Remarks on the k-error linear complexity of p^{n}-periodic sequences

Wilfried Meidl ${ }^{1}$ and Ayineedi Venkateswarlu ${ }^{2}$
${ }^{1}$ Sabanci University, Orhanli, Tuzla, 34956 Istanbul, Turkey, wmeidl@sabanciuniv.edu
${ }^{2}$ Temasek Laboratories, National University of Singapore, 5 Sports Drive 2, Singapore 117508, Republic of Singapore, tslav@nus.edu.sg

Abstract

Recently the first author presented exact formulas for the number of 2^{n}-periodic binary sequences with given 1-error linear complexity, and an exact formula for the expected 1-error linear complexity and upper and lower bounds for the expected k-error linear complexity, $k \geq 2$, of a random 2^{n}-periodic binary sequence. A crucial role for the analysis played the Chan-Games algorithm. We use a more sophisticated generalization of the Chan-Games algorithm by Ding et al. to obtain exact formulas for the counting function and the expected value for the 1 -error linear complexity for p^{n}-periodic sequences over \mathbb{F}_{p}, p prime. Additionally we discuss the calculation of lower and upper bounds on the k-error linear complexity of p^{n}-periodic sequences over \mathbb{F}_{p}.

keywords: linear complexity, k-error linear complexity, Chan-Games algorithm, periodic sequences, stream cipher

AMS Classification: 94A55, 94A60, 11B50

1 Introduction

Let $S=s_{1}, s_{2}, \ldots$ be a sequence with terms in the finite field \mathbb{F}_{q} (or shortly over \mathbb{F}_{q}). If, for a nonnegative integer N, the terms of S satisfy $s_{i+N}=s_{i}$ for all $i \geq 1$, then we say that S is N-periodic. The linear complexity of a periodic sequence S over the finite field \mathbb{F}_{q}, denoted by $L(S)$, is the smallest positive integer L for which there exist coefficients $d_{0}=1, d_{1}, d_{2}, \ldots, d_{L}$ in \mathbb{F}_{q} such that

$$
d_{0} s_{i}+d_{1} s_{i-1}+\ldots+d_{L} s_{i-L}=0 \quad \text { for all } i \geq L+1
$$

Trivially, the linear complexity of an N-periodic sequence can at most be N. The concept of linear complexity is very useful in the study of the security of stream ciphers (see $[10,11]$). A necessary condition for the security of a keystream generator is that it produces a sequence with large linear complexity.

A cryptographically strong sequence should not only have a large linear complexity, but also altering a few terms should not cause a significant decrease of the linear complexity. According to this requirement, for an integer $k, 0 \leq k \leq N$, in [12] Stamp and Martin defined the k-error linear complexity $L_{k}(S)$ of an N-periodic sequence S with period $\left(s_{1}, s_{2}, \ldots, s_{N}\right)$ to be the smallest linear complexity that can be obtained by altering k or fewer of the terms $s_{i}, 1 \leq i \leq N$.
The concept of k-error linear complexity was built on the earlier concept of sphere complexity $S C_{k}(S)$ introduced in the monograph [1]. The sphere complexity $S C_{k}(S)$ of an N-periodic sequence over \mathbb{F}_{q} can be defined by

$$
S C_{k}(S)=\min _{T} L(T)
$$

where the minimum is taken over all N-periodic sequences $T \neq S$ over \mathbb{F}_{q} for which the period of T differs from the period of S at k or fewer positions. Obviously, we have

$$
L_{k}(S)=\min \left(S C_{k}(S), L(S)\right)
$$

A lot of research has been done on the linear complexity and the k error linear complexity of keystream sequences (for a recent survey we refer to [10]). However, for $k>0$ we do not have formulas for the number of sequences with given k-error linear complexity or exact formulas for the expected k-error linear complexity of a random N-periodic sequence, not even for small k such as $k=1$. One exception is the rather simple case where N is prime and q is a primitive root modulo N. In this case the linear complexity can only attain the values $N, N-1,1$ and 0 . As a result, for this particular period it is possible to obtain exact values on the k-error linear complexity, $k>0$ (cf. [8]).

In $[8,9]$ a technique to obtain lower bounds on the expected k-error linear complexity E_{k} of a random N-periodic sequence over \mathbb{F}_{q} has been presented. The technique of $[8,9]$ does not support the calculation of an upper bound for E_{k}. Solely for the rather simple case that N is prime and q is a primitive root modulo N, the technique of $[8,9]$ yields an exact formula for E_{k} (cf. [8]).
We will consider p^{n}-periodic sequences over the finite field $\mathbb{F}_{q}, q=p^{m}$ for
a prime p. For this class of sequences the technique of $[8,9]$ provides the lower bound

$$
\begin{equation*}
E_{k} \geq p^{n}-\log _{q}\left(\sum_{t=0}^{k}\binom{p^{n}}{t}(q-1)^{t}\right)-\frac{q}{q-1} \tag{1}
\end{equation*}
$$

for the expected value E_{k} of the k-error linear complexity.
p^{n}-periodic sequences over a finite field \mathbb{F}_{q} with characteristic p have been studied from several viewpoints. In [2] Games and Chan presented an algorithm that efficiently determines the linear complexity of a given 2^{n} periodic binary sequence. The Chan-Games algorithm has been generalized in [12] respectively [6] to an algorithm computing the k-error linear complexity of a 2^{n}-periodic binary sequence for a fixed k respectively for all k simultaneously. These algorithms have been generalized in [1], [3] and [4] to more sophisticated algorithms applicable to p^{n}-periodic sequences over the finite field \mathbb{F}_{q} with characteristic p.

In [7], elements of the algorithms in [2] and [12] have been used to obtain exact formulas for the counting function and the expected value for the 1 error linear complexity of 2^{n}-periodic binary sequences. Moreover for $k \geq$ 2 bounds for the expected k-error linear complexity of 2^{n}-periodic binary sequences have been discussed. The question to which extent the more sophisticated algorithms in $[1,3]$ can be utilized to obtain related results on p^{n}-periodic sequences over \mathbb{F}_{q} arises naturally. In Section 2, the main part, we obtain exact formulas for the number of p^{n}-periodic sequences over the prime field \mathbb{F}_{p} with given 1-error linear complexity and for the expected 1-error linear complexity. In Section 3 we concentrate on the calculation of bounds on the k-error linear complexity of p^{n}-periodic sequences over \mathbb{F}_{p}.

