ARTIN-SCHREIER CURVES AND WEIGHTS OF 2-D
CYCLIC CODES

CEM GUNERI

ABSTRACT. Let F; be the finite field with ¢ elements of characteristic
p, Fgm be the extension of degree m > 1 and f(z) be a polynomial over
Fgm . We determine a necessary and sufficient condition for y? —y =
f(z) to have the maximum number of affine Fym -rational points. Then
we study the weights of 2-D cyclic codes. For this, we give a trace
representation of the codes starting with the zeros of the dual 2-D cyclic
code. This leads to a relation between the weights of codewords and a
family of Artin-Schreier curves. We give a lower bound on the minimum
distance for a large class of 2-D cyclic codes. Then we look at some
special classes that are not covered by our main result and obtain similar
minimum distance bounds.

1. INTRODUCTION

One of the applications of algebraic curves over finite fields in coding
theory in recent years has been in the weight computations of certain cyclic
codes. In this method, a cyclic code under consideration is represented as
the trace of another code over an extension field and then the codewords of
the cyclic code are related to a family of algebraic curves using the additive
form of Hilbert’s Theorem 90 (see [3], [L5] and [17]). In [6], we used this idea
to determine when a family of Artin-Schreier (A-S) curves has a member
with the maximum possible number of affine rational points.

This article consists of two parts both of which heavily depend on the
main results of [6]. The first part is on A-S curves. Namely, we determine
a necessary and sufficient condition for an A-S curve to have the maximum
number of affine rational points. The second part is on two-dimensional (2-
D) cyclic codes and their weight analysis. These codes are generalizations
of ordinary cyclic codes and, naturally, more complicated to deal with. The
first attempts to build a general theory of such codes dates back to 70’s,
in particular to the works of Ikai, et al ( [8]) and Imai ( [9]). We extend
the method applied to cyclic codes, which is mentioned above, to “square”
2-D cyclic codes by introducing a trace representation for such codes. As

=will see, the main difference compared to cyclic codes is that the weight
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of a single codeword is determined by more than one curve from a family of
A-S curves.

There is another lower bound on the minimum distance of 2-D cyclic
codes due to Jensen (see [10], [13]). He utilizes the concatenated structure
of 2-D cyclic codes to come up with this bound. We leave the comparison
of the two bounds to a future work.

In Section 2, we recall results on A-S families from [6] and use these
to draw new conclusions about A-S curves. In Section 3, we define and
state basic properties of 2-D cyclic codes, without proofs. We introduce
the trace representation for 2-D cyclic codes in Section 4. In Section 5,
we use this representation to state a general lower bound on the minimum
distance. The final section is devoted to some special classes of codes which
are not in the scope of our general bound from Section 5. We state similar
minimum distance bounds for these special classes of codes and in one case
we determine the complete weight enumerator. We explain our discussions
with examples throughout and in some of the examples, we show possible
improvements to our general bounds using specific arguments.

2. ARTIN-SCHREIER CURVES

Unless otherwise stated F, = ol with [ > 1, is the finite field of char-
acteristic p with g elements and Fy= is the degree m extension of F, where
m > 1.

In [6] we studied the family F = {y?—y = A\z® + Xoz®2 +- - -+ Xs2%; X; €
Fym, i; > 0}. We call the member with X\; =0, for all ¢ = 1,2,...,s, the
trivial one. It is easy to see that the number of affine [F;m -rational points of a
nontrivial member in F is divisible by ¢ and bounded by ¢™*! (Proposition
4.1 in [6]).

Definition 2.1. Let ¢ = p! be a prime power, where [ > 1, and ¢ be a
positive integer that is not divisible by p. If 0 < b < ¢ is an integer, then
let ~ be the smallest number such that ¢"t'b = b mod c. The g-cyclotomic
coset containing b mod c is the set

B = {b,qb,q°b,...,q"b},
where each ¢*b is reduced mod .
Here are the results from [6] which we will use in this section.
Theorem 2.2. Let F; and Fym be as before. Consider the family of curves
F={y!—y = z" +Xoa™ + -+ Xz"; \j € Fym, i; > 0}.

Let Bj denote the g-cyclotomic coset mod ¢™ — 1 containing the exponent i;
and let |B;| = 6; <m, for all j. We have the following:

(i) F has no nontrivial member with ¢! affine Fym -rational points if
and only if BiNB; =0 for alli # j, i,j € {1,2,...,s}, and §; =m for all
j-
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(i) If there exists B distinct q-cyclotomic cosets B, By, ..., Bg mod ¢™—1
for the exponents i1,i0, ... ,is with cardinalities

|Bj| =0; <m, §=1,2,...,0,

B . . . .
then F has qms_szl‘s] members with ¢™! affine Fym -rational points, in-
cluding the trivial member.

Proof. See Theorem 4.4 and Corollary 4.5 in [6]. O

So, for F to have a nontrivial member with ¢™*! affine F;m-rational
points, either two of the exponents should be in the same g-cyclotomic coset
mod ¢™ — 1 or the cardinality of one of the cyclotomic cosets should be a
proper divisor of m = [Fgm : F;]. However, the theorem does not imme-
diately indicate which member curves could achieve this upper bound. We
want to answer the following question here:

Question: Given X : y9—y = Mz 4+ Aoz + - - -+ Az, where Aj’s are in
Fym and the g-cyclotomic cosets mod ¢™ —1 of ¢;’s are distinct. What are the
necessary and sufficient conditions for X to have ¢™*! affine F,n-rational
points?

Let #p,m (X) denote the number of affine F;m -rational points of X. Note
that 5. (X) = q™ 1 is equivalent to tr(A z'1 +Aex?2+- - -+ Xsz%) = 0,Vz €
Fym , by Hilbert’s Theorem 90, where tr denotes the trace map from Fy» to
[Fy. Hence, the above question can be restated as, with the same assumptions
on the exponents, when is it true that tr(A ;2% + Aoz® +--- + Az¥) = 0 for
all z in Fym ?

Proposition 2.3. Let A\j € Fyn and i; be positive integers, forj =1,2,...,s.
Assume that the g-cyclotomic cosets containing i;’s are distinct. Then
tr( A1z + Aoz +- - -+ Agz%) = 0 for all x in Fym if and only if tr(\jz%) = 0
for all z in Fym and for all j =1,2,...,s.

Proof. One implication is immediate by linearity of the trace. For the other
implication, note that the assertion is equivalent to

#]qu (y‘l —y = )\lxil + )\2$i2 4+t )\sxis) — qm—l-l

H#rm (Y —y = Ajzti) = g™t forall j =1,2,...,s.

