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RESUME

La cuve d’électrolyse est I'élément central dans la réduction de I'aluminium.
En dépit des systemes de contrble automatique appliqués sur 'opération des
cuves, une quantité significative d’informations sur leurs états n'est pas encore
utilisée dans le processus décisionnel. D'ailleurs, la qualité de décision dépend

bien souvent de I'opérateur responsable.

Ce systeme expert a base de régles a deux niveaux est construit a partir de
l'expertise disponible des opérateurs et de celle des ingénieurs du procédé
d’électrolyse. Ce systeme est congu pour diagnostiquer autant les cuves de type
général que celles de types particuliers. De plus, il peut fonctionner en mode
autonome tout en utilisant des données d’entrées locales a la station de travail ou
en mode réseau en utilisant les données du procédé réel comme valeur d’entrée.
Dans l'architecture réseau, le procédé réel peut étre remplacé par un simulateur
de cuve (un modele mathématique) utilisant des mécanismes de transfert
d’information semblable au systeme d’acquisition de données des procédés en
temps réel. Cela permet de tester explicitement les taches du systéme expert sur
la surveillance du procédé et ses alarmes. L'agencement a comme objectif de
proposer une aide aux opérateurs pour créer des analyses détaillées de I'état des
cuves, de détecter la présence de défaut dans le procédé, de faire l'analyse de

tendance et de proposer ['affectation de cible a long terme. |l peut également étre



présenté a l'ingénieur de contréle comme référence pour le réglage de points de

consigne sur certains régulateurs pertinents.

L’architecture de la base de connaissance est congue de maniére a
permettre la distribution de l'application aux divers types de cuves afin de simplifier
la mise a jour éventuelle du systeme. C’est pour cette raison que la structure de la
base de connaissances et la stratégie de raisonnement sont congues avec des

caractéres uniques.

Cette thése fournit I'ensemble de la connaissance saisie au sujet du
procédé d'électrolyse de l'aluminium et des secteurs appropriés. Celle-ci
comprend la connaissance générale du domaine pour l'ingénierie cognitive aussi
bien que la connaissance spéciale pour les types particuliers de cuves. Elle décrit
également la construction du systéme expert et montre quelques exemples

accompagnés de discussions détaillées sur différents cas de diagnostique.



ABSTRACT

The electrolytic cell is the central element of the aluminum electrolysis. In
spite of the automatic control systems applied to run the aluminum electrolytic
cells, a significant amount of information about the status of the cells is still not
involved in the decision making process. Moreover, the quality of the decision

depends on the operator in charge.

A two-level rule-based expert system is built which incorporates the
available "operator" and "engineer" expertise. This expert system is designed to
serve both a generalized as well as a particular type of cell. It can work in either
off-line or on-line mode. When in on-line mode, the process data can be accessed
via a network and a cell simulator can also be connected to test the expert system-
based process monitoring and alarm management. The proposed expert system
assists the operators to make a detailed analysis of the cell’s state, to detect faults,
and to conduct trend analysis or a long-term target assignment. The expert system

can also be a reference for the adjustment of the set points by control system

engineers.

The knowledge base design is intended to expand the application to the

various types of cells and to facilitate a system update. For this reason, the



structure of the knowledge base and the reasoning strategy are designed with

some unique characters.

This thesis provides the acquired knowledge about the aluminum
electrolysis process and relevant areas. It consists of the general domain
knowledge for the knowledge engineering as well as the special knowledge for
particular types of cells. It also describes the construction of the expert system and

shows some examples with detailed discussions of the cell diagnosis.



ACKNOWLEDGMENTS

| am greatly indebted to my research director, Dr. Rung Tien Bui, professor
of Université du Québec a Chicoutimi and director of the CRSNG-ALCAN Chair in
process engineering and co-director Dr. Laszlo Tikasz, professor of Université du
Québec a Chicoutimi, for their guidance, advice, support and encouragement.

Their extensive knowledge helps me shape my way of thinking.

| would like to express my gratitude to Mr. Alton T. Tabereaux of Alcoa Inc.,
for his permission to use the knowledge in his course materials. Special thanks go
also to Dr. Janos Horvath, professor of Technical University of Miskolc and visiting
professor of Université du Québec a Chicoutimi, for his very important contribution

from his extensive knowledge and very helpful conversations.

I am indebted to Dr. Vinko Potocnik of Arvida Research and Development

Center of ALCAN for his contributions and helpful advice.

I would like to acknowledge all the members of LECAP, for their

collaboration.

Finally, | would like to express my sincere thanks for the encouragement

and support from my parents and my family.



CONTENTS
RESUME.........cceeueueareasesssesseasssessesssssssenssssssessessssessensasstsssstasssssssssssessssesnsessnssesseanes 2
Y 2 1 I 2 7 - 4
ACKNOWLEDGMENTS .....ooitiiimmmmmsisssnsensssrnmmssssssssssssnsesnsssssssssssssssssssnsssnmnsnssssssenes 6
[0 1V I 8 5 7
LIST OF TABLES...........cccitiinemeeestnimmssssssssmmsssnnnsssssassssnsmsssssnnnnsssssssssssssnnsnssnnens 13
CHAPTER 1 INTRODUCTION..........c oo e e s 19
1.1 Problems addressed ... 19
1.2 ODJECHVES ...uvvieeiiiiieee et e e e e 21
1.1 Organization of the thesis ..........cccoeeiiiiii e 23
CHAPTER 2 THE ALUMINUM ELECTROLYSIS PROCESS...........cccce...... 26
2.1 7N (U1 011 2 105 o TP OO RN 26
2.2 Brief description of the aluminum electrolysis process...........c..ccccoecuunnen. 27

2.2.1 Principle of the Hall-Héroult process ...........cccoocviiiiiiiiiinci 27
2.2.2 Industrial aluminum electrolysis.............cccociii e, 28

2.3 Relevant elements of the Hall-Héroult process.............ccccccooiiiiviivvvinnnne, 30
2.4 Cell construction, Soderberg and prebake cell design...........couevvveeeeeenen. 36
2.4.1 Sdéderberg technology .........oooviiiiiieiii e 37
2.4.2 Prebake technology ..o, 38
243 Performance comparison between Séderberg cell and prebake cell40
CHAPTER 3 FUNDAMENTALS OF EXPERT SYSTEM.........occcvvrcnnneennnnnne 41
3.1 Introduction to artificial intelligence ...........ccccoviriiiiiiieee e, 41
3.2 What is an expert SYSteM?.........oiiiiiiiiiie et 42
3.21 Definition of an expert system ..........cccccvvvii i, 42
3.2.2 Fundamental features of an expert system ............cccceeeiiiiiiiinnennn, 43
3.2.3 Historic background..........cooooiiiiiiiieiee e 45
3.24 Composition of an expert SYStem ........cccccccciiiiiiiiiieien e, 47
3.2.4.1 Expert system Structure .........ccooeiiviniiiiiiiii e, 47

3.2.4.2 Elements of expert system...........ocoiiiiiiiiiieii e 48

3.2.4.3 Expert system programming toolS...........c.coecviriiciiiiiiniiinnenn. 50

3.2.4.3.1 Programming language ............ccccceiiiiiiiiiiinni e 50

3.2.4.3.2 Expert systemshell ... 51

3.3 How does an expert system WOrk? ..ot 54



3.3.1 Knowledge engineering .........covveiiiimiiiiiieeiieer e 54
3.3.2 Knowledge representation ...........cccccev e, 55
3.3.2.1 Types of knowledge representation techniques...................... 55

3.3.2.2 Reasoning process — problem solving (Forward and backward
ChAINING) - e e e e e e e 60

3.4 The methodology of expert system development..............c.ccccceeiiiinninnnnnn. 67
3.5 Knowledge — the foundation of expert systems............ccccoovvvnveeenninnee. 68
3.5.1 Levels of KNOWIEAQE ........uvveiieiiiiiiie e 69
3.5.2 The components of knowledge..........ccccoovvvveiiieeeee, 70
3.5.3 Knowledge acquisition ..........cccccciiieeiiii i 71
3.5.3.1 Stages of knowledge acquisition............c.ccccceiiiiiinniinnnnne. 71

3.5.3.2 Improvement of acquired knowledge .................c.cccvivieriinnnnnn, 72

3.6 Brief review on industrial applications of expert systems............cccc.uue. 74
CHAPTER 4 EXPERT SYSTEM APPLICATIONS FOR ALUMINUM
ELECTROLYSIS PROCESS..........ocoinmmmmmrnsesssssnsssnn s s ssssnses 79

4.1 Expert system applications review .............oooecciiiiiiiiiei 79
4.1.1 An integrated control-supervision system.........cccccovvceviiiinnennnn. 79
4.1.2 A hierarchical, intelligent control system............cccoeeiiiiiciiicicennnnn, 81
41.3 A consulting toolKit...........ooeecii 83
41.4 HALDRIS expert SyStem........cccccovviee i 84
41.5 Combination of control and expert system ........cccccceeeeiiiiiiiiiinnn.... 87
41.6 An intelligent pot control ...........ccoiviiiiii 89

4.2 Analyses of the expert system applications - Why choose an expert
system for aluminum electrolysis process?.......cccoccvrieviiiiiiiiniicinnneee 89

4.2.1 Fundamental control strategies analysis ........ccccceevviiriiiiiiieeiiiinnnnnns 90
422 Difficult task of present process control system...............eeeeeviiinnnnns 9N
423 Comparison of expert syStems .........coooeiiiiiiiiiiiiiii e 93
42.4 Using expert system to improve cell operation ...............cceeeeeeenennn. 95
CHAPTER 5 KNOWLEDGE ACQUISITION FOR EXPERT SYSTEM DESIGN 100
5.1 INErOUCHION ... 100
52 Knowledge acquisition | — for knowledge engineering............................ 101
5.2.1 Acquaintance with aluminum electrolysis process..............cccvveeee. 102
522 Relevant domain-specific knowledge .............ccccc 103
5.2.2.1 AlUMINa ProPertiES ....uueeiereeeeeeeeeiereciirtt et 103

5.2.2.2 Process control data ...........ccoeeviiiiiiiiiiiiiinin 104

5.2.2.3 Cell design ......ccoieeiiieie e 104

5.2.2.4 ANOE PropPertieS.....ceuuuueiruiiiiiieiiiiiir e 105

5.2.2.5 Cell operation..........cooiueiriiiiiieei et 105

5.2.2.6 Celltechnologies.......ccccoccimiiiiiiiiiiiinec 106

5.2.2.7 New alumina feeding technology .............cccccccn 107

5.2.3 Basic process control technology for aluminum electrolysis.......... 107

5.2.3.1 Typical process control technology ..........ccccccciimiiiiiienninnnnees 107



5.2.3.2 Typical computer control system...........cccovcciciniivinvienninnnnn. 110

53 Knowledge acquisition Il — knowledge casting to rules ......................... 112
5.3.1 A special course materials.............cccov i, 112
5.3.1.1 Basic structure of the course............ccceeiiiiiiiiiiiccc, 113

5.3.1.2 Basic characteristics of the course.................ccevvvviiiiiciinnnnnn. 114

5.3.1.3 An example of diagnosis and correction ...........c...cccevveiennns 116

5.3.1.4 CONCIUSION ...ovviiiiiiiiiiiiiiiiiee e a e 118

53.2 An internal report to UQAC..........oiiiiiiicririie e, 118
5.3.2.1 The basic structure of the report........cc.ccccooeeriiiiieiiiiiie, 119

5.3.2.2 Testing databank for selected cell types.............ccoeeeeeiinins 121

5.3.2.3 Designated parameters for the examined cell types.............. 122

5.3.2.4 Basic characteristics of the report.........cccoovviiiiiiiii 122

5.3.2.5 An example of diagnosis and correction ................ccccccnnnnnnn. 123

5.3.2.6 CONCIUSION ...t 125

5.3.3 A master’s thesis about an alumina feeding expert system........... 126
5.3.3.1 Basic structure of the knowledge base ........ccccccvvvivieiiinnnnn. 126

5.3.3.2 Basic characteristics of this work ..............cceeviiiiniiiiiiiiinn. 127

5.3.3.3 CONCIUSION ....ceeiiiiiitiiiiiiiii e iiiiite e setree e e e s e e e 128

534 Two relevant exper syStems .......cooovvevivciiiiiiii e 129

5.4 Acquired knowledge management.........c.cocoiiiiiiiiciiiii e 130
541 Acquired knowledge analysis ...........cooccvmmiiiieiene 131
54.2 Acquired knowledge organization............cccceeeeenneiiiiiciciciie 131
54.3 Knowledge maintenance ............cccceeeeei it 132
CHAPTER 6 AEPES — BASIC DESIGN ......oueriinninsiiccsnssneeessssssss e 133
6.1 Objective of basiC dESIGN ......cvveieeiiiieei i 133
6.2 Basics of Comdale/X........ooiviiiiiee e 133
6.3 General structure of AEPES .........ooiiiiiiii 135
6.3.1 Structure of ENGES ..ot 137
6.3.2 Structure of OPEES........ciiieeeeee e 139
6.3.2.1 Structure of OPEES-1......cccvviiiiiiiiiiiiiiiiccvciiiiic e, 142

6.3.2.2 Structure of OPEES-2........coomiiiiiiie e, 145

6.4 Knowledge base building ... 146
6.4.1 Knowledge base of ENGES ..., 146
6.4.2 Knowledge base of OPEES.............ccoiiiiiiii 148
6.4.3 Modularization of knowledge base ...........cccccovii 149
6.4.3.1 MOdUIE tYPES...uuriiiiiiiiiieiiiii ettt 150

6.4.3.2 Module hierarchy of knowledge base.............ccccevrrvimriiinnnnnns 151

6.4.4 Knowledge base maintenance ............ccccccvvveviiiiiniiiinc, 154
6.4.4.1 System maintainability ............ccccccoiiii 154

6.4.4.2 Example of knowledge base maintenance — updating the

process data alarm limitation ..............ccooviiiin 154

6.5 Reasoning process improvement..........coccccvviiieceiieninic e 158

6.5.1 Interface development........ccooo o 158



10

6.5.1.1 System interface .......ccccccomiiiiiii 159

6.5.1.2 Question interface.......c.cccocveeeeiiiiiiiii 160

6.5.1.3 Display interface..........coocooiiiiiiiii 161

6.5.1.4 Maintenance interface............ccovvci e, 162

6.5.2 Uncertainty technique application..........cccccceeiiicce 163
6.5.2.1 Certainty factor.......cccoccciiiiiiii e 164

6.5.2.2 Certainty technique application ........ccccccceoiiiiiiiiiiinnnnnnnn, 167

6.5.3 Multiple symptoms criterion — example of certainty theory application
...................................................................................................... 169

6.6 Example of ENGES..........ciii e 173
6.7 An analysis of the results ..., 177
CHAPTER 7 AEPES — ADVANCED DESIGN ........ccccoccmerrinncsmnincsssemsnnnnns 179
7.1 Obijective of advanced design .........ccccceeviiiiiiiiiiiee e 179
7.2 BasiCs OF G2....ciiiiiiiiiiin ettt e e s et e e 180
7.3 Construction of System..........ccocoviiiiiii e 180
7.3.1 Modularized system StrucCture............ccccccccovi e, 181
7.3.1.1 Module organization...........cooeeiiiiiiiiicc 181

7.3.1.2 Advantages of this System .........ccococciiiiiiiiie, 183

7.3.2 Rule statement ... 184
7.3.3 Interface deSIgN .......cueeeei i 188
7.3.3.1 General interface configuration ...........ccccccvvvevviiiiiiiiieeeiiiiinnnn. 189

7.3.3.2 Example of system interface navigation...............ccccccccooo. 190

7.3.3.3 Example of display interface ..........ccooeeveeiiiiiiiiiciii 191

7.4 On-line diagnosis realization ..o 193
7.4.1 Communication bridge selection ... 193
7.4.1.1 G2 GateWaY ...uveeeeeeieeiiieee et 195

7.4.1.2 G2-EDA BHAQE ...oereieeiiiiiiiiiiee et 196

7.4.1.3 G2-OPC Bridge.......coiiiiiireeieeeitecee et 197

7.4.1.4 DDE/NetDDE Bridge ......ccoueeeeeieiiii e 198

7.4.1.5 G2 ACtVEXLINK....coiiiiiiiiiieei et 198

7.4.2 On-line diagnOoSiS......ccccoiiiiiiiiiiiie e 200
7.4.3 Example of on-line diagnosiS. ... 202

7.5 Results analysis ........oovcciiiie s 204
CHAPTER 8 CONCLUSIONS.....ccoeiiicememmstrrnisssnen s sansse e eessnsssssnnes 206
BIBLIOGRAPHY ......ceeeietircimnincin s essissan s nssss s s s s ssmss s s cans s s nessmmnns s essnen 209
CRAPLEE T ..o e e 209

L0 aF- T o] (= o= USRS 209
Chapter 3. e e as 210
CRAPIET 4.t aaae s 213

(O] aF-T o] (=T PR 214

0] g T-To ] (] g - PRSPPI 217



11

07 0¥ 1] (=] Gl AU OUORPORNS 218

Y o] o1=Y o Lo | > USSR 220
APPENAIX. 2.ttt e e e e anaraaae 220
APPENAIX. 3. eieeeieeeiie ittt e e e e e e eaae 220
APPENDIX ... eecitiiiiemecctississmer s eessssssms s s s ssss s s nn s s saasa s s s s s s s s e s s s e nman e s s anmnna s nnenanas 221
APPENDIX 1: APPLIED EXPERT SYSTEM SHELLS STUDY ......cccccctrenrrecneeee 221
A-1.1 ComMAAlE/X ...t 221
A-1.1.1 Introduction to Comdale/X .........cccoiiiiiiiiiiee e 221
A-1.1.2 New generation of Comdale .........ccoeoieiiiiii e, 224
A-1.2. GENSYM G2 ...ttt e 226
A-1.2.1 Introduction to GeNnsymM G2 ...........eeeeemiimiiiiiireereeiiiene e 226
A-1.2.2 General structure of G2 .........coocciiiiiiiiii e, 227
A-1.2.3 Using new design techniques to develop system............................. 230
A-1.3 Application examples stuAy............oocoiiiiiiiii i, 231
APPENDIX 2 VS-ANODE SYSTEM ANALYSIS ......ccoommmiiimernirriieese e sssmecnns 232
A-2.1 Introduction to NEXPERT shell........cccccvviiiiiiieeiiiiiiiiiiicci, 232
A-2.2 VS-ANODE test result analysis...........ccccceoiiieeiiiine e, 232
A-2.2.1 Syntax COMPATISON .....cccurrieeiiiiiri e iiire e e e sree e eer s e e e e s rnannes 232
A-2.2.2 CONCIUSION ...eeviiieiiei it 234
APPENDIX 3 REASONING PROCESS IMPROVEMENT ..........cooeemmmmnscssmannnnes 235
A-3.1 Knowledge base structure improvement..............oooooiciiininn, 235
A-3.1.1 Example rule of on-line communication setting................ccccvevnnennn. 236
A-3.1.2 Example rule of process data status detection ................cccvvvnnnenne. 238
A-3.2 Utilizing uncertainty expression to improve the reasoning process..... 239
A-3.3 Improve the diagnosis speed..........ccccccerieeeiiiiiiiicn 242
A-3.4 Utilizing multiple symptoms criterion to improve the reasoning process
...................................................................................................... 246

A-3.5 CONCIUSIONS ...vvveeieeeiiiiiiiiiieie e s eeer et re e e e e e e e e s e e e e e e e s e annr e s eeaeeee s 249
A-3.5.1 Knowledge - acquisition and study...............ccocccccceriinniineeinncecc... 250
A-3.5.2 Applicability of expert system...........ccoco i, 251
A-3.5.3 The tolerance for uncertain or unclear information ..........cccccoooeee.. 251
A-3.5.4 Speed and COMeCINESS .......uveeirieiii e 252
APPENDIX 4 CASE STUDY — TEST AND ANALYSIS .....ccoosiimmtrrnrcsninsnnnnas 253
A-4.1 Diagnosis time for different number of cells...........cccccoorniinin, 253
A-4.1.1 DISCUSSION.....cceeeeiiiieeiei ettt bbb e 258
A-4.2 Diagnosis testing with different uncertainty information ..................... 263
A-4.2.1 Effect of different DC values on problem diagnosis...........cc...coeee.... 263
A-4.2.2 Effect of different DCs selected for multi-symptoms............c........... 266

f N R e W B I1-Yo  U1=1-1 o] £ VUTTET TR 269



12

APPENDIX 5 FLOWCHART OF AEPES OPERATION.......cccccrtmmimmmmmiisannnnenan 272
APPENDIX 6 TUTORIALS OF ENGES.........c.ccooceeimminrinnisanssssecmsuranessnennsnnennnnes 274
APPENDIX 7 TUTORIALS OF OPEES. .....c..cccoiinmrrinminnen s cisssss s cisssssses 282
A-7.1 Example of the basic design ...........ccocccmiiiiiiin e, 282
A-7.2 Example of advanced design.........ccccoececmiiiiiiii e 290

Yy A B B 1Yo U L1 (o) o TR TT RO 295



13

LIST OF TABLES
Table 2.1 Main performance parameters of Séderberg and prebake cell...... 40
Table 3.1 Expert system applications .........coccmiivimciinciiemmmmnmnnnsis s 76
Table 4.1 Cell state display list ......ooeemeemmmm e 86
Table 4.2 Alumina feeding MOdels ......c.cccoeiiiiiimmineeni s 88
Table 4.3 Anode position control models............cocccnmumimcriiinnin——————— 88
Table 5.1 Main physical properties of alumina...........cccoovirmemrrnnsccenneninnn, 103
Table 5.2 An example of diagnhosis and correction...........c.c.ocenniiiiniisnnnnnnnenans 116

Table 5.3 Case 1: Detection of disturbances based on data supplied from pot
Lo 00} o | 1= 120

Table 5.4 Case 2: Detection of disturbances based on data supplied from

traditional plant measurements..........cueem s —————— 120
Table 5.5 Case 3: Detection of disturbances based on data supplied from

laboratory analysis........cccciiemmiiniiie - 120
Table 5.6 Case 4: Detection of disturbances based on data supplied from

non-traditional plant measurements and observations...................... 121
Table 5.7 Causes of unstable cell voltage and cell voltage fluctuation is

higher than normal.......cccc i e 123
Table 5.8 Suggested action for cause NO.1 .........cccccccminiiiemninine e 124
Table 5.9 Detail causes of cause NO.2 .......ccccmmmmiiirciisinine e nneanees 124
Table 5.10 Suggested actions for detail causes of case No.2 ...................... 124
Table 5.11 Actions for case NO.J3........ccoec i nenas 125
Table 6.1 Main process data .........cccccriinnnmmmmunmincae s ssesees 142
Table 6.2 Monitored process data ......cccceeemmmmmmmeermmm s 143
Table 6.3 Main components of OPEES ...........cccovccmmnimnincenmnnsems s 149

Table 6.4 Rule “broken_stem2” and “broken_stem3™......c..ccoreerrrmiremcreesnnenn. 175



14

Table 7.1 Modules of AEPES..........ccccmiirivimmmincnsnniienesnssesssessmssnnsssn 182
Table 7.2 Rule syntax comparisons between IF rules and WHENEVER ru1|§;
Table 7.3 Example procedure ........ccciiiiieeemriicnemsesnnesssssss s sssnssens 202
Table A-2. 1 Example rule of NEXPERT ......cccccviircmmummminnenssmsmssnsses s 233
Table A-2. 2 Example rule converted in Comdale/X format.............ccocceerennne 234
Table A-3. 1 Rule alarm ... et s s nsn s s s 237
Table A-3. 2 Rule alarm2...........cceiiineemmmmmminm s sssssssssnnes 238
Table A-3. 3 Rule alumina propertyl ... s 247
Table A-3. 4 Improved rule alumina propertyl .......cccvivimimmiiiinncinne .. 248
Table A-4. 1 Diagnosis time testing..........ccuvvemrimmrnnimninnne s e nsaseees 254
Table A-4. 2 Diagnosis time of typical alarm data...........ccccccrviiiiiimenisinneeees 255
Table A-4. 3 Diagnosis time of three alarm data of one cell.......................... 256
Table A-4. 4 Average diagnosis time of one cell ........cooevmeriiiiiericinnccccnnneees 256
Table A-4. 5 Diagnosis time compariSonN .......c.ccccuninsssnnserireessessssssssssssnenasenes 257
Table A-4. 6 Testing values of DC and problems .......ccoooeemmmeiriesriniiinrsrccsnnens 263
Table A-4. 7 Testing results of different DC............ccoiiicemmmiininecnnennncene. 264
Table A-4. 8 DCs and NDTs of case 2 (Problem 1)......ccciemiimirciccinncccnene. 265
Table A-4. 9 Testing DC sets for multi-symptoms..........cceeeeiiennireceennnnnsennnnnee 267
Table A-4. 10 Rule numbers of three problems...........cormmieeccicsiimeesceeenninns 268
Table A-4. 11 Rule distribution of different DC values..........cccccmrviiiiiininnne. 268
Table A-4. 12 Testing results for multi-symptoms .........cccovvemiimimmmnnrcncinnns 269

Table A-7. 1 Code of ledge profile ........cccciiniiniccnniiinnin . 286



15

LIST OF FIGURES

Figure 2.1 General structure of a prebake anode cell .........ccccovvmerrrrreerrrcneeees 29
Figure 2.2 Vertical stud Séderberg cell.......ocirininnininninaans 38
Figure 3.1 General structure of an expert system [1] ......ccccvvvminiiiiniiicencnnnnn. 47
Figure 3.2 Generic components of an expert system shell [12] ..................... 52

Figure 3.3 Example of multi-attribute and multi-value O-A-V triple structure 56

Figure 3.4 Forward reasoning proCess.........cccvumunmeesmmmmsssnrasnmisssssssnnsennssssnsnas 63
Figure 3.5 Steps of knowledge base building ........cccvvcccimnisininii i 73
Figure 4.1 The integrated control-supervision system of Tikasz et al [1]...... 81
Figure 4.2 General structure of the hierarchical, intelligent control system of

TR - 2 T TR - O 82
Figure 4.3 The process role of the basics of HALDRIS ........cc.ccoccinnnemmmeennnnnees 86
Figure 4.4 Combination of expert system and conventional .................c........ 98
Figure 5.1 Domain-specific knowledge relationships ........ceccccmevumrrmrrcrriennn. 102
Figure 5.2 Typical structure of a smelter computer control system [6]....... 111
Figure 5.3 Computer instability graph charts............cun i 117
Figure 5.4 LOW anode CASEe ...........oossssssisssssssesssmsmsssmsssnnsssssssnsssnssssssmmssseessensenees 117
Figure 6.1 Structure of AEPES..........ccvccimmminncnninnssniscsmscnn s sesee s 136
Figure 6.2 Structure of ENGES ...........ccccciiinmninnnennin s nnssene e 139
Figure 6.3 Structure of OPEES ... s sssssssssmennnns 140
Figure 6.4 Structure of OPEES-1 ..ot niemesesmsees s 144
Figure 6.5 Main components of ENGES..............ccoccimimmmiinsinemcmemmeeemeeeereenenns 147
Figure 6.6 Module hierarchy of knowledge base of OPEES............ccceeeeireens 151
Figure 6.7 Example of alarm module.........cccmiiimrriciimenicismerr s enissnnees 153

Figure 6.8 OPEES-1 alarm limitation value maintenance interface............... 156



16

Figure 6.9 Example of determination of cell voltage fluctuation alarm

lMItAtioN .o ——— 157
Figure 6.10 Example of introduction interface ..........ccccccoiniieirnnncnniniinnnninne 160
Figure 6.11 Example of question interface.........ccocccrverrvvcervivcrnsnvceerssninsssennas 161
Figure 6.12 Example of graphical interface...........cccovnvminirccnciiisceneninisnnennnns 162
Figure 6.13 Example of multiple symptoms working procedure................... 170
Figure 6.14 Improved working procedure of the example rule..................... 173
Figure 6.15 Question interface for unstable cell voltage cases.................... 174
Figure 6.16 Chaining connection between example rules ........ccccccvreiiccrcnns 175
Figure 6.17 Example of diagnosis result .............ccccoiiiciiminnnssssnnnininnssessannns 176
Figure 6.18 Example of illustrated suggestion .......ccccommmrrriiisiininciinniiiscssenens 176
Figure 7.1 AEPES module hierarchy .........cccccoicccmnnniiinsmmissismnr s 183
Figure 7.2 lllustration of two kinds of rules processing.......cc.cccceeemmurirreeennn 186
Figure 7.3 Examples of rule statement .......cc.coveccmiiimiiicnnniincsns s 187
Figure 7.4 General user interface configuration .........c.cccvvivecciniiiccnninsnnnnnnes 189
Figure 7.5 Example of system interfaces navigation...........cccccciniriinniiiiincnnns 191
Figure 7.6 Example of process data alarm states...............oosseisisismrsrimnereennnns 192
Figure 7.7 Communication types of G2 bridges........ccccctmmrirciiisaianccssnsnnnnannns 195
Figure 7.8 G2-EDA Bridge .......ccocecsmmmmmmsmmmmmneemeeictisennnnsmmsenssenm e cas s s sessssnass 197
Figure 7.9 G2—-OPC Bridge architecture...........ccoeeiciiinvemmmmmmnnnnnsssisnininsssnncaens 197
Figure 7.10 Connectivity of G2 ActiveXLinK ....ccccovvcmmmiriiinemrrcnneenccnce 199
Figure 7.11 Communication between OPEES-2 and cell process................ 203
Figure A-1. 1 Comdale expert system applications structure....................... 223

Figure A-1. 2 G2 application Server..........cccccriiiisscnnmrinnmnmmrinsscase s 228



17

Figure A-4. 1 Distributed structure of the improved OPEES-2...................... 260
Figure A-4. 2 Higher priority alarm data treatment process.............c.....cce.. 261
Figure A-5. 1 Flowchart of AEPES operation..........ccceecmmiivccminvsmnnninnceinnnnnes 273
Figure A-6. 1 Question about the number of anode effects........................... 274
Figure A-6. 2 Example of rule trace.........ccccoecmrrreminncmminnsis e 275
Figure A-6. 3 Example of rule browser...........cccomvemriinninssnisn s cinanee 276
Figure A-6. 4 Example of consequent question ..........cccccvienicmmininiessnnnnanees 277
Figure A-6. 5 Suggestion about obstruction of bins or feeders ................... 277
Figure A-6. 6 Different priorities of the rules........cccccvveeerrrscrmrisinrcrisnrnnsssecnns 278
Figure A-6. 7 Example of interstage diagnosis report..........ccccuvveiiiiincennns 279
Figure A-6. 8 Suggestion for abnormal..........ccceccmmiiinicciminineni s, 280
Figure A-6. 9 Termination Notice .......ccccvcvmmriinieniinnnes e 281
Figure A-7. 1 Cell type selection ... s 282
Figure A-7. 2 Example data file ......cccccuvvmimiiniceinnrnsssn e 283
Figure A-7. 3 On-line data compiling process...........cccoremmmnrrensssnsnnnsssesnissanes 284
Figure A-7. 4 Example of alarm diagnosis selection ..........ccccveeirvecimriiincnns 285
Figure A-7. 5 Example of check item list.........ccocoviiiiiiiccnininnemn i 286
Figure A-7. 6 Example of question ...........cocccmmnniiiininesses s 287
Figure A-7. 7 Example of suggestion .........cccurmiiemisscmimcssssmnssmessvissensssaenns 288
Figure A-7. 8 Example of subsequent suggestion ...........cccuemniiinneniiriseninnns 288
Figure A-7. 9 Example of expert system selection.............cccovevriicnenrnisiaceninne 290
Figure A-7. 10 Example of data file..........cccoecmrmiimeiniiiese e 292

Figure A-7. 11 Example of on-line data alarm status............ccecmmreriiiiiicnnnnnnes 293



Figure A-7. 12 Check ltems List

Figure A-7. 13 Example of question of OPEES-2 ..........cccciuvmirnimninieeniinnnennns

Figure A-7. 14 Example of suggestion ..........ccoucccmmmvicmiirnnisennn s

18



19

CHAPTER 1 INTRODUCTION

1.1 Problems addressed

The electrolytic cell is the central component of the aluminum electrolysis. In
spite of the automatic control systems applied worldwide to run the aluminum
electrolytic cells, a significant part of information about the status of the cell is still
not involved in the decision making process (e.g. visual observations and
additional measurements made by the operator). Moreover, the quality of the

decision depends on the operator in charge.

In smelters, the cell operating status depends upon many factors, such as
cell design, cell operation history, raw material properties, process control system,
routine maintenance, operation practice, performance of tools and utilities. But
even in modern plants, the basic characteristics of the process control system are
still the same: only the line current and the cell voltage are measured continuously
while other process data are measured and logged only occasionally [1]. Yet,
many automated control actions, such as alumina feeding, anode effect treatment,

metal tapping, fluoride addition, anode changing and sludge removal strongly
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depend on continuous measurements. In this thesis, the use of an expert system

is therefore proposed to support the cell operator.

Expert systems are applications of artificial intelligence to a certain field of
practice. The program employed in the expert system is a computer algorithm,
which performs human-like reasoning, often using rules for the interpretation of the
given knowledge. In practice, an expert system is developed using software tools
called shells. These shells commonly contain inference mechanisms (backward
chaining, forward chaining, or both), program editors, and a user interface. But
they do not contain any specific domain-knowledge and process data. The

relevant knowledge is required to be entered in a specified format.

Expert system technology has been developing rapidly over the last two
decades and has been applied in many fields. However, the number of real,
operational, industrial applications is still quite limited. One of the major reasons is
that development of expert systems is largely based today on empirical methods
and is not supported by general methodologies. It is more like handicraft than
engineering [2]. Such conditions are often considered as a “bottleneck problem” of

expert system applications, even found in aluminum industrial applications.