2 Counting functions and expected values for $\mathrm{k}=1$

In [9] it has been shown that the number $\mathcal{N}(L)$ of p^{n}-periodic sequences over $\mathbb{F}_{q}, q=p^{m}, p$ prime, with given linear complexity $L, 0 \leq L \leq p^{n}$, is given by

$$
\begin{equation*}
\mathcal{N}(0)=1 \quad \text { and } \quad \mathcal{N}(L)=(q-1) q^{L-1} \quad \text { for } \quad 1 \leq L \leq p^{n} \tag{2}
\end{equation*}
$$

In [5] Kurosawa et al. showed that the minimum value k for which the k error linear complexity of a p^{n}-periodic sequence S over \mathbb{F}_{q} is strictly less than the linear complexity $L(S)$ of S is exactly determined by

$$
\begin{equation*}
k=\operatorname{Prod}\left(p^{n}-L(S)\right) \tag{3}
\end{equation*}
$$

where $\operatorname{Prod}(C):=\prod_{j=0}^{m-1}\left(i_{j}+1\right)$ if $C=i_{0}+i_{1} p+\cdots+i_{m-1} p^{m-1}$. In particular, the sequences with maximal possible linear complexity p^{n} are the only sequences for which the 1-error linear complexity is less than the linear complexity. Hence it suffices to calculate the number of sequences with linear complexity p^{n} and given 1-error linear complexity $L, 0 \leq L<p^{n}$, in order to obtain the complete counting function for the 1-error linear complexity. As it is well known (see e.g. [5, Proposition 2.1]), the set of p^{n}-periodic sequences over $\mathbb{F}_{q}, q=p^{m}, p$ prime, with maximal possible linear complexity p^{n} is exactly the set of sequences for which the sum of the elements of one period is not zero.

We will utilize the generalized Chan-Games algorithm presented in [1]. The algorithm can be described as follows:
Let S be a p^{n}-periodic sequence over $\mathbb{F}_{q}, q=p^{m}, p$ prime, with period $\left(s_{1}, s_{2}, \ldots, s_{p^{n}}\right)$ and $\mathcal{A}=\left(a_{i, j}\right)$ the $(p-1) \times p$-matrix with $a_{i, j}=\binom{p-j}{i-1}$, then we define the matrix \mathcal{B} to be the $(p-1) \times p^{n-1}$-matrix with l th column equal to $\mathcal{A}\left(s_{l} s_{l+p^{n-1}} \ldots s_{l+(p-1) p^{n-1}}\right)^{T}, l=1,2, \ldots, p^{n-1}$. The linear complexity $L(S)$ of the sequence S is then given by

$$
(p-w) p^{n-1}+L\left(S_{1}\right)
$$

where w is the least integer such that the w th row of \mathcal{B} is not the zero row, or $w=p$ if \mathcal{B} is the zero matrix, and S_{1} is the p^{n-1}-periodic sequence with the w th row of \mathcal{B} as period if \mathcal{B} is not the zero matrix, or $\left(s_{1}, s_{2}, \ldots, s_{p^{n-1}}\right)$ as period if \mathcal{B} is the zero matrix. The generalized Chan-Games algorithm is obtained by applying this result recursively, which is possible since the period length of S_{1} is again a power of p. In the final step we will have a sequence with period $p^{0}=1$, i.e., a constant sequence s_{1}, s_{1}, \ldots. If $s_{1} \neq 0$ we add 1 to the present value for the linear complexity of S.

The described algorithm motivates a mapping φ_{n} from $\mathbb{F}_{q}^{p^{n}}$ into $\mathbb{F}_{q}^{(p-1) \times p^{n-1}}$, $n \geq 1$, defined by

$$
\varphi_{n}\left(\left(s_{1}, s_{2}, \ldots, s_{p^{n}}\right)\right)=\mathcal{B}
$$

where \mathcal{B} is defined as above.
Let $H(\mathbf{v})$ denote the Hamming weight of a vector \mathbf{v}. Let $\mathbf{s}^{(n)}$ be any element of $\mathbb{F}_{q}^{p^{n}}$ and let $\boldsymbol{b}(u), u=0, \ldots, p-2$, be the $(u+1)$ th row of the matrix \mathcal{B}. We collect some (obvious) properties of the matrix \mathcal{A} and the mapping φ_{n} respectively the matrix $\mathcal{B}=\varphi_{n}\left(\mathbf{s}^{(n)}\right)$.

P1 The matrix \mathcal{A} has rank $p-1$. Hence the linear system $\mathcal{A} \mathbf{x}=\mathbf{b}$ has q different solutions in \mathbb{F}_{q}^{p}. In particular the vectors $c(1,1, \ldots, 1), c \in \mathbb{F}_{q}$, are the solutions of the homogenous system $\mathcal{A} \mathbf{x}=\mathbf{0}$.

P2 $H(\boldsymbol{b}(u)) \leq H\left(\mathbf{s}^{(n)}\right)$ for $0 \leq u \leq p-2$.
P3 The sum of the elements of the first row $\boldsymbol{b}(0)$ of \mathcal{B} equals the sum of the elements of $\mathbf{s}^{(n)}$.

P 4 The set $\varphi_{t+1}^{-1}:=\left\{\mathbf{v} \in \mathbb{F}_{q}^{p^{t+1}} \mid \varphi_{t+1}(\mathbf{v})=\mathcal{B}\right\}$ for a given $(p-1) \times p^{t}$ matrix \mathcal{B} over \mathbb{F}_{q} has cardinality $q^{p^{t}}$.

We restrict ourselves to the case of the prime field \mathbb{F}_{p}. Then we can show the following lemma.

Lemma 1 Let \mathcal{A} be the matrix defined as above and suppose that for $\mathbf{v} \in \mathbb{F}_{p}^{p}$ we have $\mathcal{A} \mathbf{v}=\left(u_{1} \neq 0, u_{2}, \ldots, u_{p-1}\right)$. Then we have p vectors $\mathbf{v}_{i}, 1 \leq i \leq p$, such that the first component of $\mathcal{A} \mathbf{v}_{i}$ is zero, i.e., $\mathcal{A} \mathbf{v}_{i}=\left(0, u_{2}^{\prime}, \ldots, u_{p-1}^{\prime}\right)$ for some $u_{2}^{\prime}, \ldots, u_{p-1}^{\prime} \in \mathbb{F}_{p}$, and \mathbf{v}_{i} differs from \mathbf{v} at exactly one position. Moreover for each given $z \in \mathbb{F}_{p}$ there exists exactly one vector $\mathbf{v}_{i_{z}}, 1 \leq i_{z} \leq p$, which differs from \mathbf{v} at exactly one position and $\mathcal{A} \mathbf{v}_{i_{z}}=\left(0, z, \hat{u}_{3}, \ldots, \hat{u}_{p-1}\right)$.

