Factorization of unbounded operators on
Kothe spaces

T. Terzioglu, M. Yurdakul and V. Zahariuta

Abstract

The main result is that the existence of an unbounded continuous
linear operator T between Kothe spaces A(A) and A(C) which factors
over a third K6the space A(B), causes the existence of an unbounded
continuous quasidiagonal operator from A(A) into A(C) factored over
A(B) as a product of two continuous quasidiagonal operators. This
fact is a factorized analogue of Dragilev theorem [3, 6, 7, 2] about qua-
sidiagonal characterization of the relation (A(A), A\(B)) € B (which
means that all continuous linear operators from A(A4) to A(B) are
bounded). The proof is based on the results of [9] where the bounded
factorization property BJF is characterized in the spirit of Vogt’s re-
sult [10] about characterization of B. As an application, it is shown
that the existence of an unbounded factorized operator for a triple of
Kothe spaces, under some additonal asumptions, causes the existence
of a common basic subspaces at least for two of the spaces (this is a
factorized analogue of the results for pairs [8, 2]).
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1 Introduction

We denote by A(A) the Kothe space defined by the matrix A = (a?) and
by (en) the canonical basis of A(A). For a mapping ¢ : N — N and a
sequence of scalars (,) the operator D : \(A) — A(B) defined by D(e,) =



tn €s(n), € N, is called quasidiagonal. Dragilev [3] proved that the existence
of an unbounded continuous linear operator from A(A4) to A(B), where the
both spaces are assumed to be nuclear, implies the existence of a continuous
unbounded quasidiagonal operator from A(A) to A(B) (cf. [6, 7]). This result
has been recently generalized by Djakov and Ramanujan [2] by omitting the
nuclearity assumption.

We recall that the closed linear span of a subbasis (e;,) is called a basic
subspace of a Kéthe space. If A(4) and A(B) have a common basic subspace,
then it is easy to construct a continuous linear operator mapping A(4) into
A(B), which is unbounded unless the common basic subspace is a Banach
space. Under certain conditions on A(A) and A(B) the converse of this trivial
fact is also true. Namely, if the both spaces are nuclear, Nurlu and Terzioglu
8] proved that the existence of an unbounded continuous linear operator
T : AM(A) — A(B) implies, under some additional conditions, the existence
of a common basic subspace of A\(A) and A(B); this result was generalized
by Djakov and Ramanujan in [2] for the non-nuclear case. In these works
Dragilev theorem plays a crucial role.

It was discovered in [13, 14] that if the matrices A and B satisfy the
conditions dy, d;, respectively, then every continuous linear operator from
A(A) into A(B) is bounded. This phenomenon was studied extensively by
many authors, the most comprehensive result is due to Vogt [10], where all
pairs of Fréchet spaces with such property are characterized. Terzioglu and
Zahariuta [9] characterized those triples (X, Y, Z) of Fréchet spaces such that
each continuous linear operator 7' : X — Y, which factors over Y is auto-
matically bounded. The aim of the present work is to prove a factorization
analogue of Dragilev theorem [3] and its generalization [2]. Namely, we prove
that if there is an unbounded continuous linear operator 7 : A(A) — A\(C),
which factors over A(B), then, in fact, there exists an unbounded continuous
quasidiagonal operator D : A(A) — A(C), factored over A\(B) as a product
of two continuous quasidiagonal operators. As an application, similarly to
8, 2], we show that the existence of unbounded factorized operator for a
triple of Kothe spaces causes that, under some additional conditions, these
spaces (or at least two of them) have a common basic subspace.



2 Bounded factorization property and qua-
sidiagonal operators

We shall denote by L(X,Y) and LB(X,Y) the space of all linear continuous
operators and the space of all linear bounded operators from the locally
convex space X into the locally convex space Y. If for each S € L(X,Y)
and R € L(Y, Z) we have T = RS € LB(X, Z), we say (X, Y, Z) satisfies the
bounded factorization property and write (X,Y, Z) € BF ([9)).

Dealing with several Fréchet spaces we always use the same notation
{I*|p, p € N} for a system of seminorms defining their topology and {|- B:ip€
N} for the corresponding system of polar norms in the dual spaces. For any
operator T' € L(E, F') we consider the following operator seminorms

'TIP:Q = Sup{’Tzhﬂ : |‘T|q S 1}3 b, q € N:

which may take the value +oo. In particular, for any one-dimensional oper-
ator T =1'®y, 2' € E', y € F, we have [T|,, = |2/} - [y|,.

