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Abstract

Using some new linear topological invariants, isomorphisms and quasidiagonal isomorphis
investigated on the class offirst type power Köthe spaces [Proceedings of 7th Winter School in Dro
gobych, 1976, pp. 101–126; Turkish J. Math. 20 (1996) 237–289; Linear Topol. Spaces Co
Anal. 2 (1995) 35–44]. This is the smallest class of Köthe spaces containing all Cartesian a
jective tensor products of power series spaces and closed with respect to taking of basic su
(closed linear hulls of subsets of the canonical basis). As an application, it is shown that isom
spaces from this class have, up to quasidiagonal isomorphisms, the same basic subspaces
(infinite) type.
 2004 Elsevier Inc. All rights reserved.

Keywords: Linear topological invariants;m-rectangular characteristics; Compound invariants; Quasidiagona
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1. Introduction

A matrix A = (ai,p)i,p∈N is called Köthe matrix if 0 � aip � aip+1, i,p ∈ N, and
ai,p > 0 for somep = p(i), i ∈ N; Köthe space K(A) defined byA is a Fréchet spac
of all sequencesx = (ξi)i∈N such that|x|p := ∑

i∈N
|ξi |aip < ∞, p ∈ N, with the topol-

ogy generated by the seminorms{| · |p: p ∈ N}. The notatione = (ei)i∈N will be always
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used for the canonical basis ofK(A) regardless of a matrixA. Any closed subspace o
K(A) spanned by a subset of a canonical basis is called abasic subspace.

An important particular case is represented by so-calledpower series spaces (or centers
of absolute Riesz scales),

Eα(a) := K
(
exp(αpai)

)
, (1)

wherea = (ai)i∈N is a positive sequence,αp ↑ α, −∞ < α � +∞.
We say thatK(A) is quasidiagonally isomorphic to K(B) (quasidiagonally embedded

into K(B)) and write

K(A)
qd� K(B)

(
respectively, K(A)

qd
↪→ K(B)

)
if there is an isomorphism (respectively, an isomorphic embedding)T :K(A) → K(B)

such thatT ei := tieσ (i), i ∈ N, where(ti) is a sequence of scalars andσ : N → N is a
bijection (respectively, injection). The following problem still remains open on the cla
all Köthe spaces (see, e.g., [1,7,13,14,20,21,27,37]).

Problem 1. Let K(A) � K(B). Is it true thatK(A)
qd� K(B)?

Partial solutions of this and related problem about quasiequivalence of all ab
bases have been the subject of much research for various classes of Köthe spac
e.g., [7,10–14,17,20,21,23,27–31,37]). Important instruments in those investigatio
classical linear topological invariants (approximative and diametrical dimensions
e.g., [2,16,20,24]). These invariants are used at their best forregular Köthe spaces
[10,11,13,14,17,25,27], in particular, for the spaces (1) withai ↑ ∞. Problem 1 for non-
Montel (ai �→ ∞) spaces (1), which turns to be beyond powers of the classical invar
was investigated in [21–23] (withl2-norms instead ofl1-norms) by means of some ne
invariants based on spectral behavior of the operator generating the scale; these invaria
exerted an influence on further development of linear topological invariants dealing
non-regular spaces, especially on its early stage).

We notice that power series spacesof finite type (−∞ < α < ∞) andof infinite type
(α = ∞) have very different structure, in particular, a complemented subspaceL of a
spaceE0(a) can be isomorphic to a subspace ofE∞(b) if and only if L is normed, hence
finite-dimensional ifE0(a) is Montel [28,30]. Therefore Köthe spaces of a mixed na
(with the both, finite and infinite type spaces (1) represented as its basic subspaces) a
great interest, since they, as a rule, are irregular and need radically new invariants.
paper we investigatepower Köthe spaces of first type [31,37],

E(λ,a) := K

(
exp

((
− 1

p
+ λip

)
ai

))
, (2)

wherea = (ai)i∈N, andλ = (λi)i∈N are sequences of positive numbers. The classE of such
spaces is the smallest class of Köthe spaces, containing all Cartesian and projective tens
products of power series spaces (represented,in a natural way, as Köthe spaces) and clo
with respect to taking of basic subspaces. Anyessentially mixed space (2) (= not reduced
to a power series space or Cartesian product of spaces (1)) has quite complicated structure
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it possesses a countable (continuum) base of the “filter” of basic power series subsp
infinite (finite) type.

Our main goal is the complete solution of the following problem, which gives an im
tant approach to Problem 1 for the classE (its quite partial solution has been considered
[31–34,37]).

Problem 2. Let X = E(λ,a), Y = E(µ,b) andX � Y . SupposeL is a basic subspace o
X which is isomorphic to a power series space of finite (respectively, infinite) type

possible to choose a basic subspaceM in Y of the same kind so thatL
qd� M?

Problem 1, for the spaces (2), was studied in [7,9] by means ofm-rectangular charac
teristics which counts up how many points of the sequence(λ, a) = ((λi , ai))i∈N, defining
the space (2), fall within a union ofm rectangles,

m⋃
k=1

{
(ξ, η): δk < ξ � εk; τk < η � tk

}
. (3)

Quasiequivalent isomorphism of spaces from the classE was characterized there com
pletely in terms of some, uniform bym, equivalence of these characteristics (see Prop
tion 8 below); but for any isomorphic pair of such spaces it was shown only some w
equivalence of those characteristics (depending on the number of rectangles).

In the present paper we prove that isomorphism of spaces from the classE entails much
stronger equivalence of multirectangular characteristics (Theorem 11) (with estimates n
depending on a number of rectangles but only on a number of different values ofδk in (3)).
The crucial tools arecompound invariants [4–7,35–37] based on evaluation of classi
entropy-like characteristics (inverse to Bernstein diameters) of propersynthetic absolutely
convex sets, which are quite intricate interpolational constructions made up of sets
given bases of neighborhoods (see the proof of Lemma 10).

As an application of those invariants, we obtain a complete solution of Problem 2 (
rems 13 and 14). Now we are able also to show that the spaces from the proof of The
in [9] are not isomorphic (this was impossible with the invariants considered in [7
On the other hand, we construct a new quite intricate example (in Proposition 15), whic
shows that there remains a gap (though narrowed down) between characterization
morphisms and quasidiagonal isomorphisms.

For not explained here notions we refer to (see, e.g., [15,19]).