It is obvious that all kinds of aluminum electrolysis cells have common
properties and operate on the same fundamental theory, and have similar
structures and process control systems. The general process knowledge is

abstracted from such common properties.
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Most of the existing cell expert systems are designed for particular
purposes. The different aluminum plants have their particular type of cell with a
special structure, geometry and operational techniqgue meaning each particular
type of cell has its own properties and characteristics. Thus, it is impossible to use
only one knowledge base to suit all the particular cells, due to their different
properties. Therefore, the applicable knowledge, coded in expert systems, has to

present the specialties.

In the real industrial process, using only one, generalized expert system for
various kinds of cells would not be economical. Much work is needed to capture
the specialties of each particular cell type. This is one of the cardinal problems that
affect the structure of expert systems applied to the aluminum industry. Finding a
general methodology, which will comprise the knowledge of two most common cell

types effectively, is the main task of our design.

1.2 Objectives

The objectives of this project are the following: First, construct a knowledge
base, which incorporates the expertise of cell operation. Second, cast this
knowledge into an expert system. Third, process this knowledge and make
decisions about the cell. Fourth, connect the expert system to a simulator through
networking to realize on-line diagnosis. The simulator acts as a virtual cell and

allows us to diagnose the problems of the electrolysis process and to compare
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traditional control with expert system based process monitoring and alarm

management. The proposed arrangement will aid the operators in:

Detailed analysis of the cell’s state
Fault detection

Process control assistance

Trend analysis.

With such objectives in mind, we designed an expert system named
Aluminum Electrolysis Process Expert System (AEPES) consisting of two sub-
systems: Engineer Expert System (ENGES) and Operator Expert System
(OPEES). The ENGES incorporates the more general knowledge of the aluminum
electrolysis process but does not focus on any particular cell, in contrast to the
OPEES, which adds the particular knowledge on a specific type of cell. As the
general knowledge is applicable to all types of cells and is essentially knowledge in

process metallurgy, it is mainly applied to the construction of the ENGES.

The general and particular knowledge are modularized, and embedded into
the knowledge bases. This methodology allows us to easily develop expert
systems for different types of cells. The relationship between these two expert
systems can be compared to that between the tasks of an engineer and an
operator. The ENGES is concerned with general, theoretical analysis, whereas the
OPEES acts like a skilled operator and performs consultation and makes process-

related decisions.
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The OPEES can be used in on-line mode to realize real-time consultations.
The applied expert system shells have a communication bridge, which allows
access to process data through the network. Then the OPEES will examine the
state of the cell based on the knowledge and “fresh” plant data. At the first,
development stage, a simulator is used instead of the real process to reduce the
need for the time-consuming plant test. Based on the first stage testing results, the
expert system is improved to become more stable and reliable. Then direct access
to the real process (through the network) to realize real-time consultation and trend

control supervision is the goal of the second stage of the work.

The AEPES is built using two shells, Comdale/X and Gensym G2. The
former is easy to handle and economical for smaller expert system development
projects. The latter is more powerful in managing and optimizing large-scale
applications and is suited for complex systems. The two shells incorporate the
same knowledge and the structure of the knowledge base is identical. The user
interface and data communication bridges differ. The Gensym G2 provides a
powerful development environment, which allows us to improve the efficiency of

the real-time performance of AEPES.

1.1 Organization of the thesis

In Chapter 2, the process fundamentals of the aluminum electrolysis and

the relevant domain knowledge are introduced. We analyze the main aspects of
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this complex process and focus on the important parts required for the knowledge
base building. The production technology of the different types of cell is also

introduced.

In Chapter 3, the fundamental concepts of artificial intelligence technology
and expert system are introduced. The emphasis is on the rule-based expert
system, which is used in our project. In the last section, we analyze the reasons for

using the expert system for aluminum electrolysis process.

In Chapter 4, a review of industrial applications of the expert system is
given. We examine the available literature on industrial applications of the expert
system, especially for aluminum electrolysis process. The different characters of
each system are analyzed that could benefit our system design. The lack of

literature indicates that additional research remains to be done in this area.

In Chapter 5, we discuss the knowledge acquisition in two parts. Part | is for
the knowledge engineering, and Part |l is directly applied for the knowledge base
casting. Both are necessary to integrate knowledge for our expert system building.
In Part Il, some domain knowledge collected from open sources is introduced in

detail. They are fundamental for our knowledge base.

Chapter 6 recounts the basic design of the AEPES, which is developed
using Comdale/X. Two sub-systems are introduced; they are designed for different

purposes. We give a detailed description of the structure of the knowledge base,



25

user interface design, operation characteristics and knowledge base maintenance.
Several technologies are discussed for the improvement of the reasoning process.

Also, some examples can be found at the end of this chapter.

In Chapter 7, we introduce the advanced design of AEPES, which is coded
in Gensym G2. This powerful expert system shell allows us to create enhanced on-

line consultation.

In Chapter 8, the general conclusions of the project and a list of

recommendations for future work are given.

In Appendix 1, applied expert system shells are briefly introduced with two
application examples. In Appendix 2, the VS-ANODE expert system is analyzed. In
Appendix 3, several improvements of the reasoning process are described and
concluded. In Appendix 4, the evaluation testing results are discussed. The
flowchart of AEPES operation can be found in Appendix 5. The tutorials of ENGES

and OPEES are given in Appendix 6 and Appendix 7.
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CHAPTER 2 THE ALUMINUM ELECTROLYSIS PROCESS

2.1 Aluminum

Aluminum is the most abundant metal in the earth’s crust (7.5 wt.%). It is
now the second most widely used metal after steel. An excellent conductor of heat
and electricity, aluminum has other superior properties, such as being lightweight,
as well as being versatile and strong when alloyed with other metals, and resistant
to atmospheric corrosion. The plentiful reserves and its superior properties allow
aluminum to be widely applied in aviation, mechanical, chemical, electrical,
architectural and metallurgical industries [1]. By using traditional methods,
aluminum in metal form is very difficult to obtain. In 1886, Charles Martin Hall and
Paul Louis Toussaint Héroult simultaneously and independently developed the
process to make aluminum metal, which is called the Hall-Héroult process. The

original concept of this process remains in use today.
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2.2 Brief description of the aluminum electrolysis process
2.2.1 Principle of the Hall-Héroult process

The fundamental concept of aluminum production is using electricity to
reduce alumina ( Al,0,) to aluminum (Al). The melting point of alumina is close to
2030 °C, which is in general too high for commercial production. In order to
produce aluminum more efficiently, i.e. at a lower operating temperature, Charles

Hall and Paul Héroult found cryolite (Na,AlF,) as chemical compound that acted

as a solvent for alumina. In the Hall-Héroult process, the alumina is dissolved in

the molten cryolite, which reduces the temperature to 950-980 °C.

Actually, in the electrolytic cell, the alumina is dissolved in a bath, which is
typically composed of cryolite ( Na,AlF;), with small percentage of AlF, and CaF,.
The anode is made of carbon (C). During the electrolysis process, the aluminum
ions are reduced to aluminum metal and collect at the bottom of the cell. The
oxygen is discharged at the carbon anode, where it reacts with carbon to form

carbon dioxide. The primary chemical reaction is given by the equation:
2A1,0,+3C =4Al=3CO, (2-1)

This equation determines the electrochemical decomposition potential of

alumina electrolyzed with carbon anodes. However, in this process, some of the
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metal, which dissolved in the electrolyte, can be reoxidized by CO, evolved at the

anode according to secondary reaction:

Al+CO, = ALO, +CO (2-2)

The secondary reaction leads to decrease the metal current efficiency and

increase carbon monoxide in the anode gas and overall carbon consumption. [2,

3]

2.2.2 Industrial aluminum electrolysis

Although the original concept of the Hall-Héroult process has not changed,
improvements have been made in a continuing effort to lower production costs in
both equipment and materials for today’s industrial production. The electrolytic, or
smelting, process takes place in electrolytic cells, of which there may be several

hundreds or more in a modern plant.

There are two main types of aluminum smelting technology: the Soderberg
technology and the prebake anode technology. The principal difference between
them is the type of anode used. The Séderberg technology uses one continuous
anode, which bakes in situ from anode paste. The prebake technology uses
multiple anodes in each cell, which are prebaked. The basic structure of modern

electrolytic cells, whether a Sdderberg or a prebake anode, consists of a
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rectangular steel shell; that is lined with thermally insulating refractory materials.
Inside the cell, there is an inner lining of prebaked carbon cathode blocks with
embedded steel current collector bars where the molten aluminum is in direct
contact with the carbon blocks. Carbon sidewalls and thermal insulating materials,
such as alumina powder or refractory bricks, complete the cathode construction.
Today’s prebake cells commonly include a hooding that is connected to a gas
exhaust and scrubbing system. The general structure of the aluminum electrolytic

cell is given in Figure 2.1.
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Figure 2.1 General structure of a prebake anode cell

Generally, a Sdéderberg anode or two rows of prebake anodes are
suspended from bus bars, which carry the electric current. Alumina is added from
supply bins above the cells, or from a truck. The alumina is fed to the bath
periodically by breaking the crust in the center between two rows of prebake

anodes or at the sides of a cell. Finally, aluminum is removed (tapped) from the
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cells at regular intervals and sent to a holding furnace of the cast house from

which various forms of ingots are cast.

The cells are placed and connected in series, which are called potlines. The
process requires direct current, which ranges from 50 to 500 kA, depending on the
technology used. The cell voltage is normally from 4 to 5 V. The direct electric
current is passed through the bath from the suspended anodes to the cathodes, to
the bottom of the carbon lining of the cells, and on to the collector bars that are
embedded in the bottom of the carbon lining. The electric energy required to

produce aluminum is high: 13 — 17 kWh/kg Al.

2.3 Relevant elements of the Hall-Héroult process

The knowledge acquisition of aluminum electrolysis process is related to
many relevant elements of the routine operations of the Hall-Héroult process. A
better understanding of these elements is helpful in building our knowledge base.
In making use of this domain knowledge, more accurate diagnosis and better
suggestions will be possible. A brief description of the relevant concepts is given

below [4, 5, 6].
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Electrolyte (bath)

The composition of the electrolyte may be expressed as the bath ratio

(mass ratio of NaF and AIF,). The bath ratio is an important factor of the cell

operation.

Alumina

In the aluminum electrolysis process, alumina is the basic raw material for
metal production. It is also used as thermal insulation on top of the anodes or the
crust. In prebake technology, the anode cover also protects anode from air
oxidation. Alumina on the crust also absorbs HF, an important pollutant.
Therefore the quality of alumina added to the electrolyte and the quantity of
alumina cover are of great importance for cell operation. The specifications
imposed by a smelter include such factors as purity, bulk and pycnometric
densities and particle size distribution. Purity is one of the specifications of great
importance to the quality of the aluminum and the performance of the cell. The
main impurities in liquid aluminum are iron and silicon. They are monitored by

sampling at regular intervals.

Alumina concentration

The alumina concentration in the cell depends on the amount and the

frequency of the break-and-feed that is required to maintain it within a limited
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range. If too much alumina is fed, “sludge” is deposited on the top of cathode
carbon block, whereas insufficient feeding results in an anode effect. The cell
voltage is used to monitor and control the alumina concentration so that there is
little sludge and few anode effects. In practice, the cell voltage is substituted by a
converted parameter, so-called pseudo-resistance (See Section 5.2.3.1 “Typical

process control technology”).

Anode effect

The anode effect occurs when the alumina concentration is below 1 — 1.5%.
Typically, during the anode effect cell voltage suddenly increases to 20 — 50 volts.
The negative features of the anode effect are: an increase in energy consumption,
a reduction in metal production, a higher rate of emissions and the overheating of
the cell causing an unstable operation condition. The anode effect has two positive
features: it provides a control of the alumina content in the electrolyte, by avoiding
overfeed and it is commonly believed to clean the underside of the anode and to
bring carbon dust to the surface of the melt. However, these benefits are not
sufficient to outweigh the damaging effect of hothouse gasses (CF, and C,F).
Therefore the frequency of anode effects is also an important monitored parameter
of cell status. In modern cells, the number of anode effects per day is from 0.01 to
1. Low anode effect frequency is preferred in order to reduce the emission of

hothouse gasses.
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Alumina feeding

Alumina feeding method affects many important parameters of cell
operation. A typical automated break and feed system comprises a pneumatically
operated crust breaker beam and an ore bin capable of discharging a fixed volume
of alumina each time its gates are opened. The amount of alumina added in each
dump, and the time interval between the dumps are usually constant. However, the
time period between two dumps may also be varied, according to different
programs or a demand feed signal. Small amount of alumina additions are
considered advantageous in order to reduce the formation of alumina sludge on
the bottom of the cell. Currently, the point feeding has become an important
feature of modern prebake cells. The breaking of crust at two to four positions
along the centerline of the cell, and the frequent but small alumina additions of the
order of 1 kg per dump, make overfeeding less likely to occur. More frequently

controlled and repeatable alumina additions can better stabilize the cell operation.

Cathode

Cathode failure will restrict the life of the cells and affect the quality of
aluminum. Such failure is mainly due to bad operating strategies and cathode
construction materials. Normally the operator cannot closely monitor the cathode
failure. But different signals are of help to determine such failure, such as the iron

impurity content in the metal, the voltage drop across the cathode lining and the
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observation of excessive deformation of the steel casing. All of these phenomena
are utilized for relevant failure diagnosis. Among them, the worse occurrence
would be to get a tap-out of metal directly through the bottom of the cell or through
the bottom along the collector bars that may dissolve the steel shell. This type of

failure causes the cell to be shut down.

Cell voltage instability

In operating cells, the cell voltage is an important control parameter, as the
variation of cell voltage characterizes the instability status of a cell. Cell voltage is
influenced by many factors, such as: alumina concentration, solvent electrolyte
composition, cell temperature, amount of sludge in the cell, depth of the metal pad

and the anode to cathode distance (ACD).

Anode

The normal life of the prebake anodes is about three weeks. Factors
affecting anode consumption include cell operation, anode properties, current
density, operating temperature. In the failure diagnosis process, the following
observations reveal the occurrence of anode failure: color of the flame and anode
stem, air burning above the anode and gases escaping through the crust holes,
anode top covered with alumina and anode carbon particles floating on the

electrolyte.
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Fluoride addition

The cryolite is the best solvent for alumina. Various additions to the cryolite
modify its physical and chemical properties and thus improve the cell performance.
The most important additives used commercially are fluoride (2-10 mass%) and
calcium fluoride (up to 8 mass%) both of which lower the freezing point of the
electrolyte. Because there are advantages and disadvantages of the various
additives, no such thing exists as an optimum universal electrolyte. Each cell
design and operating process defines the precise requirements. Normally, the
smaller cells that were fed infrequently used fairly similar electrolytes, these
containing a limited excess of aluminum fluoride with calcium fluoride as the only

other additive.

Sludge

The major causes of sludge are related to the operating problems or
mechanical problems in the feeding system. The latter involves a breaking of the
frozen overlaying crust and alumina feeding. An excessive amount of sludge will
change the anode effect frequency and will also destabilize the metal pad.
Because sludge is a poor electric conductor, its presence adversely affects cell
performance. Therefore, it is necessary to prevent any great accumulation;

otherwise a “sick pot” will result. The sludge problems are diagnosed based on the
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following symptoms: higher cathode voltage drop, irregular cathode current

distribution and reduced anode effect frequency.

Tapping

For stable cell operation, it is important that the amount of metal removed
balances the production in the time interval. The amount of tapped metal at each
time is an important factor to judge the relevant fault. Because of the temperature
of metal and bath, the distance between the anode and cathode will be changed
depending on the amount of tapped metal. Therefore, in order to retain optimum
operating conditions the metal produced is removed at regular intervals, and thus
avoids major disturbances to the cell operation. Also, the amount of metal during a
daily operation should be small enough to prevent significant alteration in heat
distribution. The size of the cell or the quantity of tapped metal must be considered

during the relevant diagnosis process.

2.4 Cell construction, Sdéderberg and prebake cell design

To design an expert system for the real process, the production technology
is another fundamental consideration. Different types of cell and relevant

production technologies will lead to different system designs.

There are two technologies applied in present smelters: Sdderberg and

prebake.
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2.4.1 Soéderberg technology

The continuous self-baking Séderberg anode utilizes heat generated within
the cell to bake the anode paste, which is filled at the top of the anode. The paste
is slowly baked as the anode moves downwards as a consequence of anode
consumption. Steel studs bring the current to the anode. There are two types of
Soderberg anodes, “Vertical Stud Sdderberg® (VSS) and “Horizontal Stud
Séderberg” (HSS). VSS cells are more common as they are less labor-intensive
and cause fewer operating disturbances. Figure 2.2 shows the general structure of

a VSS cell.

The two most important advantages of Séderberg anodes compared to the
prebake anodes are a substantially lower plant capital investment (as the prebake
anode forming and baking plants are eliminated), and the fact that continuity of the
anode minimizes operating disturbances. But, the disadvantage of Séderberg
anodes is their inferior anode carbon quality, which leads to a higher anode
consumption. They also cause more negative environmental impacts, and require
more complicated emission cleaning systems [6]. While significant progress has
been made in improving its environmental performance, Séderberg technology is
gradually being replaced with prebake technology. Currently, only about 25%

smelters still use Séderberg technology.
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Figure 2.2 Vertical stud Soderberg cell

For routine operation, several aspects should be of concern to our expert

system diagnosis process:

* Due to the specific forming process of the Sdderberg anode, the carbon
dust formed thereby is a major factor in excessive anode consumption
and irregular pot operation.

¢ Due to the structure of the Séderberg anode cell, alumina is fed in large
doses at the sides of the cell every few hours. This feeding method, with
the slower dissolution of alumina and crust, will lead to sludge formation.

2.4.2 Prebake technology

Prebake technology uses multiple anodes in each cell, which are prebaked
in a separate facility and attached to rods that suspend the anodes in the cell.
When an anode is consumed, it is removed and replaced by a new one. The

general structure of a prebake anode cell is shown in Figure 2.1. Prebake anodes



39

are made from a blend of petroleum coke and coal tar pitch binder and baked in

furnaces before being introduced to the cell. The baking process should produce

cake from the binder of a quality approaching that of the aggregate material. This

will minimize preferential oxidation of the binder cake and reduce net carbon

consumption and anode dusting in cells. The prebake technology has some

advantages compared to the Sdderberg technology:

Better compaction and quality control of prebake anodes can be
maintained, which leads to a lowering in carbon consumption as well as
making the cell control easier.

The break and feed system keeps the amount of alumina additions and
feeding frequency under control and that will keep the concentration of
alumina more constant and will reduce the frequency of anode effects. It
also can reduce the formation of sludge and can lead to more stable cell
operation.

Efficient current conductors and distributors between anode and anode
studs, these lead to the low voltage drop.

Other significant benefits are reduced emission of pot gases and
improved operational efficiencies.

On the other hand, there are some disadvantages associated with prebake

technology, which must be considered in the diagnosis process of the expert

system:

Point feeding leads to alumina being less preheated, and the frequent
crust breaking can cause increased heat losses from the cell. The sludge,
which in the case of point feeding is formed at center part of cell, is
difficult to disperse.

The anode’s setrvice life is about three weeks; therefore the anode
changing disturbs the stability of cell operation, while the crust breaking
also increases the heat losses.
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2.4.3 Performance comparison between Séderberg cell and prebake cell

The main operation parameters of modern Séderberg and prebake cells are

given in Table 2.1 [2]:

Table 2.1 Main performance parameters of Séderberg and prebake cell

Parameter Soéderberg cell Prebake cell
Line current (kA) 125 280
Anode current density (A/cm”) 0.78 0.72
Current efficiency (n) 92.5 96
Anode effects per cell day 0.4 0.1
Daily production (kg) 930 2146
Energy consumption (kWh/kg) 16.3 13.3
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CHAPTER 3 FUNDAMENTALS OF EXPERT SYSTEM

3.1 Introduction to artificial intelligence

Artificial intelligence (Al) is a field of study that combines science and
engineering in order to build machines capable of intelligent behavior. Al as a
science tries to understand human intelligence, the nature of knowledge and the
thinking process. Building an intelligent computer system requires us to
understand how humans capture, organize, and manipulate knowledge during their
problem solving. Al as engineering tries to build intelligent machines, such as
robots and intelligent banking machines. In order to build these intelligent
machines, Al uses many techniques. For example, expert systems use the
specialist knowledge that people such as doctors, lawyers, industrial process
operators and engineers have in order to assist other people. Machine leaming is
the study of how computers and robots can learn from their experiences. Neural
networks are computer algorithms that work similarly to brains. Natural language
processing studies human languages, like English or Japanese, by trying to teach

computers to understand them [1].
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3.2 What is an expert system?

3.2.1 Definition of an expert system

An expert system is a computer program that reasons in a narrow but deep

field of expertise. It emulates the decision-making ability of a human expert and

will perform as well as -- if not better than -- humans operating in the same field.

An expert system can manipulate the knowledge as well as the data. It can be

used to represent human knowledge in a particular domain and then use a

reasoning mechanism to manipulate this knowledge to provide advice. Expert

systems differ from the conventional application programs in that:

The main function of conventional programs is to store and to retrieve
data, and to carry out calculations and to do graphics. A conventional
program cannot reason with the knowledge. On the other hand, an expert
system stores and retrieves knowledge and reasons with it.

Expert systems simulate human reasoning about a problem in a narrow
domain. They focus on emulating an expert’s problem solving abilities.
Expert systems solve problems by heuristic or approximate methods,
which unlike algorithmic solutions, are not guaranteed to succeed. Such
methods do not require perfect data and the solutions derived by the
system may be proposed with varying degrees of certainty.

Expert systems are capable of explaining and justifying solutions or
recommendations, which helps the user to judge if the reasoning is in fact
correct [2].

The expert systems represent the expertise as data or rules that can be

called upon when needed to solve problems. Books and manuals have a

tremendous amount of knowledge but a human has to read and to interpret the

knowledge for it to be used. However, the conventional program can use
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conventional decision-making logic that contains little knowledge for solving some
specific problems. This programmed knowledge is often embedded as part of the
programming code, so that as the knowledge changes, the program has to be
changed and then rebuilt. But the knowledge-based systems can collect the small
fragments of human know-how into a knowledge base, which is used to reason
through a problem, using the knowledge that is appropriate. A different problem,
within the domain of the knowledge base, can be solved using the same program
without reprogramming. The ability of these systems to explain the reasoning
process through back-tracking and to handle levels of confidence and uncertainty
provides an additional feature that conventional programming does not handle. In
summary, expert systems encode the domain dependent knowledge of experts in

some field, and use this knowledge to solve problems [3, 4].

3.2.2 Fundamental features of an expert system

To comprehend an expert system, and further to construct an application of
an expert system, the following fundamental features should be considered at the

beginning [1].

Expert systems applications

Generally, expert systems can be applied in two different ways:
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Decision support: Providing information or options to an experienced
decision maker. Commonly used in medicine.

Decision-making: Allowing an unqualified person to make a decision
beyond his or her level of training or expertise. Commonly used in
industrial systems.

Ability of expert systems

Perform at level of a human
Recognize problems

Recognize solutions

Explain the proposed solution

Select applicable solutions

Deal with incomplete information
Restructure problems

Reduce the need for research

Solve simple problems easily
Sometimes can explain their reasoning
Occasionally make judgments about the reliability of their conclusions
Can build on existing knowledge.

Properties of expert systems

Ask appropriate questions (based on external stimuli such as sight or
sound)

Reformulate questions to obtain answers

Explain why they asked the question

Explain why conclusion reached

Judge the reliability of the conclusions

Communicate easily with other experts in their field

Reason on many levels and use a variety of tools such as heuristics,
mathematical models and detailed simulations

Transfer knowledge from one domain to another

Use their knowledge efficiently.
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We can see that there is quite a marked difference between the abilities of
a human expert and a machine expert through the characteristics listed above.
These properties are remarkably different from properties of a conventional
program. Conventional programs basically depend upon the accuracy and integrity
of the models. Therefore, if any of the input data is missing or inaccurate, the
conventional system will respond with error messages or it may output
incomprehensible results. Whereas an expert system can operate in the face of
adversity, it does not need all the data to be accurate; it can use its reasoning
facility to fill in or circumvent the gaps and it will return with results that include an

estimate of reliability.

3.2.3 Historic background

The beginning of Al can be seen in the first game playing and puzzle-
solving programs at the end of the 1940s. The fundamental idea of early research
is called “state space search.” The simplest form of state space search is
“‘generate-and-test.” There are two main variants of basic generate-and-test:
“depth-first search” and “breadth-first search.” Another important search algorithm
developed is “heuristic search,” which uses one or more items of domain-specific
knowledge to traverse a state space graph. A heuristic is best thought of as a rule
of thumb. Although not guaranteed to work in the decision procedure, a heuristic is

useful in a majority of cases.



46

Beginning in the mid-1960s, the first goal in developing expert systems was
to make machines “understand” natural language, especially stories and dialogue
[5]. Other attempts in the same period were aimed at modeling human problem-
solving behavior on simple tasks, such as puzzles, word games and memory tests.
This idea was to simulate the use of knowledge and strategy the same way that a

human would. This was exploration of goal-directed reasoning [6].

From the latter half of the 1970s to the present day, expert system
researchers worked on the development of techniques and applications. This
period is characterized by an increasing self-consciousness and self-criticism. The
development of the problem-solving method, such as heuristic search, continued.
Researchers developed techniques for encoding human knowledge in modules,
which can be activated by patterns. These patterns may represent raw or

processed data, problem states or partial problem solutions [7], [8].

With the emergence of computer technology, the expert system technology
entered its implementation period, which was the first step towards applied expert
systems. During this period, a variety of individual expert systems were completed,
covering various application areas. In the 1970s, one of the first expert systems,
MYCIN, was developed at Stanford University. MYCIN uses rules (coded in the
computer language LISP) that contain medical knowledge to perform medical

diagnoses.



47

During the early stages of development, expert systems were exclusively
based on expert knowledge. Today, the term expert system may refer to any
system that uses expert system technology and may not necessarily be based on
expert knowledge. Also today, we use the terms expert system, knowledge-based

system, and knowledge-based expert system synonymously [2, 9].

3.2.4 Composition of an expert system
3.2.4.1 Expert system structure

An expert system is composed of three main components: the knowledge
base (or rule base), the working memory and the inference engine. Figure 3.1
shows a block diagram of the elements of an expert system. The knowledge base
is the source of facts, the working memory stores the processing data or inferred
facts and conclusions, and the inference engine is used to draw conclusions or

expertise about the user’s query.

KNOWLEDGE BASE «
DOMAIN KNOWLEDGE j
INFERENCE USER
EREN -
ENGINE r———-ﬂ CASE FACTS
CONCLUSIONS
WORKING MEMORY f
CASE/INFERRED
FACTS, CONCLUSIONS

Figure 3.1 General structure of an expert system [1]
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3.2.4.2 Elements of expert system

Knowledge base

An expert system maintains the expert’'s domain knowledge in a module
called the knowledge base. Such knowledge acquired from the experts is coded by
using several techniques. One of the typical ways of presenting knowledge in an
expert system is a rule that is an IF/THEN structure that logically relates
information contained in the IF part to other relevant information contained in the

THEN part. The knowledge base consists of at least two types of data:

e Data that describes the problem and includes information that has been
concluded, assumed or inferred.
¢ Knowledge that describes how to use the assertion base

Working memory

The working memory contains the facts (or information) about a problem
that are used during a consultation. The system matches this information with
knowledge contained in the knowledge base to infer new facts, then enters these
new facts into the working memory, and the matching process continues.
Eventually the system reaches a conclusion, which also enters into the working
memory. The working memory will load the information contained in external
storage such as databases, spreadsheets, or sensors at the beginning of the

consultation process. Sometimes, the system may obtain the information supplied
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by the user. However, the working memory contains all the information about the

problem that is either supplied by the user or inferred by the system.

Inference engine

The inference engine is a processor in an expert system that matches the
facts contained in the memory with the domain knowledge contained in the
knowledge base to draw conclusions about the problem. When an expert system
is started to examine the problem, it searches the rules for a match between the
premise and the information contained in the working memory. When the inference
engine finds a match, it adds the rule’s conclusion to the working memory and

continues to scan the rules looking for new matches.

Either of the following two types of control strategies can be used in an

inference engine:

e Forward chaining starts with assertions about the problem, makes
inferences and draws conclusions. This strategy is used when all the
knowledge to make a decision is available before session begins.

e Backward chaining or (goal driven) starts with the answer and works
backwards to the problem description. The rule selection is guided by the
conclusions rather than the conditions. This strategy is used in situations
where the user can make a good guess about a possible solution and
when more goals exist than combinations of initial assertions.
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User Interface

The interactive communication between the expert system and the user is
conducted in natural language, graphics or menus. The user interface is the
means by which the user gains access to the expert system. If the system requires
more data to solve a problem it will ask the user questions during a consultation.
The expert system will communicate the results of a session to the user and will
provide details of how its conclusion was reached and information about the
reliability of the conclusion. A basic design requirement of the interface is to ask

questions to obtain reliable information from the user [2, 10, 11].

3.2.4.3 Expert system programming tools

There are two main expert systems building tools, programming language
and expert system shells. The choice of a tool will depend on problems to be

solved.
3.2.4.3.1 Programming language

An expert system can be programmed in either a traditional language or in
an Al language. The traditional languages such as Fortran, Pascal, C and C,., are
general-purpose languages and they have very good support facilities. But the Al
languages such as LISP and PROLOG are given a narrower field of use. In

comparison to traditional languages, the Al languages have the following features:
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e Greater flexibility to design the knowledge base, inference engine, user
interface and explanation program
e Greater skills of programmers and more time are required to learn the

language

3.24.3.2 Expert system shell

Most expert systems are developed with specialized software tools called
expert system shells. An expert system shell is a software development
environment containing the basic components of expert systems and the methods

to build them.

Brief features

An expert system shell can be seen as an expert system with an empty
knowledge base. In principle, the knowledge in a particular domain can then be
stored in the empty knowledge base and the system can then reason with this
knowledge. Therefore, a shell is a domain-independent knowledge-based expert
system. A shell can also have all components required for the knowledge base
construction: Inference engine with different searching mechanisms; explanation
facility and tools for writing hypertext, for constructing friendly user interfaces; and
a knowledge base management facility. Hence, to build the expert system all that
is required is that the knowledge base be constructed. The generic components of

a shell are shown in Figure 3.2.
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Figure 3.2 Generic components of an expert system shell [12]

Core components

As mentioned above, an expert system shell can be seen as an expen
system with an empty knowledge base. Therefore, most components of the shell
are similar to those of an expert system, except there are two additional
components, knowledge acquisition sub-system and explanation sub-system,

which are used for system developing. The definitions of them are:

e Knowledge acquisition sub-system: A sub-system to help experts build
knowledge bases.

e Explanation sub-system: A sub-system that explains the system’s
actions. The explanation can range from how the final or intermediate
solutions were atrived at to justifying the need for additional data.

However, they are not without limitations. Most expert system shells are

developed with the inference engine having a specific reasoning mechanism and
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with a knowledge base having a specific knowledge representation language.
Therefore, a particular shell might not be suitable for all types of problems. For
example, certain shells are best for diagnosing problems while others are best
suited for planning. For serious diagnostic applications, a shell would require some

customization in order to deal with the problem.

Depending on the features of the sheli, the differences between shell and Al

language can be summarized as follows:

¢ Advantages of using shells
o Easierto use
o Generally require little programming knowledge
o An expert system can be built easily and quickly.
¢ Disadvantages of using shells
o Inflexible: Some shells may not fit non standard problems
o Some shells can deal with one type of problem
o Often costly to purchase.

There is no clear-cut answer on when to choose an expert system shell or a

programming language. The choice depends on a number of things [11]:

The application

The development time available

The skill level of the knowledge engineer
The availability of the appropriate tool
The budget available

The level of support available.

In the present work Comdale and Gensym G2 shells were chosen. There

are many other commercial tools in the market, such as EXSYS, ACQUIRE,
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Intellix, Expert Optimizer, EZ-Xpert, XpertRule, and CLIPS. They are broadly

applied for general, task, or solution specific purposes.

3.3 How does an expert system work?

3.3.1 Knowledge engineering

Knowledge engineering is the process of developing a knowledge-based
system by capturing, encoding, and testing domain-specific knowledge. There are

six steps to be done for system building and maintenance:

e Problem selection
The first step in knowledge engineering is selecting the “right
problem”, which is the goal of the project.
e Knowledge acquisition
The objective of knowledge acquisition step is to acquire the
knowledge of the problem, which is the foundation of expert system
development.
¢ Knowledge representation
This step involves representing the knowledge in the knowledge base
as rules, frame scripts, semantic networks, or some combination of them.
¢ Knowledge encoding
This step entails using the expert system shell/programming
language to encode the knowledge.
¢ Knowledge testing and evaluation
The major task of this step is to validate the overall structure of the
system and its knowledge.
¢ Implementation and maintenance
To periodically refine or update the knowledge to meet current
needs after the system has been implemented.
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3.3.2 Knowledge representation

Knowledge representation is a method used to encode knowledge in an
expert system’s knowledge base. To do this, the knowledge is represented in a
symbolic form that can be manipulated by the expert system. There is no single
knowledge representation system that is optimal for all applications. The success
of the expert system depends on choosing the most appropriate knowledge

representation for the problem to be solved.

3.3.2.1 Types of knowledge representation techniques

The following are five of the most common techniques used in an expert

system to represent the knowledge:

Obiject-attribute-value triplets (O-A-V)
Rules

Semantic networks

Frames

Logic

The first two are used in this thesis. Compared to other techniques, simple
descriptions are used for structuring knowledge and controlling the reasoning

process.



Object-Attribute-Value Triplets

O-A-V triplet structure can be used for complex propositions. It divides a
given statement into three distinct parts: object, attribute, and attribute’s value.
Consider for example the statement, “The color of the anode stem is red.” We can
represent this statement in an O-A-V structure by defining the object as “The
anode stem,” the attribute as “colour” and the value as “red.” The object
represented in an O-A-V can be a physical or an abstract item. The attribute is a
property or feature of the object. The value specifies the attribute’s assignment.
Also, one object can have multiple attributes, and each attribute also can have

multiple values. Figure 3.3 shows an example of multi-attribute, multi-value O-A-V

structure.