We need to prove the upper to lower implication. For this, we proceed by
induction on s. If s = 1 there is nothing to prove. Assume the validity of
the assertion up to s and consider the family F = {y?—y = Mz™ + Aoz +
o+ 4 Agz'; Aj € Fym }. By Theorem 2.2(ii), and using its notation, F has
g™ 2i=1% _ 1 nontrivial members with ¢™+! affine rational points over
Fym . The subfamily 7 = {y? —y = Mz 4 Aoz 4 -+ A1zt Aj €
Fym } contains qm(s_l)_zi;i % —1 of these members in F, and the subfamily
Fo = {y? —y = AszP; Ay € Fym} has g™ % — 1 of them. Furthermore,

(qm(s_l)_zi;i % _ 1) (¢™ % — 1) curves in JF, which are distinct from those
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in F, and Fy, with ¢™t! points are obtained by “combining” ¢™*! point

curves in F; and F». By this, we mean creating polynomials in z in the
form Az 4+ Xoz® + -+ + Azl by taking the first s — 1 coefficients from
the members with ¢™*! points in F; and ), with the same property from
Fy. The resulting polynomials do produce curves with ¢™*! points indeed
by linearity of the trace map. In this way, we exhaust all the g™ 2i=1% —1
nontrivial members of F. Since the induction hypothesis applies to F; and
Fo, we are done. [

By this proposition, the question posed reduces to the question: For which
values @ € Fm and i € Z* do we have tr(az®) = 0 for all z in Fjm? The
following result of Gillot (Proposition 1.2 in [4]) answers this question. We
present an alternative proof which depends on Theorem 2.2.

Proposition 2.4. Let a € Fym and i be a positive integer. Denote by B the
g-cyclotomic coset containing i mod ¢"* —1 and let § < m be the cardinality of
B. Then tr(az’) = 0 for all x € Fym if and only if § < m and trymgs (@) =0,
where trymqs is the trace map from Fym onto Fs .

Proof. Note that 4 is a divisor of m. Hence, Fys is a subfield of Fym and
tr,mgs makes sense.

(=) By the first part of Theorem 2.2, § # m and by the second part of
the same theorem, there exists ¢™° a’s in Fym such that tr(az?) = 0 for all
z € Fym. The number of elements in the kernel of trymgs is also g™ % and
for any b in this kernel, we have

tr(bz’) = tr g8 4 (b0 gm g (bz')) = trqsq(xitrqmqs (b)) = 0.

Note that the second equality holds since z¢ € Fy for any z € Fym, by
|B| =9, and tr is an [F s-linear map. Therefore, a must be in the kernel
of trqm g+
(<=) By assumption on |B|, z¢ € Fys for any z in Fym. Reading the above
equalities from right to left, replacing b by a, proves the claim. [

Now, the following answers our question.

gl

Theorem 2.5. Let X : y? —y = A\z% + Aoz + --- + Az, where \;’s
are in Fgm . Let B; denote the g-cyclotomic coset containing i; mod ¢™ — 1,
for all j, and assume that B;’s are pairwise disjoint. Then the following are
equivalent:

(i) #i,0 (X) = g™,

(it) |B;j| = d; < m and b m g (Aj) =0, forallj =1,2,...,s.

Proof. Immediate from Propositions 2.3 and 2.4. [

We finish this section with a characterization of (Hasse-Weil) maximal
(Theorem V.2.3, Definition V.3.2 in [16]) and ¢™*!-optimal A-S curves
whose z-degree is relatively prime to the characteristic of the base field
(also see Corollary 4.7 in [6]).
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Corollary 2.6. Let m be even, X : y?—y = f(x), where f(z) is a constant-
free polynomial over Fym for which the exponents of x are in different g-
cyclotomic cosets mod ¢™ — 1 and ged(deg(f),q) = 1. Then X is mazimal

and g™ -optimal if and only if X is of the form y9 —y = az?” 1 for some

a € Fym with b g (a) =0.
Proof. (=) X has one point at infinity and hence the number of projective
[F,m -rational points is ¢™*1 + 1. By assumption on deg(f), the genus of X is

le=1@eE(N=1 (proposition VI.4.1 in [16]). Therefore, Hasse-Weil bound on

the number of projective rational points is ¢™ + 1 + (g — 1)(deg(f) — 1)¢= .
Equating these two numbers, both of which are met by X, gives deg(f) =

¢? +1. Note that the cardinality of the g-cyclotomic coset containing deg(f)
is 2. If f(z) = ba" + az?” ™! for some b € Fym and r < g% + 1 then, in
order to be ¢™t!-optimal, cardinality of the cyclotomic coset containing r
must be a proper divisor of m (Theorem 2.5). But this number must also

be greater than %, which is impossible. Therefore f(z) = az?® *! for some

a € Fym , and the condition on a follows from Theorem 2.5.

(<) The assumption on ¢ and the exponent g2 + 1 of & guarantees that
such a curve is g™ t!-optimal. Using the genus formula and the Hasse-Weil
bound above, together with the fact that X has one point at infinity, we see
that X is also maximal. [l

3. DEFINITION AND BASIiCc PROPERTIES OF 2-D CycLic CODES

For the proofs of the results in this section and for further properties of
2-D cyclic codes, we refer the interested reader to [7], [8], [9] and [14].
Consider the set

40,0, 30,1+ - 5G0,n2—1
41,0, 01,15+ -, 01,n3—1
1X7n2 ’ ’ ’ [P
Fy = : ; aij €Fy »,
Gpq1—1,05---58n1—1,n2-1

where 11 and no are two positive integers. Note that Fq“ X2 i3 an nyno-
dimensional vector space over [F, whose elements are written in n; X ng
matrix notation.

A k-dimensional subspace C of Fy1 *"2 is called a 2-D linear code of area
n1 X ng over [F,, and denoted as an (n1 X ng, k) code.

Definition 3.1. For a 2-D linear code C' C Fy* *"2 if (a; ;) is in C' implies
that (@;1s,+¢) is also in C for all s and ¢, where ¢4 s and j+t are taken mod
n1 and no, respectively, then C is called a 2-D cyclic code of area ni X no.

In other words, a 2-D linear code is 2-D cyclic if it is closed under row
and column shifts. Note that the dual of a 2-D cyclic code is also 2-D cyclic.
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As in the case of cyclic codes, we have an alternative representation for
2-D cyclic codes as ideals in certain rings. For this, observe the following
[F,-vector space isomorphism between Fy' *"? and Fy[z,y]/(z™ —1,y™ —1):

™ «—  Fylz,y]/(™ - 1,y™ - 1)

ni—1lns—1

(aiz) «— D D aia'y

i=0 j=0

Under this identification, we can think of a 2-D linear code C as a subset of
Fylz,y]/(z™ —1,y™2 —1). It is easy to see that a 2-D linear code C' in F' "2
is 2-D cyclic if and only if C is an ideal in F, [z, y] /(2™ —1,y™ —1). In short,
we have two ways to represent a 2-D cyclic code: The matrix representation
and the polynomial representation.

We assume, from now on, that both n; and no are relatively prime to
p. In fact, both of these numbers will be ¢"™ — 1 for some m > 1 in our
considerations starting with the next section. Let o be a primitive n’ih root
of unity and ap be a primitive n¥® root of unity. We take both of these
elements in the smallest extension Fgs of IF, such that n; and ng divide
g° — 1. Consider the following set.