Proof. Evidently, for $1 \leq i \leq p$, the vectors $\mathbf{v}_{i}:=\mathbf{v}+\mathbf{e}_{\mathbf{i}}$, where $\mathbf{e}_{\mathbf{i}}$ is the vector with i th entry $-u_{1}$ and $H\left(\mathbf{e}_{\mathbf{i}}\right)=1$, satisfy $\mathcal{A} \mathbf{v}_{i}=\left(0, u_{2}^{\prime}, \ldots, u_{p}^{\prime}\right)$ for some $u_{2}^{\prime}, \ldots, u_{p}^{\prime} \in \mathbb{F}_{p}$. Since the second row of \mathcal{A} consists of all elements of the prime field \mathbb{F}_{p}, we will have $\mathcal{A} \mathbf{v}_{i_{z}}=\left(0, z, \hat{u}_{3}, \ldots, \hat{u}_{p-1}\right)$ for exactly one $1 \leq i_{z} \leq p$ and for some $\hat{u}_{3}, \ldots, \hat{u}_{p-1} \in \mathbb{F}_{p}$.

Proposition 1 Let S be a p^{n}-periodic sequence over \mathbb{F}_{p} with maximal possible linear complexity $L(S)=p^{n}$. Then the 1-error linear complexity of S is 0 or of the form

$$
\begin{align*}
L_{r, w, C}:= & p^{n}-w p^{r}+C, \quad 0 \leq r \leq n-1, \tag{4}\\
& 2 \leq w \leq p-1 \quad \text { and } 0 \leq C \leq p^{r}-1, \quad \text { or } \\
& w=p, r \neq 0 \quad \text { and } 1 \leq C \leq p^{r}-1 .
\end{align*}
$$

Proof. Evidently the sequences S with maximal linear complexity p^{n} and 1-error linear complexity $L_{1}(S)=0$ are exactly the sequences with one term different from 0 per period. We now show that the 1-error linear complexity of the remaining p^{n}-periodic sequences S with period $\mathbf{s}^{(n)}$ and linear complexity p^{n} is of the form (4). Since $L(S)=p^{n}$, the sequence S does not have the zero sum property. With the property P 3 for all $1 \leq m \leq n$ the first row of the matrix $\varphi_{m} \varphi_{m+1} \cdots \varphi_{n}\left(\mathbf{s}^{(n)}\right)$ is not the zero vector. Suppose that $r, 0 \leq r \leq n-1$, is the largest integer such that the first row $\boldsymbol{b}(0)$ of the $(p-1) \times p^{r}$-matrix $\mathcal{B}=\varphi_{r+1} \cdots \varphi_{n}\left(\mathbf{s}^{(n)}\right)$ has Hamming weight 1 . We want to change one term of the preimage of \mathcal{B} so that the resulting linear complexity
of the sequence is as small as possible. Since the linear complexity of the sequence corresponding to $\boldsymbol{b}(1)$ is lower than p^{r} if and only if $\boldsymbol{b}(1)$ has the zero sum property, the optimal choice is to perform a term change such that we obtain the zero vector for $\boldsymbol{b}(0)$ and additionally a vector with zero sum property for $\boldsymbol{b}(1)$. According to Lemma 1 we have exactly one choice for the term change with this property. In the case where $r=0$, the matrix \mathcal{B} is a column matrix and hence $\boldsymbol{b}(0) \neq \mathbf{0}$. By changing one term we can make $\boldsymbol{b}(1)$ also zero. If after the term change $\boldsymbol{b}(w)$ is the first non zero entry in \mathcal{B} then the 1-error linear complexity of S is $p^{n}-w, 2 \leq w \leq p-2$. Observe that after the term change, if the column matrix \mathcal{B} becomes zero then the first row of $\varphi_{2} \cdots \varphi_{n}\left(\mathbf{s}^{(n)}\right)$ contains p identical nonzero entries. Thus the 1-error linear complexity of S is $p^{n}-p+1$.

Now suppose $1 \leq r \leq n-1$ and $\boldsymbol{b}(1)$ is different from the zero vector after the term change, then the 1-error linear complexity of S is $p^{n}-2 p^{r}+C$, $1 \leq C \leq p^{r}-1$. If after the term change $\boldsymbol{b}(1)$ is the zero vector but $\boldsymbol{b}(2)$ is not, then the 1-error linear complexity of S is $p^{n}-2 p^{r}$ if the linear complexity of the sequence with period $\boldsymbol{b}(2)$ is p^{r} and $p^{n}-3 p^{r}+C, 1 \leq C \leq p^{r}-1$, if the linear complexity of the sequence with period $\boldsymbol{b}(2)$ is $1 \leq C \leq p^{r}-1$. In general, if after the term change $\boldsymbol{b}(w), 3 \leq w \leq p-2$, is the first row in \mathcal{B} not equal to the zero vector, then the 1-error linear complexity of S is $p^{n}-w p^{r}$ if the linear complexity of the sequence with period $\boldsymbol{b}(w)$ is p^{r} and $L_{1}(S)=p^{n}-(w+1) p^{r}+C, 1 \leq C \leq p^{r}-1$, if the linear complexity of the sequence with period $\boldsymbol{b}(w)$ is $1 \leq C \leq p^{r}-1$. Finally if after the term change \mathcal{B} is the zero matrix, then the 1-error linear complexity of S is $p^{n}-p^{r+1}+p^{r}$ if the linear complexity of the sequence S_{1} whose period consists of the first p^{r} terms of the (altered) preimage of \mathcal{B} is p^{r} and $L(S)=p^{n}-p^{r+1}+C$, $1 \leq C \leq p^{r}-1$, if the linear complexity of S_{1} is $1 \leq C \leq p^{r}-1$. Note that the 1-error linear complexity will never be $p^{n}-p^{r+1}$.
The next proposition presents the counting function for the 1-error linear complexity for p^{n}-periodic sequence over \mathbb{F}_{p} with maximal possible linear complexity $L(S)=p^{n}$.

