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§ 1.1 Cardiovascular diseases (CVD) 

Cardiovascular disease is a class of diseases that involve the heart or blood vessels (arteries, 

capillaries and veins) (1). Cardiovascular disease refers to any disease that affects the 

cardiovascular system, principally cardiac disease, vascular diseases of the brain and kidney, 

and peripheral arterial disease (2). The causes of cardiovascular disease are different but 

atherosclerosis and/or hypertension are the most common. Besides, with aging come a 

number of physiological and morphological changes that alters cardiovascular function and 

lead to subsequently increased risk of cardiovascular disease, even in health asymptomatic 

individuals (3). Cardiovascular diseases remain the biggest cause of deaths worldwide, though 

over the last two decades, cardiovascular mortality rates have declined in many high-income 

countries. According to the World Health Organization, chronic diseases are responsible for 

63% of all deaths in the world, with cardiovascular disease as the leading cause of death (4). 

At the same time cardiovascular deaths and disease have increased at a fast rate in low- and 

middle-income countries (5). Although cardiovascular disease usually affects older adults, the  

antecedants of cardiovascular disease, notably atherosclerosis begin in early life, making 

primary prevention efforts necessary from childhood (6). There is therefore increased 

emphasis on preventing atherosclerosis by modifying risk factors, such as healthy eating, 

exercise, and avoidance of smoking. Almost all cardiovascular disease in a population can be 

explained in terms of a limited number of risk factors: age, gender, high blood pressure, high 

serum cholesterol levels, tobacco smoking, excessive alcohol consumption, family history, 

obesity, lack of physical activity, psychosocial factors, diabetes mellitus, air pollution (2). 

While the individual contribution of each risk factor varies between different communities or 

ethnic groups the consistency of the overall contribution of these risk factors is remarkably 

strong (7). Some of these risk factors, such as age, gender or family history are immutable, 

however many important cardiovascular risk factors are modifiable by lifestyle change, drug 

treatment or social change. Age is an important risk factor in developing cardiovascular 

diseases. It is estimated that 87 percent of people who die of coronary heart disease are 60 and 

older (8). At the same time, the risk of stroke doubles every decade after age 55 (9). Multiple 

explanations have been proposed to explain why age increases the risk of cardiovascular 

diseases. One of them is related to serum cholesterol level (10). In most populations, the 

serum total cholesterol level increases as age increases. In men, this increase levels off around 

age 45 to 50 years. In women, the increase continues sharply until age 60 to 65 years (10). 
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Aging is also associated with changes in the mechanical and structural properties of the 

vascular wall, which leads to the loss of arterial elasticity and reduced arterial compliance and 

may subsequently lead to coronary artery disease (11).
 
Men are at greater risk of heart disease 

than pre-menopausal women (12). However, once past menopause, a woman’s risk is similar 

to a man’s (12). Population based studies show that atherosclerosis the major precursor of 

cardiovascular disease begins in childhood. The Pathobiological Determinants of 

Atherosclerosis in Youth Study demonstrated that intimal lesions appear in all the aortas and 

more than half of the right coronary arteries of youths aged 7–9 years (13).
 
This is extremely 

important considering that 1 in 3 people will die from complications attributable to 

atherosclerosis. In order to stem the tide education and awareness that cardiovascular disease 

poses the greatest threat and measures to prevent or reverse this disease must be taken. 

Obesity and diabetes mellitus are often linked to cardiovascular disease (14), as are a history 

of chronic kidney disease and hypercholesterolaemia (15). In fact, cardiovascular disease is 

the most life threatening of the diabetic complications and diabetics are two- to four-fold 

more likely to die of cardiovascular-related causes than nondiabetics (16, 17, 18).
 
Measures to 

prevent cardiovascular disease may include: 

 a low-fat, high-fiber diet including whole grains and plenty of fresh fruit and 

vegetables (at least five portions a day)  

 a diet high in vegetables and fruit (19) 

 tobacco cessation and avoidance of second-hand smoke;   

 limit alcohol consumption to the recommended daily limits; consumption of 1-2 

standard alcoholic drinks per day may reduce risk by 30% (20, 21). However 

excessive alcohol intake increases the risk of cardiovascular disease (22).  

 lower blood pressures, if elevated, through the use of antihypertensive medications; 

 decrease body fat (BMI) if overweight or obese (23);  

 increase daily activity to 30 minutes of vigorous exercise per day at least five times 

per week;  

 decrease psychosocial stress (24).  

Evidence shows that the Mediterranean diet improves cardiovascular outcomes (25). In 

clinical trials the Dietary Approaches to Stop Hypertension (DASH) diet has also been shown 

to reduce blood pressure (26), lower total and low density lipoprotein cholesterol (27) and 
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improve metabolic syndrome (28); but the long term benefits outside the context of a clinical 

trial have been questioned (29). The link between saturated fat intake and cardiovascular 

disease is controversial and scientific studies, both observational and clinical, show 

conflicting results (30). Dietary substitution of polyunsaturated fats for saturated fats may 

reduce risk, substitution with carbohydrates does not change or may increase risk (30, 31). 

Increased dietary intake of Trans fatty acids significantly increases the risk of cardiovascular 

disease (32).  

 

§ 1.2 Free radicals, oxidative stress and antioxidants in human health and 

disease 

 

Oxygen is an element indispensable for life. When cells use oxygen to generate energy, free 

radicals are created as a consequence of ATP (adenosine triphosphate) production by the 

mitochondria. These by-products are generally reactive oxygen species (ROS) as well as 

reactive nitrogen species (RNS) that result from the cellular redox process. These species play 

a dual role as both toxic and beneficial compounds. The delicate balance between their two 

antagonistic effects is clearly an important aspect of life. At low or moderate levels, ROS and 

RNS exert beneficial effects on cellular responses and immune function. At high 

concentrations, they generate oxidative stress, a deleterious process that can damage all cell 

structures (33-42). Oxidative stress plays a major part in the development of chronic and 

degenerative ailments such as cancer, arthritis, aging, autoimmune disorders, cardiovascular 

and neurodegenerative diseases. The human body has several mechanisms to counteract 

oxidative stress by producing antioxidants, which are either naturally produced in situ, or 

externally supplied through foods and/or supplements. Endogenous and exogenous 

antioxidants act as “free radical scavengers” by preventing and repairing damages caused by 

ROS and RNS, and therefore can enhance the immune defense and lower the risk of cancer 

and degenerative diseases (43-47). The theory of oxygen-free radicals has been known about 

fifty years ago (36). However, only within the last two decades, has there been an explosive 

discovery of their roles in the development of diseases, and also of the health protective 

effects of antioxidants. ROS and RNS are the terms collectively describing free radicals and 

other non-radical reactive derivatives also called oxidants. Radicals are less stable than non-
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radical species, although their reactivity is generally stronger. A molecule with one or more 

unpaired electron in its outer shell is called a free radical (33-37). Free radicals are formed 

from molecules via the breakage of a chemical bond such that each fragment keeps one 

electron, by cleavage of a radical to give another radical and, also via redox reactions (33, 34). 

Free radicals include hydroxyl (OH•), superoxide (O2 •ˉ), nitric oxide (NO•), nitrogen dioxide 

(NO2 •), peroxyl (ROO•) and lipid peroxyl (LOO•). Also, hydrogen peroxide (H2O2), ozone 

(O3), singlet oxygen (1O2), hypochlorous acid (HOCl), nitrous acid (HNO2), peroxynitrite 

(ONOOˉ), dinitrogen trioxide (N2O3), lipid peroxide (LOOH), are not free radicals and 

generally called oxidants, but can easily lead to free radical reactions in living organisms (40). 

Biological free radicals are thus highly unstable molecules that have electrons available to 

react with various organic substrates such as lipids, proteins, DNA. Formation of ROS can 

occur in the cells by two ways: enzymatic and non-enzymatic reactions. Enzymatic reactions 

generating free radicals include those involved in the respiratory chain, the phagocytosis, the 

prostaglandin synthesis and the cytochrome P450 system (33-41). For example, the 

superoxide anion radical (O2 •ˉ) is generated via several cellular oxidase systems such as 

NADPH oxidase, xanthine oxidase, peroxidases. Once formed, it participates in several 

reactions yielding various ROS and RNS such as hydrogen peroxide, hydroxyl radical (OH•), 

peroxynitrite (ONOOˉ), hypochlorous acid HOCl), etc. H2O2 (a non radical) is produced by 

the action of several oxidase enzymes, including aminoacid oxidase and xanthine oxidase. 

The last one catalyses the oxidation of hypoxanthine to xanthine, and of xanthine to uric acid. 

Free radicals can be produced from non-enzymatic reactions of oxygen with organic 

compounds as well as those initiated by ionizing radiations. The non-enzymatic process can 

also occur during oxidative phosphorylation (i.e. aerobic respiration) in the mitochondria (36, 

37, 40). ROS and RNS are generated from either endogenous or exogenous sources. 