TEMPERATURE

BATH LEVEL —P

T

RATIO

OBJECT ATTRIBUTE

HIGH

LOwW

HIGH

VALUE

Figure 3.3 Example of multi-attribute and multi-value O-A-V triple

structure
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A rule is a knowledge structure that relates some known information to other
information that can be concluded from known. A rule is a form of procedural
knowledge that associates given information to some action. Rules represent
reasoning knowledge and handle the complex relationship between facts. Rules
can embody vague concepts, simple heuristics, mathematical expressions, date
expressions, time expressions, character string expressions or functions. Rules
are written in an IF-THEN-ELSE format. Whereas the IF-AND-OR part of the rule

is called the “premise”, the THEN-ELSE part is called the “conclusion”. An example

of a rule is:

IF anode effect number is high

AND crust hardness is very high

THEN bath temperature is low

THEN text (“The bath temperature is low! Please check the line

current source (rectifier, power station, etc.) and increase cell voltage

temporarily”.)

In rule-based expert systems, domain knowledge is coded as a set of rules
and entered in the system knowledge base. The system uses these rules along
with information contained in the working memory to solve a problem. When the
“IF” portion of the rule matches the information contained in the working memory,

the system performs the action specified in the “THEN” part of the rule. The
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inference engine manages all these processes. To perform more complex
operations, most rule-based systems are designed to access an external program
such as common traditional software like a database or C program. As some facts
have uncertain properties, the uncertain rules will provide an ability to establish an

inexact association between the premise and the conclusion.

Rules have been widely used in many expert system applications because

of the following advantages:

¢ Easy to understand, to modify and to maintain

e Inference and explanation easily produced

e Uncertainty is easily combined with rules

e Good for procedural knowledge. Suits wide range of heuristic knowledge.

Compared to other knowledge representation methods, some

disadvantages of using rules are:

o Complex knowledge requires many rules
e Search limitations when there are many rules.

Semantic Networks

Semantic networks are the earliest attempt in Al to represent knowledge by
computer programming. In semantic networks, pieces of knowledge are clustered
together into relevant semantic groups, usually in the form of a graphical

representation of knowledge showing relationships between objects [11].
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Frames

The frames differ with rules and semantic networks; in this technique,
knowledge is decomposed into highly modular pieces called frames, which are
generalized record structures. A frame is a package data structure that contains

typical knowledge about some concept or object and includes both declarative and

procedural knowledge [13].

Loqic statements

Logic is the oldest form of knowledge representation in a computer. The
logical formalism is a powerful way of deriving new knowledge from old as it can
be used to conclude that a certain proposition is true or false based on the truth of
already known facts. This can be extended to derive answers to questions and
solutions to problems. Two of the most often used logics are propositional logic
and predicate calculus (also called as predicate logic). The latter is the extension
of propositional logic. The one of the key Al programming languages PROLOG
(PROgramming in LOGic) is based on the predicate calculus. Propositional logic
represents and reasons with propositions, statements that are either true or false

4], [14].
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3.3.2.2 Reasoning process — problem solving (Forward and backward

chaining)

Reasoning is a process of working with knowledge, facts and problem
solving strategies to draw conclusions. This process is similar to that used by

humans to solve problems.

Inference, the core technique of reasoning in an expert system, is used to
derive new information from known information. An expert system performs
inference using a module called the inference engine. The most common
inference strategy applied in expert systems is known as modus ponens [1]. If the
premise of a rule is true, then its conclusion is also true. Like the knowledge base,
the inference engine contains rules, and facts that pertain to more general control
and search strategy are applied by the expert system in the development of a

solution [15]. The basic characteristics of inference engine are:

o Differentiate between knowledge that is relevant and that which is
irrelevant to the specific problem

e Consider relevant knowledge in a logical sequence rather than with
browsing or jumping to conclusions.

As a knowledge base of an expert system is usually very large, it is
necessary to have inferencing mechanisms that search through the database and
deduce results in an organized manner. In managing a consultation session, the

inference engine will ook at a strategy to find out how and when the session is to



61

end. Depending on the finish strategy criteria, the inference engine uses its start
strategy to begin the inference process. Then the corresponding inference strategy
is applied to guide with the reasoning techniques of the inference engine. The

major techniques of reasoning strategies fall into two broad categories:

¢ Forward reasoning (Data-driven)
o Existing facts matched to rule antecedents
o Matching rules result in consequences: conclusions.

e Backward reasoning (Goal-driven)
o Select goal or conclusion; match to rule-consequences
o Check for match between rule-antecedents and facts
o Repeat until conclusion matches fact.

Forward reasoning is a search procedure or reasoning process using known
facts to produce new facts and to reach a final conclusion. On the other hand,
backward reasoning is a reasoning process, which starts with a desired goal and

works backward, looking for facts and rules that support the desired result.

Forward reasoning

The reasoning process of problem solving naturally begins with information
collection, then this information is reasoned with to infer logical conclusions. It is
similar to a process that a doctor uses to make a diagnosis. This style of reasoning
that uses a data-driven search, it is called forward reasoning (forward chaining).
The inference strategy of forward chaining starts with a set of known facts, derives

new facts using rules whose premises match the known facts, and continues this
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process until a goal is reached or until no further rules have premises that match
the known or derived facts. The following example shows the process of forward

reasoning [16]:

Consider a set of rules:

Rule 1: IF A AND C THEN F
Rule 2: IF A AND E THEN G
Rule 3: IF B THEN E
Rule 4: IF G THEN D

The strategy to prove that D is true, given A and B are true would be: Start
with Rule 1 and continue on down until a rule that “fires” is found. In this case,
Rule 3 is the only one that fires in the first iteration. At the end of the first iteration,
it can be concluded that A, B and E are true. This information is used in the
second iteration. This time, Rule 2 fires and adds the information that G is true.
This extra information causes Rule 4 to fire, proving that D is true. This is the
method of forward chaining, where one proceeds from a given situation toward a
desired goal, adding new assertions along the way. In expert systems, this strategy
is especially appropriate in situations where data are expensive to collect, but
limited in quantity. Figure 3.4 shows a flowchart of simple forward reasoning

process in a rule-based expert system [15].
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Figure 3.4 Forward reasoning process

Brief features of forward reasoning:

Starts with the input data

Examines data in a particular sequence

Problem-solving mechanism keeps track of the implications of exampled
fragments of the knowledge base each step of the way

Continues until the implications are discovered to provide a solution to
the problem.

Backward reasoning

Backward reasoning is another inference strategy that attempts to prove a
hypothesis by gathering supporting information. This method starts with the

desired goal, and then attempts to find evidence to prove the goal. First, backward
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reasoning checks the working memory to see if the goal has been previously
added. If the goal has not been previously proven, the system searches its rules
looking for one (or more) that contains the goal in its THEN part. This type of rule
is called a goal rule. The system then checks to see if the goal rule’s premises are
listed in the working memory. Premises not listed then become new goals (also
called sub goals) to prove that may be supported by other rules. This process
continues in this recursive manner, until the system finds a premise that is not
supported by any rule. Then the system uses this information to help prove both
the sub goals and the original goal. The backward reasoning is similar to

hypothesis testing in human problem solving.

As compared to the previous example of forward reasoning, the strategy to
prove that D is true would be as follows. First, find a rule that proves D. Rule 4
does so. This provides a sub goal to prove that G is true. Now Rule 2 comes into
play, and since it is already known that A is true, the new sub-goal is to show that
E is true. Here, Rule 3 provides the next sub-goal of proving that B is true. But the
fact that B is true is one of the given assertions. Therefore, E is true, which implies

that G is true, which in turn implies that D is true [15, 16].

Backward chaining is useful in situations where the quantity of data is
potentially very large and where some specific characteristic of the system under

consideration is of interest. Typical situations are various problems of diagnosis,
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such as medical diagnosis or faultfinding in electrical equipment. The brief

procedure of backward reasoning is [15]:

Starts with the original problem statement (goal)

Decomposes problem into sub-problems (which could be broken into
further sub-problems and so forth)

Sub-problems could be easily solved by simply looking up a relevant fact
or assertion in the knowledge base

By solving all (or even some of) the sub-problems, the problem itself
could be easily solved.

Depth-first and breadth-first search algorithms

A knowledge base can usually be represented as a branching network.
There are many branching search algorithms available in the existing expert
systems. However, only the two basic approaches, depth-first search and breadth-

first search, are considered in our expert system.

The depth-first search algorithm begins at a node that either represents the
given data (forward chaining) or the desired goal (backward chaining). It then
checks to see if the left-most (or first) node beneath the initial node (call this node
A) is a terminal node (i.e., it is proven or a goal). If not, it establishes node A on a
list of sub-goals outstanding. It then starts with node A and looks at the first node
below it, and so on. If there are no more lower level nodes, and a terminal node
has not been reached, it starts from the last node on the outstanding list and takes

the next route of descent to the right.
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Breadth-first search starts by expanding all the nodes one level below the
first node and then systematically expands each of these nodes until a solution is
reached or the tree is completely expanded. The obvious advantage to this
process is that the breadth-first search finds the shortest path from the initial
assertion to a solution. However, such a search in large solution spaces can lead
to huge computational costs due to an explosion in the number of nodes at a low

level in the branch.

There are other methods of making inferences that use a combination of
two or more of the above techniques. Depending on the number of given facts and
the number of plausible inferences, some of these methods may be better than

others in terms of time, memory and cost of the solution path [16].

Brief features of the two reasoning techniques

Advantages of forward reasoning are:

e It works well when the problem naturally begins by gathering information
and then seeing what can be inferred from it

e |t can provide a considerable amount of information from only a small
amount of data

» It works well for certain types of problem solving tasks, such as planning,
monitoring, control and interpretation.
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Disadvantages of forward reasoning are:

e The system will ask all possible questions; even though it may only need
to ask a few questions to arrive at a conclusion
e The system may also ask unrelated questions.

Advantages of backward reasoning:

o It works well when the problem naturally begins by forming a hypothesis
and then seeing if it can be proven

¢ |t remains focused on a given goal

e The system searches only that part of knowledge base that is relevant to
the current problem

e |t works well for certain types of problem solving tasks, such as
diagnostics, prescription and debugging.

A disadvantage of backward reasoning:

e It will continue to follow a given line of reasoning even if it should
discontinue and switch to a different one.

3.4 The methodology of expert system development

In the beginning stage of an expert system development, the following basic

questions are always considered:

Why are we developing this expert system?
How to get the knowledge?

How are we going to build it?

What tools are available?

With these primary considerations, the remaining steps in the entire

developing stages are as follows:
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Tool studying

Knowledge acquisition

Knowledge analysis

System design

System validation and improvement.

3.5 Knowledge — the foundation of expert systems

What is knowledge? Knowledge is an abstract term that attempts to capture
an individual’s understanding of a given subject [1]. Expert systems drive their
power from the knowledge they contain. Knowledge is the heart of any expert
system and it is the effective use of knowledge that makes the system’s reasoning
successful. Like conventional programming, there is no single “best” data structure
for all computing purposes. For an expert system, different knowledge
representation methods are used for different applications; no single knowledge
representation structure is ideal. Therefore, to find the knowledge and
corresponding presentation methods best suited for a given application is the

primary objective of a knowledge engineer.

To develop the expert system in this thesis, we do not attempt to capture all
of the expert’'s knowledge of the aluminum industry. We only target the expert’s
knowledge focused on a narrow subject: aluminum electrolysis process, which is

the so-called domain knowledge.

For expert system building, there are three important aspects to consider:

1. Understanding of the subject area (knowledge acquisition)
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2. Focusing on the subject area (knowledge editing)
3. Using the corresponding method to encode knowledge to the knowledge

base (knowledge representation).

It has been recognized that the performance of an expert system is directly

affected by the quality of knowledge coded in the knowledge base.

3.5.1 Levels of knowledge

Human knowledge can be represented at different levels, which depend on
the degree that fundamental principles and causal relationships are taken into

account. Generally, human knowledge is described in two levels:

e Shallow knowledge, which handles only surface level information that can

be used for the specific situations
e Deep knowledge, which represents the internal and causal structure of a
system and considers the interactions between its components.

Shallow knowledge is concerned only with the type of information that is
needed to solve a particular type of problem while deep knowledge can be applied
to different tasks and different situations. For example, some experiences obtained
from process operators belong to shallow knowledge, which reflects a direct
relationship between cause and effect. On the other hand, the knowledge of
experts or engineers belongs to deep knowledge. Depending on the complexity of

the real process, both levels of knowledge are needed in expert systems.
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3.5.2 The components of knowledge

In any knowledge domain, many different sets of objects may be used for
knowledge representation. In the aluminum electrolysis process, for instance, the
objects may be the particular cell types, such as Séderberg cells or prebake cells,
and open or hooded cells. Once we have settled on a set of objects to use for
knowledge representation, it is necessary to define them and their interactions.

These definitions are based on the elementary components of knowledge:

Naming — Give the proper nouns to specific objects

Describing — Describe the property of an object, usually performed by
adjectives

Organizing — Handle the objects in a variety of ways including
categorization and possession

Relating - Use transitive verbs and special houns to describe relationship
Constraining — Handle the conditions that define what descriptions of
objects or patterns of relationships between objects are admissible.

For example, in our system, “anode”, “cell voltage” are specific objects
names. “Bath temperature is high,” “Cell voltage is not stable” describe
corresponding objects, where “high” and “not stable” are adjectives of the objects
“path temperature” and “cell voltage.” “Aluminum has a limit value on iron impurity”
indicates an attribute of object “aluminum impurity.” To describe the relationship
between the objects, we use sentences such as “The crust is broken by the point
breaker” to distinguish the relation of “crust” and “point feeder.” Constraint is often
used in our system to define running conditions, for example: “Any anode whose

voltage drop is less than 0.1 V, may not perform normally.”
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These components of knowledge are used in knowledge representation

methods. However, each knowledge representation method deals with these

components in its own way [4].

3.5.3 Knowledge acquisition

Generally, the raw material of the knowledge of our system is collected in
two different ways: from the open sources or from the real process. Normally, the
knowledge collected from the open literature is considered for the general purpose
knowledge base building, whereas the particular knowledge will come directly from
the plant, as will the real process data applied for the respective cells. We have

collected both of them.

3.5.3.1 Stages of knowledge acquisition

To build our knowledge base, the knowledge acquisition has been executed

in three stages:

1. Elementary and visual observation of the process
2. Direct expertise from domain experts
3. Systematic expertise from senior experts.

The first step is not only elementary but also provides necessary knowledge
for us. This kind of knowledge acquisition starts at the very beginning of the

system design. It consists of two steps:
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e Study of relevant books, papers and video materials
e Plant visit.

After this first stage, an elementary knowledge of the process was obtained.

In the second stage, the knowledge was directly collected from the domain
engineers and operators. This is a more detailed knowledge of the aluminum

electrolysis. The characteristics of the knowledge collected at this stage are:

¢ Much more detailed description of the production process
* Specific case studies for certain events, e.g. the anode effect.

The third stage is more important for our knowledge base building. The

systematic knowledge provided by the domain senior experts gives us the

following benefits:

Easier to present the problems
Systematically organize knowledge base
Easier to create the rules base

Faster to get the diagnosis resulits.

3.5.3.2 Improvement of acquired knowledge

Figure 3.5 [1] illustrates five general steps of a knowledge base building.
Although the tasks are shown in sequence, in practice there is considerable
overlap in their execution. Based on the knowledge acquired, the preliminary
design of the knowledge base will be done; then iterations are needed during the

system development. After several steps, the system will be improved from one
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with limited ability to one that becomes more capable due to its improved
knowledge and problem solving skills. However the expert system can improve the
valuable solutions to real world problems, which is based on learning from the

problems occurred during the process of design, evaluation and routine running.

For our system design, we investigated the general concepts of this
particular domain and created a formal representation of the objects and relations
in the domain. Then, we collected and analyzed several open sources about the
problem diagnosis and correction of the aluminum electrolytic process. Based on

these sources, we designed the general structure of the expert system.

STEP 1
Knowledge Acquaintance

Y

STEP 2
Knowledge Acquisition

v

STEP 2
Knowledge Application
(Expert System Design)

v

STEP 4
Knowledge Evaluation
(Expert System Test)

Y

STEP 5
Knowledge Maintenance
(Rule Base Modification)

=

Figure 3.5 Steps of knowledge base building
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The engineer level expert system was built from the generalized properties
of the electrolytic process taken from the open sources we acquired. Then we built
the operator level expert system, based on the expertise and data from a given

particular type of cell.

To verify and improve the knowledge of the expert system, we asked
experts of this domain to conduct a test run of our expert system. Their opinions

were fed back to the knowledge base for further improvement.

3.6 Brief review on industrial applications of expert systems

After four decades of development, Al technology has progressively proved
to be useful in industrial applications. Expert systems, artificial neural networks and
fuzzy logic systems are three main types of Al applications. They are already
frequently chosen as additional tools for the control engineer. For example, many
large automation and process control companies have developed internal Al
elements for their plant control system and fuzzy logic is already integrated in

some chips, which are widely used in many areas [17,18].

Expert systems, one of the major branches of Al technologies, can be used
in most processing applications, even very large ones needed for major chemical
processes, metallurgical processes, quality control in pulp and paper and oil
industries, cost control in power plants and other applications. Generally, operators

and engineers use expert systems for fault diagnosis. Expert systems can find the
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most probable cause and suggest corrective actions. Expert systems also are very
useful in alarm management because by communicating the critical alarms first,
the operator can react immediately to correct the problem. This saves process
downtime, operator time in locating the problem, and in the long run, saves money
and reduces off-specification products. Real-time expert systems have also been
developed for industrial processes, sometimes in conjunction with fuzzy logic.
Using fuzzy logic sets, it determines set points and control actions. The expert
system acts as a watchdog, which can increase throughput, lower operating costs,
and increase yields. Successful examples of the implementation of expert systems
in industry can be found in robot movement planning, chemical compound
synthesis, computer systems configuration, decision support, fault diagnosis, and

engineering design [19].

The major difference between expert system techniques versus classical
algorithmic techniques is the ability of expert system techniques to develop
systems that infer answers from complex and incomplete knowledge bases. In
other words, just as an acceptable answer — although not necessarily the optimal
answer — can be determined by humans, given incomplete and perhaps unrelated
facts, an expert system can be made to choose rational and perhaps mulitiple
answers from a set of rules and facts. Based on such abilities of expert systems,

their applications for problem solving can be categorized as in Table 3.1:
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Table 3.1 Expert system applications

Expert System Applications

1 Control

2 Design

3 Diagnosis instruction
4 Interpretation

5 Monitoring

6 Planning

7 Prediction

8 Prescription

9 Selection

10 Simulation

In the reviewed literature [20, 21, 22] and the recent applications [23, 24],

some interesting new characteristics of industrial applications are found, e. g:

Combinations of several Al technologies for one project

Ease of use and installation

Graphical/visual user interface

Heuristic model based optimal control

Al technique embedded in traditional process control system

A higher level smart-alarm management (or alarm about alarms).

Although expert systems have many successes in industrial areas, very few
have been actually installed in plants in the context of plant operation and control

due to the following major reasons [25, 26]:
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Development is complicated; it is not simply selecting a shell, and
obtaining a set of rules and transforming them into the syntax of the
knowledge presentation language. In most cases, the rules are not initially
available, and must be developed.

« Difficult to directly extend an application to the individual object due to the
difference in their properties and corresponding knowledge acquisition.

o Knowledge acquisition is a difficult and lengthy process. As the expert
system relies heavily on knowledge, the quality of knowledge often
determines the success of an expert system. Knowledge acquisition is
usually the “bottieneck” in expert system development.

o Expert system maintenance is difficult, since knowledge evolves

continuously.

Recently some new developments in industrial applications of expert
systems have appeared. In one, an expert system is used as a training tool in the
context of computer-aided instruction. This type of application combines one
expert system that provides domain knowledge with another expert system that
has the know-how to present the domain knowledge in a learnable format. The
system could then vary its presentation style to fit the needs of the individual
learner. While this concept is not new, in combination with today’s powerful
personal computers, this kind of Intelligent Computer Assisted Instruction (ICAI) is

much smarter than before.

Another important development concems the expert system shells:
advanced shells allow developers to embed inference engines into other kinds of
programs. Embedded inference engines enable developers to set up a number of

potential applications. Word processors are becoming intelligent. Smart
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spreadsheets can tell us the kinds of models we should use in our projections. All

the components of expert systems can be easily embedded into any system [27].

Additional documentation of expert system development and applications is

given in references [28 — 44].



79

CHAPTER 4 EXPERT SYSTEM APPLICATIONS FOR ALUMINUM

ELECTROLYSIS PROCESS

4.1 Expert system applications review

Most applications of expert systems in aluminum production were
developed experimentally at the end of 1980s and at the beginning of 1990s. Only
a few articles on this subject have been published. To the author's knowledge, no
expert system is presently used in a plant. The analyses of these publications give
the ideas of what should be done and what should be improved in the present

expert system. Now we continue with the presentation of these expert systems:

4.1.1 An integrated control-supervision system

L. Tikasz et al. described a proposal of expert system application for
aluminum smelters [1]. This expert system is connected to the operator, the

process control system and a process simulator.
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Process control

In the traditional process contro! system, only the line current and the cell
voltage are measured continuously, the other parameters related to the process
are measured and logged occasionally. The expert system is suggested to

compensate for this characteristic weakness of the present control system.

Process supervision

As the electrolysis is a complex electrochemical process, there are many
interactions between the process and the operator. The proposed expert system

would help to supervise the electrolysis cell process.

Process simulator

The process simulator consists of a lumped-parameter model and the cell
control system. In the process supervision loop, the process simulator would be a

predictive tool for variables that are not continuously measured.

The authors proposed the integration of these components, as shown in
Figure 4.1, where, the real-time expert system plays a coordination and assistant
role. The existing control and the operator are still the basis of the control. The

simulator generates predictive data for the expert system and for the operator.
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Analyzing the state of process, the expert system provides advice to the operator,
who still makes the final decisions. The operator is in the center of the entire

supervision system.

KB DB
ES
IS INF. ENG. EM
INTERFACES
EXTERNAL PROCESS
PROCESS CONTROL
SIMULATOR OPERATOR SYSTEM
REAL PROCESS
ES: Expert system 1S: Internal simulator
KB: Knowledge base INF. ENG.: Inference engine
DB: Database EM: Explanation module

Figure 4.1 The integrated control-supervision system of Tikasz et al [1]

4.1.2 A hierarchical, intelligent control system

J. Li et al. developed a hierarchical, intelligent control system for aluminum
reduction cells [2]. There are two intelligent levels in the system. The higher level
is built on the principle of a neural network expert system aimed at analyzing
medium and long-term change trends of the state of the process and calculating

the set point for the lower level. The lower level is a fuzzy controller, which carries
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short-term analyses and real-time control of the process. The general structure of

this hierarchical intelligent control system is shown in Figure 4.2.
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Figure 4.2 General structure of the hierarchical, intelligent

control system of J. Li et al. [2]

Main characteristics of system

In the higher level, the knowledge base is made of neural networks.

Therefore the system is efficient in learning, extraction and paralilel

processing of knowledge.

e The higher level inference engine can start automatically or be activated
by operators.

e The core of the lower intelligence level is an expert fuzzy controller,
which combines fuzzy control techniques with expert system approaches.

o The lower level Inference engine uses the forward reasoning to obtain a

conclusion.
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This system has not been applied to a plant, but test runs have

demonstrated potential for plant implementation.

4.1.3 A consulting toolkit

L. Tikasz et al. developed another expert system, which is a consulting
toolkit for aluminum electrolysis [3]. This is an off-line, consultation-type expenrt
system that focuses on constructing a modular consulting toolkit to help the
process diagnosis and the situation assessment. It was developed with Comdale/X
software package and can be used for the typical applications: diagnosis,

personnel training and operator guidance.

Knowledge base development

The principle of setting up a knowledge base is available for reference:

e Search for domains where the knowledge is worthy.

e Draw some substantial experience from two previous expert systems.
The first system was concerned about how o use an expert system for
control. The second system carried out problem detection related to
alumina supply to the cell.

* Knowledge was also collected in the fields of diagnosis and correction of
irregularly operating cells, noise analysis and voltage balance
measurement.
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Brief features

Compared to other expert systems, some different approaches were

adopted:

¢ Noise analysis
The FFT (Fast Fourier Transform) and statistical methods were
proposed for noise analysis, which includes the random noise and
waving noise. The purpose of noise analysis was to demonstrate how
a ftraditional manual could be converted into expert system
applications.
e Mixed expert system
A mixed approach was suggested by using the noise analysis
results. In this case, the expert system environment or the Hypertext
document is migrated according to the user’s needs.

Strong points

e The system served as a good reference for our present knowledge base
because the knowledge was based on plant experience.

* Noise is a main factor that affects the measurement accuracy both in a
traditional control system and in an expert system. Noise treatment in the
expert system improves its performance.

e For best results, the combination of a simulator and an expert system
would be a useful training tool.

4.1.4 HALDRIS expert system

W. K. Rolland and his colieagues developed the HALDRIS (Hydro
Aluminum DRIfts-Stotte) expert system, one of the few expert systems that have
been applied in the smelter process [4]. This expert system was designed for

assisting the operators of 125 kA VSS pots. HALDRIS was designed to keep
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potline on target. It helped the operators supervise and carry out corrective actions

on individual cells. This expert system used the Gensym G2 expert system shell.

Knowledge representation and implementation

Most knowledge acquired came from a set of documented guidelines.
These guidelines were updated first and then were implemented into the

knowledge base. Some knowledge was also obtained directly from the operators.

Structure of HALDRIS system

The HALDRIS system runs on a dedicated UNIX workstation connected to
an Ethernet. The process database, which receives data from the measurement
system, as from manual inputs, is connected to the same network. The graphics
and windows based interface helps user to understand the state of the cell quickly

and effectively. The process role of HALDRIS is schematically shown in Figure 4.3.
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Figure 4.3 The process role of the basics of HALDRIS

Brief features

¢ Two main tasks of daily operation are:

o To direct the operator’s attention to pots that show abnormal
behavior.

o Based on the stated information of the focused cell, to allow
the operator to obtain an explanation or comment on the
information.

e The data can be updated from the database, which is managed by the
expert system itself. However, only the most important process data are
extracted from a large amount of measurement data.

e HALDRIS has a hierarchical main menu system. Desired options are
selected with a mouse.

e The cell state displays three levels (See Table 4.1), that allow users to
quickly understand the cell state:

Table 4.1 Cell state display list

Cell State Display
1 Numerically
2 Symbolically
3 Visually
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Strong points

e If HALDRIS gives a recommendation that an experienced operator does
not agree with, the operator is given the option of commenting on the
message in which the advice was given, so that the situation may be
saved for later discussions with other expert operators. This ability is
helpful for knowledge base maintenance.

e It is possible for the operator to modify the actions through an appropriate
interaction with the expert system. Such modification is put in effect by the
questions asked by HALDRIS. The operator's input depends on
supplementary input data and his interpretation of the situation, but
HALDRIS helps the operator draw an overall conclusion.

4.1.5 Combination of control and expert system

Z. J. Liu et al. developed a new type of expert system [5], where the
traditional process control and expert system strategies are combined for
electrolysis process. First, they developed a correlation curve between apparent
resistance of aluminum cell and alumina concentration through industrial test and
research. Then, based on the facts, analysis of test data and experience from
experts, a fuzzy control model for alumina concentration was set up, that realized

feeding on demand for aluminum cells and considerable reduction of anode effect.

Control model structure

The control model consisted of two major parts: an alumina feeding model

(See Table 4.2) and an anode position control model (See Table 4.3).



88

Table 4.2 Alumina feeding models

Alumina Feeding Model

Manual feeding model

Timing feeding model

Special operation feeding model

Alumina concentration fuzzy control model
Alumina concentration trading control model
Anode prediction model

oW =

Table 4.3 Anode position control modeis

Anode Position Control Model

1 Manual anocde position control model

Automatic anode position control model
(1) Anode position fuzzy control model
(2) Resistance/anode position control model

(3) Special operation anode position control model!

Characteristics of control strategies

Alumina concentration fuzzy control strategy is based on the relationship
between resistance and alumina concentration, and expertise acquired
from experts and operators. Alumina concentration can be controlled at
1.0%~3.5%.

An anode position control model is not only based on routine operations,
but also takes into account some abnormal operations, which are
absorbed from the operator’s experience.

An anode effect prediction is also based on the alumina feeding fuzzy
control strategy. The anode effect frequency can be reduced to 0.25
anode effect per day per cell.
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4.1.6 An intelligent pot control

An “Intelligent Pot Control” is another interesting project that was released
in 2000. It is part of the U.S. Department of Energy’s “Industries of Future”
program [6]. The first strategy is an expert system that will assist pot operation
personnel to maintain optimum operating conditions for aluminum electrolysis
cells. Artificial intelligence is the second strategy to be employed; it can enhance
the cell control system. These control strategies will be based on software
developed by Gensym Corporation. The major goals of this project are significant
energy savings and lower emissions as even small gains in performance can give

substantial cost improvements and environmental gains.

4.2 Analyses of the expert system applications - Why choose an expert

system for aluminum electrolysis process?

Based on the reviews of these expert system applications, the further
analysis involves many considerations, such as system structure layout,
knowledge base building, data communication bridge selection and interface
design. All of them are concerned with a basic topic: “Why choose an expert
system for aluminum electrolysis process?” Namely, what and how the expert
system can do to improve of present production. Considering that the expert

system will cooperate with the existing process control system, to analyze the
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limitations of a conventional process control system and to understand its
fundamental control strategies is the primary concern. Then, we can find out the
limited availability of the present process control system and how an expert system

can complement these disadvantages.

4.2.1 Fundamental control strategies analysis

Electrolysis process control systems have been developed both in hardware
and software. The control strategies of present cell control systems are essentially

based on the following principles:

e Energy balance
e Material balance

A good energy balance helps stabilize the bath temperature and the
“freeze” formation. “Freeze” is that parnt of the electrolyte that solidifies along the
relatively cold carbon cathode sidewall and thus helps protect the cell cavity

against the highly corrosive bath.

A good material balance helps keep the alumina concentration at or near
the optimal values. Too high alumina concentration may lead to the formation of
“sludge,” which is difficult to remove and can affect the current distribution in the
cell. Too low alumina concentration may trigger an “anode effect.” In that case, a
gas layer will build up under the anode, which may affect the cell resistance and

finally the cell voltage.
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One of the general principles of control strategy determination is based on
monitoring the cell pseudo resistance, which is calculated from the measured cell
current and voltage. Based on this essential information, the control logic may
change the anode to cathode distance (ACD) by adjusting the anode position or by

modifying the alumina feed rate to keep the target value of resistance.

Another important part of cell control deals with alumina concentration. The
concentration is related not only to the cell resistance but also to other cell
parameters. The control of alumina concentration is done by analyzing cell pseudo
resistance, primarily because the sensors for alumina concentration are not

available and therefore, there is no direct feedback.

The alumina concentration and its interrelationships are affected by:

e The amount of alumina added in a break and feed cycle
e The time elapsed since feeding
e The amount of ledge of the frozen electrolyte

The amount of sludge being formed during feeding.

4.2.2 Difficult task of present process control system

Several process variables of the electrolysis process are difficult to control
by traditional process control approaches mainly due to the lack of necessary
information. For example, to control the aluminum concentration at the target

value, many process variables must be considered. But only two process
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variables, the cell voltage and potline amperage can be automatically measured.
Most of the reminder information is provided by the operators. This additional
information is concerned with two types of data, variables and parameters. The
variables are measured, calculated or analyzed to characterize cell operation. The
parameters are the controls that can be deliberately modified to obtain corrective
effects on the potline operation. Process variables generally are obtained by the

following methods:

e Operator manual measurement
e Operator visual observation
e Analyses result from laboratory.

Normally this additional information is sent by the operators through two

functions:

e Through switches and push-buttons informing the automatic equipment
of manual operation being carried out on the cell (e.g. metal tapping,
anode changing)

e Through data loggers which automatically feed the system with cell
measurements.

The particular environment of the cell operation and particular materials
used cause problems in process variable measurements. For example,
temperature is one of the most important process control parameters, but

continuous measurements still have not proven to be technically or economically
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viable. The thermocouples wear out rapidly as continuous measurements in the

bath are made [7].

Due to this situation, the present operating practice is to regularly check the
cell temperature by using a metal clad thermocouple. However, it is difficult to keep
a uniform procedure (fixed position and depth). The same situation can be found in
other process variable measurements, such as the position measurements of the

anode and the sludge.

As a consequence, the existing process control strategies still lack a very
important basic link, which is the continuous measurement of the major process

variables from the operating cells.

4.2.3 Comparison of expert systems

Expert systems have been applied to automation areas for decades. The
knowledge applied is extracted from human experts of a special field. Therefore
they can perform a rather difficult task usually performed only by humans. Expen
systems provide new capabilities and flexibility in applying control strategies.
These systems offer the capability to capture, retain and utilize valuable process
expertise that has accumulated over years of plant engineering and process

operation. The main applications in the process and manufacturing area are:
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e Fault diagnosis and repair advice

e Alarm analysis

¢ Condition monitoring

e Process monitoring and recovery advice

e Quality control

e Process control and optimization

e Simulation and prediction

e Configuration

s Planning and scheduling

e Physical measurements interpretation

e Design

e Supervision.

However, as mentioned above, process control strategies for electrolysis
cells are still based on the cell voltage (or equivalent pseudo resistance). The cell
pseudo resistance is compared to a predetermined set-point value, and if the
deviation is larger than a certain limit, the control action will be to adjust the
interpolar distance by raising or lowering the anodes. Undoubtedly, this typical
process control is efficient for the normal case, but when something unusual
happens, for example an anode breaks or cathode fails, the control logic cannot

detect it. The rule-based expert system is a good means to remedy the weakness

of the conventional process control system.