Proposition 2 Let $\overline{\mathcal{N}}_{1}(L)$ be the number of p^{n}-periodic sequences S over \mathbb{F}_{p} with maximal possible linear complexity $L(S)=p^{n}$ and 1 -error linear complexity $L_{1}(S)=L$, and let $L_{r, w, C}$ be defined as in (4). Then

$$
\overline{\mathcal{N}}_{1}\left(L_{r, w, C}\right)=(p-1)^{2} p^{p^{n}-w p^{r}+r+C}
$$

$\overline{\mathcal{N}}_{1}(0)=(p-1) p^{n}$, and $\overline{\mathcal{N}}_{1}(L)=0$ if $L \neq 0$ is not of the form (4).

Proof. Evidently we have $\overline{\mathcal{N}}_{1}(0)=(p-1) p^{n}$, which equals the number of p^{n}-periodic sequences S over \mathbb{F}_{p} with one term different from 0 per period. The identity $\overline{\mathcal{N}}_{1}(L)=0$ if $L \neq 0$ is not of the form (4) immediately follows from Proposition 1.

The sequences with linear complexity p^{n} and 1-error linear complexity $p^{n}-2 p^{r}+C, 1 \leq C \leq p^{r}-1$, are exactly those sequences for which the matrix $\mathcal{B}=\varphi_{r+1} \cdots \varphi_{n}\left(\mathbf{s}^{(n)}\right)$ has a first row $\boldsymbol{b}(0)$ with $H(\boldsymbol{b}(0))=1$, and additionally after changing one term of the preimage of \mathcal{B} in the unique way such that $\boldsymbol{b}(0)$ becomes the zero vector and $\boldsymbol{b}(1)$ has the zero sum property, the sequence with period $\boldsymbol{b}(1)$ (altered version) has linear complexity C. We have $(p-1) p^{r}$ possibilities to choose $\boldsymbol{b}(0)$ with $H(\boldsymbol{b}(0))=1,(p-1) p^{C-1}$ possibilities to choose a sequence with linear complexity C for $\boldsymbol{b}(1)$, and initially the term of $\boldsymbol{b}(1)$ in the same column as the nonzero entry in $\boldsymbol{b}(0)$ can be chosen arbitrarily. The remaining rows of \mathcal{B} are arbitrary. Hence we have $(p-1)^{2} p^{r+C} p^{(p-3) p^{r}}$ different choices for \mathcal{B}. According to P 4 the matrix \mathcal{B} has $p^{p^{r}}$ preimages $\mathbf{s}^{r+1} \in \mathbb{F}_{p}^{p^{r+1}}$, which will be the first row of a certain $(p-1) \times p^{r+1}$-matrix \mathcal{B}^{\prime}. Note that $H\left(\mathbf{s}^{r+1}\right)>1$, else we would obtain the zero matrix for \mathcal{B} with one term change. For exactly $p^{(p-1) p^{r+1}}$ vectors $\mathbf{s}^{r+2} \in \mathbb{F}_{p}^{p^{r+2}}$ the matrix $\mathcal{B}^{\prime}=\varphi_{r+2}\left(\mathbf{s}^{r+2}\right)$ has $\mathbf{s}^{(r+1)}$ as the first row. Recursively we get $p^{p^{n}-p^{r+1}+p^{r}}$ for the numbers of vectors $\mathbf{s}^{(n)} \in \mathbb{F}_{p}^{p^{n}}$ with $\varphi_{r+1} \cdots \varphi_{n}\left(\mathbf{s}^{(n)}\right)=\mathcal{B}$, which leads to the desired formula for the number of p^{n}-periodic sequences over \mathbb{F}_{p} with 1 -error linear complexity $p^{n}-2 p^{r}+C$, $1 \leq C \leq p^{r}-1$.

To determine the number of sequences with linear complexity p^{n} and 1-error linear complexity $L_{r, w, C}, 3 \leq w \leq p-1, C \geq 1$, we have to consider the $(p-1) \times p^{r}$-matrices that can be transformed into a matrix for which $\boldsymbol{b}(w-1)$ is the first row different from the zero vector by changing exactly one term in the preimage. The first $w-1$ rows of \mathcal{B} can have nonzero elements in exclusively one column, say the column with index i. The i th element of $\boldsymbol{b}(0)$ must of course be nonzero, the i th element of $\boldsymbol{b}(1)$ can be chosen arbitrarily. These two elements uniquely determine the term change that has to be performed in a preimage in order to obtain $\boldsymbol{b}(0)=\boldsymbol{b}(1)=\mathbf{0}$. For $2 \leq u \leq w-2$, the i th element of $\boldsymbol{b}(u)$ is uniquely determined such that $\boldsymbol{b}(u)$ is transformed into the zero vector after that uniquely determined term change. For $\boldsymbol{b}(w-1)$ we choose one of the $(p-1) p^{C-1}$ vectors with corresponding p^{r}-periodic sequence having linear complexity C. Note that the i th entry of $\boldsymbol{b}(w-1)$ is adapted according to the term change that has to be performed in the preimage. The remaining entries of \mathcal{B} are again arbitrary. This yields $(p-1)^{2} p^{C+r} p^{(p-1-w) p^{r}}$ different matrices with the
desired properties. With the same argument as before we get the formula for $\overline{\mathcal{N}}_{1}\left(L_{r, w, C}\right)$. Note that for $C=p^{r}$ we get the formula for $\overline{\mathcal{N}}_{1}\left(L_{r, w-1,0}\right)$. In the case where $r=0$ we always can make $\boldsymbol{b}(1)=\mathbf{0}$ by a single term change in the original sequence. Suppose $\boldsymbol{b}(w-1)$ is the first nonzero entry in \mathcal{B} then we get $C=1$, and so $\overline{\mathcal{N}}_{1}\left(L_{0, w, 1}\right)=\overline{\mathcal{N}}_{1}\left(L_{0, w-1,0}\right)$ for $3 \leq w \leq p-1$.