2. Preliminaries

2.1. Let X,X̃ be Köthe spaces and{fi}i∈N, {gi}i∈N absolute bases in the spacesX

andX̃, respectively. We say that these bases arequasiequivalent if there exists an isomor
phismT :X → X̃ such thatTfi = tigσ(i), where(ti ) is a sequence of scalars andσ :N → N

is a bijection. For two sequences of positive numbersa = (ai) andã = (ãi) we shall write
a � ã or ai � ãi if there exists a constantc > 1 such thatai/c � ãi � cai .
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In [21–23] B. Mityagin investigated the isomorphic classification of power series spac
(1) and the structure of complemented subspaces of them in terms of the characteristic

Ma(τ, t) := ∣∣{i ∈ N: τ < ai � t}∣∣, 0 < τ � t, (4)

where|A| denotes the cardinality of the finite setA and+∞ if A is an infinite set. We
shall use the following fact, which is a quite particular case of his results (see al
Corollary 3]).

Proposition 3. Let a = (ai) and ã = (ãi) be sequences of real numbers such that
ai � 1, ãi � 1. Suppose X = E0(a) (or X = E∞(a)) and X̃ = E0(ã) (or X̃ = E∞(ã),
respectively). The following conditions are equivalent:

(i) X
qd
↪→ X̃;

(ii) ∃α > 1: Ma(τ, t) � Mã

(
τ

α
,αt

)
, t > τ > 0.

Dealing with spaces (2) we always assume without loss of generality that

ai > 1,
1

ai

� λi � 1, i ∈ N. (5)

Indeed, the spaceE(λ,a) is identically isomorphic to the spaceE(λ̃, ã) satisfying (2), if
we defineã, λ̃ as follows:ãi is equal toai + 1 if λi � 1 and toλiai + 1 otherwise;̃λi is
equal to 1/ãi if λi < 1/ãi , to 1 if λi > 1 and toλi for the rest ofi.

2.2. Let X be a class of locally convex spaces and letΓ be a set with an equivalenc
relation∼. We say thatγ :X → Γ is a linear topological invariant if X � X̃ ⇒ γ (X) ∼
γ (X̃), X,X̃ ∈ X .

The invariants considered here are based on the well-known characteristic of a
of absolutely convex setsU,V in a linear spaceX,

β(V,U) := sup{dimL: U ∩ L ⊂ V }, (6)

whereL runs the set of all finite-dimensional subspaces ofXV = spanV . This characteris
tic relates to Bernstein diametersbn(V,U) [26], namely

β(V,U) = ∣∣{n: bn(V,U) � 1
}∣∣.

We shall use the following properties, readily apparent from the definition (6):

if V1 ⊂ V andU ⊂ U1, thenβ(V1,U1) � β(V,U), (7)

β(αV,U) = β

(
V,

1

α
U

)
, α > 0. (8)

Let f = {fi}i∈N be an absolute basis in a Köthe spaceX. A set

Bf (a) :=
{

x =
∞∑
i=1

ξifi ∈ X:
∞∑
i=1

|ξi |ai � 1

}

is the weightedl1-ball in X, defined with a given weight sequence of positive numbersa =
(ai)i∈N. For weighted balls the characteristic (6) admits an especially simple comput
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β
(
Be(b),Be(a)

) = ∣∣{i: bi � ai}
∣∣.

2.3. In the construction of compound invariants (see Sections 3–5) we shall us
following simple geometrical facts.

Proposition 5. Let e be an absolute basis of a Köthe space X, a(j) = (a
(j)

i ), j = 1, . . . , r ,
sequences of positive numbers and c = (ci), d = (di) sequences, defined by the following
formulae: ci = max{a(j)

i : j = 1, . . . , r}, di = min{a(j)
i : j = 1, . . . , r}, i ∈ N. Then the

following relations hold:

Be(c) ⊂
r⋂

j=1

Be(a(j)) ⊂ rBe(c), Be(d) = conv

(
r⋃

j=1

Be(a(j))

)
,

where conv(M) means the convex hull of a set M .

For a coupleAν = Be(a(ν)), ν = 0,1, we consider the following one-parameter famil
of weighted balls:

(A0)
1−α(A1)

α := Be(a(α)),

where

a(α) := ((
a

(0)
i

)1−α(
a

(1)
i

)α)
i∈N

, α ∈ R.

The following statement is the well-known interpolational fact (see, e.g., [18, IV, T
rem 1.10]) written in a geometrical form.

Proposition 6. Let f and g be absolute bases of a Köthe space X and Aν = Bf (a(ν)),
Ãν = Bg(ã(ν)), ν = 1,2. Then

Aν ⊂ Ãν, ν = 1,2,

implies

(A0)
1−α(A1)

α ⊂ (Ã0)
1−α(Ã1)

α, α ∈ (0,1).

3. Multirectangular characteristics and compound invariants

Let λ = (λi)i∈N, a = (ai)i∈N be sequences of positive numbers with (5) andm ∈ N.
Following [1,6] (cf., [3,8]), we introducem-rectangle characteristic of a pair(λ, a) as the
function

µ(λ,a)
m (δ, ε; τ, t) =

∣∣∣∣∣
m⋃

k=1

{i: δk < λi � εk, τk < ai � tk}
∣∣∣∣∣, (9)

defined for
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set
δ = (δk), ε = (εk), τ = (τk), t = (tk),

0 � δk < εk, 0 � τk < tk < ∞, k = 1,2, . . . ,m. (10)

The function (9) calculates how many points(λi , ai) are contained in the union ofm rec-
tangles,

µ(λ,a)
m (δ, ε; τ, t) =

∣∣∣∣∣
m⋃

k=1

{
i: (λi, ai) ∈ Pk

}∣∣∣∣∣ =
∣∣∣∣∣
{

i: (λi , ai) ∈
m⋃

k=1

Pk

}∣∣∣∣∣, (11)

wherePk := (δk, εk] × (τk, tk], k = 1,2, . . . ,m.
Let λ̃ = (λ̃i ), ã = (ãi) be another couple of positive sequences andm a fixed natural

number. Thenfunctions µ
(λ,a)
m and µ

(λ̃,ã)
m are equivalent (or µ

(λ,a)
m ≈ µ

(λ̃,ã)
m ) if there exists

a strictly increasing functionϕ : [0,2] → [0,1], ϕ(0) = 0,ϕ(2) = 1, and a positive constan
α such that the following inequalities:

µ(λ,a)
m (δ, ε; τ, t) � µ(λ̃,ã)

m

(
ϕ(δ),ϕ−1(ε); τ

α
,αt

)
, (12)

µ(λ̃,ã)
m (δ, ε; τ, t) � µ(λ,a)

m

(
ϕ(δ),ϕ−1(ε); τ

α
,αt

)
(13)

hold with ϕ(δ) = (ϕ(δk)), ϕ−1(ε) = (ϕ−1(εk)), τ/α = (τk/α), αt = (αtk) for all collec-
tions of parameters (10) withεk � 1, τk � 1, k = 1, . . . ,m (in line with our agreement (5
we shall suppose always that the parameters (10) satisfy these conditions). IfX = E(λ,a),
we write alsoµX

m in place ofµ(λ,a)
m .

The following statement shows that each individualm-rectangular characteristic is
linear topological invariant.

