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Abstract

Using some new linear topological invariants, isomorphisms and quasidiagonal isomorphisms are
investigated on the class fifst type power Kothe spaces [Proceedings of 7th Winter School in Dro-
gobych, 1976, pp. 101-126; Turkish J. Math. 20 (1996) 237-289; Linear Topol. Spaces Complex
Anal. 2 (1995) 35—44]. This is the smallest class of Kothe spaces containing all Cartesian and pro-
jective tensor products of power series spaces and closed with respect to taking of basic subspaces
(closed linear hulls of subsets of the canonical basis). As an application, it is shown that isomorphic
spaces from this class have, up to quasidiagonal isomorphisms, the same basic subspaces of finite
(infinite) type.
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1. Introduction

A matrix A = (a;,p)i,pen is called Kéthe matrix if 0 < a;p < ajpy1, i, p € N, and
a;,p > 0 for somep = p(i), i € N; Kothe space K (A) defined byA is a Fréchet space
of all sequences = (&;);cy such thatx|, := Y ien l&ilaip < 00, p € N, with the topol-
ogy generated by the seminorifis |,: p € N}. The notatiore = (e;);en Will be always
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used for the canonical basis &f(A) regardless of a matrid. Any closed subspace of
K (A) spanned by a subset of a canonical basis is calletia subspace.

An important particular case is represented by so-caibeabr series spaces (or centers
of absolute Riesz scales),

Eq(a) := K (explaya;)), (2)

wherea = (a;);¢n is a positive sequence, + o, —00 < o < 400.
We say thatk (A) is quasidiagonally isomorphic to K (B) (quasidiagonally embedded
into K (B)) and write

qd . qd
K(A)~ K(B) (respectively K(A) = K(B))

if there is an isomorphism (respectively, an isomorphic embeddingy (A) — K (B)

such thatTe; ;= tieq(;), i € N, where(y;) is a sequence of scalars and N — N is a
bijection (respectively, injection). The following problem still remains open on the class of
all Kéthe spaces (see, e.g., [1,7,13,14,20,21,27,37]).

d
Problem 1. Let K (A) ~ K (B). Is it true thatk (A) = K (B)?

Partial solutions of this and related problem about quasiequivalence of all absolute
bases have been the subject of much research for various classes of Kdthe spaces (see,
e.g., [7,10-14,17,20,21,23,27-31,37]). Important instruments in those investigations are
classical linear topological invariants (approximative and diametrical dimensions, see,
e.g., [2,16,20,24]). These invariants are used at their bestefpiar Kothe spaces
[10,11,13,14,17,25,27], in particular, for the spaces (1) wijth co. Problem 1 for non-
Montel (@; 4 o0) spaces (1), which turns to be beyond powers of the classical invariants,
was investigated in [21-23] (with-norms instead of;-norms) by means of some new
invariants based on spectral behavior of theratmr generating the scale; these invariants
exerted an influence on further development of linear topological invariants dealing with
non-regular spaces, especially on its early stage).

We notice that power series spaegdinite type (—oo < o < 0o) andof infinite type
(¢ = o0) have very different structure, in particular, a complemented subspaafa
spaceEp(a) can be isomorphic to a subspacemf, (b) if and only if L is normed, hence
finite-dimensional ifEg(a) is Montel [28,30]. Therefore Kéthe spaces of a mixed nature
(with the both, finite and infinite type spaceg (&presented as its basic subspaces) are of
great interest, since they, as a rule, are irregular and need radically new invariants. In this
paper we investigatgower Kéthe spaces of first type [31,37],

E(\, a) ::K(exp((—%—i—)»ip)ai)), (2)

wherea = (a;);en, andi = (1;);cn are sequences of positive numbers. The dasksuch
spaces is the smallest class of Kéthe spaces, econggall Cartesian and projective tensor
products of power series spaces (represeimiednatural way, as Kéthe spaces) and closed
with respect to taking of basic subspaces. Assentially mixed space (2) (= not reduced

to a power series space or Cartesian produgbatss (1)) has quite oplicated structure:
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it possesses a countable (continuum) base of the “filter” of basic power series subspaces of
infinite (finite) type.

Our main goal is the complete solution of the following problem, which gives an impor-
tant approach to Problem 1 for the cla&séts quite partial solution has been considered in
[31-34,37]).

Problem 2. Let X = E(A,a), Y = E(u,b) andX >~ Y. Supposd. is a basic subspace of
X which is isomorphic to a power series space of finite (respectively, infinite) type. Is it

d
possible to choose a basic subspat@ Y of the same kind so thdt q: M?

Problem 1, for the spaces (2), was studied in [7,9] by meams-rdctangular charac-
teristics which counts up how many points of the sequéhce) = ((;, a;));en, defining
the space (2), fall within a union @t rectangles,

m

J{E m: 8 <& <ews m<n<ul. 3)
k=1

Quasiequivalent isomorphism of spaces from the ctasgas characterized there com-
pletely in terms of some, uniform by, equivalence of these characteristics (see Proposi-
tion 8 below); but for any isomorphic pair of such spaces it was shown only some weaker
equivalence of those characteristics (depending on the number of rectangles).

In the present paper we prove that isomorphism of spaces from thefodadails much
stronger equivalence of multirectangular cieristics (Theorem 11) (with estimates not
depending on a number of rectangles but only on a number of different valdesdf)).