Dealing with a Kothe space A(A) we always assume that the matrix A =
(a?) satisfies the condition

a <", ipeN. 1)

An operator T € L(A\(A), \(B)) is quasidiagonal if T(e;) = t; e-(3), i € N for
some map 7 : N — N and scalar sequence (;). We shall denote by (4, B)
the set of all quasidiagonal operators and by Q. (A, B) its subset correspond-
ing to the map 7. We note that Q.(4, B) is a subspace of L(A(A), \(B))
whereas ()(A, B) is only a subset.

Our aim is to prove the following characterization of the bounded factor-
ization property for triples of Kothe spaces in terms of quasidiagonal opera-
tors, which is a natural generalization of Dragilev’s theorem ([3, 2]).

Theorem 1. We have (A(A), \(B), A(C)) € BF if and only if for each S €
Q(A,B) and R € Q(B, C) the quasidiagonal operator T = RS is bounded.

The proof will be given in Section 3 after some intermediate results. In
what follows we will use the following result from [9].

Proposition 2. We have (A(A), A(B),A(C)) € BF if and only if for each
m: N — N there is 7 € N such that for every g € N there ezists n = n(q) €



N so that the inequality

: c
= Ao 1l:j:(;:v) e { ﬂzp)} (2)
g r=l,...n aj p=l,..,n by

holds for all (i,7,v) € N3.
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=g

&

Given two Fréchet spaces F and F and a map 7 : N — N, we consider
the following Fréchet space

Ln(E,F) :={T € L(E,F) : |T|px@) < 00, p € N}

with the topology generated by the system of seminorms {| - [, (), p € N}.
We note that, in the case of Kothe spaces, the intersection

Q7(4, B) := Qq(A, B) N Lz(A(A), \(B))

is a closed subspace of L.(A(A),A(B)). Let us fix o, p, and 7 and assume
that for each S € L,(A, B), R € L,(B,C) the composition RS is bounded.
If we apply Lemma 2.1 from [9] to the bilinear map

0: Q;(4, B) x Q5(B,C) = LB(A\(4), \(C)),
which simply sends each (S, R) to RS, we obtain the following result.

Proposition 3. Let o and p be two maps of N into N. If for each S €
Qs(A,B) and R € Q,(B,C) the composition RS is bounded, then for each
m: N — N there is r € N such that for every g € N there ezists n = n(q) €
N such that the inequality

9
Sl s e b | e o) (3)
a; ~ p=l,.n a;f(P) p=1,..n bxg))

holds for every j € N.

We note that here the both r and n depend not only on 7 and ¢ but
also on our choice of ¢ and p. This is an obstacle to derive Theorem 1
immediately from Proposition 3. On the other hand, the methods of [9]
cannot be applied directly to Q(A, B), since it is not a subspace. So we need
some other considerations.



3 Proof of Theorem 1

Suppose ((A(4), A(B), A(C)) ¢ BF. Then, by Proposition 2, there is a map
7 : N — N such that for each r € N there exists ¢ = g(r) € N such that for
any n € N there are i, = in(7), jn = ju(r), Un = vu(r) with

g
g g ¢
—% > 7 max “2_ b . max e (4)
ar p=1,...n a’f(P) Pl 7

In ‘I Yn

For L = {n;} we denote by Ji(r), Ir(r), Np(r), respectively, the set of all
J = Jngy U = lny, V = Vyp, such that (4) holds for n = ng, & € N. With this
notation we have the following technical result, which is crucial for our proof.

Lemma 4. For any L the sets Jy(r), Ip,(r), and Ni(r) are all infinite if
= p o= ()

Proof. Suppose Ji(r) is finite. Then for the subspace Ej, of A\(4) spanned
by the sub-basis {e; : j € Ji(r)} we have

(E1, A\(B), \(C)) € BF.

Therefore, by Proposition 2, there is an ' > r such that for some m = m(r)
the inequality

cg(r) b G
i S m max «  Inax (5)
a; p=1,....m a;r(p) p:l,...,m blﬂ;(p)

holds for each (j,%,v) € Ji, x N?. Taking n = n; so that
a}’ .
n > m max E?‘:JGJL(T)

we easily see from (5) that the inequality

) o o o o
nE m —= v INaxX ===
a;: = 118 p=1...0% a;l’{P) p=l,..ng er(p)

holds for each (4,4,7) € Jy(r) x N2. Since this contradicts (4), we conclude
that Jp(r) is an infinite set. In a similar fashion we can prove that each I (r)
is infinite.