Endogenous free radicals are generated from immune cell activation, inflammation, mental 

stress, excessive exercise, ischemia, infection, cancer, aging. Exogenous ROS/RNS result 

from air and water pollution, cigarette smoke, alcohol, heavy or transition metals (Cd, Hg, Pb, 

Fe, As), certain drugs (cyclosporine, tacrolimus, gentamycin, bleomycin), industrial solvents, 

cooking (smoked meat, used oil, fat), radiation. (36-46). 

After penetration into the body by different routes, these exogenous compounds are 

decomposed or metabolized into free radicals. At low or moderate concentrations, ROS and 

RNS are necessary for the maturation process of cellular structures and can act as weapons for 

the host defense system. Indeed, phagocytes (neutrophils, macrophages, monocytes) release 
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free radicals to destroy invading pathogenic microbes as part of the body’s defense 

mechanism against disease (37, 42). Other beneficial effects of ROS and RNS involve their 

physiological roles in the function of a number of cellular signaling systems (39-41). In brief, 

ROS/RNS at low or moderate levels are vital to human health. When produced in excess, free 

radicals and oxidants generate a phenomenon called oxidative stress, a deleterious process 

that can seriously alter the cell membranes and other structures such as proteins, lipids, 

lipoproteins, and deoxyribonucleic acid (DNA) (37-42). Oxidative stress can arise when cells 

cannot adequately destroy the excess of free radicals formed. In other words, oxidative stress 

results from an imbalance between formation and neutralization of ROS/RNS. For example, 

hydroxyl radical and peroxynitrite in excess can damage cell membranes and lipoproteins by a 

process called lipid peroxidation (46). Proteins may also be damaged by ROS/RNS, leading to 

structural changes and loss of enzyme activity (41, 46). Oxidative damage to DNA leads to 

the formation of different oxidative DNA lesions which can cause mutations. The body has 

several mechanisms to counteract these attacks by using DNA repair enzymes and/or 

antioxidants (38-41). If not regulated properly, oxidative stress can induce a variety of chronic 

and degenerative diseases as well as the aging process and some acute pathologies (trauma, 

stroke). Cardiovascular disease (CVD) is of multifactorial etiology associated with a variety 

of risk factors for its development including hypercholesterolaemia, hypertension, smoking, 

diabetes, poor diet, stress and physical inactivity amongst others (34, 47, 48). Recently, 

research data has raised a passionate debate as to whether oxidative stress is a primary or 

secondary cause of many cardiovascular diseases (48). Further in vivo and ex vivo studies 

have provided precious evidence supporting the role of oxidative stress in a number of CVDs 

such as atherosclerosis, ischemia, hypertension, cardiomyopathy, cardiac hypertrophy and 

congestive heart failure (34, 37, 47, 48). 

 

§ 1.3  Phytochemicals antioxidants 

 

Phytochemicals are the chemicals extracted from plants. These chemicals are classified as 

primary or secondary constituents, depending on their role in plant metabolism. 

Primary constituents include the common sugars, amino acids, proteins, purines and 

pyrimidines of nucleic acids, chlorophyll’s etc. Secondary constituents are the remaining plant 

chemicals such as alkaloids (derived from amino acids), terpenes (a group of lipids) and 
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phenolics (derived from carbohydrates). Antioxidants are secondary constituents or 

metabolites found naturally in the body and in plants such as fruits and vegetables. An 

antioxidant can be defined in simple terms as anything that inhibits or prevents oxidation of a 

susceptible substrate. Plants produce a very impressive array of antioxidant compounds that 

includes carotenoids, flavonoids, cinnamic acids, benzoic acids, folic acid, ascorbic acid, 

tocopherols and tocotrienols to prevent oxidation of the susceptible substrate (49). Common 

antioxidants include vitamin A, vitamin C, vitamin E, and certain compounds called 

carotenoids (like lutein and beta-carotene) (50). These plant-based dietary antioxidants are 

believed to have an important role in the maintenance of human health because our 

endogenous antioxidants provide insufficient protection against the constant and unavoidable 

challenge of reactive oxygen species (ROS; oxidants) (51). 

Generation of free radicals or reactive oxygen species (ROS) during metabolism and other 

activities beyond the antioxidant capacity of a biological system gives rise to oxidative stress 

(52). Oxidative stress plays a role in heart diseases, malaria, neurodegenerative diseases, 

AIDS, cancer and in the aging process (53). This concept is supported by increasing evidence 

that oxidative damage plays a role in the development of chronic, age-related degenerative 

diseases, and that dietary antioxidants oppose this and lower risk of disease (54, 55) and thus 

there arises a necessity to extract these antioxidants from the plant matrices. 

Antioxidants are defined as the substance that when present in low concentrations compared 

to those of an oxidisable substrate significantly delays or prevents oxidation of that substance 

(56). For the in vivo situation the concept of antioxidants includes antioxidant enzymes, iron 

binding and transport proteins and other compounds affecting signal transduction and gene 

expression (57). In case of foods and beverages, antioxidants are related to the protection of 

specific oxidation substrates or the formation of specific oxidation. 

Synergism, antagonism, co-antioxidants and oxidation retarders are the other useful concepts 

related to antioxidants. Synergism can be defined as the phenomenon in which a number of 

compounds, when present together in the same system, have a more pronounced effect than if 

they were alone. Antagonism can be defined likewise by substituting “more” with “less”, 

whereas coantioxidants may be defined by substituting “more” with “same”. The compounds 

that reduce the rate of oxidation without showing a distinct lag phase of oxidation are 

retarders of oxidation. Antioxidant action is measured as a decrease in over-all rate of 

oxidation and as the length of the lag phase. Antioxidants are divided into two classes: 

preventive antioxidants and chain breaking antioxidants. Preventive antioxidants inhibit 
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oxidation by reducing the rate of chain initiation. In most cases hydroperoxide product, 

ROOH of the oxidation is the cause for the initiation process. Preventive antioxidants convert 

the hydroperoxides to molecular products that are not potential sources of free radicals (58).  

Most biological preventive antioxidants are also peroxide decomposers. Certain enzymes such 

as glutathione peroxidase can reduce H2O2 to H2O and also lipid hyroperoxides to the 

corresponding alcohol as shown in the following equation (Figure 1). 

 

                 Figure 1 

 

Commercial chain breaking antioxidants are generally phenols or aromatic amines. 

They owe their antioxidant activity to their ability to trap peroxyl radicals are as shown in 

equation (Figure 2). 

                                         

      

Figure 2      

                                  

Antioxidants can also be manufactured synthetically. These belong to the class of synthetic 

antioxidants. The main disadvantage with these antioxidants is their side effect when taken in 

vivo (59). Most of the natural antioxidants are found to have higher antioxidant activity when 

compared with that of the synthetic ones. 

Several arguments suggest that the antioxidant components of fruits and vegetables contribute 

in the defense effect. Epidemiological studies and intervention trials on prevention of diseases 

such as cancer and cardiovascular disease in people have shown the positive effects of taking 

antioxidant supplements (60, 61, 62). 

Carotenoids, flavonoids, cinnamic acids, benzoic acids, folic acid, ascorbic acid, tocopherols 

and tocotrienols are some of the antioxidants produced by the plant for their sustenance.  
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Small molecule dietary antioxidants such as vitamin C (ascorbate), vitamin E (tocopherol), 

and carotenoids have generated particular interest as anticarcinogens and as defenses against 

degenerative diseases (63). The details of these antioxidants are shown in the Table 1 (64-72). 

 

  

It has been estimated that one human cell is exposed to approximately 105 oxidative hits a 

day from hydroxyl radical and other such species of oxidants. ROS are normal oxidant by-
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products of aerobic metabolism, and under normal metabolic conditions about 2–5% of O2 

consumed by mitochondria is converted to ROS (73, 74).  

Oxidative stress thus created permanently modifies the genetic material leading to numerous 

degenerative or chronic diseases, such as atherosclerosis and cancer (75). 

Misrepair of DNA damage could result in mutations such as base substitution and deletion 

which could lead to carcinogenesis (76). 

 

§ 1.4  Non-enzymatic browning 

 

Non-enzymatic browning (NEB, Maillard reaction) is one of the most important chemical 

phenomena that may affect food quality in processing and storage. Its effect on color and 

flavor as well as nutritional value, textural properties, and stability of foods has been clearly 

demonstrated (77, 78, 79). Much attention has been paid to control the NEB during 

processing and storage (80, 81, 79). Non-enzymatic browning is an amino-carbonyl reaction 

involving a series of condensation reactions, some of which can be considered bimolecular 

(82). Its mechanism and kinetics in real foods and model systems with reducing sugars and 

amino components as reactants have been studied intensively, and the NEB reaction is known 

to be affected by a number of factors, such as time, temperature, water content, water activity, 

pH, concentration of reactants, and the type of reactants and solvents (83, 84, 77, 85-90, 81). 