The crucial tools areompound invariants [4—7,35—-37] based on evaluation of classical
entropy-like characteristics (inverse to Bernstein diameters) of peyptetic absolutely
convex sets, which are quite intricate interpolational constructions made up of sets from
given bases of neighborhoods (see the proof of Lemma 10).

As an application of those invariants, we obtain a complete solution of Problem 2 (Theo-
rems 13 and 14). Now we are able also to show that the spaces from the proof of Theorem 5
in [9] are not isomorphic (this was impossible with the invariants considered in [7,9]).
On the other hand, we construct a new quiticate example (in Proposition 15), which
shows that there remains a gap (though narrowed down) between characterization of iso-
morphisms and quasidiagonal isomorphisms.

For not explained here notions we refer to (see, e.g., [15,19]).

2. Preliminaries

2.1. Let X, X be Kéthe spaces ant;};cn. {gi};cn absolute bases in the spacks
andX, respectively. We say that these basesgaesiequivalent if there exists an isomor-
phism7T : X — X such thall' f; = 1; g+ (i), where(t;) is a sequence of scalars andN — N
is a bijection. For two sequences of positive numbets(a;) anda = (a;) we shall write
a =< a or a; < a; if there exists a constaat> 1 such that; /c < a; < ca;.
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In [21-23] B. Mityagin investigated the isomhic classification of power series spaces
(1) and the structure of complemented qudxes of them in terms of the characteristic
Ma(t,t):=|{ieN:t<a,~§t}, O<t<t, 4)

where|A| denotes the cardinality of the finite sétand+oc if A is an infinite set. We
shall use the following fact, which is a quite particular case of his results (see also [6,
Corollary 3]).

Proposition 3. Let a = (q;) and a = (a;) be sequences of real numbers such that
ai > 1, a; > 1. Suppose X = Eg(a) (or X = Exo(a)) and X = Eg(@) (or X = Exo(a),
respectively). The following conditions are equivalent:

. qd o

i X X;

(i) Fo>1: muﬁgM%im) t>1>0.

Dealing with spaces (2) we always assume without loss of generality that
1
a>1 —<AM<1 ielN (5)
aj

Indeed, the spac& (1, a) is identically isomorphic to the spade&(i, @) satisfying (2), if
we definea, A as follows:q; is equal toa; + 1 if A; < 1 and toi;a; + 1 otherwisej,; is
equalto Ya; if »; < 1/a;,to 1if A; > 1 and toa; for the rest ofi.

2.2. Let X be a class of locally convex spaces andilebe a set with an equivalence
relation~. We say that : X — I' is alinear topological invariant if X ~ X = y(X) ~
y(X), X, X e X.

The invariants considered here are based on the well-known characteristic of a couple
of absolutely convex setg, V in a linear space,

BV, U):=sugddimL: UNL C V}, (6)

whereL runs the set of all finite-dimensional subspaceX pf= SparV . This characteris-
tic relates to Bernstein diametédrs(V, U) [26], namely

BV, U) = |{n: by(V,U) > 1}].
We shall use the following properties, readily apparent from the definition (6):

if Vi c VandU c Uy, theng(Vy,U1) < B(V,U), 7
1
,8(aV,U)=,B<V,—U>, a>0. (8)
o
Let f = {fi};ey e an absolute basis in a Kéthe spateA set

B/ (a) := {x =Y &fieX: ) |&lai < 1,

i=1 i=1
is the weighted; -ball in X, defined with a given weight sequence of positive numbets
(ai);en- For weighted balls the characteristic (6) admits an especially simple computation.
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Proposition 4 (see, e.g., [5,21]For a couple of weights a, b we have
B(BS(b), B(@)) = |{i bi <ai)|.

2.3. In the construction of compound invariants (see Sections 3-5) we shall use the
following simple geometrical facts.

Proposition 5. Let ¢ be an absolute basis of a Kéthe space X, a'/) = (ai(j)), j=1,...,r,
seguences of positive numbers and ¢ = (¢;), d = (d;) sequences, defined by the following
formulae: ¢; = max{ai(’): j=1...,r},d = min{al.(’): j=1,...,r}, i € N. Then the

following relations hold:

B¢(¢c) C ﬂ B¢(aY) c rB¢(c), B¢(d) = c0n\/< U Be(a(j))>,
Jj=1 j=1

where conM M) means the convex hull of a set M.

For a coupled, = B*(a™"), v =0, 1, we consider the followig one-parameter family
of weighted balls:
(At (AD® := B*(a'®),
where

l-«a o
0 = (@) @) ) e e

1

The following statement is the well-known interpolational fact (see, e.g., [18, IV, Theo-
rem 1.10]) written in a geometrical form.

Proposition 6. Let f and g be absolute bases of a Kéthe space X and A, = B/ (a™"),
A, = B&@"),v=1,2. Then

A, CA,, v=12,
implies

(AQ)1 ™ (AD* C (Ag)1 (A%, a€(0,1).