Proposition 7 (see [7]).Let X = E(λ,a), X̃ = E(λ̃, ã), m ∈ N. If X � X̃, then µX
m ≈ µX̃

m.

Systems of characteristics (µ
(λ,a)
m )m∈N and (µ

(λ̃,ã)
m )m∈N are equivalent if the functionϕ

and the constantα can be chosen so that the inequalities (12), (13) hold for allm ∈ N (we

denote this equivalence by(µ(λ,a)
m ) ≈ (µ

(λ̃,ã)
m )).

Proposition 8 (see [9, Proposition 1]).For spaces X = E(λ,a) and X̃ = E(λ̃, ã), the
following statements are equivalent:

(a) X
qd� X̃;

(b)
(
µX

m

) ≈ (
µX̃

m

)
.

We do not know whether this statement remains true if
qd� is replaced by�, in other

words, is the quasidiagonal invariantγ (X) := (µX
m)m∈N also a linear topological invarian

on the classE (with the above notion of equivalence)? Nevertheless we show here tha
possible to get new linear topological invariants, essentially stronger than any invaria
simply by taking the same mapγ (X) but introducing new equivalence relations on the
Γ := {(µX

m)m∈N: X ∈ E}.
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Definition 9. Let n ∈ N. We say that systems of characteristics(µX
m) and (µX̃

m) are

n-equivalent (and write(µX
m)

n≈ (µX̃
m)) if there is a strictly increasing functionϕ : [0,2] →

[0,1], ϕ(0) = 0, ϕ(2) = 1, and a positive constantα such that, for arbitrarym ∈ N, the
inequalities (12) and (13) hold for all collections of parameters (10), satisfying the
lowing additional condition: among the numbersδ1, δ2, . . . , δm there are no more thann
different.

We consider the mapsγn fromE onto the set with equivalence(Γ,
n≈) which all coincide

with the mapγ if considered as set maps,n ∈ N. It will be shown in the next sections th
the mapγn is a linear topological invariant. As in [7] the main tool arecompound invari-
ants: the characteristic (6) will be applied to some “synthetic” absolutely convex setsV,U ,
built in a form of some geometrical or interpolational constructions from sets, belong
a given basis of neighborhoods of zero in the spaceX. The parametersδ, ε, τ, t , satisfying
additional condition from Definition 9, will be involved into those constructions in su
manner that, applying properties of the characteristicβ , we provide the desired estimat
(12), (13), uniformly bym. This plan will be realized in the next two sections within t
proofs of Lemma 10 and Theorem 11.

4. Main lemma

Lemma 10. Let X = E(λ,a), X̃ = E(λ̃, ã), n ∈ N. If X � X̃, then there exists an increas-
ing function γ : [0,2] → [0,1], γ (0) = 0, γ (2) = 1, a decreasing function M : (0,1] →
(0,∞) and a constant α > 1 such that the inequality

µX
m(δ, ε; τ, t) � µX̃

m

(
γ (δ) − M(δ)

τ
, γ −1(ε) + M(ε)

τ
; τ

α
,αt

)
(14)

holds for each m ∈ N and all collections of parameters (10)satisfying the condition: among
the numbers δ1, δ2, . . . , δm, there are no more than n different.

Proof. We divide the proof into several parts.
(1)General scheme. LetT : X̃ → X be an isomorphism. We consider two absolute ba

of the spaceX: the canonical basise = {ei}i∈N in X andT -image of the canonical basis
X̃: ẽ = {ẽi}, ẽi = T ei , i ∈ N. Then eachx ∈ X has two basis expansions:

x =
∞∑
i=1

ξiei =
∞∑
i=1

ηi ẽi ,

and the system of norms‖x‖p = ∑∞
i=1 |ηi |ãi,p, x ∈ X, p ∈ N, is equivalent to the origina

system of norms inX: |x|p = ∑∞
i=1 |ξi |ai,p, x ∈ X, p ∈ N; here

ai,p :=
(

exp

((
− 1 + λip

)
ai

))
, ãi,p =

(
exp

((
− 1 + λ̃ip

)
ãi

))
.

p p
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To prove the inequality (14) we shall build two pairs of synthetic neighborhoodsU,V and
Ũ , Ṽ in the form of certain compound geometrical and interpolational constructions u
as raw materials, the ballsBe(Ap),Bẽ(Ãp) with the corresponding weights

Ap := (ai,p), Ãp := (ãi,p). (15)

The setsU,V, Ũ, Ṽ will be constructed so that, on the one hand, to provide the inclus

U ⊃ Ũ , V ⊂ Ṽ , (16)

and, on the other hand, to ensure the estimates

µX
m(δ, ε; τ, t) � β

(
V,

1

n
U

)
, (17)

β

(
Ṽ ,

1

n
Ũ

)
� µX̃

m

(
γ (δ) − M(δ)

τ
, γ −1(ε) + M(ε)

τ
; τ

α
,αt

)
. (18)

Then the desired estimate (14) will be obtained immediately, since the inclusion
imply the inequality

β

(
V,

1

n
U

)
� β

(
Ṽ ,

1

n
Ũ

)
.

(2) Construction of synthetic neighborhoods. First, we take anyn,m ∈ N. Since the
systems of norms are equivalent we can choose an infinite chain of positive integers

r0 < p0 < s0 < r̃1 < p̃1 < s̃1 < · · · < r̃l < p̃l < s̃l < · · · < r̃n

< p̃n < s̃n < rn+1 < pn+1 < sn+1 < q1 < · · · < qj < · · · , (19)

so that the following inclusions:

Be(Ap̃l
) ⊂ CBẽ(Ãr̃l ), Bẽ(Ãs̃l ) ⊂ CBe(Ap̃l

), l = 1,2, . . . , n,

Be(Apl ) ⊂ CBẽ(Ãrl ), Bẽ(Ãsl ) ⊂ CBe(Apl ), l = 0, n + 1,

Be(Aqj+1) ⊂ CjB
ẽ(Ãqj ), Bẽ(Ãqj+1) ⊂ CjB

e(Aqj ), j ∈ N, (20)

are valid with some constantsC = C(n),Cj , j ∈ N. Without loss of generality, we can a
sume that each consequent number of the chain (19) is four times larger than the precedi
one and that the sequenceqj satisfies the condition 4s0qj < qj+1.

Let σ1 < · · · < σl < · · · represent all different values of the sequence(δk), which is
always supposed to be non-decreasing. Now we define the numberspk := p̃lk , rk := r̃lk ,
sk := s̃lk , wherelk is such thatδk = σlk , k = 1,2, . . . ,m. Further we consider the sequen

ζ0 = 1, ζj = 1

qj

, j ∈ N, (21)

and choose indicesνk andjk so that

ζνk � δk < ζνk−1, ζjk+1 < εk � ζjk , k = 1,2, . . . ,m. (22)
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Now we are ready to define the sets serving as elementary blocks in the constructio
setsU,V, Ũ, Ṽ . Beginning with the first couple of the setsU,V , we consider the block
(k = 1, . . . ,m)

W
(k)
l = Be

(
w

(k)
l

)
, l = 1,2, W̄

(k)
l = Be

(
w̄

(k)
l

)
, l = 1,2,3,4, (23)

where each weight-sequence will be responsible for one of the inequalities in (9). Fi
set

w
(k)
1 = w̄

(k)
1 = Apk , k = 1,2, . . . ,m.

