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Abstract 

In many industrial plants materials have to be transported between several processing stations, 

where they have to be processed with a high level of accuracy and precision. In the last years, 

linear electrical drives, especially the long-stator linear motors are used for these types of 

applications for both processing and transportation tasks. They have higher dynamics and 

processing precision and lower maintenance costs compared to conventional systems, which 

require additional mechanical gears. 

The linear drive system must be modular and highly scalable in order to cover a wide range of 

applications. For this reason, the track of the plant is made of several stator segments. The 

excitation part of the motor is represented by permanent magnets (passive vehicles). Each stator 

segment has a dedicated inverter (Power Processing Unit) and processor (Information Processing 

Unit). Cheap IPMs (Intelligent Power Modules) are nowadays a good solution for implementing the 

inverter. A DSP was used as processor. The DSP and the IPM are the main components of the 

designed servo-controller, which together with a stator segment represents a module of the 

system. The DSP controls the inverter and is also used for the communication with the DSPs of the 

adjacent modules. 

By connecting the ground potential of all servo-controllers to the negative DC-link rail (≈ -280 V), 

a significant reduction in the implementation costs of the servo-controller was achieved. 

When a vehicle crosses from one stator segment to the adjacent one, the control tasks migrate 

physically in that respective adjacent DSP. Data exchange is therefore required within each cycle 

of the current control loop (100 μs) between the adjacent modules. For an arbitrary scalable 

modular system, there will be also an arbitrary high communication demand. This demand can 

only be solved by a direct (Point-to-Point) connection between the adjacent DSPs. This connection 

was realised by means of the cost-effective RS485 data transmission protocol. 

A central control unit is responsible then for the cyclical (1-10 ms) generation of new position 

reference values for the vehicles, according to a predefined schedule. The monitoring (assessment 

of internal variables of the distributed servo-controllers) of the entire system is realised also in 

real-time. Off-line download and upload actions of firmware or general data is also possible. For 

these tasks, the communication between the central unit (PC) and the distributed servo-

controllers was realised by means of the Ethernet-based fieldbus EtherCAT. 

Inside the processing stations of the system, the positioning accuracy and precision as well as the 

dynamic have to be very good. For this reason, inside those stations, position sensors must be 
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used. Outside those stations, for material transportation only, an EMF-based sensorless control 

was implemented. This will further reduce the overall system costs. 

A small section of such modular and highly scalable system was realised as an experimental set-up 

in the context of this work, in order to test the functionality and the reliability of the proposed 

system. 
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Kurzfassung 

In vielen Industrieanlagen werden Materialien in Bearbeitungsstationen mit hoher Präzision 

bearbeitet und zwischen diesen Stationen transportiert. Dafür kommen in den letzten Jahren 

immer häufiger Linearantriebe, speziell der Langstator Linearmotor, sowohl für die Bearbeitung 

als auch für das Transportieren zum Einsatz. Der Grund hierfür liegt in der hohen Dynamik, bei 

gleichzeitig hoher Positioniergenauigkeit und in der Reduzierung der Wartungskosten, weil keine 

zusätzlichen Getriebe notwendig sind, wie bei den rotierenden Antrieben. 

Das Linear-Antriebsystem muss modular und beliebig skalierbar sein, um eine große Vielfalt von 

Anwendungen abzudecken. Dafür wird der Fahrweg in viele Statorabschnitte unterteilt. Die 

Sekundärteile (passive Fahrzeuge) sind Permanentmagneten. Jedem Statorsegment werden 

sowohl ein Umrichter (Leistungsteil) als auch ein eigener Prozessor (Informationsteil) zugeordnet. 

Preisgünstige IPMs (Intelligent Power Modules) bieten heutzutage eine gute Lösung für die 

Implementierung des Umrichters. Ein DSP wird als Prozessor eingesetzt. Der DSP und der IPM 

sind die Hauptkomponenten des ausgelegten Servocontrollers, der zusammen mit einem 

Statorsegment ein Modul des Systems darstellt. Der DSP dient sowohl zur Steuerung des 

Umrichters als auch zur Kommunikation mit den benachbarten Modulen. 

Eine deutliche Reduzierung der Implementierungskosten des Servocontrollers wurde 

gewährleistet, indem die informationsverarbeitende Elektronik auf das Potential des 

Zwischenkreises (≈ -280 V) gelegt wurde. 

Wenn sich ein Fahrzeug von einem Statorsegment zum nächsten bewegt, wandert dann die 

gesamte Regelungsaufgabe physikalisch in die nächste Informationsverarbeitungseinheit (DSP). 

Ein Datenaustauschbedarf mit der Zykluszeit der Stromregelung (100 μs) entsteht dann zwischen 

den benachbarten Modulen. In einem beliebig skalierbaren System entsteht daher auch ein 

beliebig großer Kommunikationsbedarf. Dieser Bedarf wird nur mit Hilfe einer direkten (Punkt-

zu-Punkt) Verbindung zwischen den benachbarten Modulen erfüllt. Diese Verbindung wurde hier 

mit dem kostengünstigen RS485 Protokoll realisiert. 

Ein Leitrechner sorgt dann für die Erzeugung von Positions-Sollwerten für die Fahrzeuge, unter 

Berücksichtigung eines Fahrplanes. Die Zykluszeit für die Positions-Sollwerte liegt im Bereich von 

1-10 ms. Das Monitoring (Beobachtung von internen Variabeln der zahlreichen Servocontrollern) 

wird auch in Echtzeit gewährleistet. Offline sind Download- und Upload-Aktionen von Firmware 

und allgemeine Dateien auch möglich. Dafür wurde für die Kommunikation zwischen dem 

Leitrechner und den verteilten Servocontrollern der Ethernetbasierte Feldbus EtherCAT 

verwendet. 
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Innerhalb der Bearbeitungsstationen des Systems spielen die Positionierungsgenauigkeit und die 

Dynamik eine wichtige Rolle. Deswegen werden innerhalb dieser Stationen Positionssensoren 

verwendet. Für den Transport der Materialien außerhalb dieser Bereiche, wurde eine EMK-

basierte sensorlose Regelung implementiert. Dadurch lassen sich weitere Systemkosten sparen. 

Im Rahmen dieser Arbeit wurde ein kleiner Ausschnitt eines solchen modularen und beliebig 

skalierbaren Systems als Versuchsaufbau realisiert und dessen Funktionsfähigkeit nachgewiesen. 
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1. Introduction 

The linear electric motor works after similar principles as the rotary electric motor, consisting of 

a stator and a mover separated by an air gap. The magnetic fields of these two parts will interact 

to produce a linear direct motion, meaning that no mechanical transmission is required between 

the stator and the mover. As they use the similar principles for generating the electromagnetic 

force, there are as many types of linear motors as rotary motors. Almost every rotary motor type 

will find its correspondent in the class of the linear motors. If a rotary motor is unrolled, it will 

form a flat, single sided linear motor. Rolling again this flat linear motor about the axis of the 

direction of movement will form a tubular linear motor. The magnetic flux of a linear motor can 

be parallel to the direction of movement (longitudinal flux motor) or perpendicular to this 

direction (transverse flux motor). A combination of the two types of fluxes inside one linear motor 

is also possible, where the flux is transverse in the stator and longitudinal in the mover [1]. The 

part of the linear motor, which produces the magnetic field in the air gap, is called excitation part 

and the other part where voltage is induced is called armature. Each part can be on the stator or 

on the mover side. According to the principle of generation of the electromagnetic force, the 

linear motors can be divided into three main categories: 

 

 Linear Induction Motor (LIM). The part of the motor, which produces a travelling magnetic 

field in the air gap, is called primary (excitation part) and consists of three-phase 

windings. This travelling field will induce a voltage in the secondary of the machine if 

there is a speed difference (slip) between them. The secondary consists of a conducting 

plate on a solid iron or of short-circuited three-phase windings placed in slots of laminated 

core [2]. The induced voltage will generate currents in the secondary, which are 

interacting with the travelling magnetic field to produce the electromagnetic force. 

 

 Linear Synchronous Motor (LSM). The armature creates in this case the travelling 

magnetic field and consists of three-phase windings. The excitation part can create a 

magnetic field or a variable magnetic reluctance in the air gap. This magnetic field can be 

produced by a PM or by a DC-current winding and it will interact (synchronize) with the 

travelling magnetic field to generate electromagnetic force. In the case of the variable 

magnetic reluctance motors, the electromagnetic force is a reaction force of the mover to 

the travelling magnetic field. 
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 Linear Brushless Motor (LBM). This motor works with a rectangular three-phase current 

system, whereas the first two above mentioned types are using sinusoidal currents. The 

induced voltages in the armature are trapezoidal. Using a position sensor, the 

commutation process of the currents is synchronized with the position of the mover. The 

LBM is therefore a special type of LSM. 

In Figure 1.1 a brief classification of linear motor types is shown, regarding both the motor layout 

and the principle of operation. In the case of long-stator LSMs, the armature is longer than the 

excitation part. For short-stator LSMs the excitation part is longer than or equal to the armature. 

Linear Electric Motor
(layout)

Flat geometry Tubular geometry

Longitudinal flux Transverse flux

Double sided Single sided

Slotted Slotless

Long stator
Long primary

Short stator
Short primary

Linear Electric Motor
(operation)

Induction Synchronous Brushless DC

PM DC-current
windings

Variable reluctance

 

Figure 1.1 Classification of the linear motors 
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For LIMs the terms of long-primary and short-primary are preferred instead. Almost any 

combination between layout and operation forms is possible depending on the application. 

The linear motors were first mentioned at the end of the 19th century and at the beginning of the 

20th century their main applications were meant for high-speed propulsion and public 

transportation systems. In 1946 the Westinghouse Corporation builds the first large-scale linear 

motor for aircraft launching, called Electropult, which was capable of speeds of about 100 m/s [1]. 

Even though the idea of using electromagnetic levitation in public transportation systems dates 

back in 1922, the first practical construction only took place in 1969 in Munich, Germany and the 

model was called Transrapid 01, which was capable of speeds up to 100 km/h [3]. The maglev 

(magnetic levitation) transportation system combines the linear motor technology with the 

technology of contactless magnetic suspension, offering energy efficient and pollution free 

alternative to air, car and standard railway traffic. Starting with the early 1970s the maglev 

systems for public transportation developed continuously, as they still are in the present. For 

industrial applications like machining, material processing or laser cutting, the linear electric 

motors started to win recognition and to be implemented only at the beginning of the 1990s [3]. 

The continuous progress over the last years in areas like motor design, power electronics, control 

of drives, positioning sensors and industrial fieldbuses, together with the actual interest for new 

intelligent solutions in transportation and industrial plants, opened new perspectives for the 

linear direct drives applications. 

1.1. State of the art 

1.1.1. Linear electric motors for public transportation 

For high-speed (over 400 km/h) maglev systems, the long-stator LSM is preferred. The short-

stator LSM is not used because there is the problem supplying the vehicle with energy and the 

vehicle would also be heavy, as all the necessary power converting units are situated on it. The 

LIM is also not an alternative for high-speed transportation, because its efficiency is strongly 

affected by the wide air-gap and its fluctuations. Only the currents in the primary produce the 

thrust force of the LIM, as the secondary has no independent magnetic field. The primary of the 

LIM will have therefore bigger dimensions than the armature of an LSM for the same thrust force, 

as it must carry the magnetization current component in addition. 

In the last years, low-speed (100-150 km/h) linear motor systems become interesting for 

passenger transportation in urban areas [4], [6], [7] and also for goods transportation over short 

distances inside crowded industrial areas [4]. These transportation systems are with or without 

magnetic levitation and for propulsion usually long-stator LSMs or short-primary LIMs are used 

[5]. Nowadays ropeless elevators, based on linear electric motors, represent an alternative to the 

conventional elevators in very high buildings. The fixed parts of the motors are situated on the 

shaft’s wall and the moving parts are the cabins. No drive units situated at the top of the building 

are required. More cabins are allowed to move independently on the same shaft and horizontal 
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movements are also possible in order to change the shaft. This increases the transportation 

efficiency, so that the number of shafts can be reduced. The building’s size and automatically its 

construction costs can be therefore reduced. The Multi Mobile System (MMS), developed in 

Switzerland and supported by the elevator manufacturer Schindler AG, uses a double-sided, long-

stator LSM with excitation realized by PMs. One stator segment is made up of many motor 

modules connected in parallel. An inverter supplies each segment and all the inverters are 

sharing the same DC-link bus [8]. For these applications the double-sided, long-stator PMLSM with 

a slotted iron core is the best solution, as it develops the biggest thrust-force density compared 

with other linear motor topologies [9]. 

The most popular linear electric motor used now in public transportation is therefore the long-

stator LSM. Because the vehicles travel over long distances, the armature along the guideway is 

split in many segments in order to improve the efficiency [10]. Only those segments involved in 

the development of the thrust force are energized. The segments have different lengths and can 

be separated by different gap sizes. In systems requiring relative high throughput (many 

travelling vehicles per time unit), as in the case of elevator systems, the segments are small 

compared with the size of the vehicle and are supplied by dedicated inverters. 

The throughput is low for large distance transportation systems, so that the segments are long 

and a set of multiplexed inverters supplies several segments by switchgears. Different inverters 

can also supply two adjacent segments. When the vehicle passes over the respective segments, 

both inverters must be synchronized so that the desired thrust force is generated. A central 

control unit is responsible for the position and speed of the vehicle. These actual values are 

transmitted over a wireless communication system from the vehicle to the control units. The 

distributed control units manage the power flow from the inverts to the respective segments 

according to new position and speed reference values generated by a traffic planner. 

The system topology of the Transrapid system in Shanghai is shown in Fig. 1.2. It is a modular 

control system, where the modules, called substations, are located along the guideway [11]. 
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DCU

LCU

DCU

DU

LCU

SCU SCU SCU

CCU

CCU = Central Control Unit
DCU = Distributed Control Unit
DU = Drive Unit
LCU = Power-Line Connection Unit
SCU = Switch Control Unit

Power Lines
Fiber Optic Bus (OTN Network)
Redundant Communication Bus
Redundant Radio Communication

Substation „n“ Substation „n+1“

Motor Section
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Figure 1.2: Topology of the Transrapid system in Shanghai 
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1.1.2. Linear electric motors in industrial applications for material handling 
and factory automation 

Linear electric motors are used nowadays in industrial applications such as semiconductor 

industry, flat panel display manufacturing, machine tools, electronics assembly, factory and 

laboratory automation, robotics and photovoltaic cell manufacturing. Compared to conventional 

systems using pulleys, racks, screws or other mechanical parts that transform rotary to linear 

motion, direct drive systems based on linear motors have higher processing precision and lower 

maintenance costs. The implementation costs can be higher, but they are compensated in time by 

the higher throughput capability. 

Material handling is an emerging application, which benefits from the advantages of the linear 

drive systems. Here, small to medium sized materials must be positioned with high dynamics 

between special stations, where they have to be processed with a high degree of accuracy. A single 

linear direct drive system is used for both transportation and processing tasks. Inside this class of 

applications there are several possible topologies [12], depending on specific features of the 

application, like the size and profile of the production track, the number of material carriers 

(vehicles), the dynamic requirements, the power rate and the implementation costs. Typical 

specifications in material handling and factory automation applications are [13]: 

 Positioning accuracy around 50 μm 

 Repeatability 10-20 μm 

 Demanding duty cycles 

 High dynamics and reliability over cost ratio 

The general system configuration for this type of applications is shown in Fig. 1.3. The main units 

of the system are: 

 Linear motor unit (LMU) 

 Power processing unit (PPU) 

 Information processing unit (IPU) 

 Position sensor unit (PSU) 

At the LMU-level the PMLSM is used for its high thrust-force density and for the fact that air-gaps 

of few millimetres are allowed. Both short-stator and long-stator PMLSM types are used. The iron 

core can be slotted or slotless. The slotted type has a bigger thrust force per volume unit, but has 

IPU
IPC, DSP
μC, FPGA

PPU LMU

PSU

Mains

Net-to-DC
DC-Link

DC-to-AC PMLSM

Optic
Magnetic
Capacitiv

3x 400V
50Hz (Net)

Electrically Isolated
Signal Transfer 

Power Lines 

Noise Insensitive
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Figure 1.3: Configuration of the direct drive system 
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therefore a significant cogging force. The most popular technique to reduce the cogging effect is 

skewing the magnets [3]. The single-sided configuration of the PMLSM usually fulfils the dynamic 

requirements, but in the case of high acceleration demands, or if the attractive force between the 

PM and the iron core is too high, the double-sided configuration can be implemented. Rare-earth 

magnets such as NdFeB (Neodymium-Iron-Boron) or SmCo (Samarium-Cobalt) are selected for the 

excitation part of the LSM due to their high remanence and energy density values. 

At the PPU-level a standard voltage source inverter (VSI) supplies the windings of the armature. 

Multiplexing inverters by mechanical or electronic switches is not a feasible solution for long-

stator topologies in this case. The mechanical switches are not applicable due to the large number 

of switching actions per time unit and a safe-functioning electronic switch unit will require a 

larger number of IGBTs than using one dedicated inverter for each motor section. 

At the IPU-level there is always a central control unit (CCU) responsible for the traffic flow inside 

the system. It generates the new position reference values of the vehicles, monitors the entire 

process and interacts with the system administrator over a graphical interface. The CCU is 

connected with the PPU by means of a controller, such as microcontroller, DSP or FPGA. The 

connection between this controller and the PPU is typically electrically isolated, where the pulse 

width modulated (PWM) signals generated by the controller are connected to optocouplers and 

then transferred to the gate-drive units of the power electronic devices of the VSI (IGBTs or 

MOSFETs). The position control algorithm is implemented either in the CCU or in the above-

mentioned controllers. The most popular control method for servo drives is the field-oriented 

control (FOC), where all calculations are performed in the orthogonal moving frame of the 

vehicle. For this reason, the position of the vehicle must be known. All the controllers inside one 

system have to communicate with the central control unit by means of an industrial 

communication protocol. 

 

There are three linear direct drive topologies used for material handling and factory automation. 

1) Short-stator topology 

It is still the most wide spread topology in this class of industrial applications. The track is passive 

and contains the PMs and the vehicles are the active part (moving windings). The energy is 

brought to the vehicles by cable drag chains or by sliding contacts. The motor system from the 

Parker Company, shown in Fig. 1.4, is an example of such topology. The PPU contains a standard 

VSI and at the IPU-level there is a controller designated to each vehicle. The controller 

communicates with the CCU over a cable or a wireless connection. The controller, the VSI and the 

position sensor are physically situated on the vehicle. Due to the complexity of the cable structure 

module, it is very difficult to use this topology over long distances or if many vehicles are present 

in the system. The difficulty due to long and curved tracks can be avoided by using a contact-less 

energy transmission at medium frequency (MF), as shown in Fig. 1.5. In this case the PPU inside 

one vehicle contains beside the VSI also the secondary of the MF-transformer and a rectifier. Due 

to the fixed power rate of this transformer, if many vehicles are simultaneous in acceleration or 
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deceleration phases, this alone cannot assure the dynamic requirements. For this reason, the 

short-stator topology is only recommended for systems with short tracks, high dynamics and low 

number of vehicles or for systems with long tracks and low dynamics. The dynamic performance 

can be improved if rechargeable power supplying elements like super capacitors are used on the 

board of the vehicles. These elements are discharged during acceleration periods and are again 

recharged during braking. They are also a part of the vehicle’s PPU along with the power 

converters that assure this energy flow, leading to relative heavy and complex vehicle structures. 