Non-enzymatic browning in food materials has been suggested to be a diffusion-controlled 

chemical reaction (91-93) and presumably, its rate is dependent on the viscosity of the matrix 

material and thus affected by the physical state of the system.  

Many researchers have made attempts to relate the physical state of food materials and the 

rate of NEB (94-101, 80, 81, 85, 88-90), especially in low- and intermediate-moisture food 

systems. 

 

§ 1.5  The Maillard reaction 

 

The Maillard reaction is named after the French scientist Louis Camille Maillard (1878-1936), 

who studied the reactions of amino acids and carbohydrates in 1912, as part of his PhD thesis, 

which was published in 1913 (102).  
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The Maillard reaction is not a single reaction, but a complex series of reactions between 

amino acids and reducing sugars, usually at increased temperatures. Like caramelisation, it is 

a form of non-enzymatic browning. In the process, hundreds of different flavour compounds 

are created. These compounds in turn break down to form yet more new flavour compounds, 

and so on.  

Each type of food has a very distinctive set of flavour compounds that are formed during the 

Maillard reaction.  

Maillard reactions are important in baking, frying or otherwise heating of nearly all foods. 

Maillard reactions are (partly) responsible for the flavour of bread, cookies, cakes, meat, beer, 

chocolate, popcorn, cooked rice. In many cases, such as in coffee, the flavour is a 

combination of Maillard reactions and caramelization. However, caramelization only takes 

place above 120-150 °C, whereas Maillard reactions already occur at room temperature.  

Although studied for nearly one century, the Maillard reactions are so complex that still many 

reactions and pathways are unknown. Many different factors play a role in the Maillard 

formation and thus in the final colour and aroma; pH (acidity), types of amino acids and 

sugars, temperature, time, presence of oxygen, water, water activity (aw) and other food 

components all are important.  

The first step of the Maillard reaction is the reaction of a reducing sugar, such as glucose, with 

an amino acid. This reaction is shown in figure 3 below and results in a reaction product 

called an Amadori compound. 

 

 
Figure 3: The initial step of the Maillard reaction between glucose and an amino acid (RNH2), in which R is the 

amino acid side group (103)  

As can be seen in figure 3, the Amadori compounds easily isomerise into three different 

structures that can react differently in the following steps. As in food generally over 5 

different reactive sugars and 20 reactive amino acids are present, only the first step 

theoretically already results in over 100 different reaction products. 

The larger the sugar, the slower it will react with amino acids. The pentose sugars (5 carbon 
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atoms), such as ribose, will react faster as hexose sugars (glucose, fructose) and disaccharides 

(sugar, lactose). From the amino acids lysine, with two amino groups, reacts the fastest and 

causes darker colours. Cysteine, with a sulphur group, causes specific flavours, but less 

colour. Sugar alcohols or polyols (sorbitol, xylitol) do not participate in the Maillard reaction. 

This means that bakery products sweetened with sorbitol will not or hardly change colour 

during baking.  

The next steps differ, depending on the isomer of the Amadori compound. Either the amino 

acid is removed, which results in reactive compounds that are finally degraded to the 

important flavour components furfural and hydroxymethyl furfural (HMF). The other reaction 

is the so-called Amadori-rearrangement, which is the starting point of the main browning 

reactions, see figure 4.  

 

 

 

Figure 4 : Formation of HMF and Amadori-rearrangement (103)  

Furfural and hydroxymethylfurfural are characteristic flavour compounds of the Maillard 

reaction. Furfural is the result of a reaction with a pentose sugar (such as ribose); HMF is the 

result of a reaction with a hexose (glucose, saccharose).  
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Figure 5 : Structures of fural and HMF  

After the Amadori-rearrangement three different main pathways can be distinguished:  

 Dehydratation reactions,  

 Fission, when the short chain hydrolytic products are produced, for example diacetyl 

and pyruvaldehyde,  

 “Strecker degradations” with amino acids or they can be condensated to aldols.  

These three main pathways finally result in very complex mixtures, including flavour 

compounds and brown high molecular weight pigments melanoidins.  

Melanoidins are present in many foods like coffee, bread and beer. However, up to now the 

knowledge about structural, functional and physiological properties of this group of food 

components is rather limited.  

The Maillard reaction products thus change the colour and flavour of food, and in most cases 

these changes are appreciated by people. In addition the melanoidins may have some 

beneficial anti-oxidant properties.  

On the other hand, Maillard reactions may reduce the nutritional value of a product, as amino 

acids and carbohydrates may be lost. Sometimes the flavour is not appreciated, such as the 

‘cooking flavour' in sterilized milk.  

Some of the Maillard end-products may also be toxic or carcinogenic. One of the Maillard 

reaction products is acrylamide, a potential toxic compound which is only formed at 

temperatures above 180 °C, especially in baked or fried products (French fries). When frying 

below 180 °C acrylamide is not formed.  

In general it can be stated that Maillard products have been present in our foods for many 

thousands of years, and are consumed daily by nearly all people in the world.  

Maillard reactions can not, or hardly, be prevented when heating foods. Only by removing the 

sugars or the amino acids, or making the product very acid or alkaline, the reactions can be 
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prevented. 

 

 § 1.6  Melanoidins 

 

Melanoidins are coloured (brown) pigments developed during thermal treatment of foods via 

the Maillard reaction or by dehydration (caramelization) reactions of carbohydrates followed 

by polymerization (104). Basically, melanoidins are formed by interactions between 

carbohydrates and compounds, which possess a free amino group, such as amino acids or 

peptides. Recently, melanoidins – not only those from coffee – have attracted lots of interest 

as regards their occurrence in foods and the corresponding impact on human health. This is 

documented by the fact that the European Community set up a COST action (COST Action 

919: ‘Melanoidins in food and health’) starting in 1999 and ending in 2004. This action 

includes research on the separation and characterization of melanoidins and related 

macromolecules, the flavour binding, colour, texture and antioxidant properties of 

melanoidins and investigation of the physiological effects and fate of melanoidins (COST, 

2002). The foods of relevance specified are coffee, malt, beer, breakfast cereals and bread. 

It can be anticipated that melanoidins are a very heterogeneous group of compounds as 

regards molecular mass as well as the chemical and biological properties. Taking this into 

account, one may argue that there is no justification for referring to all those compounds as 

melanoidins. 

On the other hand, is there any alternative? This situation is comparable with other polymers 

in foods and beverages, e.g. the thearubigins in tea or phlobaphenes in cocoa. It is agreed that 

those are constituents of the beverage, and contents can be found in tables, but nobody really 

knows what the properties and the structures of the compounds are. What do we know about 

the formation of melanoidins? Most of the free mono- and disaccharides are lost during the 

roasting process; the same is true for free amino acids (105, 104). They are at least in part 

converted into melanoidins. Another part of the sugars undergoes caramelization reactions, 

also yielding melanoidin-like pigments (104) or is degraded yielding acidic compounds (106). 

Not much is yet known about the structures of melanoidins. As already mentioned above, 

melanoidins are formed during the Maillard reaction along with a variety of flavour 

compounds. The Maillard reaction in a food matrix is a complex process because of the 

multitude of compounds present.  
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Consequently, information on the Maillard reaction is best generated by model experiments 

with only a limited number of educts present; which, however, still give rise to a considerable 

number of volatile and non-volatile products (107). As with other polymers in foods, there is 

practically no information available on the bioavailability of the melanoidins. It seems 

reasonable to anticipate that the fractions with different molecular mass also will have a 

different bioavailability. 
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§ 2.1 Aim of the work 

 

An inverse correlation between a diet rich in plant foods and and the occurrence of 

cardiovascular diseases (CVD) has been reported in several epidemiological studies (108).  

The vasculoprotective effect associated to fruit and vegetable consumption is thought to be 

due to fresh plant-contained phytochemicals, including antioxidant substances such as 

phenolic compounds, carotenoids and vitamins (108). However, a remarkable amount of the 

food intake in the human diet comes from processed foodstuffs, and whether processed plant-

foods provide less benefit than unprocessed ones is uncertain remains an area of inquiry. 

Food processing operations are mostly based on heating. Thermal treatments often result in 

non-enzymatic browning (NEB), which occurs through sugar thermal degradation 

(caramelisation), or, when more acidic conditions are present, by the Maillard reaction (MR) 

between sugar and organic acids (109). The high molecular-weight heterogeneous polymers 

formed in the last stage of the NEB reaction are called melanoidins. Melanoidins are widely 

distributed in home- and industrial-processed foodstuffs and may have various in vitro 

functional properties, including antioxidant (110, 111), antihypertensive (112) and metal-

binding activities (113). Of particular interest is the antioxidant activity of melanoidins; since 

these products are naturally formed during food processing and storage, they can influence the 

oxidative and shelf life of several type of foods including cereals (114), coffee and tomatoes 

(115). In line with their antioxidant activity, some physiological effects, including the 

protection of cells from oxidative-induced damage, have been reported (116-118). 