Q={(ci,0d); 0<i<n —1,0<j<ny—1}

We define the F,-conjugacy class containing (o}, od) to be
. . . . . . . 5—1 . 5—1
S = [(a1, )] = {(e1,03), (@, ), ..., ()", 03" )},
where § is the least common multiple of the degrees of o} and a% over IF,.
It is clear that €2 is a disjoint union of such Fy-conjugacy classes. From now
on, we will use the letter U only for either a single class or a finite union of
[Fy-conjugacy classes in ).
For U C QQ, the ideal corresponding to U is defined as

(1) IU) ={f(z,y) € Fy[z,y]; f(a) =0, Va €U}

Note that 2™ — 1 and y™ — 1 are in I(U) for any U C Q. Therefore,
IU)/(z™ - 1,y™ — 1) C Fyz,y]/(z™ — 1,y™ — 1) is a 2-D cyclic code,
which we will denote as I(U). In this way, we associate a 2-D cyclic code to

a subset of 2. We can also do the opposite. Let J = J/(z™ — 1,y —1) C
Fy[z,y]/ (2™ —1,y™ — 1) be a 2-D cyclic code. Then

(2) Z(J) ={(7,8) € Fa; f(7,8) =0, Vf € J}

is called the zero set of the 2-D cyclic code J. Note that since ™ — 1 and
y™ — 1 are in J, the zero set Z(J) is a subset of Q and it is either a single
[Fy-conjugacy class or a finite union of IF,-conjugacy classes. Also note that

Zg,(J) would be another way to denote Z(J), due to obvious reasons, where
F, is the algebraic closure of F,.
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Proposition 3.2. Let U be a subset of Q. Then
U= z(1(U)) = Z,(1(V)).

Another way to state Proposition 3.2 is that every subset U of ) is the
zero set of the 2-D cyclic code I(U) that it defines. Note that since a 2-D
cyclic code is an ideal in Fy[z,y]/(z™ — 1,4™ — 1), we can describe it by
giving a finite number of generating polynomials. The following result says
that there is another way to describe a 2-D cyclic code.

Proposition 3.3. Let J = J/(z™ — 1,y — 1) C F,[z,y]/(z™ — 1,y — 1)
be a 2-D cyclic code. The zero set Z(J) uniquely determines J.

In other words we have I(Z(J)) = J, which comes from the fact that
J C Fylz,y] is a radical ideal. This can be proved by Seidenberg’s Lemma

92 (Proposition 8.14 in [1]). Besides describing the code, the zero set also
gives us the dimension of the code.

Theorem 3.4. Let U be a subset of ) and let U denote Q — U. Consider
the 2-D cyclic code Cy = I(U) = I(U)/(z™ — 1,y™ — 1) corresponding to
U. The dimension of Cy is given by

dimg, (Cy) = |U|.
We now state the result that relates the code to its dual.
Proposition 3.5. For the 2-D cyclic code Cy = I~(~U2 =I({U)/(z" -1,y —
1), its dual code is the 2-D cyclic code Cg—1 = I({U™Y) = I(UY)/(a™ —
1,y™ — 1), which has the zero set
Z(CF)=Z(Cg-) =U'=Q-U"",
where

U™t ={(prhuh); (w1, ) €U}

Corollary 3.6. The dimension of a 2-D cyclic code is equal to the number
of zeros of its dual code.

We finish with two more definitions for the sake of completeness.

Definition 3.7. Let Cy be the 2-D cyclic code of area n; X ne with the
zero set U C ). Then the nonzero set of Cy is

NZ(Cy)=Q-U="U.

Definition 3.8. If the zero set of a 2-D cyclic code C is the union of the
F,-conjugacy classes S, = [(a]", a3")], where 7 is in some index set Z, then
the set o

(o, 0d); yeT)
is called a basic zero set of C and denoted BZ(C). Similarly, one can define
a basic nonzero set of C and denote it by BN Z(C).
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Since the zero set of a 2-D cyclic code uniquely determines the code, so
does the nonzero set, a basic zero set and a basic nonzero set. Note, however,
that zero and nonzero sets are unique whereas there can be different choices
of basic zero and basic nonzero sets. This can simply be achieved by choosing
different representatives from the IF,-conjugacy classes.

Remark 3.9. Let (0!, 0d') and (02, af?) be representatives of two distinct
classes in a basic set (zero or nonzero) and suppose that of' and of® are F,-
conjugate. Then, one can find another pair in the class of (a}?, o2?) whose

second coordinate is of' and replace (o2, 04?) in the basic set with this new
pair. This means that we can choose a basic set for our codes in which
any two members have second coordinates that are not Fy-conjugate. Note
that the second coordinates in the basic set can be equal among some of the
members. Also observe that we can easily make the same choice with respect
to the first coordinates of pairs in the basic set. In the rest of the paper, we
will always have this kind of choice on our basic sets and, unless otherwise
stated, the choice will be made with respect to the second coordinates.

4. TRACE REPRESENTATION OF 2-D Cycric CODES

Recall that ¢ = p' for some [ > 1, where p is prime, and consider ¢™ with
m > 1. Let o be a primitive element of Fy= throughout, unless otherwise
stated. Consider the sets

(3) 0 = {(),0); 0<i,j <q" =2} =Fim X Fym,
4) U = [(&™,o™)]U](ef2,a?)]U...U[(a’, )],
where iy, j, are in the set {0,1,...,¢™ — 2}.
We know that the zero (resp. nonzero) set or a basic zero (resp. basic
nonzero) set determine the 2-D cyclic code uniquely. We define C to be the

2-D cyclic code of area (g™ — 1) x (¢™ — 1) over F, which has the following
Zero set:

(5) Z(C)=Q-U"1=0""1

If C’ denotes the dual of C, then we have the following easy consequences:
NZ(C) = Q-U'=v"!

(6) Z(C’) U
NZ(C) = Q-U=U

We also have the polynomial representation for these two codes, as ideals in
F,[z,y]/(z9" ~1 —1,47"~1 — 1), and the corresponding notations which were
also introduced in the previous section.

C'=Cy=IU)=IU)/(z7 -1,y "1 1),
—1).

m—1

C = Cpor = (O =10/ = 1,4~
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For simplicity we will denote C and C’ as I and I, respectively, in the
polynomial representation. Let D’ be the 2-D cyclic code of area (g™ — 1) x
(g™ — 1) defined over Fym by the zero set

(7) Z(D") = {(ail,ajl), (ai2,aj2), een, (ais,ajs)}.

It is worth noting that there is a unique basic zero set for D’ and it is equal
to the above zero set. This is because each pair in Z(D') has a singleton
Fym-conjugacy class that consists only of that pair. Let D be the dual
of D’ and denote these codes as J and J’, respectively, in the polynomial
representation. Note that D’ restricts to C' and hence we get the following
familiar diagram from Delsarte’s Theorem (Theorem VIII 1.2 in [16]):

(04 Res D’
® ] [
C e tr D

Note that tr is defined by applying the trace map, tr, from F;» to IF, on
each of the entries in the codewords (matrices) of D.