We have found that some existing efficient control strategies are just based
on the logic of human experience in the real process control area. An interesting
example can be found in the “Anode effect treatment control” program. This
program is automatically started by a signal from the process: “the cell voltage is

higher than 10 V”. But the variation of the voltage is related to many reasons, such
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as: the distance between the anode and metal level, the condition of the anode,
the condition of the bath, and the alumina concentration. This is why in the “Anode
effect treatment” control program the trial-and-error strategy is based upon some
rules, which came from operator experience or expert knowledge. Thus, the
philosophy of expert systems has already been adopted in some existing control
programs, although they are not called expert systems. But the ability of such an
improved control strategy is still limited, as it cannot be applied for solving more

complex problems.

This example gives us a clear message that depending on the capabilities
and flexibility of the expert system, operator experience and expert knowledge can
be applied to solve some problems for which the conventional control strategy is

not adequate.

4.2.4 Using expert system to improve cell operation

To improve the performance of the electrolysis cell operation, the design of
the process control system is concerned with several objectives. Increasing the
energy efficiency is an important goal. Normally, the average energy efficiency of
the reduction cell is only 40-50%. Because of the limited knowledge about the
physical properties and limited process variables measurement, it is difficult to
make an attempt to increase energy efficiency by a conventional process control

strategy.
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Here is another example. The theoretical carbon anode consumption is
0.333 kg C/kg Al, but the operational value is about 0.4-0.5 kg C/kg Al. The large

difference is caused by several factors:

e Anode quality
e Cell design
e Cell operation.

The anode consumption is strongly dependent on the cell operation. Some

relevant operational factors are given as:

Anode temperature profile
Current efficiency
Electrolyte composition
Anode setting routines
Anode gas outlets

Crust breaking pattern.

As was mentioned above, because the process data measurements are
limited, it may be difficult to make a correct decision by regular control routines for
complex cases. For example, when the symptoms show that the cell voltage is
unstable and higher than normal and the pot meter is swinging more than usual, if
the conventional feedback control is applied, the control action should be: “Start
the motor to raise anode until the voltage fluctuation is down to normal.” What
should be done in next step? May be only to change the set point of the anode
until the voltage change is lowered. This is a right way to solve the voltage

instability, but may not suit the more complex cases. If the expert system is used,
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depending upon its knowledge base, several conditions and factors can be

examined:

e lLow anode

e Spiked or grounded anode

e Lumps of carbon in bath-under anode

e Anode set on objects (lump, cryolite, carbon, etc.)
e Metal inversion

Depending on the knowledge acquired in the knowledge base and required
information, the inference engine starts to reason and check all possible cases and
finally gives a diagnosis result. This will help the operator to find the corresponding
actions to actually solve the problem, and not only to modify the set point of the

anode, which would be the limitation of the conventional control practice.

By studying the fundamentals of the aluminum electrolysis process, it is
clear that when compared to the conventional process control system, the expert
system can be a very useful tool for operational routines. However, depending on
the capability and flexibility of the expert system, the expert rule or human
experience can be applied not only for the expert system but also in combination
with a conventional process control strategy to form a new type of advanced
control system. Figure 4.4 shows the combination of an expert system and a
conventional process control system, which applied in the present work. The
expert system receives the relevant process information and does the reasoning.
Then, the diagnosis result will advise the operators why the irregular cases

occurred and how to solve such problems. Further than that, the diagnosis results
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and suggestions will be sent to the control system as reference value or
conditions. For example, the diagnosis result “Anode position is too low” can be
compiled into the conventional control program as an executive condition of the

action of “Start to raise anode.”

OPERATOR |-

Diagnosis results
and suggestions

Additional information
from operator

Diagnosis results
CONVENTIONAL
INSTRUMENTATION EXPERT SYSTEM
AND CONTROL >
Process variables

ELECTROLYSIS PROCESS

Figure 4.4 Combination of expert system and conventional
control system

Therefore, to improve the electrolysis reduction cell operation, the expert
system can work as a stand-alone. However, it will not only perform as an
individual part but also can work together with the existing conventional control
system. This combination can maintain the advantages of two systems individually
without the need to change the existing control system structure. Obviously such

combination can have a future in aluminum electrolysis cell process control.
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In summary, when the expert system is applied to the electrolysis process,

the foliowing benefits can be obtained:

Direct measurable benefits include:

Improved quality and better consistency
Increased yields and reduced wastage
Increased energy efficiency and production
Reduced manpower through greater automation
Reduced downtime

Lower operating costs

More efficient resource utilization

Timely diagnosis of irregular cases

Help operator to correctly solve problems
Realize the control based on experience.

Indirect benefits include;

Repository of knowledge

Training spin off

Makes expertise more widely available
Improves competitive advantage

Eases system understanding and maintenance
Can lead to better working practice.

However, several limits to the use of the expert system, which restrict

applications in industry are:

Lack of understanding of domain knowledge
Lack of skilled developers

Difficulty to change the knowledge base
Cost and development time

The main limitations are concerned with knowledge acquisition and expert

system design. How to improve such limits is one of this work’s goals.
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CHAPTER 5 KNOWLEDGE ACQUISITION FOR EXPERT SYSTEM

DESIGN

5.1 Introduction

In this chapter, two kinds of knowledge acquired for different purposes are

introduced:

e Knowledge acquisition | — applied for knowledge engineering
e Knowledge acquisition Il — applied for knowledge base casting

To develop an expert system for a specific domain application, a preliminary
step is to study the fundamental knowledge of this domain. Although this type of
knowledge may not be directly applied to the construction of the knowledge base,
it is very important to help the knowledge engineer understand the process as it
then allows the latter to organize the domain knowledge and to design an efficient
expert system. The part called “Knowledge acquisition I” is collected and

reorganized for this purpose. It consists of two parts:

» Relevant domain-specific knowledge
e Aluminum electrolysis production technologies
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In these two parts, all the concerned domain knowledge is discussed. We
also analyze the technologies of the aluminum electrolysis process, which must be
considered in the expert system design, as they will directly affect the efficiency of

production.

The second part of the knowledge acquisition is the knowledge that will be
directly coded into the knowledge bases of AEPES (Aluminum Electrolysis
Process Expert System). This knowledge concerns the real life detailed operation,

as acquired from domain experts and operators.

Although these two types of knowledge are acquired for two different

purposes, they can be considered as forming an entire body of knowledge.

5.2 Knowledge acquisition | — for knowledge engineering

The first thing to do in constructing an expert system is knowledge

acquisition. This is often considered to be a difficult task for the following reasons:

e Domains have individual specialties. Analyzing its concepts and
communicating with the experts efficiently are rarely straightforward tasks,
even if the basics of the domain are well understood. For example, behind
the simple jargon “anode effect,” many relevant concepts are involved. If
one does not have a deep understanding of the mechanism, one cannot
understand how the experts solve the problems.

¢ The expertise and the facts presented by the experts are presented in
human language. The difficulty is often in coding them in terms of a
mathematical or logical function for the rule base, which is used in the
programming language.
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e To solve the problems belonging to a special domain, not only the
relevant expertise is needed, but also the basic knowledge is required.
For example, to diagnose the problems of the aluminum electrolysis
process, more relevant knowledge is involved, such as information about
raw materials, control system, cell design and anode quality.

e The systems applied for one type of cell are based on the knowledge
with the same generality, but each individual application still has its
particularities.

To solve such problems, the following steps have been applied in the

knowledge acquisition process.

5.2.1 Acquaintance with aluminum electrolysis process

The domain—specific knowledge of aluminum electrolysis process could be
seen as composed of several knowledge domains. Figure 5.1 shows the

relationships between them.

RAW
MATERIAL

OPERTY

ELECTROLYSIS

PROCESS

OPERATOR CONTROL
TECHNIQUE SYSTEM

Figure 5.1 Domain-specific knowledge relationships
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As described in Chapter 3, some parts of these individual knowledge
domains are also the components of the expert system built in the present thesis.
Therefore, in addition to general knowledge on the aluminum electrolysis process,
all domain-specific knowledge should also be studied for the next step of

knowledge base building.

5.2.2 Relevant domain-specific knowledge
5.2.2.1 Alumina properties

Since alumina is the fundamental raw material of aluminum electrolysis, its
properties strongly affect the cell operation, final product quality and production
efficiency. The important physical properties of alumina are listed in Table 5.1 [1,

2].

Table 5.1 Main physical properties of alumina

Alumina physical properties

Water content

Specific surface area
Particle size distribution
Angle of repose
Flowability

Attrition index

Bulk density

Alpha content

Loss on ignhition

OCO~NOOPWN =
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Variations of these physical properties affect the following pot parameters:

Current efficiency
Energy efficiency
Alumina dissolution
Bath propetrties
Fluoride emissions.

5.2.2.2 Process control data

The performance of aluminum electrolytic cells also depends on the cell

control. A well-controlled process will lead to the higher performance of cell. The

aim of cell control is to keep the process close to the targets. The controlled

process parameters are:

Cell pseudo resistance
Pot line current

Anode current distribution
Alumina feeding rate
Bath composition

Metal and bath level.

5.2.2.3 Cell design

Ditferent cell designs require different operating techniques that will result in

different production performance. Therefore, the knowledge base must be specific

to the particular cell design. For both Séderberg and prebake cells, the cell design

takes into account the following aspects [3]:

Cell current and voltage
Busbar design
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Cell magnetism
Cathode and anode geometry and materials design

Automation of work practices
Thermal balance
Environmental protection.

5.2.2.4 Anode properties

The anode is another important raw material used in aluminum production;
its quality affects the productivity and quality of the aluminum produced. Main

factors monitored routinely are:

e Granulometry of the aggregate
e Amount of pitch chemical components
e Baking quality.

Many production problems are caused by poor anode properties; therefore,

the knowledge of anode properties must be included in the knowledge base.

5.2.2.5 Cell operation

A skilled operator remains an important factor in cell operation. Although
routine operation in modern plants is less dependent on the operators, daily
maintenance, measurements and control of problem cells are still performed by the

operators. The main tasks of the operator’s daily maintenance work are:
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Anode changes

Metal tapping

Bath temperature, bath and metal level measurements
Bath composition control

Exception cell analysis.

The information on the cell status, gathered from operators, is required for
the reasoning of the expert system. Also, the operators will carry out the

suggestions given by the expert system.

5.2.2.6 Cell technologies

All new plants and most existing plant expansions are built with prebake
technology. There is a trend towards larger cells and higher currents in each new
generation of cells. In the early 1950s the cell current surpassed 100 kA. Thirty
years later, in early 1980s, the cell current reached nearly 300 kA. In 1991, a 500
kA cell was announced. New features also include point feeders, that discharge
less than 2 kg alumina per addition. All new prebake cells are also hooded for
pollution controi and the process control is done by computers. The operational
petformance of modern prebake cells has dramatically improved and is typically at

95% current efficiency and 13.5 kWh/(kg Al) of energy consumption.



107

5.2.2.7 New alumina feeding technology

The key to high cell performance is the alumina feeding. The most recent
cell technologies use point feeding, which is done by two to four point breakers in
the center aisle of the cell. Point feeding technology allows the control of the
alumina concentration in the bath to a very narrow range of 1.5 — 2.5%. The lower
limit is very close to the anode effect, which is avoided due to control algorithms
that predict its approach. The anode effect frequency may be as low as 0.05
anode effects per cell per day. Emissions are also very small because the cells are
hooded and the gases are scrubbed to 99.5% efficiency. All new plants, and most

expansions of existing plants are based on this technology [4, 5].

5.2.3 Basic process control technology for aluminum electrolysis

5.2.3.1 Typical process control technology

The basic function of any cell control system is to control the process
variables in the short term, to make allowances for slowly changing variables and
to take preventive action when abnormal cases occur in operations. The strategies

of cell process control are concerned about the following [6]:

Materials supplied

e Alumina
e Aluminum fluoride
¢ Anodes.
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Work routines

e Tapping

e Liquid level control
e Anode changing

e Anode covering.

Methods

e Consistency in working procedures

e Rectifying the deviations of the important operating variables

e Making provisions against any of the usual process disruptions or
operation interference.

Control actions are based on the deviation of measured cell process

variables from their target values. The following variables are controlled:

Line amperage

Cell pseudo resistance

Alumina feeding

Bath composition and temperature
Anode cover thickness

Bath and metal level

Anode current distribution

Cell pseudo resistance instability.

These variables are of great concern to two most important control

strategies: control of cell pseudo resistance and control of alumina concentration.

Control of cell pseudo resistance

The cell voltage and current are the only two cell variables that are

measured automatically with the sampling interval ranging from 1 — 60 seconds,
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depending on the technology used. Cell voltage and resistance are used to

calculate the cell pseudo resistance defined as:

ext (5_1)

Where: R = cell pseudo resistance
V = cell voltage
Vext = €xtrapolated voltage
I = cell current

Cell pseudo resistance is controlled instead of the cell voltage. It turns out
that the cell current variations cause cell voltage variations, but not cell pseudo

resistance variations if Ve is chosen correctly. Typically Vex = 1.6 — 1.7 V.

Cell pseudo resistance varies with alumina concentration on a slow time
scale in the order of one hour. It oscillates also when waves are present or there
are other problems. The time scale of wave oscillations is from 20 — 60 s. Much
more rapid oscillations with a different time scale are due to bubble release (1 s
scale) or problems such as anode points, pieces of broken carbon anode in the
bath, or a low anode. The cell pseudo resistance oscillations, called instabilities,
are usually controlled by raising anodes, but often operator intervention is

necessary in order to identify the problem.

Control of alumina concentration

The alumina concentration in the bath is one of the most important cell

parameters. Unfortunately it cannot be measured. It can only be inferred from the
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pseudo resistance, which is deliberately varied by over and under feeding in point
feeder cells. In batch fed with side broken cells, the concentration can be
controlled roughly by the amount of alumina fed at each feeding. Anode effects

can often be avoided by the same technique as in point fed cells.

Latest development of process control system

In recent cell process control systems, some advanced control strategies
have been used which lead to substantial improvements in cell performance. One
of them is the automatic control of cell heat balance. Most technologies use heat

balance control algorithms based on excess AIlF, and bath temperature
measurements. The controlled variables are cell resistance and AlF, additions. In
most recent cell designs the AIF, feeders are shot at intervals separated from

alumina feeders. The control strategy relies on the relationship between bath

temperature and AlF, additions [7].

5.2.3.2 Typical computer control system

At the present time, computer control systems are widely applied in the
aluminum smelters. Figure 5.2 illustrates the typical structure of a computer control

system.

This is a hierarchical computer control system. The supervisory computer
can log and display data of the whole plant. At the intermediate level, the control

computer monitors line current, cell voltage and pseudo resistance and all other
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measured variables. It also provides access to data and process analysis software.
Some technologies have individual cell controllers, which control cell resistance
and alumina feeding and the cell state control box. The cell controllers are
mounted on the wall near each cell and are connected to the central control
system. The potroom operator can select between automatic and manual control.

The cell state communicator activates special control routines such as metal

tapping and anode changing.
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Figure 5.2 Typical structure of a smelter computer control system [6]



112

5.3 Knowledge acquisition Il - knowledge casting to rules

Most sources of knowledge used for the present thesis are published

papers. Several open sources are studied. The most important ones are:

"Diagnosis and Correction of Irregularly Operating Cells" by Tabereaux
[9]. The basic knowledge of an engineer level expert system is taken from
this source.

Horvath’'s special report on the detection of typical disturbances in the
operation of all types of cells. This contribution is of benefit to our operator
level expert system [10].

Master’s thesis of DesBiens, whose knowledge base was developed for
alumina feeding of the Alcan high amperage experimental cell (A-310)
[11].

Two other expert systems were analyzed as reference material. Both
were built for diagnosis of anode problems in a vertical stud Séderberg
cell [12].

Since it is desired that our expert system should be used in conjunction
with the existing control system, the general knowledge of existing
process control systems of aluminum electrolysis was also studied.

In the following sections, we will analyze each of the aforementioned

knowledge sources.

5.3.1 A special course materials

The general knowledge applied in our system is collected from a special

course of Alton T. Tabereaux: "Diagnosis and Correction of Irregularly Operating

Cells, Aluminum Electrolysis - Theory and Practice of Primary Aluminum

Production”. We began analysis on the version 1992 of this course. The
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fundamentals of ENGES knowledge base were built with this knowledge. This
course material describes diagnosis methods for irregularly operating cells. We

updated this material with two latest versions of the course [13, 14, 15].

5.3.1.1 Basic structure of the course

Most of the knowledge found is of a general nature and is not related to a
specific cell or class of cells. It is divided into five classes and related sub classes.
Our knowledge base also follows the same arrangement and uses similar classes

and sub classes:

Unstable cell voltage

e | ow anode

e Excessive metal tapped from cell

e Carbon lump in bath - under anode
e Broken anode carbon

e Broken stem or anode burn off

¢ Anode heeling - on lumps

e Metal "roll" or inversion

e Spiked or grounded anode.

Excessive number of anode effects

Empty bins or obstruction of bins and feeders
Liquid bath level too low

Bath temperature too low

Change in alumina properties.



Muck (sludge) accumulation in the cathode

e Soft alumina slurry / or muck

¢ Hard thick muck - very hot "sick” cell.

Anode carbon quality

e Anode quality
e Cell operations.

Higher iron impurity

¢ Anode stem erosion
e (Cathode collector bar and cast iron.

5.3.1.2 Basic characteristics of the course
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In order to code Tabereaux’s knowledge into rules and to build a knowledge

base with an efficient reasoning ability, it is necessary to extract the basic

characteristics of his knowledge. Several characteristics of this knowledge can be

identified:

Instability of cell voltage

Computer technology has greatly improved the control and performance of

cells. In the computer control approach, the variation between the cell voltage

measurement and designated set point value determines the relative instability of

the cell. Therefore, Tabereaux uses the instability of cell voltage to provide early

warning information to potroom operators and to diagnose the most common
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operational problems. He also uses the standard deviation of the cell voltage as a
voltage stability index over different time periods and provides short or long-term
instability information. No doubt, this unified instability of cell voltage will help us
build some rules, which will lead to faster reasoning and to a clearer questionnaire

of the user interface.

Visual descriptions of process problems

The aluminum electrolysis process is a complex electrochemical process
and there are many problems occurring in the small space around the anode-
cathode. In many cases, there is no obvious visual phenomenon to be seen from
the outside. To help the operators identify the different cases, Tabereaux provides

the graphics of sick cells.

Svymptom-Cause-Action presentation

A rule-based system is our choice for the expert system design. In
Tabereaux’s work [9], the symptom-cause-action presentation is close to the "IF-
THEN" structure of a rule. The "symptom" presents the various phenomena
occurring in a problem, the "cause” specifies diagnosis results and the "action”
tells the operator how to solve the problem. Such a straightforward and natural
presentation helps the operator understand, and is also of benefit to our rule base

construction.
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Table 5.2 is a typical example with the structure "Symptom-Cause-Action”

and its graph:

Table 5.2 An example of diagnosis and correction

Problem Low anode

1
Symptoms 2
3

Computer instability factor is higher than normal
Iindividual anode currents are high and more unstable

Anode spike, red stem or anode burn off may occur

Anode is too low

1
Causes

Anode set too low
Increase in cell resistance

Increase in metal turbulence

Actions

Measure anode current distribution to determine which is
the faulty anode

Raise anode until a normal current and stable cell
voltage result

Recheck current about two hours later. Including all
anodes in cell

Ensure correct anode setting on new anodes

Graphics

Computer instability graphic chart (Figure 5.3)

Diagram of low anode case (Figure 5.4)

5.4:

Two graphics listed in Table 5.2 are shown next as Figure 5.3 and Figure
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Cell Voltage Set Point Standard Deviation Comments
+0.50 mV
-------- /\W\MNY\N‘#\AW 4.250 0.015 Normal
-0.50 mvV
+0.50 mV
’ ,W \ 4.250 0.050 Low Anode
LAY LAY : :
iyt \
-0.50mV

Figure 5.3 Computer instability graph charts

NORMAL A-C DISTANCE

Figure 5.4 Low anode case
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5.3.1.4 Conclusion

Depending on the analysis of the knowledge from Tabereaux, we found that
the characteristics, the structure of the knowledge and its diagnosis function are

close to that needed for our expert system.

In six sub-systems of the knowledge base of ENGES (See Section 6.3.1
“Structure of ENGES”), the first five sub-systems are mainly adopted from the
Tabereaux’s course. The remainder of the knowledge is acquired from other

sources.

The five sub-systems of ENGES, based on Tabereaux are:

ENGES_1.knw: 20 rules
ENGES_2.knw: 35 rules
ENGES_3.knw: 14 rules
ENGES_4 .knw: 15 rules
ENGES_5.knw: 14 rules

5.3.2 An internal report to UQAC

Horvath summed up his expertise in a special report to UQAC [10] as a
contribution to our knowledge base. Whereas Tabereaux's course is of a general
nature and not related to a specific cell, Horvath's report is more concerned with

specific cell problems. The major topics of this report are the following:

¢ Narrow range of variations
¢ Consistent operation
e Qperation of a pot-line as a single unit
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e Adjustment of common parameters to maintain the proper heat balance.

Horvath also provided a reference/test data bank for four types of cells.

5.3.2.1 The basic structure of the report

The knowledge provided in this report is based on the following typical

operational states and disturbances in the cell operation:

e Cooling trend in cell operation
e Warming trend in cell operation
e Typical disturbances in cell operation.

In view of solving the routine operation problems, the major part of this
knowledge is the analysis of typical disturbances in cell operation. The typical

disturbances are grouped into two major aspects:

1. Operational concerns

High energy consumption

Low production

High raw materials consumption
High labor load

Low efficiency operation

High pollution.

2. Cases identified
The detailed contents of the cases identified are described in Table 5.3,

Table 5.4, Table 5.5, and Table 5.6:
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Table 5.3 Case 1: Detection of disturbances based on data supplied
from pot controllers

Case 1 Identified from pot controllers

o Unstable cell voltage, the cell voliage fluctuation is lower
than normal

e Unstable cell voltage, the cell voltage fluctuation is higher

than normal

Anode effect frequency is lower than normal

Anode effect frequency is higher than normal

Average anode effect voltage is lower than normal

Average anode effect voltage is higher than normal

Number of daily anode movements is less than normal

Number of daily anode movements is more than normal

Table 5.4 Case 2: Detection of disturbances based on data supplied
from traditional plant measurements

identified from traditional piant

Case 2
measurements

e Electrolyte level is higher than normal
e Electrolyte level is lower than normal
e Metal level is higher than normal

® Metal level is higher than normal

Table 5.5 Case 3: Detection of disturbances based on data supplied
from laboratory analysis

Case 3 Identified from laboratory analysis

¢ [ron content increases in the metal
e Silicon content increases in the metal
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Table 5.6 Case 4: Detection of disturbances based on data supplied

from non-traditional plant measurements and observations

Case 4

ldentified from non-traditional plant
measurements and observations

0 0000 O0O0O

O 0 0

Anode problems

Siudge problems

Ledge profile problems — poor ledge

Ledge profile problems — extended ledge

Red anode stem (Prebake cell)

Intense anode top evaporation (Sdderberg cell)
Anode covering by alumina (Prebake cell)
Sticking between anode casing and carbon anode
(Séderberg cell)

Anode gas burner problems

Gas hole and feeding hole problems

Gases escaping through crust

5.3.2.2 Testing databank for selected cell types

In order to test our knowledge base, a databank was compiled for four types

of cells:

Low amperage, Sdderberg, vertical stud (VSS)

Low amperage, open prebake pot (OPB)
Medium amperage, hooded prebake pot (MPB)
High amperage, hooded prebake pot (HPB)

This databank contains two types of data in sub databanks. The first is the

general pot line data, as well as a brief description of the cell type. The second is

the process data from specially selected cells and cases. All the data in the

databank came from four possibie sources:
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Cell controller

Regular measurements taken by potroom operators

Observations (and no regular measurements) taken by potroom
operators

Data from laboratory analysis.

5.3.2.3 Designated parameters for the examined cell types

For on-line diagnosis and consultation, the following designated parameters
for the steady state of four typical cell constructions and cell operations are also

proposed:

Line current

Electrolyte composition
Electrolyte temperature

ACD

Anode voltage drop

Cathode voltage drop

Bus bar voltage drop

Current efficiency

Daily production

Alumina demand per day
Scheduled crust-breaking interval
Number of anode effects/day
Alumina feed at anode effect
Target value of 48h tapping interval.

5.3.2.4 Basic characteristics of the report

Compared to other sources, some different characteristics of this report are:

e The knowledge generalized from Horvath's 30 years experience in the
domain of aluminum electrolysis process helps us create very concrete
suggestions for the operators.
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The presentation of the fault diagnosis process in Horvath’s report also
uses symptom-cause-action structure for special cells that is similar to our
rule structure.

Data collected directly from the operating plants provides the possibility
to verify the prototype of our knowledge base during the development.

In the preliminary stage, for the different expert system shells (Comdale
and Gensym's G2), the databank was developed using MS Excel. One
sheet of an Excel file contained the general pot line data. Several
separated sheets contain the data for specific cases. The Excel file was
used as a type of databank, which allows the expert system to
communicate through the network by DDE or ActiveX mode.

Detailed descriptions of symptoms of cooling and warming trends in
operation provide relevant knowledge for fong term or short term cell
status prediction.

5.3.2.5 An example of diagnhosis and correction

A typical example from Horvath’s report [10] identifies the causes of

unstable cell voltage, which is a common problem in production. This example
presented the formalized structure and suggested execution instructions. These

are shown in Table 5.7, Table 5.8, Table 5.9, Table 5.10,and Table 5.11.

Table 5.7 Causes of unstable cell voltage and cell voltage fluctuation is

higher than normal

Cause -
Number Causes ldentified

Case 1 Anode cathode distance is too low

Case 2 There is short circuit between the anode and cathode
Case 3 Electrolyte and metal are mixed
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Table 5.8 Suggested action for cause No.1

Cause No.1: Anode cathode distance is too low

Action

Increase the cell voltage by 100 mV, then check cell operation
after 1 hour

Table 5.9 Detail causes of cause No.2

Cause No.2: There is short circuit between the anode and cathode

Detail causes

Case 2.1 Metal waving, too much metal was tapped from the cell
1. Carbon patrticles or carban pieces in electrolyte
Case 2.2 2. Poor anode quality or failure operation
1. Anode spike
Case 2.3 2. Poor anode quality or failure operation
1. Anode is on the frozen ledge
Case 2.4 2

Operation failure and extended ledge

Table 5.10 Suggested actions for detail causes of case No.2

Actions for detail causes of case No.2

For Cause 2.1

1. Check the metal height
¢ Add hot metal into the cell from another cell, if needed
e  Skip the next tapping

2. Check the cell voltage stability after 2-4 hours

For Cause 2.2

1. Check the anode quality (laboratory test). Use a quality anode that meets
the specifications

2. Remove the carbon particles or carbon pieces from the electrolyte

3. Check the cell voltage stability after 2 hours




125

1. Check the anode bottom to find the location of anode problem. If spike
For Cause 2.3 present, lift the anode and remove the spike.
2. Check the cell voltage stability after 2 hours
1. Check the anode botiom to find the location of anode problem. If spike
For Cause 2.4 present, lift the anode and remove the spike.
2. Check the cell voltage stability after 2 hours
Table 5.11 Actions for case No.3
Case No.3: Electrolyte and metal are mixed
Action 1 | Lift the cell voltage by 200 mV
Action 2 | Add hot electrolyte into the cell
Action 3 | Increase the alumina layer thickness on the crust
Action 4 | Check the cell voltage stability after 3-4 hours

5.3.2.6 Conclusion

The knowledge acquired from Horvath constitutes the main part of the rule

base of OPEES. Some of this knowledge was also used in ENGES.

The knowledge used in ENGES is mainly in the domain of “Trends

Prediction.” There are 20 rules coded into this part of the rule base. Some detailed

suggestions about pot operation are also built into the relevant rules of ENGES.

In OPEES-1 and OPEES-2 (See Section 6.3.2 “Structure of OPEES”),

there are four sub-systems in each. In each sub-system of OPEES-1, 85% of the

total of 298 rules are based on the knowledge of Horvath. But for the sub-system
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of OPEES-2, there are also 85% of total 302 rules based on Horvath’s knowledge.
Depending on these rule bases, OPEES has some ability to diagnose the on-line

information and to do the reasoning to identify the problems.

5.3.3 A master’s thesis about an alumina feeding expert system

This master’s thesis of DesBiens [11] provided a design of an off-line expert
system for an experimental electrolytic cell A-310 of the Arvida Research and

Development Center of ALCAN.

5.3.3.1 Basic structure of the knowledge base

This expert system was developed using the Comdale/X expert system
shell. To construct the knowledge base for this cell and its special feeding system,

DesBiens collected the knowledge from the following five sources:

Devices and mechanical parts of alumina feeding system
Computer system

Anode effect properties

Cell pseudo-resistance tracking

Sludge formation in the cell

Interviews with cell experts and operators.

Based on the properties of different objects of the knowledge collected,
sixteen classes are used to identify such different objects. Among them, thirteen

classes are concerned with the following six aspects of the feeding system:
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Air-slide conveyor system
Feeder

Alumina hopper

Feeder test

Alumina properties
Breaker.

5.3.3.2 Basic characteristics of this work

Interviews with experts

In order to become acquainted with the aluminum electrolysis process and
to collect relevant knowledge, one important method adopted by DesBiens is

interviewing the domain experts. The following topics were discussed:

Alumina feeding schedule and transport system

Cell voltage and resistance

Alarm and computer system

Anode effect

Sludge problem

Relationship between alumina feeding and bath level.

Strong points of this work

e It can be used to diagnose the problem or help to make a decision for a
real cell (Cell A-310)

e The question uses natural language, which facilitates the interaction with
the operators
* Interfaces consist of both text and graphics for easy understanding.

Decision tree

DesBiens created a decision tree to represent the knowledge acquired from

experts and used it for rule induction and for solution searching. A decision tree is
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a graphical representation of a procedure for classifying or evaluating the elements
of its domain. For large and complex decisions, the decision tree can organize the
elements efficiently while considering all possible options.

Although the decision tree may be valuable for the diagnosis of some
problems, for most rule-based expert systems, it is not the typical reasoning
approach. Forward chaining and backward chaining are still two basic technologies

used in such cases.

5.3.3.3 Conclusion

Although the performance and the application range of this expert system
were limited by its task and the software applied, we still can find some benefit
from its knowledge base. First of all, the detailed description of the conversations,
which contains the experience from domain experts and operators, helps us to
become acquainted with this domain knowledge and to learn how to acquire the

knowledge from interviews with the domain experts.

Secondly, some knowledge about the alumina feeding system can be used
in the knowledge base of ENGES. This knowledge is built into five rules of the
second sub-system of ENGES. But it is clear that we cannot directly apply the
knowledge due to its specific source, which is the A-310 cell. We selected only the
knowledge related to the alumina feeding system and the number of anode

effects.
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5.3.4 Two relevant expert systems

Two expert systems in the domain of the aluminum electrolysis process,

EPURNXP and VS-Anode Expert System, were made available to us [12].

These two systems were developed using the NEXPERT expert system
shell. We iested these two applications, but unfortunately, due to some necessary
files missing we could not run the EPURNXP, and only the VS-ANODE Expert

System was examined [16, 17].

This expert system was designed for the Sodderberg anode problem
diagnosis. From the rule base analysis and the testing results, we found that there

are four main problems addressed in this knowledge base:

Anode dusting problem
Manufactured materials
Paste leaks

Raw materials.

The reasoning process is based on the specific values of anode
parameters. The VS-ANODE Expert System was built only for Séderberg anodes
in an ALCAN smelter. The parameter values used are also specific. Only with
these can the diagnosis be found. For example, while the anode dust problem is
checked, the question asked is: “What is the value of the pitch mesophase
content? The normal value ranges from 0.0 to 1.0%. Please type the value.” For

such kind of problems, if the required parameters are not available, the diagnosis
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process has to be discontinued. Therefore, it is impossible to apply such

knowledge directly to our expert system.

The VS-ANODE Expert System does use some text questions instead of
numerical parameters. For example, a text question shows that: “ls the
pitch_content_high status?” No numerical parameters are needed for this kind of
guestion. Unfortunately, such text questions cannot generate the final reasoning
result as only preliminary suspected results are provided. If we want to obtain a
final reasoning result, additional numerical parameters are required. For example,
the conclusion will be: "Problems with the paste aggregate fraction are suspected.
Please enter the detail fractions data.” In a total of 147 rules of the VS-ANODE
rule base, only 21 rules use text questions. In order to benefit from the knowledge
of the VS-ANODE Expert System, we selected 19 of these rules and transposed

them to ENGES for reference only and not as a standard function selection.

More information about the NEXPERT and the detailed analysis about the

VS-ANODE Expert System can be found in APPENDIX 2 “VS-ANODE Expert

System Study”.

5.4 Acquired knowledge management

After studying various sources and interviews with the domain persons, the
collected information still needs to be analyzed. The objectives of this effort are to

determine what was leamed and what additional information should be acquired.
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Then the individual knowledge has to be integrated into the overall knowledge

base.

5.4.1 Acquired knowledge analysis

Knowledge collected from domain persons will provide confidence in the
future behavior of the system, but there can never be total certainty about the
correctness of any experience. The quality of knowledge acquired will often be the

determining factor in its success.

According to the requirement of the particular purpose of the expert system,
the acquired knowledge must be analyzed and organized, and then integrated if it
comes from different sources. For instance, Tabereaux’s knowledge is used for the
general analysis of the electrolysis process, but Horvath’s findings make more
sense for detailed operating practices. Both of them give different views for the
fault diagnosis process. Therefore, the final knowledge bases were connected with
each other. But for the different purposes, individual knowledge bases still keep

their characteristics.

5.4.2 Acquired knowledge organization

It has been said that we analyzed the knowledge acquired and organized it
into two expert systems: engineer level and operator level expert systems. First,

we built the engineer level expert system, ENGES, which mainly based on the
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knowledge from Tabereaux’s course. Secondly, when Horvath’s report was made

available, we developed the operator level expert system, OPEES. The knowledge

base and the database are coded for the different types of the cell and on-line

consultation. The final knowledge bases compensate for the personal limitations of

the individual experts by drawing from each other’s sources.