3. Multirectangular characteristicsand compound invariants

Let A = (Ai);eny a = (ai);eny be sequences of positive numbers with (5) and N.
Following [1,6] (cf., [3,8]), we introduce:-rectangle characteristic of a pair(i, a) as the
function

m
pn(8, 5T, 1) = U{ii Sk < Ai <ep, T <ai <t} 9
k=1
defined for



678 P. Chalov et al. / J. Math. Anal. Appl. 297 (2004) 673-695

§=0k), e=1(e), T=(W) =),
O<Sk <1, 0K <t <00, k=1,2,...,m. (20)

The function (9) calculates how many poirits, a;) are contained in the union ef rec-
tangles,
m
U{i: ivai) € P}
k=1
wherePk = (5k el x (te, ], k=1, 2,.

Let % = (1), @ = (4;) be another couple of positive sequences. and fixed natural
number. Therfunctions 5+ and M(A 9 are equivalent (or pir® ~ (A U@y if there exists

a strictly increasing function: [0, 2] — [0, 1], ¢(0) =0, ¢(2) = 1, andaposmve constant
a such that the following inequalities:

ui DS, e T, 1) = (11)

= {i: ivan e Pk} :

k=1

()‘ “)(5 &;1,1) < ;L()‘ ”)< ¥), (p*l(s); 1, at), (12)
o

u s, et 1) < p <¢(a),¢—1(8); i,m) (13)
(07

hold with ¢(8) = (¢(5x)), ¢~ 1(e) = (9~ L(er)), T/ = (1x /), at = (aty) for all collec-
tions of parameters (10) with, <1, > 1,k =1, ..., m (in line with our agreement (5)
we shall suppose always that the parameters (10) satisfy these conditiohs).Af(A, a),
we write alsouX in place oful®.

The following statement shows that each individuatectangular characteristic is a
linear topological invariant.

Proposition 7 (see [7]).Let X = E(A,a), X = E(L.d), m e N. If X ~ X, then X ~ puX.

Systems of characteristics (115 **),,x and (;L(A @y .y areequivalent if the functiong
and the constarnt can be chosen so that the inequalities (12), (13) hold for &IN (we

denote this equivalence iy ) ~ (1),

Proposition 8 (see [9, Proposition 1])For spaces X = E(A,a) and X = E(},a), the
following statements are equivalent:

(a) xq:dif; )
(0 (rem) ~ (143)-

We do not know whether this statement remains tru(:qé| it replaced by~, in other
words, is the quasidiagonal invarigntX) := (u,ﬁ)meN also a linear topological invariant
on the clasg (with the above notion of equivalence)? Nevertheless we show here that it is
possible to get new linear topological invariants, essentially stronger than any invariant (9),
simply by taking the same map(X) but introducing new equivalence relations on the set
I = {(u)men: X €E}.
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Definition 9. Let n € N. We say that systems of characteristigst) and (y,ff;) are

n-equivalent (and writéX) ~ (X)) if there is a strictly increasing functigp: [0, 2] —

[0, 1], (0) =0, ¢(2) = 1, and a positive constant such that, for arbitraryz € N, the
inequalities (12) and (13) hold for all collections of parameters (10), satisfying the fol-
lowing additional condition: among the numbe&is sy, ..., §,, there are no more than
different.

We consider the maps, from £ onto the set with equivalengé’, é) which all coincide
with the mapy if considered as set mapsge N. It will be shown in the next sections that
the mapy, is a linear topological invariant. As in [7] the main tool a@mpound invari-
ants: the characteristic (6) will be applied to some “synthetic” absolutely convexsdfs
built in a form of some geometrical or interpolational constructions from sets, belonging to
a given basis of neighborhoods of zero in the spec&he parameters, ¢, 7, ¢, satisfying
additional condition from Definition 9, will be involved into those constructions in such a
manner that, applying properties of the characterjgtiove provide the desired estimates
(12), (13), uniformly bym. This plan will be realized in the next two sections within the
proofs of Lemma 10 and Theorem 11.

4, Main lemma

Lemma10. Let X = E(A,a), X = E(k,a), n € N. If X ~ X, then there exists an increas-
ing function y :[0, 2] — [0, 1], y(0) = 0, y(2) = 1, a decreasing function M : (0, 1] —
(0, 00) and a constant « > 1 such that the inequality

ORI t)<uff;(y(5)—@,fl(e)+@; g,at) (14)

holdsfor eachm e N and all collectionsof parameters (10) satisfying the condition: among
the numbers §q, 82, ..., 8,,, there are no more than » different.

Proof. We divide the proof into several parts.
(1) General scheme. LetT : X — X be an isomorphism. We consider two absolute bases
of the spaceX: the canonical basis= {¢;};y in X andT -image of the canonical basis of

X: e={e;},e; =Te;, i € N. Then each € X has two basis expansions:

oo oo
x=Y &ei=) nd,
i=1 i=1

and the system of normisc ||, = Y72 Inilai, », x € X, p € N, is equivalent to the original
system of norms irX: |x|, = Y 21 l&ilaip, x € X, p €N; here

(oo (L ir)a)). o= (o0((+ir)a))
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To prove the inequality (14) we shall itditwo pairs of synthetic neighborhoods vV and
U, V in the form of certain compound geometrical and interpolational constructions using,
as raw materials, the balB® (A ), B“(A,,) with the corresponding weights

Ay = (ai p), Ay = (G p). (15)
The setdJ, v, U, V will be constructed so that, on the one hand, to provide the inclusions
U>U, Vcv, (16)

and, on the other hand, to ensure the estimates
X 1
H‘m(asg; T,t)<,3 Vv ;U ) (17)
~ 1~ M6 M
P (V’ _U) (m) MO gy MO T 0”) (18)
n T T Oé