Finally according to $\mathrm{P} 1, \varphi_{r+1}\left(\mathbf{s}^{r+1}\right)=\mathcal{B}$ is the zero matrix if and only if $\mathbf{s}^{(r+1)}$ consists of p identical copies of a vector $\mathbf{s}^{(r)} \in \mathbb{F}_{p}^{p^{r}}$. Let $M(r, C)$ be the number of vectors which have Hamming distance 1 to a vector in $\mathbb{F}_{p}^{p^{r+1}}$ that consist of p identical copies of a vector $\mathbf{s}^{(r)} \in \mathbb{F}_{p}^{p^{r}}$ such that the corresponding p^{r}-periodic sequence has linear complexity C. Then the number $\overline{\mathcal{N}}_{1}\left(L_{r, p, C}\right)$, $1 \leq C \leq p^{r}-1$, is given by $M(r, C) p^{p^{n}-p^{r+1}}$. With simple combinatorial arguments we get $M(r, C)=(p-1)^{2} p^{r+C}$, which yields the desired formula. Again with $C=p^{r}$ we get the formula for $\overline{\mathcal{N}}_{1}\left(L_{r, p-1,0}\right)$.
The construction of the integers $L_{r, \omega, C}$ in (4) reflects the operation mode of the Chan-Games algorithm. Evidently, the set of integers of the form (4) can also be described as the set of integers $L, 0<L<p^{n}$, which are not of the form $p^{n}-p^{t}, t=0,1, \ldots, n-1$. We observe that $r=\left\lfloor\log _{p}\left(p^{n}-L_{r, \omega, C}\right)\right\rfloor$ and combine Proposition 2 and the identity (2) to the following theorem, where we use the fact that $L_{1}(S)=L(S)$ if $L(S)<p^{n}$.
Theorem 1 Let $\mathcal{N}_{1}(L), 0 \leq L \leq p^{n}$, be the number of p^{n}-periodic sequences over \mathbb{F}_{p}, p prime, with 1 -error linear complexity equal to L. Then we have

$$
\begin{aligned}
\mathcal{N}_{1}(0)= & 1+(p-1) p^{n} \\
\mathcal{N}_{1}(L)= & (p-1) p^{L-1} \quad \text { if } L=p^{n}-p^{t}, t=0,1, \ldots, n-1 \\
\mathcal{N}_{1}(L)= & (p-1) p^{L-1}+(p-1)^{2} p^{L+\left\lfloor\log _{p}\left(p^{n}-L\right)\right\rfloor \quad \text { if } L \neq p^{n} \text { and }} \\
& L \neq p^{n}-p^{t}, t=0,1, \ldots, n, \text { and } \\
\mathcal{N}_{1}\left(p^{n}\right)= & 0
\end{aligned}
$$

From Proposition 2 we can conclude that a large proportion of the $p^{n_{-}}$ periodic sequences with linear complexity p^{n} still possesses a very high linear complexity after changing one of its terms. We use Proposition 2 to obtain an exact formula for the expected value of the 1-error linear complexity of a random p^{n}-periodic sequence over \mathbb{F}_{p} with linear complexity p^{n}.
Proposition 3 The expected value $E_{1 \mid L=p^{n}}$ of the 1-error linear complexity of a random p^{n}-periodic sequence S over \mathbb{F}_{p} with linear complexity $L(S)=$ $p^{n}, n \geq 2$, is given by

$$
E_{1 \mid L=p^{n}}=p^{n}-1-\frac{p}{p-1}+\frac{p^{n+1}}{(p-1) p^{p^{n}}}-\sum_{r=1}^{n-1} \frac{p^{r+1}}{p^{p^{r}}}
$$

Proof. From Proposition 2 we have

$$
\begin{align*}
p^{p^{n}-1}(p-1) E_{1 \mid L=p^{n}}= & \sum_{r=1}^{n-1} \sum_{w=2}^{p} \sum_{C=1}^{p^{r}-1} \overline{\mathcal{N}}_{1}\left(L_{r, w, C}\right) \cdot L_{r, w, C} \\
& +\sum_{r=0}^{n-1} \sum_{w=2}^{p-1} \overline{\mathcal{N}}_{1}\left(L_{r, w, 0}\right) \cdot L_{r, w, 0} \tag{5}\\
= & \sum_{r=1}^{n-1} \sum_{w=2}^{p} \sum_{C=1}^{p^{r}-1}(p-1)^{2} p^{p^{n}-w p^{r}+r+C}\left(p^{n}-w p^{r}+C\right) \\
& +\sum_{r=0}^{n-1} \sum_{w=2}^{p-1}(p-1)^{2} p^{p^{n}-w p^{r}+r}\left(p^{n}-w p^{r}\right) \\
= & (p-1)^{2} p^{p^{n}+n} \sum_{r=1}^{n-1} \sum_{w=2}^{p} p^{-w p^{r}+r} \sum_{C=1}^{p^{r}-1} p^{C} \\
& -(p-1)^{2} p^{p^{n}} \sum_{r=1}^{n-1} \sum_{w=2}^{p} p^{-w p^{r}+r} w p^{r} \sum_{C=1}^{p^{r}-1} p^{C} \\
& +(p-1)^{2} p^{p^{n}} \sum_{r=1}^{n-1} \sum_{w=2}^{p} p^{-w p^{r}+r} \sum_{C=1}^{p^{r}-1} C p^{C} \\
& +(p-1)^{2} p^{p^{n}+n} \sum_{r=0}^{n-1} \sum_{w=2}^{p-1} p^{-w p^{r}+r} \\
& -(p-1)^{2} p^{p^{n}} \sum_{r=0}^{n-1} \sum_{w=2}^{p-1} p^{-w p^{r}+r} w p^{r} \\
= & T_{1}-T_{2}+T_{3}+T_{4}-T_{5} .
\end{align*}
$$

$$
+p^{n}-(p-1) p^{p^{n}} \sum_{r=1}^{n-1} p^{-p^{r}+r}
$$

and hence

$$
(p-1) p^{p^{n}-1} E_{1 \mid L=p^{n}}=(p-1) p^{p^{n}-1}\left(p^{n}-1-\frac{p}{p-1}+\frac{p^{n+1}}{(p-1) p^{p^{n}}}-\sum_{r=1}^{n-1} \frac{p^{r+1}}{p^{p^{r}}}\right),
$$

which yields the desired formula.

Theorem 2 The expected value E_{1} of the 1-error linear complexity of a random p^{n}-periodic sequence over $\mathbb{F}_{p}, n \geq 2$, is given by

$$
E_{1}=p^{n}-2-\frac{1}{p(p-1)}+\frac{1}{p^{p^{n}}}\left(p^{n}+\frac{1}{p-1}\right)-(p-1) \sum_{r=1}^{n-1} \frac{p^{r}}{p^{p^{r}}} .
$$

Proof. With (2) and (3) we get the sum $p^{p^{n}} E_{1}$ by adding

$$
\sum_{L=0}^{p^{n}-1}(p-1) p^{L-1} L=p^{p^{n}+n-1}-\frac{p^{p^{n}}}{p-1}+\frac{1}{p-1}
$$

to (5), which will yield the result.