There are research projects focusing on this topology [15]. 

2) Centralized long-stator topology 

In some industrial plants for material handling, beside the high processing accuracy, a high 

throughput and a high complexity of the production track are also required. It involves a high 

number of vehicles per track length, which have to move with a high degree of independency, 

meaning that they are all able to accelerate and brake simultaneously without loosing their 

dynamic. The track can have curves, close paths and switches. For these considerations, the long-

stator PMLSM topology is the suited one. The track is spilt into several armatures (segments) and 

only one vehicle may be present on a segment at a given time. The vehicles are passive elements 

(moving magnets). Typical segment lengths are between 0.5 m and 1 m. A dedicated inverter 

1. Pass-through cabling
2. Connector panel

3. High-strength aluminum body
4. Magnet single rail
5. Slotless linear motor

6. Linear guidance system
7. Integral linear encoder
8. Limit/Reference sensors

9.  Cable transport module
10. Protective seals

 

Figure 1.4 Short-stator PMLSM with drag chains (Parker) [14] 
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Figure 1.5 Short-stator topology with contact-less energy transmission 
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supplies each segment. In the case of a centralized long-stator topology both the PPU and the IPU 

are centralized, e.g. situated in a cabinet. 

The implementation of a direct drive system based on this topology is supported by FVA 

(Forschungsvereinigung Antriebstechnik), a network for innovative drives in Germany [16]. The 

system is quite complex due to the structure of the IPU. The structure of the PPU is simple. A 

standard VSI is designated to each stator segment and all VSIs are connected to the same DC-link 

rails. The algorithm for current, speed and position control is executed inside the CCU at cycles of 

100 s. This cycle time is split in ten intervals, each interval being dedicated to one vehicle. The 

prototype system can have therefore a maximum of ten vehicles. The CCU is made of one or more 

industrial PCs operating with a real-time Linux kernel. An inverter-bus is used for data transfer 

(modulation information and measured phase currents) between the IPU and the PPU. Two 

controller-based interfaces are needed; one to connect the CCU to the inverter-bus and the other 

to connect the VSIs to the same bus, as shown in Fig. 1.6. 

The complexity of the CCU and the number of the vehicle-interface units increases along with the 

number of vehicles. The bandwidth of even the most powerful industrial filedbuses will be fully 

occupied in this case, so that the inverter-bus will always represent a bottleneck for the scalability 

of this system. The motor-supply cables represent another disadvantage of this topology, 

especially for large systems. They increase the overall cost, occupy a lot of space and can be very 

long. Long cables between the inverter and the motor will cause dangerous overvoltages at the 

motor terminals. At the same time the electromagnetic interference (EMI) generated by the 

inverter increases [17]. 

This topology is therefore suitable for small-to-medium systems with no more than ten vehicles. 

3) Decentralized long-stator topology 

The industrial applications tend to be more complex and larger, because the market demands for 

quality and quantity are constantly increasing. Therefore the need to process a bigger quantity of 
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Figure 1.6 Long-stator topology with centralized IPU and PPU 
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products in a shorter time is high. Due to this trend, the long-stator topology for material 

handling applications became interesting in the last years. The centralized topology, as shown, 

limits the capability of a system to grow. A decentralized long-stator topology, as proposed in this 

work, is a solution to this problem. The structure of a decentralized system is shown in Fig. 1.7. 

In this case one stator segment is also supplied by one VSI. The algorithm for current, speed and 

position control is entirely executed in the main controller of the DCU. The DCU also contains an 

interface that connects the unit to an industrial fieldbus. The CCU contains an industrial or a 

standard PC and a fieldbus interface. When a vehicle passes over two adjacent segments, the 

respective inverters must be synchronized, so that the desired thrust force can be generated at 

the vehicle. For the synchronisation, the involved DCUs have to exchange data within each 

current control cycle. This data transfer cannot be realized by means of an industrial fieldbus, 

because the same bottleneck problem will occur as in the case of a centralized topology. A special 

data bus connection between the adjacent DCUs has to be used instead, so that the entire 

bandwidth of the fieldbus serves only for monitoring and traffic control. The size of the system 

can be therefore considerably increased. Another advantage of this topology is its high degree of 

modularity. One module consists of a stator segment, the VSI and the DCU. Modules can be easily 

replaced or added to the system. 

This type of topology is relative new and at the moment there are not many such systems 

available on the market or under research. One of the companies who developed a similar system 

is MagneMotion (USA). The central part of their system, presented in Fig. 1.8, is the QuickStick 

module, which can be 0.5 m or 1 m long and contains one or more stator segments (maximal ten), 

the necessary VSI and DCU and a position sensor system as well. The adjacent modules are 

connected over serial communication lines. A PC or PLC represents the CCU and the industrial 

fieldbus used here is EthernetIP. The DCUs are connected to this fieldbus over node controllers, 

which act as switches at junction points (turntables or electromagnetic switches) where more 

than two paths meet [18]. 

CCU

1

CCU = Central Control Unit
DCUx = Distributed Controller Unit
LCU = Line Connection Unit
RU = Rectifier Unit
VSIx = Voltage Source Inverter
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Figure 1.7 Long-stator topology with decentralized IPU and PPU 
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The advantages of the topology in Fig. 1.7 are obvious. But at the first glance it also seems to be 

expensive due to the large number of controllers required. Investigations are still necessary in 

order to find solutions that reduce the implementation costs and the overall system complexity. 

Finally, the table below is a review of the characteristics of the three topologies presented above. 

 

Figure 1.8 MagneMotion’s modular system structure [19] 

System topology: Short-stator Long-stator 
 

System characteristics: 
 

Cable drag chains 
 

Contact less energy 
transmission 

 
Centralized 

control 

 
Distributed control 

 
PPU 

 
Low (one VSI per 

vehicle) 
 

Medium (without 
Sup. Capacitors) 
High (with Sup. 

Capacitors) 

 
Medium (one VSI 

per stator segment) 

 
Medium (one VSI 

per stator segment) 

IPU Low (one controller per vehicle) High 

 
 
 

Complexity 

PSU Low (sensor chip on the vehicle) High (sensor chip along the track) 

PPU Low Medium High 

IPU Low Medium-High High 

Costs 
(Over track 
length unit) 

PSU Low (for a certain accuracy level) Medium (for the same accuracy level) 

 
Dynamic 

 

 
High 

Low (without Sup. 
Capacitors) 

Medium (with Sup. 
Capacitors) 

 
High 

Scalability Low Medium Medium High 

Track length Very short Long Medium Long 

Nr. of vehicles Very small Small Medium High 

 
Type of 

application 

Throughput Medium Medium High High 

Table 1.1: Direct drive system topologies for industrial applications based on PMLSM 
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1.2. Starting point and purpose of the work 

The starting point of this work was fixed on decentralized long-stator topology systems (Fig. 1.7), 

based on PMLSM, for industrial applications like material handling and factory automation. The 

purpose was to design and implement such a system, where the costs and complexity had to be 

reduced as much as possible without affecting the specifications mentioned in the section 1.1.2. 

The issues that appeared under these circumstances at the PPU and the IPU level had to identified 

and solved. The key aspects of this work are: 

 

 The development of the control strategy (chapter 2). The sensor-based, as well as the 

sensorless EMF-based control were considered. The sensorless control is an important 

issue for long-stator topologies, where the position-sensing unit is very expensive. 

 

 The development of a point-to-point communication structure between the DCUs with a 

minimal hardware and software complexity (chapter 3). 

 

 The analysis and selection of the most suitable industrial fieldbus for this application, as 

well as its integration in the structure of the IPU (chapter 4). 

 

 The development of a cost-effective servo-controller (VSI + DCU), where the ground 

potential of its electronic is tied at the negative DC-link rail (about –280 V). All servo-

controllers are connected then to the same DC-link bus (chapter 5). 

 

 The test of the developed system and of the control strategy, by means of a small-scale 

experimental set-up. This is meant to confirm the high scalability, the reliability and 

dynamic characteristics of the developed architecture (chapter 6). 

 

 

 

 

 





 

 13 

2. Control strategy 

This chapter presents the theoretical aspects regarding the control of the system. The adopted 

control strategy has to fulfil the specifications presented in the previous chapter regarding 

position accuracy, repeatability, throughput, reliability and dynamics. The FOC algorithm is based 

on the mathematical model describing the fundamental wave behaviour of the PMLSM without 

saturation and takes into account the synchronization requirements of two adjacent inverters 

during the vehicle’s transition period across the respective stator segments. The algorithm is 

entirely implemented in the DCU where it is executed cyclically each 100 μs. The synchronization 

requires a data transfer in each cycle between the adjacent controllers. This represents the hard 

real-time communication demand of the control system. The motion coordination of the vehicles 

and the monitoring of the system is the task of the CCU. According to its traffic planner, the CCU 

must send cyclically new position reference values to the DCUs and collect status data from them. 

This data transfer has a cycle time of few milliseconds and represents the soft real-time 

communication demand of the control system. 

2.1. Mathematical model of the PMLSM 

Based on equations presenting the relations between electrical and magnetic values in the motor, 

the mathematical model describes the generation of the forces acting on the vehicle. The model is 

valid for both long-stator and short-stator topologies and considers no saturation and no space 

harmonics. The motor excitation is realised by rare earth PMs, which are characterized by a high 

coercitive magnetic field strength and low recoil permeability 0rec  . They are subject to 

demagnetisation due to the reluctance of the entire magnetic circuit and the stator’s reaction 

field, but are not affected by fluctuations in the air gap and can withstand strong demagnetisation 
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Figure 2.1 Structure of the segmented, long-stator PMLSM 
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cycles. For the PMLSM used in the experimental set-up, the PMs are bounded on the surface of a 

solid back iron and the stator windings are distributed in slots of a laminated iron core as shown 

in Fig. 2.1. The space distribution of the flux density in the air gap, produced by both PM and 

stator currents, for a motor topology similar to the one in Fig. 2.1, was determined in [20]. Only 

the fundamental of this value is considered, so that the EMF in the motor is assumed to be 

sinusoidal. The phase voltage equations of the PMLSM are: 

The equation (2.1) in fixed stator coordinates can be written by means of space vectors as in [21]: 

where 

Remark: For the definition of space vectors, different scaling factors can be used. In this thesis, 

the scaling factor 1k   is used, as in [21]. Frequently, in other textbooks 2 / 3k   is used. With 

2 / 3k   the projection of a space vector to a winding axis of the machine directly gives the 

instantaneous value of the physical quantity ( , ,i u   etc.). Using 1k   the physical quantity is 

obtained by multiplying the projection of the space vector by 2 / 3 . 

 

Similar equations to (2.3) are also valid for the current and flux space vectors. The electrical angle 

between the stator phases is 2 / 3  . The star connection of the motor and the sinusoidal EMF 

leads to the following constraints regarding the phase currents and the linkage fluxes: 

The space vector of the stator flux linkage is defined as: 

PM  is the position dependent value of the PM flux linkage with the stator, SL  is the stator 

inductance and   is the electrical angle of the vehicle. 

 
     

     

     

1
1 1

2
2 2

3
3 3

S
S S S

S
S S S

S
S S S

d t
u t R i t

dt
d t

u t R i t
dt

d t
u t R i t

dt







 

 

 

 

 
 
 

 (2.1) 

 
     S

S SS

d t
u t R i t

dt


   

 
 (2.2) 

         2
1 2 3

j j
S S S Su t k u t u t e u t e      (2.3) 

      
     

1 2 3

1 2 3

0

0

S S S

S S S

i t i t i t

t t t

  

   
 

 
 (2.4) 

         3

2
j t

S SS PMt L i t x t e       
 (2.5) 

    t x t



   
 (2.6) 



 

Control strategy 15 

Using (2.5) and (2.2) the real and imaginary components of the voltage space vector in the fix 

stator reference frame  ab  are: 

where ( )v t  is the speed of the vehicle. 

In order to simplify the non-linear equations in (2.7), the voltage space vector will be shifted in a 

system of coordinates  dq , which follows the magnetic field of the vehicle. The voltage equations 

in  dq  frame become: 

Theoretically the EMF exists only in the q-axis and has the value of Sqe . The instantaneous power 

at the motor terminals is: 

The equation (2.9) can be written in  dq  reference frame 

By inserting (2.8) in (2.10), the instantaneous power is determined by: 

This power is split into ohmic power losses  ohmp t , power stored in the magnetic field  magp t  

and the mechanical power  mechp t  transferred to the vehicle. 
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The reluctance component ( )relp t  of the mechanical power is zero if the current Sdi  is controlled 

to zero or if the motor has no saliency. The reluctance motor, which has no excitation field, uses 

only the reluctance component to produce the thrust force. The relation between the mechanical 

power and the thrust force is: 

If we consider the reluctance force to be zero, the relation of the thrust force is: 

The effect of this thrust force on a vehicle of mass vM  is: 

The characteristics of the PMLSM are summarised in the block diagram of Fig. 2.2. 

 

The force dF , seen by the control system as a perturbation force, is the sum of three forces: 

 The friction force of the linear guiding system, which depends on the vehicle’s speed [22] 

 The periodical cogging force, which is produced by the interaction between the PMs and 

the slotted stator (which was neglected in the fundamental wave model) 

 The load force 

The cogging force depends on the electrical angle  . Skewing the PMs diminishes its amplitude. 

The bandwidth of the speed control loop must be big enough in order to compensate the cogging 

force, especially at high speeds. Otherwise compensation methods as in [23] would be necessary. 
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Figure 2.2 Block diagram of the PMLSM 
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For this application the current Sdi  is controlled to zero, because it doesn’t contribute to the 

thrust force generation, as the saliency is negligible small. The cogging force effect of the motor 

chosen for the experimental set-up is very small, so that no compensation was necessary. 

2.2. Field oriented control and modulation method 

The equations describing the behaviour of the PMLSM in  dq reference frame are the basis for 

the design of the current, speed and position control loops. The variables of these equations have 

DC values in steady state and lead to a decoupled control system similar to the one of a DC motor. 

The proportional position controller, the PI speed controller and the PI current controller form a 

cascaded control system, which is the classical method for the control of electrical drives. The 

current control loop is the inner loop and is therefore very important for the dynamic of the 

whole system. The design of the  dq current controllers starts from equations in (2.8), written as: 

are the time constants of the current control loops. 

 

The current controllers for the d- and q-components are running in 

parallel and are designed in the same manner. In (2.15), both equations 

are non-linear due to the coupling terms pd  and pq , which are acting as perturbations for the 

control loops. The second term of the component pq , which depends only on the speed, is 

considered a stationary perturbation, so that only the current dependent term is important for 

the dynamic performance of the controller. At low speeds, the influence of the perturbations can 

be very well compensated by the integrative component of the controllers. At high speeds, 

depending on the characteristics of the PI controller and of the motor, a good dynamic 

performance can be also achieved without using feedforward compensation. 

Fig. 2.3 shows the current control loops, where the behaviour of the motor and of the inverter is 
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Figure 2.3  dq  current control loops 
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associated with a PT1 element. In (2.16), 0T  represents the sampling time (100 μs). 

The transfer function of the current controller is: 

The controller is designed by using the method of amplitude optimum, where the time constant of 

the controller must compensate the time constant of the motor RI MT T , so that the closed-loop 

transfer function will describe a second order system: 

where 0  is the natural frequency and 0D  is the damping of the control loop. From (2.18) the gain 

of the controller is determined for the desired damping value. The output values of the current 

controllers are limited according to the maximal value of the voltage space vector Su . 

The d-component of the voltage will have priority over the q-component, as shown in (2.19). 

The value of maxSu  depends on the modulation method used. A simple, code efficient way to 

design the modulator is to use directly the phase reference voltages 1 2 3, ,S ref S ref S refu u u , generated 

as in Fig. 2.8. For a good utilization of the inverter’s voltage limits, the star point 0Su from Fig. 2.5 

can be shifted from its zero position by using an offset voltage, as shown in Fig. 2.6. The switching 

time for each phase will be: 
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Figure 2.4 PI controller with anti-windup 
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In (2.20) onYt  is the on time of the low side IGBTs (as defined in the list of symbols), DU  is the DC-

link voltage and ofsu  is the offset voltage. 

There are many modulation methods depending on how 

many inverter legs are switching in one PWM cycle and 

on how the offset voltage is being calculated [24], [25], 

[26], [27]. The average value of the modulation index and 

the current measurement by shunts are important 

factors in selecting the modulation method, as it will be 

illustrated in the fifth chapter. 

Fig. 2.7 shows the simulated offset voltage for two 

carrier based modulation methods. For both methods, 

the maximal values of the space vector voltage and of 

the phase voltages are: 
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Figure 2.5 Equivalent inverter circuit 
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Figure 2.6 The offset voltage 
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Figure 2.7 Low frequency content of the offset voltage and the inverter’s output voltages 
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The offset voltage is calculated according to (2.22) for the modulation of Fig. 2.7a and to (2.23) for 

the modulation of Fig. 2.7b ([27], [28]). 

For the design of the speed control loop, the current control loop of the q-component is 

approximated by a PT1 element. 

Fig. 2.8 shows the block diagram of the entire cascaded control. In order to avoid a big speed 

overshoot, the speed reference value is filtered by means of a first order low-pass filter. The 

design of the speed and position control loops is presented in the appendix. 

As it can be seen from Fig. 2.8, the FOC requires the knowledge of the actual position and speed of 

the vehicle. A high-resolution sensor can measure the position and then the speed is obtained by 

using derivative and filtering operations. If the sensor’s resolution is not satisfactory, a good 
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speed calculation is still possible by using a speed observer based on the mechanical motor model. 

For electrical drives, there is generally nowadays desired to implement sensorless control 

strategies in order to reduce costs. And this is even more evident in the case of linear drives, 

where the sensor system would have to cover the entire length of the track. There are two main 

sensorless control strategies: 

 EMF-based control strategy 

 Control strategy based on magnetic anisotropies 

The first one doesn’t work at standstill but is relative simple to implement, while the second one 

works theoretically at standstill but is more complex and quite challenging especially at high 

loads [29], [30], [31], [32]. For the applications that this work focuses upon, the EMF-based method 

alone is satisfactory. The implementation of the EMF-based control and the experimental results 

for both sensor-based and sensorless control are presented in detail in chapter 6. 

2.3. Hard real-time communication demands between the distributed 
controllers 

The block diagram from Fig. 2.8 is implemented in all distributed control units (DCUs) of the 

system. During the transition period of a vehicle across two adjacent stator segments, both 

involved DCUs have to control the current of the equation (2.13) in such a way that the desired 

resulting force is developed at the vehicle, which has to assure a smooth, bump-less transition. 

