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ABSTRACT

In cold regions, atmospheric icing can decrease the electrical insulation strength of

outdoor insulators used in power transmission networks. Under certain conditions, this

decrease in insulator strength can lead to insulator flashover and the consequent power

disruption.

The overall objective of this Master's thesis is to study the flashover phenomenon on

ice-covered insulators together with the influencing parameters, allowing to improve the

existing mathematical model for predicting the critical flashover voltage of long

insulators of up to 4 m (the full scale of post insulator for 735 kV systems). This study

contributes to the understanding of the flashover and arc propagation processes, by

determining the arc maintenance conditions.

Three post insulators of certain type were used in this study to make an insulator

assembly, normally, used to support the high voltage transmission lines of up to 735 kV.

A series of tests were arranged at CIGELE Mgh voltage laboratories in the University of

Quebec in Chicoutimi (UQAC). These tests were carried out to find the minimum voltage

required to maintain an arc across a certain air gap length. The steps of the tests include:

(i) to form an ice layer, using the wet-grown ice method, on the insulator (ii) to simulate

natural air gaps caused from various origins by cutting out a part of the ice layer close to

the high voltage electrode (iii) to produce a white and stable arc across the air gap made

(iv) to decrease the voltage until the arc produced extinguishes. The voltage at the arc

extinction instant is the minimum voltage required to keep the arc burning. The

parameters studied during the tests were: (i) the insulator length (ii) air gap length (iii)

and leakage current. The latest was controlled indirectly by varying conductivity level.

Also a series of the same type of tests, but limited, were carried out on the post insulators

of the same type with greater diameter. It was found that the insulator diameter, D, has an

influence on arc maintenance condition. Studies also show that the insulator length does



not influence the breakdown voltage of the air gap. A nonlinear tendency was found for

the relationship between the arc maintaining voltage and the insulator length.

The study results suggested a new mathematical condition to have an arc, potentially

able to lead to flashover, which is called arc maintenance condition. This condition

comes from the fact that arc may spread as a result of thaw of the ice and of widen air

gap-

Based on the study presented in this thesis, several recommendations and further

research interests are proposed.
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Résumé

Dans les régions froides, les accumulations de glace atmosphérique peuvent

diminuer la tenue diélectrique des isolateurs utilisés dans les réseaux de transmission de

l'énergie électrique. Cette diminution de la tenue diélectrique peut entraîner, sous

certaines conditions, un contoumement électrique des isolateurs recouvert de glace qui se

traduit généralement par des interruptions plus ou moins longues de l'alimentation en

énergie électrique.

L'objectif principal de cette étude est d'étudier les paramètres influençant le

processus de contoumement électrique des isolateurs recouverts de glace en vue

d'améliorer le modèle mathématique statique actuel de prédiction de la tension critique

de contoumement. L'idée principale est de pouvoir appliquer le modèle mathématique

développé à la CIGELE à des longueurs des isolateurs allant jusqu'à quatre mètres

correspondant a ceux présents sur le réseau 735 kV d'Hydro-Québec. De plus, les

résultats obtenus contribueront à accroître les connaissances sur le processus de

contoumement et de propagation de l'arc électrique sur des isolateurs recouverts de glace

par la détermination des conditions de maintien de l'arc.

Les séries de tests effectuées au cours de cette recherche ont été réalisées sur une

colonne isolante qui est utilisée dans le réseau 735 kV de transmission de l'énergie

électrique au Québec. Les tests effectués au laboratoire de la CIGELE à l'Université du

Québec a Chicoutimi (UQAC) ont permis de déterminer la tension minimale de maintien

de l'arc électrique le long d'un intervalle d'air de longueur variable. Pour ce faire, il a été

décidé d'utiliser la même procédure expérimentale décrite par les étapes suivantes : (i)

réalisation d'une accumulation de glace en régime humide sur la colonne isolante ; (ii)

création d'un intervalle d'air artificiel près de l'électrode haute tension en découpant une

partie du dépôt de glace ; (iii) établissement d'un arc blanc le long de l'intervalle d'air par

application de la tension jusqu'à ce que ce dernier soit stable ; enfin, (iv) diminution de la

tension jusqu'à extinction de l'arc. Cette dernière étape permet ainsi de déterminer la
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tension minimale nécessaire au maintien de l'arc qui correspond à la valeur de la tension

appliquée lors de l'extinction de l'arc. Chaque série de tests a été réalisée en ajustant les

paramètres suivants : (i) la longueur de la colonne isolante ; (ii) la longueur de l'intervalle

d'air et (iii), la valeur du courant de fuite. Ce dernier paramètre a été contrôlé

indirectement en faisant varier la valeur de la conductivité surfacique du dépôt de glace.

Les résultats ainsi obtenus ont montré que la longueur de l'isolateur ou de la colonne

isolante n'a pas de réelle influence sur la valeur de la tension de claquage de l'intervalle

d'air. Par contre, une relation non-linéaire a été établie entre la longueur de l'isolateur et

la tension de mamtien de l'arc. De plus, une série de tests suivant la même procédure

expérimentale décrite précédemment a été effectuée sur des isolateurs de poste de même

type mais présentant un diamètre plus grand. Les résultats obtenus ont permis de mettre

en évidence que le diamètre, D, de l'isolateur ainsi étudié a une influence sur la condition

de maintien de l'arc.

Les résultats obtenus au cours de cette recherche ont donc permis d'établir une

nouvelle formulation mathématique pour la condition de maintien de l'arc ainsi que de

déterminer les paramètres pouvant influencer cette condition. La formulation

mathématique proposée a été établie afin de tenir compte de l'allongement de l'arc

électrique provoqué par l'élargissement de l'intervalle d'air provoqué par la fonte du

dépôt de glace.

Basées sur les résultats obtenus au cours de cette recherche, quelques

recommandations et pistes de recherche ont été proposées.
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Chapter 1

Introduction

1.1 General

Insulators are devices used to support, separate and/or contain conductors at a high

voltage. They are widely used in power systems to insulate various electrical parts and

connect them mechanically, thus, their degree of performance can directly affect the

operation of power systems. Most power system insulators are used in substations and

on transmission lines and are subjected to atmospheric conditions or other natural

outdoor phenomena, while; a wide range of environmental factors and meteorological

conditions influences their electrical performance [42].

1.2 Problem Definition

In cold regions, during winter, atmospheric ice accretion on overhead transmission

lines can be considerable, due to freezing rain or drizzle, in-cloud icing, icing fog, wet

snow or frost. The normal operation of electric power networks can be affected by this

icing phenomenon that tends to produce a multitude of difficulties to clients and public

services. A number of published reports are available concerning these problems in

Canada [65], China [110], England [54], Japan [55, 85], Norway [45], United States [6,

76], former Yugoslavia [117] and Switzerland [86].

hi Canada, the most serious disruption of power to date caused by ice accretion on

overhead transmission lines occurred in January 1998 [1, 88]. Ice accretion caused the

collapse of over 1000 steel power transmission towers (including 735 kV lines) and

30000 wooden poles. This resulted in an interruption of power service to a large



number of clients for periods ranging from one week to one month. The direct

economic loss to Hydro-Quebec was over one billion Canadian dollars.

Besides the mechanical damages, the ice accreted on insulators could decrease their

insulating strength considerably and may, on occasion, even result in flashover faults in

power systems. Some power outages related to this phenomenon have also been

reported from several countries [46, 106] subjected to northern climatic conditions.

As an example, in 1986 on the Ontario-Hydro network, 57 successive flashovers

took place and were attributed to fog, freezing rain and accumulated icicles. Most of

500 kV power lines underwent interruption at that time [56]. Again in 1988, within the

Hydro-Quebec Network, 6 successive flashovers caused an electrical power delivery

interruption throughout the greater part of the province of Quebec [65].

Flashover phenomena on ice-covered insulators have attracted much attention from

many researchers and a large number of studies were carried out in several laboratories

on the subject [8, 13, 22, 45, 55, 57, 89, 108, 110, 117]. Normally, experimental or in-

the-field investigation is costly and time-consuming. Therefore, many attempts have

been made individually or by research groups to establish a mathematical model for

predicting the flashover voltage of ice-covered insulators. As a result, a mathematical

model was developed at CIGELE and has been successfully applied to insulators of up

to 1 m in length. Due to some difficulties in its application to ice-covered insulators

over 2 m in length, it was found necessary to extend the study in order to improve the

earlier model.

1.3 Research Objectives

The overall objective of this thesis is to study, the phenomenon of flashover on ice-

covered insulators together with the influencing parameters and, to improve the

existing mathematical model for predicting the critical flashover voltage of long

insulators of up to 4 m (the full scale of post insulator for 735 kV systems). The

specific objectives are:



� To study the flashover phenomena on ice-covered insulators when the insulator

length is increased.

� To investigate the critical conditions under which an arc of a certain length may

occur and persist (maintenance condition), with consideration of parameters such as air

gap length, leakage current, and insulator length.

� To contribute in improvement of the existing mathematical model for predicting the

flashover voltage of long insulators covered with ice by taking arc maintenance

conditions into consideration.

1.4 Methodology

hi order to attain the objectives of this study, a series of laboratory experiments was

carried out in a climate chamber at CIGELE. The results were subjected to both

theoretical and mathematical analyses. The main methods used in this study may be

summarized as follows:

- A uniform ice layer in series with a certain length of air gap was formed on a

post-type insulator, hi order to study the effects of insulator length on arc propagation

on iced surfaces, the insulator length was subjected to variations ranging from 50 cm to

310 cm.

- Using a set of AC high voltage sources and a data acquisition system, a test

method was designed to determine the minimum level of voltage to be applied for

maintaining an arc burning along the air gap.

- Regression analysis was applied to the test results to determine the critical

conditions under which the arc burns and extends along the ice surface, namely the arc

maintenance conditions.

By taking into consideration the arc maintenance conditions, the original

mathematical methods may be improved upon and a new model may be extracted. This



improved model contributes to the studies whose goal is to predict the flashover

voltage of long ice-covered insulators.

1.5 Statement of Originality

A physical ice model and a test method based on arc formation and extension along an

air gap was designed in order to study arc propagation on iced surfaces and to determine

the arc maintenance conditions. This approach was entirely innovative in this context and

may be deemed original research. By taking into consideration the parameters of insulator

length (from 50 to 310 cm), air gap length (from 7 cm to 56 cm) and insulator diameter,

the arc maintenance conditions on ice covered insulators were derived. These maintenance

conditions are necessary to improve the new mathematical model established at CIGELE

laboratories for predicting the flashover voltage of long ice-covered insulators.

1.6 Organization of Thesis

This thesis is arranged so as to provide the reader with knowledge of a good part of the

literature available on the subject and to make it possible for him or her to follow the

principles and results of the tests.

In the first chapter, which is the present one, the problem is defined. A innovative

methodology in approaching the problem is hereby proposed with a view to the goals and

objectives, as are followed through by the author.

In the second chapter, some fundamentals are provided on the electrical breakdown

and flashover occurring on polluted surfaces. Then, a relatively detailed overview is

provided for ice accretion mechanisms as well as environmental parameters influencing

them. This includes ice type, amount of ice, ice uniformity, freezing water conductivity,

voltage type, leakage current, insulator type and position, and air pressure, thereby

preparing the reader for an understanding of how the parameters in the test are chosen and

why. A review of arc and flashover modeling on ice-covered insulators is provided

following the prerequisite information, to allow the reader to follow up on the studies

already made.