Then the desired estimate (14) will be obtained immediately, since the inclusions (16)
imply the inequality

(w20 <e(730)
BlV.=-U|<B|V.=-U|.
n n

(2) Construction of synthetic neighborhoods. First, we take any:, m € N. Since the
systems of norms are equivalent we can choose an infinite chain of positive integers

FO<PpO<SQ<M<pL<§1<--<H<p<§ <<y
<Pn <8p <Tnil < Pl <Sppl <gr<---<qj <---, (29)

so that the following inclusions:

B¢(Aj;) C CB%(A;), B°(A;) CCB“(Ap), 1=1,2,....n
B°(A,) CCB%(A,), B°(Ay) CCB(Ap), 1=0,n+1,
B“(Aq;,,) CCiB(Ay)). B°(Agy,,) CCiB(Ag). jeN, (20)

are valid with some constanés= C(n), C;, j € N. Without loss of generality, we can as-
sume that each consequent number of the cHa&ipig four times larger than the preceding
one and that the sequenggsatisfies the conditionsdq; < ¢ ;1.

Leto1 < --- <07 < --- represent all different values of the sequeigg, which is
always supposed to be non-decreasing. Now we define the numbetsp;,, ri := 7y,
sk := 51, wherely is such thad; =o;,, k =1, 2, ..., m. Further we consider the sequence

40:11 {]:_7 jENv (21)

and choose indiceg and j; so that

o <Ok <ly—1, Cj+1<ex<gj, k=12,...,m. (22)
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Now we are ready to define the sets serving as elementary blocks in the construction of the
setsU, V, U, V. Beginning with the first couple of the seits V, we consider the blocks
(k=1,...,m)

wh =pw®), 1=12 ~ WP=p@"), 1=1234, (23)

where each weight-sequence will be responsible for one of the inequalities in (9). First we
set

wy =1I)§k)=Apk, k=1,2,...,m.

The estimates fok; from below and from above in (14)9) are connected with two series
of “interpolational”’ weightsk =1, ..., m)

W _ 2,12 —a_ |ARPAGR L if >3,
Wy = Apg Agy Wy = “’ o
k Apy if jik <3.

To meet the estimates ef by the parameters, andz in (14) we need the following
series:

_ (k Tk _ (k
g =exp(2—p0)Apo, 0 = exp—2put1t) Ay, k=12,....m.

To construct the set, V we use the corresponding series of blocks, which are balls with
respect to the second basgis

WO =BG, = )

Their weights we define by the same formulae as for the balls (23) but with the following
rules of the substitution: to get the weight’ (or ") we put4y, / C (respectivelyC 4,,)
instead ofA P anquvk /Cy, (respectivelyC jkszqukiz) instead oquvk (or, respectively,
qurl). Putting

2 4
U® =conv | J W,(k)>, ve =w",
=1 1=1

2 4
0w = conv(U Wf”), vl =Mw

=1 =1
withk=1,2,..., m, we define the sets

m m
v-(Uo. V- conv( () v<k>),
k=1

k=1
m m
0=0%, V=con | v<k>).
k=1 k=1

Taking into account (20), we have the inclusions
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whSwh 1=12 WP cw® 1=1234
k=1,2,...,m,

which provide the inclusions (16).

(3) Approximation of sets U, V, U, V with the weighted /;-balls. Unlike elementary
blocks, the set#/, V, U andV are not weighted balls. It is why Proposition 4 cannot be
used directly for the calculation gf(V, U) andB(V, U). Therefore, using Proposition 5,
we approximate these sets with some appropriate weighted balls. For this purpose we con-
sider the sequence®) = ("), é® = *)),a® = @™),d® = @"), k=1,2,...,m,
and the sequences= (c;), ¢ = (&), d = (d;), d = (d;), defined as follows:

e =minfwY: 1=1,2}, & =min{i): 1=1,2},
d® —ma{a®): 1=1,2,3,4),  d® =maxiy,: 1 =1,234},

ci =min{d,.(k): k=1,2,....m}, G :min{cil.(k): k=1,2,....m},
di=max{cV:k=1,2,....m}), di=maq{c?: k=12 .. m}.

By Proposition 5 the following relations hold (from now, the supersciigtand(e) will
be omitted, since they are transparent from the context):

B(C(k)) — U(k), B(E(k)) — 0(k)’ B(d(k)) c V(k), y® ~ 4B(j(k)).

From the condition for the numbess, k = 1, 2, ..., m, it follows that if §; = §;, then

Jk=Ji» Pk =PI, wfkl) = wfli, i eN, wsz) = w;g, ieN,c® =P ieN. Since there are

i, [ |

no more tham different among the sets®®), k = 1,2, ..., m, we get, using Proposition 5,
B(c)CV, UcnB(d), VC4B@E), B@) cU.

Therefore, due to (7), (8), we have
1
B(B(c), B(d)) < ﬁ(V, ;U>, (24)

,3(‘7, %U) < B(4nB(0), B(d)). (25)

(4) Estimate (17). Now we are ready to show how the above construction of synthetic
neighborhood#/ andV results the estimate (17). Taking into account (24) it is sufficient
to prove the inequality

B(B(c), B(d)) > 11 (8, &5 7, 1). (26)
From Proposition 4 we have
B(B(c), Bd)) = |{i: ¢; <di}].

