The main difference of this procedure from the 
method given in section 2.2 is the way the ei-
genvalue is solved. In one element solution the 
eigenvalue can be calculated analytically. 
However, for the multi-element model, as the 
number of elements increases, so does dimen-
sion of the directional coefficient matrix. There-
fore, a numerical solution is needed for the ei-
genvalue of the dynamic system.       
 
4 SIMULATION RESULTS 
The stability formulation explained in the previ-
ous sections has been formulated in order to 
perform simulations, and to illustrate the effects 
of different parameters on turning stability. 
Some of the simulation results will be given in 
this section. The common values used in the 
simulations are listed in Table 1. 

Table 1: Common values used in the simula-
tions. 

Rake angle, α 5° 
Inclination angle, i 5° 
Structural damping coefficient %0.6 
Natural frequencies of tool&w.p 1200 Hz 
Shear Stress at shear plane 600 MPa 
Friction angle 28° 
Shear angle 30° 

4.1 Effect of Tool and Workpiece Stiffness 
and Side Cutting Edge Angle on the Sta-
bility Limit 

In order to observe the effect of tool and work-
piece stiffness and the side cutting angle on the 
absolute stable depth of cut, the proposed sta-
bility model is used for an insert without nose 
radius, for three different side edge cutting an-
gles, c=10°, 30°, and 45°. The stiffness values 
used are summarized in Table 2, and the other 
common data are listed in Table 1. The simula-
tion results can be seen in Figure 5. For higher 
tool stiffness values (left hand side of Figure 5) 
the absolute stable depth of cut is more sensi-
tive to the side edge cutting angle, c. This is 
because of the fact that the angle c increases 
the effect of workpiece (which is more flexible) 



Table 2: The stiffness value trend used in simu-
lations. 

k_ratio kw (N/mm) kt (N/mm) 
0.1 5x104 50x104 
1 5x104 5x104 

10 50x104 5x104 

dynamics on the chip thickness decreasing ab-
solute stability limit. However, as the stiffness 
of the tool decreases, higher side edge cutting 
angles increases the effect of workpiece (which 
is more rigid this time) dynamics on the stabil-
ity, increasing absolute stability limit. As for the 
high workpiece rigidity case the effect of work-
piece dynamics on the stability is minimal, the 
process is less sensitive to side edge cutting 
angle.  
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Figure 5: Variation of babs with tool and work-
piece stiffness for different c values. 

4.2 Effect of Insert Nose Radius 
In order to analyze the effect of insert nose ra-
dius on the absolute stable depth of cut, simu-
lations are conducted with three different nose 
radii, r=0.4, 0.8 and 1.2 mm, for different tool 
and workpiece stiffness values listed in (Table 
2). The side edge cutting angle used in these 
simulations is 0°.  
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The simulation results can be seen in Figure 6. 
As discussed at section 3.1 the nose radius af-
fects the stability in the same way as the side 
edge cutting angle does. This can also be ob-
served from the similarity of Figures 5 and 6. 
On the left hand side of Figure 6, where work-
piece is more flexible, increase in nose radius 
increases the contribution of workpiece dynam-
ics to the stability resulting in reduction of the 

absolute stability limit. On the right hand side of 
Figure 6, where the tool is more flexible, since 
the dynamics of the system is mainly controlled 
by the tool the effect of nose radius is low. 
However, an expected trend is noticeable 
where the increase in nose radius increases 
the contribution of workpiece dynamics, which 
is more rigid in this case, into stability increas-
ing absolute stable depth of cut.         

5 EXPERIMENTS 
In order to verify the presented analytical stabil-
ity model, an experimental setup was prepared. 
It should be noted again that the main objective 
of the experiments was to verify the absolute 
stability limit.  
5.1 Experimental Setup 
A manual lathe is used in tests. Since the gear 
ratios of the lathe allow only for specific   spin-
dle speeds, the tests were conducted at 1000, 
1400, and 2000 rpm’s. In all of the tests the tool 
was much more flexible compared the work-
piece. In order to obtain the Frequency Re-
sponse Functions (FRF) of the cutter and 
workpiece, a modal test setup, and to measure 
the chatter frequency a microphone data acqui-
sition setup is used (Figure 7.a and 7.b).  

 
         (a)      (b)  

Figure 7: (a) Modal test setup with CutPro ® 
[16], (b) Frequency measurement setup. 

The workpiece material used during the tests is 
a medium carbon steel (AISI 1040), and zero 
rake carbide inserts are used as cutting tools 
(Figure 8.a, 8.b, and 8.c). The rake and inclina-
tion angles can be varied by using different in-
serts and/or tool holders. However, to avoid 
eccentricity and to cover a wider ranges of an-
gles in a practical manner, insert seats with dif-
ferent angles were ground and used under the 
inserts during the cutting tests (Figure 8.d and 
8.e). 