According to our needs and the parameters introduced and selected, the facilities were

chosen and then presented in chapter Three. The existing facilities used in the present

study such as (i) cooling system, (ii) wind generating system, (iii) water spray system (and

the corresponding calibrations on ice accretion rate); (iv) high voltage system and (v)

measuring system and method (along with the test circuit and the data acquisition system)

are all explained. Details on the test objects and the way they are prepared, are followed

by a description of test methods, by way of a review on the literature in the field. At the

end of the chapter, the procedure that was applied to choose the test results (raw data) and

the mathematical methods used are explained.

The test results processed are presented in Chapter 4. The maintenance condition

curves versus air gap change and insulator length were, first, obtained and a

comprehensive discussion of the curves follows. The breakdown voltage curves versus air

gap length and insulator length are, also, derived, and the various aspects of these derived

curves are explained. At the end of this chapter, the application of the arc maintenance

conditions is discussed.

Finally, some specific conclusions of this study are provided. These conclusions make it

possible to formulate certain recommendations for future research.



Chapter 2

Review of the Literature

2.1 Introduction

The phenomenon of atmospheric ice accretion on power transmission lines has been

studied for several decades by various researchers, and their results have been published

worldwide [1, 6, 9, 46, 54, 55, 65, 76, 85 and 117]. In order to provide a sound

understanding of the background of the present study, a review of the literature

concerning the flashover of insulators under atmospheric icing conditions is presented in

this chapter. This review will include studies on the mechanisms and development process

involved in flashover on ice-covered insulators, the parameters affecting their

performance, and the mathematical modeling of an arc on iced surfaces.

The flashover on ice-covered insulators presents similarities to the ones occurring on

polluted insulators. For certain studies the ice accreted on the insulator surface was

considered to be a special type of pollution [41]. The theories and, particularly, the

concept of modeling of flashover on polluted insulators were used in the case of ice-

covered insulators [37, 41, 52 and 53]. Therefore, the studies on flashover and arc

modeling on polluted insulators are briefly reviewed at the beginning of this chapter.

2.2. Flashover on Polluted Insulators

2.2.1. General Description of Flashover on Polluted Surfaces

When an electrical discharge occurs on the surface of a dielectric substance in a

gaseous or liquid medium, it is called surface discharge [79]. hi a non-uniform field, there

may be a partial discharge with audible and luminous effects, which is called corona



discharge. Under certain conditions, the corona discharges may develop to form an arc

column. When the arc extends and bridges the distance between two electrodes, flashover

occurs.

The 5 steps generally involved in a flashover on polluted insulators are the following: [59,

69 and 101]:

i) Pollutants deposited on the insulator surface: Due to growing industrial development,

motorized vehicles, sea salt, as well as dust and chemical particles in the air, a layer of

pollution can be deposited on the insulator surfaces.

ii) Wetting of pollution layer: When the pollution layer is dry, it presents high resistivity

and has no significant effect on the electrical performance of insulators. When the

pollution layer is wetted, however, under certain atmospheric conditions such as fog,

drizzle, dew, rain, snow or ice, it will present low resistivity and result in a leakage current

flowing on the insulator surface. (Figure 2-1 (a))

iii) The leakage current density on the insulator surface is normally not uniform: The high

current density provides a significant heating effect that eventually results in the formation

of dry points in certain areas. Such dry points may spread because of the heating effect

and ultimately form a dry band. (Figure 2-1 (b) and (c))

iv) The resistivity of the dry band is much higher than the wet pollution layer: Therefore,

the voltage distribution changes and becomes non-uniform along the insulator surface.

The dry band withstands almost all of the applied voltage. If the voltage level is high

enough, a breakdown will occur and a local arc will appear along the dry band. (Figure 2-

Kd))

v) The local arc will move laterally to a more stable position: Depending on the applied

voltage level, either it may be extinguished or extend along the wet pollution layer surface

without expansion of the dry zone. When the arc reaches its critical length, flashover will

occur. (Figure 2-1 (e) and (f))
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Figure 2-1 Arc formation process on a polluted insulator

2-1 a) Wetting of pollution layer and leakage current flow.

2-1 b) The leakage current heating effect may form "dry zones".

2-1 c) Dry areas may extend to form "dry bands". The resistivity of the dry band is much

higher than that of the wet pollution layer.

2-1 d) The dry band breaks down to form a local arc.

2-1 e) The local arc will move laterally to a more stable position.

2-1 f) Under certain conditions, the arc will extend and propagate and flashover will

occur.



2.2.2. Arc Propagation Criteria

Several complexities are involved in arc formation and propagation on real insulators.

Therefore, in order to study this phenomenon in detail, several researchers made of use

simplified physical models, such as a water channel [5, 69, 84], a triangular plane [68], a

flat disc [70, 97] or a cylindrical sample [62].

Although the mechanism of arc propagation is not completely understood, it is

generally known that certain external forces are tentatively identified as the reason for arc

propagation [12, 59 and 97]. Such possible external forces may include: (i) static-

electrical force, (ii) electromagnetic force and (iii) thermal floating force. Using a

discharge current of 100 mA, a polluted surface resistance of 50 kfi, and an arc root

radius of 0.5 cm, Jolly [69-72] calculated the forces acting on the arc root. The results

show that these forces are not enough to speed up the arc movement to a few hundred m/s.

Li [83] calculated the electrical stress around the arc root, and found that it was not strong

enough to breakdown the air gap. Therefore, thermal ionization was considered as the

main reason for arc root movement along the polluted surface.

1 "Hampton [59] considered that the necessary condition for flashover is that the

voltage gradient in the water column Ep should exceed that in the arc column Ea. Thus, the

criterion for arc motion may be expressed:

Ea<Ep (2-1)

This following criterion was established experimentally by Hesketh [61], who

assumed that the arc in series with the wet polluted layer would adjust itself so as to draw

maximum current from the supply for all positions along a possible arc path. That is:

~>0 (2-2)
ax

If this criterion is satisfied for all positions along a possible arc path, flashover will occur.

1 Texts in quotation marks are derived from the references given at their end. They are marked to respect copy
rights.



For a supply with an internal resistance RSt the flashover criterion according to

Hesketh6152] takes the following form for all values of x:

dRB
/*(-£�)

7 ^ <0 (2-3)

This criterion, however, does not explain the mechanism and speed by which the arc

actually moves. Hesketh assumed that when the arc moves, it is not shunted anywhere by

a wet contamination layer.

Nâcke [89] proposed an electrical stability criterion. The change of total voltage for

the displacement of the discharge root at a constant current is taken into account within

this criterion as this can be expressed by the following equation:

(2-4)

where x is the arc length and xp is the length of the pollution layer. It is assumed that the

arc will move if dV is negative (mechanical instability). This will lead to Hampton's

criterion for a uniform pollution layer."[101]

2.2.3. Arc and Flashover Modeling

Several researchers have proposed certain models for predicting the flashover voltage

of polluted insulators. The first quantitive analysis was made by Obenaus [91]. It was

subsequently completed by Neumarker [90], and became known as the extinction theory.

The flashover process is modeled as an arc in series with a residual resistance that

represents the non-bridged portion of a wet pollution layer as schematically shown in

Figure 2-2. The corresponding circuit equation may be expressed as follows:

V=Varc+IR + Ve (2-5)
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Residual resistance

uL
Figure 2-2: Equivalent circuit.

where V is the applied voltage; / is the leakage current; Varc is the voltage along the arc

and R is the residual resistance of the pollution layer. The arc voltage, VaTC, may be

expressed as:

V««A*r (2-6)

where A and n are the arc constants, and x is the arc length.

Although there are many common aspects and similarities between DC and AC arcs,

but they are limited. The zero points of leakage current for AC arcs, however, put end to

the similarities and require a significant difference in treatment.

An AC arc is extinguished as the current passes through zero twice every cycle. Arc

reignition following current zero can be classified into energy and dielectric breakdown.

Energy breakdown takes place when the residual arc gap is no longer able to dissipate the

energy injected because of the flow of the post-zero current in the plasma that is still

conducting [101]. This type of breakdown normally takes place in the immediate vicinity

of current zero and is usually associated with acute rates of increase in recovery voltage.

Dielectric breakdown, on the other hand, normally takes place at a later stage, after the

residual gap has lost its electrical conductivity and can be treated as a hot gas. Dielectric

breakdown then takes place when the instantaneous value of the recovery voltage exceeds

the dielectric strength of the gap, and is typical of relatively slow rates of recovery

voltage. Energy breakdown may be described by a dynamic equation showing the

interaction between the test circuit and the residual arc. This type of dielectric breakdown

is based on the temperature decay of the residual hot gas [101].

11



Several researchers also proposed certain models, which were based exclusively on

experimental results. These models are known as "experimentally based" since they do

not refer to any specific physical mechanism by which an AC arc is maintained.

"Hurley and Limbourn [64] established an empirical relationship between the

minimum voltage necessary to sustain an AC arc over a rod-rod gap, of a length x, in

series with a resistance Rp:

Ucx= const. x2/3. Rp
m (2-7)

Clavier and Porcheron [12, 13] found a further empirical relationship between the

minimum arc reignition voltage and the arc current I, under pollution conditions:

Ua= 800xd'm (2-8)

In the case of uniform pollution distribution, and on the assumption that the speed of

arc elongation to critical conditions is so slow that it can be analyzed under a quasi-

stationary condition [101], the critical flashover voltage of polluted insulators may be

calculated as:

= 47.6-rp
1/3-L (2-9)

where rp is the resistance of the water film per unit length and L is the total insulator

length. In this case the critical arcing length is:

xc = -L (2-10)

Guan et al. investigated the propagation of an AC arc using a high-speed camera [57,

58] and found that the arc develops only when it approaches the peak values of the applied

voltage. In order to complete the flashover, a criterion called the arc recovery condition

must be satisfied. The researchers also experimentally determined the arc recovery

conditions on polluted surfaces as follows:

12



Vm>k*x/Im
b* (2-11)

or

Vp>k*'x/Im
b*' (2-12)

where k*, b*, k*' and b * ' are the constants; Vp is the voltage across a gap of a length x cm,

Vm is the applied voltage, and/m is the peak value of arc current."[101]

2.3. Flashover of Ice-Covered Insulators

Atmospheric ice accretion on power transmission lines has been under investigation

for many years [15-37]. The problem has been studied for over 25 years [96] at the

Research Group on Atmospheric Environment Engineering (GRIEA) and more recently at

the NSERC/Hydro-Quebec/UQAC Industrial Chair on Atmospheric Icing of Power

Network Equipment (CIGELE) at the University of Quebec in Chicoutimi (UQAC). The

highly useful data obtained by this team and other researchers elsewhere have been

published worldwide. Several overviews of these studies have been published from

Farzaneh et al. [11, 21, 24, 27 and 40].

2.3.1. General Description of Flashover on Ice Covered Insulators [42]

Flashover on ice-covered insulators consists of a electrical process along with several

thermal and electrochemical processes. The mechanism of flashover is not yet fully

understood, however, the flashover of ice-covered insulators comprises the following

steps [43]:

i) Atmospheric ice is accumulated on the insulator surface due to hoar frost, in-cloud

icing, and precipitation icing. Precipitation icing may occur in several ways, including

freezing rain, drizzle and wet or dry snow. However, glaze with icicles and wet snow

affect insulator electrical performance the most.

ii) The areas of high electrical stress on insulator strings are usually free of ice due to the

heating effects of the discharge activities, ice shedding and certain other phenomenon.

The ice-free areas on insulators are called air gaps. The distribution of ice on insulators is

seldom uniform as ice is usually accreted on the windward side.
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iii) If the ice surface is dry, the performance of the insulators is only slightly reduced.

However, with a highly conductive water film such as caused by sunshine, a rise in air

temperature, condensation, the heating effect of leakage current, the insulator performance

will be considerably reduced. This is mainly due to the fact that a large part of the applied

voltage is dropped along the air gaps, causing electrical discharges and local arc

formations in these areas.

iv) If the applied voltage is high enough, a local arc can change to white arc and extend

along the ice surface. When it reaches the critical length, this may result in a flashover arc.