3 On the expected k-error linear complexity, $\mathrm{k} \geq 2$

We start with a proposition which rules out several values for the k-error linear complexity. It is an analogue to [7, Proposition 1]

Proposition 4 Let S be any p^{n}-periodic sequence over \mathbb{F}_{p}. Then for $k \geq 2$ the k-error linear complexity $L_{k}(S)$ of S is different from $p^{n}-p^{t}$ for every integer t with $0 \leq t<n$.

Proof. If the Hamming weight of the period $\mathbf{s}^{(n)}$ of S is at most k then we have $L_{k}(S)=0$. Else there is a largest integer t such that the first row $\boldsymbol{b}(0)$ of $\mathcal{B}=\varphi_{t+1} \cdots \varphi_{n}\left(\mathbf{s}^{(n)}\right)$ satisfies $H(\boldsymbol{b}(0)) \leq k$, and we can obtain $\boldsymbol{b}(0)=\mathbf{0}$ by at most k term changes in $\mathbf{s}^{(n)}$. Thus we have $L_{k}(S)=p^{n}-w p^{t}+C$, $2 \leq w \leq p$. If $w=2$, i.e., if we cannot obtain $\boldsymbol{b}(1)=\mathbf{0}$ by at most k term changes, then we have $1 \leq C \leq p^{t}-1$, since by Lemma 1 we are at least able to force $\boldsymbol{b}(1)$ to have the zero sum property. Consequently we have
$L_{k}(S) \leq p^{n}-p^{t}-1$. If $w=p$, i.e. with at most k term changes in $\mathbf{s}^{(n)}$ the matrix \mathcal{B} can be transformed into the zero matrix, then $L_{k}(S)=p^{n}-p^{t+1}+C$. We can exclude that $C=0$ since then the first row of $\mathcal{B}^{\prime}=\varphi_{t+2} \cdots \varphi_{n}\left(\mathbf{s}^{(n)}\right)$ must have a smaller Hamming weight than $k+1$, which is a contradiction to the definition of t.

The following Proposition 5 and Corollary 1 are generalizations of [7, Proposition 2, Corollary 2] and [7, Theorem 3, Corollary 3], respectively. The proofs are similar to the proofs in [7], and therefore omitted.

Proposition 5 For $k \geq 2$ and $0 \leq t \leq n$, the number $\mathcal{M}_{k}(t)$ of p^{n}-periodic sequences S over \mathbb{F}_{p} with k-error linear complexity $L_{k}(S)>p^{n}-p^{t}$ is given by

$$
\mathcal{M}_{k}(t)=p^{p^{n}}-p^{p^{n}-p^{t}} \sum_{j=0}^{k}\binom{p^{t}}{j}(p-1)^{j} .
$$

The number $\mathcal{M}_{k}(t+1, t), 0 \leq t \leq n-1$, of p^{n}-periodic sequences S over \mathbb{F}_{p} satisfying $p^{n}-p^{t+1}<L_{k}(S)<p^{n}-p^{t}$ is given by

$$
\mathcal{M}_{k}(t+1, t)=p^{p^{n}-p^{t}} \sum_{j=0}^{k}\binom{p^{t}}{j}(p-1)^{j}-p^{p^{n}-p^{t+1}} \sum_{j=0}^{k}\binom{p^{t+1}}{j}(p-1)^{j} .
$$

Observe that for $p^{t} \leq k<p^{t+1}$ we have $\mathcal{M}_{k}(0)=\cdots=\mathcal{M}_{k}(t)=0$ and $\mathcal{M}_{k}(t+1)>0$. The partition $\left[p^{n}-p^{t+1}, p^{n}-p^{t}\right), t=n-1, n-2, \ldots, 0$, of the interval $\left[0, p^{n}-1\right)$ along with the above proposition yields the following bounds.

Corollary 1 For an integer $k \geq 2$ the expected value E_{k} of the k-error linear complexity of a random p^{n}-periodic sequence over \mathbb{F}_{p} satisfies

$$
\begin{gathered}
p^{n}-p^{\left\lfloor\log _{p} k\right\rfloor+1}+1-\frac{1}{p^{p^{n}}} \sum_{j=0}^{k}\binom{p^{n}}{j}(p-1)^{j}-\sum_{t=\left\lfloor\log _{p} k\right\rfloor+1}^{n-1} \frac{p^{t}}{p^{p^{t}}} \sum_{j=0}^{k}\binom{p^{t}}{j}(p-1)^{j+1} \\
\leq E_{k} \leq p^{n}-p^{\left\lfloor\log _{p} k\right\rfloor}-1-\frac{p^{n}-p^{n-1}+1}{p^{p^{n}}} \sum_{j=0}^{k}\binom{p^{n}}{j}(p-1)^{j}- \\
\sum_{t=\left\lfloor\log _{p} k\right\rfloor+1}^{n-1} \frac{p^{t}}{p^{p^{t}+1}} \sum_{j=0}^{k}\binom{p^{t}}{j}(p-1)^{j+1} .
\end{gathered}
$$

We emphasize that the technique used in [8, 9] yields only lower bounds. Hence the main improvement is that our method also yields an upper bound. We observe that if k is a small proportion of the period then the upper and the lower bound given in Corollary 1 do not differ significantly.
As stated in [7], in the binary case the lower bound in Corollary 1 improves the lower bound (1). As experimental results demonstrate, it needs a refined analysis in order to obtain an appreciable improvement of (1). Though our approach yields complex formulas and becomes infeasible if p is not very small, we find it worth to be discussed. We restrict ourselves to the ternary case.

We know that the k-error linear complexity of a ternary 3^{n}-periodic sequence S is less than $3^{n}-3^{t}$ if and only if the Hamming weight of the first row $\boldsymbol{b}_{t}(0)$ of the 2×3^{t}-matrix $\mathcal{B}=\varphi_{t+1} \cdots \varphi_{n}\left(\mathbf{s}^{(n)}\right)$ is at most k, i.e., we can obtain the zero vector for $\boldsymbol{b}_{t}(0)$ by changing just k or fewer terms in the preimage of \mathcal{B}. If we additionally can obtain the zero vector for the second row of \mathcal{B} by changing just k or fewer terms in the preimage of \mathcal{B}, then the k-error linear complexity of S is at most $3^{n}-2 \cdot 3^{t}$. Let $\mathbf{c}=\binom{x}{y}$ be a column of \mathcal{B}. If $x \neq 0$ then we can transform \mathbf{c} into the zero column by one (unique) term change in the preimage of \mathcal{B}. If $x=0$ but $y \neq 0$ then we need 2 term changes in the preimage of \mathcal{B} in order to obtain the zero column for \mathbf{c} (we will have 3 different options to change two terms).
These observations lead to the following generalization of the Hamming weight.