5.4.3 Knowledge maintenance

From the start, knowledge maintenance is a considerable problem. The

knowledge evolves; therefore, the modification of the knowledge base becomes an

unavoidable task, which has to be concerned with the following aspects:

Over time, the behavior of the cells changes gradually. To obtain correct
diagnosis results, the related database must be modified. For example,
the previous diagnosis results show that there is a small hole in the
cathode of the No. 45 cell. If such problem remains there, then this
information must be noted in the database to help further diagnosis.

An expert system often faces updating of hardware and software.

User evaluation and acceptance of the expert system will be heavily
influenced by the quality of the diagnosis process. During the normal
operating process, the user will often offer some new elements to the
knowledge.

In order to simplify the routine maintenance work, the interface must be
designed so that the data can be easily modified. For example, the alarm
limitations of process data are different for different cell ages. These
parameters should be easy to change without modifying the rule base.

This points to the fact that if an expert system is to be useful in an industrial

application, the system must be designed for easy maintenance.
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CHAPTER 6 AEPES - BASIC DESIGN

6.1 Obijective of basic design

The objective of this work is to develop an expert system for diagnosis of
irregularly operating aluminum electrolysis cells. As mentioned previously, there
are several types of cells in primary aluminum production. Each type requires
different operating practices. Normally, an expert system would be built for each
cell technology. Until now, no generalized expert system for all types of cells has
been built. Our challenge is to build one expert system for several technologies
and at the same time to allow for specific features of each cell type. The expert
system must also be easy to maintain. It is hoped that this expert system will

benefit industrial users, particularly those for whom human experts are not

available.

6.2 Basics of Comdale/X

The expert system shell applied for the basic design of AEPES is

Comdale/X, which is a consultative expert system. It is principally used for
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diagnostics, training, intelligent on-line documentation and operator support.
Comdale/X provides a user-friendly environment for the development and delivery
of expert system applications used in stand-alone or embedded applications.
Embedding is the key element of Comdale/X as it allows use of existing control
software and the host system. Comdale/X consists of two developing components,
an expert system editor and a form editor, applied for system development and

interface design.

The new generation shell of Comdale, SmartWorX, was also one of the
strong candidates as new developing shell. We have tested SmartWorX for
verification and comparison. Some preparations for software transformation have
been done. The detail information and application example of Comdale/X and

SmantWorX can be found in APPENDIX 1.1 “Comdale/X” and APPENDIX 1.3

“Application examples.”

Finally, although SmartWorX was not applied to develop our expert system,
we learned many things from this test procedure that will benefit our system in
many aspects, such as: system design, intelligent alarm system, interface and

real-time function design.
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6.3 General structure of AEPES

The management of generalized knowledge and particular knowledge in a
single integrated expert system is difficult. If the knowledge base is built with the
general knowledge, it will be used for solving the general problems only. For
particular cells, more particular domain knowledge for individual cells has to be
included. We built a two-level expert system named AEPES (Aluminum
Electrolysis Process Expert System): the engineer-level sub-system is named
ENGES (Engineer Expert System) and the operator-level sub-system is named
OPEES (Operator Expert System). The generalized knowledge about the
aluminum electrolysis process is entered into the former. The latter does not only
contain the generalized knowledge, but also complements the cell-specific
knowledge. The knowledge is organized into different modules, which are the
building blocks of the knowledge base. The advantage of this modularized
approach is its flexibility as it will be easier to develop a knowledge base for a
particular cell, while adding the special knowledge modules to the general

knowledge.

The relationship of these two expert systems can be compared to the tasks

of the engineer and the operator:

e The engineer expert system is concerned with general analysis.
e The operator expert system makes quick decisions and provides detailed
suggestion on operational practices, similarly to a skilled operator.
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AEPES can operate in two modes: consultation (off-line) and real-time (on-
line). The real-time operation is used in conjunction with the cell simulator, which
generates the data. The operational mode is selectable by the user. Components
of AEPES can work co-operatively or separately. It should be noted that ENGES
could work in off-line mode only whereas OPEES can work in both modes. The

general structure of AEPES is given in Figure 6.1.

Expert System Selection

J

ENGES e m— OPEES-1 OPEES-1

P v P v

Communication Bridge

4 v

Cell Dynamic Simulator
or Real Process

Figure 6.1 Structure of AEPES

ENGES is normally used in analysis or as a training tool for either engineers

or operators.
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ENGES can co-operate with OPEES. When they co-operate, the results
and predictions of ENGES are transferred to OPEES or are saved in a file. The
results transferred to OPEES increase its speed and accuracy. Subsequently, the
results of OPEES can be fed back to ENGES. The system and process data of
ENGES are modified by this feedback information. When OPEES works in the on-
line mode, two types of OPEES can be selected for two different cases, as will be

specified later in Section 6.3.2 “Structure of OPEES.”

The user interacts with the AEPES via the user interface. Several forms
have been designed for questions and answers. Although the user has access to
the components of the knowledge base (classes, objects and rules) and to the
inference engine (to select different reasoning strategies), these actions are better

reserved for the knowledge engineer.

ENGES is built around the general knowledge gained from the work of
Tabereaux [1, 2, 3, 4] and OPEES applies information taken mainly from particular
knowledge and detailed process data related to specific cells, acquired mainly from

the work of Horvath [5].

6.3.1 Structure of ENGES

The structure of ENGES is shown in Figure 6.2. When AEPES is started,

the user can select “ENGES” from the “Expert System Selection” form for running.
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Based on the nature and structure of the general knowledge collected, the

knowledge built into ENGES is divided into six classes. These are:

Unstable cell voltage

Excessive number of anode effects

Muck (sludge) accumulation in the cathode
Anode carbon quality

Higher iron impurity

Trends prediction.

The user can select the problems from those six classes to start the
reasoning. As ENGES works in off-line mode, all the information required should
be entered via the user interface. ENGES will ask relevant questions about the
selected problems to acquire the necessary information for the reasoning. The
user can answer the questions with “YES”, “NO” or “UNKNOWN.” If the answer
cannot be confirmed, the user can use the degree of certainty to tell ENGES how
sure the answer is. During inference, the inference engine will organize all the
entered information and then the inference strategy is applied to find out how and
when the reasoning session is to end. The inference strategy is used by both
forward and backward chaining activities. When the reasoning process ends, the
diagnosis results and suggestions are displayed. The suggestions list the

recommended actions to help the user solve the problem at hand.
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‘ Expert System Selection ‘
ENGES OPEES-1 OPEES-2
Cell Type Selection | Unstable Cell Voltage —
I Excessive Number of Anode Effects
Problem Selection
Muck Accumulation in the Cathode ]
_H Anode Carbon Quality
FN Higher Iron Impurity
_N Trends Predication
Inference Engine User Interface Extra Information
- <
Rule Base Consultation Consultation
Report | » Results Output

Figure 6.2 Structure of ENGES

6.3.2 Structure of OPEES

There are many types of electrolysis cells in currently operating aluminum
smelters. Their process control systems are also different. In order to work with the

different cases, we designed two sub-systems named: OPEES-1 and OPEES-2 for
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typical types of cell control systems. OPEES-1 works on an advanced case where
most of the process data are available in a database. OPEES-2 is employed when
only limited process data are available. This case is close to the real situation

prevailing in aluminum smelters.

The structure of OPEES is given in Figure 6.3. To start OPEES-1 or
OPEES-2, the selection has to be done in the “Expert System Selection” form. For

a particular cell, the cell type, cell line and cell number must be selected.

Expert System Selection
ENGES OPEES-1 OPEES-2
| |

v

Cell Type Selection

v

Line and Cell Selection

v

B <] Inference Engine
>

User Interface

S S 2 s

Extra DDE/ActiveXLink

Information
v 4

Databank

Consultation
> Report + t

Rule Base

tv

Simulator / Real process

Figure 6.3 Structure of OPEES
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In the on-line mode, OPEES monitors all incoming process data, and then
releases the current alarm status, if any exists. The user can select any “ON”
alarm status to force OPEES to start the relevant diagnosis. Depending upon the
nature of the alarm states, OPEES may ask the user to provide further information
that is not available in the on-line databank. When the reasoning process ends,
OPEES provides the diagnosis results and suggestions. The user can study those

suggestions in order to check or adjust the faulty cell.

The applied data communication depends on the shell selected. Comdale/X
supports only Dynamic Data Exchange (DDE), which is a standard inter-process
communication protocol for Windows and Windows NT. Comdale/X supports two
types of DDE conversation: MS Excel and ORACLE. In our applications, the Excel-
type was used. Further, we used Net DDE to enable the data transfer from the
simulator or from the real process to the data files. Net DDE refreshes the data
files by selected cycles and OPEES monitors them. There are three types of data
in the data files: static data (e. g. set point), dynamic data (e. g. process data) and

inference results (e. g. decision).

OPEES can be applied for four typical types of cells:

e Low amperage Séderberg, vertical stud (~75 kA)
e Low amperage, open prebake pot (~75 kA)
e Medium amperage, hooded prebake pot (~185 kA)
e High amperage, hooded prebake pot (~300 kA)
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To test and to verify OPEES in the on-line mode, a virtual cell, developed at

UQAC was used [6, 7, 8]. The benefits of a virtual cell are:

e It can simulate different operational states of selected aluminum

electrolysis cells

e The applied controller emulates a general-purpose, multi-level,
distributed control system
¢ The interface acts as an intermediary between the operator and OPEES.

6.3.2.1 Structure of OPEES-1

OPEES will work in the on-line mode for particular types of cells. Based on

analysis of the current cell control systems, two types of OPEES were designed.

The major difference between them is the number of available process data.

OPEES-1 can directly access the real-time database through the communication

bridge. In our laboratory, the virtual cell supplied most of the process data.

Normally, the main process data of the reduction process are as in Table 6.1:

Table 6.1 Main process data

=z
°

Major process data

Qo~NOCOAWN =

Cell voltage

Cell voltage deviation

Cell voltage fluctuation

Number of anode effects for last day
Average voltage of last anode effect
Maximum voltage of last anode effect
Duration of last anode effect

Number of anode adjustments per day
Cathode voltage drop

Weight of tapped metal

Metal height before tapping

Bath height

Bath temperature
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16
17
18
19
20
21

22
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Anode current distribution
Cathode current distribution
Ledge profile

Red anode stems

Anode gas burner operation
Color of the flame

Fe content

Si content

Bath ratio

We chose twelve of the most important process data from them as the on-

line monitored process data of OPEES-1. Table 6.2 is the list of the monitored

process data chosen.

Table 6.2 Monitored process data

No. Monitored process data

1 | Cell voltage fluctuation

2 | Number of daily anode adjustments
3 | Average voltage of last anode effect

4 | Number of anode effects

5 | lron impurity content in the metal

6 | Silicon impurity content in the metal

7 | Bath ratio

8 | Ledge profile

9 | Bath level

10 | Bath temperature

11 | Metal level

12 | Weight of tapped metal

Using the alarm form, which was designed for monitoring these parameters,

the operator not only can obtain the status of out-of-bounds process data, but also

can choose one of them to make the relevant diagnosis. According to the status of



144

selected data, the inference engine will start the first stage reasoning. If more
information is needed, a check terms list form will appear and ask the operator for

the missing data, some of which may still have to be measured.

Finally, the diagnosis is given and the corrective action is suggested. The

structure of OPEES-1 is shown in Figure 6.4.

Process Data Alarm

State/Diagnosis
. Selection
Question/Extra Check Items List
Information Input F
orm
Form
Cor;{s:l:;ttlon User Cell Type Selection
P Interface
Suggestion . >
Inference Engine Rule Base

v A

| Databank |
v A

Communication Bridge

v 1

Simulator/
Real Process

Figure 6.4 Structure of OPEES-1
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6.3.2.2 Structure of OPEES-2

It has been previously stated that only a few process data can be measured
continuously. In order to meet this requirement, we designed OPEES-2. The

following parameters were chosen for OPEES-2:

Cell voltage fluctuation

Number of daily anode adjustments
Average voltage of last anode effect
Number of anode effect.

It is impossible to do reasoning with incomplete information. Additional
information should be obtained through the user interface. A special double
reasoning strategy is used for OPEES-2. The first reasoning is based on the
automatically monitored process data. Then, an inter-diagnosis report will tell the
operator what additional information is needed and where to obtain them. OPEES-

2 releases a checklist and asks for all required information at the same time.
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6.4 Knowledge base building

6.4.1 Knowledge base of ENGES

Characteristics of the knowledge base of ENGES

As mentioned above, the primary purpose of ENGES is an application for
the general aluminum electrolysis process. The major characteristics of the

knowledge base of this expert system are:

Applied for general purpose diagnosis

Generalized knowledge suitable for most types of cell
Easy to compile

Can be used as a training tool.

Based on such characteristics, we acquired the corresponding knowledge in

two ways:

e General knowledge from books, references, and industrial visits
e More detailed knowledge from domain experts.

Main components of the knowledge base of ENGES

According to the application purpose of ENGES, the structure of knowledge
base was mainly built on the analysis of the Tabereaux’s course material [1] and
several later versions [2, 3, 4]. Other open sources were also studied to complete
this general knowledge. These materials deal with comprehensive information

about the aluminum electrolytic process. In order to suit the actual cases of cell
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operation, the common production problems are divided into six major groups.

Figure 6.5 shows these six main groups and relevant detailed sub problems.

ENGES Knowledge Base

! 1. Unstable cell voltage

——1 Low anode

'——[ Excessive metal tapped from cell

=

'——[Carbon lump in bath-under ancde

_mken anode carbon

——[ Broken stem or anode burn off

'_‘i Metal "roll" or inversion
L—| Spiked or grounded anode

B

L2. Excessive number of anode effects l

Empty bins or obstruction of bins and
feeders

Liquid bath level too low

Bath temperature too low

UL

Change in alumina properties

rLs. Muck accumuliation in the cathode J
Alumina slurry/ or muck ]
Hard tick muck - very hot "sick" cell I

L4. Anode carbon quality

JLS. Higher iron impurity
Anode stem erosion
Cathode collector bar and cast iron

{ 6. Trends prediction ‘

L

Figure 6.5 Main components of ENGES
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6.4.2 Knowliedge base of OPEES

Characteristics of the knowledge base of OPEES

The main difference between ENGES and OPEES is in the running mode.
ENGES works only in the off-line mode, but OPEES can work in on-line mode as
well. Therefore, the corresponding knowledge base is also different. The major

OPEES characteristics are listed as follows:

Applies to the particular type of cells

Specific knowledge suitable for most types of cell

Easy to compile

Can be used as a training tool

Accesses the real time process data

Works as a consultant to help operator to solve the probiems.

Main components of the knowledge base of OPEES

Based on the features of OPEES, the knowledge collected for the
knowledge base building is mainly from the Horvath’s report [5] and completed
with other relevant sources. The knowledge of OPEES can be applied to four
typical types of cells, the SGderberg anode or prebake anode; and low amperage
and high amperage cells. In the knowledge base of OPEES, there are thirteen rule
sets for the corresponding problems. Except these thirteen problems, the
corresponding alarm modules are special for the on-line process data detection. It
will be associated with all the process data of each type of cells. Table 6.3 lists

these main components of the rule base of OPEES.
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Table 6.3 Main components of OPEES

Main components of OPEES

Average voitage of anode effect
Daily anode adjust number
Anode cathode distance
Anode effect number

Bath level

Bath ratio

Bath temperature

Cell voltage fluctuation

iron impurity

10 | Ledge profile

11 | Metal level

12 | Metal tapping

13 | Silicon impurity

O INOIN|~jWIN|—

Another difference between OPEES and ENGES is that there is no problem
selection part in the knowledge base of OPEES. All the user selection is based on

the status of process data, which is detected by the alarm modules.

6.4.3 Modularization of knowledge base

One of the goals of our project is to design components that other expert
systems or other system developers can reuse and that can easily extend to

individual cells. This is why the knowledge base is modularized.

Modules are the building blocks of the knowledge base. This has the

following advantages:
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Allows developers to divide and merge work

Increases productivity, allowing developers to work on different pieces of
the problem without interfering with other developers

Results in potentially reusable modules

Decreases debugging time and limits the impact of bug fixes and design
changes

Increases the flexibility and maintainability of the resulting system,
because it is easy to upgrade or replace single modules independently of
other modules.

6.4.3.1 Module types

Two types of modules are used for our knowledge base building. One is an
independent module, which is the top-level module, in which definitions and
instances of that definition are located in the same module. The other is a
dependent module, which is the low-level module, in which an instance is located
in the dependent module and its definition depends on the top-level moduie in the

hierarchy.

There is only one type of independent module applied in the knowledge
base of OPEES, which is the alarm module that specifies the process data alarm
limitations and then converts the numerical data to the fuzzy expression. All other
modules applied in OPEES are dependent modules, where the located definitions
depend upon the conversions of alarm modules or other modules. They are the
functional modules and structural modules, used for particular problem diagnosis

purposes and logical organization between modules.
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6.4.3.2 Module hierarchy of knowledge base

The knowledge base of OPEES consists of several module sets. They are
organized around functional or structural boundaries, depending upon the needs of

the application. The module hierarchy of the knowledge base of OPEES is shown

in Figure 6.6.

Process Data

Independent Modules

-

v

Y

v

Alarm module 1
(VSS)

Alarm module 2
(OPB)

Alarm module 3
(MPB)

Alarm module 4
(HPB)

Dependent Modules

v

v

y

y

Module Set 1

Problems detected
based on the data
from pot
controllers

Module Set 2

Problems detected
based on the data
from traditional
measurements

Module Set 3

Problems detected
based on the data
from laboratory
analysis

Module Set 4

Problems detected
based on the data
from non-
traditional
measurements
and observations

Figure 6.6 Module hierarchy of knowledge base of OPEES
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Except for the alarm modules, all of the other twelve low-level modules of
OPEES are dependent modules; they must request the necessary definition from
other modules in the hierarchy. This means their work depends upon whether the
reference came from the alarm modules or other modules. The direct process data
treatment is only executed in the alarm modules; otherwise the low-level functional
modules are not active. The functional modules only consider the conclusions of
the alarm modules, where the numeral data is judged and converted to the fuzzy
expressions. In order to reduce the restrictions of particular properties of
knowledge, the low-level modules only treat the more general knowledge and do
not need to be concerned with the particular numeral process data. If the expert
system is required to work for other cells, the modification of the knowledge base

is only necessary in the alarm modules.

Figure 6.7 is an example that shows how the alarm module converts the

numeral value of bath temperature into fuzzy expressions.
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Alarm Module

Data Value

—TD 990.0000

— 975.0000

Bath

Temperature 969.0000

9> 965.0000

L 950.0000

Rank Range Fuzzy Conversion
0.00 Very High
30.00 High
50.00 P Normal
70.00 - Low
100.00 Very Low

Figure 6.7 Example of alarm module

In this example, the bath temperature has been converted to fuzzy

expressions “Very High,” “High,” “Normal,” “Low,” and “Very Low,” which are often

used by the operators in real cell production, especially for the non-continuously

measured process data. All the relevantly functional modules use these

expressions as their symptoms to do the reasoning. Such uniform fuzzy

expression allows them to avoid direct connection to the particular process data;

therefore it can be considered that the functional modules are only based on

relative general knowledge. By this way, we can separate the knowledge into two

parts: special knowledge and general knowledge. This organization will be of

benefit to both the knowledge base design and further expert system extension.
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6.4.4 Knowledge base maintenance
6.4.4.1 System maintainability

To maximize the maintainability of our expert system, the following steps

are taken:

e Use modularity to increase maintainability

By creating small, standard functional modules, we can define
relevant “units” based on their functions for maintenance. Not only is it
possible to deal with every aspect of the functionality of a small module,
we also reduce the potential problem of bug fixes, design changes and
system maintenance. When we use these modules as the element
components, we can reduce the scope of our own maintenance efforts.
This emphasizes the benefit of designing the application as multiple
reusable modules, rather than as a single monolithic application.

¢ Build an user-accessible maintenance interface

Considering the end user requirement, several specific interfaces
are designed for expert system maintenance. These interfaces allow the
user to modify the partial modules of knowledge base to suit the
variations in cell production. Using these interfaces, the user can modify
the process data alarm limitation depending on the cell situation. Of
course the protection of the knowledge base must be considered, either
for system running or system maintenance. Only the authorized users
can obtain access to the modification of the knowledge base of the
system.

6.4.4.2 Example of knowledge base maintenance — updating the process

data alarm limitation

When an expert system needs to be extended to other cells or the
operational condition has been changed during the production life, the

corresponding knowledge must be modified to suit the new conditions. In the
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knowledge base of OPEES, the alarm modules are designed for communication
with the particular process data of individual cells. They receive the on-line data
and monitor their operating status. The alarm module is the sole module which
directly connects with the particular information of individual cells. To meet the
requirements of the particular cells and different situations, the alarm limitation
must be variable. Therefore, it is necessary to provide corresponding environments
that allow users to modify or to update the varied process data limitations. The

interface “System Maintenance” is especially designed for this purpose.

Figure 6.8 is an example of process data alarm limitation value modification
interface of OPEES-1. When the user's name and password have been verified,
the authorized user can select the line humber and cell number to confirm which
cell should be maintained. In this example, the alarm limitation of cell voltage
fluctuation is selected to do the modification. In order to simplify the user
maintenance procedure, and to avoid the user’'s direct access to the knowledge

base, special interfaces are designed.

By using these maintenance interfaces, there is no need to enter the
specific limitation values, as only four values are required: “Normal top value,”
“Normal bottom value,” “Maximum value,” and “Minimum value.” Then the alarm
limitation is obtained by the programmed rules in the modules. The unit of the

process data is also changed automatically depending upon the selected data.
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Figure 6.8 OPEES-1 alarm limitation value maintenance interface

Figure 6.9 illustrates an example of the logic structure of the determination
of the cell voltage fluctuation alarm limitation, which is in the special module of
OPEES-1. When the required value entry is finished, the alarm limitation values in
the modules will be modified automatically. Then, the updating of the alarm

limitation of the cell voltage fluctuation has been completed.
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Figure 6.9 Example of determination of cell voitage fluctuation
alarm limitation

Because different types of cells have different operational data, the alarm
limitations of process data also differ. Therefore, four sets of alarm limitations are

designed for each type of cells in OPEES.
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6.5 Reasoning process improvement

6.5.1 Interface development

Interaction between an expert system and its user conducted in a natural
language style was considered in the system design. The interface plays in a
manner that is acceptable to the user, where the special demands come from the
system. Therefore, the interface is an important component of the expert system; it
was designed in parallel with the development of our knowledge base. The design

and structure of the knowledge base is influenced by the design of the interface.

A basic design requirement of the interface is to ask questions; it is
centered on the “ASK” function. In ENGES, it is the only way to obtain reliable
information from the user. Therefore, attention needs to be paid to the design of
the questions. Menus, graphics, or tailor-made screens are used in our interface

designs.

There are two types of interfaces applied in our expert system development:
user interface and development interface. The user interface is designed by the
system developer. The development interface is intended for the knowledge
engineer and is usually provided by the shell. The user interface can have simple
textual displays or interactive graphics. The developer can develop the system
using a source code approach or be led through various editors during system

development.
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The four types of user interface designed in our expert system are:

e System interface — The system interface is used for running the system,
it contains two levels: introduction and intermediate interface.

¢ Question interface — The question interface is used to obtain information
about the problem from the user. There are two different question
interfaces for system-generated questions and system developer
designed questions.

e Display interface - The purpose of a display interface is to present
information to the user. There are two types of display interface typically
used in our expert system: statement interface and graphical interface.

* Maintenance interface - This type of interface allows the user to modify
specific items in the knowledge base. It would not interfere with the rest of
the knowledge base.

6.5.1.1 System interface

During the running of the system, the introduction interface and the
intermediate selecting interface will give the information about the relevant
systems or procedures, and will allow the user to select the corresponding button
to launch the relevant sub-system or procedure. These types of interfaces are
structural interfaces associated with the relevant parts of the system that can
decide the organization of the system. Figure 6.10 is an example of the
introduction interface of AEPES, where three sub-systems are introduced and will
load the corresponding system depending upon the user's selection. When the
user chooses the desired sub-system and clicks the “Done” button, the selected

system will start to run.
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s

Figure 6.10 Example of introduction interface

6.5.1.2 Question interface

The question interface is the most often used interface; two types of
question interfaces are applied to our system. One is the automatically generated
question interface, the release of which is dependent upon the relevant rules. We
designed another question interface for special purposes. The typical question
interface has three basic parts: text portion containing the question, answer entry
part, and control section. Figure 6.11 is an example of the system generated

question interface.



161

YWhat is the number of anode effects during last 24 hours?

Answer ]
DCpe [100.0 '

Figure 6.11 Example of question interface

Depending upon the question, the user may type in the numeral value or
select “Unknown” or “OK” to answer the question. If the user does not know a
certain answer, he can use the degree of certainty to describe how sure the
answer is. All the information processes through the interface to the working

memory, and then provides for the reasoning process.

6.5.1.3 Display interface

Most of the interface is text-based; the system asks questions and the user
responds by either typing an answer or selecting from a menu of possible answers.
But the graphical interface gives the user more impressions, especially for some

complex cases, that are difficult to describe by text. We designed several graphical
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interfaces for both questions and final suggestions. Figure 6.12 is an example of
graphical interface, where the final suggestion is provided by both the text and the
graphic. The case of “Too close A-C distance” is described in the graphic, where
the definition of A-C distance and the problem occurred is illustrated. The
suggestions describe the detailed action steps in text. This allows the user to

better understand the problem and how to solve the probiem.

Suggestions:
L Meacare knede cursent dizteibution
o™ fy detexmine which is the Sty
snode.

2. vaise snode wtil @ normal curyend
and sizble cell veliage resuliv.

Naxmal
A-C diztance

3. Rechack tusrent shout twa hours
Tater, including all anedes in coll

4, Ensure coxrect anode seiting on
s anade.

Teo close
AT dirtance

Too Close A-C Distance

Figure 6.12 Example of graphical interface

6.5.1.4 Maintenance interface

Compared to other types of interfaces, the maintenance interface needs
more attention to design. The major reason is that the maintenance action will

require direct access to the knowledge base. The corresponding protection must
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be considered, such as the scope of modification and the determination of the
authority of the person doing the maintenance. The detailed description and an
example can be found in Section 6.4.4 “Knowledge base maintenance.” This
type of interface allows the user to modify or to update the specific information of
the knowledge base. It is important that the modification would not damage the

knowledge base.

6.5.2 Uncertainty technique application

In practice, we often have to deal with some information which is uncertain,
vague, incomplete or inconsistent. All these imperfections are different in nature
and lead to different problems. Therefore, the human experts must make
judgments when solving a problem while the information on the problem may be
suspect or incomplete, and some of the knowledge for interpreting the information
may be unreliable. These difficulties are also found in expert systems. In many
cases, we can find that the users answers for the required questions are not
completely true or false, but are in an intermediate state. This situation leads to a
search for techniques to manage inexact reasoning, which results in a need to
develop systems that can draw conclusions under uncertainty, vagueness or

incomplete information.
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6.5.2.1 Certainty factor

One of the probability theories, which are commonly applied for exact
reasoning in expert systems, is called certainty theory. This theory grew out of the
work on MYCIN, which offers a practical technique for performing inexact
reasoning in many expert system applications. It depends on the judgmental belief
values given to the uncertain statement and is suited for problems that lack a

strong statistical basis.

To develop the certainty technique, two important concepts are considered:
representing the unknown (how much is known and how much is unknown) and
the reasoning unknown (when draw the conclusion based on know/unknown).
Therefore, the following different information would be considered for the certainty

techniques:

e Unreliable data: faulty sensors, defective measuring instruments, biased
referees, and factors not taken into consideration, such as changing
conditions

e Incomplete data: complete information not always available, especially
for the cells

e Imprecise data: approximative measurements, manual measurements,
limited number of samples.

The same types of uncertainty can also be present in the rules for drawing
conclusions from the data, where the requirements for reasoning with uncertainty
are concerned with the representation of uncertainty and the combination of

uncertain pieces of information. No general agreement exists on what is the best
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method. Generally, two basic theories about certainty are considered: probability
theory and certainty factor model. The former has a good theoretical foundation,
but has problems with applicability whereas the latter is easy to apply, but is

difficult to justify theoretically.

Certainty factors are subjective, expert-based belief measurements. They
are used in some systems to indicate the strength of the given evidence. In our
system the centainty factor (CF) is used to treat the uncertainty information. The
CF was developed using a simple model specifically for use with the rule-based

expert systems, which are often used in practice [9, 10].

The basic feature of certainty theory is how uncertainty is conceptualized
and manipulated. The starting point for any method of uncertainty theory for
inexact inference is a method for expressing the degree to which each fact or rule
is true. Then, a method for propagating uncertainty is needed as rules are applied
during the inference process. The CF is a number that reflects the net level of
belief in a hypothesis given the available information. The CF, as in fuzzy logic,
assumes that each statement has a degree of truth, which is a number between 0
and 100. Absolute truth corresponds to 100, while certainly false is represented by

0.

In the expent system, the user assigns the CFs to the facts by question-
responses. The minimum CF of the facts becomes the CF of the solution, unless

multiple rules arrive at the same solution. In such cases, the certainty of the



166

solution is calculated according to the formula A + B - A*B/100, where A and B are
the CF of solutions reached by separate rules. To reason with CFs, the system
needs to be able to calculate the degrees of confidence for statements connected
by ANDs and ORs. We write CF (A) for the centainty factor of A. The formula we
use to calculate CFs for conjunctions (i.e., ANDs) assumes that the chain is as
strong as its weakest link and therefore takes the minimal CF in a conjunction. On
the other hand, in a disjunction (i.e., ORs) we have a choice between two
propositions and may rely on the strongest level of confidence. We therefore use

the maximal CF in disjunction. Formally, this means that [11]:

CF (A AND B) = minimum [CF (A), CF (B)] (6-1)
CF (A OR B) = maximum [CF (A), CF (B)] (6-2)

To calculate the final general CF, it is necessary to combine the CFs of
each piece. For calculation of the combined CFs, the product method is the prime

need:

CF= (combined conditions CF * conclusion CF) / 100 (6-3)

Then, the summary CF is calculated as:

CF = (combined conditions CF + conclusion CF) — (combined
conditions CF * conclusion CF)/100 (6-5)
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6.5.2.2 Certainty technique application

There are two concepts about the certainty techniques applied in our work:
certainty factor (CF) and degree of certainty (DC). While the basic theory is
identical, the former is used in the conclusion statement of rules; the latter is used

for the question interface.

The CF is used to present the belief assigned to uncertain information. The
0 to 100 scale is used where the numbers are given a range of 0 (definitely false)
to 100 (definitely true). A positive value represents a degree of belief, while a
negative value indicates a degree of disbelief. For example, if the operator states
that “anode position high” was probably true, a CF value of 65% is assigned to this

case.

During consultation, a keyword triplet may already be instantiated, yet
through assignment, database access or other events, the system may attempt to
assign a new degree of certainty to the triplet. By default, Comdale/X maintains the
lowest degree of certainty. We can customize the method of accumulation of
certainty by using the accumulation facet of a keyword triplet. When the system
starts the reasoning, each conclusion statement in a rule of our system is
accompanied by a CF. The value of the CF indicates the confidence in that

conclusion statement, if the premise of the rule were 100% true.

The DC uses the same numerical value with ranges also from 0 to 100; it is

a measure of how sure the system is that the value of attribute is true. The DC
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reflects uncertainty in data. During the inference, the DC is used in association
with the key words: “Not Known,” “Known,” or “Unknown.” “Not known” is used
before inference commences. “Known” is used when it is assigned a DC.
“Unknown” is used when the system tried unsuccessfully to make the triplet

“Known.” Here is an example rule used in ENGES, which is associated with CF:

IF anode_effect.number.high

AND  crust.type.very_hard

THEN bath.temperature.too_low is TRUE c¢f=90

THEN TEXT “The bath temperature is lower than normal! Go further to
check other relative reason.”

It indicates that if we are 100% sure that the anode effect number is high

and crust is very hard, we are only 90% sure that the bath temperature is too low.

However, we found in many reasoning cases, that the system would often
need to work with uncertain or even unknown information. For instance, the user
often analyzes the available information using qualitative terms or phrases such as
“probably,” “it is likely that ...”, “it almost seems certain that ...”. Therefore, how to
handle the CFs are a very important and a difficult task of system design, and

more detailed knowledge is often needed. If we cannot handle the certainty factor

correctly, a completely different result will be obtained.
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6.5.3 Multiple symptoms criterion — example of certainty theory application

In the rules of the knowledge base, the symptoms are used to describe the
phenomena of the problems that occur. Normally, most of the problems have

multiple symptoms.

In the knowledge we used, we found that all symptoms of the corresponding
problem are only listed as such; there is no specification about the rank of the
symptoms. Generally, the rules use IF-THEN and [F-THEN-ELSE structures in a
rule based system, where the symptoms are treated as the premise in the IF part

of the rules.

In the following rule, found as an example in a previous system, all the

symptoms are arranged by using logic AND:

IF instability.factor.high
AND anode.current.high
AND anode.currents.unstable

AND anode.burn_off.detected

AND anode.stem.red

AND anode.spike.detected

THEN  anode.position.low is TRUE

This rule dictates that the keyword triplet “anode.position.low” will be set to
be TRUE whenever multiple conditions are to be satisfied in the premises. By
virtue of Equation (6-1), the general CF of all the terms is equal to the minimum
one among all CFs. If any one premise is not satisfied, that means this premise is

definitely false or has a very low value of CF. Therefore the general CF also has to
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be 0 or a very low value of CF. The conclusion in the THEN part of this rule is
consequently set to be FALSE. During the inference process, if some error occurs
with any premise, even in a minor premise, that error will influence the correction
of the inference result. For instance, consider the case where all the premises are
considered to be TRUE in confidence, except only the one error message that
comes from the imprecise manual measurement of spike, as the operator does not
find the spike under the anode. This incorrect information will let the keyword triplet
“anode.spike.detected” set to be FALSE. its CF becomes a very low value, which
leads the general CF of conjunctions to the same low value. Figure 6.13 provides

an illustration of this multiple symptoms working procedure.