As a result, surrounding condition such as presence of air gaps, water film on the ice

surface and the degree of its conductivity play a major role in the process of arc

developing to flashover occurrence on ice-covered insulators.

2.3.2. Factors Affecting the Flashover on Ice-Covered Insulators [22,23]

The complexities arising from the flashover phenomenon on ice-covered insulators

derives mainly from a combination of several elements, including the decrease in

"effective" leakage distance caused by ice bridging; the increase in surface conductivity

resulting from a highly conductive water film and possible pollution on the ice surface;

and, the distortion of voltage distribution along the insulators caused by air gaps in the ice

layer. Also, each one of these elements itself is influenced by several secondary factors.

2.3.2.1. Type and Density of Ice

Environmental conditions have a major influence on the characteristics of the

accumulated ice. Different types of ice may be obtained in the presence of various

atmospheric and environmental conditions such as air temperature, wind velocity, water

droplet size, and liquid water content. Kuroiwa [80], Imai [67] and Oguchi [92] classified
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ice into three basic categories: hard rime, soft rime and glaze. The characteristics of these

ice types are as follows:

� Hard rime is opaque and has a density of between 0.6 and 0.87 g/cm3;

� Soft rime is white and opaque with a density of less than 0.6 g/cm3.

� Glaze is transparent and has a density of approximately 0.9 g/cm3.

The conditions pre-requisite for producing different types of ice are listed in Table 2-1.

Table 2-1 Conditions promoting the formation of various types of ice [92].

Type of Ice

Hard rime

Soft rime

Glaze

Density Surrounding Wind w � ,
. . 3» Temperature Velocity _. . . ,(g/cm ) ^ c ) ( m / s ) * Diameter (urn)

0.6 to 0.87

<0.6

0.8 to 0.9

-3 to -15

-5 to -25

Oto-3

5 to 20

5 to 20

1 to 20

5 to 20

5 to 20

500 to 6000

Under natural conditions, icicles are the most frequently observed type of ice on

Hydro-Quebec power networks [23]. The environmental conditions required for this type

of ice accumulation is the presence of freezing rain and temperatures ranging between

-4°Cand-l°C.

Phan et al. [95] caused various types of ice to form artificially on an energized

insulator. For flashover studies, there was no noticeable difference between the results

obtained using artificially made ice as opposed to natural ice.

The changes in the insulating strength of a flat insulator, under different ice types

(glaze, soft rime or hard rime) were studied by Sato et al. [103] using ice formed by

spraying NaCl- contaminated water on an insulator in a cold room. According to their

results, soft rime leads to a 20%-reduction in flashover voltage compared to ice free

conditions.

At CIGELE, Farzaneh et al. [27] carried out informative tests on ice grown artificially

on energized insulators. The researchers divided the ice into two different types, known as
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wet and dry regimes. The conditions for producing these two types of ice are listed in

Table 2-2.

Table 2-2 Experimental conditions for dry-growth and wet-growth ice

_ , Surrounding Droplet Wind Liquid Water
ypeo Te mpe r a ture Size Velocity Content

(g/m3)
Regime

The ice growth is said to be dry when the ice deposit temperature remains below 0 °C

[33]. This is the equilibrium temperature prevailing between ice surface, water droplets

and ambient temperature. The density of the accreted ice is mainly a function of impact

velocity, average droplets volume and the ice deposit temperature. Dry ice accretion is

called soft or hard rime according to its physical appearance and density.

The ice growth is said to be wet when its growth takes place at the melting point [33],

resulting in the presence of a water film on the surface, in which case the accreted ice is

called glaze. When it is grown without water run-off, no icicles are formed. When the flux

of water impingement is high, mostly in connection with freezing rain, icicles are formed,

usually on the windward side of the insulators.

Different types of ice have different characteristics and exert a different influence on

the insulating strength of insulators. A number of studies have been made on the minimum

flashover voltage under soft rime, hard rime and glaze conditions, using short insulator

strings [42, 77, and 95]. As a result, glaze with icicles was considered to be the type of ice

with the highest probability of producing flashover.

2.3.2.2. Influence of Amount of Ice

The amount of ice, including length and number of icicles [54, 85, 114 and 116], the

thickness of the ice layer [95, 27 and 28] and the weight of ice [105], all have considerable

influence on the insulator flashover voltage. Different measurement techniques were used

in different laboratories.
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Under extra-high voltage conditions, even an ice thickness of 0.4 cm is likely to result

in flashover [76]. Phan et al. [95] showed that the minimum flashover voltage would

decrease with an increase in ice thickness of up to 2 cm, but that thereafter, it would

remain constant. It was also found that the thickness of the ice on the shed itself, would

decrease the withstand voltage. This decrease, however, is less than the one that occurs

when there are icicles of the same thickness on the sheds.

The ice thickness, which is non-uniform, is not easily accessible to precise

measurement, thus the ice weight was used as a parameter to determine the amount of ice

on the insulators. It was shown that the withstand voltage diminishes with an increase in

the weight of accumulated ice on the insulators, and tends towards saturation [55, 105].

Ice weight is easy to measure in the laboratory but less so on power systems.

Therefore, the thickness of wet ice grown on a rotary monitoring cylinder was used as a

reference to estimate the amount of accumulated ice [22, 23, and 40]. Such an estimate

may be made using a predetermined relationship between ice thickness and ice weight per

meter on an insulator string. The relationship between the ice thickness and the maximum

withstand stress has been investigated for different types of insulators [40]. It was found

that the maximum withstand stress decreases with an increase in ice thickness of up to 2

cm for anti-fog insulators, 2.5 cm for IEEE standard and EPDM insulators, and 3 cm for

post insulators. Beyond that, the maximum withstand stress will remain constant.

Therefore, with about 1.5 cm of ice thickness, the probability of insulator flashover on

transmission lines of 230 kV rises considerably [9].

2.3.2.3. Influence of Ice Uniformity

As a general rule, ice accretion along insulators is not uniform. There may be sections

of insulator strings that are free of ice and where air gaps are formed [85]. This is due to

the heating effect of partial arcs or ice shedding from the insulators during or after ice

accretion.

The ice shape depends closely on wind velocity during ice accretion. Farzaneh et al.

[22, 23, 27] observed that nearly vertical icicles formed when the wind velocity was
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below 3.3 m/s, resulting in relatively uniform vertical ice distribution along the insulator

string or post insulator. Otherwise, wind causes the ice and icicles, which are formed, to

slope toward the insulator axe. In other words, it causes a deviation from the vertical axis

toward the insulator. The higher the velocity, the greater the deviation will be. Also, for

velocities up to 6.4 m/s, which result in non-uniform ice distribution, the leakage distance

will increase.

2.3.2.4. Influence of Freezing Water Conductivity

In nature, the degree of conductivity of atmospheric ice results mainly from

environmental pollution. Under voltage, this conductance will result in an increase in

insulator leakage current and, consequently, in a decrease in insulating strength. Field

studies in Norway show that fiashovers in mountainous areas occur because of icing

conditions combined with a high ion concentration in the air. These ions come from either

salt or combustion of fossil fuels [46].

The resistivity of the water producing the ice has a significant effect on leakage

current, particularly, when it drops from 90 Q-m to 9 fim [75]. Under this condition,

leakage current pulses start at the outset of icing and then increase rapidly.

Chisholm et al. [9] considered that surface contamination at a temperature of about

0 °C is a natural case under which 500kV, 230 kV or 115kV power lines, in cold regions,

would experience flashover for low, moderate or heavy contamination levels,

respectively.

Fujimura et al. reported that, with a constant amount of ice or snow, withstand voltage

depends on the conductivity of melted water on the ice surface. The higher the

conductivity, the lower the withstand voltage [55]. A surface conductivity level of 800

fiS/cm is almost equal to the effect of 0.1 mg/cm2 of salt [85].
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2.3.2.5. Influence of Voltage Polarity

Watanabe [118] carried out a series of DC flashover tests on a vertical insulator

covered with ice or snow. The desired test conditions were created using ice which was

made at night when the temperature was below 0°C, or by laying down mountain snow on

an insulator. The minimum flashover voltage was found to be higher under negative

voltage as compared to positive voltage.

However, Fujimura et al. [55], also reported that the flashover voltage under negative

polarity for DC voltage is lower than its positive counterpart. Therefore, they carried out

experiments exclusively under DC- voltage conditions.

Renner et al. [98] found that the flashover voltages of ice-covered insulators under

DC- and DC+ are only marginally different, thus the effect of voltage polarity may be

disregarded.

A number of tests were carried out under DC voltage, by Farzaneh et al [17, 27 and

35]. The flashover voltage was considerably lower under DC- than under DC+ voltage for

a short string of 4 anti-fog insulators. The flashover voltage of ice-covered insulators

decreases by 32% to 47% as compared to that of clean insulators of the same dimensions,

when ice thickness goes from 0.5 to 3 cm.

2.3.2.6. Influence of Leakage Current

Under icing conditions, the characteristics of the local arc depend on the leakage

current through the arc. The leakage current was occasionally used as a parameter for

studying the performance of ice-covered insulators.

Khalifa et al. [77] studied the influence of atmospheric ice accretion on the

performance of a high voltage insulator string in 1965. The critical leakage current of an

ice-covered insulator was found to be less than the critical leakage current of a polluted

insulator.
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Hara et al. [60] studied the effects of leakage current on the flashover performance of

ice-covered insulators. The threshold value for the current of a white arc was observed to

be approximately 18 mA during the flashover. When the leakage current was above this

threshold, a white arc occurred on the insulator. The threshold value was independent of

either the type of insulator or the type of ice. Furthermore, this value for the current of a

white arc remained constant during periods of ice accumulation and de-icing. Transition

from a white arc to a flashover occurred when the leakage current was above or equal to

120 mA for a long-rod porcelain insulator, and 180 mA for a post-type porcelain insulator.

This flashover threshold current was observed to be virtually equal to the maximum stable

white arc current.

2.3.2.7. Influence of insulator type

The insulating properties of an insulator vary with its shape and the materials of which

it is made. The performance of these insulators also varies under different icing

conditions. To date, no specialized type of insulator has been designed for anti-

atmospheric icing.

Cherney [6] reported that, when 5 different types of long-rod transmission insulators

are exposed to icing conditions, the insulating performance of the composite insulator is

superior to IEEE standard insulators. For the same materials and specifications, the

alternative sheds tend to show evidence of more satisfactory performance than uniform

sheds.

Wu et al. [120] conducted a large number of flashover tests using different types of

insulators ranging from 7 m and 11 m in length. For the composites, SIR (Switched

Integrated Rectifiers) and EPDM (Ethylene Propylene, Diene Monomers), the insulating

performance was superior to glass cap-pin insulator strings. The researchers also found

that the presence of corona rings can improve insulating performance under icing

conditions.
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2.3.2.8. Influence of Insulator Position

Methods of insulator installation may vary for different engineering reasons. Renner et

al. [98] reported that, for suspension insulators, with the same type and amount of ice,

installation at a swing angle could lead to higher insulating strength than vertical

installation. The same flashover performance, however, is expected when specimens are

normalized in terms of the percentage of ice bridging.

Lee et al. [82] and Schneider [103] independently tested an insulator in the vertical,

horizontal and V type positions. The V type insulator string displayed superior

performance to the one observed for a vertical string under similar ice conditions. The

minimum flashover voltage of a vertical insulator string was 20% lower than that

observed for a horizontal string under almost the same icing conditions.

Comparable results were obtained by Bui et al [2], The flashover performance of the

horizontal installation was superior both to the V-type installation and the vertical one;

also, the V-type installation showed more satisfactory performance than the vertical one.