By the definition of the sequencesndd, we obtain

m m

B(B(o), B@) = || JUfi: 4 <c"}|.

k=11=1
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This implies the estimate

m
B(B(). B@) > || {i: 4 <P} (27)
k=1
Due to the definition of the sequena#® andc®, k =1,2,...,m, we get
k) (k) . - (k) L (k)
li: ™ <"} = {z. lrglag;wi’l glrlwinzwi’l } (28)

Sincew(lk) = wi"), the set in the right-hand side of (28) can be written in the following

form:

s a® <) = Yis 1 <ulf) 0 {58 <ui). 29
1=2
To prove the estimate (26) we need to bring out the following inclusibasd, 2, ..., m):
{ir 0y <wP} o i h el (30)
{ir 0 <w} > (i x> &), (31)
{i: u')l(kg < wl(kl)} O {i: aj > 1}, (32)
{iz ) <w} > (it ai <ue). (33)

First we consider (30). Due to the definitions of the weights and (15), the inequality in the
left member of (30) is equivalent to the following inequality:

t ! 1>)\<1 + 1 ) if ji >3 (34)
— —— 2| 2qji—1+ sPo— Pk k>3
2p0 2951 px 2 20~ P /

By the assumption about the chain (19) and by (21), (22) the left side of (34) is larger than
1/(4po) and the expression in round brackets is less than

qi _ 1 < 1

4po  4polj,  Apoek

Together with (34) this implies (30) if, > 3. Inthe casg; < 3 the inclusion (30) is trivial.
The inclusion (31) can be obtained analogously.

It remains only to check the inclusion (32), since (33) can be gained similarly. The left
side inequality in (32) is equivalent to the inequality
% (= po)A+Aipopo)
— < a;.
2po POk
Since
(P —po) (A +2ipopi) 1
POPk 2po
we get (32). It follows now from (29)—(33) that

’

{i: di(k) < Cl(k)} D{i: 6k < Ai <&k, Tk <a; <Ix}.
Combining this with (27), we obtain (26), hence (17).
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(5) Estimate (18). Now we show that the construction of synthetic neighborh@ods
andV provides the estimate (18). Due to (25), it is sufficient to check the estimate

I % M) ) _ M(e) T

B(4nB(@), B(d)) < 1, (y(a) - = e+ m“’)‘
Applying Proposition 4 and taking inaccount the definitions of the sequenéemndd
we get

B(4nB (@), B(d)) = UU d® <anc®y|.

k=11=1

(35)
For arbitraryk,l = 1,2

m, using the definitions of the sequendé¥ andd®, we
obtain

4
{ird® < ane®) ¢ ﬂ by <and)) 0 {is By < ani)). (36)

Having regard to the expressions io} ) ~(1) and to (15), it is easy to see thatjjf > 3,
then the inequality

—() ~(l)
12\4}1

(37)
is equivalent to the inequality

1 1 ~ 1 1
— —qij—2— Ai— | =— <In(4nC,/CC;
|:(2r0+ 2‘]]k 2 Sl) i <21’0 + 2‘]jk72 Sl)i| <In(4n Jk— 2).

By the assumptions about the chain (19), the coefficient béfocan be estimated from
below byg ;, —»/4, while the next expression in round brackets is less thag Since
1 4
Cjp—3= = ’
qjx—3 1049 ji—2
we get the inclusion

- . 4z _oIn(4nC?
i by <4nd) c { : &

- o)
it ki <Cj-3+ k2 } (38)
a;
if jx > 3. Inthe casg; < 3, the inequality (37) is equivalent to the inequality

|:Xi(r0 —s1) — (% - s_ll)}&i <In(4nC?).

Due to (19), (21), from here we get the inclusion

{i: w(kz) <4n~(l)} C{i: A

< 4o} (39)
if j; < 3. Using similar arguments we get the inclusions
- (k _ Eu+1In(4nCY)
{iz i <anl} { %> tys2 - +7}

a;

(40)
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It will be shown below that the estimate (14) will be ensured if we take a conatant
an increasing functiony : [0, 2] — [0, 1] and a decreasing functiai : (0, 1] — (0, 00),
satisfying the following conditions:

a > max{4p,11In(4nC?), 8pyi1snt1},

y(0)=0, y(@2)=1, y(j))=¢j+a, j=0,1,...,

M) = agj+2|n(4nc]?+l), j=0,1,23,

M(gj) > amax{s;2In(4nC2,,). 45 2In(4nC% ,)}.  j=4.5..... (41)
First from (38), (39) and (40) it follows that
M(CM) }

i

{i: W, 5 < 4n11)l(li} Clit ki < _1(§/k+1) =
) i M)

I .
1 < 4nwl(%} CHitdi>y(Gy-2) — a(;k }

1

{it W,

= (k - o M(e
(ir 5% <ano®) it % <y 2o + ")}, (42)
’ ’ ad;
~ M
(i 59 <and DYy < Lis 3y > y(6) — (’)} (43)
’ ’ aa;
Yet we have to examine the following inclusions:
~ T
(i 5% <4} ¢ {i: i > —"}, (44)
’ ’ o
{i: Nl(ki <4n ~(1)} c{i: a;i <at}. (45)