CF1=90%
Symptom 1 CFs=min(CFo1~ CFos)=10%

CF2 = 95% CFc=CFs * CFR=10% * 95%=9.5%
Symptom 2 CFs =10%

CTo= %% > CFRr = 95% CFG = 9.5%
Symptom 3 1 —; ’

CF4= 30% AND RULE [—» CONCLUSION
Symptom 4 _J >

CF5 = 80% where CF1~CFe=the CF of the symptom1~6
Symptom 5 [ ' g:zij?le cc:;o?bfined CF of AND

=the of the rule

CFs = 10% CFc=the CF of the conclusion

Symptom 6

Figure 6.13 Example of multiple symptoms working procedure
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To avoid such a situation, shown in this particular case study, the
importance of each symptom should be qualified. For the individual case, the
importance of the relevant symptoms is different, and the correct result of the
inference process strongly depends on the most important symptoms. Otherwise
we should adopt some steps to avoid the influence of an error message from the
less important symptoms. Therefore, we focus on improvements of the description
of the symptoms using a quantification method, which depends upon the
corresponding quantitative description of their importance. Then, we can calculate
the general CF by combining such quantification of all symptoms. When this CF
reaches the presupposed value, the conclusion is considered to be TRUE. Using
this method the error of a minor symptom will not be able to influence the final

inference result.

We have discussed this topic with the domain experts, they point out that it
is impossible to indicate a constant quantitative description of importance to each
symptom. Because the real cell is a dynamic process, for different cells the
symptoms vary with the different cases. Therefore the importance of the symptoms
varies also. For example, in the case of “anode position is low,“ sometimes the
symptom “anode burns off” does not appear. Or, the anode stem does not become
too red. All these symptoms will appear in different levels, or may not happen at

all. They strongly depend on the particular states of the cells.
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Using fixed quantification to describe the symptoms may not suit the
variation of dynamic process, however the variations of the value of quantification
could still be assigned within a particular range. Therefore, we focus on how to
express the corresponding ranges. Based on the proposal from the domain
experts, the quantification of the symptoms of certain problem may be described
by two sets of expressions: major symptoms and minor symptoms. For different
problems, the multiple symptoms of each set can be divided into several levels to
describe the different levels of the symptoms. Applying the composite CF
calculation and logical ANDs and ORs, the previous example will be reorganized

as follows:

IF instability.factor.high

AND anode.currents.high | anode.currents.unstable

AND anode.spike.detected | anode.stem.red |
anode.burn_off.detected

THEN anode.position.low is TRUE

The arrangement of the different levels of symptoms can be found in Figure
6.14, where we use a logical AND to combine three symptom sets. The three
major symptoms are divided into two levels; the logical OR is used to combine the
two symptoms of level 2. Similarly, the three minor symptoms are also combined

by the logical OR.
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Major symptoms
Level 1 CF1 =90% |
Symptom 1 CFo1=max(CF2, CF3)=95%
CFoz=max(CF4, CF5,CF6)=80%
CFs=min(CFo1, CF02)=80%
Level 2 CF2=95% CFo1 = 95% CFc=CFs * CFRr=80% * 95%=76%
Symptom 2 —\
CFo = 85% CFs = 80% CFr = 95% CFc = 76%
Symptom 3 mir 4 8= R=w97% c=on
0R1 L>
AND RULE 9 CONCLUSION
Minor symptoms CF4= 30%
Symptom 4 CFoz = 80%) where CF1~CFe=the CF of the symptom1~6
CFs = 80% CFo1, CFoz=the combined CF of OR1, ORz
CFs=the combined CF of AND
Symptom 5 CFr=the CF of the rule
CFs =10% OR:z CFc=the CF of the conclusion
Symptom 6

Figure 6.14 Improved working procedure of the example rule

Through this procedure, the influence of an error message on an individual
minor symptom has been reduced. Consequently some unreasonable results can

be avoided and the reliability of reasoning process is improved.

6.6 Example of ENGES

Here is a typical example of ENGES - diagnosis of the unstable cell voltage.
Depending on the problem that has been selected, the corresponding sub-system
will be loaded. As ENGES works in off-line mode, all the necessary information

about the problem will be gathered by the question interfaces. An example of
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question interface is given in Figure 6.15, where six typical cases of cell voltage

deviation are provided. The user is asked to select one close to the measurement.

The inference engine is the processor of the knowledge; the inference
process will be invoked once the desired problem is selected. The reasoning
process will be stopped when all the facts connected in chaining have been
searched. The inference engine checks the facts matched and considers the

relevant knowledge to make a conclusion.

ESTION: What kind of noise of the cell voltage deviation did you find?
Please select one close to the following cases.
+0.50mV
STANDARD STANDARD
DEVIATION DEVIATION
0.015V r 0.050v
- 0.50mV -0.50mv
CASE 1 CASE 2
Yes (>No iYes C No
+0.50mV +0.50mV 0,
STANDARD STANDARD
‘Wbﬁﬁ’ﬁ‘(ﬁ*‘ DEVIATION DEVIATION| it
0.0050V 0.050V 1
— i
-0.50mV -0.50mV e ) ¥
CASE 4 CASE 5
ves (“No *Yes (No

Figure 6.15 Question interface for unstable cell voltage cases

Here is an example of rules, which are in a chaining connection, the
conclusion generated by the rule “broken_stem2” by “THEN” will send the
corresponding triplet to the “IF” of following rule ‘broken_stem3”. Figure 6.16
shows the connection between two related rules and Table 6.4 lists the detailed

contents of these two rules.
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broken_stem?2 broken_stem3
IF IF
THEN / THEN
ELSE ELSE

Figure 6.16 Chaining connection between example rules

Table 6.4 Rule “broken_stem2” and “broken_stem3”

Rule
@ name=broken_stem2

IF ucv.case3.occurred

AND anode.current_individual.low

AND anode.current_individual.unstable
THEN anode.current.abnormal is TRUE
end Rule

Rule
@ name= broken_stem3

IF ucv.case3.occurred

AND anode.currentabnormal

AND anode.current_all_other.higher
THEN anode.broken.stem is TRUE
THEN FORM (“F11.frm”)

endRule

Depending upon all of the necessary information being gathered, the
inference engine follows the search strategy to find the problem and displays the
diagnosis result in Figure 6.17 with the illustrated suggestion be found in Figure

6.18.



Figure 6.17 Example of diagnosis result

Suggestions:
1. Meorare annde ewerent dsxibution
# defermine which anede i faulty.

2. Bemove siem and anode cadron from
Taih,
3. Bepalce wish new anode.

4. A2 wemporary veltage, if required.

p

Broken anode stem

Figure 6.18 Example of illustrated suggestion
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6.7 An analysis of the resulits

As the motivation behind this project is to design an expert system for a
practical use, the emphasis is on knowledge base programming, interface design
and system maintenance. Based on the test results, we can give the following

comments about these aspects.

Knowledge base programming

To improve the flexibility of knowledge base programming, the use of a
modular structure is an efficient step. For OPEES, the alarm module and other
functionality modules are separated. The alarm module is designed only for
connecting with the particular process data of individual cells, but the general
knowledge is coded into other modules. Therefore, for any particular cell or for
different cases, modification work is only concerned with the alarm module and

this will help the user in making the module suitable for different cells.

Interface design

The interface is the most important link between system and user. We
designed the interface for two purposes: to gather the necessary information from

the user and to send the user a clear and accurate message. For the latter
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purpose, the message can give the user suggestions to solve the problem. But for
the former purpose, because of the limited capacity of the Comdale shell, only
user selection and entry of the values are available. The system cannot carry out
the interactive communication in the real sense, therefore cannot feedback the
opinion of the user through the interface, which would be useful for the reasoning

process.

System maintenance

In OPEES, the alarm limitations are designed to be modifiable for the
different cases. Although this is only a limited maintenance capacity, it is efficient

for application to different cells.
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CHAPTER 7 AEPES - ADVANCED DESIGN

7.1 Objective of advanced design

While the expert system was under development using Comdale/X, a
search was underway for a new shell in order to improve the performance of
AEPES. This was mainly motivated by the limited on-line capacity of Comdale/X.
The new shell should have enhanced performance in system design, interface
edition and powerful communication ability. Based on the ability to inherit from the
advantages of Comdale/X, its new generation shell, SmartWorX Suite, was our
first choice. Unfortunately, the formal version of SmartWorX Suite suffered from
last-minute unavailability due to Comdale Technologies (Canada) Inc. declaring
bankruptcy in late 1998. Faced with this situation, we had to search for another
available shell to continue our project. The new shell selected for the expert

system development was Gensym’s G2.

To improve the performance of AEPES by using G2, the major tasks are:

Make a migration of the knowledge base from the Comdale version to the G2
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version, then redesign a new structure of the system and select a reasonable

communication bridge to realize the on-line mode.

7.2 Basics of G2

Gensym Corp. is the major company in the Al market. The G2 is the main
product among their expert systems. Since the company began in 1986, there
have been more than 13,000 product licenses applied in communications,
manufacturing, aerospace, transportation, government and other industries.
Gensym Corp. develops expert operations software that model, simulate and
monitor production or business processes. In this work we apply the new version
5.1 of G2, which has gone through major upgrades in user interfaces and

connectivity to host systems.

An introduction, brief characteristics and application examples of Gensym
G2 are given in APPENDIX 1.2 “Gensym G2” and APPENDIX 1.3 “Application

examples study.”

7.3 Construction of system

The required knowledge of the advanced system is identical to the previous
system. The system uses the same name: AEPES, which also consists of two sub-

systems: ENGES and OPEES. However, the system structure is different, where
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the modules organization, the rules coding, the individual knowledge base, the
interface design, and communicative tool are done in different ways. All these
changes are based on the features of the G2 core and corresponding

communication bridge [1].

7.3.1 Modularized system structure

Although we have organized the knowledge base by the modularized rule
sets in the Comdale version, G2 provides a more systematically modularized
knowledge base building utility that allows building and maintaining the system to
be more flexible. The modules can be used to form a module hierarchy, which
specifies the hierarchical dependencies between modules. Using such standards

of the module architecture, a modularized knowledge base is constructed.

7.3.1.1 Module organization

Depending upon the requirement of the present work, two types of modules
are used: the structural module and the functional module. The structural modules
are used to organize the module hierarchy, but the functional modules are
concerned with the reusable modules and toolkits that are used to realize the

different functions.

The structural modules contain the classes and sub classes, which organize

the common characteristics and behavior of similar objects; they are created only
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for the present system. The functional modules are mainly provided from standard
G2 utilities, they provide G2 standard modules as the blocks of module hierarchy.
For instance, the G2 User Interface Development Environment (GUIDE) is used to
create graphical interfaces, which are automatically organized into the system

module hierarchy.

In order to simplify the system, the same names of classes and sub classes
are used to name the corresponding modules. Table 7.1 shows the module

configurations of the present system:

Table 7.1 Modules of AEPES

Top-level Lower-level 1 Lower-level 2 module
module module
ENGES-1 (Unstable cell voltage)
ENGES-2 (Excessive number of anode effect)
ENGES-3 (Muck accumulation)
ENGES ENGES-4 (Anode carbon quality)
ENGES-5 (Higher iron impurity)
ENGES-6 (Trends prediction)
OPEES-1-1 (VSS)
AEPES opEEs.y | OPEES-1-2 (OPB)
OPEES-1-3 (MPB)
OPEES-1-4 (HPB)
OPEES-1-1 (VSS)
i OPEES-1-2 (OPB)
OPEES-2 | pEEs-1-3 (MPB)
OPEES-1-4 (HPB)

To create a hierarchy modularized system, the first step is to set up a top-
level module, which is the root of module hierarchy. When the AEPES is set as the
top-level module, it directly requires three lower-level modules: ENGES, OPEES-1

and OPEES-2. The ENGES-1.1 to 1.6, OPEES-1.1 to 1.4 and OPEES-2.1 to 2.4
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are then directly required for ENGES, OPEES-1 and OPEES-2 respectively. After
the structural modules were created, it was needed to specify the relevant
standard functional modules, and then the whole module hierarchy was set up.

Figure 7.1 shows the screen copy of the partial module hierarchy of AEPES.

( show on a workspace the module hierarchy J

;

|

opess-1-4

;

opees-1-1 guidelib

enges-3 enges-4

enges-2

enges-1

uilroot

Figure 7.1 AEPES module hierarchy

7.3.1.2 Advantages of this system

With such a modularized structure, several advantages were obtained for

the system building:

e The modularized technique facilitated the system development. The
development of the ENGES started with few essential modules, which
only contain the structural module “Unstable cell voltage” and necessary
functional modules. When the test run was successful, the additional
modules, which were developed separately, merged into the main system.
This allowed a faster set up of a small, basic, but complete system that
was easier to verify.
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e The system can easily be expanded by merging the modules. For
example, to increase the additional diagnosis problem “Trends prediction”
to ENGES, only two steps are needed: (1). Create the ENGES module,
which contains the file about the corresponding sub knowledge base. (2).
Specialize the corresponding top-level module and the directly required
lower-level modules. Then this nhew module is merged into the module
hierarchy.

e Each module developed can work separately, without interfering with

other module developments. The system can be divided into smaller
modules, which are easier to handle, maintain, upgrade and replace.

7.3.2 Rule statement

The heart of any expert system is the ability to reason about the knowledge
it contains. A rule is a special kind of statement that reasons under the given
conditions and draws conclusions. The major difference in the rule editor between
Comdale and G2 is their editor language. The syntax is used to represent a rule in
the ASCII based file in Comdale, but G2 supports the natural language text editor

to edit the proper syntax to construct rules.

Natural language statement

There are two major features of G2’s natural language, which allow the rule
creation to become easier and more flexible. The first feature helps by using
human natural language liked syntax to edit rules and similar text expressions,
such as methods and procedures, which is an easier way to do the text editing and

reading. During the coding process, there will be offered some groups of pre-
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coded words for selection. Regardless of the antecedent or the consequent of the
rules, when the primary word is selected, the corresponding words are released for
further word selection. By this method, we can use natural language to do the

editing as desired, but we must adhere exactly to the G2’s format.

The second feature allows for reducing some limitations of the rule edition,
which are often found in other expert system software editors. For example,
Comdale only provides the IF-THEN-ELSE format to present the knowledge and to
handle the relationships between the facts. However, for complex processes, more
expressions are needed to describe the different cases. If there is an event
concerning a fact, the presentation of the fact is not facilitated by using the IF rule
format. However, depending upon the different purposes of the rules to be
performed, the natural language offers five basic kinds of rules for the inferencing
process: IF rules, INITIAL rules, UNCONDITIONAL rules, WHEN rules, and

WHENEVER rules.

Figure 7.2 and Table 7.2 show an example of the difference between the
two rules inferencing processes and syntaxes. Normally, the IF rule is used for
data-driven processing, and the WHENEVER rule is used for event detection. In
this example, for the given case, which was concerned with the event of cell
voltage fluctuation detection, using the IF rule, the forward chaining was applied for
detecting the data changes in this event. Forward chaining represents a powerful

way to detect the variation of concerned data. But for a complex process, there are
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more IF rules that need to follow the complex path of the execution that will be
inconvenient to debug, test and maintain. Thus, one should consider using the
WHENEVER rule to detect this kind of complex event, which is concerned with

every relevant data and phenomena.

In the present system, the WHENEVER rule and IF rule are two basic types
of rules for rule-based processing. The WHENEVER rule is used for general event
detection, whereas the IF rule is used for event detection based data-driven
processing. If WHENEVER rules are used to detect an event, they must invoke

some type of sequential processing, such as a method or a procedure.

Data changes in EVENT

event .
Conclusion @START

Method

Conclusion

Conclusion

it

¢

i

Final

. WHENEVER rule inferencing
Conclusion

process

IF rule inferencing process

Figure 7.2 lllustration of two kinds of rules processing



Table 7.2 Rule syntax comparisons between IF rules
and WHENEVER rules

Comdale Rules G2 Rule
IF cell.voltage_deviation. @float > 0.05000V Whenever the deviation of cell
AND cell.voltage deviation. @float <= 0.120000V voltage is higher than 0.050v,
THEN cell.voltage_deviation. @string is “HIGH” start low-anode () to diagnose

IF cell.voltage deviation. @string is “HIGH”

AND anode.current _individual.high is TRUE

AND anode.current _individual.more_unstabl is TRUE
THEN anode.position.abnormal is TRUE

IF cell.voltage_deviation. @string is “HIGH”

AND anode.position.abnormal is TRUE

AND anode.spike.occurred | anode.red_stem.occurred
| anode.burn_off is TRUE

THEN anode.position.low is TRUE

the anode position.
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Another example of rules applied in this version is shown on Figure 7.3,

where both the WHENEVER rule and IF rule formats are applied for iron impurity

detection.
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0020 then
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OO0% than
intorn the operater for the next 5
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Figure 7.3 Examples of rule statement
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The use of natural language rule editor shows several important advantages

for the system development:

* More types of rule editor provide more choices to edit the different types
of rules to suit complex cases.

¢ Natural language similar to human language has greater facilities to
create various text expressions.

e Using the WHENEVER rule for event detection will simplify the rule
structure and the rules are easier to test, trace and maintain. And the
reasoning process will be faster based on the simpler rule structure.

¢ With the natural language editor, the coding of rules, methods,
procedures and the inferencing process can be more efficient than
Comdale and other similar expert system shells.

7.3.3 Interface design

Most of the user interfaces applied for AEPES are designed by using G2
GUIDE (Graphical User Interface Development Environment) and GXL (G2 XL
Spreadsheet), which allow us to design the graphical dialogues and the
spreadsheets for the present system. Using these interfaces enables the end
users to view the system’s messages and edit the information to realize the

communication between the user and the system [2, 3].

Depending upon the structure of the system, four types of user interfaces

could be used:

e System interface

¢ Question interface

e Display interface

e Maintenance interface.
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7.3.3.1 General interface configuration

As the structures of the two versions of AEPES are similar, the user
interfaces also follow the same pattern to manage their sub-systems. Figure 7.4

gives the general configuration of user interfaces.

USER

—
Structural Interfaces *

Sub-System Selection

y

Operation Mode Selection

Y v

User Mode Diagnosis Problem
Selection Selection
Line and Window
Ce Mnd,
User Editor jon Wrong ﬁm
Oneration
Developer Process nce
Editor State Shift
Functional Interfaces
Alarm Limitation Diagnosis
Mndification Ranarts
Process Data Display
Sslactinn Interface

Maintenance Question
Interface Interfaces

—

Figure 7.4 General user interface configuration
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Characteristics of interface

Although the forms of user interfaces used in G2 version are similar to
those used in the Comdale version, some operating functions are different. The

major differences are:

e The interfaces are developed in a modular fashion. Therefore, they can
be integrated into the system’s modular hierarchy, and this increases the
reliability of the system design.

o Depending upon the features of the interface developing tools, more
facilitated user interfaces can be created, which allow users to perform
the corresponding tasks more flexibility.

7.3.3.2 Example of system interface navigation

In Figure 7.5, the activation of the system interfaces’ navigation shows the
procedure that uses the navigation button function, which is supported by the utility
modules of G2 GUIDE (Graphical User Interface Development Environment), to
organize the system interfaces, which gives users more freedom to manage the

system’s running status.
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Further Selactions

Further selections

Figure 7.5 Example of system interfaces navigation

7.3.3.3 Exampile of display interface

As the system works in the on-line mode, the display of process data and

status is a necessity. The user familiar spreadsheet style data file was used to edit
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and display the vaiues and running status of relevant data, the spreadsheet is the
standard function supported by GXL (G2 XL Spreadsheet). Figure 7.6 is an
example, where the spreadsheet lists the process data read from data files.
Although the features of GXL are similar to the conventional spreadsheet, some
differences still were found from the testing results. The first is that data type is
always fixed. Although many cell types can be presented on a single spreadsheet,
the spreadsheet cannot randomly intersperse them. The second is about the
definite size of spreadsheet; all the rows and columns must foliow the
specifications once the first one was established. After that the dimensions cannot

be modified. These differences make some inconvenience for design work.

Figure 7.6 Example of process data alarm states
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7.4 On-line diagnosis realization

One of the important features of G2, which was expected to improve the
present system, is the real time communication capability, which is the weakness
of Comdale/X. To realize the on-line diagnosis, the primary step is to choose the
correct communication bridge, which does not only depend upon its performance
but also depends upon the cost and the present situation of our laboratory. The
second step is to use the selected bridge to access the data sources through the

network, to test and to validate the designed system [4, 5].

7.4.1 Communication bridge selection

According to the different cases of the real process, two sub-systems are
designed to work in on-line mode. The corresponding reasoning processes are
strongly depending upon the abilities of real time data acquirement. Thus,
connectivity to external data sources is a central issue for these two sub-systems.
G2 provides a wide range of communication bridges to gather the information from
many sources, including database, plant floor equipment, etc.; that gives more

possibilities of selection [6, 7, 8, 9].

To choose a suitable bridge for the present system, two basic points must

be discussed in advance:

e Based on the objective of the real time task of the present system,
determine what kind of real time information is needed as the primary
requirement.



194

e Analyze the features of available bridges to find out the most appropriate
for the situation. The decisive factors of the selection must be concerned
with both performance and cost.

As described in previous chapters, in the OPEES Comdale version, the
system design does not attempt to directly connect with the plant floor instruments.
All the process data, which were generated from the simulator or gathered from
the databank of the real process, were stored in the data files, running as the data
sources. In the G2 version, we do the same for the process data. Therefore, it is
necessary to find a corresponding bridge to realize the communication between

the G2 application and data files.

Based on the analysis of G2 communication tools, several relevant bridges
are considered to meet the present system requirement. Consequently, to choose
the most appropriate one, more detailed analysis about the techniques and
reliability are needed. Three possible communication techniques are considered;
they will determine what kind of data sources can be used. These techniques are

based on the different external systems and the G2 communicating capacities:

e Enabling access to Intellution Fix Database, which is applied in the
simulator system as the data source.

e Enabling communication between Windows based DDE application,
which allows G2 to read and to write DDE data from Windows NT
applications that support DDE or NetDDE.

e Enabling access to the COM (Component Object Model) application
running under Microsoft Windows

Considering these techniques, the following communication tools of G2 are

the potential choices:
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e G2 Gateway

e G2 to Fix Bridge

e G2 to OPC Bridge

¢ G2 to DDE/NetDDE Bridge
e ActiveXLink

7.4.1.1 G2 Gateway

The G2 Gateway is a network-oriented toolkit used for developing the
interfaces or bridges between G2 and other external systems. It allows the system
to exchange various types of data between a G2 process and the bridge, which
include databases, data acquisition systems, control systems, external simulation
software, end-user displays and custom software applications. Figure 7.7
illustrates the possible connect functions; six types of bridges are provided for

different data sources.

G2 Gateway Application

TCPAIP or

e DECnet e i N Network
G2| Application Bridge system

. Control
—  Bridge System
. C/C++

TCP/IP or

DECnet KE;D End User

display

i Other
L—( Bridge System

G2| Application

Figure 7.7 Communication types of G2 bridges
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To access the database, the following bridges of G2 Gateway support the

communication with the off-the-shelf databases:

G2-Informix Bridge
G2-Oracle Bridge
G2-Rdb Bridge
G2-Sybase Bridge
G2-ODBC Bridge

Unfortunately, these standard bridges do not cover the three capacities
mentioned at the end of the preceding section. That means the G2 gateway
cannot be directly used to communicate with the desired data sources. Therefore
another means must be considered to realize the communication with Intellution
FIX database. The two possible communication bridges are discussed in the

following.

7.4.1.2 G2-EDA Bridge

One of the available bridges to realize communication between G2 and FIX
is the G2-EDA (Easy Database Access) Bridge, which enables the G2 application
to access the process data from the Intellution FIX database. This bridge acts as
an EDA client on behalf of G2, allowing the G2 application to simultaneously read
and write data to the FIX. An independent software company, Matrikon Systems

Inc., develops this bridge. Figure 7.8 shows the relationship between G2 and EDA.
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G2-EDA Bridge

Aplication

Figure 7.8 G2-EDA Bridge

7.4.1.3 G2-OPC Bridge

The other available bridge is the G2-OPC (OLE for Process Control)
Bridge. This bridge enables the G2 application to access process data from any
OPC compliant server, which is also developed by Matrikon Systems Inc. Figure

7.9 shows the system architecture of G2-OPC Bridge.

TCP/IP Ethernet )

C G2 - OPC Bridge )
( COM/DCOM )

OPC Server

__ Intellution FIX

Figure 7.9 G2-OPC Bridge architecture
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7.4.1.4 DDE/NetDDE Bridge

The third available bridge is G2-DDE/NetDDE that provides a
communication between the Windows based application with the DDE server
capability and G2. The DDE has been used to access the process data through
the network in the Comdale version. Therefore, this will be used to shift the same

type of the data files to the G2 version.

Although, all of these three bridges can meet the requirement, namely to
allow the G2 application to access the process data by different ways, they were
abandoned, not due to technical reasons but because their costs exceeded the
budget. Therefore, attention shifted to the third possibility of communication

bridges, which is G2 ActiveXLink.

7.4.1.5 G2 ActiveXLink

To connect the popular Microsoft Windows applications, G2 supports the
common network communication tool: ActiveX technology, which is named G2

ActiveXLink. The G2 ActiveXLink is available for Windows NT and Windows 95/98

[10, 11].

The ActiveX control is applied for the high-performance links to Microsoft

Windows applications such as Microsoft Word, Excel, Visual Basic clients, Visual
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C++, and Explorer Web browsers. The general connectivity of G2 ActiveXLink is

illustrated in Figure 7.10.

MS Excel
com
MS Word
com
: ; MS C++
G2 Application  [—| G2 ActiveXLink com
MS vB
com
WEB Browser
com

Figure 7.10 Connectivity of G2 ActiveXLink

As shown in Figure 7.10, the G2 ActiveXLink control performs as a bridge
between the G2 application and COM-compliant applications. COM (Component
Object Model) is a standard created by Microsoft and supported by Microsoft
Office Products. Microsoft uses several names to describe this technology,
including COM, DCOM (Distributed COM), and ActiveX. G2 ActiveXLink is based
on the same standard Microsoft's ActiveX technologies, which allows a focus on
the functionality of present applications rather than on the details of developing

connectivity issues.
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Finally, the G2 ActiveXLink was chosen to perform the bridge between the
present G2 application and the data files in Microsoft Windows applications format.

That decision was based on its features and the reasonable cost.

7.4.2 On-line diagnosis

To access the real time process data is the primary step to realize the on-
line diagnosis of AEPES. Microsoft Excel is adopted as the data file to store and

communicate the process data; this was also the case with the Comdale version.

G2 ActiveXLink allows the G2 to act as a server, so that the COM
application can access it, and also allows G2 to access COM applications as a
client. Therefore, the G2 ActiveXLink can be used to create a Microsoft Excel
worksheet object, and also can be manipulated by using an interface that the
Microsoft Excel application exports. Based on this characteristic, a procedure of
the G2 application can be called or started by using the G2 ActiveXLink. The link
between the G2 and Excel spreadsheet enables to be retrieved data from the G2
for display in a spreadsheet. Thus the present system can send its diagnosis
results to an Excel spreadsheet on the user side to display the suggested

message as consultation for the operators.
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On-line data communication

To set up a communication bridge between the G2 application and the

process data files, the following corresponding preset actions are considered:

¢ Add the control buttons to Excel spreadsheet and set the relevant
properties.

e Then code a program in the G2 side to invoke the corresponding
procedure.

After these preparations, the procedure in G2 can use the return values

from the Excel spreadsheet.

Example of procedure with ActiveXLink

Here is an example of the procedure of the present system named:” Get-

process-data-value”, which can execute the following functions:

e Invoke a procedure, which will call the values of process data from the
Excel data spreadsheet.

e Send the return values to the relevant procedure of the present system,
and allow the system to judge these values then release the
corresponding alarm.

The example procedure is listed in Table 7.3:
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Table 7.3 Example procedure

Get-process-data-value Procedure

Get-process-data-value ()
G: class g2 com-interface;
Ret: value;
com-single: float
begin
if there exists a g2 com-interface G then begin
Ret = Call g2 com-call (“Get-process-data-value”) across G;
Inform the operator that “Get return value of process data of
cell operation: [Ret]”;
Ret = Call g2 com-call (“Get refresh data”) across G;
Inform the operator “The refreshed data have been
received: [Ret]”;
end
end

7.4.3 Example of on-line diagnosis

By using the ActiveXLink control technology, the real time data and relevant
messages can be more easily transferred from the expert system to the user side
or in reverse. For example, the expert system and real process data can realize
the communication through the network. Figure 7.11 shows an example of such

information communication process:

e When OPEES-2 is ready to start the reasoning, the user can select the
corresponding button to send a message to the process side to call for
the required data.

e If the data file is in running status, it will return the required values to
OPEES-2, and the inference engine will read this data and then do the
reasoning.
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e Asthe OPEES-2 is designed for the present plant situation: only a limited
number of process data of cell are measured continuously. During the
reasoning process, more information is needed. A check items list will be
sent to the operator to ask for the required additional information, this
information is mainly obtained by field checking or measuring.

¢ When the final problem has been found, the corresponding results will be
sent back to the operator side to help them solve the problems. As this
communication is in an interactive mode, the operator can also select
relevant buttons to ask OPEES-2 to send back some messages, such as
check items list or consulting result.

Cell process information

Check items list

QOPEES-2 diagnosis results

Real-time information
communication

Figure 7.11 Communication between OPEES-2 and cell process
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7.5 Results analysis

The emphasis of this design is to enhance the system performance with the
G2’s powerful development environment. Based on the primary testing results, the

characteristics and explanations of this system can be summarized as follows:

System building

The present system development starts with only a few modules. After this
basic system runs successfully, more modules are added to complete the system.
Using this modularized approach yields a more reliable system structure that is

easier to develop and to modify.

In principle, the G2 core and Utilities can provide the full range of the
features to develop and deploy the present system, but for the particular functions,
some additional G2 products are still needed, which were also suggested by the
G2 Technical Support Department. For example, the GDA is recommended to
handle the complex diagnostic procedures; it provides standard functions to
monitor the changes in input values and informs the users when there are changes
to the data they should know about. The real-time data treatment, display and
relevant user interfaces are specially designed for the real applications. Without
such additional G2 products support many useful functions would not be easy to
implement and the connections between these functions would also be difficult to

build.
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Rule edition

Using the G2’s natural language to develop the knowledge base, does not
only mean we can use it to code the program like using human language, but also
allows us to use the more effective rule statements to improve the reasoning
process. For the event detection, as compared to the IF-THEN-ELSE rule, using
the WHENEVER rule statement has been provided that can increase the

reasoning speed.

Communication Bridge

In order to suit the various situations of the real cases, G2 supports wide
possibilities of the communication tools to access the real time data. The selection
process of the communication bridge of the present system shows that the G2’s
communication tools are flexible and powerful. This feature will help the system to

better suit the different plant situations.
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CHAPTER 8 CONCLUSIONS

The application of an expert system to the problem diagnosis and process
control for the aluminum electrolysis process was studied. A two-level structure
expert system was designed with a focus on the real process. The primary test
results show that this expert system can be applied to the main types of cell to
diagnose the most common problems and to assist operators in finding and
solving such problems. The diagnosis results could also provide a reference to the
control engineer to adjust the manipulated variables of the process control system.
The results also show that the expert system offers possibilities to improve process
productivity and quality, and can assume an important role in compensating for

limitations of the conventional cell control system.

The knowledge applied for the knowledge base is acquired from the open
sources and the domain experts. A major part of the knowledge is from
experienced experts on electrolysis process problems diagnosis. Their experience
provides the core of the present knowledge base, which can be used to diagnose

the most common problems of the electrolysis process.
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Considering that there are potential applications to different cases, to
improve the flexibility of programming is an important part of system design.
Several features of the present system could help to realize such goal. The
modularized structure of the system makes it easier to program, modify and
maintain in order to suit the needs of individual cells. The unique user interface
helps to realize the interactive communication between the user and the system; it
includes the structural interfaces and the functional interfaces, which in the text or

graphic form; yield better comprehension and easier application.

In order to obtain correct reasoning results, the multiple symptoms criterion

is adopted in the rule base programming.

This system can be selected to work in both off-line and on-line mode for
the different cases. This is based on its unique structure, which consists of one off-
line and two on-line sub-systems. When working in the on-line mode, the system
can access the data file to read the real time data through the network. Depending
on these real process data and with enough additional information, the expert

system can do the reasoning and lead to the correct diagnosis result.

The test results show that this expert system has potentials in process
supervision, process control and in operator training. The unique structure of the
knowledge base and the design features allow this system to be readily applied

and extended to different plants.
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In summary, at this stage, the system realizes the on-line diagnosis, but
only when connected with the virtual cell. As suggestion for further development,
the system could be made to enhance its capacity of on-line diagnosis and

parameter control and then could be connected to the real cell.
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APPENDIX

APPENDIX 1: APPLIED EXPERT SYSTEM SHELLS STUDY

A-1.1 Comdale/X

A-1.1.1 Introduction to Comdale/X

Comdale Technology Inc. is a Canadian company that has provided Al
software for industrial process control since 1986. It developed the tools to monitor
and control both discrete and continuous manufacturing processes. Their suite of
products includes Comdale/X, Comdale/C, and ProcessVision. In 1998, Comdale
released its second-generation product: SmartWorX Suit. At the end of 1998,
Comdale Technology was acquired by ABB Ltd., which is committed to provide

support for products of Comdale.