Therefore, a data exchange between the adjacent DCUs must take place within each current 

control cycle during the transition period. This period contains three main states: 
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Figure 2.9 Data transfer between the DCUs at the beginning of a transition period 
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 The first state begins shortly before the vehicle reaches the edge of one segment and is 

heading towards the neighbour segment as shown in Fig. 2.9. In this figure the case of an 

EMF-based sensorless control is considered. The current controllers of both stator 

segments must be active, but only one DCU is controlling the position and the speed of the 

vehicle. It is a master-slave relation where DCU “n” is the master and DCU “n+1” is the 

slave. DCU “n+1” has to control the current according to the received reference value sent 

by DCU “n”. Similarly, only the position and speed observer of the master DCU is active but 

this needs the EMFs from both segments. This state ends when the vehicle reaches the 

middle point between the stator segments. 

 The second state begins when the vehicle reaches the central position between two stator 

segments and ends after one control cycle. Within one control cycle, the master-slave roles 

of DCU “n” and DCU “n+1” interchange, so that DCU “n+1” becomes the master. This is also 

the state where the maximum amount of data has to be exchanged. The final values of the 

state variables for speed and position control must be transferred from DCU “n” to DCU 

“n+1” where they are set as initial values, as shown in Fig. 2.10. For the position and speed 

control the state variables are the integrator value of the PI speed controller and the value 

of the filtered speed reference. For the position and speed observer, the state variables are 

the estimated speed and position values. 

 The third state follows immediately after the second state and ends shortly after the 

vehicle completely leaves segment “n”. Now DCU “n” has to control the current according 

Segment „n+1“Segment „n“

Position
and Speed
Controllers

d,q Current
Controllers

Phase 
Transf.

2 3 & ab  

PWM

VSI

EMF-
Observer

 „n“

EMF-
Observer

 „n+1“

Position
and Speed
Observer

„n“

Position
and Speed
Observer

„n+1“

Position
and Speed
Controllers

V

x xx x xx

Transfer of State Variables

d,q Current
Controllers

PWM

VSI

Phase 
Transf.

2 3 & ab  

DCU “n“ DCU “n+1“

usa ref

iSb

usb ref

iSa

usa ref

iSb

usb ref

iSa

isq ref

eSa(n+1)
^ eSb(n+1)

^,

X
^ X̂

V̂

i s
q 

re
f

i s
d 

re
f =

 0

iS1
iS2

iS3

iS1
iS2

iS3

 

Figure 2.10 Maximum data transfer between two adjacent DCUs during a transition period 
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to the received reference value sent by DCU “n+1”. Also here both EMF-observers must be 

active, as shown in Fig. 2.11. 

Regarding the master-slave relation at the level of the control strategy, the mastership moves 

according to the vehicle’s position and an additional slave control function is invoked while the 

vehicle transits to the next stator segment. As an arbitrary number of vehicles may be 

simultaneously in a transition period, a high communication bandwidth will be required. For a 

highly scalable system any industrial fieldbus will not be able to fulfil this task. The necessary 

communication bandwidth can be only guaranteed by individual point-to-point connections 

between the adjacent DCUs. Any DCU must be able to communicate with both adjacent units, on 

its left and on its right respectively. It must poses therefore two independent and relative fast 

communication channels. At the application layer this communication was realized by means of 

the SPI (Serial Peripheral Interface) protocol, as the DCU has two SPI compatible units. At the 

physical layer the differential data transfer protocol RS485 was used. The implementation of this 

point-to-point connection is presented in chapter 3. 

2.4. Motion coordination and monitoring 

At the beginning of this chapter the main tasks of the Central Control Unit (CCU) were mentioned, 

namely: the cyclical data transmission of new position reference values to the DCUs (motion 

coordination) and the cyclical status data reading from the DCUs (system monitoring). Inside the 

control system we distinguish between two real-time communication loops: the superimposed 

loop in milliseconds cycles between the CCU and the DCUs and the hard real-time communication 
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Figure 2.11 Data transfer between the DCUs at the end of a transition period 
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loop executed at every sampling interval of 100 μs between any two adjacent DCUs. Both 

communication loops must run independently so that the CCU must be able to access any DCU in 

the system, at any moment, without stopping or delaying a running communication between this 

and another DCU. Similarly, all DCUs must be able to provide actual status data to the CCU at any 

time instant. For this reason, the control system needs another communication bus beside the 

SPI-based one. Regarding the scalability of the system, a standard industrial fieldbus is used 

therefore for motion coordination and monitoring, which must allow in the first place the 

connection of a large number of communication nodes to the control network and a high 

communication bandwidth. There are also other requirements, which have to be fulfilled by this 

fieldbus, such as: 

 It must allow high topology flexibility. Line, tree and star connections of the 

communication nodes should be possible without additional node controllers or cabling 

 The hardware complexity and costs must not be high. 

 The idea of modularity must be also reflected in the easy addition or removal of modules 

(“plug & play”), facilitating an easy system set-up and maintenance. 

 It must allow a simple controller interface. 

 Error detection at the physical and the application layers are mandatory. 

 At the application layer, a protocol for off-line data transfer to/from the DCUs must be 

available. This will allow the parameterisation and configuration of the DCUs. Data upload 

from the DCUs will enable the off-line analysis of state variables saved at every 100 μs. 

 It should support Internet protocols and be compatible with other standard fieldbuses. It 

should be also well established in the field of industrial automation. 

 

Figure 2.12 Network connection in an industrial automation system 
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Over the last years RTE (Real-Time Industrial Ethernet) solutions for implementing industrial 

fieldbuses gained popularity, so that nowadays there are many RTE-based protocols available [33]. 

The importance of Ethernet in the present industrial automation systems is shown in Fig. 2.12. 

Even though at the beginning Ethernet was not considered an appropriate solution due to its lack 

of real-time performance, the modification of this protocol at the upper levels of the OSI/ISO 

model lead to new real-time capable, wire-based, protocols [34]. Taking in consideration the 

requirements listed above and the actual trend for industrial network solutions nowadays, an 

RTE-based protocol was used also in this work, namely EtherCAT. EtherCAT stands for Ethernet 

for Control Automation Technology and is one of the most powerful industrial fieldbus available 

now [35]. Due to the 100BASE-TX fast-Ethernet standard (specified in the IEEE 802.3), used at the 

physical layer, high bit-rates of 100 Mbps are possible. It allows the connection of up to 65535 

devices to the control network. At the fieldbus level there is a fix master-slave relation between 

the CCU (EtherCAT master) and the DCUs (EtherCAT slaves). This protocol is completely hardware 

implemented. The fieldbus interface of the master is a standard network card, so that a standard 

PC can represent the CCU. The same network card is used to interact with both process and 

control networks. No additional hardware is requested for the master. The fieldbus interface of 

the DCU is implemented by EtherCAT ASICs. 

The characteristics of EtherCAT and its role in the proposed system are presented in detail in 

chapter 4. 
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3. Point-to-point connection between the distributed 
controllers 

This chapter describes the operation of the data transfer between neighbouring DCUs, which was 

outlined in the figures 2.9, 2.10 and 2.11. A more detailed description of the hardware, which is 

used for this communication, is given later in the chapter “Experimental Set-up”. 

3.1. SPI data transfer 

SPI describes a synchronous and serial data bus. It was initially defined by Motorola, as a simple 

and cost-effective method to transmit data between microcontrollers and peripherals like ADCs 

and sensors. Along the same SPI-bus, the communication between two or more microcontrollers is 

also possible. The data transfer is based on the master-slave principle. Data can be transmitted at 

high rates (up to tens of Mbps) in full-duplex or half-duplex mode. The communication nodes on a 

SPI-bus are typically connected over four logic signals: 

 A clock signal (CLK), which is generated by the master 

 A data signal (MOSI) from the master towards the slave(s) 

 A data signal (MISO) from a slave towards the master 

 A slave-select signal (SS), required if there is more than one slave-node on the bus. 

SPI was not patented by Motorola (it is license-free) and is not standardized. The user can decide 

upon the phase, polarity and rate of the clock signal, the size and shift operations of the incoming 

and outgoing data, the number of slaves and slave-select signals and upon the communication 

mode (half- or full-duplex). 
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Figure 3.1 SPI configuration for the distributed controllers 
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The DSP TMS320F2812 of a DCU in this project contains two SPI-compatible units, which are used 

to implement the connection with its adjacent DCUs. These units are: the SPI unit and the McBSP 

unit, presented in the Fig. 3.1. McBSP is a synchronous data transmission protocol, which besides 

the SPI-compatibility has also extended features, such as independent clocking for sending and 

receiving data, multi-channel selection and frame synchronization [36]. 

The McBSP unit is here always working as a master and the SPI unit always as a slave. This was the 

only configuration, for which the maximal speed of 12.5 Mbps, allowed by the used DSP-board, 

could be reached. The slave-select signal was not used, because each slave unit is connected with 

two master units. This active-low signal of the slave units was tied to ground, so that a slave unit 

will always shift out its data if it receives a valid clock signal. A slave unit can exchange data only 

with one master at a time. The selection of the active master unit is made by a communication 

protocol with the help of four general-purpose I/O (GPIO) signals of the DSP. These signals assure 

also that no short-circuits occur on the bus, as described later in the Figs. 3.4 and 3.5. 

The master initialises the data transfer by sending the clock signal. The data are transferred as 16-

bit words. Both the master’s and the slave’s shift registers will shift their bits in and out according 

to the phase and polarity of this clock. Here, the clock signal is inactive-low and has no phase 

delay. The data is transmitted on the rising edge and received on the falling edge of the clock. 

Fig. 3.2 shows the ideal case of the data transfer at a clock frequency of 12.5 MHz, where signal 

delays due to the transmission medium have been neglected. The slave receives the rising clock 

pulses generated by the master with no delay and after maximum 10 ns puts its data on the bus. 

Along with the falling edge of the clock, both master and slave read the data. After 16 clock pulses 

the master and the slave successfully exchange a word. This is a full-duplex communication mode. 

The data transfer process of Fig. 3.2 corresponds rather to direct connections (i.e. single ended 

transmission) over short PCB routes or cable lengths and cannot be used in this case. In our set-

up, due to reasons of EMC and longer cable distances, data must be transmitted differentially over 

a one-meter long cable. We selected the differential signalling standard RS485 for the physical 

layer of this communication. The propagation delay inserted by the RS485 transceivers and the 

cable had to be considered for a full-duplex communication. A full-duplex communication at 12.5 

MHz cannot be realised with the maximal propagation delays shown in the following table. 
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Figure 3.2 Ideal full-duplex communication process disregarding delays 
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This is explained in Fig. 3.3, where the first bit read by the master has a false value and the second 

bit read corresponds actually to the first bit send by the slave. All the bits read by the slave have 

correct values. 

As the full-duplex communication with real delays inserted by the RS485 transceivers doesn’t 

work properly, in this project two simultaneous half-duplex transmissions were developed. 

3.2. Communication protocol 

The communication between any adjacent DCUs is initiated and stopped according to the relative 

position of the vehicles. Fig. 3.4 shows the initial state where at the control stage only DCU “n” is 

controlling the vehicle. The stator segment “n+1” is passive and at this moment there is no 

communication process between the two DCUs. Concerning the communication, the SPI-

compatible units as well as the RS485 transmitters and receivers are outlined in the Fig. 3.4. 

RS485 Transmitter Cable RS485 Receiver 

10 ns (maximal delay value) 5 ns 15 ns (maximal delay value) 
Total maximal propagation delay: 30 ns 

Interval Definition Value 

T1 Clock cycle 80 ns 
T2 Delay time, SS low to CLK (master) high 40 ns 
T3 Total maximal propagation delay 30 ns 
T4 Minimal set-up time of a received bit before the falling edge of CLK (slave) 30 ns 
T5 Maximal delay time, CLK (slave) high to MISO valid 10 ns 
T6 Delay time, SS low to first bit read (master) 80 ns 

Table 3.1 Timing specifications for a real full-duplex communication process 
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Figure 3.3 Full-duplex communication process considering real delays 
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The communication protocol is based on four GPIO signals, two outputs and two inputs on the side 

of each DCU. In order to avoid short circuits on the communication bus, the RS485 transmitters of 

a DCU can be enabled/disabled only by the corresponding adjacent DCUs, as shown in Fig. 3.4. 
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Figure 3.4 Initial state of the point-to-point communication process 
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Figure 3.5 Full-duplex communication at 12.5 Mbps 
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When the vehicle reaches the communication triggering position, marked in Fig. 3.5, DCU “n” 

sends a communication request signal to DCU “n+1”, which enables at the same time the 

transmitters of DCU “n+1” towards DCU “n”. DCU “n+1” must assess then its actual 

communication state. If it is not already communicating with DCU “n+2”, as assumed in Fig. 3.5, it 

has to acknowledge this communication request. Along with the acknowledge signal, the 

transmitters of DCU “n” towards DCU “n+1” are enabled. 

The entire point-to-point communication process is presented in the flowchart of Fig. 3.6. The 

power stage of the modules is activated and deactivated also according to the relative position of 
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Figure 3.6 Flowchart of the position dependent point-to-point communication process 



 

Point-to-point connection between the distributed controllers 32 

the vehicle, namely the power stage of module “n+1” is activated after the communication-

triggering position has been reached. Immediately after activation, the force producing current of 

the module “n+1” is controlled to zero and there is no master-slave relationship between the 

modules. DCU “n+1” becomes a slave controller only after it acknowledges the communication 

request. Both DCUs exchange after this point simultaneously data (as shown in Figs. 2.9, 2.10 and 

2.11) in both directions at the speed rate of 12.5 Mbps. This corresponds to a full-duplex 

communication, but with no problems concerning propagation delays [37]. The communication 

process ends when the triggering position “End of Communication (EOC)” is reached. The request 

and acknowledge signals are set low, so that the RS485 transmitters of both communication parts 

are disabled. 

If DCU “n+1” communicates with DCU “n+2” and receives at this time a communication request 

from DCU “n”, it will just ignore it. DCU “n” will not receive the acknowledge signal, so that after 

two control cycles will stop immediately the vehicle. Afterwards it will set the collision flag inside 

its state variable and will reposition the vehicle in the middle of the stator segment. The CCU must 

then reset this error flag before sending new position reference values to DCU “n”. The CCU is 

informed about the communication process by means of three bits inside the status variables of 

all DCUs. One bit is a communication-error flag and the other two are reflecting the status of an 

error-free communication (Fig. 3.6). During normal operation, collision situations should not 

occur if the traffic planner of the CCU has been implemented correctly. 

 

Remark: In the system, three levels of master-slave relations must be distinguished. At the level 

of control strategy, the mastership moves according to the position of the vehicle and a new slave 

controller is invoked when the vehicle transits to the next stator segment. For the SPI 

communication, each DCU accommodates one SPI-master unit and one SPI-slave unit. For the 

EtherCAT communication, which is introduced in the next chapter, an ordinary PC serves as 

EtherCAT master and all servo-controllers are EtherCAT slaves. 

 

The CCU starts via EtherCAT the control cycles in all DCUs simultaneously. This means that the 

PWM-timers should run synchronized in all DCUs. But even though the electronic oscillators of 

the processors inside the DCUs are of the same type, very small differences between their 

frequencies still exists. This leads to a significant clock drift between them in few seconds. 

Fig. 3.7 shows how are the data transmitted, received and read, when there is no clock drift 

between two adjacent DCUs. The intervals 0 7 8 9, , ,T T T T  are defined in Table 3.2. It is supposed that 

the DCUs exchange the same amount of data (e.g. ten 16-bit variables) in each control cycle. In all 

DCUs the SPI-received data is red shortly after a control cycle begins and data is transmitted at 

the end of the cycle. Due to the synchronized transmit and read actions in both DCUs, the 

transmitted data by one DCU in a control cycle are always received before being read in the next 

control cycle by the other DCU. Fig. 3.8 shows the case when there is a clock drift between the 

DCUs and not all transmitted data are received before being read. 
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DCU “n+1” starts transmitting data shortly before DCU “n” reads its receive-FIFO. Only half of this 

transmitted data will be available in the receive-FIFO at the time DCU “n” reads it. The other half 

of the data will be read by DCU “n” in the next cycle. In the worst case the read data are not 

consistent and there will be one cycle delay between transmitted and received data. A software 

procedure keeps the consistency of the data inside the 16-level receive-FIFO of a DCU. No more 

than ten variables are sent in a control cycle so that a FIFO overflow cannot occur. 
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Figure 3.7 Data transfer with synchronized PWM-timers 

Interval Definition 

T7 Between the read and transmit actions inside one control cycle (constant) 
T8 Required to transmit 10 x 16bits at 12.5 Mbps (constant) 
T9 Between the read action and the time when data were written in the FIFO (variable) 
T0 Control cycle (constant) 
T10 Between the transmit action in one DCU and the read action in the adjacent DCU 

(variable) 

Table 3.2 Timings related with data transfer and clock synchronization issues 
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Figure 3.8 Data transfer with non-synchronized PWM-timers 
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Just one cycle delay in the communication process does not affect the control performance. The 

current control loop runs independently in all DCUs and they exchange only current reference 

values. The variation of the vehicle’s speed and consequently the induced EMF are assumed to be 

zero within a current control cycle period (100 μs). 

In principle, it would be possible to synchronize the PWM-timers of all DCUs by means of the 

EtherCAT fieldbus. Any EtherCAT slave device (here the DCU) contains a special clock unit, which 

can be used to synchronize, according to the IEEE 1588 standard, all the EtherCAT slaves to one 

reference clock hold by one slave (typically the first slave after the master in a network segment). 

But this would not be an advantage for this application. As a consequence of synchronization, the 

IGBTs of two adjacent VSIs controlling a vehicle would always commutate approximately at the 

same time instants. Due to the stray inductance of the common DC-link, synchronized switching 

would increase the spikes in the DC-link voltage and the stress on the IGBTs. 

3.3. Data transmission at the physical layer 

In this application, where the electronic of all DCUs is tied to the negative DC-link rail, the safety 

at the physical layer of the point-to-point data transmission is of concern, mainly due to common-

mode voltage problems. In this subchapter these problems are identified based on simulation and 

experimental results and solutions are offered. 

RS-485, also known as TIA/EIA-485, is a hardware standard, which describes a differential data 

transmission over long cables in multipoint communication networks [38]. It assures a high level 

of noise immunity and is therefore preferred in industrial environments. For a data channel a pair 

of wires is required, one for the original and one for the inverted signal. Received and radiated 

EMI are therefore (theoretically) eliminated, as these signals are equal but opposite on the two 

wires and their fields will cancel each other. The maximal rate and distance of data transfer 

depends though on the attenuation characteristics of the cable and the noise coupling of the 

environment. A transmission rate of 12.5 Mbps over one meter long cable is possible. 

Details of the hardware implementation are given in the chapter “Experimental set-up”. There, 

Fig. 5.18 shows the implemented simplex network topology. For data and clock signals one 

receiver is connected with two transmitters over the same pair of wires. Only one transmitter is 

allowed to send at a time and the transmission is unidirectional. Termination resistances were 

placed at the extreme ends of all pair of wires in order to match the characteristic impedance of 

the wiring. 