We prove only the inclusion (44), since the inclusion (45) can be obtained analogously.
Having regard to the concrete form of the weights, we see that the inequality in the left-
hand side of (44) is equivalent to the inequality

2k <in@nc?) + [(1 - E) + i (s — "0):|az (46)
2po ro S

Taking into account (20), (41) and the assumption (5) we get that the inequality (46)
remains true after replacing its right-hand sideddy. Therefore, we get (44). After com-
bining (44), (45), (42) and (43), we obtain

4
~ ~(k
M iy <4ni) 0 iz i < dnin) € S 47
p=2
where
M(S M(e T
Sk,lz{i: =20 <y + T(kk), §<a,<ark} (48)
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Taking into account the definitions of the sequenﬁé% wf), and (15), we have

{in e <anD) C R, (49)
where
/(1 1\ - § 2
Rii=1i: — —— )+ 1 —s) |ai <In(@nC9) . (50)
s Tk
Combining (35), (36), (47) and (49) we obtain
m m
B(4nB@). B(d)) < | JJSka N Re)|- (51)
k=1i=1
By (19).
1 1 + 2 ( ) 1 fork > 1
- — — Tk — > — > > L.
s; Tk ko 2s;  4pp+a
Hence,
Reyclirai<a} ifk>1L (52)
Now we are going to show the inclusions
SkiN Ry CSkks kI=1,...,m. (53)

This relation is obvious ik = I. Therefore it remains to consider the case wheA!.
Suppose, firsty < [; then, by assumption; < §;. From the definitions of the functions
andM it follows thaty (§x) < y (1), M (8x) = M (8;). From here and the definitia$y ; we
get (53) fork < L.

Suppose now that > [. Since, by the assumption (5), > 1/, for alli € N, we derive
from (52) thatk; > 1/«. Hence we have

1 - M
et N Ry C {i: i<y e + MEO T _ o gwk}. (54)
o T o

On the other hand, by the definitionsjfand Ax, we have

M5 1
ys0 — 2O 5 < yigo) = ca= - (55)

Since the constant, depends only on, we can assume the numhgrchosen so that
1 1
— <= (56)
qa o

Taking into account (54), (55), (56), we get (53) in the dasel as well. Thus the relation
(53) is proved. Together with (51) it gives the relation

m
U Sk k|-
k=1

Remembering (14) we obtain the desired estimate (18). This completes the proof.

B(4nB(©), B(d)) <
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5. Invariance of y,

Theorem 11. Let the spaces X = E(1, ), X = E(x, @) beisomorphic. Then (11X) ~ (1)
for eachn € N.

Proof. Applying Lemma 10 we are going to ebtsh the estimates (12), (13) for each
m € N and arbitrary collections of parameters (10) satisfying the condition: among the
numberssy, &2, ..., 8, there are no more thandifferent. Therewith the function will
be chosen in the end of our proof, while the constamiill be the same as in (14).

Because of symmetry we need to prove only the inequality (12). Let us rewrite this
estimate, using (11), in the form

{i: (hivan e | Pk} {i: (ivane | Qk}

k=1 k=1

<

’

where
T
01 = (930, 9 (0] x (f,mk}, k=1,2,....m.

We cover each rectanglg, by an appropriate couple of non-intersecting rectangles
and P/ (some of them may be empty) and then apply Lemma 10. For construction of
above-mentioned rectangles we négdefine the decreasing functign: (0; 1] - R, so
that

M)

v —>=, 0<é&<1, 57
© > <&< (57)

whereM andy are as in Lemma 10. We are acting in a different way for each of three
cases:

(@) = ¥ (8);

(b) e < W (k) <t;

(©) tk < W (8.
Setting the notation

7= max{¥ (&), w}, = min{w (&), 1},
oo [P} ifn> e,
=11 otherwise

we put

P (k. ex] x (r7, %] inthe cases (a) and (b)
LY/ otherwise

and

Pl _ ? in the case (a)
71 Gks 611 x (., 1] otherwise
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Applying Lemma 10, we get

m m
{i: (hiyai) € U(P,gup,g/)} < :i: (hi, @) € U(ﬁ,guﬁ,g’)} :
k=1 k=1
with
5 _ ) (AL EL] % (%’é ark] inthe cases (a) and (b)
k @ otherwise
and
s |9 in the case (3)
71 Ak Ef1x (%, at;]  otherwise
where
M (8x) _ M (&)
A=y @) — —2,  Ep=y He + 2,
Tk Tk
M6 _ M(g)
M=y - 2O e ¢
Tk Tk

It follows from (57) and the definition of the numbersthat
A > }7/(51&.
2
Sincey (¢) < y ~1(&) wheng € [0, 1], we obtain also the estimate
E, < §J/_l(é?k)-
2
Fromi; > 1/a; and (57) it follows that

lit Givap) e P} Vit (Mi,dp) € _r E{ [ (2 an [}
20¥ (8;) o
We can always assume that
1
= —, k=1,2,...,m.
2
Therefore, taking into account (57), the definition of the numlgrand the estimate
y (&) <y~ 1(®), £ €0, 1], we obtain that