However, because of the huge complexity of both reactions and products during their 

chemical pathway of formation, only partial structures of melanoidins have been elucidated so 

far (109). Thus it is very difficult to address a specific health effect to a distinctive melanoidin 

chemical structure; therefore a deep and accurate exploration is needed for melanoidins 

derived from different foods. 

Prunes are obtained by drying the fruit of certain cultivars of Prunus domestica L. 

(Rosaceae), and possess the highest antioxidant activity among the most commonly consumed 

fruits and vegetables (119). The biological effect of prunes on human health has been 

attributed, in part, to their high polyphenol content and antioxidant capacity (119, 120), which 

is due to their large amounts of caffeoylquinic acid isomers (120, 121) and flavonoids (122). 

In vivo and in vitro experiments indicate that prunes have high antioxidant capacity (123) 
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along with the ability to inhibit LDL oxidation (120) and to reduce atherosclerosis lesions 

(124). We have previous reported that drying two common plum varieties to produce prunes 

resulted in a two to three-fold increase in antioxidant activity, even though it considerably 

reduced the phenol content (125, 126). We hypothesized that this increase might have been 

due to the formation of non-enzymatic browning products (NEBPs) (e.g. Melanoidins) after 

drying. Thus, although the effect of polyphenolic compounds cannot be ruled out, 

melanoidins appear to be the prevailing contributors to the reported antioxidant activity of 

prunes in vitro. Apricot fruits are considered as a rich source of phytochemicals, which are 

mainly polyphenols and carotenoids (127, 128). Phenolic compounds, in particular, by acting 

as antioxidants, are thought to provide various in vivo health benefits including hepato- and 

cardio-protective effects (129, 130). The antioxidant properties of polyphenols in apricots 

have been studied in relation to ripening, cultivar and puree preparation (128, 131, 132), and 

contrasting results about the antioxidant activity of fresh apricot fruits have been often 

reported (133, 134). However, 40-45% of the total world production of apricots is processed, 

mainly by drying and thermal treatment (135). Similar to our previous finding on prunes 

(110), we found that drying apricots at high processing temperatures resulted in a significant 

increase of antioxidant activity, even though the phenol content was significantly reduced 

(136). We hypothesized that the increased in antioxidant activity observed in the dried 

apricots might have been due to the formation of NEB products (NEBPs), after drying (e.g. 

melanoidins). Thus, as reported for prunes (110), melanoidins appear to be the prevailing 

contributors to the maintained antioxidant activity of dried apricot in vitro. In this regard, 

although the antioxidant properties of melanoidins have been studied in vitro for several years 

their potential antioxidant effects on in vivo biological systems such as human cells has been 

little investigated and is largely unknown.  

The finding that oxidative stress is a common feature in many aspects of CVD pathogenesis 

(137), suggests that its counteraction with antioxidants may prevent disease occurrence or 

ameliorate a patient's pathological condition. For this reason a great deal of attention is now 

focusing on naturally occurring antioxidants as potential candidates for CVD prevention 

and/or treatment. Endothelial cells (ECs) play a crucial role in the integration and modulation 

of signals within the vascular wall (138) and perturbation of such homeostasis by oxidative 

damage is the trigger for the development of CVD (139). Indeed, chemical characteristics, 

both quantitative and analytical, of compounds that participate in melanoidins formation in 
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prunes and apricots are known to differ and thus different melanoidins may originate from 

their processing (136, 140, 141). 

Hence, the present work was undertaken with the intent to investigate whether the food 

melanoidins isolated from prunes and dried apricots might protect human ECs against H2O2-

induced oxidative stress and cell damage. 
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§ 3.1. Chemicals 

 

Unless stated in the text all the reagents used were from Sigma (Sigma, St Louis, MO). 

 

§ 3.2. Sampling and dehydration of prunes 

 

Prunes were prepared using fruit of the President cultivar. These were bought in a local 

market at an optimum stage of ripening, pre-treated and dried at 85°C as previously described 

(124). Before analysis, the dried fruit was packed in co-extruded plastic bags and kept in a 

freezer at -20 °C. 

 

§ 3.3. Sampling, dehydration and blanching of apricots 

 

The experiments were conducted on the Cafona apricot varie ty, which has been 

chosen for its very high content in polyphenols. The fruits were purchased locally at an 

optimum stage of ripening and those showing defects were discarded. Fruits were size-

graded, so that size difference would not affect drying times. Fruits were cut in half along the 

suture line with a knife and the stone carefully removed by hand. At the end of this 

procedure, the fruits were immediately checked to eliminate those that had been damaged 

and then, pre-treated and dried at 75°C as previously described (128). Before analysis, the 

dried fruit was packed in co-extruded plastic bags and kept in a freezer -20 °C. The blanching 

was executed as previously reported by boiling the selected samples in water at 90°C for 3 

minutes (156). 

 

§ 3.4. Determination of HMF, phenolic content and total antioxidant activity 

 

The polyphenol fraction, which was used to assess both phenols and hydroxymethylfurfural 

(HMF), was extracted and analyzed by HPLC as previously reported (124, 125) using well-

established methods (119, 130). 

A Hewlett Packard Series 1090 liquid chromatograph coupled with a diode array detector was 

used and operating conditions were as previously reported (124, 125). A Gemini 5 μm C18, 

250x4.6 mm column was fitted with a Gemini pre-column C18, 4.0x3.0 mm (Phenomenex, 
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Torrance, CA) and used. The injection sample was 10 μL. Spectra acquisitions and 

quantifications for HMF and phenols were performed as detailed by us elsewhere (124). All 

values were expressed as milligrams per kilogram of dry matter (dm) and were calculated as 

the average of four measurements. The total phenol content was obtained by adding the values 

of the single phenols detected. Antioxidant activity was evaluated using the radical DPPH 

method as previously described in detail (124) and expressed as Abs-3 min-1 g-1 of dm. 

 

§ 3.5. Melanoidins extraction 

 

The extraction of melanoidins was carried out in triplicate, following a previously published 

method (131, 110, 118, 157). In detail, 100 g of pitted and ground fruits were defatted with 

CHCl3 while stirring. After solvent evaporation, the operation was repeated twice more. 

Solvent traces were eliminated by rotary evaporation. 200 ml of bi-distilled water were added 

to this residual solid, and the resulting slurry was sonicated for 30 minutes at 40°C. The water 

fraction was collected and the operation repeated on the solid phase. The two water fractions 

were combined and centrifuged at 8400 g for 15 minutes at 15°C, and the supernatant was 

then evaporated under vacuum at the maximum temperature of 50°C (fraction I). The residual 

solid was added to that of fraction I and dissolved in 200 ml of ethanol/water (60:40 V/V), 

and the resulting slurry was then sonicated for 30 minutes at room temperature. This operation 

was repeated. The two ethanol/water fractions were combined and centrifuged at 8400 g for 

15 minutes at 15°C, and the supernatant was then evaporated under vacuum at the maximum 

T of 50°C (fraction II). The residual solid was added to that of fraction II and dissolved in 200 

mL of 2-propanol/water (50:50 V/V), and the resulting slurry was then sonicated for 60 

minutes at room temperature. This operation was repeated. The two propanol/water fractions 

were combined and centrifuged at 8400 g C for 15 minutes at 15°, and the supernatant was 

then evaporated under vacuum at the maximum T of 50°C (fraction III). The remaining solid 

fraction, which consisted of pieces of fruit, was fraction IV. The yield of each fraction (as g 

per 100 g of dried fruit) was recorded. 

Fraction IV had no in vitro antioxidant activity, and thus it was not taken into consideration. 
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§ 3.6. Determination of non-enzymatic browning (NEB) 

 

NEB was assessed by both browing index and color variation. The formation of brown 

pigment due to the NEB reaction can be estimated as a brown index from spectrophotometric 

readings at 420 nm (142). For this reason the polyphenolic fractions from fresh and dried 

samples, as well as the melanoidin fractions extracted from dried fruits were subjected to a 

spectrophotometric reading in absorbance mode at 420 nm in a 1 cm glass cuvette (Beckman 

DU 640 spectrophotometer). The samples were appropriately diluted in water to give 

absorbance values of <1. These values were used to give an absorbance value per g dm of 

each diluted fraction. Five measurements were made for each sample. 

The colorimetric analysis has been carried out as proposed by Mastrocola and Lerici (143). 

The peel colour measurement were assessed with a tristimulus colorimeter (Chromameter-2 

Reflectance, Minolta, Osaka, Japan), fitted with a CR-300 measuring head. The colour 

tonality was expressed as L, a*, b* Hunter scale parameters, and “a” and “b” were used to 

compute hue angle (tan-1 b*/a*) (144, 158). The measurements have been always done on the 

same set of 10 fruits selected at the start of the experiment, in order to minimise fruit colour 

variability. 