The estimates forλi from below and from above in (14), (9) are connected with two serie
of “interpolational” weights (k = 1, . . . ,m)

w
(k)
2 = A

1/2
p0 A

1/2
qνk

, w̄
(k)
2 =

{
A

1/2
p0 A

1/2
qjk−1 if jk > 3,

Ap0 if jk � 3.

To meet the estimates ofai by the parametersτk and tk in (14) we need the following
series:

w̄
(k)
3 = exp

(
τk

2p0

)
Ap0, w̄

(k)
4 = exp(−2pn+1tk)Apn+1, k = 1,2, . . . ,m.

To construct the sets̃U, Ṽ we use the corresponding series of blocks, which are balls
respect to the second basisẽ,

W̃
(k)
l = Bẽ

(
w̃

(k)
l

)
, ˜̄W(k)

l = Bẽ
( ˜̄w(k)

l

)
.

Their weights we define by the same formulae as for the balls (23) but with the follo
rules of the substitution: to get the weightw̃

(k)
l (or ˜̄w(k)

l ) we putÃsk/C (respectively,CÃrk )
instead ofApk andÃqνk

/Cνk (respectively,Cjk−2Ãqjk−2) instead ofAqνk
(or, respectively

Aqjk−1). Putting

U(k) = conv

(
2⋃

l=1

W
(k)
l

)
, V (k) =

4⋂
l=1

W̄
(k)
l ,

Ũ (k) = conv

(
2⋃

l=1

W̃
(k)
l

)
, Ṽ (k) =

4⋂
l=1

˜̄W(k)
l

with k = 1,2, . . . ,m, we define the sets

U =
m⋂

k=1

U(k), V = conv

(
m⋃

k=1

V (k)

)
,

Ũ =
m⋂

k=1

Ũ (k), Ṽ = conv

(
m⋃

k=1

Ṽ (k)

)
.

Taking into account (20), we have the inclusions
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be
5,

e con-

,

hetic
ient
W
(k)
l ⊃ W̃

(k)
l , l = 1,2, W̄

(k)
l ⊂ ˜̄W(k)

l , l = 1,2,3,4,

k = 1,2, . . . ,m,

which provide the inclusions (16).
(3) Approximation of sets U,V, Ũ, Ṽ with the weighted l1-balls. Unlike elementary

blocks, the setsU , V , Ũ andṼ are not weighted balls. It is why Proposition 4 cannot
used directly for the calculation ofβ(V,U) andβ(Ṽ , Ũ). Therefore, using Proposition
we approximate these sets with some appropriate weighted balls. For this purpose w
sider the sequencesc(k) = (c

(k)
i ), c̃(k) = (c̃

(k)
i ), d(k) = (d

(k)
i ), d̃(k) = (d̃

(k)
i ), k = 1,2, . . . ,m,

and the sequencesc = (ci), c̃ = (c̃i), d = (di), d̃ = (d̃i), defined as follows:

c
(k)
i = min

{
w

(k)
i,l : l = 1,2

}
, c̃

(k)
i = min

{
w̃

(k)
i,l : l = 1,2

}
,

d
(k)
i = max

{
w̄

(k)
i,l : l = 1,2,3,4

}
, d̃

(k)
i = max

{ ˜̄w(k)

i,l : l = 1,2,3,4
}
,

ci = min
{
d

(k)
i : k = 1,2, . . . ,m

}
, c̃i = min

{
d̃

(k)
i : k = 1,2, . . . ,m

}
,

di = max
{
c
(k)
i : k = 1,2, . . . ,m

}
, d̃i = max

{
c̃
(k)
i : k = 1,2, . . . ,m

}
.

By Proposition 5 the following relations hold (from now, the superscripts(e) and(ẽ) will
be omitted, since they are transparent from the context):

B(c(k)) = U(k), B(c̃(k)) = Ũ (k), B(d(k)) ⊂ V (k), Ṽ (k) ⊂ 4B(d̃(k)).

From the condition for the numbersδk , k = 1,2, . . . ,m, it follows that if δk = δl , then
jk = jl , pk = pl , w

(k)
i,1 = w

(l)
i,1, i ∈ N, w

(k)
i,2 = w

(l)
i,2, i ∈ N, c

(k)
i = c

(l)
i , i ∈ N. Since there are

no more thann different among the setsU(k), k = 1,2, . . . ,m, we get, using Proposition 5

B(c) ⊂ V, U ⊂ nB(d), Ṽ ⊂ 4B(c̃), B(d̃) ⊂ Ũ .

Therefore, due to (7), (8), we have

β
(
B(c),B(d)

)
� β

(
V,

1

n
U

)
, (24)

β

(
Ṽ ,

1

n
Ũ

)
� β

(
4nB(c̃),B(d̃)

)
. (25)

(4) Estimate (17). Now we are ready to show how the above construction of synt
neighborhoodsU andV results the estimate (17). Taking into account (24) it is suffic
to prove the inequality

β
(
B(c),B(d)

)
� µX

m(δ, ε; τ, t). (26)

From Proposition 4 we have

β
(
B(c),B(d)

) = ∣∣{i: ci � di}
∣∣.

By the definition of the sequencesc andd , we obtain

β
(
B(c),B(d)

) =
∣∣∣∣∣

m⋃ m⋃{
i: d

(k)
i � c

(l)
i

}∣∣∣∣∣.

k=1 l=1
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r than

.

e left
This implies the estimate

β
(
B(c),B(d)

)
�

∣∣∣∣∣
m⋃

k=1

{
i: d

(k)
i � c

(k)
i

}∣∣∣∣∣. (27)

Due to the definition of the sequencesd(k) andc(k), k = 1,2, . . . ,m, we get{
i: d

(k)
i � c

(k)
i

} =
{
i: max

1�l�4
w̄

(k)
i,l � min

l=1,2
w

(k)
i,l

}
. (28)

Sincew̄
(k)
1 = w

(k)
1 , the set in the right-hand side of (28) can be written in the follow

form:

{
i: d

(k)
i � c

(k)
i

} =
4⋂

l=2

{
i: w̄

(k)
i,l � w

(k)
i,1

} ∩ {
w̄

(k)
i,1 � w

(k)
i,2

}
. (29)

To prove the estimate (26) we need to bring out the following inclusions (k = 1,2, . . . ,m):{
i: w̄

(k)
i,2 � w

(k)
i,1

} ⊃ {i: λi � εk}, (30){
i: w̄

(k)
i,1 � w

(k)
i,2

} ⊃ {i: λi > δk}, (31){
i: w̄

(k)
i,3 � w

(k)
i,1

} ⊃ {i: ai > τk}, (32){
i: w̄

(k)
i,4 � w

(k)
i,1

} ⊃ {i: ai � tk}. (33)

First we consider (30). Due to the definitions of the weights and (15), the inequality
left member of (30) is equivalent to the following inequality:

1

2p0
+ 1

2qjk−1
− 1

pk

� λi

(
1

2
qjk−1 + 1

2
p0 − pk

)
if jk > 3. (34)

By the assumption about the chain (19) and by (21), (22) the left side of (34) is large
1/(4p0) and the expression in round brackets is less than

qjk

4p0
= 1

4p0ζjk

� 1

4p0εk

.