2.3.2.9. Influence of Insulator Length

The flashover voltage of an ice-covered insulator string depends on its length.

Farzaneh et al. [23], Phan et al. [95], Kannus et al. [75] and Su et al. [108] independently

studied the flashover voltage of a short insulator string and they found that the minimum

flashover voltage of an ice-covered insulator string increased in a more or less linear

fashion for insulator strings of up to 1 m in length.

Kawai [76] tested the flashover voltage of both long and short insulator strings

covered with ice. No linear relationship between insulation strength and insulator length-

was revealed under mild icing conditions. The flashover voltage for an insulator unit was

considerably lower for a long insulator string of 19 to 25 units than it was for a short

insulator string of 5 to 7 units. This disparity was attributed to the non-uniform voltage

distribution along the insulator string.
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2.3.3. Modeling of Flashover on Ice-Covered Insulators

The highly complex phenomenon of flashover on ice-covered insulators is influenced

by several environmental parameters. To date, most published studies have concentrated

mainly on determining the flashover performance of ice-covered insulators. The relevant

factors involved in this phenomenon are also addressed in detail by such studies. There

appears to be a scarcity of research, however, concerning the various aspects of discharge

on ice-covered insulators or flashover modeling.

2.3.3.1. Arc Characteristics and Mechanism of Flashover

In 1976, Jordan et al. [74] studied the corona discharge at the tip of an icicle. In

addition, Phan et al. [96] measured the corona discharge of water drops over the freezing

temperature range. Also, the evolution of the corona discharge of a water drop was studied

during its transition from a liquid to a solid phase and vice versa.

Sato et al. [103] investigated the flashover performance of a flat plate insulator

covered with the three types of ice (glaze, soft rime and hard rime) formed by spraying a

contaminated liquid on an insulator in a cold room. For a given concentration of NaCl-

contaminated liquid, the average SDD (Salt Deposit Density) value for an ice state was 5

to 9 times higher than the average SDD value under ice-free conditions. Soft rime

conditions lead to a 20% reduction in the flashover stress as compared to ice-free

conditions. Thus, the density of Na atoms in the discharge space during flashover was the

highest under soft rime conditions.

Using a triangular sample of ice, Farzaneh et al. [37, 38 and 41] carried out a large

number of investigations on the characteristics of both dynamic and static arcs on an ice

surface under AC and DC conditions. Under AC conditions, the electrode voltage drop,

Ve, was not calculated separately. Instead, Ve was included in the calculation of the arc

constant A. Hence, when the arc length was less than 7 cm, arc length had a significant

influence on the arc characteristics. When the arc was longer than 7 cm, the influence of

arc length on arc characteristics was negligible. Under DC conditions, the E-I

characteristics, of both the dynamic and static arcs were not affected by the arc length.
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There was, however, a slight difference between the characteristics of both types of arcs.

Table 2-3 presents the results of this particular study.

Table 2-3 Electrode voltage drops and arc constants obtained at

CIGELE using a triangular ice sample [18, 38 and 41]

Arc Type

$

S
M P
pj ^r

Ve(V)

A

n

V,(V)

A

n

AC

�

346.4

0.36

�

204.7

0.56

Positive

�

�

�

799

208.9

0.45

Negative

502

107.5

0.61

526

84.6

0.77

At CIGELE, Zhang et al. [122] [124] studied the behavior of an arc on an ice surface

under both AC and DC conditions, using a high speed-camera. They found that the arc

could propagate in two different ways: inside or outside the ice. The arc propagation

process may be divided into two stages. The first stage begins at the moment that a violet

arc is established with an initial length of 5% of the total ice sample length. This initial

stage ends when the arc length reaches approximately 40% of the total ice sample length.

The arc extends relatively slowly during the first stage. An arc length of between 40% and

100% of the total ice sample length may make the second stage more distinguishable.

During this stage, the arc propagation velocity suddenly increased, and the maximum arc

propagation velocity was reached immediately before flashover. Table 2-4 illustrates the

arc propagation velocity under different voltage types and polarities.

Table 2-4 Arc propagation velocities under different voltage types and polarities [124]

Arc type

Positive arc � �

Arc propagation velocity (tn/s)

Negative arc

outer

inner

First stage

0.05 to 0.3

outer

inner

0.05 to 0.3

Second stage

20 to 50

3 to 7

35 to 60

10 to 20

Maximum value

A 100

� 50

100

AC arc
outer 0.04 to 0.15

inner

16 to 30

2 to 7 �260
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2.3.3.2 Electric Arc Modeling

Field and laboratory investigations of flashover on ice-covered insulators are costly

and time-consuming. That is one of the reasons why so much effort has been forthcoming

from many researchers in order to establish a mathematical model for accurately

predicting the flashover voltage of ice-covered insulators.

The ice accreted on insulators is considered to be a special kind of pollution.

Therefore, a mathematical model based on a series of experiments was established at

CIGELE for calculating the flashover voltage of a short ice-covered insulator string [18,

38]. This model is based on the Obenaus concept as illustrated in Figure 2-2. The basic

equation, the arc reignition condition, and the equation for calculating the residual

resistance are as follows:

R(x) =

V =V
e
+ Axr'+IR{x)

1

1
27tye

~4(L-x) (D +
_D + 2d ' { At� J J

(2-13)

(2-14)

(2-15)

where V is the applied voltage, / represents the leakage current, Ve is the electrode voltage

drop, A and n are the arc constants, k and b are the arc reignition constants, x is the arc

length, R(x) represents residual resistance, ye is the surface conductivity of the ice layer, L

and D are the length and diameter of the insulator respectively, d is the thickness of the ice

layer and, finally, r is the arc root radius..

Using a triangular physical ice model, all the necessary parameters used in equations

2-13, 2-14 and 2-15 were empirically determined at CIGELE [18, 37, 38, 41, 121, 122 and

124]. The results are shown in Table 2-5.
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Table 2-5 Parameters for calculating the flashover voltage of an ice-covered insulator

under AC and DC conditions [18] [38] [121]

Ve(V)

A

n

k*

b*

. Te

r

AC

�

204.7

0.56

1118

0.5277

0.0675a+2.45

1 Î
V0.875rc

Positive

799

208.9

0.45

�

�

0.082a+1.79

I i
V0.6487t

Negative

526

84.6

0.77

�

�

0.0599(7+2.59

1 Î
V 0.62471

This model was applied to a 5-unit string of IEEE standard insulators covered with ice.

The results, calculated from the established model as well as from the tests, are shown in

Figure 2-3. It may be observed, here, that there is a satisfactory concordance between

them. This particular mathematical model was also successfully applied to an insulator

that ranged in voltage from 44 kV to 500 kV (See reference [38]).

At CIGELE, a dynamic mathematical model is currently being established to calculate

the flashover voltage, the leakage current, and arc propagation velocity. Initial results have

already been published [17, 43, 44, 47-52].

100
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[
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40 t-
0 20 40 60 80 100 120 140 160

Figure 2-3: Test results on 5 IEEE standard units.
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2.3.3.3. Arc Maintenance Condition

When the existing mathematical model was applied to a long insulator string, it was

found that the flashover voltage increases linearly with the length of the insulator string

[4], as shown in Figure 2-4. Test results for longer insulator strings, however, revealed

that on the contrary, the flashover voltage did not increase linearly with an increase in

insulator string length [17].

Figure 2-4: Flashover voltage calculated by the existing model, as a function of insulator

string length

The discrepancy observed between the calculated and test results may be due to the

fact that the arc re-ignition condition was determined using a small triangular ice sample

and that this condition was considered to be independent of the insulator length. In order

to improve the mathematic model for application to long insulators, recent researches

were carried out at CIGELE [4, 124] showed that the local arc had the potential for

extending in two different ways: (i) the arc propagates on the ice surface, or (ii) the arc

burns along the air gap and spreads as the ice thaws and the air gap widens [125]. In either

case, when the arc reaches its critical value, flashover will occur. The researchers were,

therefore, convinced that the minimum applied voltage for maintaining an arc burning

steadily along an air gap constitutes the critical condition of arc propagation on ice-

covered insulators. The minimum applied voltage for maintaining an arc burning steadily

along an ah- gap of a certain length was then determined, using a cylindrical ice sample.

The equation describing the tendency of these minimum voltages is called the "Arc
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Maintenance Condition" [126]. The results show that the minimum applied voltage, Vm ,

for maintaining an arc burning steadily along an air gap is a function of the arc length, x,

the leakage current, Im , and the insulator length, L. Thus, the arc maintenance condition

may be expressed as:

Vm =f(x, Im, L) (2-16)

Due to the inconvenience of creating long cylindrical ice samples however, the

investigation «was limited to an ice sample length of up to 83 cm [125]. In order to

complete this investigation and to improve the mathematical model, it will be necessary to

make further studies of the arc maintenance condition using a full-scale insulator string.

2.4. Conclusion

The flashover of ice-covered insulators has attracted a great deal of attention from

researchers worldwide. A large number of studies have been carried out in several

laboratories on this subject. These studies include observing the ice accretion process,

experimentally determining the flashover performance of ice-covered insulators, and the

modeling of flashover on ice surfaces. A mathematical model was established at CIGELE

for predicting the flashover voltage of ice-covered insulators and was successfully applied

to a short insulator string of up to 1 m.

By the review of the literature as presented above, a gap in the studies on the modeling

of flashovers of long ice-covered insulators is revealed. This lack of information has

prompted the writing of the present MS thesis.
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Chapter 3

Experimental Facilities and Test Procedures

3.1 Introduction

In order to achieve the objectives laid out at the beginning of this study, a series of

tests was carried out in the high voltage laboratory at CIGELE. For this purpose, certain

facilities were used in order to simulate the environmental conditions of cold regions and

to accumulate an ice layer artificially on an insulator surface.

The present chapter provides a detailed description of the facilities and equipment

used in this study, followed by a discussion of test methods.

3.2. Facilities

3.2.1. Test Objects

The electrical performance of insulators depends on a number of factors including

insulator parameters and environmental conditions. To study the effects of insulator length

and diameter on the arc maintenance conditions, two types of post insulators, of different

diameters, but of the same shape and shed distance, were used. The insulator dimensions

are shown in Figure 3-1. Insulator length was considered as a parameter of the study.

Therefore, three insulator units were installed vertically in a climate room and an electrode

was placed at the desired position on the insulator in order to obtain insulator lengths of

59, 103, 161, 206, 259 or 309 cm (see Figure 3-2).
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As mentioned in the previous chapter, the presence of glaze with icicles is the most

critical condition for ice-covered insulators. Thus, for the study glaze ice with icicles was

artificially formed on the post insulators by spraying super-cooled water droplets on the

insulator surface (Figure 3-3). In order to eliminate problems arising from randomness of

location and length of the air gaps, the ice was accumulated without voltage application.

Once the ice thickness reached the desired value, the icing process was halted and then an

artificial gap of a given length was made near the high voltage electrode by removing a

part of the ice (Figure 3-3).

Figure 3-1 Post insulators
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Figure 3-2 CIGELE large climate room and insulator setup with an electrode in the

desired position

Figure 3-3 Test insulators covered by ice and with an artificially created air-gap
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3.2.2. Climate Room and Facilities

In order to simulate and control the environmental conditions, all tests were carried out

in two climate rooms at CIGELE laboratories. The smaller one measures 6.4 x 6 x 3.9 m3

(for the insulator of less than 161 cm in length) and the larger one measures 6 x 6 x 9 m3

(for the insulator of more than 161 cm in length). Both rooms are equipped with a cooling

system, a water spraying system, and a wind producing system (Figure 3-2).