Two situations are of concern for proper signal transmission: 

 Idle-bus periods 

 Common-mode voltage problems 

3.3.1. Idle-bus state 

During the non-transition periods of the vehicle, the transmitters of data and clock signals are in 

a high-impedance state, so that the voltage on the respective pair of wires is left floating. Due to 
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the noisy environment, the corresponding receivers can be then falsely triggered and these 

signals are erroneously interpreted as valid signals. This situation should theoretically not occur, 

as the receivers are fail-safe. The input threshold value of their differential voltage is set between 

–10 mV and –200 mV and not between ±200 mV as usual. Like this, due to the termination 

resistances, their outputs should be logic-high during the bus-idle condition. Anyhow, the 

bandwidth of this hysteresis voltage still doesn’t represent a reliable solution against high noise 

levels. This problem is completely solved at the application layer by means of the communication 

protocol. At this level, the bus is considered idle until the communication is acknowledged. During 

this time the SPI-units are deactivated, meaning that the clock signals are ignored and no bit-

shifting actions take place inside their data shift registers. The transmitters for data and clock 

signals are enabled when the communication is acknowledged, so that the bus is no longer idle. 

The SPI- and McBSP-units are reset to initial configuration values and then activated. After a wait-

period of one control cycle (Fig. 3.6) the McBSP-units will write their clocks and data on the bus. 

3.3.2. Common-mode voltage and multicommutation problems 

In systems where a large number of inverters are connected to a common DC-link, high-voltage 

transients can occur due to the multicommutation process of the IGBTs and the resulting stray 

inductance of the DC-link connection. 

The switching times of the IGBTs in the different phases of the distributed inverters are not 

synchronized, never the less several IGBTs can switch simultaneously or nearly simultaneously. 

This is known as multicommutation [39]. The multicommutation effect on an inverter system as 

shown in Fig. 3.9 was analysed in [39], [40]. Here the voltage at the common stray inductance 

,commonL  is produced by the added /di dt  values of the different commutating IGBTs. 

Assuming the same /di dt  for all IGBTs, the blocking voltage of an IGBT will be: 

The value of the surge voltage ,CC surgeu  must be kept bellow the maximal rating of the switching 

devices. The first action to minimize this voltage is to keep ,commonL  as low as possible. This is 
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Figure 3.9 Surge voltages for multiple inverter legs connected to a common DC-link [40] 
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realized by implementing a compact bus system consisting of two copper sheets (DC+ and DC-), 

separated by an insulation layer [41]. Of course it would be preferable to be able to limit or control 

the value of /di dt , but the gate-drive circuit is not accessible in the commercial IPMs. Therefore, 

the modules must be protected against high surge voltages by snubbing elements (usually 

capacitors). 

The simplified equivalent circuit of the proposed DC-link structure for this type of applications is 

shown in Fig. 3.10 and the parameters are defined in Table 3.3. The DC-voltage supply should be 

situated in the middle of the DC-link bus. A snubber capacitor is mounted very close to the DC-link 

terminals of each IPM and the electrolytic capacitors are also distributed along with the inverters, 

so that the current through the DC-link bus becomes more uniformly distributed [42]. 

Regarding the communication structure, the RS485 receivers have to be protected against voltage 

transients on the common negative DC-link line between two adjacent modules. These transient 

voltages are seen as common-mode voltages by the receivers and can have higher values than the 

maximal specified ratings of the devices. 

The value of the common mode voltage CMu  (Fig. 3.11), seen by the RS485 receiver is: 

Name Definition 

Leff,ac Total stray inductance of the bus bar system between two modules 
Lσs Stray inductance of the PCB routes between the electrolytic and snubber capacitors 
LESR Equivalent series inductance of the electrolytic capacitors 
RESR Equivalent series resistance of the electrolytic capacitors 
CEL Value of the electrolytic capacitors  
LSN Equivalent series inductance of the snubber capacitors 
CSN Value of the snubber capacitors 

LσIPM Stray inductance of the IPM 

Table 3.3 Parameters of the circuit model of the common DC-link 
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Figure 3.10 The circuit model of the common DC-link 
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The characteristics of the transient voltage lineu  were first analysed with the help of a SIMPLORER 

simulation model (Fig. 3.12), where both adjacent inverters were commutating simultaneously. 

A real IGBT model was used in the simulation and a dead-time interval was considered for the gate 

signals of an inverter-leg. Sinusoidal currents of different amplitudes and frequencies could be 

generated on the passive RL-load configuration. 
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Figure 3.11 Common-mode voltage issue for the RS485 receivers 
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Figure 3.12 Simulation model for the analysis of the transient voltages on the negative DC-bar 
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Figure 3.13 Bi-plate bus system as common DC-link bus 
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 a1) & b1) linei  : Current through the DC-link bars between the two inverters 

 a2) & b2) 1Ci  : Current through the electrolytic capacitor of the first inverter 

 a3) & b3) 2Ci  : Current through the electrolytic capacitor of the second inverter 

 a4) & b4) lineu  : Transient voltage along the common negative DC-link between the inverters 

 

The equivalent circuits of the electrolytic and the snubber capacitors were considered in the 

simulation. The values of their series resistances and inductances are calculated by means of their 

impedance values at the respective resonance frequencies. The impedance of the planar bus 

system consists of resistance and inductance. The inductance of each bus conductor is the sum of 

the self-inductance barL and the mutual inductance mtL . The bus system is a bi-plate bus system, as 

shown in Fig. 3.13, where the currents in both bars have opposite directions. For a good inductive 

 

Figure 3.14 Simulation results for the considered simulation model 
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coupling between the bars, the distance between them has to be small. The total inductance of the 

bus system is: 

The values 1, 2,,bar ac bar acL L  represent the self-inductances at high frequency of the rails DC+ and DC- 

respectively. Typically, the frequencies of the transient voltages on these lines reach values up to 

several MHz. The skin- and proximity-effects play therefore an important role in determining the 

resistance and inductance values of the planar bars, as the inductance ,eff acL  decreases at high 

frequencies [41]. 

The equations defining the effective inductance of the implemented bi-plate bus system (Fig. 3.13) 

at low and high frequencies as well as the resistance value at high frequency [41], [43], are 

presented in the appendix. The bus bar length between two adjacent servo-controllers is 0.6 m. 

Due to the connection elements of the servo-controllers to the bus bars, the value of ,eff acL  for the 

mentioned length was approximated for the simulation at 70 nH. 

The simulation results presented in Fig 3.14 show that the value of the transient voltage lineu  is 

below the maximal allowed value of the common-mode bus input range, ±15 V, for most RS485 

devices. The parameters of the DC-link components are shown in Fig. 3.12. The currents on the 

DC-link bus are shared between both DC-link capacitors. For the entire system these currents will 

be shared between the capacitors of both active and inactive inverters. The frequency of the 

transient voltage lineu  is about 5 MHz. 

 c) lineu  : Transient voltage for , / 2 10eff acL nH  and 15SNL nH  

 d) lineu  : Transient voltage for , / 2 35eff acL nH  and 30SNL nH  

 

General conclusions of the simulation results: 

 The stray inductances ,S IPML L   have a very small influence upon the value of lineu  but a 

big influence upon the surge voltages over the IGBTs. 

 The inductances of the snubber capacitors and of the bus bars have the biggest influence 

upon the value of lineu  (Fig. 3.15) and should be kept as small as possible. 

 
, 1, 2, ,2eff ac bar ac bar ac mt acL L L L     (3.3) 

 

Figure 3.15 Effects of the DC-link parameters upon the transient voltage lineU  (simulation) 
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 The values of the resistances of the DC-link components are not relevant for the amplitude 

of the voltage lineu . They only contribute to the damping time of the transient process. 

 

The simulation results help to identify those circuit elements, which are most relevant for the 

generation, suppression and the characteristics of the voltage transients, but cannot substitute 

the measurement results. With the simulation model is not possible to consider disturbances, as 

parasitic capacitances and interference effects, which exist in a real set-up. Also an exact 

determination of the parameters of all circuit elements and the exact switching characteristics of 

the IPM cannot be obtained. 

Anyhow, the experimental measurement from Fig. 3.16 shows similar results as in the simulation 

for the same control conditions. The damping time of the oscillations is larger but their 

amplitudes are not of concern. Using a tri-layer planar bus system would further reduce the 

effective impedance of the bus [41], so that lower transient voltages could be achieved. 

In systems where the voltage transients are still of concern, additional protection measurements 

must be used. A first possible solution to protect the RS485 devices against high common-mode 

voltages, which luckily do not exist in the proposed application, is to isolate the ground of these 

devices from the host’s device ground by using optical or digital isolators (Fig. 3.17). This method 

 

Figure 3.16 Experimental measurement of the transient voltage lineu  
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Figure 3.17 Galvanic isolation of the RS485 devices (not necessary in the proposed system) 
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requires, beside the isolators, also an isolated power supply between any two adjacent modules. As 

one of the aims of this work is to keep the implementation costs for large systems low, isolation 

should be avoided as far as possible. 

Another, less-expensive solution is to use bi-directional transient voltage suppression (TVS) 

diodes. These are clamping devices, which suppress the overvoltages above their breakdown 

voltage and can withstand high power peaks (several hundreds of Watts). They are connected as 

shown in Fig. 3.18 and are selected to conduct at voltages in the proximity of the recommended 

operating conditions of the RS485 devices. The disadvantage in this case is that these diodes add 

an extra capacitance to the communication lines, which deteriorates the transmitted signals at 

high bit-rates. 

The receiver used in the experimental set-up (SN75LBC175A) has a built-in circuit protection 

against overvoltages, realised with standard Zener diodes, which have a very small capacitance, 

which doesn’t affect the transmission speed. It can support short voltage transients in the range 

of ±30 V but with a maximum power peak of approximately 9 W. This is sufficient for the proposed 

application and is the most cost effective solution. 
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Figure 3.18 Transient voltage protection with TSV diodes 
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4. Industrial fieldbus solution for motion coordination 
and monitoring 

To connect the CCU with all DCUs an industrial fieldbus is selected. During development, 

commissioning and test of a large system, control programs must be frequently modified and then 

downloaded to a multitude of DCUs. Also upload actions of process data, recorded within the 

DCUs, have to be possible. Up- and downloads are off-line file transfers initiated on demand. While 

the system of linear drives is in normal operation, data for motion coordination and monitoring 

have to be exchanged cyclically between CCU and the DCUs inside few milliseconds. 

4.1. Overview of the main real time Ethernet (RTE)-based fieldbuses 

The actual trend in distributed automation systems is to use Ethernet as the single networking 

technology, as shown in Fig. 2.12. The main characteristics of Ethernet, which lead to this trend, 

are [44], [45]: 

 The high data transmission rates at the physical layer, which assure a large bandwidth 

compared with other fieldbuses 

 At the network and the transport layer of the OSI model, the IP and the TCP/UDP protocols 

allow an easy integration in the Internet and the use of application layer protocols such as 

FTP (up- and download of general data to the field devices) or HTTP (web servers for device 

engineering). 

 The implementation costs are low as the technology is wide spread and well specified 

Because Ethernet alone is not real-time capable due to its nondeterministic arbitration 

mechanism, several techniques (e.g. modified CSMA, token passing, TDMA, master-slave approach 

and switched Ethernet), meant to transform Ethernet in a true real-time communication tool, 

have been developed over the years [33], [46], [47]. The RTE protocols can be allocated to one of 

the three possible architectures shown in Fig. 4.1. The first architecture uses Ethernet and the 

TCP/IP protocols without any modification. Only at the application layer a specific protocol is 

defined. The second architecture uses the standard Ethernet hardware but bypasses the TCP/IP 

stack, so that a specific protocol type is specified in the Ethernet frame. The third architecture 

also bypasses the TCP/IP stack but brings also modifications in the hardware of the Ethernet. The 

scheduling process of switched Ethernet is modified and the switching functionality is integrated 

in the field devices. These types of protocols achieve the highest performance (e.g. have data 
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update cycles smaller than one millisecond) and are therefore preferred in distributed servo-drive 

applications. The protocols belonging to the second and third architecture are also able to handle 

standard IP frames, either on the same channel as the real-time data (tunnelling) or on a separate 

channel. 

There are many RTE protocols, which can fulfil the task of motion coordination and monitoring 

for this application, regarding the necessary data update cycle of few milliseconds. Many of them 

have been created for specific applications and just few were widely adopted and internationally 

standardized, like e.g. Ethernet Powerlink, EthernetIP, PROFINET, EtherCAT and SERCOS III. 
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Figure 4.1 RTE architectures [46] 
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Principle of operation 

 
Master/Slave 

 
Master/Slave 

Time synchronization 
of the device internal 

switches 
 

Special Ethernet controller 
Required only for the 

slave devices 
Required for both 
master and slave 

devices 

 
Required 

 
Basic network topology 

Line, ring, star or 
tree structures are 

supported 

 
Line or ring 

 
Line or ring 

 
Cable redundancy 

 

 
Yes 
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Overall Performance [48] 

 

 
Very good 
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User organization 
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Technology Group) 

SI (SERCOS 
International) 
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Nutzerorganisation) 

Number of suppliers, 
products variety and 

organization members 

 
Big 

 
Medium 

 
Medium 

Table 4.1 Overview of the main characteristics for three RTE-based fieldbuses 
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The utilization of an RTE-based fieldbus for motion coordination and monitoring in this case 

means that the DCUs must incorporate a hardware interface for this fieldbus. An ASIC, an FPGA, a 

multi-protocol Ethernet controller or a standard Ethernet controller can represent this hardware 

interface. Due to the high number of DCUs in our application, the hardware costs and complexity 

is one of the main criteria in selecting the fieldbus. 

The costs for the special Ethernet controllers are quite similar for the three protocols of Table 4.1, 

because the respective protocol stack can be implemented in an e.g. FPGA. EtherCAT has the 

advantage that its master device requires only a standard and no special Ethernet controller. 

EtherCAT offers also the most flexible network topology and has the largest variety of products, 

number of suppliers and organization members [35]. For smaller, non-scalable system topologies 

(small number of vehicles) where the communication between the adjacent DCUs would have 

been possible over an RTE-based fieldbus alone (no extra SPI-based fieldbus required), then 

SERCOS III would have been the better solution due to its superior performance regarding the 

cross-communication procedure between the slave devices [34]. 

4.2. Data transfer modes over EtherCAT 

EtherCAT is a master/slave-based protocol where the master always initiates the data 

transmission inside a communication cycle. The master can use the same Ethernet frame to send 

data to, or gather data from the slave devices. Inside the slave devices the incoming frames are 

hardware processed “on the fly”, meaning that data is added to or extracted from the frame while 

this passes through the device. The delay-time due to data processing of a slave is very short 

(below 100 ns) and constant, as it doesn’t depend on the size of the frame. When the formed frame 

reaches the last slave of the network, it is automatically sent back to the master. The slave devices 

of an EtherCAT network are designated to one or more network segments. A segment consists of 

one or several slaves. From the standard Ethernet point of view an EtherCAT segment is a single 

Ethernet device. There are two configuration modes of an EtherCAT network: 

 Direct mode, where a network segment is designated to a master device 

 Open mode, where several network segments are accessed separately over a switch by one 

or several masters 

The slave devices of a network segment can be arranged in a line, ring, tree or star configuration. 

All configurations can be seen as a physical ring due to the full-duplex data transmission and to 

the fact that the slave devices can transfer data also in the reverse direction [49]. 

The Ethernet frames used by EtherCAT are identified with the number 0x88A4 in the header of the 

frame. The data in the frame is split in specific EtherCAT datagrams as shown in Fig. 4.2. Any 

datagram can be designated to a particular slave but an important feature of EtherCAT is that 

many slaves can be handled by a single datagram using a logical addressing scheme. The logical 

address space of 4GB is shared among all slave devices of a network segment. Logical addresses 

are converted inside a slave device into local physical addresses by means of the Fieldbus Memory 
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Management Units (FMMUs). The FMMUs allow therefore the logical addressing for data segments 

that span over several slave devices. This reduces the total overhead. 

Until now it was shown how can the master access the memory of the slave devices. This memory 

is also accessed by the DSPs of the DCUs. Hardware details are shown in the Fig. 5.19 of the 

chapter “Experimental set-up ”. A memory access management is therefore necessary. This is 

realized by the SyncManager units of the slave devices, which are using memory buffers of 

predefined lengths to assure a consistent and secure data exchange between the EtherCAT master 

and the DCUs. There are two communication types in an EtherCAT network: 

 Reliable communication (mailbox data transfer), where the master and the DCU accessing 

the memory of the ESC must agree upon the write/read access (data cannot be 

written/read at/from one address by one unit until it was before read/written by the other 

unit). 

 Non-reliable communication, where both the master and the DCU can access the memory 

of the ESC at any time for both read and write actions. 

The reliable communication is based on a specific protocol at the application layer, which must be 

also implemented in the DCUs. Here the FoE (File access over EtherCAT) protocol was used for 

both update and parameterisation (download) of the control algorithm as well as for general data 

upload. This protocol is similar to the well-known FTP protocol. The general data, representing 

state variables of the control algorithm, were saved in every control cycle in the memory of the 

DCUs. The master then uploaded them off-line, where they were analysed with MATLAB to prove 

the quality of the control. For this communication the master used physical addressing and 

exchanged data only with one DCU at a time. 

The non-reliable communication is used for cyclical exchange of process data. The term non-

reliable is associated with the fact that old data will be dropped if the above-mentioned memory 

 

Figure 4.2 Structure of the Ethernet frame used by EtherCAT [49] 
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buffers are written faster than being read. This communication serves for motion coordination 

and monitoring. Based on an internal traffic planner, the master generates cyclically the new 

position reference values for the vehicles. These values are embedded in an Ethernet frame as 

shown in Fig. 4.3. 

As this frame passes through, the DCU will notice that its logical address (predefined in its FMMU) 

is inside the logical memory area specified in the header of the first datagram (logical start 

address and length) and extracts the appropriate position reference value from it. Similarly 

occurs with the second datagram, when the DCUs insert their status values in the frame. After 

being processed by all DCUs, the frame returns to the master for evaluation. The master checks 

first the valid processing of a datagram by comparing the WKC (Working Counter) with the 

expected value. This counter is incremented by the DCUs after a successful write or read action. 

The frame ends always with the FCS (Frame Check Sequence). This is recalculated inside each DCU 

and if an error is detected, the master will be flagged by this DCU. A fault is like this precisely 

located in the system [49]. 
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Figure 4.3 Cyclical data transfer for motion coordination and monitoring 
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4.3. The EtherCAT master application 

The Windows Control and Automation Technology (TwinCAT) is a software application running 

under Windows NT, which implements the functionality of the EtherCAT master [50]. It gives the 

user the possibility to define special tasks, which have different priority levels and are executed 

cyclically at specified time intervals. The lowest cycle time is 50 μs. The user cannot write control 

code or any code lines inside those tasks but can only define variables. In each communication 

cycle the defined input-type and/or output-type variables of a task can be exchanged with the 

process data of any EtherCAT slave device. An input variable of a task can be also associated with 

an output variable of the same task, so that process data communication between two EtherCAT 

slaves is possible. For the experimental set-up an output variable of a task, representing the 
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Figure 4.4 Analysis of TwinCAT’s real-time functionality 
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position reference value of the vehicle, was associated with the input process data of all EtherCAT 

slaves. Output process data, representing the status of the distributed servo-controllers, were in 

turn associated with four input variables of the same task. Access to the variables of a task can be 

gained from Windows applications like Visual Basic or Visual C++ via a specific DLL. Here a Visual 

Basic application was created, which generates the new position reference values for the vehicle 

and monitors the system at 10 ms intervals. 