Definition 1 The Chan-Games weight of a non zero column is 1 plus the number of zeros that lie above the first nonzero element of the column. The zero column has Chan-Games weight 0 . The Chan-Games weight $W t(\mathcal{B})$ of a matrix \mathcal{B} is the sum of the Chan-Games weights of its columns.

According to the above observations the k-error linear complexity of a 3^{n} periodic ternary sequence S is at most $3^{n}-2 \cdot 3^{t}$ if and only if $W t(\mathcal{B}) \leq k$. With combinatorial arguments we get the following Lemma.

Lemma 2 The number of ternary 2×3^{t}-matrices \mathcal{B} satisfying $W t(\mathcal{B}) \leq k$ is given by

$$
\sum_{j=0}^{k}\binom{3^{t}}{j} 6^{j} \sum_{i=0}^{\left\lfloor\frac{k-j}{2}\right\rfloor}\binom{3^{t}-j}{i} 2^{i}
$$

Proof. For each choice of $0 \leq j \leq k$ columns with Chan-Games weight 1 we can choose at most $\lfloor(k-j) / 2\rfloor$ further columns with Chan-Games weight 2
in order that $W t(\mathcal{B})$ does not exceed k.
Lemma 2 and Proposition 5 yield the following results.
Proposition 6 For $k \geq 2$ and $0 \leq t \leq n-1$, the number of ternary 3^{n} periodic sequences S with k-error linear complexity $L_{k}(S)>3^{n}-2 \cdot 3^{t}$ is given by

$$
3^{3^{n}}-3^{3^{n}-2 \cdot 3^{t}} \sum_{j=0}^{k}\binom{3^{t}}{j} 6^{j} \sum_{i=0}^{\left\lfloor\frac{k-j}{2}\right\rfloor}\binom{3^{t}-j}{i} 2^{i}
$$

The number of ternary 3^{n}-periodic sequences S with k-error linear complexity $3^{n}-2 \cdot 3^{t}<L_{k}(S)<3^{n}-3^{t}$ is given by

$$
S_{I I}=3^{3^{n}-3^{t}} \sum_{j=0}^{k}\binom{3^{t}}{j} 2^{j}-3^{3^{n}-2 \cdot 3^{t}} \sum_{j=0}^{k}\binom{3^{t}}{j} 6^{j} \sum_{i=0}^{\left\lfloor\frac{k-j}{2}\right\rfloor}\binom{3^{t}-j}{i} 2^{i}
$$

and the number of ternary 3^{n}-periodic sequences S with k-error linear complexity $3^{n}-3^{t+1}<L_{k}(S) \leq 3^{n}-2 \cdot 3^{t}$ is given by

$$
S_{I}=3^{3^{n}-2 \cdot 3^{t}} \sum_{j=0}^{k}\binom{3^{t}}{j} 6^{j} \sum_{i=0}^{\left\lfloor\frac{k-j}{2}\right\rfloor}\binom{3^{t}-j}{i} 2^{i}-3^{3^{n}-3^{t+1}} \sum_{j=0}^{k}\binom{3^{t+1}}{j} 2^{j}
$$

With Proposition 6 we can improve (1) in the ternary case.
Corollary 2 The expected k-error linear complexity E_{k} of a random 3^{n} periodic ternary sequence satisfies

$$
\begin{gather*}
3^{n}-3^{\left\lfloor\log _{3} k\right\rfloor}-1-\sum_{t=\left\lfloor\log _{3} k\right\rfloor+1}^{n-1} 3^{-3^{t}}\left(3^{t-1}+1\right) \sum_{j=0}^{k}\binom{3^{t}}{j} 2^{j}- \\
\frac{3^{n-1}+2}{3^{3^{n}}} \sum_{j=0}^{k}\binom{3^{n}}{j} 2^{j}- \\
E_{n} \geq 3^{n}-2 \cdot 3^{\left\lfloor\log _{3} k\right\rfloor}+1-\sum_{t=\left\lfloor\log _{3} k\right\rfloor}^{n-1}\left(3^{t}-1\right) 3^{-2 \cdot 3^{t}} \sum_{j=0}^{k}\binom{3^{t}}{j} 6^{j} \sum_{i=0}^{\lfloor(k-j) / 2\rfloor}\binom{3^{t}-j}{i} 2^{i} \geq \\
t=\left\lfloor\log _{3} k\right\rfloor+1 \\
3^{-3^{t}+t} \sum_{j=0}^{k}\binom{3^{t}}{j} 2^{j}-\frac{1}{3^{3^{n}}} \sum_{j=0}^{k}\binom{3^{n}}{j} 2^{j}- \tag{6}\\
\sum_{t=\left\lfloor\log _{3} k\right\rfloor}^{n-1} 3^{-2 \cdot 3^{t}+t} \sum_{j=0}^{k}\binom{3^{t}}{j} 6^{j} \sum_{i=0}^{\lfloor(k-j) / 2\rfloor}\binom{3^{t}-j}{i} 2^{i} .
\end{gather*}
$$

Proof. We solely prove the lower bound. If we put $\left\lfloor\log _{3} k\right\rfloor=l$, then

$$
\begin{aligned}
3^{3^{n}} E_{k} \geq & \sum_{t=l}^{n-1} S_{I}\left(3^{n}-3^{t+1}+1\right)+S_{I I}\left(3^{n}-2 \cdot 3^{t}+1\right)= \\
& \sum_{t=l}^{n-1}\left(3^{n}-3^{t+1}+1\right)\left(S_{I}+S_{I I}\right)+\sum_{t=l}^{n-1} 3^{t} S_{I I}:=A_{1}+A_{2}
\end{aligned}
$$

Since $S_{I}+S_{I I}=\mathcal{M}(t+1, t)$, the term A_{1} is exactly the term for the lower bound obtained in Corollary 1 for $q=3$. For A_{2} we get

$$
A_{2}=\sum_{t=l}^{n-1} 3^{3^{n}-3^{t}+t} \sum_{j=0}^{k}\binom{3^{t}}{j} 2^{j}-\sum_{t=l}^{n-1} 3^{3^{n}-2 \cdot 3^{t}+t} \sum_{j=0}^{k}\binom{3^{t}}{j} 6^{j} \sum_{i=0}^{\lfloor(k-j) / 2\rfloor}\binom{3^{t}-j}{i} 2^{i} .
$$