 

     (a)            (b)           (c)           (d)          (e) 
Figure 8: Triangular inserts used during tests 
with radiuses (a)0.4 mm, (b)0.8 mm, (c)1.2 mm. 
Ments, (d) Regular insert seat, (e) Ground in-
sert seat for desired rake and inclination. 



Side edge cutting angle is varied by rotating the 
tool holder from its clamped end. All of the tests 
were conducted using a feed rate of 0.08 
mm/rev. An existing orthogonal cutting data-
base was used for the prediction of cutting co-
efficients.   

5.2 Experiment Results 

5.2.1 Verification of the analytical model  

The cutting angles and geometry used in the 
tests are listed in Table 3. All the other parame-
ters that are used during verification tests are 
summarized in section 5.1.  

Table 3: Cutting geometry used in verification 
tests. 
Side edge cutting angle 10° 
Rake angle 5° 
Inclination angle 5° 
Insert nose radius 0.4mm 

The measured tool and workpiece transfer 
functions prior to the tests, can be seen in Fig-
ure 9, where workpiece is rigidly clamped and 
tool is much more flexible.  
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Figure 9: Measured transfer functions of work-
piece and tool. 

Figure 10 shows the comparison of analytical 
solution and experimental results. The depth of 
cuts tested during chatter experiments are se-
lected in order to verify the stable and unstable 
cut zones, and absolute stability limit. Stable 
cut zones are tested using depth of cuts fairly 
under the predicted absolute stability limit. 
Similarly, unstable cut zones are tested using 
depth of cuts above the absolute stability limit. 
In order to confirm the absolute stability limit 
prediction, a close enough value is selected. In 
the cutting tests, one direct way of understand-
ing whether there is chatter or not is to observe 
the finish surface. An example of a finished sur-
face of stable and unstable cut for the tests 
conducted in 2000 rpm can be seen in Figure 
10.  Another method to identify an unstable cut 
is to determine the frequency of the chatter 
sound. In Figure 11 an example of an FFT 
measurement can be found for the same test 

 

 

Figure 10: Chatter test results and the cut sur-
face of a stable vs. unstable cut. 

at 2000 rpm. The chatter frequency can be 
clearly seen, which was measured to be about 
1000 Hz at unstable depths of cuts close to 
stability limit, as expected from the transfer 
function (Figure 9). It can be concluded from 
these test results that the analytical model can 
successfully predict the chatter limit. 
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Figure 11: Frequency measurement results for 

the unstable cut. 

5.2.2 Insert nose radius effects on chatter limit  

In order to verify the stability model for insert 
nose radius, and its effects on the absolute sta-
bility limit chatter experiments were conducted 
using inserts with different nose radii (Figure 
8.a-c) and with conditions summarized in sec-
tion 5.1. 10° of side edge cutting angle, 5° of 
rake angle, and 5° of inclination angle are used 
during the tests.  

As discussed in section 3.1 eqn. 30. is solved 
in order to obtain the absolute stability limit 
sweeping the chatter frequency around the 
tools most flexible mode, ie. bending mode in 
this case. Number of elements for nose region, 
used during simulation tests were 15, 30, and 



45 for inserts having 0.4, 0.8 and 1.2 mm nose 
radiuses.  

 

Figure 12: Chatter test results for inserts having 
different nose radiuses. 

In the experiments, the tool was much more 
flexible than the workpiece, so the dynamics of 
the process was dominated by the tool. The 
side cutting edge angle was relatively small, 
thus the effect of the nose radius on the stabil-
ity is expected to be small (as discussed in sec-
tion 4.3.).The experimental results for different 
nose radii are shown in Figure 12. The chatter 
tests were repeated several times, and the ex-
perimental data ranges in Figure 12 represent 
variation of the stable depths observed in the 
experiments. Overall, there is an increase in 
the absolute stability limit with the nose radii. 
This is expected as the increase in the nose 
radius reduces the effect of tool flexibility. The 
predicted stability limits and experimental re-
sults show reasonable agreement.  

6 CONCLUSIONS 
The main achievements of the current study 
can be summarized as follows: 
•An analytical stability model for turning con-
sidering tool and workpiece dynamics in a multi 
dimensional manner is formulated 
•The proposed analytical model includes the 
important parameters in the turning geometry, 
i.e. practical tool angles, and nose radius. 
•A solution procedure is developed for stability 
limit with the proposed elemental model for the 
insert nose. 
•The effect of important process parameters on 
the stability are demonstrated using simulations 
based on the model 
•The proposed analytical solutions are verified 
by experiments 
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