The real-time capability of TwinCAT was analysed as shown in Fig. 4.4. A program in the first DCU 

toggled cyclically the value of an output process data and output this action on a GPIO. The 

program in the other three DCUs read continuously (pooling) the memory of the local ESC and 

output a physical signal according with the value of one input process data. The output process 

data of the first DCU was connected with an input variable of a software task running at 50 μs. The 

input process data of the other three DCUs were connected with three output variables of the 

same software task. The software task was therefore responsible for the real-time data transfer 

between the DCUs. The minimal data transfer delay is about 56 μs (one cycle) and the maximal 

delay is 106 μs (two cycles). This is due to the fact that the cyclical writing of the process output 

data of the first DCU is not synchronized with the Ethernet frames sent by the software task. The 6 

μs difference represents the latency of the system. 

The communication relationship at a certain moment between the master application and the 

DCUs is defined by means of the EtherCAT state-machine, shown in Fig. 4.5. The master requests a 

state transition through a special register of the ESC. The transition requires specific 

initialisations of the units (e.g. FMMUs and SyncManager) and the memory registers of the ESC 

from both DSP and master side. The EtherCAT state-machine must be therefore implemented in 

the DSP-Flash memory. 
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PRE-OPERATIONAL
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BOOTSTRAP 
(BS)

SAFE-OPERATIONAL
(SO)

OPERATIONAL
(OP)

 

 

State  Description 

INIT The master initialises the network 
Each DCU receives a fixed address 

BS Reliable communication with the 
DCUs using the FoE protocol 

PO Reliable communication using other 
protocols (e.g. CANopen) 

 
SO 

System configuration for cyclic data 
transfer. Evaluation of process input 
data only 

 
OP 

The software task is started. Cyclic 
process data exchange between the 
master and the DCUs 

Figure 4.5 Description of the EtherCAT state-machine 
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4.4. Software configuration for the embedded servo-controllers 

The DCUs must work as embedded systems, where the entire firmware is saved in the internal 

Flash memory of the DSPs [51]. Initially, in order to write the code sections in the DSP-Flash, the 

JTAG interface of the DSP-board is used. This implies a non-isolated connection between the CCU 

and the DCUs. The DSP-Flash has two partitions. The first partition contains code sections, which 

are not subject to changes and the second contains modifiable code sections (Table 4.2). 

Fix Code Sections Changable Code Sections 

1). Initialisation of system control registers and of 
the Flash unit 

1). Initialisation of variables used for the 
control algorithm 

2). Initialisation of the used peripheral units 
(ADC, EVA, SPI, McBSP, XINTF) 

2). The motor control algorithm (the field 
oriented control) 

3). Transfer of functions from Flash to RAM. 
Running code from Flash reduces the processing 
speed at 80% 

3). Functions defining the serial point-to-
point communication 

4). Functions to Erase, Program, Verify the Flash 
5). The EtherCAT state-machine 
6). The FoE protocol 

 

Tabelle 4.2 Main code sections of an embedded servo-controller 

Reset DSP

Write code. Compile 
and link files

Execute and debug 
code

Use CCS and the JTAG
interface to write the code

in the DSP-Flash

Begin execution at entry
point in RAM. The entry
point is set by jumpers.

Reset DSP

Run the Program
State-Machine

Begin execution at entry
point in Flash. The entry
point is set by jumpers.

Use TwinCAT as Flash
programmer

Use hex2000 utility to 
convert the output file

COFF

Write code. Compile 
and link files using

CCS

Load Code in Flash Run Code from Flash
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Figure 4.6 The state-machine of the embedded servo-controllers 
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Once the EtherCAT state-machine and the FoE protocol have been downloaded in the DSP-Flash, it 

is possible to update the changeable code sections or to download general data by using TwinCAT 

as Flash-programmer or Flash-reader respectively. The down- and uploading process over the 

physical layer of Ethernet has the advantage that the communication partners are electrically 

isolated. 

In order to update some code sections of a DCU, the program is written and compiled with the 

integrated development environment CCS (Code Composer Studio), installed on the CCU. From the 

generated COFF (Common Object File Format) output file, the modified code sections are extracted 

and saved in ASCII format with the help of the hex2000 conversion utility [52]. They are further 

passed to TwinCAT, which will address the desired DCU by its physical address and will initiate the 

reliable communication with it over the FoE protocol. After the data transfer is finished, the DSP 

is reset with the help the Watchdog and the new code can be used without having to power-down 

the controller. 

Fig. 4.6 shows the main operations performed on the DSP-Flash and the state-machine for a servo-

controller. This is based on the EtherCAT states of the DCU. The interrupt routine for the control 

algorithm is started always in the operational state. From the Bootstrap state is possible to update 

the code sections, which requires a reset at the end, or simply to download general data for 

analysis without resetting the device. 
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5. Experimental set-up 

In Fig. 1.3 the general configuration of a linear drive system was shown. This chapter presents the 

implementation of all units of the drive system, but focuses more on the Information Processing 

Unit (IPU) and the Power Processing Unit (PPU). The developed system architecture was tested in 

a small-scale experimental set-up, consisting of four identical stator segments and one vehicle. 

Each segment has a dedicated servo-controller. The block diagram representation of the 

experimental set-up is shown in Fig. 5.1 and the photo of the set-up is shown in Fig. 5.2. 

5.1. The Linear Motor Unit 

Four stator segments of type LSE10G from Baumüller are building the track in a single-cam 

arrangement (Fig. 5.3). The stator windings are distributed in the slots of a laminated iron core as 

shown in Fig. 2.1. The skewed PM is bounded on the surface of a massive back iron (Fig. 5.4). The 

mechanical construction of the vehicle–guideway system is shown in Fig. 5.5. 
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Figure 5.1 Block diagram of the experimental set-up 
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The vehicle maintains a fix vertical position along the 

guideway due to the four-wheel system on the guide rail, 

so that there is a constant air gap of 1 mm between the 

PM and the stator segments. 

The pole pitch of the motor is 36 mm. The PM has 4 poles 

and a stator has 14 poles. Due to the even number of 

poles of a stator and the alignment of its windings, there 
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Figure 5.2 Photo of the experimental set-up 
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Figure 5.3 The linear track 

 

Figure 5.4 The vehicle 
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is no phase-shift of the electrical angle between two adjacent stators. 

An odd number of stator poles would have assumed a phase-shift of 180°. The flux linkage of a 

phase winding at the end of a stator will continue in the same phase of the following stator. Even 
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Figure 5.5 Mechanical construction of the vehicle and of the guideway 
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though there is no gap between the 

stators, there is a gap between the end-

windings of two adjacent stators due 

the thickness of the stator enclosure. In 

this area the value of the reluctance 

will increase, leading to a decrease of 

the magnetomotive force for the same 

flux density. 

Since the PM covers only 28.5% of the 

stator’s surface, it is expected to have a 

low induced EMF-value. The force 

parameters in Table 5.1 are specified 

for the case when the length of the PM 

equals the stator length. 

 

 

 

 

5.2. The Power Processing Unit 

The PPU contains the following functional blocks: 

 Line Connection Unit (LCU) 

 Rectifier Unit (RU) 

 Voltage Source Inverter (VSI) 

5.2.1. The Line Connection Unit 

The LCU contains the main switch, a line circuit breaker, line-fuses and an EMC-filter, as shown in 

Fig. 5.6. Over the main switch the electronic of the servo-controllers is supplied first. The line 

circuit breaker is closed only after a safe power-up of the electronic. Variable frequency drives are 

a source of electromagnetic interference. This electrical noise is generated by the fast switching 

voltages at the motor and supply cables, which have coupling capacitances to earth. An EMC-filter 

is therefore necessary to assure that this high-frequency electrical noise, in the range of a few kHz 

up to tens of MHz, doesn’t affect the mains. At the same time it assures that electrical noise in the 

mains, generated by other equipments, doesn’t affect the drive system. The used EMC-filter is 

rated at 25 A. 

5.2.2. The Rectifier Unit 

The RU contains a standard 3-phase diode bridge rectifier rated at 1200 V/25 A, a brake chopper 

and a pre-charge resistance connected over a circuit breaker between the EMC-filter and the 

Maximal thrust force 
,maxthF = 1270 N 

Nominal thrust force 
,th nomF  = 210 N 

Maximal current 
maxI  = 13.9 A 

Nominal current 
nomI  = 1.9 A 

Force constant 
Fk  = 110 N/A 

Phase resistance 
SR  = 2.4 Ω 

Phase inductance 
SL  = 10.5 mH 

Pole pitch length  = 36 mm 
Stator segment length 

ml  = 504 mm 
PM length 

pl  = 144 mm 

Maximal speed 
maxv  = 4.5 m/s 

Nominal speed 
nomv  = 2 m/s 

Mover’s weight 
vM  = 6.5 Kg 

DC-link voltage 
DU  = 560 V 

Cooling type Natural cooling 

Table 5.1 Parameters of the linear motor 
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diode bridge (Fig. 5.6). The commutation notches of the diode bridge will insert current harmonics 

in the mains. This will affect the ideal sine-wave voltage characteristic at the input of the rectifier. 

In industrial plants where many drives are connected to the mains, the generated total harmonic 

distortion is of concern and have to be diminished by inserting line chokes at the LCU level. 

5.2.3. The Voltage Source Inverter 

The VSI builds the modular servo-controller together with the DCU (Fig. 5.1). There was no 

commercial solution to completely suit the requirements of this application, so that the modular 

servo-controller was designed and implemented in the laboratories of the institute. 

The VSI contains the following components: 

 6 IGBTs and the associated free-wheeling diodes 

 Gate driver circuit 

 Current measurement and overcurrent protection circuit 

 DC-link capacitors 

 DCU-interface circuit 

 Electronic power supply circuit 

The power range of the inverters for this type of application lies between 1 KW and 10 KW. For a 

DC-link voltage of 560 V, the rated currents of the inverters are in the range of 10 A up to 70 A. 
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Figure 5.6 Configuration of the PPU 



 

Industrial fieldbus solution for motion coordination and monitoring 57 

Intelligent power modules (IPMs) represent a cost effective and highly integrated solution for the 

power stage of highly scalable drive applications [53]. The IPMs use the transfer molding 

technology for insulation and housing and were designed initially for home appliances (600 V-

IGBTs). About five years back, transfer molded IPMs in dual in-line packages (DIP) with 1200 V-

IGBTs and currents up to 35 A became available for general industrial application use. 

Here the 1200 V/25 A DIP-IPM, PS22056, from 

Mitsubishi was used. This device contains within 

the same package the power devices and control 

ICs for gate drive and protection [54]. The 

molded structure is shown in Fig. 5.7. The 

internal circuit and the pin-configuration are 

shown in Fig. 5.8. 

Each IGBT from the high side is controlled by the 

HVIC (High Voltage Integrated Circuit). This 

integrates high voltage level shifters, which 

make a direct, non-isolated, connection to the 

DCU possible. The IGBTs from the low side are 

controlled by the LVIC (Low Voltage Integrated Circuit). If the HVIC is supplied over a bootstrap 

circuit, a single 15 V source is sufficient to supply the entire gate drive circuit. 

The integrated protection circuit protects the device in case of overcurrent and under-voltage 

situations. Both the HVIC and the LVIC have an integrated under-voltage protection circuit (UVP). 
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Figure 5.7 1200V DIP-IPM [54] 
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Figure 5.8 IPM PS22056: Internal circuit and pin-configuration 
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If the voltage drops below the 12.5 V threshold value, the IGBTs will be automatically turned off. 

The LVIC will also generate a fault output (FO) signal. If an under-voltage situation occurs on the 

HVIC-side, the high side IGBTs will be turned off but no fault signal will be generated. 

An external circuit is responsible for the detection of an over-current. The INC  terminal of the 

IPM is connected with the output of this circuit. If the voltage at this pin exceeds a certain 

threshold value (typically 0.5 V), the protection circuit of the IPM will recognize the over-current 

situation and will turn off all IGBTs. At the same time the FO signal is generated. The pulse width 

of this signal can be set over an external capacitor between the terminals FOC  and NCV . 

The characteristics of the IPM (e.g. maximal ratings, static and switching characteristics) are 

presented in the appendix. 

Regarding the heat sink for the IPM, it must be mentioned that this had to be connected to the 

negative rail of the DC-link (ground of the electronic). There are parasitic capacitances between 

the IGBTs and the aluminium heat spreader of the IPM and the heat sink, which increases very 

much the value of the generated EMI. This high EMI disturbs the proper functioning of the 

electronic. By connecting the heat sink to ground (i.e. negative DC-link), a small-impedance path 

is created for the parasitic currents and the generated EMI is kept therefore at low values. 

5.2.3.1. Bootstrap circuit 

One voltage source (typical recommended value of 15 V) will supply the LVIC circuitry. By using 

bootstrap capacitors, the same voltage source is used to supply also the gate drivers of the HVIC 

units, as shown in Fig. 5.9. For each inverter phase the bootstrap circuit consists of an ultra fast 

recovery diode BD , a charge current limiting resistor BR  and a floating supply capacitor BC . The 

diode must block voltages equal to the maximal rated collector-emitter voltage of the IPM (1200V) 

and must have a recovery time below 100 ns. In order to protect the circuit from dangerous 

transients of the voltage supply, one Zenner-diode will be used to clamp the voltage at a certain 

level. Undesired high-frequency oscillations are eliminated by low-impedance ceramic capacitors. 

Before the PWM-operation starts, the low-side IGBTs are turned on, in order to allow the charging 
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Figure 5.9 The bootstrap circuit for one IPM-leg 
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of the bootstrap capacitors. In Fig. 5.9, during the PWM operation, the voltage of the capacitor BC  

will float depending on the potential of the terminal UFSV . When IGBT1 is turned on, the bootstrap 

voltage DBV will decrease due to the current consumed by the drive circuit. Before turning on 

IGBT2, there will be a dead time when both switches are turned off. If the motor current in the U-

phase is positive, than the diode FDi2 will conduct and the bootstrap capacitor can recharge. For a 

negative phase current, DBV will continue to decrease as the diode FDi1 is conducting. When IGBT2 

is turned on the bootstrap voltage will increase again. 

5.2.3.2. Current measurement and over-current protection 

The current in each motor phase was measured by shunt resistors, which are connected between 

the emitters of the low-side switches and the negative rail of the DC-link. Their advantages in 

comparison with hall-effect sensors are the low price and the linearity within a wide range of 

frequency spectrum. The following aspects must be considered though when using this 

measurement method: 

 The current can be measured only if the low-side switches are turned on. For the common 

PWM techniques this is usually done during the zero voltage vector 0U  (Fig. 2.5) 

 The modulation method is important for the accuracy of the measurement at high 

switching frequencies and high modulation indexes 

 It is not possible to detect eventual short circuits between the motor phases and the 

grounded motor enclosure 

 The ground of the measurement circuitry is connected to the negative rail of the DC-link 

 The shunts must have small tolerance, very low inductance and should be stable with 

temperature variations 

The star connection of the motor phases allows the measurement of only two phase-currents 

because the third is redundant. The measurement is possible only when the low-side switches are 

turned on and at modulation indexes near to one, an accurate measurement can fail due to the 

transients of the measurement circuit. Using a shunt for each phase allows the measurement of 

those two phase-currents for which the low-side switches have the largest turn-on times. Even so, 

there are some values of the voltage space vector for which a precise current measurement is still 

difficult, as shown in Fig. 5.11. 

Regarding the modulation methods, these can be split in two main categories: 

 Continuous modulation methods, where a switching action occurs in each inverter leg at 

every sampling interval. These methods are using both zero voltage vectors 0U  and 7U  

 Discontinuous modulation methods, where switching actions occur only in two inverter 

legs at every sampling interval. These methods are using only one of the zero voltage 

vectors, so that the non-switching inverter leg is clamped either to the positive or the 

negative DC-link 

The assessment of the modulation methods is made in the literature [27], [55] by means of the 

produced current distortion for different modulation indexes. For modulation indexes smaller 

than 0.8, the total harmonic power losses are smaller for continuous modulation methods, as 
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those presented in the Fig. 2.7, compared with discontinuous modulation methods (e.g. 60° and 

120° Flat-Top). For higher modulation indexes the situation reverses. Regarding the harmonic 

power losses, the average value of the modulation index is therefore a factor in deciding upon the 

most appropriate modulation method. In applications where the value of the common-mode 

voltage is of big concern, discontinuous modulation methods are more appropriate. For this 

experimental set-up the modulation shown in Fig. 2.7b was used (continuous modulation method). 

The conventional space vector modulation is a continuous modulation method, where the phase 

of the reference voltages Sarefu , Sbrefu  define the active sector and their amplitudes decide upon 

the turn-on period of the switches. For the carrier based continuous modulation methods the 

commutation times for each inverter leg are calculated easy from the reference phase voltages. 

Two such methods were presented in the second chapter in Fig. 2.7. For these methods, by adding 

the offset voltage component ofsu  to the inverter’s output voltages, the potential of the star point 

0Su  is modified without affecting the phase voltages (defined in the Figs. 2.5 and 2.6). The upper 

index md  in the equation (5.1) denotes the modified value of a variable due to ofsu . 

The mean value of the inverter’s output voltage over a sampling period will be determined by the 

turn-on period onYt  of the low-side switches: 
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Figure 5.10 Modulation methods 
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The maximal turn-on periods onYt  of the low-side switches at maximal modulation index is: 

Carrier based modulation (Fig. 2.7a and equation (2.22)) 

 

Carrier based (Schörner [28]) modulation (Fig. 2.7b and equation (2.23)) 

The equations 5.3 and 5.4 show that for the current measurement at unity modulation indexes the 

Schörner modulation is more adequate than the modulation of Fig. 2.7a, because the maximal 

turn-on periods of the low-side switches are significantly larger. At maximal modulation index, 

the Schörner modulation becomes discontinuous. As shown in Fig. 5.11, the phase currents are 

always measured in the middle of the zero-voltage vector 0U , at the beginning of each control 

cycle. Therefore the maximum allowed oscillation time of the measurement circuit osct  is half of 

the maximal turn-on period of the low-side switches. The maximal value of osct is 3.35 μs for the 

modulation of Fig. 2.7a and 6.7 μs for the Schörner modulation. These are ideal values though 

because the dead-time effect was neglected. As shown in the appendix, the IPM requires a very 

large dead-time, namely 3.3 μs, so that the required value of osct becomes 3.4 μs for the Schörner 

modulation A reliable measurement isn’t possible in this case with the modulation of Fig. 2.7a. 
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The measured value for osct  is 4.9 μs (Fig. 5.12). This value exceeds with 1.5 μs the required value. 