Cooling System

To simulate cold atmospheric conditions as prevail outdoors, the climate rooms are

provided with a cooling system was used. It consists of a powerful 316.5kJ/min

compressor and temperature PID controller making it possible to alter the temperature

inside the climate room between -30 °C and room temperature (~20 °C). By using a PID

controller, the accuracy of temperature control is ±0.1 °C. In this study, it was necessary to

accumulate glaze with icicles on the insulator surface. Based on previous studies at

CIGELE, the temperature was set at -12 °C during the ice accumulation period.

Water Spraying System

The ice was accumulated on the insulator surface by spraying supercooled water

droplets onto the insulator surface. Type No. SU12A Nozzles made by Spraying Systems

Co were used to produce the water droplets (Figure 3-4). The spray angle was 15°, and the

size of the water droplets depended on the pressure of the air and water fed into the nozzle.

In this study, pressures of 10 psi for air and 80 psi for water were used. Under these

pressures, the mean diameter of water droplets was 80 jum. Liquid-water content (LWC) is

another parameter that affects the ice accumulation. Its value depends on a number of

factors such as the wind speed, water droplet diameter and the water quantity. In this study,

LWC was set at 6.8 g/m3 to produce the glaze. The water quantity was set at 250 cm3/min

per nozzle.
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Wale*

Figure 3-4 Nozzles used to produce water droplets

Wind Producing System

Wind speed may also affect the ice accumulation on an insulator surface. In order to

simulate natural wind as found in cold regions, the cold climate rooms are equipped by

several electric fans are installed behind the nozzles to produce different air-flow speeds

(Figure 3-5). By using a PID controller, the wind speed may be adjusted to within a range

of 0 to 15 m/s. A honeycomb grid panel is installed in front of the fans to cause the wind

to flow uniformly. In this study, the distance between the insulators being tested and the

nozzles is greater than 1.8 m. The results measured showed that the wind along the

insulators was relatively uniform. A wind speed of 3.3 m/s was set to form a uniform ice

layer on the insulator surface.

Figure 3-5 Wind-producing system
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3.2.3. High Voltage System

For insulator lengths under 161 cm in the smaller climate room, an AC high voltage

was supplied by a 120 kV/240 kVA transformer (Figure 3-6) and a 240 kVA regulator.

The output voltage may be adjusted from 0 to 120 kV. The short circuit current is about 28

A at the rated voltage of 120 kV. The rate of increase in output voltage is about 3.9 kV/s.

Figure 3-6. 120 kVA transformer

For insulator lengths over 161 cm, the tests were carried out in the larger climate

room. A 350 kV/700 kVA transformer and a 700 kVA regulator were used to supply the

high voltage to the test sample (Figure 3-7).

JMP. m

I
Figure 3-7. 350 kV/700kVA AC high voltage system

33



The output voltage of this system may be adjusted from 0 to 350 kV with a control

unit (Figure 3-8). The voltage increase rate may be set at 5 different levels, where the

maximum level is 12kV/s. On this unit, the over-current and over voltage protection may

also be adjusted. The short circuit current is in the range of 10 to 20 A, depending on the

output voltage level. The short circuit current of both the 120 kV and the 350 kV systems

satisfies the requirements of the international standard for tests under high leakage

currents, namely, tests on polluted insulators [IEC5O7],

MLJU

Figure 3-8. Control unit for 350 kV Transformer.

3.2.4. Test Circuit and the Measuring System

The test circuit is shown in Figure 3-9. After the ice was accumulated on the insulator

surface and the air gap was created, an AC high voltage was applied to the top electrode of

the insulator. A voltage divider and a shunt were used to measure the voltage and the

leakage current.

Data Acquisition. System

WMf.<

Figure 3-9: Test circuit
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A computer-based data acquisition system (DAS) was used to record and analyze the

waveforms of the applied voltage and the leakage current during the tests. This DAS

system consists of a 16 bit high precision PCI data acquisition card and the widely used

software, LAB VIEW. Figure 3-10 shows the data acquisition interface as designed for this

study.
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Figure 3-10: Interface designed for data gathering

3.3. Test Procedures

The objective of this study is to determine the minimum arc maintenance voltage as a

function of the leakage current, the air gap length and the insulator length. To achieve this

objective, a series of tests was carried out at the CIGELE laboratory. The test procedures

under discussion consist of two phases: the ice accretion period and the voltage

application period. The details of the procedure may be summarized as follows:

3.3.1. Ice Accretion

This period includes the preparation of the climate room, the accretion of ice on the

insulator surface and the creation of an air gap.

The surface temperature of the insulators will influence the ice accretion process.

Therefore, before starting the accretion, the insulators were installed in the climate room

and the cooling system was turned on so as to lower the temperature to the desired value.

In this study, a ambient temperature of -12 °C was set for ice accretion. This value was



maintained for at least 3 hours to ensure that all the objects in the room, particularly the

insulator to be tested, were at the same target temperature.

Spraying the super-cooled water droplets on the insulator surface formed the ice layer.

Depending on the environmental conditions, the ice formed could be of different types.

The ice type called glaze with icicles was selected for the purposes of this study and the

corresponding environmental conditions are listed in Table 3-1.

Table 3-1 Conditions for wet-grown ice accretion

Temperature C°C) 1 Water Dmplct fee (pm>

-12 80

Wind speed im/$\

3.3

y<j«id Water C«n«ent (gfirC)

6.8

The ice amount was checked by measuring the ice thickness on a monitoring

conductor 3.8 cm in diameter, installed in front of the insulator, and rotating at a speed of

1 rpm (Figure 3-11). Another fixed conductor was also installed to investigate the

difference between the ice accretion on rotating and non-rotating conductors (Figure 3-

11).

Rotating conductor

Fixed conductor

Measuring points

Figure 3-11. Rotating and fixed monitoring conductors

Figure 3-12 shows the monitoring conductors after ice accretion. The ice accretion on

the conductors was not absolutely uniform. Therefore, the average ice layer thickness, as

measured at 5 equally spaced points, was used to indicate the amount of accumulated ice

on the insulators (Figure 3-12).
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Rotating rod

Fixed rod
"~��_

Equally spaced
measuring points

Figure 3-12. The device used to calibrate ice accretion after ice deposition

The dependency of ice thickness growth on time is shown in table 3-1.

Table 3-2 Variations in the ice layer thickness on the conductors as a function of time

^ \ ^ Measuring
^\JPositions

Time (min

Rotating

conductor

Fixed

conductor

20

40

60

80

90

20

40

60

80

90

1

40

43

46

50

55

42

43

47

50

55

Diameter of ice

2

43

53

60

68

78

44

53

61

68

78

3

44

55

61

71

72

45

55

63

71

73

rod (mm)

4

45

54

60

68

77

45

54

63

68

77

5

41

46

51

55

58

42

46

54

55

58

Average Ice
Thickness

(mm)

2.3

6.1

8.8

12.2

15

5.6

12.2

18.6

24.4
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It should be noted that the average ice layer thickness of 15 mm was obtained on the

rotating conductor after 90 minutes of accretion time, as selected for this study. These

conductors were removed in later tests in order to reduce the effects of monitoring
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conductors on the ice accretion. To ensure that test conditions remain constant for each

test the ice layer thickness was maintained to 15 mm.

After the required ice thickness was obtained on the insulators, the ice accretion period

was halted and an air gap was artificially created close to the high voltage electrode.

3.3.2. Voltage Application and the Determination of Arc Maintenance Voltage

After the ice and the air gap were formed on the insulator surface, the door of the

climate room was opened to cause the temperature inside to rise to 0 °C. At this

temperature, a water film appears on the ice surface. Because of the high resistivity of ice,

the leakage current will not be so strong and the arc will be unstable. Thus, the water film

is necessary for higher leakage current. The higher the leakage current, the lower the

voltage required to maintain the arc.

In order to determine the arc maintaining voltage, an arc must be established across the

air gap. For this purpose, an AC voltage was applied to the ice-covered insulator, and

increased at a constant rate until the air gap was broken down and an arc appeared (Figure

3-13). A waiting is required for the arc-color to change to white, and then voltage is

decreased at a constant rate until the arc is extinguished. Figure 3-14 shows the schematic

of the voltage application process during the test.

Figure 3-13 The arc was established across the air gap
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To Ti

T2

/
/

P

\

Voltage

Minimum voltage

needed to maintain

the arc

Figure 3-14 Voltage application process

In figure 3-14, To is the time of cooling and ice accretion period; Ti is the time for

creating the artificial air gap; T2 is the time for applying and increasing the voltage to

obtain an arc; T3 is the time for reaching a white arc; T4 is the time for decreasing the

voltage until the arc is extinguished.

During the voltage application period, the waveforms of the applied voltage and the

corresponding leakage current were recorded by the DAS system. Figure 3-15 shows an

example of typical waveforms displayed in LABVIEW. It may be observed that, as the

voltage increased, the leakage current appeared at a certain instant, which means that an

arc was established across the air gap. The arc may become stable and turn white after a

period of time in which the voltage level is kept constant. If this does not occur, the

voltage may be increased to achieve the desired conditions. At this point, as shown in

figure 3-5, the voltage is decreased, followed by a decrease in leakage current, until the

arc disappears at a certain voltage value.
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Figure 3-15. Typical waveforms of the applied voltage (red) and the leakage current (white)

Figure 3-16 Voltage and current
when the arc appeared

Figure 3-17 Voltage and current
when the arc extinguished

By amplifying the waveforms at the moments of arc appearance and extinction, the

details of the applied voltage and leakage current were obtained as shown in Figures 3-16

and 3-17. From these waveforms, the air gap breakdown voltage, Vb, and the current after

breakdown, /(,, as well as the minimum voltage maintaining the arc, Va, and the

corresponding current, Ia, may be determined. A block diagram, as shown in Figure 3-18,

summarizes test procedures.
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1- Clean the insulators

2- Cool the climate room (for at least 3 hours)

3- Start ice accretion using the wet regime method (90 minutes)

4- Halt ice accretion and create an air gap close to the high voltage electrode.

5- Open the door to cause the
temperature rise to 0 °C

6-Check high-voltage system security
and turn on the high voltage system

7- Increase the voltage at a rate of ~3.9 kV/s

9- Decrease the voltage

Arc extinguished?
� � ,

Yes

10- Analyze the recorded waveforms of
the voltage and current

Figure 3-18. Block diagram of test procedure
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Chapter 4

Arc Maintenance Conditions

4.1. Introduction

By using the test facilities and the procedures as defined in the previous chapter, a

series of tests was carried out to determine the minimum applied voltage required to

maintain a white arc across an air gap, i.e. the arc maintenance conditions. The test results

are presented and discussed in this chapter. Also, a mathematical expression is proposed

here to describe the arc maintenance conditions on ice-covered insulators based on the

experimental results.

4.2. Introducing of the Experimental Parameters

The minimum arc maintaining voltage is a function of the leakage current, the arc

length and the insulator length, as described in a previous work carried out at CIGELE

[50] . It is necessary to investigate the relationship between the arc maintaining voltage

and these parameters in order to determine the arc maintenance conditions. Therefore, in

this study, the conductivity of the water used to form the ice was adjusted within a range

of 10 to 350 uS/cm, in order to change the arc leakage current. The range of the air gap

length was chosen according to insulator length.

The range of these parameters was chosen based on the requirements for a stable white

arc burning across an air gap. If the leakage current is too weak, a violet arc and not a

white arc will form. This occurs because of the low conductivity level or the small ratio of

air-gap length to the insulator length. In such a case, we need to increase the water

conductivity or increase the ratio of the air gap length to the insulator length in order to
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increase the leakage current. This causes the violet arc to pass to the white arc stage.