The applied version for the present expert system is Comdale/X V5.13.
Although several versions have been developed, the basic structure and

programming approach are identical. The main characteristics are as follows [1]:

e Comdale/X is an off-line consultative expert system, which requires the
input from the user for information required in making its decisions.
Comdale/X is included with Comdale/C as the development tool for real-
time expert systems. Comdale/X has the capability to incorporate
hypertext documents with the reasoning abilities of the expert system to
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produce expert hyper manuals, which provide information and generate
advice through the interface.

e Comdale/X is a rule-based shell that provides both forward and backward
chaining. The inference control strategies manage the search, focus, and
conflict resolution mechanisms. The search mechanism allows for the rule
search to be done either depth-first or breadth-first. The focus mechanism
provides various options for finding the optimum solution path, including
highest certainty, lowest certainty, highest priority, or lowest priority. When
more than one rule may apply, mechanisms, including alphabetic
mechanisms, and various priorities may be used to solve this conflict.

e Expert system knowledge in the knowledge base is represented as
objects, classes, rules, or procedures:

o Objects are expressed as object-attribute-value triplets and
can be of different types, including logical, string numerical,
date, and time.

o Facets may be added to the ftriplets to specify information,
such as uncertainty, time, fuzzy sets, customized questions,
and sources of information.

o Classes group similar objects into a hierarchy. Comdale/X
classes have full inheritance capabilities, including multiple
inheritance and both public and private attributes.

o Rules are expressed as if-then-else statement and are used
to encode the concepts, mathematical expressions, time, and
string expressions.

o Cenainty factors may be attached to rules to reflect the
confidence in the conclusion of the rule.

o Procedures determine the control of rule execution and
class/object manipulation.

e Comdale/X also provides some facilities for the construction of the
knowledge base and debugging of the system:

o Graphical editors are used for the classes, objects, rules,
procedures, rule-sets, and mapping-files editing.

o Class/object browser shows the hierarchical relationships
between classes and objects and allows for their direct
modification.

o Rule browser shows the interrelationships among rules and
allows rule editing to be done.

o Debug includes cross-referencing triplets, tracing rules, and
watch variables.
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Comdale/X can be stand-alone or be an integrated part of other
applications. To combine with others to address a specific solution, Comdale
provides bridges to connect the application software, data souses, 1/0O devices and

others. Figure A-1. 1 shows the available applications of Comdale.

~ COMDALE
Expert System

Communication
Bridge &
Applications

1o’
PLC’ss
—p
Data Files

Databases >

MAC

N

SUN

Figure A-1. 1 Comdale expert system applications structure

In summary, an expert system created by using Comdale/X will have the

following abilities:

o Capture knowledge - which will make it possible to retain the knowledge
from the domain experts.

o Evaluate knowledge - after expert system has been done, it allows the
experts to test and verify the acquired knowledge.

e Diagnose problems - depending on the information given, arrive at
conclusions and give advice.
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e Obtain the relevant information manually - it can ask questions and
identify the concerned area and present the important information by the
interface.

e Training tool - it will quickly transfer the knowledge needed to perform
certain tasks from the knowledge base to an inexperienced person. It
allows the user to learn and understanding the subject matter.

Comdale/X consists of two programs, namely the Comdale/X Rule Compiler
and the Comdale/X Application Program. All knowledge in the Comdale/X
Knowledge Base is in the form of IF-THEN rules. The Comdale/X Rule Compiler is
used to compile these rules and to generate reports/output files. It allows the
knowledge engineer to represent, test, debug and enhance the knowledge

contained in the expert system.

The Comdale/X graphical user interface allows the operator to use the
knowledge for decision-making. It also provides a means for the facility to request
explanations regarding conclusions the expert system has made. All conclusion
statements in each rule have certainty factors associated with them to emulate the

fuzzy thinking of humans.

A-1.1.2 New generation of Comdale

The SmartWorX is the new generation of Comdale/X, which was developed

in 1998. Once it was selected as a strong candidate for the further development of
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the present system. The SmartWorX has been tested for verification and

comparison. Some preparations for software transformation have been done.

The SmartWorX is a Windows NT-based Suite. The brief features of
SmantWorX are enhanced real-time performance, intelligent real-time alarm
detection, neural networks, and optimized knowledge development to improve the

previous Comdale/X [2].

The SmartWorX Suite includes three parts:

e SmartWorX Alarm Manager is an intelligent real-time alarm detection and
management system.

o SmartWorX Knowledge Developer is a real-time expert system
development tool.

o SmartWorX Expert Optimizer standardizes operating practices to
constantly target and achieve process stability and optimization.

Although the SmarntWorX was not finally applied for the present system, its
basic functions were studied and some testing programs have been coded, which

benefited the further system development in the following aspects:

e How to design a more utility alarm form, which can automatically scan the
available process variables and lists detected status.

e Design a user-modifiable function, which can be taken on alarm
limitation. This assists the operators with individually situation of cells.

e Use graphical user interface to assist operators to understand the final
diagnosed result of why the abnormal case occurred.

e Due to the extensive adoption of Microsoft standards, using the relevant
applications as the data files.

e The real-time development tool describes the basic communication
technologies, which helps the further communication bridge selection.
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A-1.2. Gensym G2

A-1.2.1 Introduction to Gensym G2

Gensym is a major company that provides the software products and
services of the expert system. The G2 is Gensym’s flagship product; it is a
powerful development and deployment environment for managing and optimizing
dynamic, complex decision support and control applications. The G2 offers a
graphical, object-oriented environment for creating intelligent applications that
monitor, diagnose, and control dynamic events in on-line and simulated
environments. [t allows the user to express objects, rules, methods and
procedures by using the structured natural language. So, it can be used for rapidly
creating an application that reasons with real-time operations data. The G2
applications can follow multiple lines of reasoning and analyze large amounts of
data and numerous trends concurrently. Therefore, it can be used for a real-time
system and for connections with the wide selection of databases, PLCs, DCSs,
real-time data systems, standard MS Office applications and other systems

through ActiveX, CORBA, Java, C/C++ and etc.

Generally, G2 improves the performance of an operation by the following

approaches:

¢ Continuously monitors the potential problems and takes the alarm before
they adversely affect the operation.

e Takes the complex operations data as one segment of the useful
information for the reasoning by using knowledge-based models and
analysis.
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Diagnosing the root cause of time concerned problems and taking the
corrective actions.

Maintain the optimal operating conditions.

Coordinates the activities and information in complex operation
processes.

Communicates through the network management between G2
applications to an external system.

Offers the enhanced ability for process design, simulation, supervision
and advanced control.

A-1.2.2 General structure of G2

The G2 environment consists of four major areas:

G2 Application Server
Telewindows client
G2 Utilities

G2 Gateway Bridge

The G2 Application Server also called the G2 core, provides the full range

of features needed to develop an intelligent real-time applications. The diagram of

the G2 application server is shown in the Figure A-1. 2 [3].
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Figure A-1. 2 G2 application server

G2 Telewindows client allows several users on the network to access the

server application from other machines, where the client can view or manipulate
the application such as using the server’s terminal. This environment is facilitated
for the knowledge engineer or supervisor to develop, maintain or monitor the

system from different places.

G2 Utilities are the optional components of the G2 application server that
allow user to perform specific functions. They are the necessary tools to create a
customizable knowledge base, interface, communication handling, and

documentation.
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G2 Gateway Bridge integrates many different software technologies

together in one package, which are concerned with: object technology, knowledge-
base technology, data interfaces, graphical user interface and application server
support. Through the G2 Gateway Bridge, a wide variety of data sources, such as

database, control systems and various real-time data sources can be reached.

Except for the G2 Application Server, which is the main tool used for the
present system development, the other application products are also used in the
system design. For example, the GUIDE of G2 Utilities was used to design the
graphical interfaces, such as the user selection menu, question window, and alarm
status. The ActiveXLink Communication Bridge is used to establish

communications between G2 and external data souses.

To perform the complete functions of G2, several layered products are also
needed for development in the specific domains. For example, to design the
present system, the GDA (G2 Diagnostic Assistant) is a very useful tool that
enables data monitoring, filtering, diagnosing, statistical process control, alarm
management, combinatorial and fuzzy logic, close-loop control. The principle
component of GDA is a graphical language that allows expressing complex
diagnostic procedures as a diagram of blocks. These diagrams can acquire data
from real-time process, then make inferences based on this data. Depending upon
the inference results, it can take actions such as raising alarms, sending messages

to operators, or concluding new set points. Unfortunately, this product was not
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covered by the G2 license we purchased; that led to a difficult situation to realize

such functions by using the general elements functions of G2 core.

A-1.2.3 Using new design techniques to develop system

To design the knowledge base, G2 provides some new techniques, which
differ with the traditional design techniques. The traditional design techniques
concerned with five stages: analysis, design, implement, testing and deployment.
Generally, these stages are processed sequentially, however that caused some
difficulties to system development. For instance, the end user requirements in the
last stage seldom have an opportunity to provide feedback on the implementation

until it is complete.

Considering these difficulties, G2 supports new style design techniques,
and it can increase the flexibility of the application development. The developer
can create a prototype that supports the basic needs of the application and then

refines the prototype given input from the knowledge engineers and users.

This approach is based on the G2 development techniques standards, such
as the modularized organization, object-oriented design and standardized user
interface. The benefits of using such standards will increase the flexibility,
maintainability and expendability of the system development. The detailed
description about how to develop the present system by using such techniques is

in Chapter 7.
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A-1.3 Application examples study

Two expert system shells, Comdale/X and Gensym G2, are applied for the
present system development; to study the successful examples of their
applications is a direct way to obtain the experiences, especially for industrial
application. Although these shells have been widely applied in industrial area, few
of the application examples were found in aluminum industry. In these examples

[4], [5], the interested points concluded are as follows:

How to design an expert system with optimized target value

How to evaluate and document the control procedures and operators’
heuristic

How to put the expert system into the real process
How to use the G2 communication bridge to connect the existing DCS.
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APPENDIX 2 VS-ANODE SYSTEM ANALYSIS

A-2.1 Introduction to NEXPERT shell

The NEXPERT is an expert system development tool with graphical user
interface that was developed by Neuron Data Inc. The NEXPERT development
system features a rule based and object based inference engine and provides a

unique environment. It allows for the interfacing with databases, programming

languages and other applications [1, 2].

A-2.2 VS-ANODE test result analysis

Three steps were executed to test the VS-ANODE expert system. First,
learn the operation of the NEXPERT shell and run the VS-ANODE for testing
purpose [3]. Second, analyze the knowledge base to search for the useful
knowledge for the present expert system. Finally, compare with the Comdale/X

syntax to find a way to transfer the selected rules in Comdale/X format.

A-2.2.1 Syntax comparison

The syntax of the rules of NEXPERT is written as If...Then... and Do...

format. Where the If is followed by a set of conditions, the Then by a hypothesis or
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goal which becomes true when the conditions are met, and the Do by a set of
actions to be undertaken as a result of a positive evaluation of the rule
(conditions). But in Comdale/X shell, the rules are written in an IF-THEN-ELSE
format. The IF-AND-OR part of the rule is called the premise. The THEN-ELSE
part is called the conclusion. It is obvious that the syntaxes of the rule formats of
these two shells are similar which will help us to comprehend the NEXPERT rules

and make it easier to convert them into Comdale/X format.

Table A-2. 1 is an example taken from the rule base of NEXPERT, and
Table A-2. 2 is the corresponding rule, which is converted into the Comdale/X

format.

Table A-2. 1 Example rule of NEXPERT

@ RULE = R34

(@ LHS =

(Is (control.operation) (“Top Surface of the anode”))

(Is (Ifm_raw_materials_used|.status) (FALSE, NOTKNOWN))

(Is (Ifm_manufactured_materials!.status) (FALSE, NOTKNOWN)))

(@ HYPO = control.nexpalnantion)

(@ RHS =

(Execute (“Write To”) (@STRING=@TEXT=Sorry, but not
explanation could be found for yourlobservation regarding the anode
top surface.”)))
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Table A-2. 2 Example rule converted in Comdale/X format

@ Name = R34

IF control_operation.taxt. @string is “Top Surface of the Anode”
AND fm_raw_material_used.status.false |
fm_raw_material_used.status.unknown is TRUE

AND fm-manufactured_material.status.false |
Ifm-manufactured_material.status.notknown is TRUE

THEN FORM (“HYPO_control_explanation.frm”)
THEN TEXT (“Sorry, but not explanation could be found for your \
observation regarding the anode fop surface.”)

A-2.2.2 Conclusion

Based on the analysis of the test results, several conclusions are obtained:

The VS-ANODE expert system was designed only for the particular
Soderberg anode and the specific parameters are required.

Most questions request the numeral values of the relevant parameters.
Without these necessary values, the reasoning process will discontinue.
For special cases, VS-ANODE uses some text questions instead of the
requirement of numerical parameters. But using such text questions
cannot obtain the final reasoning result, only some suspected results are
provided.

Only partial rules are concerned with the text questions, which could be
used as a reference for the present expert system.
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APPENDIX 3 REASONING PROCESS IMPROVEMENT

During the development of AEPES, several approaches were adopted to
improve the efficiency of diagnosis and the correctness of the reasoning result.

The main steps of this development process were concerned with the following

aspects:
¢ Knowledge base structure improvement
e Certainty factor utilization
¢ Improve diagnosis speed
e Multiple symptoms criterion
» Interface improvement.

The examples of the particular case studies about these aspects are

presented in the following sections.

A-3.1 Knowledge base structure improvement

As described in Section 6.4.3 “Modularization of knowledge base,” two
types of module are used for the present knowledge base building. The major
purposes of using modules to organize the rule base is to separate the general
knowledge and the specific knowledge, as well as to improve the knowledge base
programming work. No doubt, with such modulized knowledge base, the

maintenance work will be simplified.
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For example, in the total 298 rules of the VSS sub-system of OPEES-1,
there are 83 rules concerned with the on-line process data communication, data
status detection and alarm release. All these rules belong to the alarm module,
which is a unique module concerned with the specific knowledge of the particular
cells. The general knowledge is not varied for the particular cell applications; they
are organized into other types of modules, which are not concerned with the

particular value of process data.

Based on such structure of the knowledge base, the only modification work
for the extension application is concerned with the part of the alarm modules. The
whole structure of the knowledge base and the general knowledge modules will be
retained. The routine updating, which concerns the variation of specification of the
particular cell, is only needed to modify the limitations of the alarm modules
through the system provided special interface. The following examples will
describe the working procedure of the alarm module, which is the only part of the

knowledge base concerned with the specific knowledge.

A-3.1.1 Example rule of on-line communication setting

Here is an example of a rule of the alarm module of VSS sub-system, which
is concerned to setting the connection format of the data files (See Table A-3. 1).

This is the primary step to communicate with the real process.



Table A-3. 1 Rule alarm1

Rule
@name = alarm1
@priority = 5

IF cell.selected. @string

THEN trl. TYPE. @string is "DDE"

THEN trl. MAPFILE. @string is "D:\comdale\exp_2.mpf"
THEN trl.ID. @integer = CONNECT ( “trl", "Excel Potline" )

THEN READ ( t1.ID. @integer, "trl.r18. @f")
THEN READ ( t1.ID. @integer, "trl.r34. @f")
THEN line.current. @float = trl.r18. @float
THEN line.voltage. @float = trl.r34. @float
THEN trc. TYPE. @string is "DDE"

THEN tre. MAPFILE. @string is "D:\comdale\exp_1.mpf"
THEN trc.ID. @integer = CONNECT ( "trc", STRCONCAT ( "Excel Cell ",

cell.selected. @string ) )

THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,
THEN READ ( trc.ID. @integer,

THEN cell.voltage_fluctuation. @float = trc.r15. @float

THEN cell.voltage_nominal. @float = trc.r17. @float

THEN cell.voltage_average day.@float = tre.r14. @float

THEN cell.voitage_deviation. @float = ABS ( cell.voltage_nominal. @float -

“‘trc.ri4. @f")
"tre.r15. @f")
“tre.ri7.@f")
“tre.r20. @f")
"trc.r22. @f")
"tre.r23. @f")
“tre.r24. @f")
“trc.r40. @f")
“trc.r50. @f")
"tre.r51. @f")
“trc.r52. @f")
“trc.r53. @f")
“trc.r55. @f")

cell.voltage_average day. @float )

THEN anode_effect.number. @float = trc.r20. @float

THEN anode_effect.voltage_average. @float = trc.r22. @float
THEN anode_effect.voltage_max. @float = trc.r23. @float
THEN anode_effect.duration. @float = trc.r24. @float

THEN anode.adjust_number. @float = trc.r40. @float

THEN cathode.voltage_drop. @float = trc.r50. @float

THEN metal.weight tapped. @float = trc.r51. @float

THEN metal.level. @float = trc.r52. @float
THEN bath.level. @float = trc.r53. @float
THEN bath.temp. @float = trc.r55. @float

THEN GOTO ( "alarm2”)
EndRule
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In this alarm rule example, the on-line process data connection function and
each monitored data are formatted. That is the inlet of the alarm module, which
connects the directly measured or already stored process data. Follows the
“THEN GOTO (“alarm2”)” command, the other rule of the alarm module will
continue to gather another kind of process information, which is mainly concerned

with the manually measured data.

A-3.1.2 Example rule of process data status detection

Depending upon the value of the received on-line process data, the next
task of the alarm module is to detect the status of these data. The following rule is

an example to detect the alarm status (See Table A-3. 2).

Table A-3. 2 Rule alarm2

Rule
@name = alarm3_12 2
@priority =5

If iron.impurity. @s is "ABNORMAL”

AND iron.impurity. @f >=0.170000

AND iron.impurity. @f <0.190000

THEN iron.impurity. @s is “HIGH”

THEN raw-material_1.check. @s is “Contents of the relative raw materials.”

THEN raw_material_2.check.@s is “1). Alumina chemical composition [F,, S, etc.]”

THEN raw_material_2.check. @s is “2). Ash content in anode material”’
EndRule
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The rule uses the specific alarm limitation to detect that the value of iron
impurity and converts it to a fuzzy expression “HIGH”, which is acceptable for the
general modules. Depending upon this alarm, an announcement is released for
the operator and the relevant detections will be continued. All the information of
these detections and conversions from the alarm modules will be sent to the
general knowledge modules for the further reasoning. These two examples show
that the external information is only concerned with the alarm module. Therefore,
this improved structure of knowledge base will benefit the modification and

updating works.

A-3.2 Utilizing uncertainty expression to improve the reasoning process

In real process, a substantial number of the information presents the
uncertainty. To correctly treat the uncertainty information is the prerequisite
condition of the reasoning. The Degree of Certainty (DC) is applied in the present
system to improve the ability of uncertainty information treatment. In the certain
rules, the conclusion statements may also be attached with a Certainty Factor
(CF). This CF indicates the confidence in that conclusion statement. The DC is
used for describing the uncertainty of the symptom, but the CF is used for

describing the uncertainty of the conclusion.

Here is an example to show the improvement of diagnosis process by using

CF. In this example; two testing cases of “High iron impurity” sub-system of
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ENGES are compared. In case 1, the CF was not concerned to the certain rule.
But in the case 2, the CF was an additional consideration. The result of the

reasoning process of these two cases presents some differences.

In the case 1, at first the inference engine fires a rule to release a question
to ask for the value of the iron content in the metal pad. If the value is less than
0.2%, then the first conclusion will be judged as: “The iron content in the metal pad
is normal.” Considering some special cases, there may be some potential
problems, which still affect the iron content, even the value of iron content in a
normal range. So another rule was designed to search for this potential possibility.
The consequent rules will be fired for gathering more information. As in case 1 the
DC is not used to describe the certainty of the fact and the CF is also not attached
with the relevant conclusion. Therefore, all the corresponding rules will be
executed and all the relevant questions will be asked. The questions, answers and

conclusions in this procedure are listed as:

—h

. “What is the value of the iron content (%) in metal pad?”

2. Diagnosis Conclusion: “The iron content in the metal pad is normal,” when
typing value is 0.09%.

3. “Is the iron impurity increase in metal pad increased during last analysis

period?”

4. Then given the diagnosis report: "The iron impurity in metal pad will be
abnormal,” when the answer is “Yes.”

5. “Is the anode stem immersed in the bath?”

6. “Did you find out some iron accidental contamination the metal?”

7. “Did you find out some cathodes failure?”

8. “Does the iron impurity continuously increase which is caused by the

cathode collector bar?”
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But in real process, when the conclusion of “The iron impurity is low” with
high confidence, then there is no need to ask the consequent questions and the
considered potential problems could be omitted, as well the whole reasoning
process also could be simplified. For this reason, in case 2 the CF was considered
to describe the confidence of the conclusion of rules. For example, the different
CFs were attached to the conclusion “The iron impurity is normal.” If the iron
impurity is less than 0.1% and the CF=90.0, but if the range is from 0.1% to 0.2%,
the CF=75.0. And then, ali the facts were described with the estimated DC. Based

on such improvements, the corresponding reasoning process is simplified.

For example, if the iron impurity is also “0.09%”, then the consequent

questions and relevant CF are as follows:

1. Conclusion: "The iron impurity in metal pad is normal.”
2. The CF of “The iron impurity is normal.” is 90.0.
3. Terminating the diagnosis process depends on the answered information.

As when the CF of conclusion “Iron impurity is normal” is 90.0, that means
this conclusion is with high confidence. Therefore, there is no need to doubt it, as
well as to ask another question. When the iron impurity is in the range from 0.1%
to 0.2%, then the CF of the conclusion is reduced to 75.0. This reduced
confidence will lead the inference engine to release corresponding questions to
gather further information to detect whether a potential problem exists, which could

lead to increasing the iron impurity.
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The comparison of these two cases shows a fact: using the numerical
expression of the uncertainty could realistically reflect the complexity in practice

and could help to improve the reasoning process.

A-3.3 Improve the diagnosis speed

The speed of diagnosis process is one of the performance indexes of an

expert system. To improve the diagnosis speed, two steps should be adopted:

e Deeply understand the acquired knowledge
e Improve the design of corresponding rule base and select the correct
searching strategy

The diagnosis speed is concemed with two concepts: the searching time
and the diagnosis time. The searching time is the time of scanning all the rules,
facts, on-line data and available information. The diagnosis time is concerned to
the time of the question release, the required information typing and the time to do

the consequent diagnosis.

To determine the searching time, several tests were executed to compare
the variance between the different scales of systems. Three sub-systems are
selected for the testing, the numbers of the rule applied in these sub-systems are
as: “Sludge accumulation” (14 rules), “Excessive anode effect number” (35rules)

and “OPEES-1” (298 rules). The searching times are roughly:
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“Sludge accumulation” sub-system: less than three seconds
“Excessive anode effect number’ sub-system: less than four seconds

“OPEES-1” sub-system: less than eight seconds

The test results show that all the searching times are less than eight
seconds whether the rules base contains twenty or three hundred rules. It
indicates a fact that only seconds in time difference is not an important factor to
affect the diagnosis speed, so it could be considered that search time does not
matter much with the number of rules applied, especially on such scale of the rule
base, which consisted of several hundred rules. However, another test result
shows that most time is expended in the question answering or the required value
typing, as well as the diagnosis time (See APPENDIX A-4.1 “Diagnosis time for
different number of cells.”) That means more rules applied, then more chaining
questions will be released, more answers are needed to type and more time will be
expended to do the relevant diagnosis. Thus, to improve the diagnosis speed will
focus attention on the improvement of the rule base (to reduce the number of
guestions) and the selection of an appropriate searching strategy (to search for an

efficient searching strategy).

Therefore, the second step of the diagnosis speed improvement is
concerned with the rule base design and the searching strategy selection. To
improve the rule base, deeply understanding of the corresponding knowledge is

the primary goal. Truly following the thinking logic of human expert will help the
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inference engine avoid undue complex search links, reduce unnecessary
questions and could make a smart decision. The major approach of improvement
is to determine the correctly chaining link. Based on the obtained facts to point out

the key problem is very important for the next searching process.

Here is an example of the comparison of two test results of “Excessive
number of anode effects” sub-system. In case 1, the search strategy is set as
“Search all rules.” When the number of anode effects is detected as “2”, which is
higher than normal value, the inference engine will fire all relevant rules to release

the successive questions:

Are there some alumina bins empty?

Are there some alumina bins obstructed?

Are there some alumina bins gate obstructed?

Are there some alumina point feeder obstructed?

Are there some alumina point feeder holes obstructed?
Is the crust very hard and more difficult to set anodes?
Is the alumina thermal conductivity increased?

Is the alumina dissolution decreased?

. Is the fluorocarbon emission increased?

10.Is the bath level low?

11.What is the value of anode effect voltage?

12.ls bath temperature low?

13.ls anode current distribution abnormal?

©CONDOIA DN

As seen above, if the number of anode effect is high, there are 13 questions
to be asked. Could the diagnosis speed of this problem be improved? To answer
this question, the primary step should be done is to understand the deeper causes
of the problem. However, an experienced engineer could find some of these

questions are not needed to ask due to the analysis of the individual case.
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Therefore, follow the thinking logic of human expert to improve the chaining link of
the rule base could avoid the invalid questions and speed up the diagnosis

process.

In the case 2, the actual reason of anode effect was analyzed, and then the
chaining link of the rules was redesigned. The searching strategy was also
changed as: “Terminate when no new sub goal found in successive rule.” For
example, when the alumina bins are found empty, then there needs no checking
the obstruction of the feeding system and the change of alumina properties. This
analysis results will be counted as chaining fact in the redesigned rule base. The
test result of this improved rule base shows that required questions in the

diagnosis process will be reduced to only six:

Are there some alumina bins empty?

Is the crust very hard and more difficult to set anodes?
Is the bath level low?

What is the value of anode effect voltage?

Is bath temperature low?

2 T

Is anode current distribution abnormal?

By this way, the final diagnosis result is still the same but the invalid
questions are avoided and the expended time in the diagnosis process is reduced
to 50%. More importantly, some unnecessary inspections of the feeding system
and the alumina properties in the real smelter could be avoided. Obviously, using

such approach to improve the rule base will be more beneficial to the larger scale
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rule base, where more expended time could be saved as well as to quicken the

entire diagnosis speed.

A-3.4 Utilizing multiple symptoms criterion to improve the reasoning process

Actually, most of the problems occurred in the production are accompanied
with the multiple symptoms. The treatment of the multiple symptoms is one of the
goals of rule base design. As described in Section 6.5.3 “Multiple symptoms
criterion,” the multiple symptoms criterion is an important step to improve the
treatment ability to the real complex information. The further test and discussion is

described in the following.

In order to improve the present system, the existing expert system was
studied and some problems were found in the multiple symptoms cases. These
problems were concerned with the analysis of the symptoms and the structure of
the rules. Because in the knowledge acquired from the domain experts, the
multiple symptoms of a specific case are normally only listed as such, there is no
indication of the rank of these symptoms to be concerned. If these symptoms are
coded into the rules base as such, as well as are arranged by the logic AND, some
false results could be obtained. The following example (See Table A-3. 3) shows

how the problem was occurred:
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Table A-3. 3 Rule alumina property1

Rule
@name = alumina_property1

IF anode_effect.number.higher

AND bath.temperature.too_low

AND crust.hardness.higher

AND cell.voltage.unstable

THEN alumina.property.abnormal is TRUE

THEN TEXT ( "Diagnosis Report:

Alumina properties look abnormal! ")

THEN TEXT ( "Suggestion:

Go to the laboratory to check the analysis results.")
EndRule

There are four symptoms listed in the premise part of this rule. The ranks of
these symptoms follow the description in the required knowledge without any
analysis. That means all the symptoms are considered with identical importance
and CF, and they will be treated with the same priority. If any symptom does not
occur or the operator omits some relevant observation, the final conclusion will be
false, even if the remainder symptoms of the problem have occurred. For example,
if the symptoms of the “cell.voltage.unstable”, the “anode_effect.number.higher’
and the “bath.temperature.too_low” (they are the major monitored process data)
are confirmed, only the ‘crust.hardness.higher” is not satisfied, the conclusion:
“alumina.property.abnormal” will be also FALSE. The hardness of the crust is a
manual measured parameter, which is often accompanied with an uncertainty. If
there is no any attached CF, this information will easy lead to a false results in the

reasoning process. To avoid this kind of problem, two steps should be adopted:
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e Analysis of the multiple symptoms of each problem, to identify the
differences between them and searching for the essential cause of each
symptom.

e Improve the structure of the rules; rearrange the multiple symptoms by a
reasonable logic, which could really represent the knowledge of the
experts.

For example, in this particular rule, four symptoms were analyzed and they
are rearranged into two premise parts of the rule: the symptoms of the
‘anode_effect.number.higher” and the “cell.voltage.unstable” could be considered
to be caused by the same reason and the “cell.voltage.unstable” is also
considered as another representation of the “anode_effect.number.higher”,
Therefore, they are related by the logic OR. The remains of two symptoms:
“path.temperature.too_low” and “crust.hardness.higher” will be also treated by the

same method.

Finally these four symptoms are rearranged by the different logic in the rule,

and the result shows some differences. (See Table A-3. 4.)

Table A-3. 4 Improved rule alumina property1

Rule
@name = alumina_property1

IF anode_effect.number.higher | cell.voltage.unstable
AND bath.temperature.too_low [ crust.hardness.higher
THEN alumina.property.abnormal is TRUE

THEN TEXT ( "Diagnosis Report:

Alumina properties look abnormal! ")

THEN TEXT ( "Suggestion:

Go to the laboratory to check the analysis results.”)
EndRule
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By using this modified rule, when the ‘crust.hardness.higher” is also not
satisfied, the conclusion becomes “alumina.property.abnormal is TRUE.” Why is
there a different result obtained under the same condition? The basic reason is
that the symptoms were reset by the different logic, which could meet the essential
thinking of the experts. In the second part of the premise of this rule, the
‘crust.hardness.higher” was considered as another representation of the symptom
of “bath.temperature.too_low”. These two symptoms are also related by the logic
OR and are caused by the same reason. When the symptom
“bath.temperature.too_low” was confirmed, that could be considered being equal
to the “crust.hardness.higher” to a certain extent. Therefore, in spite of the
“crust.hardness.higher” was not satisfied by some reasons (such as a faulty
measurement or an error message,) the conclusion was still correct. In this way,
the structure of the rules could reflect the real substance of the knowledge of the
human experts. The reasoning process can be improved to avoid some

unreasonable reasoning results.

A-3.5 Conclusions

During the system development, several cases were studied to verify the
results under different conditions, and the different search strategies were tested
to observe the different efficiency of the reasoning processes. Depending upon

these testing results the conclusions are summarized as follows:
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A-3.5.1 Knowledge - acquisition and study

During the knowledge acquisition, one of the basic principles is always to
remember that the knowledge will be used for the real application. This means the
expected knowledge will not only be gathered piece by piece, but more
importantly, the potential relationship between them will have to be found. Such
kind of knowledge could present its substance, and will reflect the train of thought
of experts. The best way to obtain such thorough knowledge is by interviewing
experts, but they are not always available. Therefore, after the knowledge has
been acquired, the further review of the knowledge becomes an important
responsibility for the knowledge engineer. The study of the knowledge in this stage

is concerned with two aspects:

¢ Domain knowledge acquaintance
¢ Knowledge rearrangement

The former is the further study of the entire knowledge about the concerned
domain. The latter is based on the understanding of the knowledge and its
conversion into a formal logic to meet the expert system requirement. This logic
will follow the thinking process of an expert, as well as give the expert system an

ability to solve the real problems like human expert.
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A-3.5.2 Applicability of expert system

No doubt, any knowledge engineer will desire to see whether its expert
system can be readily applied. To realize this target, one of the basic requirements
is the applicability of the expert system. Two relevant aspects should be
considered: the knowledge base must contain enough knowledge to cover the
particular application and the knowledge base should be easy to modify to suit the
various situations. The former is considered as the generality of acquired
knowledge, but the latter is concerned with the particular knowledge and the
technique of knowledge base design. How to ingeniously separate the general and
particular knowledge and let them work in a coordinated matter is important for the
system applicability. The modular rule base is one of the better choices, which has
been proved by the present system. It provides some capability to allow the user to

easily update the rule base to suit the different situations.

A-3.5.3 The tolerance for uncertain or unclear information

In practice, the system cannot always work in an ideal condition; in most
cases the system will face many uncertain, unclear or even erroneous messages.
To reduce the negative effect of these undesired messages is an important
consideration for the system design. Allowing the system to have some tolerance

for such kind of information could improve the working reliability of the system.
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This tolerance will allow the user using some uncertain or inaccurate information to

do the reasoning but to avoid affecting the correctness of the result.

A-3.5.4 Speed and correctness

Based on the analysis of the testing results above, for small or regular size
rule bases, to avoid the invalid questions and to improve the correctness of final
result, is the primary consideration of the system design. Too many invalid
questions will affect the speed of the diagnosis process. To ensure a reasonable
chaining linked rule base and to obtain a correct result, three aspects should be
considered: the knowledge acquisition, the required process information and the
knowledge base design. The last two aspects are often concerned with more

relatively varied factors and therefore need careful handling.
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APPENDIX 4 CASE STUDY — TEST AND ANALYSIS

In order to evaluate the present expert system, several tests were done.

These testes were concerned with the following aspects:

To evaluate the performance when the system works in a real situation
To evaluate the effect of the different alarm status

To evaluate the effect of uncertain information

To find out the limitation of the operational performance

To confirm the available range of the relevant parameters.

A-4.1 Diagnosis time for different number of cells

The diagnosis time of the present system has been discussed in
APPENDIX A-3.3 “Improve the diagnosis speed,” where only one cell was
concerned. For the real application, the system must be designed for all cells of a
smelter. Normally, there are 100 — 200 cells in one smelter. In this situation, the
diagnosis time for hundreds of cells becomes a serious consideration. Obviously,
too long time for diagnosis would make no sense in a continuously changing
situation. To obtain numerical evaluation of the performance of the OPEES-2, nine
cases were selected for testing purpose, which are listed in Table A-4. 1. In order
to emulate the real diagnosis process, three situations are considered: 5%, 10%
and 15% cells are in the abnormal status. Each situation includes three cases,

which are concerned with one, two and three alarm data occurrences.



Table A-4. 1 Diagnosis time testing

Diagnosis time testing

) Case 1.1 1 alarm data
5% cells are in

1 abnormal status Case 1.1 2 alarm data
(10 cells) Case 1.3 3 alarm data
_ Case 2.1 1 alarm data

10% cells are in
2 abnormal status Case 2.2 2 alarm data
(20 cells) Case 2.3 3 alarm data
_ Case 3.1 1 alarm data

15% cells are in
3 abnormal status Case 3.2 2 alarm data
(30 celis) Case 3.3 3 alarm data
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The diagnosis time counting is based on single cell diagnosis process.