 

§ 3.7. Cells culture, treatments, and viability assay 

 

ECV304 is an EC line established from the vein of an apparently normal human umbilical 

cord. This cell line has been proposed as a suitable model for providing novel insights into the 

mechanisms governing EC biology under both physiological and pathological conditions 

(159-163). ECV304 were provided by the European Collection of Animal Cell Cultures 

(ECACC Salisbury, UK). Cells were grown in medium M199 supplemented with 10% fetal 

bovine serum (Invitrogen, Carlsbad, CA), 100 μg/m1penicillin, and 100 μg/m1 streptomycin 

(Invitrogen,). Cells were maintained in a standard culture incubator with humidified air 

containing 5% CO2 at 37° C. The day before each experiment, cells were plated in 24-well 

plates (Corning, Lowell, MA) at a concentration of 100,000 cells per well and pretreated with 

melanoidins for 6 hrs before oxidative stress was induced in the last 2 hrs, by treatment with 

the indicated concentration of hydrogen peroxide (H2O2). In accord with a previously study 

using coffee melanoidins on human hepatoma cells (164), the doses of 2, 6 and 12 μg/ml were 
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tested in our human vascular model. Cell viability for treated and untreated cell was assessed 

after 24 hrs by automatic cell counting (Countess® Invitrogen) and expressed as number of 

cells per ml. 

 

§ 3.8. Cell viability and metabolic assay 

 

Cell viability, for treated and untreated cells, was assessed after 24 hrs by checking the 

leakage of the cytoplasmatic lactate dehydrogenase (LDH) from cells with a damaged 

membrane. The amount of LDH released in the medium by death cells was assessed using the 

kit CytoTox-ONE™ (Promega, Madison, WI). A standard curve with definite amounts of 

cells (200µ/well) was made, and the release of LDH in the medium was measured after the 

application of lysis solution (4µl/well). Plates containing samples were removed from the 

incubator and equilibrate to 22°C, and then the release of LDH from death cells was measured 

by supplying lactate, NAD+, and resazurin as substrates in the presence of the enzyme 

diaphorase. Generation of the fluorescent resorufin product, which is proportional to the 

amount of LDH, was measured using a GENios plus micro-plate reader (Tecan) with 

excitation and emission of 560 nm and 590 nm, respectively. By using the standard curve, the 

amount of LDH release in treated and untreated cell was conversed in number of cells per 

well. The Mitochondrial Metabolic Activity was assessed as previously reported in 96-well 

plates (BD Falcon) by using the colorimetric assay MTT (Promega, Madison, WI) (165). This 

colorimetric assay measures the reduction of the yellow 3-(4,5-dimethythiazol2-yl)-2,5-

diphenyl tetrazolium bromide by mitochondrial succinate dehydrogenase. The yellow 

tetrazole compound enters the cells and passes into the mitochondria where it is reduced to an 

insoluble, purple colored, formazan product. The reduction of MTT in isolated cells and 

tissues is regarded as an indicator of “cell redox activity” (166). Although evidence exists that 

the MTT reduction in mammalian cells is also catalyzed by a number of non-mitochondrial 

enzymes, this reaction is attributed mainly to mitochondrial enzymes and electron carriers 

(166-168). After treatments cells were added with 20µl MTT solution (5mg/ml) in medium 

M199 and incubated at 37°C in a cell incubator for 60 minutes. At the end of the incubation 

period, the medium was removed and the cell monolayer was washed twice with HBSS. The 

converted dye was solubilized with acidic isopropanol (0.04 N HCl in absolute isopropanol), 

and plates
 
were analyzed at 570 nm using a GENios plus micro-plate reader (Tecan) with 
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background subtraction at 650 nm. Results were expressed as percent of untreated control 

cells. 

 

§ 3.9. Determination of cellular redox status 

 

Cellular redox status was investigated by using the redox-sensing green fluorescent protein 

(roGFP), which reports the redox status of the GSH/GSSG pool in vivo in both plant and 

mammalian cells (149, 150). Plasmids coding for roGFP2 expression were obtained starting 

from pCVU55762-roGFP2 (kindly provided by Dr. Andreas J. Meyer, University of 

Heidelberg, Germany). Cyt-roGFP2 was obtained by restriction cloning using BamHI and 

NotI restriction enzymes into pcCDNA3 vector (Invitrogen); mito-roGFP2 was obtained by 

cloning a PCR amplification product into pCMV/myc/mito (Invitrogen) using PstI and XhoI 

sites. Plasmids containing cytoplasmic roGFP2 (cyto-RoGFP) and a mitochondrial targeted 

roGFP2 (mito-RoGFP2) were transfected in HCV304 by using the lipofectamine 2000 

reagent following the provider protocol (Invitrogen). 

Transfected cells were selected using 0.8 mg/mL of G418 in the media for 3 to 4 weeks. 

Positive stably transfectants were selected by serial dilution of G418-resistant clones which 

constitutively expressed both cyto- and mito-RoGFP2 under a fluorescence microscope 

(Olympus XI70). RoGFP has two fluorescence excitation maxima at 400 (oxidized form) and 

485 nm (reduced form) and display rapid and reversible ratiometric changes in fluorescence in 

response to changes in ambient redox potential. The ratios of fluorescence from excitation at 

400 and 485 nm indicate the extent of oxidation and thus the redox potential while canceling 

out the amount of indicator and the absolute optical sensitivity (150). In place of confocal 

imaging analysis we used a recently developed fluorometer-based method for monitoring 

roGFP oxidation (169). Fluorescence measurements were performed in clear 24-well plates 

(Corning, Lowell, MA) on a fluorescence plate reader GENios plus (Tecan, Männedorf, CH) 

from the upper side using multiple reads per well (the read pattern was square, and the 

number of reads was 2 x 2). Cells were excited by using 400 and 485 nm filters and 

fluorescence values were measured using 535 nm emission filter. For background correction 

emission intensities were determined for non-transformed cells (4 discs each experiment) 

exposed to same excitation wavelengths under the same conditions. These values were 

averaged and subtracted from the fluorescence values of roGFP2. The degree of oxidation of 



29 

Dott.ssa  Gioia Gasparetti 

“Melanoidins from dry fruit prevent oxidative endothelial cell death by counteracting mitochondrial oxidation 

and membrane depolarization” 

 Tesi di Dottorato in Scienze Biomolecolari e Biotecnologiche – Università degli Studi di Sassari 

the roGFP2 was estimated from the ratios of light intensities obtained during 1-min intervals 

under 400- and 485-nm excitation. Treatment-induced variations of roGFP2 oxidation were 

estimated by comparison with roGFP oxidation in control untreated cells.  

 

§ 3.10. Measurement of mitochondrial membrane potential 

 

Measurement of mitochondrial membrane potential (MMP) was performed with the JC-1 

stain (Invitrogen), a lipophilic cation fluorescent dye that accumulates in mitochondria in a 

MMP-dependent manner, showing red fluorescent JC-1 aggregates (590 nm emissions) at 

higher MMP. When MMP decreases, JC-1 aggregates depart from mitochondria and change 

to green fluorescent JC-1 monomers (535 nm emissions). Therefore, the ratio of the red signal 

to the green can been used to detect the occurrence of MMP depolarization in the early stages 

of cell death due to mitochondrial damage (170, 171). After treatments cells were incubated at 

room temperature in the dark with 5μg/ml JC-1 in HBSS for 30 minutes. The cells were then 

washed twice with HBSS and fluorescence levels were immediately acquired with excitation 

and emission wavelengths set at 535 and 590 nm, respectively, for red fluorescence, and 485 

and 535 nm, respectively, for green fluorescence. Measurements were performed in clear 24-

well plates (Corning, Lowell, MA) on a fluorescence plate reader GENios plus (Tecan, 

Männedorf, CH) from the upper side using multiple reads per well (the read pattern was 

square, and the number of reads was 2 x 2). For each sample, the results were calculated as 

the ratio (red/green) of fluorescence of sample, averaged after the fluorescence values had 

been corrected for the background and protein content. 

 

§ 3.11. Staining and fluorescence visualization 

 

MitoTracker Red CMXRos (Invitrogen, catalog # M7512) is the oxidized form of a dye that 

can be taken up into the mitochondria of live cells utilizing their uniquely high membrane 

potential. This dye is retained in the mitochondria after fixation and therefore can be used to 

label/stain mitochondria followed by additional immunocytochemistry. For the staining, cells 

have been grown on glass coverslips inserted inside the multi-wells. At the end of 

experiments, the culture media has been removed and the cells monolayer washed with pre-

warmed PBS. Then the pre-warmed solution containing the MitoTracker® probe has been 
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added to each well (final probe concentration of 300 nM) and the cells have been incubated at 

37°C for 30 minutes. After the staining was complete, cells were fixed with a solution of 4% 

formaldehyde in complete growth medium at 37°C for 15 minutes, and the permeabilized for 

10 minutes in PBS containing 0.2% Triton® X-100. Hoechst 33342 (SIGMA, catalog# 

B2261), is part of a family of blue fluorescent dyes commonly used to stain DNA. After 

fixation/ permeabilization, the Hoechst dye has been added to the cells at a final concentration 

of 0.12 µg/ml. The dye has been left to incubate with the cells for 15 minutes and then the 

cells monolayer has been washed for five times with PBS before visualization. Fluorescence 

visualization of fixed cells has been performed on a Olympus BX 51 microscope, using a 20, 

40, and 100x objectives with Numerical Aperture (NA) of 0,70, 1,00 and 1,35  respectively. 