An easy solution to avoid this inconvenient is to start the analog-to-digital conversion not at the 

beginning of the interrupt service routine, but with a fix delay of minimum 1.5 μs. 

Conclusion: As known from literature [27], [55], discontinuous modulation methods are 

producing, for high modulation indexes (> 0.8), less harmonics than the continuous modulation 

methods (assuming a 50% increase in the switching frequency for the discontinuous modulation 

methods). For lower modulation indexes, the continuous modulation methods are offering better 

results. In this set-up, the Schörner modulation was used, as it offers the largest turn-on periods 

of the low side switches among the continuous modulation methods. 
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Figure 5.11 Characteristics of the modulation methods at unity modulation index 
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Figure 5.12 Characteristics of the current measurement circuit at unity modulation indexes 
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The voltage drop on the shunt resistances will be amplified, level shifted and then digitally 

converted, as shown in Fig. 5.13. The shunt resistance is rated at 35 mΩ/3 W, has a tolerance of 

0.5% and an inductance smaller than 3 nH. A positive current value of +12.5 A will correspond to 

an input voltage of 3 V at the ADC and a negative value of -12.5 A will correspond to 0 V. This is 

the maximum conversion range of the 12bit ADC. 

The main controller of the DCU, the TMS320F2812 DSP from Texas Instruments, will turn off all 

switches if one of the phase currents reaches ±12.5 A. Beside this software protection, a hardware 

protection based on comparators was implemented. Two comparators are used for each inverter 

leg to detect both positive and negative currents. An overcurrent is detected around the value of 

±15 A. The outputs of all six comparators are forming an AND-connection. This is connected to the 

INC  terminal of the IPM over a NAND-gate (Fig. 5.13). The input of the comparators has to be low-

pass filtered in order to avoid undesired fault conditions due to noise. The time constant of this 

filter was set at 1.5 μs. Fig. 5.14 shows the reaction of the protection circuit in case of an 

overcurrent. The active-low fault signal is connected with the PDPINT terminal of the mentioned 

DSP, which assures that all switches are turned off. 
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Figure 5.13 Current measurement and over-current protection for one inverter leg 
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Figure 5.14 Overcurrent protection test for one inverter leg 
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5.2.3.3. Dimensioning of the DC-link capacitors 

The DC-link of a VSI contains four aluminium-electrolytic capacitors, connected as shown in Fig. 

5.15, the corresponding voltage-sharing resistors and a snubber capacitor. The electrolytic 

capacitors are used to compensate the difference between the power requirement of the inverter 

and the output power of the diode bridge rectifier. They supply the input current of the inverter 

with pulse frequency and are a source of transient power peaks. The instantaneous value of the 

current flowing through the DC-link capacitors is the difference between the AC-component of 

the rectifier’s output current and AC-component of the inverter’s input current. 

In [56] was shown that the current stress of the DC-link capacitors can be analytically determined 

in the time domain with sufficient accuracy for sinusoidal inverter output currents and constant 

DC-link voltage. Due to the symmetry of the ideal three-phase system and due to the phase-

symmetric structure of the inverter, the current analysis was limited to a 60° interval of the 

inverter’s output voltage fundamental period. By this, the RMS-value of the DC-link capacitor 

current is: 

where 2 Nf t   and Nf  is the output frequency of the inverter. Inserting (5.5) in (5.6) yields to:  

As the terms ,D aci  and aci  do not contain harmonics in the same frequency range, the integral term 

of (5.7) can be neglected, so that: 

The current contribution determined by the mains-commutated input rectifier depends on the 

imposed voltage ripple of the DC-link voltage. The output voltage of the bridge rectifier has a 

period of 300 Gf Hz . Inside this period the DC-link capacitors will be loaded during the time: 

The difference between the maximal DC-link voltage ,maxDU  and the minimal value ,minDU  defines 

the voltage ripple. The current peak value during the charge time is: 
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where ELC  represents the DC-link capacitance of one VSI. 

The corresponding RMS-value is: 

Similarly for the discharging time DCt , the corresponding RMS-value is: 

The total current RMS-value from the rectifier side will be: 

The worst-case current stress estimation, presented in [56] as a basis for the dimensioning of the 

DC-link capacitor is: 

The selected electrolytic capacitor is rated at 330 μF/400 V and has a tolerance of ±20%. The total 

capacitance of the DC-link is approximately 1.5 mF. The value of the desired voltage ripple was set 

at ±2 V. With these values, by using the equations (5.8)-(5.14) the current RMS-value for the DC-

link capacitors of one VSI is , 5.85 C RMSI A . The maximal continuous current supported by the 

selected capacitor is 3.84 A, so that the parallel connection from Fig. 5.15 had to be used, where 

each capacitor conducts the half of the current stress value ,C RMSI . 

The voltage rating of the electrolytic capacitor is selected based on the DC-link voltage and 

tolerance values of the capacitors. The minimal voltage value, which has to be supported by one 

electrolytic capacitor, is: 

Because stray inductances are present between the electrolytic capacitors and the P, NU, NV, NW 

terminals of the IPM, a snubber capacitor must be used to protect the IPM against high surge 

voltages. It provides a low inductance path during the switching operation and therefore is placed 

as closed as possible to the IPM terminals. 

5.2.3.4. The interface with the Distributed Control Unit and the electronic supply 

The interface between the VSI and the DSP-board of the DCU is shown in Fig. 5.15. The current 

measurement circuit is connected with the analog circuit of the DSP-board. On the digital side of 

the interface, voltage transceivers are used. They act like line drivers and translate also the 

voltage between the DSP-board and the IPM from 3.3 V to 5 V respectively and vice versa, as the 

DSP is only 3.3 V compatible. The electronic supply of a servo-controller unit is realised by an 

AC/DC converter, which has to isolate, in continuous operation mode, the voltage / 2DU . Voltage 

regulators are used to obtain other necessary voltage levels than those generated by the AC/DC 
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converter. In case of a failure of the AC/DC converter or of an interruption of the mains’ voltage 

during normal operation, the bootstrap circuit as well as the DC-link capacitance are still charged. 

The bootstrap voltage remains above the under voltage threshold value of the IPM for few 

milliseconds during which short circuits could occur. A single voltage transceiver is used for the 

six control signals (+3.3 V to +5 V translation). In order to avoid possible short circuits in this case, 

pull-down resistances (not shown in Fig. 5.15) are used for the outputs of this transceiver, which 

avoid erroneous switching if the control signals from the DSP are floating or if they are in high 

impedance state. 

5.3. The Information Processing Unit 

At the IPU-level there are four DCUs and the CCU. One DCU together with a VSI builds a modular 

servo-controller. 

5.3.1. The Distributed Control Unit 

The DCU contains a main controller and the associated communication interfaces: 

 The position sensor interface 

 The interface with the adjacent DCUs (SPI-interface) 

 The interface with the CCU (EtherCAT-interface) 
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Figure 5.15 Structure of the VSI and the DCU interface 
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The main controller is the TMS320F2812 DSP from Texas Instruments, which has a fixed-point 

arithmetic and a maximal processing frequency of 150 MHz. Its cost and characteristics of the CPU 

and peripheral units makes it a suitable solution for servo-drive applications [57]. The DSP-board 

eZDSPF2812 was selected for the set-up. Its main characteristics are shown in table 5.2. 

The virtual floating-point engine IQmath from Texas Instruments was used in order to avoid the 

difficulties due to the fixed-point arithmetic. The IQmath routines for e.g. computing 

trigonometrical functions are executed very fast and with a very good accuracy [58]. 

The AD converter module has a total of 16 channels, equally separated in two sequencers, a 12-bit 

converter and two dual sample and hold units. The output voltages of the differential amplifiers, 

corresponding to the motor phase-currents, are connected to six AD-channels, as shown in Fig 

5.16. It is possible like this to measure simultaneously any two phase-currents for which the low-

side switches have the largest turn-on times. At the end of a control cycle a pair of channels, that 

is to be converted in the next cycle, is selected. The start of conversion is hardware-triggered with 

a delay of 1.5 s after the beginning of a control cycle. 

The high gain and offset errors of the ADC unit had to be first compensated before using the DSP-

board for the current measurement. 

The DSP has two identical event manager (EVM) modules. One module includes general-purpose 

timers, a PWM unit, a capture unit and a quadrature-encoder pulse (QEP) unit. The PWM unit can 

generate three independent output pairs with programmable dead-time and output polarity. 
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5.3.1.1. The interface with the position sensor 

The incremental position sensor mounted on the vehicle delivers the position by means of two 

symmetrical digital signals, which are phase-shifted by 90°. These signals are transmitted over the 

same RS485 lines to all four DCUs, as shown in Fig. 5.17. 

It is the QEP circuit of the DSP, which is responsible for decoding these signals. Because the 

electronic of the servo-modules is tied to the negative rail of the DC-link and the sensor unit is 

connected to protection earth (PE), the sensor interface must be electrically isolated. This was 

realized with digital isolators. A PE line and a 5 V line are also transmitted along the sensor data 

cable, in order to supply the local RS485 receivers and digital isolators. 

5.3.1.2. The interface with the adjacent Distributed Control Units 

As presented in the third chapter, the modular servo-controller must be able to communicate 

with two adjacent modules. For this task the two SPI compatible units of the DSP were used: 

 The SPI unit 
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Figure 5.17 Interface between the DCUs and the sensor unit 
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 The multi-channel buffered serial port (McBSP) unit. 

The maximal data transfer speed allowed by the DSP-board is 12.5 Mbps, which fully satisfies the 

bandwidth demands in this case. At the physical layer the RS485 differential data transmission 

protocol is used, as the data transmission must be immune to the switching noise and the RS485 

transceivers are cheap and robust. Each DCU contains six transmitter and four receiver ports. The 

SPI data and clock signals can be transmitted or received only to or from one neighbour DCU at a 

time, in order to avoid short-circuits on the communication lines. All receiver ports and two of 

the transmitter ports are always enabled. The other four transmitter ports, responsible for the 

data and clock signal transfer to the adjacent modules, are enabled/disabled by external signals 

coming from the corresponding adjacent DCUs (Fig. 5.18). 

The transmit-enable input and output signals from table 5.3 are GPIO signals and are not part of 

the SPI protocol. 

5.3.1.3. The interface with the Central Control Unit 

The CCU communicates with the DCUs over the EtherCAT fieldbus. The standardized EtherCAT 

protocol is completely hardware implemented and there are now many ASICs available, which 
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Figure 5.18 SPI-based interface for communication with the adjacent modules 

DAT_OR, CLK_OR SPI data and clock output signals towards the DCU on the right side 
DAT_OL, CLK_OL SPI data and clock output signals towards the DCU on the left side 
EN_IR, EN_OR Transmit-enable input and output signals from/to the DCU on the right side 
EN_IL, EN_OL Transmit-enable input and output signals from/to the DCU on the left side 
DATAI, CLKI SPI data and clock input signals 

Table 5.3 Signal description of the SPI-based interface 
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implement it. For this application the slave controller ET1100 was used to transform the DCU in an 

EtherCAT slave unit [59]. It has three different process data interfaces (PDI): 

 A 16/8-bit asynchronous microcontroller interface 

 An SPI interface 

 A 32-bit digital I/O interface 

Only one PDI interface can be used at a time. The EtherCAT slave-board FB1111-140 from Beckhoff 

offers an easy access to the microcontroller interface of this ASIC and was used here for a fast 

integration of EtherCAT in the structure of the DCU. The DSP sees the ESC as a common memory 

unit. The external memory interface of the DSP allows the connection of up to three different 

memory units. One memory unit is the 64 kWord RAM already available on the DSP-board, the 

second unit is the ESC and the third unit is a 128 kByte Flash chip, which serves as an additional 

non-volatile memory for general data. These three memory units share the same non-multiplexed 

address and data buses and are accessed by the DSP over different chip-select signals. The 

EtherCAT interface along with the other two memory interfaces is shown in Fig. 5.19. The 

abbreviations in Fig. 5.19 are explained in the Table 5.4. 
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Figure 5.19 The EtherCAT and memory interfaces for the DSP 

CS Chip-select signal (active low) 
WR Memory write-access signal (active low) 
RD Memory read –access signal (active low) 

Ready Signal used by the ESC to extend the active time of the read/write access 
NMI Non-maskable interrupt signal used by the ESC for high-priority events (active low)  

A[16:0] Address signals 
D[15:0] Data signals 
Latch Signal used by the ESC to time-stamp different DSP actions 
Sync Signal generated at specific system times according to an internal clock of the ESC 

Table 5.4 Signal description of the EtherCAT interface for the DSP 
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The external Flash is 5 V compatible. The ESC and the DSP are 3.3 V compatible. A voltage 

transceiver is required for the data lines between the DSP and the external Flash. For the address 

lines between them, a voltage translation wasn’t necessary because the TTL inputs of the Flash are 

compatible with the LVTTL outputs of the DSP. The signal wiring between the DSP board and the 

ESC board reaches lengths of up to 30 cm and is situated in the proximity of the IPM, being 

therefore exposed to high EMI values. Line drivers had to be implemented to amplify the power of 

these signals. 

The process memory of the ESC has 8 kByte, so that 13 address lines were used to access it. 

Most part of the EtherCAT interface is implemented using the external memory interface of the 

DSP. The last two signals of the table 5.4, Latch and Sync, are not part of this XINTF, as shown in 

Fig. 5.19. Latch is a general-purpose output signal and Sync is connected to the capture unit of the 

EVM. Usually these signals are dedicated to the “Distributed Clock” unit of the ESC. 

At the physical layer, the interface between the DCUs and CCU is specified by the IEEE 802.3 

standards, which implies voltage isolation between the communication nodes by pulse 

transformers. These transformers are typically rated for an isolation voltage of 1.5 kV. This is also 

the case for the network board of the EtherCAT master and the above mentioned EtherCAT slave-

board. This voltage is of course sufficient for the connection between two adjacent modules, 

which have the ground potential connected to the same negative rail of the DC-link. But because 

the potential of the EtherCAT master unit (PC) is at PE, the connection to the first EtherCAT slave-

unit must guarantee the same isolation voltage level as the IPM, namely 2.5 kV. This value 

depends on the voltage blocking value of the IGBTs [60] and corresponds to the standard IEC1287. 

For this reason, a simple network-isolating board having a 4 kV pulse transformer was 

implemented as shown in Fig. 5.20, in order to connect the master PC with the first EtherCAT 
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Figure 5.20 The implemented network isolator 
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slave unit in the system. The centre taps of the pulse transformers are connected to a virtual local 

ground over 75 Ω terminators in order to reduce the common-mode interference on the two pairs 

of active wires. The unused pairs of signals are tied directly, also over 75 Ω terminators, to the 

same virtual ground. The virtual ground and the shield are usually connected to PE over a 10 

nF/500 V capacitor in parallel to a 1 MΩ resistance. For the first EtherCAT slave unit, the isolating 

property of the 1.5 kV on-board transformer is eliminated by a direct connection of the negative 

ground potential (-280 V) with the shield. Only the 4 kV transformer will support therefore 

eventual voltage stresses. This additional transformer will insert obviously more power losses on 

the transmission path and stress on the PHYs. The insertion-loss value as well as the return-loss 

and cross-talk values have been determined for the topology in Fig. 5.20 according to the 

IEEE802.3 specifications and they are not exceeding the imposed values. 

The block diagram with the structure of the modular servo-controller is shown in Fig. 5.21. 

5.3.2. The Central Control Unit 

An ordinary PC represents the CCU. It contains the software protocol stack required for the 

EtherCAT master. It needs at the hardware level only a standard network board with direct 

memory access (DMA) and the processor should have a low jitter (typically bellow 2 μs). No other 

special boards are required. At the software level the CCU contains the main following tools: 

 TwinCAT, which implements the EtherCAT master functionality 

 The operator interface, which includes the algorithms for motion coordination and 

monitoring (Visual Basic application) 

 The CCS (Code Composer Studio), which is used for programming and debugging of the 

DSPs in the initial test phases. It is also used to download program code in the internal 

Flash memory of the DSPs 

 MATLAB, which is used for off-line data analysis and representation 

5.4. The Position Sensor Unit 

The sensor unit is made of an incremental sensor module and a 2 m-long linear magnetic scale, 

which is mounted along the guideway and has a fixed pole pitch of 1 mm. The sensor module 

contains an anisotropic magneto-resistive (AMR) position sensor and a high-resolution 13bit 

interpolator. The measuring concept is based on the AMR-effect found in ferromagnetic materials, 

where the resistance of the material will change together with the angle between the current 

flowing through the material and a crossing magnetic field. The sensor module is mounted on the 

vehicle, so that the active head of the sensor is perpendicular and as close as possible to the 

magnetic scale. In this case the current vector is constant and the movement of the vehicle along 

the magnetic scale will produce the changing magnetic field. Two resistance bridges of the sensor, 

shifted in space by 90°, generate sine and cosine signals, which are afterwards digitally converted 

by the interpolation circuit and supplied at the output of the sensor module as quadrature 

encoded signals. The resolution of the sensor module is configured to 200 increments/mm. 
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This sensor unit is cheap, accurate and was easy to interface it with the DSP, but it is not an end 

solution for topologies with passive vehicles. For such topologies the optical sensors are the most 

common solution nowadays in industrial applications. They are very accurate but also very 

expensive (price/covered length). A cost-effective alternative, namely the capacitive sensor, has 

been recently investigated in [61], [62]. Beside the capacitive sensor, another relative cheap 

solution is the magnetostrictive sensor. It is an absolute sensor and has the advantage that it can 

measure the position also in curves, but it cannot deliver the actual position at every 100 μs [63].
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Figure 5.21 Structure of the modular servo-controller 
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6. Control results 

As shown in Fig. 2.8 the position of the vehicle can be measured by means of a linear sensor or it 

can be estimated by using an EMF-based method, this if the vehicle moves with a certain minimal 

speed. Therefore, the EMF-based method alone cannot be used. A sensor is necessary for starting 

and stopping the vehicle. By differentiating the sensor’s position, the speed of the vehicle is 

obtained. The value of the speed has a big noise component and must be filtered before being used 

as a feedback for the speed controller. 

6.1. Sensor based control 

6.1.1. Characteristic of the induced voltages 

Before testing the control algorithm, it must be assured that the induced voltages in two adjacent 

segments are in phase, as expected from the mechanical construction. Otherwise phase 

compensation would have been necessary. Therefore, an off-line measurement was realized, 

where the vehicle was moved with an approximately constant speed during the transition 

between the first two segments. The voltage in the first motor phase, which corresponds to the 

induced voltage Sae , was measured simultaneously for both segments (Fig. 6.1). 

eS1,seg1

+

eS1,seg1

eS1,seg1 eS1,seg1

 

Figure 6.1 Off-line measurement of the induced voltages during the vehicle’s transition period over 

the first two segments 
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Fig. 6.1 shows that the induced voltages in the first two segments are in phase and that there is a 

voltage drop in the sum of the two induced voltages during the transition period of the vehicle. 