If a(x,y) is an arbitrary codeword (in the polynomial representation) in
J', then it vanishes on the elements of Z(D'). Hence we have

When the s equations in ( 9) are translated to the matrix notation, we get
(aij) vy =0, y=1,2,...,s.

Here (a;;) € D' is the corresponding coefficient matrix (codeword) for an
arbitrary polynomial in J’ and it is in the form

40,0 ‘e ag,gm—2
a1,0 ... a1,qm—2
(aij) . .
Qgm_20 ... Qgm_24m_2
On the other hand vy is defined as
(@)°(ad)0 L (@) (adr)a
(@) e)? ... (o) (adn)" 2
(10) vy = }
(@)™ 20 .. (afn)i"=2(adn)i" =2
Therefore {vi,va,...,vs} is contained in D, which is the dual of D’. Observe

that the Fym-dimension of D is s, by Corollary 3.6 and ( 7).

Proposition 4.1. {vi,vs,...,vs} forms a basis for D.
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Proof. Since « is a primitive element in Fym , we can list all the elements of
the multiplicative group Fym , which will also be denoted by A, as follows:

(11) A=Fm ={",a',0? ..., 07" 2}

Therefore, one can represent the first row of vy as (277 )w c4» the second
row as (ozi7 a:j”)w A’ and do this for all the remaining rows of v,. What we
understand from this notation is that one substitutes the elements of A for z,
following the order of elements in ( 11). If we put the above representations
of each row in v, together, we get the following representation for v,:

i
o i
(12) Uy = : , vy=1,2,...,8

g2
(az’y)q ‘gl (BEA

We will call this the horizontal representation. The following will be the
short horizontal representation for these codewords:

(13) Uy = ((aiv)%fv)wewez , v=1,2,...,s

where T = {0,1,...,¢™ — 2}. In other words, § indexes the rows, i.e., § =0
gives the first row, § = 1 gives the second row, and so on. Suppose there
exist p41, 42, ..., s in Fym such that

(14) 11 + povs + -+ + psvs = 0.
This means
Mlle + M2$]2 + .« + Msxjs

'ulallle + 'u2ai2$j2 +4p ats s
(15) . ’ —

=2

(@) 72T g (@) 2P e pg(af) T R )

Suppose that the j,’s are all distinct. Then the first row in (15) gives

p1z?t + oz’ 4+ -+ pez’s =0, forallz € A= Fym -

This polynomial expression has distinct exponents and its degree is the
maximum of {ji,...,7s}. This degree is strictly less than ¢ — 1 (cf. (3)).
Therefore the polynomial can vanish on all of Fym if and only if it is zero,
i.e., all the coefficients are zero. This would imply the linear independence
of our set.

Now suppose some of the j,’s are equal. Let’s assume, without loss of
generality, j; = jo = --- = j. for some ¢ < s. There might be other groups
of j,’s that are equal to each other, but the following argument can easily be
applied to handle them, too. Since the polynomial expressions in each row
in (15) are of degree strictly less than ¢™ — 1, the only way they can vanish
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on IF‘;m is if the coefficients of the terms are zero. We list the coefficients of
the term of degree j; in each row:

pmitpetoF+pe=0
pra’t + poa® + - - - + peate =0
(16) . ¢
'ul(ail)qm—Q +'u2(ai2)qm—2 4on +'uc(aic)qm_2 -0
Since « is primitive in Fgm , the equalities in (16) are equivalent to

(17) Pzt + pox + - + pezte =0, forallz € A= Fym -

Note that the exponents in (17) are all distinct. Otherwise, we would have
had (a7, 097) = (o, o) for some v # 4 with 7,7 < ¢. This would
contradict the fact that these two pairs are representatives of distinct [Fg-
conjugacy classes in (4).

By the above observation on iy,.. .., (17) holds if and only if g = --- =
e = 0, again due to the degree of the polynomial expression we have. This
finishes the proof. [1

Remark 4.2. It is important to note that an analogue of the representations
in (12) and (13) can also be obtained vertically. For this, we look at the
columns of vy in (10). The first column is (2% )w c 4> the second column

is (ozj7 a:i”)w ca» €tc. Hence, the vertical representation can be obtained by
putting representations of columns together as

(18) vy = (2t , ofvatr , ..., (ajV)qm_2xi7)weA, vy=1,2,...,s
and the short vertical representation is
N
(19) vy = ((a7) a:“)weA,&eI, vy=1,2,...,8
Note that ¢ indexes the columns of v, this time.

Theorem 4.3. With the notations and definitions so far, we have the fol-
lowing representations for the code D over Fgm and the code C over Fy,
where Ay runs through Fym for everyy=1,2,...,s

D = Z)va
Azdt + -+ )\5177:3 .
Mozt 4+ - ot gds

Z1 q —2$]1+ +>\( zs)qm_2$]'s seA

) xh)weA,JEI}

()\1117“ +- +>\s$i5 , )\lajlxil + .- +>\sajsz-is , ) }
€A
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)\1 a]l é zl +>\2(a]2)5 i2 +- +>\ (ajs)éxis) }
z€A0ET
s
tr 71;7
=

=
B .
{ tr(Alxﬁ + -+ Agade)
{
{
{

)\lanxﬂ 4ot Asaisxjs)

Z1 q _2$]1 + +)\s(ais)qm_2xjs) 4
z€e

Yl 4 A () 1775))

(i
(
(

Proof. This is a direct consequence of Proposition 4.1 combined with the
fact that C = tr(D) and the notations introduced in (12), (13), (18) and
(19). O

Note that the order of representations for D and C in Theorem 4.3, af-
ter the first one, is horizontal, short horizontal, vertical and short vertical.
Recall that our goal is to investigate weights of C. We finish this section
by stating the first remark on the weights of two different codes. This is
an easy observation provided by two different ways of looking at codewords:
horizontally and vertically. We will continue more detailed discussion of
weights in the following sections.