E < gyfl(s;) < gyl(wl(z—ik».
Now we choose an increasing functign[0; 2] — [0; 1], ¢(2) = 1, ¢(0) = 0, so that

1 1
200 @ 20 (y (%)) }

Then the estimate (12) holds for eaahe N and any collection of parameters (10) satis-
fying the condition: among the numbeé¥s 32, . . ., &, there are no more thandifferent.
This completes the proof.O0

(1 2
w(é)émln{iy@),y<:—35) §€[0;1].
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6. Basic subspaces of finite and infinite type

In this section we consider only Montel spacés- E (A, a), thatise; — oo is assumed.
Given a subsequende= {i;}xen Of N abasic subspace X; spanned bye;: i € I} is from
the same clas§. Denote by&o(r, a) (respectivelyEs (1, a)) the collection of all basic
subspace&’; which are isomorphic to power seriggaces of finite (respectively, infinite)

type.

Proposition 12[33,37].Let X = E (), a) beMontel and I = {i;} a subsequenceof N. Then
a basic subspace X; belongs Eo(r, a) (respectively, Eq (1, a)) if and only if lim;c; A; =0
(respectively, inf;c; {A;} > 0). Therewith X; is quasidiagonally isomorphic to Eo(c)
(respectively, Ex(c)), where ¢ = (cx) = (a;,).

Now we are going to give a solution of Problem 2. First we consider the simpler case of
basic subspaces of infinite type, which is gdalile from one-rectagle invariants (Propo-
sition 7 withm = 1).

Theorem 13. Let X = E(A,a) and X = E(X,¢) be isomorphic. Then for each L e
. d
Exo(X, a) thereexists M € £, (A, a) suchthat L q: M.

Proof. SinceX ~ X, applying Proposition 7 witln = 1, we obtain that there is a function
¢:[0; 1] — R4 and a constant such that the inequality

W6 L, < puf (go(a), T on) (58)
o

holds foranys > 0and 1<t < t.

Letnow L = X; € Ex(A,a), I = {ix}. Then, by Proposition 12, there dg > 0 such
that A; > &g if i € I. Considerc = (cx) = (a;;,) and¢ = (¢x) = (a;,) with J = {ji} =
{j: Xj > ¢(80)}. Then, due to (58), we obtain the following estimates for the counting
functions (see (4)) of the sequeneeandc:

Mc(z,t) <p1(do, L7, 1) < Mf (90(5), 1 Z, at) = M5<£, at>.
o o

Therefore, by Proposition 3, we deduce tlﬂa?:d Eso(€) KR Eoo(0) « X, whereX; is
a basic subspace of spanned bye;: j € J}. ThusL is quasidiagonally isomorphic to
some basic subspadé of X, which, due to Proposition 12, belongs&g, (%, @). This
completes the proof. O

Theorem 14. Let X = E(x,a) and X = E(,a) be isomorphic spaces. Then for each
- d
L € £, a) thereexists M € &R, @) suchthat L ~ M.

Proof. Applying Theorem 11 with = 1 we derive fromX ~ X that there exist an increas-
ing functiony : [0, 2] — [0, 1], (2) = 1, ¢(0) = 0, and a constamt > 0 (both independent
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of m) such that the estimate (12) holds for all collections of parameters (10) satisfying the
condition:§y =0 forallk=1,2,...,m,m eN.
LetL = X; € &o(A,a), I ={is}. ThenL 9;?Eo(c) with ¢ = (¢;) = (a;,). Sincer;, — 0
anda; — oo, there is an increasing continuous functjoriR . — [0, 1] such that/(0) =0
andi; <y(a)ifiel.
Consider two sequences of rectangles:

P:= (0 y (@ H] x (@1 a1,
Ok = (0,0 Yy @ ™H)] x (@2, keN,

and defineJ = {js} := Ugen (¢ (X,-, aj) € Ok}, asequenceé = (¢,) := (aj,) and a sub-
spaceX ; spanned irX by {e;: j € J}.
By the above choice af anda we have

{i: (Ai,a;) € U Pk} < H] ()N\jygj)e U Qk}

keK keK

(59)

for any finite setk € N.
Take an arbitrary andr (1< t <t < 4+o00) and choosé, [ € N so that

ak_1§t<(xk, al_1<t§al.

Then, by the construction, we have

!
M(z,1) < :ii (Ai>ai) € Upj} ,
j=k
- !
Mg(;,olzt) = {i: (5»,',5,’) € LJ](Q,”
j:

From here, together with (59), we get the estimate

T 2
M. (t,t) < M; —, ot ).
o

~ qd
SinceX q: Eo(¢) we get, by Proposition 3, thdt is isomorphic quasidiagonally to some
basic subspac¥ c X, which belongs, by Proposition 12, &g(x,a). O

7. Comparison of n-equivalence and equivalence of the systems characteristics

In [9] a special pairX and X of spaces (2) was constructed to show that the equiv-
alence of all characteristigsX and nX is not sufficient for existence of quasidiagonal
isomorphism between these spaces. The questiether these spaces are isomorphic was
behind the powers of invariants considered there. Now applying Theorem 11 with
we can easily conclude that they are not isomorphic.
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Right now we are going to show that even much stronger invariants baseequi-
valence with arbitrary: still are not sufficient to characiee quasidiagonal isomorphisms
of spaces (2). To accomplish this we shall construct an appropriate example.