Combining the terms we obtain

$$
\begin{aligned}
3^{3^{n}} E_{k} \geq & 3^{3^{n}}\left(3^{n}+1\right)-3^{3^{n}} 3^{l+1}-\sum_{j=0}^{k}\binom{3^{n}}{j} 2^{j}+3^{3^{n}} 3^{-3^{l}+l} 3^{3^{l}} \\
& -3^{3^{n}} \sum_{t=l+1}^{n-1} 3^{-3^{t}+t} \sum_{j=0}^{k}\binom{3^{t}}{j} 2^{j} \\
& -3^{3^{n}} \sum_{t=l}^{n-1} 3^{-2 \cdot 3^{t}+t} \sum_{j=0}^{k}\binom{3^{t}}{j} 6^{j} \sum_{i=0}^{\lfloor(k-j) / 2\rfloor}\binom{3^{t}-j}{i} 2^{i} \\
= & 3^{3^{n}}\left(3^{n}+1-3^{l+1}+3^{l}\right)-\sum_{j=0}^{k}\binom{3^{n}}{j} 2^{j}-3^{3^{n}} \sum_{t=l+1}^{n-1} 3^{-3^{t}+t} \sum_{j=0}^{k}\binom{3^{t}}{j} 2^{j} \\
& \quad-3^{3^{n}} \sum_{t=l}^{n-1} 3^{-2 \cdot 3^{t}+t} \sum_{j=0}^{k}\binom{3^{t}}{j} 6^{j} \sum_{i=0}^{\lfloor(k-j) / 2\rfloor}\binom{3^{t}-j}{i} 2^{i},
\end{aligned}
$$

which yields the desired formula.

Table 1: Example to the ternary case, $N=243: k$ is given as absolute value and percentage of N, the bounds are given relative to the period length N. New Lower Bound (NLB) and New Upper Bound (NUB) refer to the bounds (6), Old Lower Bound (OLB) refers to the bound (1).

k	2	3	6	10	15	20	25	30	40	50
$k \%$	0.82	1.24	2.47	4.12	6.17	8.23	10.29	12.35	16.46	20.58
NLB	0.98	0.97	0.94	0.907	0.88	0.8	0.78	0.72	0.67	0.6
NUB	0.984	0.978	0.96	0.94	0.92	0.89	0.88	0.82	0.78	0.75
OLB	0.95	0.93	0.88	0.82	0.75	0.69	0.64	0.585	0.49	0.41

(Table, file plot.eps)

4 Conclusion

The linear complexity and the k-error linear complexity are important but still not completely understood quality measures for sequences over finite fields. Until now exact formulas for the number of N-periodic sequences with given k-error linear complexity and for the expected k-error linear complexity are basically just known for $k=0$ (see $[8,9]$). Specifically, p^{n}-periodic sequences over a finite field \mathbb{F}_{q} with characteristic p have been studied from several viewpoints (see [1]-[6], [12]). In this contribution we provide the exact counting function and the expected value for the 1-error linear complexity for the case that $N=p^{n}$ and $q=p$. The results are a generalization of the results on the binary case presented in [7]. We emphasize that this generalization is not straightforward. Instead of the Chan-Games algorithm which works for the binary case, the more sophisticated algorithm by Ding et al., which generalized the Chan-Games algorithm to arbitrary finite fields has to be analyzed.

It seems to be very difficult to obtain exact results for larger k. Our method permits the calculation of lower and upper bounds for the k error linear complexity of p^{n}-periodic sequences over \mathbb{F}_{p}, p prime. Until now, only lower bounds have been known. Finally we indicate how a refined analysis can provide an improvement of the bounds. The fact that the calculations become infeasible if p is not very small, points out that it may be difficult to obtain exact results for larger k.

References

[1] C. Ding, G. Xiao, and W. Shan, The Stability Theory of Stream Ciphers, Lecture Notes in Computer Science 561, Springer-Verlag, BerlinHeidelberg, New York (1991).
[2] R. A. Games, A. H. Chan, A fast algorithm for determining the complexity of a binary sequence with period 2^{n}, IEEE Trans. Inform. Theory 29 (1983), pp. 144-146.
[3] T. Kaida, S. Uehara, and K. Imamura, A new algorithm for the k-error linear complexity of sequences over $G F\left(p^{m}\right)$ with period p^{n}, Sequences and Their Applications (C. Ding, T. Helleseth and H. Niederreiter, eds.), Springer-Verlag, London, 1999, pp. 284-296.
[4] T. Kaida, On the generalized Lauder-Paterson algorithm and profiles of the k-error linear complexity over $G F(3)$ with period 9 , Proceedings (extended abstracts) of the international conference on Sequences and Their Applications 2004, Seoul, Oct. pp. 24-28.
[5] K. Kurosawa, F. Sato, T. Sakata, and W. Kishimoto, A relationship between linear complexity and k-error linear complexity, IEEE Trans. Inform. Theory 46 (2000), pp. 694-698.
[6] A. G. B. Lauder, K. G. Paterson, Computing the linear complexity spectrum of a binary sequence of period 2^{n}, IEEE Trans. Inform. Theory 49 (2003), pp. 273-280.
[7] W. Meidl, On the stability of 2^{n}-periodic binary sequences, IEEE Trans. Inform. Theory 51 (2005), pp. 1151-1155.
[8] W. Meidl and H. Niederreiter, Linear complexity, k-error linear complexity, and the discrete Fourier transform, J. Complexity 18 (2002), pp. 87-103.
[9] W. Meidl, H. Niederreiter, On the expected value of the linear complexity and the k-error linear complexity of periodic sequences, IEEE Trans. Inform. Theory 48 (2002), pp. 2817-2825.
[10] H. Niederreiter, Linear complexity and related complexity measures for sequences, Progress in Cryptology - Proceedings of INDOCRYPT 2003 (T. Johansson and S. Maitra, eds.), Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2904 (2003), pp. 1-17.
[11] R.A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin (1986).
[12] M. Stamp, C. F. Martin, An algorithm for the k-error linear complexity of binary sequences with period 2^{n}, IEEE Trans. Inform. Theory 39 (1993), pp. 1398-1401.