Corollary 4.4. Consider the code C of area (g™ — 1) x (¢™ — 1) over Fy
whose dual has as a basic zero set

BZ(Ct) = {(of, ), (2, 0%?),. .., (o, a?*)}.
Let C be the code of same area over Fy for which the dual has as a basic
zero set

( wEA,JEI}

r(Az® + - 4+ Agzt) , tr(Maftzt + - 4 Agadeat) | ) eA}
T

r(As

a]l ) 21+)\2(a]2)5 22+ REESY (ajs)tsz.is)) }
x€A0eT

BZ(Ct) = {(o1, a'), (@’2,0),. .., (o, a)}.
Then the weight enumerators of C and C are the same.
Proof. Consider the horizontal representation of the codeword ¢ in C' deter-
mined by the s-tuple (u1,p2,. .., us) in Fym and the vertical representation

of the codeword ¢ in C which is also determined by the same s-tuple. Rows
in ¢ are identical to columns in ¢ and hence these codewords have the same
weight. [

5. MINIMUM DISTANCE BOUND

Consider the code C in the horizontal representation in Theorem 4.3. If
¢ € C is a nonzero codeword corresponding to the s-tuple (u1, o, ..., us)
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in Fgm , then the weight of any of its rows is given by Hilbert’s Theorem 90
and it is

1—y=f(z
(20) ¢" -1~ é(#mqm (v —y=f(z))—q) =¢™ - #rye qy it )),
where f(z) is what is in the trace function corresponding to this row. In
other words, the weight of a codeword in C is determined by the number of
affine Fgm -rational points on g™ — 1 curves in the form y? —y = f(xz), where
f(z) is determined by the particular row. In particular, for the (r+ 1)% row
for any r € {0,1,...,¢™—2}, we have f(z) = p1(a® )"zt +- - -+ pg(ats )z,
Note that g points corresponding to z = 0 on the curve must be subtracted
in the formula since we evaluate trace on Fgn . Therefore, the whole weight
enumerator of C is related to the following family:

F={yl—y=Ma +Xz? + - + X7} \; €Fym }.

Using Theorem 2.2, we have the following criteria for rows in codewords of
C to be zero:

Proposition 5.1. Let C be the 2-D cyclic code of area (g™ — 1) x (¢™ — 1)
over F, whose dual has as a basic zero set

BZ(CJ‘) = {(ail,ajl), (ai2,aj2), een, (ais,ajs)} c Q.

Assume that the g-cycloctomic coset mod ¢™ — 1 of each j has cardinality
m = [Fgm : Fy]. Then we have
(i) The mapping tr of the diagram (8) is an Fy-vector space isomorphism.
(i) Let v be a codeword in C and v' € D be the unique codeword with
tr(v') = v. Then, a row in v is identically zero if and only if the same row
in v’ is identically zero.

Proof. (i) The fact that tr is surjective is known from Delsarte’s Theorem.
[Fy-linearity of the ordinary trace map implies the IF;-linearity of the mapping
tr. The cardinality of the F,-conjugacy class for each element in BZ(C1) is
m by the assumption made in the statement. Therefore, by Corollary 3.6,
the [F;-dimension of C' is sm. The F;~-dimension of D is s and hence over
[y, it is sm dimensional, too. Therefore, tr is also injective.

(ii) Recall that the weight of a row in v is given by the formula (20).
Since the g-cyclotomic coset mod ¢™ — 1 containing each j, has cardinality
m and we choose j,’s to be pairwise non-conjugate with respect to Fy (cf.
Remark 3.9), we can use Theorem 2.2. Note that some of the j,’s may be
the same and therefore we cannot conclude that the curve in the formula
(20) has ¢™*! rational points if and only if every Ay = 0. However, we can
say that there are ¢™'! affine F,m-rational points on y? — y = f(z) if and
only if f(z) =0 on Fym, which is enough for our statement to be true. [

The hypothesis of Proposition 5.1 gives us a bit of control on the behavior
of the tr map. Namely, a nonzero row in v € D will not be mapped to a
zero row under tr. In order to say something effective about the minimum
distance of C, we need to know the maximum possible number of zero rows
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in a codeword of C, which is equivalent to the same question about D. How-
ever, a quick look at the representations of Theorem 4.3 makes it clear that
answering this question in the generality of Proposition 5.1 is fairly difficult
due to the complexity of the system of equations one has to deal with. One
additional assumption will avoid any of these zero row considerations and
provide us a minimum distance bound.

Theorem 5.2. Let C be the 2-D cyclic code of area (¢™ —1) X (¢™ —1) over
Fy whose dual has as a basic zero set

BZ(CH) = {(a®, ), (a2,0%?),. .., (', a/*)} C Q.

Assume that the jy’s are distinct and the g-cyclotomic coset mod g™ — 1
containing each j, has cardinality m = [Fgn : F;]. Then

(i) dimg, (C) = sm.

(ii) If d denotes the minimum distance of C, we have

d> (¢ -1)(¢™ - ;),
where N is in the set {q,2q,...,(q™ —1)q} and it is the tightest upper bound
that applies to the number of affine Fgm -rational points of all the curves in

the family F = {y? —y = A\2?' + Aoz?2 + - - - + \yals; Ay € Fym }.

Proof. (i) The F,-conjugacy class of each (a'7,a’7) has cardinality m by the
assumption on j,’s. The result follows from Corollary 3.6.

(ii) We adopt the notation of Proposition 5.1. Note that the hypotheses
of this proposition are satisfied. Hence, if v € C' is a nonzero codeword, then
it is the image under tr of a unique codeword v’ in D, where both codewords
are determined by a nontrivial s-tuple (A1, ..., As). Furthermore, a row in
v is identically zero if and only if the same row in ¢’ is identically zero. The
rows of v’ are in the form

(Al(ail)‘sle +---+ )\s(ais)‘sxjs) ,0=0,1,...,¢™ —2.
wE]F‘;m
Since the j,’s are all distinct, the polynomial expression of degree j, < ¢™—1
(see (3)) is identically zero on Fym if and only if every A, = 0. Therefore, a
nontrivial codeword in D, and hence in C, will not have an identically zero
row under our hypothesis.

We know that the number of affine Fy= -rational points on any member of
F is divisible by ¢ and cannot be ¢™*! by our hypothesis (cf. Theorem 2.2).
What we want to understand is the lowest possible weight in a row of v.
This is equivalent to asking what is the maximum number of affine Fym -
rational points that a nontrivial member of the family F = {y9 —y =
Mzt + Xgz9? + -+ - + Agx%s; Aj € Fym } can have. Letting N be this number
we see that the minimal possible weight in a row of v is, by (20), ¢™ — %.
Repeating this minimal weight in each row gives the lowest possible nonzero
weight that can occur in C. [
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There are couple of things that need to be addressed about this theorem.
The main difficulty is the determination of the number N if the family we
are dealing with is as general as it is in Theorem 5.2. If we attempt to use
the Hasse-Weil-Serre (H-W-S) bound (Theorem V.3.1 in [16]) in place of N,
then we need to be careful since the genus varies among the members of
the family. To guarantee that the bound applies to all the curves in F, we
should compute the H-W-S bound that corresponds to the highest genus in
F. However, the genus computation for the members and the determination
of the highest genus in the family might also be troublesome (see Section 3
in [6]). The following is a case when we are able to overcome these difficulties.

Corollary 5.3. Let C be the 2-D cyclic code of area (¢™ — 1) x (¢™ — 1)
over F, whose dual has as a basic zero set

BZ(CJ‘) = {(ail,ajl), (ai2,aj2), een, (ais,ajs)}.