Proposition 15. There exist two first type power Kothe spaces X = E(2,a) and X =
E (X, a), satisfying the following conditions:

0 ()~ (uf)., neN
(i) (1) 2 (u).

Proof. As in [9] the required space¥ = E(A, a) and X = E(X, @) will be constructed
from finite dimensional blocks

X = @ X5, X= @ )?l,j'
(1,j)eN? (1,j)eN?
Take an arbitrary number > 1, the sequencé&;) | 0, &; € (0, 1), the sequencés)) 1

oo so thatB: > «. y
Let! e N, then each block; ;(X; ;) will correspond to some&2/ + 2)-dimensional
) —_ O LD @) O O @) O] 0 _ .
vectork'™ = (ky ", ky, ..., ky o) suchthak, ' k... . ky o e Nandk;” <k, <--- <
k%ﬁrz. The setk; of all such(2/ 4 2)-dimensional vectors we enumerate anyhb{ j) =
(ki’)(j), kg)(j), R kgﬁrz(j)), j € N. So, the blocks numbered with, j) correspond to
the vectork® ().

Now we enumerate all elements of the 8ét (/,, j,), p € N, and select a sequence of
positive numbersn;, ;,) so thatn;, ., j,., = ﬁi’”“nlp,jp. In the subsequent text we will
write [ andj instead of , andj,, respectively.

PutYl(;.) = ,Blvflm,j, v=1,2,...,21+5. InFig. 1 it is drawn the se{; ;, consisting
of horizontal ang vertical segments, where all poitts a;), (A, @;) corresponding to the
blocksX; ; andX; ;, will be located.

On the segmenﬂ)’lﬁ), )’lf2,.1+5)] we select a finitex-dense sefl; ;, including all the
points Yz(,]})' v=12,...,2l +5. We remind that a seA C R is said to bex-dense in
B C R if for each pointb € B there is a poin& € A such thati/ /o <b < Jaa.

Let L, ; be the set of all pointé,, v ;) € Si,; and(d, y;,;,5), such thaty; ; s € M; ;
and 1< r < kglﬁrz(j). After enumeration this set we get

Lij={Cjivji), i=12...,n;—1}
with some numben; ;. Put two additional points
= 2 (U+2) ~ (+4) (2+4)
yLj € [Yl,j X ] and 3,;€ [Yl,j X I
Now define the vectors
1,j @, N\™J 1,j (VN (. j TINYT ~ (1, f ~ (1, j)\"".J
2 ,/)z()\i ])'—1’ a('/)z(ai J)'_ oAl '1)2()‘1' J)' a('/)z(ai ])'

i= i= i= i=1
by the following formulae:
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Y

YI.(-?HS) B

(14+3)
Y -

A1)
Yl.j

5!»-.‘;',’”(])

&

(
l+>1<])

Fig. 1. The sefs; ;.

ifi=1,2,...,n1,j—1,

@y _sp_ )i !

U]
§k1+l
ifi=12..n;—1

MO MY
Ifl=n1,j,

! Vi, j
E(z,j)_ i Fi=12...,n;—-1

i - yl,j if i = nj.
Finally we construct the sequences: (1), a = (a;), A = (&), @ = (a;) by the rule; =

(¢.j) ; . - L ora
gi_(nll,j1+"'+nlp,1,jp,l) forny L <i<n, j, (np, j, == 0),wheref may bex, a, A ora.

To prove the statement)(we take any increasing functign: [0, 2] — [0, 1], satisfying
the following conditions:

p—lvjp—

(=0, 9@ =1 @0 <é1, @G&) <&it1.
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It is easy to check that (i) is true with the functigrand the constant, which is defined
by the formula

e ifn=1,
“1Bur ifn=23,....

On the other hand, show that the statement (ii) also holds, i.e., the systemreacfangle
characteristics, considered with the equivalergalistinguishes those spaces. To check
this we have to show that for any choice of a positive constaahd an arbitrary increasing
function ¢ : [0, 2] — [0, 1], ¥ (0) = 0, ¥(2) = 1, there existn € N and a collection of
parameters, ¢, 7, t, of kind (10) such that the estimate

WD @, 657, 1) > pG? (w(a) ¥ le); <, yr) (60)
does not hold. To this end we select two natural numbkeaad jo so that
Bio > v, Skilo)(jo) <y (@),
50 (jo) < 'ﬁ(gkﬁlﬂ(jo))’ r=23..2+2

Then we putn = lp + 2 and pické = (§,), e = () € (0, 1]", T = (7,), t = () e R’} in
the following way:

=y (éum ), r=12...m—1 Su:=vy" (5(10) ),
10+r( Jjo) lo+1(j)

rzg(lo) r=212,....m—-1, Em : g(lo)( o)’

lo+l
1
=le(or)]0 r=212....,m-—1, T ::)/Yl(0 io
1 lo+2
1= ngj;)’ r=12,...,m—1, tm ::legO;g).

Regarding (11), we obtain

{i: (Ai,a;) € U Pr} >

r=1

p S, 617,10 =

:i: (xi,ai)eUQr}

r=1
=i <W(5), v e % J/t>,
where
Q (1//'(8 ) I/f (8r ] <%,ytr}, r=1,2,...,m.

This means that the inequality (60) is violated, which completes the proof.
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