Similar results were obtained for the other two segment transitions. 

6.1.2. Position control of the vehicle 

The following experimental results show the controlled position over the four stator segments. 

The vehicle starts from the initial position on segment 1S  and crosses over segment 2S , where it 

reaches the first position reference at 700 mm. Then it crosses over to the segments 3S  and 4S  

respectively, where it finally reaches the last position reference at 1700 mm. 
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Figure 6.2 Main vehicle positions during the controlled transition over the four segments 

Position Associated action 

P1 DCU1 sends a communication request to DCU2. The communication is acknowledged. 
P2 VSI2 begins the commutation process and DCU2 controls the q-current to zero. 
P3 DCU2 becomes a slave controller and controls the q-current according to the received 

reference value from DCU1. 
 

P4 
The middle point between the stator segments. The mastership for position control 
will be transferred to DCU2 shortly after this point, when DCU1will control the q-
current according to the received reference value from DCU2. 

P5 DCU1 starts to control the q-current to zero. The vehicle covers only the second stator 
segment. 

P6 VSI1 stops its commutation process. Only VSI2 is active. 
P7 DCU2 and DCU1 interrupt their point-to-point communication. 

  
Distance Associated state 

D1 The thrust force is produced by both VSI1 and VSI2. 
D2 Both VSI1 and VSI2 are active. 
D3 Point-to-point communication running between DCU1 and DCU2. 

Table 6.1 Actions during the vehicle transition over two segments 
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As the vehicle crosses from segment 1S  to segment 2S , it passes through the positions marked in 

Fig. 6.2. Each position has an associated action as shown in Table 6.1. Similar actions occur also 

during the other two segment transitions. An algorithm implemented in the DCUs defines the 

transition process of the vehicle. This algorithm is represented by the flowchart of Fig. 6.3. 

 a) Flowchart of the transition process 

 b1) Transition between Sn  and 1Sn   seen from the point of view of DCUn 

 b2) Transition between Sn  and 1Sn   seen from the point of view of DCUn+1 

 b3) Transition between 1Sn   and Sn  seen from the point of view of DCUn+1 

The flowchart begins with the initial state, which implies that the DCU is in the EtherCAT-state 

Operational, the inverter is active and the communication with the adjacent DCU is running. 
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Figure 6.3 Description of the vehicle’s transition process between two stator segments 
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Fig. 6.3-b1) describes the transition between the segments Sn  and 1Sn   as seen from DCUn. As 

the vehicle starts from segment Sn , DCUn is a master controller (State 3). When the triggering 

position, PY , is detected, DCUn changes to State 4. The position PY  does not coincide with the 

middle point between the segments ( 4P ), but has a displacement of one millimeter. This helps to 

avoid abnormal state changes. In the same control cycle when PY  was detected, DCUn is still the 

master controller. At the end of this cycle its actual state as well as the state-variables of its 

position and speed controllers are sent to DCUn+1. In the next cycle DCUn releases the mastership 

and becomes a slave controller. DCUn+1, which at this moment is in State 2, receives the state 

number of DCUn and changes to State 3. DCUn checks though if DCUn+1 really become the master 

controller. If DCUn doesn’t receive this acknowledgment from DCUn+1 during five control cycles, 

will change to State 5. In this state DCUn will stop the vehicle and signal the CCU that an error 

occurred. In case of a successful mastership exchange, DCUn will change first to State 2 and when 

the triggering position, PZ , is detected, it will change to State 1. 

Fig. 6.3-b2) presents the same transition but as seen from DCUn+1, which begins from State 1. 

In Fig. 6.4 the reaction of the current controllers in all stator segments are shown, as well as the 

controlled speed and position. For this measurement, the speed was limited to 2 m/s 

(approximately half of the maximal speed) and the q-current was limited to about half of the 

maximal current. A 5 ms first order digital filter was used to filter the speed obtained from the 

position sensor. From the current waveforms one can recognize the transition periods where the 

inverters of two adjacent DCUs are active, as well as the periods where only the inverter of one 

segment remains active, as the vehicle completely leaves the other segment. The positions 

marked in this figure correspond to the positions of Fig. 6.2. 

From the position and speed profiles it can be seen that the transitions between the stator 

segments is smooth and bump less, i.e. the initial values of the incoming controllers were set 

correctly. 

Fig. 6.5 shows in detail the three transition periods of the vehicle: from segment 1S  to 2S , then 

from segment 2S  to 3S  and finally from segment 3S  to 4S . The state changes of the DCUs 

(according to the description in Fig. 6.3) are shown for each transition.  

 

 

State Description 

1 The q-current is controlled to zero. 
2 The DCU is a slave controller and controls the q-current according to the received 

reference value. 
3 The DCU is a master controller. It controls the position and speed of the vehicle. 
4 Intermediate state required for the transfer of the mastership between the DCUs. 
5 This state signals an error in the communication and transition process respectively. 

Table 6.2 State description for the vehicle’s transition process 
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Figure 6.4 Experimental results for the position control over four stator segments 
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Figure 6.5 Zoom of the vehicle’s transition periods 
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6.2. Sensorless, EMF-based control 

The track of the linear direct drive system contains areas where materials are processed and areas 

where materials are only transported. Along the processing areas, the presence of a position 

sensor is absolute necessary to achieve the desired positioning accuracy, precision and dynamics. 

Outside these processing areas a sensorless, EMF-based, control is used instead in order to save 

costs. This idea is illustrated in Fig. 6.6 on the basis of a simple processing line example. 

 

Further in this subchapter the term sensorless control refers only to the EMF-based control. 

 

The sensorless control algorithm contains, as shown in Fig. 2.9, 2.10 and 2.11, two functional 

blocks. The first block implements an EMF-observer, while the second block implements the 

position and speed observer. During the vehicle’s transition period, the EMFs are observed 

independently by both DCUs. The master-controller receives over the SPI-bus the EMF-value 

observed by the slave-controller, computes the sum of the EMFs and estimates the position and 

the speed of the vehicle with the help of a mechanical model of the motor. 

Starting from the equation (2.7), the estimated values of the induced voltages in the stator 

reference frame  ab  can be simply expressed by: 

Distributed
Servo-Controllers

Stator
Segment

Vehicle

Processing Station

Area with 
sensorless control

Position
Sensor Unit

 

Figure 6.6 A simple processing line example with sensor-based and sensorless control 
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The space vector of the real EMF-voltage is given by: 

The equation (6.4) shows the dependency of the estimated induced voltages in  dq -frame with 

the orientation error   and the position-dependent value of the flux linkage PM . The 

characteristic of the flux linkage, which implies a reduction in the sum of the EMF-values of two 

stator segments during a transition period, doesn’t make possible the speed estimation based on 

the EMF-magnitude. This approach is popular for rotating PMSM, where for small values of   (< 

30°) the estimated speed can be obtained directly from the estimated value ˆsqe  and the term ˆSde  is 

controlled to zero, in order to correct the value of ̂ . However, this is not possible for linear 

segmented motors and the speed-estimation must be based on the EMF-phase. 

The design of the EMF-observer starts from equation (6.1). It is a disturbance observer based on 

the electrical model of the motor [64]. As it is difficult to measure the phase voltages of the motor, 

the command voltages , ,,sa ref sb refu u  are used instead. The accuracy of the EMF-estimation is related 

therefore with the accuracy of these command voltages. Due to the inverter’s characteristics, e.g. 

dead-time, on-state voltages and turn-on/turn-off times, the command voltages will never 

entirely correspond to the actual values. 

The dead-time effect is a very important issue for this application, as it will be explained further. 

6.2.1. Dead-time effect and compensation 

The dead-time is absolutely required in order to avoid a short-circuit in an inverter leg and its 

value depends on the switching devices used. It is preferable to keep it as low as possible, because 

the compensation of its effects is quite difficult. 

The effect upon the reference output voltages of the inverter, due to the dead-time, the turn-

on/turn-off times and the on-state voltage of the switching devices, is shown in Fig. 6.8. During 

the dead-time, the potential at the motor terminals is determined by the polarity of the phase 
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Figure 6.7 Vector diagram of the induced voltages 
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currents. A positive current causes a voltage loss while a negative current causes a voltage gain at 

the motor terminals. 

where , ,, ,DEAD C ON C OFFt t t  are the dead-time and the turn-on and turn-off times of the IGBT. ,di txU U  

are the on-state voltages of the diode and the IGBT. The switching time 1ont  is calculated according 

to equation (2.20). 

The average value of the voltage deviation in one control cycle, according to the sign of the phase 

current, is expressed as: 

The corresponding time deviation 1DVT  is: 
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Figure 6.8 Distortion of the inverter’s output reference voltages 
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where dtU  is the average on-state voltage in a control cycle of both diodes and IGBTs. Similarly, 

the deviation voltages for the other two phases can be determined. According to the data-sheet of 

the PS22056 IPM, a dead-time period of at least 3.3 μs is required. The dead-time generator of the 

DSP was set at 3.4 μs. This large dead-time value corroborated with the high DC-link voltage and 

switching frequency values, leads to very high deviation voltages with values between ±20 V. 

There are many proposals in the literature about how to calculate the compensation values for the 

inverter’s output voltage. Many considerations start from the idea of adding compensation 

voltages to the command voltages of the current controllers [65]-[70]. Another approach was 

presented in [71], where the compensation is realised by the adjustment of the symmetric PWM 

pulses in every control cycle. 

Remark: In spite of the large dead-time (3.4 μs) the current control loop is able to generate close 

to sinusoidal current waveforms even without any compensation in the control loop. This is 

shown in the measurement of Fig. 6.10a. But the large dead-time is a big problem for the EMF-

observer and a compensation is for the observer mandatory. Fig. 6.9 shows that the compensation 

is used for the EMF-observer, but the current control loop needs no compensation. 

The compensation methods are confronted with one or many of the following impediments: 

 An accurate measurement of the current polarity is difficult due to the switching noise and 

the current clamping effect 

 The characteristics of the inverter and the motor parameters are changing along with the 

operating conditions 

 Variation of the DC-link voltage 

The method presented in [70], depends only on the electrical model of the PMSM, as it 

implements a disturbance observer in order to calculate the deviation voltages. Anyhow, this 

method cannot be used in this case because the observer requires the EMF values. 

Here an approach similar with the ones in [67] and [69] was adopted, where the compensation 

voltage is adjusted according to the load current. This is necessary because of the variation of the 

UD T0 tDEAD tC,ON tC,OFF UDV 

560 V 100 μs 3.4 μs 0.9 μs 0.9 μs ≈ (±20 V) 

Table 6.3 Characteristics of the VSI 
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Figure 6.9 Dead-time compensation for the implemented EMF-Observer 
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turn-off time due to the parasitic capacitance of the switching devices [69]. 

For the measurement in Fig. 6.10 and 6.11 the vehicle was removed from the stator segment (no 

EMF) and the frequency of the orientation angle was set at 10 Hz. It can be seen that the 

inaccuracies in the computation of the deviation voltages are still present and do not depend on 

the load-current. Both Fig. 6.10 and Fig. 6.11 show experimental results. An exact compensation 

would require a precise current measurement, a precise model of the diodes and switches and DC-

link voltage measurement. The worst-case will always occur at small load-currents and small 

values of the induced voltage (small speed).  

iS1 iS2 iS3 iS1 iS2 iS3 

uSa ref uSb ref uSaC uSbC

 
a) Uncompensated command voltages b) Compensated command voltages 

Figure 6.10 Uncompensated and compensated command voltages for a phase current of 1 A 

uSa ref

iS1 iS2 iS3 iS1 iS2 iS3 

uSb ref uSaC uSbC

 
a) Uncompensated command voltages b) Compensated command voltages 

Figure 6.11 Uncompensated and compensated command voltages for a phase current of 2 A 
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6.2.2. The EMF observer 

The EMF-observer is a disturbance observer based on the electrical model of the motor. Starting 

from the equation (2.7) the equivalent linear second order system with disturbance can be defined 

in matrix form as: 

The disturbance model is defined by the following equations: 

The term PM  doesn’t depend on time and assuming that the speed variation over a control cycle 

is very small, the time derivative of the induced voltages can be written as: 

From (6.8) and (6.11) the model of the observer is built: 

where 2I  is the unity matrix. H  and G  are the gain matrixes of the observer and Cu  is the matrix 

of the compensated voltages. 

The matrix Ad  in the equation (6.12) implies that the estimated speed v̂  equals the real speed v , 

which depends on the mechanical observer. The coupling between the observers is eliminated by 

the assumption in the equation (6.13). 
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The equations describing the observer become then: 

The correction term of the observer is based on the difference between the measured and the 

estimated current. In order to simplify the model, the observer’s gains are selected as: 11 22h h  

and 11 22g g . Now the values of these coefficients are determined by matching the coefficients of 

the characteristic polynomial of (6.12) with the negative roots of a 4th order polynomial. The roots 

are chosen as real, double roots and the gains of the observer are selected as in [72]: 

where 1 2,p p  are the roots of the mentioned polynomial.  

The freedom in selecting the values of 1 2,p p  is limited by the value of the orientation error   

produced by the assumption in (6.13). The orientation error should be 30   , otherwise a 

significant decrease in the amplitude of the electrical force occurs. As deduced in [72], the 

limitation of the orientation error is set by: 

Equation (6.16) gives the ratio between the gain factors 11h  and 11g , according to an imposed limit 

of the orientation error (here set at 25°). The gain 11h  defines the dynamic of the observer. 

Because the quality of the command voltages ,SaC SbCu u  is strongly affected by noise, the dynamic 

of the observer had to be diminished in order to increase the filtering effect of the observer. 

After the estimation of the induced voltages, the estimated orientation angle was computed as: 

The term ˆSae   is equal to ˆSae  when the vehicle is completely inside a stator segment and with the 

sum of both induced voltages, i.e. , , 1ˆ ˆSa n Sa ne e   during the vehicle’s transition between the 

segments Sn  and 1Sn  . The same applies for ˆSbe  . 

The sensorless method was tested on two segments, as shown in Fig. 6.12. 
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The vehicle starts from the initial potion 0P  and is accelerated until the position PS  is reached, 

when the sensorless control is activated. At this position the speed of the vehicle is big enough to 

assure a reliable EMF-estimation. The sensorless motion of the vehicle ends at the position PR . 

Between the positions PC  and PD , the EMF-values in both segments are added to build the 

values of ˆ ˆ,Sa Sbe e  . The positions 3P  and 5P  are defined in the table 6.1. The flowchart of the 

transition process from Fig. 6.3 remains valid for the sensorless control too. 

The Fig. 6.13 shows the estimated EMF-values and orientation angles for both stator segments. For 

the speed control the position sensor was used. In the interval defined by the positions PC  and 

PD , the magnitude reduction of ˆ ˆ,Sa Sbe e   during the transition period can be seen. In the control 

cycle when the mastership is changed between the two DCUs, the initial value of the angle 2
ˆ

E  is 

set to the actual value of the angle 1̂E . The estimated angles 1 2
ˆ ˆ,E E  , and therefore the 

estimated position ˆEx , have a high noise level, especially during the transition period. 

6.2.3. The speed and position observer 

The speed and position observer (mechanical observer) is designed starting from the mechanical 

model of the motor, which is defined as: 

where Cb  is the friction coefficient and LF .is the load force. 

The block diagram of the observer is shown in Fig. 6.14. It is defined by the following equation: 

S

S

S

PS PC

P5

S1 S2

P0 P3

S SS

S

PRPD

Sensorless area

Adding
EMF

Initial start
position

S

 

Figure 6.12 Sensorless transition between two adjacent stator segments 
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This type of observer is usually used for speed estimation, when the position measurement has a 

low resolution or a high noisy level. Here, the observer’s input position is not coming from a 

sensor, but from the EMF observer and has the value ˆEx . The deviation between ˆEx  and the actual 

position is similar to a noisy position measurement, which has to be filtered by the observer. The 

correction term of the observer is based on the difference between the position ˆEx  and the 

filtered position ˆMx . The gain values of the observer are determined by means of the estimation 
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Figure 6.13 EMF-based estimation of the orientation angle (experimental results) 
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error model of (6.20), where ˆ
L L LF F F  , ˆv v v   and ˆ ˆE Mx x x  . 

The characteristic polynomial of the error model is: 

After matching the coefficients of the polynomial of (6.21) with a third order polynomial with the 

roots 1 2 3, ,p p p , the values of the observer gain are: 

The mass of the vehicle is 6.5 Kg and the friction coefficient Cb  has the value of 8 Kg/s. The values 

of 1 2 3, ,p p p  are calculated so that they match the poles of a third order, low-pass Butterworth 

filter. Due to the high noise level of the calculated position ˆEx , the cutoff frequency of the 

mechanical observer must be set very low. The filtering time constant of the Butterworth filter 

was set here at 15 ms. For this reason the sensitivity to the thrust force errors is high. 

The experimental results shown in Fig. 6.15 show the values of the estimated speeds 1 2ˆ ˆ,v v , 

estimated orientation angles 1 2
ˆ ˆ,M M   and the error ˆMx x x    in the position estimation, for 

the sensorless control of the vehicle over two segments. 

The orientation angles 1 2
ˆ ˆ,M M   are defined as: 
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Figure 6.14 The block diagram of the position and speed observer 
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When the vehicle is in the middle of the stator segments the following transitions occur: 

The error for the position estimation is smaller than 5 mm, which means that for a pole pitch 

36 mm  , the error for the orientation angle ˆ 25M       . When the mastership is 
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Figure 6.15 Speed sensorless control over two stator segments (constant speed) 
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Figure 6.16 Orientation angle displacement and estimated speed error (zoom of Fig. 6.15) 
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changed between the two DCUs, the initial value of the speed 2v̂  is set to the actual value of the 

speed 1̂v . The Fig. 6.16 shows (for the same measurement from Fig. 6.15) that, as expected, the 

error for the estimated speed has the biggest value during the transition period. The 

commutation between the sensor-based and the sensorless control occurs at 0.6 m/s when the 

estimated EMF values are accurate enough for a good position and speed estimation. 

In the case presented in Fig. 6.17, the vehicle is accelerated, shortly after it completely entered the 

second segment, from 1.5 m/s to 2 m/s. Also in this case the error for the position estimation 

remains smaller than 5 mm. Fig. 6.17 presents experimental results. 
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Figure 6.17 Speed sensorless control over two stator segments (acceleration) 
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7. Conclusions 

The purpose of the work was to design a linear direct drive system for material handling and 

factory automation with totally distributed power and control stages. The system was designed to 

assure a high degree of modularity and scalability with minimal implementation costs. The 

characteristics and the performance of the designed system were tested on a small-scale 

experimental set-up. Among the multiple topologies of linear motors, the single-sided, long-stator 

PMLSM proved to be the most suitable solution. 