Flashover will occur immediately after the arc is established across the air gap and no

stable arc can be obtained, if the water conductivity is too high or the air gap is too long.

Table 4-1 shows the experimental status for an insulator length of 206 cm. It should be

noted that, for a given insulator length, the larger the air gap is, the lower the water

conductivity should be, to avoid flashover.

Table 4-1 Test status for

\x (cm)
Water Conductivity's.

(uS/cm) ^ \
10
30
80
150
250
350

16

OK
OK
OK
OK
OK
F.O.

an insulator length of 206cm

26

OK
OK
OK
OK
F.O.

36

OK
OK
OK
OK
F.O.

46

OK
OK
OK
F.O.

56

F.O.
F.O.

Note: F.O. = Flashover ; O.K = Violet arc passes to a stable white arc

Similarly, the ranges of air gap length were chosen according to insulator length and

are listed in Table 4-2.

Table 4-2 Air gap length (x) chosen for different insulator lengths (L)

7
12
16
26
36
46
56

59

4Tt

103

A
TIX-

161

AT
206

1?

259

ÀT

309

i

r

4.3. Minimum Arc Maintaining Voltage as a Function of Leakage Current

The leakage current will change with a change in the water conductivity. The

relationship between the minimum arc maintaining voltage and the leakage current was

investigated for different air-gap and insulator lengths, using an insulator of 25.2 cm in
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diameter. Figures. 4-1 to 4-3 show the results obtained for a given air gap length of 12 cm

and different insulator lengths ranging from 59 cm to 161 cm.

It may be observed that the minimum arc maintaining voltage decreases with an

increase in leakage current. The tendency of the voltage variation obeys a power curve,

that is to say, the relationship between the minimum arc maintaining voltage, Va, and the

leakage current, Ia, can be expressed as a power equation.
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Figure 4-1. Minimum arc maintaining voltage forx = 12 cm andZ, = 59 cm
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Figure 4-2. Minimum arc maintaining voltage for x = 12 cm and L = 103 cm
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Figure 4-3. Minimum arc maintaining voltage for x = 12 cm and L = 161 cm

For Figures 4-1 to 4-3, the equations are:

Va = 53299/a"°
 0879 when L = 59 cm and x = 12cm

Va = 53703 Ia"
00904 whenL = 103 cm andx = 12 cm

Fa = 51182/fl-
01112 whenL = 161 cm andx= 12 cm

(4-1)

(4-2)

(4-3)

For all the combinations of air gap and insulator length shown in Table 4-2 the

minimum arc maintaining voltage can be expressed in the following form:

-b (4-4)

where K and b are coefficients and their values depend on the combination of the air

gap length and insulator length.

4.4. Minimum Arc Maintaining Voltage as a Function of Insulator Length

Figures 4-4 and 4-5 show the minimum arc maintaining voltage for the same air gap

length but different insulator lengths. The voltage for maintaining the same arc length

increases with an increase in insulator length. This effect can be explained by the fact that
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the residual resistance of an ice layer increases with increase in the insulator length.

Therefore, a higher voltage is needed to maintain the same leakage current as the one for

the shorter insulator length. That is, the value of the coefficient K in Equation (4-4)

depends on insulator length.

Also, it may be observed that, for a shorter air gap, the difference between the

minimum arc maintaining voltages for different insulator lengths is greater than it is for

longer air gaps.

45

� L= 161cm

A L = 59 cm

0.05 0.1 0.15

Leakage current (A)

0.2 0.25

Figure 4-4. Minimum arc maintaining voltage for different insulator lengths (x =12 cm)
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Figure 4-5. Minimum arc maintaining voltage for different insulator lengths (x =46 cm)
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4.5. Mimmum Arc Maintaining Voltage as a Function of Air Gap Length

The minimum arc maintaining voltage is the applied voltage for maintaining an arc

burning across an air gap. Therefore, changing the air gap length will also change the arc

length. The longer the arc, the more energy the arc absorbs from the power source. Thus,

the minimum arc maintaining voltage is a function of arc length. Figures 4-6 to 4-10 show

the results obtained for different air gap lengths, i.e. arc lengths.

0.02 0.04 0.06 0.08

Leakage current (A)

0.12

Figure 4-6. Minimum arc maintaining voltage for L = 309 cm and x = 16 cm
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Figure4-7. Minimum arc maintaining voltage for L = 309 cm and x = 26 cm
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Figure 4-10. Minimum arc maintaining voltage for L = 309 cm and x = 56 cm
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By comparing Figures 4-6 to 4-10, it may be observed that, for a given insulator

length, the arc maintaining voltage increases with an increase in arc length. Therefore, the

value of the coefficient K in Equation (4-4) also depends on the arc length. Figure 4-11

makes it easy to compare between the resulted curves.

-Gap= 16 Cm
Gap= 26 Cm

-Gap=36 Cm
-Gap=46 Cm
-Gap=56 Cm

0.2 0.4 0.6 0.8 1

Leakage Current (A)

1.2

Figure 4-11. Resulted curves for 1^=309 Cm and different air gap length

4.6. Determining Coefficient K

Provided that the coefficients K and b have been determined, Equation (4-4) may

describe the arc maintenance conditions for various combinations of air-gap length,

insulator length and leakage current. As presented in the Equation (4-5), both these

coefficients, and particularly K, are functions of the insulator length and air gap length.

Therefore, in general, Equation (4-4) maybe expressed as follows:

Va = K(L, x)- (4-5)

In order to determine the values of coefficients K and b, a series of tests and analyses

were carried out for all combinations of insulator length and air gap length. By applying

the regression method to the results obtained, the values of coefficient K were determined

and are shown in Table 4-3.
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r(cra) ^ \ ^

7

12

16

26

36

46

56

Table 4-3 Values of coefficient

59

23758

53299

46724

103

29891

53703

58312

67441

161

38338

51182

80735

121329

206

95552

146349

176364

229273

K

259

74814

132462

199126

234651

309

88034

131943

209767

230606

322863

It may be seen that the value of K is influenced by the insulator length, L, and the air gap

length x. That is, K is a function of L and x. K increases first and then decreases as the

insulator length, L, increases with a constant value of x. Therefore, K reaches a maximum

value as L increases. Figure 4-12 shows the tendency of K with an increase in L.
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Figure 4-12. K as a function of L

For a longer air gap, i.e. a longer arc, the maximum value of K appears at a greater

insulator length. The non-linearity of the variations in K indicates that the arc maintaining

voltage for an arc increases nonlinearly with an increase in insulator length. This may be

one of the reasons for the non-linearity of the flashover voltage curve of ice-covered

insulators as a function of insulator length. On the other hand, K increases with an

increase in x for a given value of L. The tendency is shown in Figure 4-13.
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Figure 4-13. K as a function of air gap length, x

K increases almost linearly as the air gap length, i.e. the arc length x, increases. In

order to determine the relationship between K, L and x, a regression method was applied

the points on the curve. Thus, a series of linear equations and the corresponding

correlative coefficient, r, were obtained based on these regression results and are listed as

Equations (4-6) to (4-10).

K = 2333.4x + 15000

K= 3950.3 *+15000

K= 4688.6 x+ 15000

K = 4870.5 x+15000

K= 5130.9*+ 15000

and r = 0.8450 forL=103cm

and r = 0.9703 forL= 161 cm

and r = 0.9905 for L = 206 cm

and r = 0.9844 for L = 259 cm

and r = 0.9804 for L = 309 cm

(4-6)

(4-7)

(4-8)

(4-9)

(4-10)

In order to unify the form of the equations, a constant of 15000 is used in each one.

Thus, the insulator length, L, only affects another coefficient which may be defined as K\

where K' is a function of L.

K=K'(L). x+ 15000

The effect of L on the coefficient K' is shown in Figure 4-14. From this figure, a nonlinear

equation may be determined as follows:
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Thus

K' = -0.0816-Z2 + 45.987-Z - 1294.5

K = (-0.0816-Z2 + 45.987-L - 1294.5)-* + 15000

(4-11)

(4-12)

From Fig. 4-14, it may be seen that the experimental data can be fit by a polynomial

curve. In order to simplify the equation, order 2 of L was chosen. The results show a good

concordance between the experimental data and the curve.

Figure 4-14 Effect of insulator length, L, on the coefficient K'

4.7. Determining Coefficient b

Coefficient b(L, x) is the second coefficient introduced in Equation(4-3) to describe

the arc maintenance conditions. Its values were also determined in the tests for various

combinations of L and x. The results are listed in Table 4-4.

Table 4-4 Values of coefficient b

^^^L (cm)
x (cmjN^

7

12

16

26

36

46

56

59

0.0958

0.0879

0.0673

103

0.0232

0.0904

0.0716

0.0632

161

0.1169

0.1112

0.0738

0.0642

206

0.0826

0.0777

0.0554

0.0577

259

0.1

0.0875

0.0517

0.061

309

0.1277

0.1047

0.1045

0.0676

0.0364

Average
value

0.0786

0.0965

0.0872

0.0795

0.0705

0.0621

0.0364
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It may be seen that, for a given value of x, b increases generally with an increase in L.

However, due to its small value, the effect of the change on the voltage maintaining the

arc is not significant. In order to simplify the expression of arc maintenance conditions,

this effect may be disregarded and an average value of b may be used for all insulator

lengths. These average values for different arc lengths are also listed in Table 4-4.

The effect of arc length x on b, however, is noteworthy. Figure 4-15 shows the

variation of the average value of b with the increase in x. As x increases, b decreases

almost linearly. The relation between b and x, as well as the corresponding correlative

coefficient r, may be obtained as follows:

b = 0.1104 -0.0012-x and r = 0.9696

Figure 4-15 Variations of b with respect to air gap length

Having obtained the expressions for coefficients K and b, represented by Equations (4-

12) and (4-13), the arc maintenance conditions for an insulator of 25.2 cm in diameter

under icing conditions may be expressed as follows.

Va = [(-0.0816L2 + 45.987L - 1294.5)-* + 15000]-/fl -»-1104"0-0012-*) (444)
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4.8. Effects of Insulator Diameter on Arc Maintenance Conditions

Like insulator length, the diameter of the insulator is a further parameter which may

influence the shape of the ice layer, and so its consequent resistance [3]. Thus, it is likely

to have an influence on arc maintenance conditions. In order to investigate this effect, two

different types of insulators of different diameters (see Figure 3-1) were used in this study.

A series of tests was carried out on these two types of insulators. Figures 4-16 to 4-18

show the results obtained on the larger insulator (D = 29 cm).

0.05 0.1 0.15
Leakage current (A)

Figure 4-16. Minimum arc maintaining voltage (L = 259 cm, x = 16 cm, D=29 cm)
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Figure 4-17. Minimum arc maintaining voltage (L = 259 cm, x = 26 cm, D=29 cm)
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Figure 4-18. Minimum arc maintaining voltage (L = 259 cm, x = 36 cm, D=29 cm)

Similarly, by applying the regression method to the results obtained, the arc

maintenance conditions, as well as the values of coefficients K and b, were obtained.

Table 4-5 shows a comparison between the values of coefficients K and b for insulators of

different diameters.

Table 4-5 Comparison between the values of K and b for insulators of different diameters.

X

(cm)

16
26
36

K

D = 25.2 cm

74814

132462

199126

D = 29 cm

78483

156176

184568

A

4.09 %

17.9%

-7.31 %

b
D = 25.2

cm

0.1
0.0875

0.0517

D = 29 cm

0.0841

0.0798

0.0761

A

-15.9 %

-8.8 %

47.2 %

As in the results obtained from the insulator of a smaller diameter, K increases while b

decreases with an increase in air gap length.