Together with (34) this implies (30) ifjk > 3. In the casejk � 3 the inclusion (30) is trivial
The inclusion (31) can be obtained analogously.

It remains only to check the inclusion (32), since (33) can be gained similarly. Th
side inequality in (32) is equivalent to the inequality

τk

2p0
� (pk − p0)(1+ λip0pk)

p0pk

ai.

Since
(pk − p0)(1+ λip0pk)

p0pk

>
1

2p0
,

we get (32). It follows now from (29)–(33) that{
i: d

(k)
i � c

(k)
i

} ⊃ {i: δk < λi � εk, τk < ai � tk}.
Combining this with (27), we obtain (26), hence (17).
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s
(5) Estimate (18). Now we show that the construction of synthetic neighborhoodŨ

andṼ provides the estimate (18). Due to (25), it is sufficient to check the estimate

β
(
4nB(c̃),B(d̃)

)
� µX̃

m

(
γ (δ) − M(δ)

τ
, γ −1(ε) + M(ε)

τ
; τ

α
,αt

)
.

Applying Proposition 4 and taking intoaccount the definitions of the sequencesc̃ andd̃ ,
we get

β
(
4nB(c̃),B(d̃)

) =
∣∣∣∣∣

m⋃
k=1

m⋃
l=1

{
i: d̃

(k)
i � 4nc̃

(l)
i

}∣∣∣∣∣. (35)

For arbitraryk, l = 1,2, . . . ,m, using the definitions of the sequencesc̃(k) and d̃(l), we
obtain

{
i: d̃

(k)
i � 4nc̃

(l)
i

} ⊂
4⋂

ρ=1

{
i: ˜̄w(k)

i,ρ � 4nw̃
(l)
i,1

} ∩ {
i: ˜̄w(k)

i,1 � 4nw̃
(l)
i,2

}
. (36)

Having regard to the expressions for˜̄w(k)

i,2, w̃
(l)
i,1 and to (15), it is easy to see that ifjk > 3,

then the inequality

˜̄w(k)

i,2 � 4nw̃
(l)
i,1 (37)

is equivalent to the inequality[(
1

2
r0 + 1

2
qjk−2 − sl

)
λ̃i −

(
1

2r0
+ 1

2qjk−2
− 1

sl

)]
ãi � ln(4nC

√
CCjk−2 ).

By the assumptions about the chain (19), the coefficient beforeλ̃i can be estimated from
below byqjk−2/4, while the next expression in round brackets is less than 1/r0. Since

ζjk−3 = 1

qjk−3
>

4

r0qjk−2
,

we get the inclusion

{
i: ˜̄w(k)

i,2 � 4nw̃
(l)
i,1

} ⊂
{
i: λ̃i � ζjk−3 + 4ζjk−2 ln(4nC2

jk−2)

ãi

}
(38)

if jk > 3. In the casejl � 3, the inequality (37) is equivalent to the inequality[
λ̃i (r0 − sl) −

(
1

r0
− 1

sl

)]
ãi � ln(4nC2).

Due to (19), (21), from here we get the inclusion{
i: ˜̄w(k)

i,2 � 4nw̃
(l)
i,1

} ⊂ {i: λ̃i � ζ0} (39)

if jl � 3. Using similar arguments we get the inclusions

{
i: ˜̄w(k)

i,1 � 4nw̃
(l)
i,2

} ⊂
{
i: λ̃i � ζνl+2 − ζνl+1 ln(4nC2

νl
)
}
. (40)
ãi
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(46)
-

It will be shown below that the estimate (14) will be ensured if we take a constaα,
an increasing functionγ : [0,2] → [0,1] and a decreasing functionM : (0,1] → (0,∞),
satisfying the following conditions:

α > max
{
4pn+1 ln(4nC2),8pn+1sn+1

}
,

γ (0) = 0, γ (2) = 1, γ (ζj ) = ζj+4, j = 0,1, . . . ,

M(ζj ) � αζj+2 ln
(
4nC2

j+1

)
, j = 0,1,2,3,

M(ζj ) � α max
{
ζj+2 ln

(
4nC2

j+1

)
,4ζj−2 ln

(
4nC2

j−2

)}
, j = 4,5, . . . . (41)

First from (38), (39) and (40) it follows that

{
i: ˜̄w(k)

i,2 � 4nw̃
(l)
i,1

} ⊂
{
i: λ̃i � γ −1(ζjk+1) + M(ζjk )

αãi

}
,

{
i: ˜̄w(k)

i,1 � 4nw̃
(l)
i,2

} ⊂
{
i: λ̃i > γ (ζνl−2) − M(ζνk )

αãi

}
.

Hence, bringing to mind (22), we obtain

{
i: ˜̄w(k)

i,2 � 4nw̃
(l)
i,1

} ⊂
{
i: λ̃i � γ −1(εk) + M(εk)

αãi

}
, (42)

{
i: ˜̄w(k)

i,1 � 4nw̃
(l)
i,2

} ⊂
{
i: λ̃i > γ (δl) − M(δl)

αãi

}
. (43)

Yet we have to examine the following inclusions:

{
i: ˜̄w(k)

i,3 � 4nw̃
(l)
i,1

} ⊂
{
i: ãi >

τk

α

}
, (44)

{
i: ˜̄w(k)

i,4 � 4nw̃
(l)
i,1

} ⊂ {i: ãi � αtk}. (45)

We prove only the inclusion (44), since the inclusion (45) can be obtained analog
Having regard to the concrete form of the weights, we see that the inequality in th
hand side of (44) is equivalent to the inequality

τk

2p0
� ln (4nC2) +

[(
1

r0
− 1

sl

)
+ λ̃i (sl − r0)

]
ãi . (46)

Taking into account (20), (41) and the assumption (5) we get that the inequality
remains true after replacing its right-hand side byαãi . Therefore, we get (44). After com
bining (44), (45), (42) and (43), we obtain