Before treating the case Ny (r), notice first that, without loss of generality,
we can assume that the Kéthe matrix B = (%) satisfies the condition

& =0, forp >, (6)

for some fixed sequence (p,) increasing to infinity.
Now supose that N = Ni(r) is finite. Without loss of generality we
assume bl > 0 for all » € Ny, and set

1
= min{b%—’; :v € Ni(r)} > 0.

By (6) we have for v € N, and any s € N
b, > 6b5. (7)

For k such that ng > ¢(r) and d ng > 1 from (4) and (7) we get

a(r) 1 Nk Nk
Cin % i Ci,
k > nk k k k
ol = b‘-"'(“k) aﬂ(l) =il
In u"k j"‘k Jnk

Due to r > ry = m(1), this gives c:-’,f:) > c?:k, though n; > ¢(r), which
contradicts our assumption (1). O

We are now ready to prove a result which is somewhat stronger than
Theorem 1.

Proposition 5. If (A(A), A(B),A(C)) & BF then there are bijections o and
p on N and operators S € Q,(A, B) and R € Q,(B, C) such that the operator
T = RS s unbounded.

Proof. From our assumption we have (4) with the same notation. Passing to
subsequences three times and using Lemma 4, for any fixed r > r := 7(1)
we construct a subsequence L, = {n(r)} of N such that each coordinate
Of (Jny(r)> Vng(r)» ing (r)) takes different values for different k. Let us represent
each infinite set L, as a disjoint union of infinite subsets



Let us construct now a new sequence of infinite disjoint sets
Lo={lr):peN}C L,, r >,

in the following inductive way. We form i,.o by taking precisely one element
lu(ro) from each set L, ,, p € N. Let us now assume we have already con-
structed pairwise disjoint sets L, for ry < s < 7, so that each set L, contains
exactly one element from L, , and is disjoint from L,o. We then construct
i,+1 by taking from each set L1, p € N, one element different from every
lu(s), o < s < r. By induction this concludes the construction of L,, r > rq.
The set Io :== N\ U2, I, is infinite since it contains Iy, , for each r > rq.

T=ro

By the same token the sets

Jo:=N\JJ;, No=N\[JN,

r=TQ T=ro

are also infinite.
Let oo : Jg = Ny and B : Ny — I be arbitrary bijections. Let us consider
the maps p: N — N and o : N — N defined by

o(j) = { o(y), ifj € Jo
V), H7=gi,e €J;, r>10

o(v) = { B(v), ifve Ny

Uy, Hv=wy,) €Ny, r2>r,

For an arbitrary r we have

A P .
AUl o e U max pla(4))
a® p=1,....,n a;f(?) p=L,...,n b”(l’)

4 a(3)

for all j = j, where n € L,. Hence by Proposition 3, there exist S € Q,(A4, B)
and R € Q,(B,C) with RS unbounded. O
4 Some consequences

Nurlu and Terzioglu [8] studied consequences of existence of an unbounded
operator between nuclear Kéthe spaces. They showed, in particular, that if



the spaces satisfy the splitting condition of Apiola type [1], then the existence
of an unbounded operator implies the existence of a common basic subspace.
Djakov and Ramanujan [2] obtain the same result omitting the assumption
of nuclearity and assuming the weaker splitting condition of Krone and Vogt
[5].

Before dealing with the main result of this section (see Theorem 10 below)
we discuss certain modifications and factorized analogues of some properties,
important for studying of the relation Ext' (F, E) = 0 (see, e.g., [11, 12, 4]).
A pair of Fréchet spaces (F, E) satisfies the condition & if there is a mapping
7 : N = N such that for every p € N and r € N there exists a constant
C = C(p,r) provided that the estimate

T |r;z(p) < C max {|T|r(p),ps | T |r(r)r } (8)
holds for any one-dimensional operator
T=¢®f ecE, feF

It is easy to check that the condition S is an equivalent slight variation of
the Vogt’s condition S5 ([11]). It is known that the property Ext'(F, E) = 0
is characterized by (F,E) € S in the cases when the both spaces are either
Kothe spaces ([5]) or nuclear ([4]). A pair of Kéthe spaces E = \(A4) and
F' = \(B) satisfies the conditon & if and only if the condition (8) holds for
the operators T =¢; ® ¢;, 1, € N ([5]).