 

§ 3.12. Statistical analysis 

 

Data were expressed as means ± S.D. of three or four different experiments. One-way analysis 

of variance (ANOVA) followed by a post-hoc Newman-Keuls Multiple Comparison Test 

were used to detect differences of means among treatments with significance defined as P < 

0.05. Statistical analysis was performed using GraphPad Prism version 5.00 for Windows, 

GraphPad Software, San Diego California USA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

Dott.ssa  Gioia Gasparetti 

“Melanoidins from dry fruit prevent oxidative endothelial cell death by counteracting mitochondrial oxidation 

and membrane depolarization” 

 Tesi di Dottorato in Scienze Biomolecolari e Biotecnologiche – Università degli Studi di Sassari 

 

 

 

 

 

 

CHAPTER 4  

RESULTS 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

Dott.ssa  Gioia Gasparetti 

“Melanoidins from dry fruit prevent oxidative endothelial cell death by counteracting mitochondrial oxidation 

and membrane depolarization” 

 Tesi di Dottorato in Scienze Biomolecolari e Biotecnologiche – Università degli Studi di Sassari 

§ 4.1  Changes in chemical parameters elicited by prunes processing 

 

Using a previously published procedure (125), fresh fruit was processed by standardized 

drying and heating conditions, then both fresh fruit (plums) and processed (prunes) were 

chemically characterized on the basis of commonly recognized parameters (125, 126), namely 

the presence of intermediate (hydroxymethylfurfural) and final (NEBPs) products of the MR. 

The compound hydroxymethylfurfural (HMF) is practically absent in fresh food, but it is 

naturally created in sugar-containing food during heat-treatments like drying or cooking. 

HMF is formed in the MR and is one of the intermediate products of the NEB (120, 128). 

Despite the decreased total phenol content (Figure 1A) an increase in antioxidant capacity was 

elicited by the food transformation process, which strongly correlated with the paralleled 

increase of HMF content (Figure 1B). The processing-induced increase of HMF was also 

accompanied by a significant rising in the browning index (Figure 1C), suggesting NEBPs 

may be responsible for the increase in chain-breaking activity observed after fruit 

transformation. Indeed, the absorbance at 420 nm, which represents the browning index, is an 

important parameter for the presence of NEBPs and is related to the brown pigment formation 

caused by the NEB reaction during plum processing (Figure 1C) (142).  
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Figure 1. Changes in chemical parameters elicited by fruit processing. Changes in antioxidant activity (A-C), 

Phenols content (A), hydroxymethylfurfural (HMF) (B) and Browning index (C) during transformation of fresh 

fruit (plums) to dried (prunes). Data are the mean ± standard deviation (SD) from four measurements. (A-B) a; b, 

significantly different from the fresh sample. 

 

The measurements of the browning index indicate that NEBPs were presents in all melanoidin 

fractions extracted from dried samples, while (as with whole fresh fruit samples) they were 

completely absent on those melanoidin fractions extracted from fresh fruit (Table 1). 

Noteworthily, the amount of NEBPs in the whole dried fruit samples was basically the sum of 

the NEBPs detected in the three melanoidins fractions, indicating they were present in the 

same amount in the prunes and in the melanoidin fractions extracted from prunes (Table 1). 
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Fraction I showed the highest amount of NEBPs among all the melanoidin fractions, and was 

therefore chosen to be tested for its 

antioxidant activity on cells exposed to oxidative stress. 

 

 

 

§ 4.2  Thermal treatment increases NEB in processed apricots 

 

A significant increase in antioxidant capacity was elicited by fruit drying, which 

strongly correlated with the paralleled increase of color found in the same polyphenolic 

extract (Fig. 2A). Colour was indeed dramatically changed by the drying process with a 

significant reduction of tonality (Fig 2B). In particular, the blanching of sample resulted in a 

significantly lower reduction of the drying-induced variation of color, which is expressed as a 

hue angle in the Hunter scale (143, 144). In fact, a more pronounced shift to a redder and 

deeper zone in the Hunter scale is evident in the dried, control fruits, with respect to the 

blanched ones, which might depend on the enzymatic browing contribution (142). However, 

in blanched fruits where no enzymatic browning is present (145), the observed color variation 

can be explained only by the formation of NEB during the drying process (Fig 2B). Browing 

index analysis of the melanoidin fractions isolated from fresh and processed apricots indicated 

that NEBPs were present only in dried fruits, thus confirming melanoidins presence in the 

extract obtained from the processed samples (Fig 2C). Among all the melanoidins fractions, 

Fraction I showed the highest amount of NEBPs as measured at 420 nm (data not shown), and 

was therefore chosen to be tested for its antioxidant activity on cells exposed to oxidative 

stress. 
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Figure 2: Changes in chemical parameters elicited by fruit processing. (A) Changes in antioxidant activity and 

color expressed as hue variation (tan - 1 b*/a*). (B) Changes in color expressed as hue variation (tan - 1 b*/a*). 

(C) Changes in color expressed as browning index (Abs at 420nm g
-1

 dm of fruit). Fresh, fresh fruits; M, 

melanoidins; B, blanching. Data are the mean ± standard deviation (SD) from four or five measurements. (A-C) 

a; b, significantly different from the fresh sample. 

 

 

§ 4.3  Prune Melanoidins protect human endothelial cells from hydrogen 

peroxide-induced cell death 

 

A variety of pathogenic stimuli can increase ROS production within the EC, and oxidative-

induced EC dysfunction is emerging as the probable initial step in the progression toward 

pathological conditions such as atherosclerosis and hypertension (139). Given the pivotal role 
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played by the endothelium in cardiovascular homeostasis and the involvement of EC 

dysfunction in CVD pathogenesis (139), it was reasonable for us to use a human EC line to 

investigate the effect of melanoidins on H2O2-induced oxidative damage. In order to mimic 

oxidative damage and set standard conditions for the following experiments, we first 

investigated the effect of different doses of H2O2 on ECV304 cell death and mitochondrial 

damage. As expected, 2hr-treatment of ECV304 cells with H2O2 resulted in a dose-dependent 

decrease of cell survival as evidenced by the significant decrease in the number of viable cells 

in comparison with the untreated control group (Figure 3A). Some pathological stimuli, 

including ROS, can trigger an increase in mitochondrial membrane permeability promoting 

the release of toxic factors and the dissipation of MMP. The consequence of such 

mitochondrial dysfunction is a bioenergetic catastrophe culminating in the disruption of 

plasma membrane integrity with ensuing cell death (146). Thus regulation of cell death has 

emerged as a second major function of mitochondria, in addition to their established role in 

energy metabolism (146).  

Our experimental results indicated that H2O2-induced cell death was indeed associated with a 

superimposable loss of MMP, which strongly implicated mitochondria in the cell death 

elicited by H2O2 (Figure 3A). Based on these experiments, around 50% of H2O2-induced 

mitochondrial impairment and cell death was observed at 0.1 mM of H2O2. We therefore 

used this concentration as the standard condition to mimic oxidative-induced cell damage in 

the following experiments. Previous studies indicate that pretreatment of human hepatoma 

cells with coffee (117) and biscuit (118) melanoidins exerts remarkable protection against 

oxidative induced cell death; therefore we investigated whether prune melanoidins would 

exert any protective effect on the observed H2O2-induced cell damage. To this end, cells 

were treated with melanoidins for 6 hrs and H2O2 was added during the last 2 hrs of 

incubation to induce oxidative stress. As reported in Figure 3B melanoidin pretreatment was 

able to dose-dependently counteract both cell death and MMP impairment as induced by 0.1 

mM H2O2, strongly indicating a protective effect of these polymeric compounds against 

oxidative stress and mitochondrial-mediated cell death. 
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Figure 3. Prune Melanoidins protect human endothelial cells from hydrogen peroxide-induced cell death. 

Dosedependent effect of hydrogen peroxide (H2O2) on cell survival and mitochondrial damage (A). Dose-

dependent effect of melanoidins on H2O2-induced mitochondrial damage and cell death (B). Data are the mean 

± standard deviation (SD) of four experiments. (A-B) a; b, significantly different from the control. 