4⋂
ρ=2

{
i: ˜̄w(k)

i,ρ � 4nw̃
(l)
i,1

} ∩ {
i: ˜̄w(k)

i,1 � 4nw̃
(l)
i,2

} ⊂ Sk,l, (47)

where

Sk,l =
{
i: γ (δl) − M(δl)

< λi � γ −1(εk) + M(εk) ; τk
< ãi � αtk

}
. (48)
τk τk α
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n

Taking into account the definitions of the sequences˜̄w(k)

1 , w̃
(l)
1 , and (15), we have{

i: ˜̄w(k)

i,1 � 4nw̃
(l)
i,1

} ⊂ Rk,l, (49)

where

Rk,l =
{
i:

[(
1

sl
− 1

rk

)
+ λ̃i (rk − sl)

]
ãi � ln(4nC2)

}
. (50)

Combining (35), (36), (47) and (49) we obtain

β
(
4nB(c̃),B(d̃)

)
�

∣∣∣∣∣
m⋃

k=1

m⋃
l=1

(Sk,l ∩ Rk,l)

∣∣∣∣∣. (51)

By (19),(
1

sl
− 1

rk

)
+ λ̃i(rk − sl) >

1

2sl
>

1

4pn+1
for k > l.

Hence,

Rk,l ⊂ {i: ãi � α} if k > l. (52)

Now we are going to show the inclusions

Sk,l ∩ Rk,l ⊂ Sk,k, k, l = 1, . . . ,m. (53)

This relation is obvious ifk = l. Therefore it remains to consider the case whenk �= l.
Suppose, first,k < l; then, by assumption,δk � δl . From the definitions of the functionsγ
andM it follows thatγ (δk) � γ (δl), M(δk) � M(δl). From here and the definitionSk,l we
get (53) fork < l.

Suppose now thatk > l. Since, by the assumption (5),λ̃i � 1/ãi for all i ∈ N, we derive
from (52) thatλ̃i � 1/α. Hence we have

Sk,l ∩ Rk,l ⊂
{
i:

1

α
� λ̃i � γ −1(εk) + M(εk)

τk

,
τk

α
< ãi � αtk

}
. (54)

On the other hand, by the definitions ofγ and∆k, we have

γ (δk) − M(δk)

τk
< γ (δk) < γ (ζ0) = ζ4 = 1

q4
. (55)

Since the constantα, depends only onn, we can assume the numberq4 chosen so that

1

q4
� 1

α
. (56)

Taking into account (54), (55), (56), we get (53) in the casek > l as well. Thus the relatio
(53) is proved. Together with (51) it gives the relation

β
(
4nB(c̃),B(d̃)

)
�

∣∣∣∣∣
m⋃

k=1

Sk,k

∣∣∣∣∣.
Remembering (14) we obtain the desired estimate (18). This completes the proof.�
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5. Invariance of γn

Theorem 11. Let the spaces X = E(λ,a), X̃ = E(λ̃, ã) be isomorphic. Then (µX
m)

n≈ (µX̃
m)

for each n ∈ N.

Proof. Applying Lemma 10 we are going to establish the estimates (12), (13) for ea
m ∈ N and arbitrary collections of parameters (10) satisfying the condition: amon
numbersδ1, δ2, . . . , δm, there are no more thann different. Therewith the functionϕ will
be chosen in the end of our proof, while the constantα will be the same as in (14).

Because of symmetry we need to prove only the inequality (12). Let us rewrite
estimate, using (11), in the form∣∣∣∣∣

{
i: (λi , ai) ∈

m⋃
k=1

Pk

}∣∣∣∣∣ �
∣∣∣∣∣
{

i: (λ̃i , ãi) ∈
m⋃

k=1

Qk

}∣∣∣∣∣,
where

Qk = (
ϕ(δk), ϕ

−1(εk)
] ×

(
τk

α
,αtk

]
, k = 1,2, . . . ,m.

We cover each rectanglePk by an appropriate couple of non-intersecting rectanglesP ′
k

and P ′′
k (some of them may be empty) and then apply Lemma 10. For constructi

above-mentioned rectangles we needto define the decreasing functionΨ : (0;1] → R+, so
that

Ψ (ξ) >
M(ξ)

γ (ξ)
, 0 < ξ � 1, (57)

whereM andγ are as in Lemma 10. We are acting in a different way for each of t
cases:

(a) τk � Ψ (δk);
(b) τk < Ψ (δk) < tk;
(c) tk � Ψ (δk).

Setting the notation

τ ′
k := max

{
Ψ (δk), τk

}
, t ′k := min

{
Ψ (δk), tk

}
,

εk :=
{
Ψ −1(τk)} if τk � Ψ (1),

1 otherwise,

we put

P ′
k =

{
(δk, εk] × (τ ′

k, tk] in the cases (a) and (b),

∅ otherwise,

and

P ′′
k =

{∅ in the case (a),
(δ , ε′ ] × (τ , t ′ ] otherwise.
k k k k
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Applying Lemma 10, we get∣∣∣∣∣
{

i: (λi , ai) ∈
m⋃

k=1

(P ′
k ∪ P ′′

k )

}∣∣∣∣∣ �
∣∣∣∣∣
{

i: (λ̃i , ãi) ∈
m⋃

k=1

(P̃ ′
k ∪ P̃ ′′

k )

}∣∣∣∣∣,
with

P̃ ′
k =

{
(∆′

k,E
′
k] × ( τ ′

k

α
, αtk

]
in the cases (a) and (b),

∅ otherwise,

and

P̃ ′′
k =

{∅ in the case (a),
(∆k,E

′′
k ] × (

τk

α
, αt ′k

]
otherwise,

where

∆′
k = γ (δk) − M(δk)

τ ′
k

, E′
k = γ −1(εk) + M(εk)

τ ′
k

,

∆k = γ (δk) − M(δk)

τk

, E′′
k = γ −1(ε′

k) + M(ε′
k)

τk

.

It follows from (57) and the definition of the numbersτ ′
k that

∆′
k � 1

2
γ (δk).

Sinceγ (ξ) � γ −1(ξ) whenξ ∈ [0,1], we obtain also the estimate

E′
k � 3

2
γ −1(εk).

Fromλ̃i � 1/ãi and (57) it follows that{
i: (λ̃i , ãi) ∈ P̃ ′′

k

} ⊂
{
i: (λ̃i , ãi) ∈

(
1

2αΨ (δk)
,E′′

k

]
×

(
τk

α
,αtk

]}
.

We can always assume that

τk � 1

2εk

, k = 1,2, . . . ,m.

Therefore, taking into account (57), the definition of the numbersεk and the estimate
γ (ξ) � γ −1(ξ), ξ ∈ [0,1], we obtain that

E′′
k � 3

2
γ −1(ε′

k) � 3

2
γ −1

(
Ψ −1

(
1

2εk

))
.