Assume that the g-cyclotomic coset containing each j, has cardinality m =

[Fgm : By For every v =1,2,...,s, write j, as jy = r,p™, where p doesn’t
divide . Suppose the ry’s are all distinct and let r = max{ri,ra,...,rs}.
Then dimy, (C) = sm and if d denotes the minimum distance of C, we have
N
d>(¢™ - 1)(¢" - E)a

where N is the mazimum of the set {q,2q,...,(¢™ — 1)q} that is less than
or equal to

g+ 4=

Proof. The dimension of C is found as in Theorem 5.2. Note that we
require the r,’s to be distinct, which guarantees that the j,’s will be distinct.
Therefore, everything follows as it did in Theorem 5.2 and we only need to
show that the number N is what we assert it is. Note that our family is
F={yl-y=>, Ayz™ P Ay € Fym }. It is known that such curves are

all Artin-Schreier (A-S) and the biggest genus in F is W (Remark
3.2 in [6]). Therefore, the corresponding H-W-S bound is indeed a universal
bound on the family of curves; i.e., it bounds the number of affine rational
points of every curve in the family. Note that the bound we use in the
formula is one less than the H-W-S bound, which is due to the fact that
there is only one rational point at infinity for all the curves in F and we
only consider affine rational points in our considerations. [l

Note that two things might cause this bound to be ineffective. First of all,
the N we find by the universal H-W-S bound may not be a good estimate
for the largest number of F,m-rational points in the family. For instance, if
the universal H-W-S bound is greater than or equal to ¢™*!, then N will
be (¢™ — 1)¢ and hence the minimal weight we find for each row will be
q" — % = ¢™ — (¢™ — 1) = 1. Therefore, we would conclude d > ¢™ — 1,
which is the number of rows. This is already known since the assumptions
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we made guarantee that a nonzero codeword in C doesn’t have a zero row.
Therefore, to get more meaningful estimates for d we should look at examples
where the universal H-W-S bound is as small as possible compared to ¢ 1.
Secondly, we repeat the same highest number N (or the smallest weight,
which is ¢™ — %) in each row whereas this is not necessarily the case in
reality. Finding a way to use the relations among the coefficients of rows in
the representations of Theorem 4.3 could clearly imrove the bound.

We look at some examples now. One can use Macaulay2 ( [5]) to compute
actual minimum distances if the finite field is not too big. For the Macaulay?2
routine, which is based on our representations in Theorem 4.3, we refer to [7].
In the examples we will try to show some ideas to improve the estimates
and even compute the weight enumerators in some cases.

Example 5.4. Consider Fy over F3 and let o be a primitive element in [Fg
which satisfies o> + o — 1 = 0. Let C be the 2-D cyclic code over [F3 of area
8 x 8 whose dual has as a basic zero set

BZ(Ct) = {(o, @), (c, &?)}.

Note that the cardinality of Z(C+) is 4 and hence C has dimension 4 over
3. The number N is a multiple of 3 that is less than 3-9 = 27 and r = 2.
The universal H-W-S bound is 9 + [2v/9] = 15. Hence N = 15. Therefore
our estimate for the minimum distance of C' is d > 8 - 4 = 32. The actual
minimum distance is 42. For this example, we don’t need Macaulay2 to
obtain the actual minimum distance. We will compute the complete weight
enumerator in Example 6.2.

Example 5.5. Consider Fg over Fo and let o be a primitive element in Fg
which satisfies o3 + o+ 1 = 0. Let C be the 2-D cyclic code over [F, of area
7 x 7 whose dual has as a basic zero set

BZ(Ct) = {(o, @), (&, 0°)}.

The cardinality of Z(C~) is 6 and therefore C' has dimension 6 over Fy. N
is a multiple of 2 that is less than 2 -8 = 16 and r = 5. The universal
H-W-S bound is 8 + 2[2v/8] = 18. Therefore, N = 14 and our estimate for
the minimum distance of C is d > 7-1 = 7. Observe that this is just the
number of rows and what is happening here is exactly what we mentioned
in the paragraph that follows Corollary 5.3. However, we can do a little
bit better if we just choose a different second representative in BZ(C').
Namely, replace (o, ) with (af,o®) and observe that all the hypotheses
of Corollary 5.3 are still satisfied. Then r = 3 and the universal H-W-S
bound is 8 + [2v/8] = 13. Since N has to be a multiple of 2, N = 12. Then
our estimate becomes d > 7 - 2 = 14. The actual minimum distance of C is
24.

Example 5.6. Consider Fg over Fo and let o be a primitive element in Fg
which satisfies a® + o+ 1 = 0. Let C be the 2-D cyclic code over F, of area
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7 x 7 whose dual has as a basic zero set
BZ(C*) = {(a, @), (&®, 0%)}.

The cardinality of Z(C+) is 6 and therefore C has dimension 6 over Fy. N
is a multiple of 2 that is less than 2 -8 = 16 and r = 3. The universal
H-W-S bound is 8 + [2v/8] = 13 and hence N = 12. Our estimate on the
minimum distance is d > 7 -2 = 14. Note that for an arbitrary codeword in
D, where D is the code over Fg such that tr(D) = C, we have the following
representation (cf. Theorem 4.3):
8 344,.3
(Al(a) T+ )\2(@ ) T )wEFSk,(s:O,I,"',6’ )\1, Ao € Fg.

Let v’ be the codeword in D which is obtained by the coefficients (u1, u2) #
(0,0) in F2. For every 4, i.e., for every row, if we replace o’z by zs, it changes
the order of elements in the corresponding row but certainly doesn’t change
the set of elements of Fg that appears in that row. After this modification,
we get the matrix

M:( 125 + 2£L‘3) .
H1%s T H2%s 25 €F; 6=0,1,+,6

If v = tr(v') is the codeword obtained from v € D, then its weight is
the same as the weight of tr(M), by the above observation. The curves
corresponding to the rows of tr(M) are the same and given by the equation
Y2+Y = u1 X + paX3. Using the tables for such curves in [15], we see that
there is a choice of (u1,u2) for which N = 12 affine Fg-rational points is
achieved. Therefore, for such a choice of (u1,u2) we get a codeword in C of
weight 14. Since we already showed d > 14 by our general bound, d = 14.

Remark 5.7. Two things make it possible to find the exact minimum dis-
tance in Example 5.6. The first is the knowledge that N of Corollary 5.3
is exactly the maximum rational points that appear in the corresponding
family of curves. The second is the convenience of the basic set which guar-
antees the existence of a codeword for which the same lowest possible weight
is repeated in every row. Therefore, we can get the minimum distance of
similar binary 2-D cyclic codes where « is a primitive element of the exten-
sion For that is dealt with in the problem. The importance of the basic set
is justified if we look at the binary code of the same area whose dual has
as a basic zero set {(a, a), (o, )}, instead. Note that the family of curves
we deal with is the same and we will have a good bound, N = 12, for the
family again. Our estimate is d > 14 but the actual minimum distance of
this code is 24.

6. SPECIAL CLASSES OF 2-D Cycric CODES

Our goal in this section is to investigate special classes of codes which are
not covered by Corollary 5.3. In order to stay out of the scope of Corol-
lary 5.3, we will allow some (or all) of the second coordinates of pairs in the
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basic set to be the same. Therefore we will no longer have the comfort of
knowing that a nonzero codeword can’t have an identically zero row.