The insulator diameter thus has an influence on the values of K and b. As D increases,

K increases and b decreases, for arc lengths of less than 26 cm. For arc lengths greater

than 36 cm, the variations of K and b are the inverse. In this study, however, only two

diameters are used and the difference in diameter between these two insulators is only

13%. Therefore, further experimental investigation is necessary to determine the effects of

insulator diameter on the arc maintenance conditions.
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4.9. Breakdown Voltage of Air Gaps

During the tests, the voltage distribution was not uniform when the voltage was

applied to the ice-covered insulators. Because the air gap displays high resistivity as

compared to the ice layer, the greater part of the voltage appears along the air gap. If the

voltage is high enough, a breakdown will occur and an arc will be established across the

air gap. In this study, the breakdown voltage of an air gap was also investigated under

various combinations of the water conductivity, with air gap and insulator lengths. Figs. 4-

19 to 4-24 show the breakdown voltage of an air gap, Vb, as a function of air gap length, x.

Figure 4-19. Breakdown voltage, Vb, as a function of air gap, x. (L - 59 cm)

Figure 4-20. Breakdown voltage, Vb, as a function of air gap, x. (L = 103 cm)
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Figure 4-21. Breakdown voltage, Vb, as a function of air gap, x. (L = 161 cm)
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Figure 4-22 Breakdown voltage, Vb, as a function of air gap, x. (Z = 206 cm)

Figure 4-23 Breakdown voltage, Vb, as a function of air gap, x. (L = 259 cm)
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Figure 4-24 Breakdown voltage, Vb, as a function of air gap, x (L = 309 cm)

It may be noted that, the breakdown voltage increases linearly as the air gap increases.

The slope of the line is so not affected by insulator length and it lies in the range of 3.1 to

5.5 kV/cm. The deviation observed is caused by the surface conditions of the insulator and

the air gap shape, among others.

By plotting all the results in one figure (Figure 4-25), it may be seen that the

breakdown voltage, Vb, is not influenced by the insulator length, L. Therefore, the

relationship between the breakdown voltage (in kV) and the air gap length (in cm) may be

determined as follows for all insulator lengths:

= 4.22-x+22.9 (kV) (4-13)

300-
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60

Figure 4-25 Relationship between the breakdown voltage and the air gap length
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4.10. Discussion

4.10.1. Observation in Tests and Criteria for Choosing the Test Results

Throughout the tests, the observable phenomena were scrutinized. As soon as the

voltage was applied to the insulator, a very weak, but measurable, current was recorded on

the measuring instruments. Up to that point, there was no obvious discharge around the

insulator. With an increase in voltage, there was a breakdown in the air gap at a certain

voltage level. At this juncture, depending on the freezing water conductivity a, the air gap

length, x, and the insulator length, L, two possibilities could manifest themselves: i) if the

combination of a, x and L resulted in a leakage current which exceeded the critical value,

a white arc would be established across the air gap; ii) if the leakage current was less than

the critical value, a violet arc would be established across the air gap and would change to

white as the voltage increased to a certain level. During the tests, it was found that the

critical value of the leakage current for a white arc to form was ~15 mA.

The arc loses its brightness gradually by decreasing the voltage and the leakage

current, also, decreased. Depending on the combination of a, x and L, the arc would

extinguish at a certain voltage level. Sometimes, after the arc extinguished, it might be re-

ignited and then extinguished again.

It was observed that the voltage needed to maintain an arc across an air gap, increases

with the decrease in the leakage current (see test result diagrams in this chapter). It was,

also, observed that the current required to produce a violet arc is lower than that of a white

arc. Consequently, the voltage required to maintain a violet arc is higher than that of a

white arc. In fact, the flashover of ice-covered insulators happens just if, and only if, there

is a stable white arc through the entire flashover process. Therefore, in this study, the

minimum voltage for maintaining a stable white arc was determined.

Also, if arc reignition occurred after the arc extinguished, only the first extinction and

the corresponding voltage and current were considered as the results.
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4.10.2. Practical Applications of Arc Maintenance Conditions

As mentioned in Chapter 2, the flashover of ice-covered insulators is caused by the

formation and propagation of an arc. A mathematical model based on the concept of

polluted insulators was proposed earlier by CIGELE laboratory for predicting the

flashover voltage of ice-covered insulators. It is valid for insulator strings of up to 1 m in

length. For insulators of over 2 meters in length, the calculated results show a linear

relationship between the flashover voltage and insulator length (see Figure 2-5). There

may be a discrepancy between the calculated and experimental results. This is because the

arc reignition condition was obtained using a small ice sample, and was assumed to be

independent of insulator length.

-*..!,

(b)

Figure 4-26. Two types of arc propagation on ice-covered insulators

The tests revealed that there are two different types of arc propagation on ice-covered

insulators (see Figure 4-26). Figure 4-26(a) shows an arc propagating on an iced surface,

which occurred when the applied voltage was high enough to result in immediate

flashover. Figure 4-26(b) shows an arc burning along an air gap. In the latter case, the
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applied voltage was not so high as to cause an immediate flashover, but it was high

enough to maintain an arc along the air gap. The arc spread as the ice melted and the air

gap widened. When the arc reached its critical length, flashover occurred. It is clear that

the voltage required in case (b) is lower than the one required in case (a). Therefore, case

(b) is the critical state for flashover on ice-covered insulators.

This study examined the relevant aspects of the minimum voltage for maintaining an

arc on an ice-covered insulator, or the "Arc Maintenance Condition". The results obtained

showed a nonlinear tendency in the relationship between the arc maintaining voltage and

insulator length. It would, therefore, be possible to improve the mathematical model for

application to long insulators by introducing the arc maintenance condition into the model.

Further studies, however, are needed in order to investigate the above-mentioned non-

linearity in greater detail and for standing CIGELE created model to the EHV (Extra High

Voltage) insulators.
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Chapter 5

Conclusions and Recommendations

5-1 conclusions

A wet-grown ice layer and an artificial air gap were formed on an insulator, using two

types of post insulators. A test method was designed for examining the arc burning along

the air gap. The critical conditions required for an arc to extend on an ice-covered

insulator, that is, the arc maintenance conditions, were investigated under AC voltage. On

the basis of the experimental results and their analysis the following conclusions may be

drawn:

1). On the ice-covered insulator, when the applied voltage is not high enough to

cause flashover immediately, but high enough to maintain an arc along the air gap, the arc

will extend as the ice thaws and the air gap will widen. When the arc reaches its critical

length, the flashover will occur. This is the critical situation for flashover on ice-covered

insulators. The minimum voltage needed to maintain a white arc burning along the air gap

appears to bear a relationship to the parameters of leakage current, arc length, and

insulator length. This relationship is defined as the arc maintenance condition.

2). The minimum arc maintaining voltage, Va, is a function of leakage current, Ia.

It decreases with the increase in the leakage current. The relationship between Va and Ia

can be expressed as a power equation:
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where K and b are functions of the air gap length and insulator length.

3). For a given length of arc, the arc maintaining voltage increases with an

increase in insulator length. For a given insulator length, the arc maintaining voltage

increases with the increase in arc length. That is, the insulator length, L, and the arc

length, x, influence the value of the coefficient K. As L increases, K increases at first and

then decreases revealing a maximum value. K, however, increases almost linearly with an

increase in x.

4). For a given value of x, the effect of I on I) is not significant and can be

disregarded. An average value of b can be used for all insulator lengths. The effect of arc

length x on b, however, is striking. As x increases, b decreases almost linearly.

5). The arc maintenance conditions for an insulator, 25.2 cm in diameter, under

icing conditions can be expressed as follows.

Va = [(-0.0816L2 + 45.987L - 1294.5)-x + 15000]-Ia

6). The insulator diameter, D, has an influence on the values of K and b. As D

increases, K increases and b decreases, for arc lengths of less than 26 cm. For arcs longer

than 36 cm, the variation of AT and b is the inverse. Further investigation is necessary to

determine the effects of insulator diameter on arc maintenance conditions.

7). The insulator length does not have a significant effect on the breakdown

voltage of the air gap, Vb. It increases linearly with the increase in the air gap length, x.

The relationship between Vb (in kV) and x (in cm) can be expressed as follows for all

insulator lengths:

Vb = 4.22-x + 22.9

8). A nonlinear tendency was found for the relationship between the arc

maintaining voltage and the insulator length. It is possible to improve the mathematical

model for application to long insulators by introducing the arc maintenance conditions

into the model. For this purpose, further studies are recommended.
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5-2 Recommendations

In this Master's thesis study, the critical conditions of an arc propagating on an ice-

covered insulator were investigated. The arc maintenance conditions and the

corresponding mathematical expression were proposed. The results are useful for

understanding and modeling the flashover phenomena on an ice surface. However, due to

the limitation of time, the model for predicting the critical flashover voltage of ice-

covered insulators is not complete. In order to achieve this objective, further studies are

needed.

1). The mathematical expression for the arc maintenance conditions has been

established in this study. However, it cannot be introduced into the existing model

by simply replacing the arc reignition conditions. Therefore, further studies are

needed to complete the mathematical model for predicting the critical flashover

voltage of EHV insulators covered with ice, based on the "Arc Maintenance

Conditions".

2). The effect of insulator diameter on the arc maintenance condition has been

investigated in the present study. The results showed that the insulator diameter has

an effect on the arc maintenance conditions. However, the test data were not

sufficient for summarizing a general conclusion for this effect. Therefore, studies are

needed to determine the effects of the insulator profile, including insulator type,

shape, dimension, and configuration, on the arc maintenance conditions.

3). The concepts of "white arc" and "violet arc" were used in the present study to

describe qualitatively the aspects of local arcs on ice-covered insulators. More

studies may be needed for investigating in detail their characteristics and function in

the flashover of ice-covered insulators.

4). The critical length of local arc is an important parameter in the modeling of

flashover. In the modeling of flashover on ice-covered insulators, it was calculated,

not measured, hi order to validate the mathematical model and to better understand

64



the flashover mechanism, an experimental study on this parameter is not only

interesting, but also necessary.
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Insulator Length = 59 C m

Gap Length = 7 C m
Maintenance
Voltage (volt)

29000
28000
35000
37500
36500
34500
28500
38000
32000
26000
26500
31500
36000
39500
33500
32500
31000
32500
33500
34500
36500
38500
33000
32000
29000
29000
30000
30000
30000
30000
27500
26500
30000
28500

Current
(Ampere)

0.03944
0.03183
0.03408
0.02394
0.05944
0.06761
0.03915
0.02803
0.06451
0.11579
0.11053
0.08947
0.01025
0.01025
0.01967
0.02465
0.02465
0.01967
0.01967
0.02521
0.02465
0.02465
0.02465
0.02521
0.09061
0.0856
0.1234
0.1362
0.115

0.1623
0.1894
0.1462
0.1531
0.1346

Gap Length = 12 C m

Maintenance
Voltage (volt)

50400
54000
51600
51600
51200
50000
54000
55600
64640
66400
62400
63200
62400
64000
63600
57600
53360
54160
57520

51462.4
52096

53433.6
52465.6
51576.8

Current
(Ampere)

0.08761
0.08761
0.10901
0.10901
0.18394
0.08901
0.18169
0.15831
0.0097

0.01468
0.01468
0.01468
0.01967
0.01967
0.01967
0.01967

0.048015
0.043076
0.050556
0.049533
0.05841

0.037466
0.047146
0.054043

Gap Length = 16 C m
Maintenance
Voltage (volt)

56950
60060
59530
57950
63000
64000
62000
59000
60500
59600
59000

Current
(Ampere)

0.03463
0.02964
0.03961
0.03463

0.0162495
0.017526
0.022149
0.022149
0.020838
0.019803
0.016353
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Insulator Length = 103 Cm

Gap Length = 22 Cm
Maintenance
Voltage(volt)