 

 

§ 4.4  Apricot melanoidins protect endothelial cells from hydrogen peroxide-

induced mitochondrial damage and cell death 

 

We first tested apricot melanoidins for potential toxicity in our human endothelial 

cells model. Based on previous observations concerning melanoidins from other sources of 

food such as coffee (117) and biscuit (118), we tested apricot-melanoidin at the 

concentrations of 2, 6 and 12 µg/ml at 48 hrs of stimulation, then melanoidin-treated cells 

were compared to untreated ones for both cell viability and MMA. Results shown in figure 4, 

which depict respectively lactate dehydrogenase (LDH) release and 3-(4,5-dimethythiazol2-

yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction, clearly indicate that apricot 

melanoidins did not produce toxic effects for the cells under the employed experimental 

conditions. We have just demonstrated that pretreatment of human ECs with prune 
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melanoidins exerts remarkable protection against oxidative-induced cell death. However, 

melanoidins from different foods may have different structures and activities (109). Indeed, 

the exact sequence of reactions from which melanoidins originated, as well as their chemical 

structures, in different food remain largely unknown (109). We therefore asked whether, as 

with those isolated from prunes, melanoidins isolated from apricots could exert a protective 

effect on the observed H2O2-induced cell impairment. To this end, cells were treated with 

apricot melanoidins for 6 hrs and then H2O2 was added during the last 2 hrs of incubation to 

induce oxidative stress. As shown in figure 5A melanoidins pretreatment was able to dose-

dependently counteract the decrease in cell viability induced by 100 µM H2O2. Failure of 

oxidant in eliciting MMP and MMA impairment in melanoidin-pretreated cells, strongly 

indicates a protective effect of these compounds against oxidative stress and mitochondrial-

mediated ECs death (Fig. 5B-C). 

 

 

Figure 4: Apricots melanoidins are not toxic for endothelial cells. Effect of different concentrations of apricot 

melanoidins on (A) cell viability and (B) mitochondrial metabolic activity. Data are the mean ± standard 

deviation (SD) of four experiments. 
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Figure 5: Melanoidins protect endothelial cells from hydrogen peroxide-induced mitochondrial damage and cell 

death. Dose-dependent effect of melanoidins on hydrogen peroxide (H2O2)-induced (A) cell death, (B) 
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mitochondrial metabolic activity and (C) mitochondrial membrane potential. Data are the mean ± standard 

deviation (SD) of four experiments. (A-C) *, significantly different from the control. 

 

 

§ 4.5 Hydrogen peroxide induces oxidation of both cytosolic and 

mitochondrial compartments 

 

With the intention of elucidating the molecular mechanisms underpinning prune and apricot 

melanoidin protection, we used a redox-sensitive green fluorescent protein (roGFP) to 

investigate the effect of these polymers on H2O2-induced intracellular oxidative change. 

Fluorescence imaging of ROS in live cells has been widely used to assess intracellular 

oxidation in different cellular compartments and under various experimental conditions (147). 

However, many of the methods so far employed to determine the levels of intracellular ROS 

suffer from various pitfalls (147). 

Because electrons for ROS detoxification derive at least in part from the GSH pool, variations 

of ROS levels are manifested in concomitant changes in the thiol redox potential, which is 

reflected in the reduced to oxidized glutathione ratio (GSH/GSSG) (148). RoGFP2 can be 

targeted to various cellular compartments and due to two engineered cysteine thiols is 

sensitive to environment redox change resulting in a thiol-thiol bond (149, 150). Dithiol 

formation causes reciprocal changes in roGFP emission intensity when excited at two 

different wavelengths. Thus the analysis of roGFP fluorescence measures the redox status of 

the intracellular GSH/GSSG pool (149, 150).  

To follow intracellular redox changes during our experimentation we have used two human EC 

ECV304 lines constitutionally expressing the redox-sensing green fluorescent protein (roGFP) in both 

the cytosolic (cyto-roGFP) and mitochondrial (mito-roGFP) compartment (Figure 6). In particular, 

the fluorescence photo shown in figure 6B corresponds to ECV304 cells expressing the cyto-

roGFP, while the fluorescence image shown in figure 6D represents ECV304 cells expressing 

mito-roGFP. Expression of the mito-roGFP in the mitochondrial compartment is confirmed 

by the image shown in figure 6F, which depicts the merged photo of ECV304 cells expressing 

the mito-roGFP (D) and ECV304 cells stained with the mitochondrial marker MitoTracker 

Red (E). While the two images displayed in panels A and C of figure 6, depict the merged 

photos of ECV304 cells expressing the cytoplasmic (A) and the mitochondrial (C) form of  

the roGFP (green), along with the bright-field (40X magnification). From A-F, the nuclei are 



41 

Dott.ssa  Gioia Gasparetti 

“Melanoidins from dry fruit prevent oxidative endothelial cell death by counteracting mitochondrial oxidation 

and membrane depolarization” 

 Tesi di Dottorato in Scienze Biomolecolari e Biotecnologiche – Università degli Studi di Sassari 

stained with Hoechst (blue). These two cell lines allowed us to specifically follow potential 

changes of the cytosolic and mitochondrial redox state during our experimentation.  

 

 

Figure 6. ECV304 cells lines constitutively expressing the cytoplasmic (cyto-roGFP) and mitochondrial (mito-

roGFP) form of roGFP. Cells were grown in glass chamber slides at concentrations to allow 50-70% confluence 

in 24 hrs. On the day of experiments, cells were washed with PBS three times, counterstained with the 

mitochondrial marker MitoTracker Red and the nuclear marker Hoechst, fixed with 4% paraformaldehyde and 

mounted for fluorescence microscopy visualization. Images A and C depict respectively merged photos of 

ECV304 cells expressing the cyto-and mito-roGFP (green) protein, Hoechst staining (blue) and bright-field 

(40X, NA=1.00). Images B and D depict respectively merged photos of ECV304 cells expressing the cyto-and 

mito-roGFP (green) protein, counterstained with Hoechst (blue) (100X, NA=1.35). The figure F depicts the 

merged photo of ECV304 cells expressing the mito-roGFP protein (D) and ECV304 cells stained with the 

mitochondrial marker MitoTracker Red (E). (100X, NA=1,35).  

 

 

§ 4.6  Prune Melanoidins protect cytosolic and mitochondrial compartments 

from hydrogen peroxide-induced oxidative redox changes 

 

As reported in Figure 7A, the treatment of roGFP expressing cells with different H2O2 

concentrations, dose-dependently shifted the ECV304 intracellular redox status toward a more 
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oxidative condition in both mitochondrial and cytosolic compartments, indicating that under 

our experimental conditions roGFP2 has a significant dynamic range and responds linearly to 

increasing doses of a well-known oxidant. Note that the observed increase of intracellular 

oxidative conditions elicited by the applied doses of oxidant was paralleled by a 

corresponding dose-dependent increase in mitochondrial damage and cell death (Figure 3A), 

confirming the relationship between these H2O2-elicited phenomena. 

We next wanted to determine whether the cellular protection elicited by prune melanoidins 

was due to counteraction of H2O2-induced intracellular oxidation. To this end, roGFP 

expressing cells were treated with prune melanoidins for 6 hrs and 1 mM of H2O2 was added 

during the last 2 hrs of incubation. At the end of the experiment both mito- and cyto-roGFP 

fluorescence were recorded. Data reported in Figure 7B indicate that melanoidins were able to 

dose-dependently inhibit intracellular oxidation elicited by 0.1 mM H2O2 and reestablish an 

intracellular redox state similar to that of control cells. Consistent with this antioxidant effect 

is the observed dose-associated protection exerted by prune melanoidins against H2O2-

induced MMP depolarization and cell death (Figure 3B), indicating a tight link between their 

antioxidant activity and cellular protection. 
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Figure 7. Prune Melanoidins protect human endothelial cells from hydrogen peroxide-induced oxidative stress. 

Dose-dependent effect of hydrogen peroxide (H2O2) on cytoplasmic (cyto-roGFP) and mitochondrial (mito-

roGFP) ro GFP2 oxidation (A). Dose-dependent effect of melanoidins on H2O2-induced cytoplasmic (cyto-

roGFP) and mitochondrial (mito-roGFP) ro GFP2 oxidation. Data are the mean ± standard deviation (SD) of four 

experiments. (A-B) a; b, significantly different from the control. 