We start with codes with two basic nonzeros. This will be followed by
considerations of certain cases of three and four basic nonzeros.

Theorem 6.1. Let C be the code over F, of area (¢™ — 1) x (¢™ — 1) whose
dual has as a basic zero set

BZ(CJ‘) = {(ail,a), (ai2,a)}.

Then C is of dimension 2m over Fy and if 0 denotes the order of a7 p
the multiplicative group Fym, then the weights and their frequencies for C
are

weight frequency
(@™ -1-%=) (g™ —¢™ ) 0-(¢™—1)
(@™ = 1)(g™ — g™ ") @™ —0-(¢g"-1)-1

Proof. Since o is primitive in Fy» its degree over I, is m. Therefore, the
cardinality of the F,-conjugacy classes for both pairs in BZ(C") is m and the
dimension of C is 2m. We know that C = tr(D) for a code D over F,» and
tr is injective (cf. Proposition 5.1). Therefore, for a nonzero codeword v in
C, there exists a unique codeword v' in D such that v = tr(v') and a row in
v is zero if and only if the same row in v/ is zero, again by Proposition 5.1. In
fact, by Theorem 4.3, we have the following short horizontal representations
for these codewords:

o — (()\l(ail)‘s + >\2(ai2)5)$)weA75€I

— (¢ A i1\0 A i2\0 ) ’
o= (el e )e])
where Ar, Ag are in Fym. Note that the weight of a row in v is

(7 —y = (A(aM) + Aa(a)%))
9 q
for some ¢ € Z. Since the curve in the formula is a rational curve, provided
that the coefficient of z is nonzero, it has ¢ affine Fym -rational points and
hence when a row of v is nonzero, it has weight ¢™ — ¢™ . However, there
may be zero rows in v and these are the same as the zero rows of v’. Observe
that v’ can also be written as

v = (()\1 + Ao (a2711)9) (ail)‘sx)

z€A0ET

and a row is zero if and only if A\; + Xo(af2741)% = 0.

If Ay =0 and Ag # 0, then no row in the corresponding codeword v’ € D
is zero. Therefore, g™ —1 codewords in C' obtained with such coefficients will
have rational curves corresponding to each row, meaning that their weight
will be (g™ — 1)(¢™ — g™ !). The same thing happens when Ay = 0 and
A1 # 0.
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Now assume that both coefficients are nonzero. Let 6 be the order of
ab2~h in Fym. For any nonzero A € Fym, there exists a unique nonzero
A1 € Fym such that A\; + Aa(a?27%)% = 0 for one and only one § in the set
{0,1,...,60—1}. This means that for each Ay € Fym, there exists ¢ choices of
A1 € Fym satisfying the equality for some 6 € {0,1,...,6—1} (i.e., 6-(¢™—1)
pairs (A1, A2) € Fym X Fym ). Note that this unique zero row is repeated with
gm—1

period € and hence all of these codewords will have total of ZEro rOWS.
This means the corresponding codewords in C' will have the same number
of zero rows and hence their weight will be (¢™ — 1 — £5+) (g™ — g™ 1).
All the remarkaining (¢™ — 1)2 — 0 - (¢™ — 1) choices of (A1, ) in this
case lead to words with no zero rows and hence codewords with weight
(¢" = 1)(g™ — ¢™1) in C. O

Example 6.2. Refer back to the code C of Example 5.4. The weight enu-
merator of C is the same as that of the 2-D cyclic code C, whose dual has as
a basic zero set BZ(Ct) = {(a, @), (@2, @)} (cf. Corollary 4.4). The order
of a®>! = ¢ in F} is 8 and hence the nonzero weights of C are 7 -6 = 42
and 8-6 = 48 with frequencies 64 and 16, respectively. Hence, the minimum
distance of C in Example 5.4 is 42.

Remark 6.3. Theorem 6.1 produces two-weight codes over any field F,.
These types of codes are interesting for Graph Theorists and Finite Geome-
ters due to their connection with the so-called strongly regular graphs and
certain sets in projective spaces (see [2]).

Observe that what made it possible to obtain the weight enumerator in
Theorem 6.1 was the second coordinates in the dual’s basic zero set, which
produced rational curves in our argument. We now give a minimum distance
bound on other codes with two basic nonzeros.

Proposition 6.4. Let C be the code over Fy of area (g™ — 1) x (¢™ — 1)
whose dual has as a basic zero set

BZ(Ct) = {(ail,aj), (ai2,aj)}.

Let 1 # 5 =rp", where p doesn’t divide r, and assume that the q-cyclotomic
coset containing j mod ¢™ — 1 has cardinality m. Then

qm —1 N
d> (" —-1- m_
> (g ) (g . ),
where d is the minimum distance of C, N is the mazimum of {q,2q, ..., (qg™—

1)q} which is less than or equal to

g+ =D s,

and 0 is the order of &2~" in the multiplicative group Fgm -
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Proof. Note that both C over I, and D over F;» have dimension 2m over
F,. If o' € D is the nonzero codeword obtained from A;, A € Fym and
v = tr(v') € C, then they are of the form

v'= ((Al(ail)é + A2(ai2)5)xj)zeA,<se:r

v (tr[(Al(ail)é + >‘2(0‘i2)5)$j])weA,<ser'

By Proposition 5.1, a row in v is zero if and only if the same row in v'
is zero. The maximum number of zero rows in a codeword of D is %,
following a similar argument to that we had in the proof of Theorem 6.1.
For the remaining nonzero rows, we choose the lowest possible weight. This
means, the highest number of affine Fy= -rational points among the nontrivial
members of the family F = {y? —y = Xz’; X € Fgn }. By Theorem 2.2,
F doesn’t have a nontrivial curve with ¢™*! points. The universal H-W-S

bound for this family is

qm+ (q_l)(r_l)[Q\/W.

2
This is because every nontrivial curve in F is Artin-Schreier with the genus
g= W. Hence the result follows. [

Example 6.5. Consider Fy over F3 and let o be a primitive element in [Fgy
which satisfies a? + o — 1 = 0. Let C be the 2-D cyclic code over F3 of area
8 x 8 whose dual has as a basic zero set

BZ(CJ‘) ={(e, a?), (@, a2)}.

Note that the cardinality of Z(C+) is 4 and hence C has dimension 4 over
3. The number N is a multiple of 3 that is less than 3-9 = 27 and r = 2.
The universal H-W-S bound is 9 + [2v/9] = 15. Hence N = 15. The order
of @71 = o in F} is 2. Therefore our estimate for the minimum distance
of C'isd> (8 —4)-4=16. This is the actual minimum distance of C.

We now move on to codes with three basic nonzeros. Our choice of a
nonzero set will be explained after the following proposition.

Proposition 6.6. Let C be the code over Fy of area (¢™ — 1) x (¢™ — 1)
whose dual has as a basic zero set

BZ(CJ‘) = {(ail,ajl), (ai2,aj2), (ai?’,aj?)}.