Actually, the diagnosis time is a relative index of performance; it would be varied

depending upon the different skill level of the users and the accuracy of the

relevant information provided. But it can still be considered as a valuable

parameter to indicate the performance of the system.

As the different alarm data are concerned with the different problems, which

link to the different rules sets and so the relevant diagnosis times are also

different. Therefore it only can be represented by an average value of the

diagnosis times of several alarm data. The following three typical data were

selected to count the diagnosis times and then to obtain an average diagnosis time

from them:
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1. Number of anode effects
2. lron impurity content in the metal
3. Bath temperature.

The OPEES-2 was selected for testing as it was designed to match the
measurement system of the current smelter, where only limited process data can
be measured continually, but most process data should be provided manually (See
Section 6.3.2.2 “Structure of OPEES-2”). To reduce the effect of different

manual operations, the diagnosis time is counted under the following conditions:

e All the required information is ready

e The operating behavior is normal

e The cell operating status is abnormal but with only few alarmed process
data occurred.

The diagnosis time includes two parts: the searching time for the on-line
data file and the consequent diagnosis time. As the searching time is less than 5
seconds, it could be ignored and only the diagnosis time is counted. The testing

results are shown in Table A-4. 2:

Table A-4. 2 Diagnosis time of typical alarm data

Diagnosis time of typical alarm data (M:S)

1 | Number of anode effect is high 1:35

2 | Iron impurity content in the metal is | 1:45
high

3 | Bath temperature is high 1:50
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As these diagnosis times are counted independently from each data, all the
time about the information typing and diagnosis process are counted respectively.
Actually, for one cell with several alarm data, all the required information only
needs to be typed once. Therefore, for more alarm data only need to add the
reasoning times. The diagnosis time of three data and the total time are recounted
as in the list in Table A-4. 3. It should be indicated that the diagnosis time of the

first data is counted on both the information type time and its diagnosis time.

Table A-4. 3 Diagnosis time of three alarm data of one cell

Diagnosis time of three alarm data of one cell (M:S)

1 | Number of anode effect is high 1:35

2 | Iron impurity content in the metal is high | + 0:20

3 | Bath temperature is high + 0:25

Total diagnosis time of three data 2:20

Based on this consideration, more data have been tested and the average

times of different number of the alarmed data are listed in Table A-4. 4.

Table A-4. 4 Average diagnosis time of one cell

Average diagnosis time of one cell (M:S)
1 alarm data 1:35
2 alarm data 2:00
3 alarm data 2:20
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Depending on the average diagnosis times of these alarm data, the
corresponding diagnosis time of different number cells are counted as per Table A-
4. 5. In this testing case, there is a total of 200 cells to be monitored and three
situations are considered: 5%, 10% and 15% of the cells are in the abnormal
status. Therefore, the corresponding humbers of abnormal cells are 10, 20 and 30.
Each situation includes three cases, which are concerned with one, two and three

alarm data occurrences.

Table A-4. 5 Diagnosis time comparison

Diagnosis time comparison (M:S)

1 alarm data 1:35
1 cellis in ]
abnormal status 2 alarm data 2:00
3 alarm data 2:20
1 alarm data 15:50
5% cells are in
abnormal status 2 alarm data 20:00
(10 cells)
3 alarm data 23:20
1 alarm data 31:40
10% cells are in
abnormal status 2 alarm data 40:00
(20 cells)
3 alarm data 46:40
1 alarm data 47:30
15% cells are in
abnormal status 2 alarm data 60:00
(30 cells)
3 alarm data 70:00
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It is obvious that diagnosis times have to be increased when the humber of
abnormal cells is increased. If the data file refresh cycle is set to 30 minutes,
diagnosis times longer than 30 minutes make no sense. To solve this problem,

three approaches are discussed in the next section.

A-4.1.1 Discussion

Monitor cycle and diagnosis time

Using OPEES-2 to monitor the cell status, two kinds of the process data are
considered: one is the on-line data, which can be measured continually and the
remainder, which can only be measured manually. To choose an appropriate
monitor cycle is important to ensure that the abnormal status can be diagnosed in
the right amount of time. This cycle should consider both the diagnosis time of the
expert system and the time of the cell status variation. Because many process
data of the cell are slowly varied, for example, the ledge profiles, the bath level, the
weight of tapped metal and impurity content of metal. Thus, the data file refresh
cycle could be set as 30 minutes, which means that every 30 minutes all of the
process data, which are saved in the data file will be refreshed at least one time.
Actually, the on-line data refresh cycle can be faster (less than five minutes), but

remainder of the process data refresh cycle is as slow as 30 minutes.

This is no doubt that the 30 minutes monitor cycle is too slow for the on-line

data, which varies relatively fast. As OPEES-2 can cooperate with the controller of
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each cell, any variation of the on-line data can be adjusted immediately. Therefore,
the relatively slow diagnosis process should not affect the adjustment of the on-
line data. However the problem is that when the number of abnormal cells is
increased, the diagnosis times will be too long. For example, when the number of
the abnormal cell increases to 20, the diagnosis time for three problems of every
cell will be 46 minutes and 40 seconds, a time that is not acceptable for the on-line
diagnosis. To solve this problem, more detailed discussion is represented in the

next pan.

Distributed structure

In the normal production, 10% of cells with alarmed data is a reasonable
number, which means in a monitor cycle, OPEES-2 should finish the diagnosis
tasks of at least 20 cells. According to the testing results in Table A-4. 5, the
appropriate humber of cells to be diagnosed in one monitor cycle is only 10 cells.
To solve the problem of too long of a diagnosis time, one of the efficiency methods
is to use more OPEES-2 sub-systems to construct a distributed system. In this
system each OPEES-2 is only in charge of 50 cells. Four identical OPEES-2 sub-

systems can be applied for a total of 200 cells (See Figure A-4. 1).
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Figure A-4. 1 Distributed structure of the improved OPEES-2
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In this distributed system, OPEES-2 does not need to modify its knowledge

base and structure, and it can still be in charge of 10 cells in a monitor cycle. Thus,

four OPEES-2 sub-systems could work together in the meantime and a total of 40

abnormal cells could be diagnosed in a monitor cycle. Therefore, the percentage

of the available abnormal cells to be diagnosed is increased to 20%. Although this

proposed system couldn’t reduce the manual measurement time and the operating

time, it is still an available approach to improve the diagnosis time.

OPEES-2 improvement

Another possible approach to speed up the diagnosis time of OPEES-2 is

concerned with the modification of its rule base. In the present system, each

alarmed data will be treated with same priority. Actually, the alarmed data should
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represent different alarm statuses, as well as with the different deviation. For
instance, the alarmed data could be expressed in five levels: "Very High,” “High,”
“‘Normal,” “Low,” and “Very Low” depends on its deviation (See Section “6.4.3.2
Module hierarchy of knowledge base”). If the two extreme levels (“Very High”
and “Very Low”) are bestowed with higher priority and the “High”, “Low” are
bestowed with lower priority, then OPEES-2 will do the prior diagnosis for the
alarmed data with higher priority in all instances, then the lower priority. By this
way, the system gives first priority to the more serious alarmed data and could find
out the causes of the problem in time. Therefore, the effect of the abnormal status
could be reduced in a monitor cycle. The treatment of the priority of the alarmed

data is illustrated in Figure A-4. 2.

Process
Data

Process Data Treatement
Unit
High Priority Normal Low Priority
Alarm Data Data Alarm Data

1 |

I

Inference Engine

v

Diagnosis
Report

v

To Control Room

Figure A-4. 2 Higher priority alarm data treatment process
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There the additional process data treatment unit will scan all the required
information either of on-line data or manually typed data to find out the abnormal
data, and then assigns the different priorities to them depending upon their
variations. Then the inference engine will follow the rank of the priorities to

diagnose the causes of the alarmed data.

Improving the measurement system

To improve the diagnosis speed, the thorough approach is to improve the
existing process data measurement. Most diagnosis time is spent on the process
data measuring and typing. Improvement of measuring methods and devices will
reduce the diagnosis time. The on-line diagnosis could be really possible only

when this basic problem will have been solved.
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A-4.2 Diagnosis testing with different uncertainty information

To diagnose the problem in the real cell operation, the degree of certainty
(DC) is often used to represent the uncertainty information and incomplete
measurements. With different DCs, the reasoning results could be quite different.
In order to find out the effect of the different DCs of the present system, two cases
were studied. In case 1, four sets of DCs with different values were selected to test
three problems respectively. In case 2, five sets of different values of DCs were

selected to test the multi-symptom problems.

A-4.2.1 Effect of different DC values on problem diagnosis

In the reasoning process, large amount of information is gathered through
the question interface. Different DC could be assigned at this level. To test the
effect of different DC values on the final diagnosis results, four different values of
DC were selected for three problems in ENGES. The values of the DC and the

problems are listed in Table A-4. 6.

Table A-4. 6 Testing values of DC and problems

Tested value of DC Tested Problems

—h

DC=100% 1. Excessive number of
DC=75% anode effect

DC=50% 2. Higher Iron impurity
DC=35% content in the metal

AW N

3. Anode carbon quality
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For each problem, four tests were executed by using each set of DC. The

results are listed in Table A-4. 7.

Table A-4. 7 Testing results of different DC

Diagnosis results

Case No. | DC value | Problem 1 | Problem 2 | Problem 3
Casel DC=100% | Success Success Success
Case 2 DC=75% | Success Success Success
Case 3 DC=50% | Success Success Success
Case 4 DC=35% | Failure Failure Failure

In case 1 — case 3, the reasoning processes were successful and the final
results were also correct. Why could the different DCs lead to the same results?
The reason is that the threshold value of DC is set as 50% by default, therefore
any values which are more than 50% will be concluded that the premise of this
problem is “True.” Thus, the same information with different DC (more than 50%)

will be treated as equal.

In case 4, as the DC is less than 50%, the inference engine will interrupt the
diagnosis process because all the DC of the premises of the rules were not
satisfied. A final report will indicate that the system cannot find the problem

depending on the supplied information with too small DC value.
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During the reasoning process, based on the typed DC value, another
parameter NDT (Net degree of truth) will be calculated, this is an internal
parameter, which indicates the truth of the conclusion of each rule. The NDT is
calculated when all premises of a rule are examined and will depend on the
different DC of each premise. As mentioned above, using the premise with
different DC value (more than 50%) could get an identical diagnosis result. That
means that although the results are the same, the truths of the results (NDT) may
be different. Unfortunately, the present system cannot supply this parameter in the
diagnosis report, as the NDT is only calculated in the background by the system. In
order to indicate the effect of the different DCs and show confidence in the results,

it is important to provide a similar parameter for further improvement.

An example of the relationship between DC and NDT of each rule of case2
(Problem 1) is listed in Table A-4. 8. The average NDT of all rules is 82.95%. This
result indicates the fact that if the DC value is higher than the defaulted threshold

value, the final result still has a higher confidence.

Table A-4. 8 DCs and NDTs of case 2 (Problem 1)

DCs and NDTs of case 2 (Problem 1)

DC value Rule No. NDT %
DC=75% 1 100
DC=75% 2 75
DC=75% 3 75
DC=75% 4 75
DC=75% 5 75




DC=75% 6 100
DC=75% 7 75
DC=75% 8 100
DC=75% 9 75
DC=75% 10 100
DC=75% 11 75
DC=75% 12 75
DC=75% 13 75
DC=75% 14 100
DC=75% 15 75
DC=75% 16 100
DC=75% 17 75
DC=75% 18 100
DC=75% 19 75
DC=75% 20 75
DC=75% 21 75
DC=75% 22 75
Average

NDT (%) 82.95
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In case 1 — case 4, the fixed values of DC are tested to do the diagnosis.

Using such a relatively simple method can easily find the relationship between

different values of DC and their final results. However, this method does not reflect

the complexity of the real world. Different percentages of the DC applied for multi-

symptoms are studied in next section.

A-4.2.2 Effect of different DCs selected for multi-symptoms

In this set of cases, the different DC values are selected for both major and

minor symptoms as well as tested with three problems. The values of DCs are

selected in different percentages, which are listed in Table A-4. 9.
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Case ]
N Major symptom Minor symptom

0.

DC [e) ] o] () o, [¢) o] 0,

100% | 75% | 50% | 35% | 100% | 75% | 50% | 35%
value

1 80 10 5 5 80 10 5 5
2 65 20 10 5 65 20 10 5
3 % 50 20 20 10 50 20 20 10
4 30 20 20 30 30 20 20 30
5 15 10 35 40 15 10 35 40

The different sets of percentages

of DC are selected to emulate the

different situations of the real diagnosis process. In case 1 — case 3, the

percentage of the information with DC=100% in both major and minor symptoms

are 80%, 65% and 50% respectively as well as the degree of certainty is in a

downward trend. The DC values of the remainder information are selected as

DC=75%, 50% and 35%, which occupy 5% - 20% respectively. In case 4 and case

5, the information with DC=100% only occupies 30% and 15% respectively, which

emulates a case of lower confidence information. The numbers of the rules

associated with these three problems are provided in Table A-4. 10 and the rule

number distributions of five cases are listed in Table A-4. 11. The testing results

are shown in Table A-4. 12,
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Table A-4. 10 Rule humbers of three problems

Rule numbers

Problem 1 35 rules
Problem 2 13 rules
Problem 3 9 rules

Table A-4. 11 Rule distribution of different DC values

DC values (%) | Problem 1 Problem 2 Problem 3
DC=100% 28 rules 10 rules 7 rules
Casef DC=75% 3 rules 2 rules 1 rules
DC=50% 2 rules 1 rules 1 rules
DC=35% 2 rules 0 rules 0 rules
DC=100% 24 rules 9 rules 6 rules
Case 2 DC=75% 4 rules 2 rules 1 rules
DC=50% 4 rules 1 rules 1 rules
DC=35% 3 rules 1 rules 1 rules
DC=100% 21 rules 8 rules 5 rules
Case 3 DC=75% 7 rules 2 rules 2 rules
DC=50% 4 rules 2 rules 1 rules
DC=35% 3 rules 1 rules 1 rules
DC=100% 17 rules 6 rules 4 rules
Case 4 DC=75% 10 rules 4 rules 3 rules
DC=50% 7 rules 2 rules 1 rules
DC=35% 1 rules 1 rules 1 rules
DC=100% 14 rules 5 rules 4 rules
Case 5 DC=75% 10 rules 4 rules 2 rules
DC=50% 8 rules 2 rules 2 rules
DC=35% 3 rules 2 rules 1 rules
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Table A-4. 12 Testing results for multi-symptoms

Testing results for multi-symptoms

C'\?OSG Problem 1 Problem 2 Problem 3
Average Average Aver
1 Success | NDT=90.8 | Success | NDT=90.6 | Success ageo
% o NDT=95.8%
Average Average Average
2 Success NDT=85% Success ND1;287.5 Success NDT=87 5%
3 S Ss Average Success N@lﬁiaﬁes Success Average
ucce NDT=73% o NDT=70.8%
Average . Average . Average
4 | Success | \pTos7e, | Failire | NpTogge, | PRIV | NDTo37.5%
5 Failure Average Failure NPBI'?:?I%QG Failure Average
i NDT=40% o NDT=33.3%

In case1 — case 4, most results are successful except the last two, but the

average DNT of each problem ranges from 90.8% down to 57%. In case 5, too low

DC values lead to the interruption of the diagnosis process and the NDT is also

lower.

A-4.2.3 Discussion

follows:

Upon examination of the tested results, four points are summarized as
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DC value and threshold value

It is found that different DC value could still lead to the same correct final
results. The main reason is the defaulted threshold value. If the DC values are
higher than the threshold value, the diagnosis results can be identical. The NDT of
each result nevertheless varies depending on its DC value. In the present system,
the defaulted threshold value is 50%, so any information with the DC value higher

than this value will not affect the correctness of final results.

Result and rule set size

For different problems, the sizes of the rule sets are different. It is found that
the amount of information with lower DC values and the number of rules could
affect the final results. If a DC value changes from higher to lower than threshold
value, the difference in the percentage of NDT will be more obvious in a smaller
size rule set. For example, there are only 9 rules applied to problem 3. In case 3, if
one more premise is changed form DC=100% to DC= 35%, the NDT will be
changed from 70.8% to 54%. The NDT is decreased by 16.8%. In the same case
but of problem 1 (with 35 rules), the DC of one premise is changed from DC=100%
to 35%. The NDT will change from 71% to 68.8%, by 2.2% only. Therefore, in a
smaller size rule set, the lower DC value must be treated very carefully. The effect
of the uncertainty information will obviously affect the final results more than the

larger size rule set.
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Effect of the lower DC in the initial stage of diagnosis

If the DC value is too low in the initial stage of the diagnosis process, the
reasoning process and the accuracy of final result may be affected or even the
diagnosis process may be interrupted. In the initial stage, the fired rules are
normally with higher priorities. Any information with too low DC value will seriously
affect the first few steps of searching chain links that may even lead to a wrong
linking direction. For example, in the problem 1 (See Figure A-6. 6 Different
priorities of the rules), the first question is: "What is the number of anode effects
during the last 24 hours?” If the DC of typed information is less than 50% and with
for the consequent question: "What is the value of the anode effect voltage?” then
the diagnosis process could be interrupted. The NDT was also shown as too low.
This fact indicates that the information of the first stage must be with a higher DC

value in order to take a correct searching direction.

Accurate information and NDT

The tests clearly show that the accuracy of the required information is
important to ensure the success of the diagnosis process. To satisfy this

requirement, two improvements should be made:

e Improve the measurement technology and provide the timely on-line
data.

¢ A warning massage could be added into the system detection function
module. When the information with too low DC value is typed in, the user
would be asked to reconfirm the DC and the software would show the
corresponding NDT.
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APPENDIX 5 FLOWCHART OF AEPES OPERATION

To help understand how AEPES works, Figure A-5. 1 gives an entire

flowchart of the system operation. The operating procedure is:

Start the system

Select one of three sub-systems

Follow the instructions to select desired line, cell or problem

Answer questions with the required information or type the required
values of the data

When reasoning process is finished, display the diagnosis report

Follow the suggested actions to solve the problem

Make more selections to continue further diagnosis

If there are no more questions, terminate the system.

When the system runs in the on-line mode, several preparatory steps

should be carried out:

e Communication Bridge will be set in both the internal system and the
communication network.

e Relevant data file will be set in both the internal system and the
communication network.

To ensure the correctness of reasoning process, all the questions should be

answered and the required value of data should be in reasonable ranges.
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APPENDIX 6 TUTORIALS OF ENGES

In this section, an example of the entire procedure of the reasoning process
of ENGES (Comdale/X version) is introduced. The diagnosis problem is the

“Excessive anode effect number”.

When the user selects the desired problem (“Excessive anode effect
number’) from five available common problems, the ENGES will load the
corresponding sub-system and start to run. The inference engine starts to fire the
first rule in order to obtain the initial information from the user. The first question:
“What is the number of anode effects during last 24 hours?” will be shown in the

following question interface (See Figure A-6. 1).

. | What is the number of anode effects during last 24 hours?

Answer ﬁype in a value

e (100.0

Figure A-6. 1 Question about the number of anode effects
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The required vaiue is the basic data to determine whether the cell operation
is in the normal status. Depending upon the value typed by the user, the inference
engine fires the rule “anode_effect_number1” (See Figure A-6. 2) to make the first
judgment. If the number of the anode effects in the last 24 hours is more than “2”,

this rule would detect that the “anode_effect.number.nomal is FALSE”.

Figure A-6. 2 Example of rule trace

The first decision will then be sent into the working memory for further
reasoning. The inference engine will follow the preset search strategy to find out

how and when the search session is to end.

in this particular case, the forward chaining was set as the research
strategy. The reasoning will restart with the first confirmed fact: “the number of
anode effects is high”, then it will use the relevant rules to match this fact. This

means that the premises of these rules must match the first confirmed fact, as well
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as a chaining connection. Figure A-6. 3 illustrates the browser of the rule
connection of this sub-system. The rules already executed are presented as red,

while the remaining rules are still in green.

Figure A-6. 3 Example of rule browser

The inference engine will proceed from the present situation to search all
the possible rules in order to find out a desired goal. While a rule is executed, the
corresponding action, such as a question, conclusion, and shift command will be
released one by one. For example, the Figure A-6. 4 is the consequent question
released by rule “empty_bin_feeder3.” it will check whether some obstruction
occurred in the alumina bins. This question is based on the previous fact that “the

number of daily anode effects is high.”



Are there some alumina bins shstructed?

# Uncertain

DCpe [100.0 {

Figure A-6. 4 Example of consequent question
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If some alumina bins or feeders were obstructed, the inference engine will

release a corresponding iliustrated suggestion (See Figure A-6. 5).

Suggestions:

L Check any ebstructions.

" 2. Chack and repaix the mechenical
problem of bine of feeduy and
ensure they are warking properily,
if thay ave found.

Obstruction of Bins or Feeders

Figure A-6. 5 Suggestion about obstruction of bins or feeders

Based on these two facts, then the inference engine keeps track of the

implications of exampled fragments of the rule base. The rules are organized by
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different priorities. For example, the rule set “anode_effect_number” and the rule
set “anode_effect_voltage” are put in the high priority level, but the ruie set the
“alumina_feeding_system” is in the lower priority level. The priority of the rule set
the “alumina_property” is in the lowest level. Figure A-6. 6 shows the different

priorities of the partial rules of the rule base.

Check the numbet of
daily anode effects
Number of Number of
anode sffects anode sffects Checkvz?;dv effect
abnotmal notmal 9°
Check the Anode effsct
alumina feeding voltage vﬁ‘{": d: :m!
systam abnormat 9
Check the Chack the Check the Check the
ahack e gate of obstruction of ;;“"f;’f:; anode current | | alumina fesding
alumina bins aluming bins pes distribution system
Check the /\
alumina
property Chesk bath Gheck the Crack the
/ N feve! shidge hardness
Chack the Check Check alumina Check
crust alumina thermal fluorocarbon

Figure A-6. 6 Different priorities of the rules

Following different priorities of the rules, the inference engine will fire
corresponding rules. The following consequent questions may be selected to

release depending upon the further informaticn and the chaining link:

Are there some alumina bins empty?

Are there some alumina bin gates obstructed?
Are there some alumina feeders obstructed?

Are there some alumina feeder holes obstructed?

® 6 @ o
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Is the crust very hard and therefore more difficult to set anodes?
Is the alumina thermal conductivity increased?

Is the alumina dissolution decreased?

is the fluorocarbon emission increased?

Is the bath level low?

What is the value of anode effect voltage?

e & © ¢ & @

For example, if the “anode_effect voitage high”is TRUE, then the inference

engine could find out an interstage diagnosis report as shown in Figure A-6. 7.

Figure A-6. 7 Example of interstage diagnosis report

In this diagnosis report, three potential reasons are listed. If the “OK” is
clicked, the inference engine starts to search for the further facts to find out the

underlying reasons, and then the relevant rules will be fired.
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Considering these potential reasons, the following rules will be fired in the

further search process:

Rule: “anode_effect_voltage4”

Rule: “anode_effect_voltage5”

Rule: “anode_effect voltage6”

Each rule wili ask the corresponding question to confirm relevant
information. if the fact “abnormal anode current distribution” is detected, the
corresponding suggestions will be released for reference. Figure A-6. 8 is the

illustrated suggestion for solving the problem of “abnormal anode current

distribution.”

Suggestions:

1. Mpasure the avode current
fistributisn and locate die fasliy

aeode. 2. Detect the problom of the individeal ansde

siems by using probe.

High Anode Effect Voltage Value (2)
{Anode current distribution abnormal)

Figure A-6. 8 Suggestion for abnormal
anode current distribution
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When all the other possible facts have been checked, the inference engine
will release a notice: “We don’t find any more problems based on your answers.
Terminate the diagnosis process.” Then the user can click “OK” to terminate this

diagnosis process (See Figure A-6. 9).

Figure A-6. 9 Termination notice

So far, this reasoning process is completed, but if the user wants continue
to diagnose other problems, the user will simply follow the subsequent instruction

to select the desired one and then perform as instructed.
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APPENDIX 7 TUTORIALS OF OPEES

in this section two examples of OPEES are introduced. The first example
comes from the basic design of OPEES and second one belongs to the advanced

design.

A-7.1 Example of the basic design

Similarly to the operating procedure of ENGES, the OPEES also starts from
the system selection. For this example, OPEES-1 is selected from two sub-
systems of OPEES and the cell type is selected as the medium amperage, hooded

prebake cell. Figure A-7. 1 shows the corresponding cell type selection interface.

e
/{%fgﬁ’/

%

Figure A-7. 1 Cell type selection
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When the cell type has been selected, the inference engine will fire a rule to
load the corresponding sub-system and data file. The data file plays an important
role in on-line mode of OPEES-1; all the relevant on-line data can be found in this
data file, it is connected with the external process, and the stored data could be

refreshed from the real process or the virtual celi.

The data file contains two types of data, the general pot line data and the
process data of the designated cell. The process data is concerned with four parts:
the parameter of the cell controller, the regular measurement data, the observed
phenomena and the analysis data of the laboratory. Figure A-7. 2 shows an

example of the data file.

Figure A-7. 2 Example data file
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The first rule executed is only for building the connection between the data
source and the expert system. The alarm module of the rule base is designed to
realize on-line communication. In the alarm module, there are two sub-modules:
alarm module 1 and alarm module 2, which will play different roles in the process.
in the alarm module 1, the rule “alarm 17”7 and “alarm 2” compiles all the concerned
data in the data file and assigns them into the corresponding rules of the alarm
module 2. Through the alarm module 2, the varied numerical value will be
converted to the standard fuzzy expressions, such as “Normal,” “High,” “Low” and
others, as well as the particular variables will be converted to the general
expression. After this conversion the low level moduies, which are based on the
general knowledge, could be connected with the particular on-line data. (See the
detailed description in the Section 6.4.3.2 “Module hierarchy of knowledge

base”). Figure A-7. 3 illustrates this conversion process.

On-line Data File Alarm module 1 Alarm module 2 Low level moduies
7 ™ Bt Aarm 31

1. Cell voltage o[ Rule Alarm3 |
2. Cell voltage deviation
3. Celf voltage fluctuation -t Rule Alarm Rule Alarm4  } P Ruleasv2 |
4. Number of anode effect for last day = S . * .
5. Average voltage of last anode effect _—
6. Maximum voltage of last anode effect | __ ¢ ° ®

[ ...> o . [

® et et Rule Alarm 2 Rule Alarm 12 Rule m_tap 5_2

* » Rule Alarm 13 Rule m_tap 53
\/\ Numerical Fuzzy

Vailue Expression

Figure A-7. 3 On-line data compiling process

Depending upon the judgments of the alarm rules, the inference engine

releases a form to display the statuses of all on-line process data and requests the
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user to select an alarmed data to do the corresponding diagnosis. Figure A-7. 4

shows an example of the “Alarm diagnosis selection” form.

Figure A-7. 4 Example of alarm diagnosis selection

After the user selected the desired data, the inference engine will follow the
search strategy to start the reasoning process. Here the backward chaining is used
to fire the relevant rules. As the accessible on-line data does not include some
manual measurements, in most cases, such extra information is still needed for
the reasoning. For this reason, the “Check ltems List” was designed to show the
necessary information that cannot be obtained from the directly connected on-line
data file. The required information is varied depending upon the selected alarm
data. Normally, they should be taken from the potroom or laboratory. For instance,

when the “Number of daily anode adjustment” has been detected as “High”, if the
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user wants to diagnose the cause of this alarmed data, then the corresponding

“Check items list” shows in Figure A-7. 5.

Figure A-7. 5 Example of check item list

In this list, all the required information for further diagnosis is listed at the
same time to avoid the operator returning repeatedly to the potroom or
laboratory. Some unquantized observations are represented by the codes. For

instance, the ledge profile should be coded as in Table A-7. 1:

Table A-7. 1 Code of ledge profile

Code Ledge profile
0 Normal
1 Poor
2 Extended
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Then the inference engine will fire the consequent rules to ask questions to
gather back the required additional information. Figure A-7. 6 shows an example of

the question.

:iIs the ACD low?
. |{ Please click the "Explain’ to get the comment. ]

& Uncertain

ocpa

Figure A-7. 6 Example of question

ACD (anode to cathode distance) is a special parameter, which is difficult to
measure in practice, therefore an “Explain” form is attached to this question
interface. The user can click the “Explain” key to obtain a brief comment about how

to measure the ACD; this function is also useful for the training purpose.

if the operator finds that “ACD is low,” a matched rule could be fired,
depending on ali relevant information and the following suggestion form (See
Figure A-7. 7) released to tell the operator how to timely solve this problem.
Following the suggested adjustment, the control engineer could adjust the value of

set point of the cell controller. In this way OPEES-1 could work in cooperation with
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the existing control system. This will speed up the diagnosis procedure and

improve the cell operation.

Figure A-7. 7 Example of suggestion

After this suggestion, the inference engine continues the reasoning process,

and an additional suggestion, shown in Figure A-7. 8, will be released.

Figure A-7. 8 Exampie of subsequent suggestion

in some special cases, progressive suggestions will facilitate the treatment
of urgent cases, as the operator needs not wait for all the suggestions until the end

of reasoning process.
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Because of the complexity of the aluminum electrolysis process, some
potential problems may still exist after these corrections. Therefore, the diagnosis
process will not stop, but will follow a similar procedure to find other possible
problems. The inference engine will fire the rules to release the relevant questions.

For instance, the following questions may be asked:

¢ |s the resistance control band abnormal?
¢ |s cathode voltage drop low?
e |s any component of cell voltage abnormal?

And some corresponding diagnosis and suggestions will also be released

as the following indicates:

¢ Reset the resistance control band, if biased
e Check the anode bottom to detect the anode spike
¢ Remove the anode and break off spike, if present.

When all that possible problems about the required alarm data have been
checked and no new problems have been found, the diagnosis process will be

terminated.
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A-7.2 Example of advanced design

One of the important features of the advanced design of OPEES is the
improved real time communication capability. The following example shows how

OPEES-2 realizes the communication through the network.

Similar to the previous example, the system starts from the sub-system
selection. An example of expert system selection interface is shown in Figure A-7.

9.

Figure A-7. 8 Example of expert system selection

When OPEES-2 is selected, the corresponding sub-system is designated.
OPEES-2 is designed in accordance with the existing condition of the common
smelters, where only limited number of process data can be measured
automatically. For instance, in this system, the following four process data could be

measured automatically and sent to the data file:
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Cell voltage fluctuation

Number of daily anode adjustments
Average voltage of last anode effect
Number of anode effects last day.

o=

The basic design takes advantage of Microsoft Windows applications,
keeping the same type of data files, which were used for the basic design. To
improve the interaction with other applications in a network environment, the G2
ActiveXLink is chosen as the communication bridge, which can integrate the G2

and the Microsoft Windows formatted data files through the network.

ActiveXLink in the knowledge base of OPEES-2 provides a facility that
allows browsing the procedures defined in the G2 knowledge base through the
network, which means, the user in the smelter can implement the interactive

communication with OPEES-2 through the network (See Figure A-7. 10).

Therefore, using ActiveXLink accelerates the delivery of solutions in the
Windows environment, which also benefits the corporation with other users in the

network.

When the line and cell number are selected, the inference engine will
invoke the corresponding procedure to integrate the OPEES-2 and the Excel data
file, which is located in the site of virtual cell or real smelter, as well as to set up a
communication bridge. The invoked procedure “Get-process-data-value” (See

Section 7.3.2 “On-line diagnosis”) will send a message to the user at the cell to
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get the process data. This message could be displayed on the Excel spreadsheet

there (See Figure A-7. 10).

Bomemand Busen : R Message from Expest System

Figure A-7. 10 Example of data file

When the operator presses the button "Send data to expert system,” a
group of on-line process data will be sent to the OPEES-2 through the network.

These data also can be automatically refreshed at regular intervals.

The inference engine will fire the alarm rules to judge the status of
connected data, and release an “Alarm Status List” form to show the values and
operating status of these received process data (See an example in Figure A-7.

11).
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G

ily-anode-adustments

Nurnber-of-

Ayerage-votage-of-last-anode-effect

Number-of- enode-effect-last-dey

Figure A-7. 11 Example of on-line data alarm status

Considering the fact, that only limited on-line data is available, and that
there is not enough information to do the reasoning for that moment, there is no
diagnosis data selection form in OPEES-2. The entire diagnosis will not start until
all necessary information has been gathered. To check and coliect the required
information, a “Check ltems List” form will be released for reference, which lists the
required measurements in the potroom and the data analyzed in the laboratory

(See Figure A-7. 12).

Figure A-7. 12 Check items List
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Following this list, the operator should go to the potroom and the laboratory
to make the corresponding measurements and get the analysis resuits. When all
the required information is obtained, the operator can start tc answer the questions
one by one. These questions are related o the status of on-line and manually

collected data. Figure A-7. 13 is an example of the questions.

Figure A-7. 13 Example of question of OPEES-2

This question differs from the previous one. A numerical value is requested

here.

The reasoning procedure is similar to OPEES-1. When the problem is
found, the diagnosis report and operating suggestions are given and the messages

can be sent to the operator in the potroom. Figure A-7. 14 is an example of the
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suggestions, in which detailed operations are listed to tell the operator how to

solve the problem step by step.

Figure A-7. 14 Example of suggestion

If no more problems are found depending upon the available information,

the diagnosis process will terminate.

A-7.3 Discussion

The description of these two examples shows how the system would run
under an ideal condition, but for the practical application, more complex cases
could be encountered. To ensure the diagnosis process is successful, the

following aspects are considered as the restrictive conditions:

¢ All the requested information should be provided
¢ Answers, especially numerical values, should be within reasonable range
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e The system will give unreasonable results if many questions are not
answered correctly

That means even though the system has been designed with some
tolerance for the uncertainty and unclear information, but if they exceed the

limitation of tolerance that could stili lead to a fault in the diagnosis process.