If the estimate (8) is true for arbitrary operators T € L(E,F) (with
an obvious meaning if some of operator norms equals +o0) then we write
(F,E) € S (in fact, one can see that this condition is sensible only for
bounded operators T'). It is easy to check that the condition (F,E) € 8
coincides with the condition on LB(E, F'), considered by Dierolf, Frerick,
Mangino, and Wengenroth (see, e.g., [4], the proof of Theorem 2.2); moreover,
by Vogt [12], this condition coincides with the condition (w@) for the natural
representation of LB(E, F') as an (LF)-space.

In what follows we shall denote by A(A); the basic subspace of a Kéthe
space A(A) which is a closed linear envelope of {e, : n € L}, L C N.

Suppose now (A(A), A(B),A(C)) € BF and (A\(C), A\(A)) € S. By Theo-
rem 1 we know that there are S € Q,(A4, B) and R € Q,(B,C) with some
bijective maps ¢ and p on N such that 7' = RS is an unbounded quasidi-
agonal operator. The theorem of Djakov and Ramanujan [2] implies the



existence of infinite subsets J and I of N such that 7' maps A(A); isomor-
phically onto A(C);. Then one can easily check that, for N := o(J) = p~' (1),
the both operators S : A(A); = A(B)y and R : A\(B)y — A(C); are also
isomorphisms. We have therefore proved the following result.

Proposition 6. Let E = A(A), G = A\(B), and F = A(C)). Suppose that
(E,G,F) & BF and (F,E) € 8. Then there is a common basic subspace for
all three spaces.

Now we consider a factorized analogue of the condition S. A triple of
Fréchet spaces (F,G, E) satisfies the condition SF (we write (F,G,E) €
SF) if for any one-dimensional operator T = RS, with the both operators
S € L(E,G) and R € L(G, F) being also one-dimensional, the inequality

| T|ryrp) < C max {|R|r(p)ps |Blr(r)r} + m3X{|S|rm)ps |Slrimr}  (9)

holds with the same requisite as in (8).

If the condition (9) holds for an arbitrary operator T = RS, with S €
L(E,G) and R € L(G,F) we will write (F,G,E) € (SF) (with the evi-
dent meaning when some of the operator norms equals +c0; so, in fact, this
condition is reasonable only for bounded operators T).

We note that if E = G or G = F the condition (F,G, E) € SF reduces
simply to (F,E) € S as well as (F,G, E) € SF does so to (F,E) € S.

Proposition 7. Let E,G, and F be arbitrary Fréchet spaces. If (E,G, F) €
BF, then (F,G,E) € SF.

Proof. Suppose that (E,G, F) € BF. Denote by II(p) the set of all strictly
increasing mappings 7 € NN such that 7(1) = p. By Theorem 2.2 from [9],
for any 7 € II(p) there is ¢ € N and p € N™ such that for every T = RS
with S € L(E,G) and R € L(G, F) the inequality

u(r) u(r)
[ Tlrg < p(r) max {| Rlem} - max {|S]y,xq} (10)

holds for each r € N. By II,(p) we denote the set of all 7 € I1(p) admitting
the condition (10) with a given g € N. It is obvious that I1(p) = U2, II,(p)
and TI,(p) C Mg41(p), ¢ € N. Therefore for each p € N there is ¢ = p(p) such
that sup {m(g) : 7 € II(p)} = co. Now we fix an arbitrary r € N and apply



(10) with ¢ = p(p) and 7 € T4(p) such that 7(¢) > r. Taking into account

that
|Rlgp f1<i<g

Rl < :
| |1: {l) — { IR’#(TLT ]_f q < l S ,U(T),

and the same holds for the operator S, we derive from (10) that

’T’r,p{p) < p(r) max {’R]p(p).w ]R|H(")J'} - max {[S|p(p),p) |S’u(f):r}'

From here one can easily conclude that there is 7 € N¥ and C = C(p,r)
such that (9) holds. Thus (F,G, E) € SF. O

In particular, if F' = G or G = E, we get the following

Corollar;_( 8. Let E and F' be Fréchet spaces. Then (E,F) € B implies
(F,E) € S.