Let jo = ryp™ (v = 1,2), where p doesn’t divide r., and suppose that the
g-cyclotomic coset containing j, mod ¢ — 1 has cardinality m. Let r =
maz{ry,ra}. If r1 and ro are distinct, then

g"—1 N

d> (™ -1- 7 )(qm—;),
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where d is the minimum distance of C, N is the mazimum of {q,2q,...,(¢g™—

1)q} which is less than or equal to

g+ 4=

and @ is the order of a'3% in the multiplicative group Fom -

Proof. Both D and C have dimension 3m over [F;. A nonzero codeword v
in C is of the form

v = (tr [ (@)t 4+ (Mg(a)? + >‘3(ai3)5)$j2])weA,éer’

and it is the image under tr of a unique codeword in D, which is

1 11\0 .51 1210 1310\ .72
vo= [ A(@)’2? + (A2(a'?)’ + A3(a T )
(M(@ya? + (a@?)’ + Xs(@))a?)
where Aq, Ag, A3 are in Fym. We get a zero row in v if and only if the same
row in v’ is zero. So, we look at the maximum possible number of zero rows
in a nonzero codeword of D. If we choose the A;’s as

A =0 and X = —)3(ai*7%2)’,

for some ¢ in {0,1,...,0—1}, then the row corresponding to this § value will
be zero and there will be £-—1 total zero rows. It can be shown, as it was
done in the proof of Theorem 6.1, that two distinct § valuesin {0,1,...,6—1}
can’t yield two zero rows. Therefore, the maximum number of zero rows in
a codeword of D, and hence in a codeword of C, is qm0—1. The fact that the
H-W-S bound is a universal bound follows by the assumption that 1 and
ro are distinct. Therefore, repeating the minimum possible weight in the

remaining nonzero rows finishes the proof. [l

Remark 6.7. Note that if we assume all of the second coordinates in the
basic set are equal, then we run into difficulty of determining how many
times the set of equations of the form

A (@) + Ao (@)’ + A3(e®) =0, 6=0,1,...,¢" —2
are satisfied for (A1, Ao, A3) € IF‘Zm.
Example 6.8. Consider Fg over Fo and let o be a primitive element in Fg
which satisfies o3 + o+ 1 = 0. Let C be the 2-D cyclic code over [F, of area
7 x 7 whose dual has as a basic zero set
BZ(CH) = {(e, @), (2, 0%), (0, 0”)}.

Note that the cardinality of Z(C*) is 9 and hence C has dimension 9 over
F>. The number N is a multiple of 2 that is less than 2-8 = 16 and r = 3.
The universal H-W-S bound is 8 + [2v/8] = 13. Hence N = 12. The order
of o®~! = o? in I} is 7. Therefore our estimate for the minimum distance
of Cisd > (7—1)-2 = 12. The actual minimum distance of C is 14.
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Finally, we look at codes with four basic nonzeros. Due to reasons similar
to those of Remark 6.7, we restrict our attention to the case below. Since
the proof is very similar to the ones we have given so far, we omit it and
just give examples.

Proposition 6.9. Let C be the code over Fy of area (g™ — 1) x (¢™ — 1)
whose dual has as a basic zero set

BZ(CY) = {(a",0"), (0, 0), (o, 07), (o™, 0??)}.
Let jo = ryp™ (v = 1,2), where p doesn’t divide r., and suppose that the

g-cyclotomic coset containing j, mod ¢ — 1 has cardinality m. Let r =

maz{ri,ra}, 6 be the order of &' in Fym , and assume this is the same

as the order of &~ If 1 and ry are distinct, then

gm—1 N
d>(¢"m—-1—-"—)(¢™ — =),
> (4 g )" —)
where d is the minimum distance of C, N is the mazimum of {q,2q,...,(¢g™—
1)g} which is less than or equal to

g+ 4=

Example 6.10. Consider Fy over F3 and let « be a primitive element in [Fgy
which satisfies a? + o — 1 = 0. Let C be the 2-D cyclic code over F3 of area
8 x 8 whose dual has as a basic zero set

BZ(CJ‘) ={(o, @), (@2, a), (o, 02), (02, a2)}.

Note that the cardinality of Z(C+) is 8 and hence C has dimension 8 over
3. The number N is a multiple of 3 that is less than 3-9 = 27 and r = 2.
The universal H-W-S bound is 9 + [2v/9] = 15. Hence N = 15. The order
of @®~! = a in F} is 8. Therefore our estimate for the minimum distance of
Cisd>(8—1)-4=28. The actual minimum distance of C is 32.

Example 6.11. Consider Fi4 over [Fs and let o be a primitive element in
Fi¢ which satisfies o* + o +1 = 0. Let C be the 2-D cyclic code over Fy of
area 15 x 15 whose dual has as a basic zero set

BZ(CJ‘) ={(o, @), (@3, a), (o, 03), (03, a3)}.

Note that the cardinality of Z(C1) is 12 and hence C has dimension 12 over
F>. The number N is a multiple of 2 that is less than 2-16 = 32 and r = 3.
The universal H-W-S bound is 16 + [2v/16] = 24. Hence N = 24. The order
of @31 = o? in F}g is 15. Therefore our estimate for the minimum distance
of Cisd> (15 —1)-4=56.

We now show how one can say more about the minimum distance of
this code using an argument similar to that of Example 5.6. Namely, the
codewords in C' are of the form

(tr[()\l(a)‘s +(0®)D)z+ (s(@)’ + A4(a3)5)x3])wew o1y € s,
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Consider the codeword v € C which is obtained by choosing Ao = A3 =0
and (A1, A1) # (0,0). Following the steps in Example 5.6, we can show that
such a codeword has the lowest possible weight of 16 — 12 = 4 repeated in
all 15 rows. This shows the existence of a codeword of weight 60 in C and
hence gives us 56 < d < 60. On the other hand, the tables in [15] show that
all possible weights for the rows of a codeword in C are even and hence we
conclude d = 56,58 or 60. The actual minimum distance is 60.

Once again, this shows the possible improvements we can make on the
general bounds of our results when we look at specific examples.

Example 6.12. Consider Fg over [F, and let « be a primitive element in Fg
which satisfies a® + o+ 1 = 0. Let C be the 2-D cyclic code over F, of area
7 x 7 whose dual has as a basic zero set

BZ(CJ‘) ={(o, @), (@3, a), (o, 03), (03, a3)}.

Note that the cardinality of Z(C1) is 12 and hence C has dimension 12 over
F>. The number N is a multiple of 2 that is less than 2-8 = 16 and r = 3.
The universal H-W-S bound is 8 +[21/8] = 13 and hence N = 12. The order
of @371 = o? in F} is 7. Therefore our estimate on the minimum distance of
Cisd > (7—1)-2=12. Using the argument in Example 6.11, we can prove
the existence of a codeword of weight 14 and we can show that the weights
of codewords are even. Therefore, we end up with d = 12 or 14. The actual
minimum distance is 14.
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