 

§ 4.7  Apricot melanoidins protect cytosolic and mitochondrial compartments 

from hydrogen peroxide-induced oxidative redox changes 

 

Just as we had done previously for the prune melanoidins, we next wanted to determine 

whether the cellular protection elicited by apricot melanoidins was due to the counteraction of 

H2O2-induced intracellular oxidation. To this end, roGFP expressing cells were treated with 

apricot melanoidins for 6 hrs and 100 µM of H2O2 was added during the last 2 hrs of 

incubation. At the end of the experiment both mito- and cyto-roGFP fluorescence were 

recorded. Data shown in figure 8 A-B indicate that melanoidins were able to dose-

dependently inhibit intracellular oxidation induced by 100 µM H2O2 maintaining an 

intracellular redox state similar to that of control cells.   
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Figure 8. Melanoidins protect human endothelial cells from hydrogen peroxide-induced intracellular oxidative 

stress. Dose-dependent effect of melanoidins on H2O2-induced cytoplasmic (cyto-roGFP) and mitochondrial 

(mito-roGFP) roGFP oxidation. Data are the mean ± SD of four experiments. (A-B) *, significantly different 

from the control. 

Fluorescent microscopy results confirming the protective effect of apricot-melanoidins on H2O2-induced 

intracellular oxidation are reported in figure 9. A yellow fluorescence pattern, which is the overlapping of the 

mito-roGFP (green) and MitoTracker Red, is clearly visible in both control and H2O2-treated cells pretreated 

with apricot-melanoidins (Fig 9 A and D). On the contrary, H2O2-induced mitochondrial damage is clearly 

evident in oxidatively stressed cells, which lack the above-mentioned yellow pattern. H2O2-treated cells, have 

indeed clear mitochondrial damage, and therefore unable to take the Red MitoTracker dye inside (Fig. 9B). As 

indicated in figure 9C melanoidin alone did not produce intracellular oxidative stress in cultured ECs. Quite 

similar results are shown concerning ECs expressing the cyto-roGFP (Figure 9E-H), although a clear yellow 

pattern is not visible due to the expression of roGFP in the cytoplasm. However, a bigger and clearer, punctate 

red patter is evident in both control and H2O2-treated cells pretreated with apricot-melanoidins (Fig. 9E and H), 

as compared with the H2O2-treated ones (Fig. 9F). This is due to the compromised mitochondrial function in 

H2O2-treated. No oxidative damage has been produced by melanoidins alone (Fig. 9G). 
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Figure 9. Apricot Melanoidins protect human endothelial cells from hydrogen peroxide-induced intracellular 

oxidative stress. Cells were grown in glass chamber slides at concentrations to allow 50-70% confluence in 24 

hrs. On the day of experiments, cells were treated with apricot melanoidins for 6 hrs and then H2O2 was added 

during the last 2 hrs of incubation to induce oxidative stress. Then cells were washed with PBS three times, 

counterstained with the mitochondrial marker MitoTracker Red and the nuclear marker Hoechst, fixed with 4% 

paraformaldehyde and mounted for fluorescence microscopy visualization. Images (A-D) depict merged photos 

of ECV304 cells expressing the mito-roGFP (green) protein, counterstained with both MitoTraker Red and 

Hoechst. Images (E-H) depict merged photos of ECV304 cells expressing the cyto-roGFP (green) protein, 

counterstained with both MitoTraker Red and Hoechst. From A-H, magnification was 20X and NA 0,70). 
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§5.1 Discussion 

 

During their lifetime cells are subjected to oxidative damage, which is reported to be 

associated with several pathological conditions including cancer and CVD (137, 151). 

Although endogenous antioxidants play an important role in protecting cells against oxidative 

insults, additional antioxidants (e.g. dietary antioxidants) appear to be required to prevent or 

to protect living cells from oxidation (108). In this context, health benefits exerted by plant-

derived compounds and extracts have been mainly ascribed to their antioxidant potential and 

the resulting capability to counteract oxidative-induced damage (108). 

However, during food processing and storage, chemical reactions among food components 

lead to both destruction and formation of phytonutrients (115), therefore whether processed 

plant foods provide the same benefits as those ascribed to unprocessed ones is uncertain. For 

instance, melanoidins are heterogeneous polymeric structures formed during food processing 

in the last stage of the MR whose effects on human health are largely unknown. Indeed, 

although the antioxidant properties of melanoidins have been studied in vitro for several years 

their potential antioxidant effects on in vivo biological systems such as human cells has been 

little investigated and is barely known. In this light, we explored the effect of melanoidins 

formed during the transformation of fruits against H2O2-induced oxidative stress and cell 

damage. 

As we wrote previously, it has been a reasonable choice for us to use a human ECs line to 

investigate the effect of apricot melanoidins on H2O2-induced oxidative damage, considering 

the role of endothelium in cardiovascular homeostasis and in the CVD pathogenesis (139). A 

pathology-associated rise of ROS can trigger mitochondrial membrane permeability 

promoting the dissipation of MMP and ultimately cell death (146). In fact, even in our 

experimental model of oxidative cell death we found a superimposable loss of both MMP and 

MMA, which clearly indicated the implication of mitochondria in the cell death induced by 

H2O2. The direct link between oxidative stress, MMP depolarization and cell death is now 

clearly demonstrated and widely accepted (152). 

In our vascular cell model H2O2 was able to dose-dependently elicit all three of the above-

mentioned phenomena, clearly indicating that cell death occurred because of the intracellular 

oxidative conditions and the mitochondrial damage. Pretreatment of cultured cells with prune 
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and apricots melanoidins, significantly counteracted and ultimately abolished H2O2-induced 

intracellular oxidation, MMP depolarization and cell death.  

In this context, we believe our results may be of importance, since they indicate for the first 

time that melanoidins isolated from prunes and apricots, exert a significant cellular protection 

against H2O2-induced oxidative stress and mitochondrial-mediated EC death, even 

considering that compounds that participate in melanoidin formation in prunes and apricots 

differ both analytically and quantitatively, and that alternate forms of melanoidins may 

originate from the processing of these two fruits (136, 140, 141). 

Fluorescence imaging of ROS in live cells has been widely used to assess oxidative stress in 

different cellular compartments and under various experimental conditions (147). However, 

many of the methods so far employed to determine the levels of intracellular ROS suffer from 

various pitfalls (147). A new approach was therefore used in this work to follow H2O2-

induced intracellular oxidation and its possible counteraction by melanoidins. By employing 

two ECs lines, which constitutionally express the redox-sensitive proteins mito- and cyto-

roGFP (Fig. 6), we were able to selectively follow changes of the redox state in the cytosolic 

and mitochondrial compartment. Due to the ability to measure the ratio between the oxidized 

(GSSG) and reduce form of glutathione (GSH), these two cells lines provided a useful tool for 

assessing the variation of intracellular redox state, showing significant dynamic range and 

linear response to increasing doses of the well-known oxidant, H2O2. Of note, the increased 

oxidative conditions induced by the applied doses of oxidant were paralleled by a 

corresponding dose-dependent rise in mitochondrial damage and cellular death, suggesting a 

relationship between these H2O2-induced phenomena. Under these experimental conditions, 

apricot and prunes melanoidins were able to counteract H2O2-induced oxidation, maintaining 

the intracellular redox conditions similar to that of control cells. Consistent with this 

antioxidant effect is the observed dose-associated protection exerted by apricot melanoidins 

against the H2O2-induced mitochondrial impairment and cell death, indicating a tight link 

between their antioxidant activity and cellular protection.  

To our knowledge, this is the first work on the protective effect of apricot and prunes 

melanoidins against oxidative-induced cell death. Moreover, using a novel genetically 

engineered fluorescence protein to ratiometrically assess the intracellular redox state in living 

cells, our data confirm and reinforce previously published observations using coffee (117), 

biscuit (118) and synthesized melanoidins (116). Melanoidins indeed, appear to work as 

antioxidants by positively modulating the GSSG/GSH ratio in favor of the reduced form, and 
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thus favorably preparing the cell to face oxidative insult. In addition, we also detailed the 

mechanism of cellular protection afforded by melanoidins, which clearly involves protection 

against intra-mitochondrial oxidation and oxidative-induced mitochondrial impairment 

assessed as MMA and MMP depolarization. We believe this work adds new insight 

concerning the effect of processed plant foods on cellular physiology. Indeed, melanoidins 

from different sources could have different effects, and because of the lack of knowledge in 

this field, it is imperative that various melanoidins be evaluated under different experimental 

conditions to determine their effects. Although further studies are required to better 

characterize the molecular mechanism of melanoidin protection, our findings support the 

general observation that natural antioxidants from fruits and vegetable can have a 

cardiovascular protective effect against oxidative stress. To our knowledge, plasma, organs 

and tissue levels of melanoidins in people are so far unknown, therefore whether the 

protective effect exerted by melanoidins in cultured cells may be translated in vivo remains to 

be elucidated. However, there is circumstantial evidence of melanoidin absorption in vivo 

(153), and consistent with this observation, their antioxidant activity in human volunteers has 

indeed been reported (154, 155, 152). In addition, data obtained with gravimetric techniques 

allow estimation of a daily intake of about 10 g of melanoidins in a Western diet (153). These 

observations indicate that melanoidins may reach in vivo concentrations comparable to the 

ones we used in vitro, suggesting that our results could be representative of a physiologically 

relevant in vivo mechanism. 
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