Now we choose an increasing functionϕ : [0;2] → [0;1], ϕ(2) = 1, ϕ(0) = 0, so that

ϕ(ξ) � min

{
1

2
γ (ξ), γ

(
2

3
ξ

)
,

1

2αΨ (ξ)
,

1

2Ψ
(
γ
(2

3ξ
))}

, ξ ∈ [0;1].

Then the estimate (12) holds for eachm ∈ N and any collection of parameters (10) sa
fying the condition: among the numbersδ1, δ2, . . . , δm, there are no more thann different.
This completes the proof.�
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6. Basic subspaces of finite and infinite type

In this section we consider only Montel spacesX = E(λ,a), that isai → ∞ is assumed
Given a subsequenceI = {ik}k∈N of N abasic subspace XI spanned by{ei: i ∈ I } is from
the same classE . Denote byE0(λ, a) (respectively,E∞(λ, a)) the collection of all basic
subspacesXI which are isomorphic to power seriesspaces of finite (respectively, infinite
type.

Proposition 12 [33,37].Let X = E(λ,a) be Montel and I = {ik} a subsequence of N. Then
a basic subspace XI belongs E0(λ, a) (respectively, E∞(λ, a)) if and only if limi∈I λi = 0
(respectively, infi∈I {λi} > 0). Therewith XI is quasidiagonally isomorphic to E0(c)

(respectively, E∞(c)), where c = (ck) = (aik ).

Now we are going to give a solution of Problem 2. First we consider the simpler ca
basic subspaces of infinite type, which is derivable from one-rectangle invariants (Propo
sition 7 withm = 1).

Theorem 13. Let X = E(λ,a) and X̃ = E(λ̃, c̃) be isomorphic. Then for each L ∈
E∞(λ, a) there exists M ∈ E∞(λ̃, ã) such that L

qd� M .

Proof. SinceX � X̃, applying Proposition 7 withm = 1, we obtain that there is a functio
ϕ : [0;1] → R+ and a constantα such that the inequality

µX
1 (δ,1; τ, t) � µX̃

1

(
ϕ(δ),1; τ

α
,αt

)
(58)

holds for anyδ > 0 and 1� τ < t .
Let now L = XI ∈ E∞(λ, a), I = {ik}. Then, by Proposition 12, there isδ0 > 0 such

that λi > δ0 if i ∈ I . Considerc = (ck) = (aik ) and c̃ = (c̃k) := (ãjk ) with J := {jk} =
{j : λ̃j > ϕ(δ0)}. Then, due to (58), we obtain the following estimates for the coun
functions (see (4)) of the sequencesc andc̃:

Mc(τ, t) � µ1(δ0,1; τ, t) � µX̃
1

(
ϕ(δ),1; τ

α
,αt

)
= Mc̃

(
τ

α
,αt

)
.

Therefore, by Proposition 3, we deduce thatL
qd� E∞(c)

qd
↪→ E∞(c̃)

qd� X̃J , whereX̃J is
a basic subspace of̃X spanned by{ej : j ∈ J }. ThusL is quasidiagonally isomorphic t
some basic subspaceM of X̃J , which, due to Proposition 12, belongs toE∞(λ̃, ã). This
completes the proof. �
Theorem 14. Let X = E(λ,a) and X̃ = E(λ̃, ã) be isomorphic spaces. Then for each

L ∈ E0(λ, a) there exists M ∈ E0(λ̃, ã) such that L
qd� M .

Proof. Applying Theorem 11 withn = 1 we derive fromX � X̃ that there exist an increa
ing functionϕ : [0,2] → [0,1], ϕ(2) = 1,ϕ(0) = 0, and a constantα > 0 (both independen
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g the
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al
was
of m) such that the estimate (12) holds for all collections of parameters (10) satisfyin
condition:δk = 0 for all k = 1,2, . . . ,m, m ∈ N.

Let L = XI ∈ E0(λ, a), I = {is}. ThenL
qd� E0(c) with c = (cs) = (ais ). Sinceλis → 0

andai → ∞, there is an increasing continuous functionγ :R+ → [0,1] such thatγ (0) = 0
andλi � γ (ai) if i ∈ I .

Consider two sequences of rectangles:

Pk := (
0;γ (αk−1)

] × (αk−1;αk],
Qk := (

0;ϕ−1(γ (αk−1)
)] × (αk−2;αk+1], k ∈ N,

and defineJ = {js} := ⋃
k∈N

{j : (λ̃j , ãj ) ∈ Qk}, a sequencẽc = (c̃s) := (ãjs ) and a sub-
spaceX̃J spanned inX̃ by {ej : j ∈ J }.

By the above choice ofϕ andα we have∣∣∣∣
{
i: (λi , ai) ∈

⋃
k∈K

Pk

}∣∣∣∣ �
∣∣∣∣
{
j : (λ̃j , c̃j ) ∈

⋃
k∈K

Qk

}∣∣∣∣ (59)

for any finite setK ∈ N.
Take an arbitraryτ andt (1 � τ < t < +∞) and choosek, l ∈ N so that

αk−1 � τ < αk, αl−1 < t � αl .

Then, by the construction, we have

Mc(τ, t) �
∣∣∣∣∣
{

i: (λi , ai) ∈
l⋃

j=k

Pj

}∣∣∣∣∣,

Mc̃

(
τ

α2 , α2t

)
�

∣∣∣∣∣
{

i: (λ̃i, c̃i) ∈
l⋃

j=k

Qj

}∣∣∣∣∣.
From here, together with (59), we get the estimate

Mc(τ, t) � Mc̃

(
τ

α2
, α2t

)
.

SinceX̃J

qd� E0(c̃) we get, by Proposition 3, thatL is isomorphic quasidiagonally to som
basic subspaceM ⊂ X̃J , which belongs, by Proposition 12, toE0(λ̃, ã). �

7. Comparison of n-equivalence and equivalence of the systems characteristics

In [9] a special pairX and X̃ of spaces (2) was constructed to show that the eq

alence of all characteristicsµX
m and µX̃

m is not sufficient for existence of quasidiagon
isomorphism between these spaces. The question whether these spaces are isomorphic
behind the powers of invariants considered there. Now applying Theorem 11 withn = 1
we can easily conclude that they are not isomorphic.



P. Chalov et al. / J. Math. Anal. Appl. 297 (2004) 673–695 691

s

of

ill
Right now we are going to show that even much stronger invariants based onn-equi-
valence with arbitraryn still are not sufficient to characterize quasidiagonal isomorphism
of spaces (2). To accomplish this we shall construct an appropriate example.

Proposition 15. There exist two first type power Köthe spaces X = E(λ,a) and X̃ =
E(λ̃, ã), satisfying the following conditions:

(i)
(
µX

m

) n≈ (
µX̃

m

)
, n ∈ N;

(ii)
(
µX

m

) �≈ (
µX̃

m

)
.