71500

74000

71500

79000

78500

75000

83500

73500

75000

74000

76500

77800

73000

70000

68000

Current
(Ampere)

0.15113

0.488-45

0.49521

0.11859

0.07549

0.10648

0.08197

0.263

0.22

0.212

0.193

0.213

0.251

0.329

0.31

Gap Length = 16 Cm
Maintenance
Voltage volt)

71500

68500

67500

64000

67500

69000

70000

71500

69000

69000

68500

68000

63000

63000

66000
67000
65500

Current
(Ampere)

0.06842

0.13878

0.18033

0.14349

0.18615

0.17036

0.06451

0.06225

0.115

0.095

0.119

0.153

0.19

0.195

0.21
0.133
0.122

Gap Length = 12 Cm
Maintenance
Voltage volt)

69500

60500

67000

70000

61000

73000

67500

72500

56000

59500

56000

60500

61000

69000

70500
70000
71000
68000
67500
66500
66500
69000

Current
(Ampere]

0.13296

0.11859

0.13296

0.1569

0.11859

0.14282

0.12254

0.10901

0.21408

0.16789

0.25127

0.20113

0.28845

0.063

0.0521
0.046
0.043
0.065
0.083
0.076
0.046
0.069

Gap Length = 7 Cm
Maintenance
Voltage volt)

32000

33500

33000

32000

33000

31000

31500

32000

34500

34500

32500

34000

30500

33500

32000
32000
31000
33000
34000
32500

Current
(Ampere)

0.01486

0.01424

0.01524

0.01524

0.019

0.0637

0.01524

0.01524

0.02022

0.02022

0.02853

0.01967

0.02909

0.02465

0.0374
0.03352
0.03296
0.0374
0.03296
0.04626
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Insulator Length = 161 C m

Gap Length = 7 C m
Maintenance
Voltage (volt)

52000

53500

57000

54000

53000

57500

62000

55500

56000

46500

46500

47500

48500

47500

47000

48500

48500

46500

55500

59500

61000

62000

66000

66500

68000

66500

69000

54500

54000

57500

48500

49500

50000

50500

Current
(Ampere)
0.03269
0.03269
0.04044
0.03934
0.03934
0.04709
0.04598
0.05374
0.05373
0.0723
0.0723

0.06676
0.06122
0.0723

0.06066
0.0723

0.07729
0.06676
0.02188
0.02188
0.01634
0.01634
0.0169
0.0169
0.0169
0.0169

0.02244
0.145
0.135
0.133

0.119
0.164
0.136
0.172

Gap Length = 12 C m
Maintenance
Voltage (volt)

78030

78030

65650

76540

70640

70800

77290

64930

67060

65430

63380

59200

67590

72910

72470

72550

62710

67150

65820

76840

75620

79530

75070

77040

76180

72300

81160

76180

76730

76540

72550

66460

67300

62810

63480

63650

60520

58750

56220

55880

57490

Current
(Ampere)
0.06366
0.0569

0.03934
0.06039
0.06039
0.07368
0.09363
0.04404
0.05512
0.0662

0.06676
0.05512
0.0723

0.06759
0.08366
0.10111
0.06759
0.09529
0.13019
0.02188
0.02244
0.02798
0.02188
0.02742
0.03352
0.03352
0.03352
0.03906
0.03906
0.03352
0.0385

0.15692
0.17603
0.19035
0.1286

0.12823
0.18203
0.1952

0.18632
0.21023
0.20236

Gap Length = 16 C m
Maintenance
Voltage (volt)

79000

78000

93000

90000

93500

90700

95000

98000

98000

106000

104000

105000

106000

105000

93000

100000

100000

102000

105000

100500

90000

Current
(Ampere)
0.24488
0.2072

0.24709
0.25817
0.27147
0.23158
0.03906
0.03352
0.05014
0.05568
0.04958
0.06122
0.06066
0.08366
0.04404
0.04404
0.05568
0.05568
0.0723

0.18726
0.12742

Gap Length = 22 C m
Maintenance
Voltage (volt)

0.13241

146090

115180

134290

134130

112690

129140

130750

129860

138730

120110

169030

142110

128090

146090

138730

143160

125430

128980

127200

111250

120110

154070

135120

129140

132520

133410

129860

126810

Current
(Ampere)

146090
0.13241
0.4964
0.1723

0.32022
0.241

0.28476
0.35679
0.31357
0.28476
0.34404
0.04044
0.52244
0.35623
0.41385
0.48366
0.50693
0.13873
0.45152
0.61163
1.14017
0.13158
0.14127
0.2072

0.14127
0.19834
0.17839
0.19834
0.21163
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Insulator Length = 206 C m
Gap Length = 16 C m

Maintenance
Voltage(volt)

113000
111500
113000
107000
114000
117000
118500
115500
115500
115500
113000
124000
134000
132500
132500
131000
127000
128000
127000
134000

Current
(Ampere)
0.06732
0.07817
0.07324
0.08831
0.11028
0.12408
0.12042
0.12042
0.14056
0.13507
0.03593
0.03593
0.03926
0.04576
0.04012
0.03064
0.02989
0.02944
0.02721
0.02135

Gap Length = 26 C m
Maintenance
Voltage(volt)

161500
159500
155000
169000
142500
166500
176500
184500
173500
169000
163500
163500
158000
162000

Current
(Ampere)
0.29901
0.25352
0.39296
0.36761
0.34789
0.37324
0.1524
0.1676
0.1722
0.1892
0.1532
0.1912
0.1662
0.1524

Gap Length = 36 C m
Maintenance
Voltage(volt)

210000
200500
207000
208500
203000
203000
206500
196000
199500
207000
172000
182000
189000
189000
189000

Current
(Ampere)
0.04718
0.03944
0.05183
0.07817
0.07352
0.07352
0.09423
0.09507
0.13141
0.12676
0.58817
0.53831
0.40732
0.40479
0.24437

Gap Length = 46 C m
Maintenance
Voltage(volt)

231500
253000
244500
244500
241000
245000
243500
241000
237000
241000
238000
237000
274500
285500
285500
284000
273000
274500
272000
266500

Current
(Ampere)
0.69211
0.08662
0.12592
0.15028
0.27648
0.28099
0.23817
0.80366
0.86986
0.69634
0.51211
0.46817
0.04621
0.04913
0.03546
0.06053
0.0561

0.04098
0.0597
0.0532
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Insulator Length = 259 C m
Gap Length = 16 C m

Maintenance
Voltage(volt]

98500

104500

103000

104500

98500

105500

98500

98500

101500

97000

107000

107000

110000

111500

108500

111500

111500

108500

113000

114000

110000

111500

111500

110000

85000

96000

94000

94000

91000

87500

83500

89000

Current
(Ampere)
0.05183
0.04451
0.06254
0.05224
0.05718
0.04986
0.06254
0.04986
0.05451
0.04986
0.05541
0.09648
0.02225
0.01831
0.01831
0.02113
0.01831
0.01831
0.01831
0.01831
0.01831
0.01831
0.01831
0.01831
0.08169
0.14085
0.11972
0.12535
0.13239
0.11972
0.11972
0.14507

Gap Length = 26 C m
Maintenance
Voltage(volt)

163500

169000

176000

170500

173500

180500

180500

182000

180500

180500

177500

144000

146500

145000

146500

151000

146500

144000

151000

159500

170500

190500

183500

194500

199000

199000

197500

200000

200000

196000

199000

197500

203000

154500

142500

150000

150000

153500

156000

153500

Current
(Ampere)
0.02718
0.02465
0.02718
0.02718
0.02859
0.02972
0.02972
0.03072
0.02859
0.02859

0.03225
0.12254
0.12254
0.10056
0.13183
0.15352
0.10676
0.10394
0.15662
0.12845
0.19014
0.02225
0.01437
0.02225
0.01831
0.01831
0.01613
0.01718
0.01831
0.01831
0.01831
0.01437
0.01831
0.38845
0.45437
0.48225
0.49718
0.40761
0.26085
0.24648

Gap Length = 36 C m
Maintenance
Voltage (volt)

206000

203000

203500

231000

226000

231500

227000

224000

231000

218000

216000

212500

208000

204000

208000

223000

250000

227500

230000

238000

230500

245000

235000

230000

231500

225000

229000

Current
(Ampere)
0.54085
0.54085
0.2138

0.08662
0.12324
0.15324
0.21718
0.2718

0.15352
0.18662
0.16324
0.18324
0.20718
0.3218

0.29352
0.03961
0.03186
0.04183
0.04737
0.04571
0.04571
0.04349
0.04571
0.05125
0.04737
0.04737
0.04958

Gap Length = 46 C m
Maintenance
Voltage (volt]

293000

290500

284500

280500

283500

282000

276000

283500

286000

287500

286000

290500

254000

246500

252500

248000

244000

236000

227000

244500

244000

304500

296000

303000

297500

293000

283500

272000

293000

Current
(Ampere)

0.0241
0.02798
0.02798
0.02798
0.02798
0.03186
0.02798
0.02798
0.03186
0.03186
0.03407
0.04737

0.114594
0.1230075
0.1565976
0.2220099
0.3360075
0.3881925
0.2669955
0.248997
0.69211
0.0538

0.05775
0.07352
0.10423
0.15775
0.18225
0.12535
0.1169
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Insultaor Length = 309 C m
Gap Length = 16 C m

Maintenance
Voltage(volt)

124000
115500
121000
122500
115500
117000
121000
121000
118500
122500
125500
127000
110000
108500
120000
121000
121000
121000
122500
117000
121000
122500
149500
151000
145000
145000
139500
141000
139500
138000
139500

Current
(Ampere)
0.06579
0.04474
0.08075
0.08629
0.08075
0.0633

0.08352
0.0633
0.0946

0.11122
0.09737
0.10983
0.08352

0.091
0.09183
0.08546
0.0946

0.08906
0.08629
0.08906
0.11316
0.11039
0.01976
0.02056
0.0265

0.02432
0.0351
0.029

0.02165
0.03212
0.02425

Gap Length = 26 C m
Maintenance
Voltage(volt)

153500
152000
145000
148000
153500
156500
155000
160500
183500
182000
186000
176500
167500
166500
162000
163500

Current
(Ampere)
0.17673
0.25346
0.27396
0.28061
0.24061
0.25679
0.24349
0.25679
0.07215
0.07631
0.06226
0.07513
0.08295
0.0725

0.08316
0.06953

Gap Length = 36 C m
Maintenance
Voltage(volt)

235000
236500
225500
232000
233000
263000
263000
275000
275500
273500
271500
278000
261500
262000
263500
256500
258000
246500
248000
244000
249500

Current
(Ampere)
0.32742
0.36482
0.44958
0.38809
0.38809
0.09821
0.09523
0.08613
0.08245
0.08615
0.08023
0.08291
0.1016

0.13523
0.1642

0.13323
0.17398
0.17356
0.19045
0.15423
0.18656

Gap Length = 46 Cm
Maintenance
Voltage(volt

276500
262000
290500
290500
300500
299000
296000
297500
293000
296000
303000
301500
297500
293000
211500
201500

Current
(Ampere)
0.67867
0.81524
0.02479
0.02368
0.02978
0.02729
0.02729
0.0223

0.02729
0.0223

0.02729
0.02729
0.01981
0.0223

0.51357
0.70055

Gap Length = 56 C m
Maintenance
Voltage(volt)

358000
366500
365000
356500
363500
349500
347000
344000
335500
342500
379000
383500
373500
366500
371000
378000
365000
371000

Current
(Ampere)

0.05
0.06316
0.07895
0.10485
0.09654
0.10291
0.09377
0.10291
0.10291
0.13061
0.01925
0.01924
0.02256
0.01524
0.01432
0.0181

0.01722
0.02148
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