This is a generalization of Proposition 3.4 from [5], where the case of
Kothe spaces was considered (for Kéthe spaces the conditions S and S coin-
cide): basically, our proof of Proposition 7 is a generalized direct version of
the proof ad absurdum from [5]).

Now we compare the conditions & and S with their factorized versions.

Proposition 9. Let E, G, F be arbitrary Fréchet spaces. If the couple (F, E)
satisfies S (or S), then the triple (F, G, E) satisfies SF (respectively, SF).

Proof. Because of complete similarity we consider only the case S. Suppose
that (F,E) € S. Then there is a function 7 : N — N such that for each
T € L(E, F) the estimate

T lrirtp) < CaxX{|T|rip)p, [Trryr} (11)

holds for each p € N, 7 € N with some constant C' = C(p,r). Without loss
of generality we assume 7(p) > p for every p € N. Using now the following
evident estimate

|T|T(p),p < |S|p,p 2 |R|T(p),p < |S|'r(p),p f |R|T(p).ps PEN,

for any operator T = RS, we obtain the estimate (9), which means that
(F\,G,E) € SF. O



The following example shows that SF is strictly weaker than S. Here we
use the notation A, (a) := K(exp (ap a;)) with ap T @ < 00, a = (a;).

Example. Let a = (a;) be a positive sequence increasing to infin-
ity. Since (Ai(a),Ax(a)) € B [14], we have (A,(a), A(a)),Ai(a)) € BF
trivially. Hence (A;(a),Ax(a)),A1(a)) € SF by Proposition 7. However
(A1(a), A(a)) ¢ S.

We conclude with a generalizaton of Djakov-Ramanujan’s result ([2];
Proposition 3) in the context of the factorization.

Theorem 10. Suppose (A(A),A(B),\(C)) & BF and (M(C), A(B),\(A)) €
SF. Then one of the pairs (A\(A), \(B) or (A(B), \(C) has a common basic
subspace.

Proof. By Theorem 1 there exist quasidiagonal operators S € Q,(A, B) and
R € Q,(B,C) with o and p bijective such that T = RS is unbounded. With-
out loss of generality we assume in what follows that all three operators are
identity embeddings, since otherwise we can provide this property considering
a new triple of Kéthe spaces obtained from the original by some permuta-
tions and normalizations of their canonical bases (note that the property SF
is preserved under such reconstruction). As applied to the above embeddings
the condition SF gives the following: there is a map 7 : N — N such that

r T(p) 17(r) r(p) 7(r)
c b; b; ¢ c;
0 SCmax{aT, = } -max{ R } (12)

1 1 1

for all (p,r,i) € N® with some constant C' = C(p, 7).

It suffices now to prove that there is an infinite set I € N such that
A(A)r = A(B) or A(B)r = A(C);. Suppose that this assertion is false. Then
for each infinite set 7 C N and m € N there is 7 > m such that

) e
WG o e e
]Hng}nf s = luine}nf i =10 (13)

We define inductively the sets Ny D N; D --- by

prP) rir)
No:=N; Npi=qi€ Ny imaxq =5, 5= p 210, p€eN,  (14)

i

with 7 from (12).



We claim that for each p € N the embedding T is unbounded on the basic
subspace X, of A\(A) spanned by {e; : i € N, \ N,}. If it is not so, then for
each ¢ € N there is an infinite subset I, C N,_; \ N, and m(q) € N with

c:n(q)

lim -

For I = I, we find 7 > m(q) such that (13) holds. Then there is an infinite
set Jy C I, with

= c0. (15)

max{c'ﬂr) cfrm} <1, 5e Ji (16)
o i 4
On the other hand, by (14), we have
or®) rip)
max{‘bf,,‘b:,}<l,z'elq. (17)

Applying now (12) with ¢ = 7(p) and r chosen above and taking into account
the estimates (16) and (17), we obtain that

=d

Y

for all 7 € J,, which contradicts (15). This proves our claim that the embed-
ding T is bounded on each X,. Hence, for every p € N, the operator 7" must
be unbounded on the basic subspace Y, generated by {e; : i € N,}, which,
in particular, implies that NN, is an infinite set.

Now we construct a sequence I = {4y}, so that i, € Np, iy, # ip, p € N.
Then, due to (14), there is an infinite set J C I such that at least one of the
inequalities a? < B/ or 8 < ¢?® holds for all p € N and all i € J such that
i 2 p, which contradicts the assumption (13). This completes the proof. [J
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