Proof. As in [9] the required spacesX = E(λ,a) and X̃ = E(λ̃, ã) will be constructed
from finite dimensional blocks

X =
⊕

(l,j)∈N2

Xl,j , X̃ =
⊕

(l,j)∈N2

X̃l,j .

Take an arbitrary numberα > 1, the sequence(ξi) ↓ 0, ξi ∈ (0,1), the sequence(βl) ↑
∞ so thatβ1 > α.

Let l ∈ N, then each blockXl,j (X̃l,j ) will correspond to some(2l + 2)-dimensional

vectork(l) = (k
(l)
1 , k

(l)
2 , . . . , k

(l)
2l+2) such thatk(l)

1 , k
(l)
2 , . . . , k

(l)
2l+2 ∈ N andk

(l)
1 < k

(l)
2 < · · · <

k
(l)
2l+2. The setKl of all such(2l +2)-dimensional vectors we enumerate anyhow:k(l)(j) =

(k
(l)
1 (j), k

(l)
2 (j), . . . , k

(l)
2l+2(j)), j ∈ N. So, the blocks numbered with(l, j) correspond to

the vectork(l)(j).
Now we enumerate all elements of the setN

2: (lp, jp), p ∈ N, and select a sequence

positive numbers(ηlp,jp ) so thatηlp+1,jp+1 � β
2lp+4
lp

ηlp,jp . In the subsequent text we w
write l andj instead oflp andjp, respectively.

PutY (ν)
l,j = βν−1

l ηl,j , ν = 1,2, . . . ,2l + 5. In Fig. 1 it is drawn the setSl,j , consisting

of horizontal and vertical segments, where all points(λi, ai), (λ̃i , ãi) corresponding to the
blocksXl,j andX̃l,j , will be located.

On the segment[Y (1)
l,j , Y

(2l+5)
l,j ] we select a finiteα-dense setMl,j , including all the

pointsY
(ν)
l,j , ν = 1,2, . . . ,2l + 5. We remind that a setA ⊂ R is said to beα-dense in

B ⊂ R if for each pointb ∈ B there is a pointa ∈ A such thata/
√

α � b � √
αa.

Let Ll,j be the set of all points(ξr , yl,j,s) ∈ Sl,j and(1, yl,j,s), such thatyl,j,s ∈ Ml,j

and 1� r � k
(l)
2l+2(j). After enumeration this set we get

Ll,j = {
(xl,j,i , yl,j,i), i = 1,2, . . . , nl,j − 1

}
with some numbernl,j . Put two additional points

ȳl,j ∈ [
Y

(2)
l,j , Y

(l+2)
l,j

]
and ỹl,j ∈ [

Y
(l+4)
l,j , Y

(2l+4)
l,j

]
.

Now define the vectors

λ(l,j) = (
λ

(l,j)
i

)nl,j

i=1, a(l,j) = (
a

(l,j)
i

)nl,j

i=1, λ̃(l,j) = (
λ̃

(l,j)
i

)nl,j

i=1ã
(l,j) = (

ã
(l,j)
i

)nl,j

i=1

by the following formulae:
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Fig. 1. The setSl,j .

λ
(l,j)
i = λ̃

(l,j)
i =

{
xl,j,i if i = 1,2, . . . , nl,j − 1,

ξ
k
(l)
l+1

if i = nl,j ,

a
(j)
i =

{
yl,j,i if i = 1,2, . . . , nl,j − 1,

ȳl,j if i = nl,j ,

c̃
(l,j)

i =
{
yl,j,i if i = 1,2, . . . , nl,j − 1,

ỹl,j if i = nl,j .

Finally we construct the sequencesλ = (λi), a = (ai), λ̃ = (λ̃i), ã = (ãi) by the ruleξi =
ξ

(l,j)

i−(nl1,j1+···+nlp−1,jp−1) for nlp−1,jp−1 < i � nlp,jp (nl0,j0 := 0), whereξ may beλ,a, λ̃ or ã.

To prove the statement (i) we take any increasing functionϕ : [0,2] → [0,1], satisfying
the following conditions:

ϕ(0) = 0, ϕ(2) = 1, ϕ(1) < ξ1, ϕ(ξi) < ξi+1.
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It is easy to check that (i) is true with the functionϕ and the constantc, which is defined
by the formula

c =
{
α if n = 1,

βn−1 if n = 2,3, . . . .

On the other hand, show that the statement (ii) also holds, i.e., the system ofm-rectangle
characteristics, considered with the equivalence≈, distinguishes those spaces. To che
this we have to show that for any choice of a positive constantγ , and an arbitrary increasin
function ψ : [0,2] → [0,1], ψ(0) = 0, ψ(2) = 1, there existm ∈ N and a collection of
parametersδ, ε, τ, t , of kind (10) such that the estimate

µ(λ̃,ã)
m (δ, ε; τ, t) � µ(λ,a)

m

(
ψ(δ),ψ−1(ε); τ

γ
, γ t

)
(60)

does not hold. To this end we select two natural numbersl0 andj0 so that

βl0 > γ, ξ
k
(l0)

1 (j0)
< ψ(1),

ξ
k
(l0)
r (j0)

< ψ
(
ξ
k
(l0)

r−1(j0)

)
, r = 2,3, . . . ,2l0 + 2.

Then we putm = l0 + 2 and pickδ = (δr ), ε = (εr) ∈ (0,1]m, τ = (τr), t = (tr ) ∈ R
m+ in

the following way:

δr = ψ−1
(
ξ
k
(l0)

l0+r (j0)

)
, r = 1,2, . . . ,m − 1, δm := ψ−1

(
ξ
k
(l0)

l0+1(j0)

)
,

εr := ξ
k
(l0)
r (j0)

, r = 1,2, . . . ,m − 1, εm := ξ
k
(l0)

l0+1(j0)
,

τr := γ Y
(r)
l0,j0

, r = 1,2, . . . ,m − 1, τm := γ Y
(1)
l0,j0

,

tr := Y
(r+1)
l0,j0

, r = 1,2, . . . ,m − 1, tm := γ Y
(l0+2)
l0,j0

.

Regarding (11), we obtain

µ(λ̃,ã)
m (δ, ε; τ, t) =

∣∣∣∣∣
{

i: (λ̃i, ãi) ∈
m⋃

r=1

Pr

}∣∣∣∣∣ >

∣∣∣∣∣
{

i: (λi , ai) ∈
m⋃

r=1

Qr

}∣∣∣∣∣
= µ(λ,a)

m

(
ψ(δ),ψ−1(ε); τ

γ
, γ t

)
,

where

Qr = (
ψ(δr),ψ

−1(εr )
] ×

(
τr

γ
, γ tr

]
, r = 1,2, . . . ,m.

This means that the inequality (60) is violated, which completes the proof.�
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