 

For the power stage, the trend nowadays in electrical drives is to use compact power electronic 

modules with integrated gate-drivers and protection circuits. At the beginning of the work, the 

selected IPM was one of the few solutions available on the market in its power class. Beside the 

advantages of high-integration and low costs, the selected IPM has also some disadvantages. The 

biggest disadvantage is represented by the large dead-time, which influences the dynamic and 

performance of the sensorless control, as shown in chapter 6. The compact structure leads to 

higher capacitance values inside the module. It was demonstrated that the electronic of the servo-

controllers, tied to the negative rail of the DC-link, functions properly under noisy conditions. A 

direct connection between the inverter and the controller was therefore possible. A safe current 

measurement, even at high modulation indexes, could be realised by using a shunt resistor in the 

low side of each inverter leg. Depending on the average value of the modulation index, continuous 

or discontinuous modulation methods can be used.  

 

At the information processing stage, the hard real-time communication demands between the 

adjacent servo-controllers was solved by the proposed point-to-point connection. Here, the 

common-mode voltage problems of the RS485 devices were identified and analysed. In this case 

the value of this voltage was not of concern due to the low effective inductance of the bus bar 

system. The bus bar system can be of course further optimised, to reach smaller inductance 

values. Solutions have been also presented in the case that the common-mode voltage exceeds 

though the maximal specified values. 

 

The task of motion coordination and monitoring was realised by means of an RTE-based fieldbus. 

EtherCAT was chosen here due to its advantages presented in chapter 4. In developing the 

communication structure of the system, the worst case was assumed, namely that all vehicles 

could be in a transition process. This led to the necessity of implementing the SPI-based 
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communication, besides the RTE-based one. A future work will be the optimisation of the motion 

coordination process with the help of special algorithms, so that the number of vehicles, which 

are in a transition state at a moment, is minimal. This would allow the utilisation of only one 

communication protocol, namely the RTE-based one. The overall costs would be therefore 

reduced and the transient voltages on the DC-link lines would be no more of concern. 

 

In chapter 6, an EMF-based sensorless control method was presented. The results of this control 

method are satisfactory for the desired requirement, namely the sensorless transportation (with 

variable speed) of materials between the processing stations. Optical sensors give the best 

position measurement accuracy inside the processing stations. Their disadvantage is though their 

high price. Future work is therefore necessary to compare the cost-effective solutions: the 

capacitive and the magnetostrictive position sensors, and improve their accuracy. 

 

 

 

 

 

 

 

 

 



 

 95 

Appendix 

A.1 Speed control loop 

 

 

The transfer function of the open control loop is: 

where ,RV RVV T  are the gain and the time constant of the PI speed controller and FT  is the time 

constant of the speed filter.  

The equivalent time constant of the current control loop is approximated by: 

The transfer function of the closed control loop is: 

The parameters of the controller are designed by using the method of symmetrical optimum: 

In order to avoid a big overshoot in the step response of the controller, a PT1 reference speed 

filter was used. The pole of this filter will compensate the zero of the closed control loop. 
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App. 1 Diagram of the speed control loop 
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A.2 Position control loop 

 

 

The transfer function of the open control loop is: 

where PV  is the gain of the proportional controller and EVT  is the equivalent time constant of the 

speed control loop. 

The transfer function of the closed control loop is: 

According to the amplitude optimum, the gain of the controller is: 

 

A.3 Analytical calculation of the parameters of a bi-plate DC-link bus bar system 

 

The effective inductance of the bus bar system at low frequencies is: 
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App. 2 Diagram of the position control loop 
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App. 3 Planar bi-plate DC-link bus 
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where r  is the relative permeability of the isolating material. 

The effective inductance of the bus bar system at frequencies above 1 MHz is defined by: 

where   is the skin depth defined as: 

  is the conductivity of the conducting plates e.g. 81.68 10  [ m]Copper     and f  is the 

frequency. 

The resistance value of the two conductors at low frequencies is: 

The resistance value of the two conductors at high frequencies is: 

 

A.4 Calculation of the initial start position of the vehicle 

 

In order to move the vehicle from standstill using the FOC, it is necessary for a PMLSM to know 

the relative position between the stator windings and the initial position of the PM (vehicle). 
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App. 4 Offset of the electrical angle of the vehicle at starting point (experimental results) 
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The offset between the reference starting position and the real position of PM can be 

approximately determined with the help of the already tuned current controllers. For this, the 

reference values of both (dq) current controllers are set to zero and assuming that 0  , the 

vehicle is moved with a relative constant speed. Because the currents are zero, the induced 

voltage in the machine will depend only on the vehicle’s speed. The current controllers will 

compensate this induced voltage, so that the voltage response Sarefu  will be almost equal to the 

induced voltage in the a-axis. The dead-time influence is very small due to the very low current 

values. The negative zero crossing points of the voltage Sarefu  will point to the real position of 

PM . If these points and the information from the position sensor are known simultaneously, the 

offset is determined as shown in Fig. App.4. 

 

A.5 Characteristics of the IPM PS22056 

 

Maximal ratings 
Name Symbol Condition Rating Unit 

Collector-emitter voltage VCES - 1200 V 
IGBT collector current IC Junction temperature TJ = 25°C ±25 A 
Junction temperature TJ - -20 to +125 °C 

Isolation voltage VISO Sinusoidal 60Hz, one minute 2500 VRMS 
Control input voltage VIN Between UP,VP,WP-VPC ;UN,VN,WN-VNC -0.5 to VD+0.5 V 

 
Static and switching characteristics 

Name Symbol Condition Min. Typ. Max. Unit 
Collector emitter 

saturation voltage 
VCES VD = VDB = 15V 

VIN = 5V, IC = 25A, TJ = 25°C 
- 2.7 3.4 V 

Diode forward voltage VF VIN = 0, IC = -25A - 2.5 3.0 V 
tON 0.8 1.5 2.2 
tRR - 0.3 - 

tC(ON) - 0.6 0.9 
tOFF - 2.8 3.8 

 
 

Switching times 

tC(OFF) 

VCC = 600V 
VD = 15V, VDB = 15V 

IC = 25A 
TJ = 125°C 

Inductive load - 0.6 0.9 

 
 

μs 

FO pulse width tFO CFO = 22nF 1.6 2.4 - ms 
HVIC circuit current ID VD = VDB = 15V - - 1.3 mA 

 
Recommended operation values 

Name Symbol Condition Min. Typ. Max. Unit 
Supply voltage VCC Between P-NU, NV, NW 350 600 800 V 

Control supply voltage VD Between VP1-VPC and VN1-VNC 13.5 15 16.5 V 
Control supply voltage VDB Between VU,V,WFB-VU,V,WFS 13.5 15 16.5 V 

Dead-time tDEAD For each input control signal 3.3 - - μs 
PWM frequency fS Junction temperature TJ < 125°C - - 15 KHz 
Output current IRMS VCC = 600V, fS = 15KHz, VD = 15V - - 9.2 A 

PWON - 1.5 - - μs Minimum PWM pulse 
width PWOFF Collector current IC < 25A 2.1 - - μs 
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A.5 Photos of the experimental set-up 

 

 

Vehicle
Servo-

Controller
(DCU+VSI)

CCU

DC-link bus
4 KV LAN
Magnetics

Line Connection
& Rectifier

Motor
Cable

 

DSP
Board

E
th

er
C

A
T

B
oa

rd

F
ro

m
S

en
so

r

Point-to-Point
 Connection

DC Link
Capacitors

 



 

 100 

Bibliography 

[1]  Laithwaite E. R., ”Linear Electric Motors”, M&B Technical Library, London 1971; ISBN 

0263515869 

[2]  Boldea I., Nasar A., ”Linear Electric Actuators and Generators”, Cambridge University Press, 

New York 1997; ISBN 0521480175 

[3]  Gieras F., Piech J., ”Linear Synchronous Motors-Transportation and Automation Systems”, CRC 

Press, Florida - Boca Raton 2000; ISBN 0849318597 

[4]  Gurol H., ”General Atomics Linear Motor Applications: Moving Towards Deployment”, Proceedings 

of the IEEE, Vol. 97, No 11, November 2009, pp. 1864-1871 

[5]  Hellinger R., Mnich P., ”Linear Motor-Powered Transportation: History, Present Status and Future 

Outlook”, Proceedings of the IEEE, Vol. 97, No 11, November 2009, pp. 1892-1900 

[6]  Park D. Y., Shin B. C., Han H., ”Korea’s Urban Maglev Program”, Proceedings of the IEEE, Vol. 

97, No 11, November 2009, pp. 1886-1891 

[7]  Gustafsson J., ”Vectus-Intelligent Transport”, Proceedings of the IEEE, Vol. 97, No 11, 

November 2009, pp. 1856-1863 

[8]  Cassat A., Kawkabani B., Perriard Y., ”Power Supply of Long Stator Linear Motors-Application to 

Multi Mobile System”, IEEE annual meeting of Industry Application Society, IAS 2008 

[9]  Zhu Y., Lee S., Cho Y., ”Topology Structure Selection of Permanent Magnet Linear Synchronous 

Motor for Ropeless Elevator System”, IEEE International Symposium on Industrial Electronics, 

ISIE 2010 

[10] Perreault, B., ”Optimizing Operation of Segmented Stator Linear Synchronous Motors”, 

Proceedings of the IEEE, Vol. 97, No 11, November 2009, pp. 1777-1785 

[11] Henning U., Hoke D., Nothhaft J., ”Development and Operation Results of TRANSRAPID 

Propulsion System”, International Conference on Magnetically Levitated Systems and Linear 

Drives, Maglev 2004 

[12] Mutschler P., Silaghiu S., ”Linear Drives for Material Handling and Processing: A Comparison of 

System Architectures”, 34th annual conference of IEEE, IECON 2008 

[13] Corsi N., Coleman R., Piaget D., ”Status and New Development of Linear Drives and Subsystems”, 

6th International Symposium on Linear Drives for Industrial Applications, LDIA 2007 



 

 101 

[14] http://www.parker.com/portal/site/PARKER|, “Parker Linear Motor Solutions – Catalog 

8092/USA”, SectionA.pdf (February 2012) 

[15] Fernandes Neto T. R., Mutschler P., ”Short Primary Linear Synchronous Motor Drive with an 

Ultracapacitor Regenerative Braking System for Material Handling and Processing”, 8th 

International Symposium on Linear Drives for Industrial Applications, LDIA 2011 

[16] Mihalachi M., Leidhold R., Mutschler P., ”Linear Drive System for Combined Transportation and 

Processing of Materials”, 35th annual conference of IEEE, IECON 2009 

[17] Purcarea C., Kedarisetti J., et al., ”A Motor-Friendly and Efficient Resonant DC-Link Converter”, 

13th European Conference on Power Electronics and Applications, EPE 2009 

[18] Ranky P. G., ”MagneMotion’s Linear Synchronous Motor (LSM) Driven Assembly Automation and 

Material Handling System Designs”, Assembly Automation Journal, Vol. 27, No. 2, 2007, pp. 97-

102 

[19] http://www.magnemotion.com/industrial-automation/QS_layout.cfm, (February 2012) 

[20] Zesheng D., Boldea I., et al. ”Fields in Permanent Magnet Linear Synchronous Machines”, IEEE 

Transactions on Magnetics, Vol. 22, No 2, March 1986, pp. 107-112 

[21] Leonhard W., ”Control of Electrical Drives”, 3rd Ed., Springer-Verlag, 2001; ISBN 3-540-41820-2 

[22] Denkena B., Tönshoff H. K., et al., ”Analysis and Control/Monitoring of the Direct Linear Drive in 

End Milling”, International Journal of Production Research, Vol. 42, No. 24, December 2004, 

pp. 5149-5166 

[23] Benavides R., Mutschler P., ”Compensation of Disturbances in Segmented Long Stator Linear 

Drives using Finite Element Models”, IEEE International Symposium on Industrial Electronics, 

ISIE 2006 

[24] Ogasawara S., Akagi H., et al., ”A Novel PWM Scheme of Voltage Source Inverters based on Space 

Vector Theory”, Archiv für Elektrotechnik, Springer-Verlag, Vol. 74, 1990,  

[25] Holtz J., Beyer B., ”Optimal Pulsewidth Modulation for AC Servos and Low-Cost Industrial Drive”, 

IEEE Transactions on Industry Applications, Vol. 30, No. 4, August 1994, pp. 1039-1047 

[26] van der Broeck H., Skudelny H. C., ”Analysis and Realization of a Pulsewidth Modulator based on 

Voltage Space Vectors”, IEEE Transactions on Industry Applications, Vol. 24, No. 1, February 

1988, pp. 142-150 

[27] Reinold H., ”Optimierung dreiphasiger Pulsdauermodulationsverfahren”, doctoral dissertation, 

Verlag der Augustinus Buchhandlung, Aachen1996, ISBN 3-86073-235-8 

[28] Schröder J., ”Bezugsspannung zur Umrichtersteuerung”, ETZ-B, Vol. 27, No. 7, 1975, pp. 151-152 

[29] Leidhold R., ”Position Sensorless Control of PM Synchronous Motors based on Zero-Sequence Carrier 

Injection”, IEEE Transactions on Industrial Electronics, Vol. 58, No. 12, 2008, pp. 5371-5379 



 

 102 

[30] Holtz J., ”Acquisition of Position Error and Magnet Polarity for Sensorless Control of PM 

Synchronous Machines”, IEEE Transactions on Industry Applications, Vol. 44, No. 4, August 

2008, pp. 1172-1180 

[31] Boldea I., Paicu M. C., et al., ”Active Flux Concept for Motion-Sensorless Unified AC Drives”, IEEE 

Transactions on Power Electronics, Vol. 23, No. 5, September 2008, pp. 2612-2618 

[32] Linke M., Kennel R., et al., ”Sensorless Speed and Position Control of Synchronous Machines using 

Alternating Carrier Injection”, IEEE International Conference on Electric Machines and Drives, 

IEMDC 2003 

[33] Zurawski R., ”The Industrial Communication Technology Handbook”, CRC Press 2005; ISBN 978-

0-8493-3077-3 

[34] Decotignie J., ”The Many Faces of Industrial Ethernet [Past and Present]”, IEEE Industrial 

Electronics Magazine, Vol. 3, No. 1, March 2009, pp. 8-19 

[35] Rostan M., Stubbs J. E., et al., ”EtherCAT enabled Advanced Control Architecture”, IEEE/SEMI 

Advanced Semiconductor Manufacturing Conference, ASMC 2010 

[36] Texas Instruments, ”TMS320x281x DSP Multichannel Buffered Serial Port Reference Guide”, 

Literature Number SPRU061C, Revised November 2007 

[37] Silaghiu S., Mutschler P., ”Communication Topology in a Modular Servo-Drive System based on 

Long Stator Permanent Magnet Synchronous Linear Motor”, 5th IET International Conference on 

Power Electronics, Machines and Drives, PEMD 2010 

[38] Texas Instruments, ”RS-422 and RS-485 Standards Overview and System Configurations”, 

Literature Number SLLA070D, Revised May 2010 

[39] Bakran M. M., Helsper M., et al., ”Multicommutation of IGBTs in Large Inverters”, 11th European 

Conference on Power Electronics and Applications, EPE 2005 

[40] Bock B., ”Switching IGBTs in Parallel Connection or with Enlarged Commutation Inductance”, 

Doctoral dissertation, Bochum 2005, URL http://www-brs.ub.ruhr-uni-

bochum.de/netahtml/HSS/Diss/BockBurkhard/diss.pdf  

[41] Skibinski G. L., Divan D. M., ”Design Methodology and Modelling of Low Inductance Planar Bus 

Structures”, 5th European Conference on Power Electronics and Applications, EPE 1993, pp. 

98-105 

[42] Zare F., Ledwich F. G., ”Reduced Layer Planar Busbar for Voltage Source Inverters”, IEEE 

Transactions on Power Electronics, Vol. 17, No. 4, July 2002, pp. 508-516 

[43] Caponet M. C., Profumo F., et al., ”Low Stray Inductance Bus Bar Design and Construction for 

Good EMC Performance in Power Electronic Circuits”, IEEE Transactions on Power Electronics, 

Vol. 17, No. 2, March 2002, pp. 225-231 



 

 103 

[44] Decotignie J. D., ”A perspective on Ethernet-TCP/IP as a Fieldbus”, IFAC 4th International 

Conference on Fieldbus Systems and their Applications, FeT 2001 

[45] Thomesse J. P., ”Fieldbus Technology in Industrial Automation”, Proceedings of the IEEE, Vol. 

93, No 6, June 2005, pp. 1073-1101 

[46] Felser M., ”Real-Time Ethernet-Industry Prospective”, Proceedings of the IEEE, Vol. 93, No 6, 

June 2005, pp. 1118-1129 

[47] Decotignie J. D., ”Ethernet-Based Real-Time and Industrial Communications”, Proceedings of the 

IEEE, Vol. 93, No 6, June 2005, pp. 1102-1117 

[48] Zurawski R., ”Embedded System Handbook-Networked Embedded Systems”, CRC Press 2009; ISBN 

978-1-4398-0761-3, Part IV, Chapter 21 

[49] EtherCAT Technology Group (ETG), ”EtherCAT Communication Specification”, Member 

Download Area, Version 1.0 2004 

[50] Beckhoff Automation, ”The Windows Control and Automation Technology” URL 

(http://www.beckhoff.com/default.asp?twincat/default.htm), Link retrieved in 2011 

[51] Texas Instruments, ”Running an Application from Internal Flash Memory on the TMS320F28xxx 

DSP”, Literature Number SPRA958J, Revised June 2011 

[52] Texas Instruments, ”TMS320C28x Assembly Language Tools-User Guide”, Literature Number 

SPRU513D, Revised May 2011 

[53] Majumdar G., Iwasaki M., et al., ”Compact IPMs in Transfer Mold Packages for Low-Power Motor 

Drives”, Proceedings of the International Symposium on Power Semiconductor Devices and 

ICs, ISPSD 2004 

[54] Motto E., Donlon J., et al., ”A 1200V Transfer Molded DIP-IPM”, POWEREX Technical Library 

URL (http://www.pwrx.com/Library.aspx?s=1^0|2^65|3^0|), article published in 2004 

[55] Kolar W. J., Ertl H., et al., ”Influence of the Modulation Method on the Conduction and Switching 

Losses of a PWM Converter System”, IEEE Transactions on Industry Applications, Vol. 27, No. 6, 

December 1991, pp. 1063-1075 

[56] Kolar W. J., Round S. D., ”Analytical Calculation of the RMS Current Stress on the DC-link 

Capacitor of Voltage-PWM Converter Systems”, IEE Proceedings of Electric Power Applications, 

Vol. 153, No. 4, July 2006, pp. 535-543 

[57] Texas Instruments, ”TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS32C2811, 

TMS320C2812”, Literature Number SPRS174S, Revised March 2011 

[58] Texas Instruments, ”C28x IQmath Library, A Virtual Floating Point Engine”, Literature Number 

SPRC990, Revised June 2010 



 

 104 

[59] Beckhoff Automation, ”ET1100 Hardware Data Sheet”, URL 

(http://www.beckhoff.de/german/download), Version 1.8, Revised 2010 

[60] Rüedi H., Köhli P., ”Driver Solutions for High-voltage IGBTs”, PCIM Europe, Power Electronics 

Magazine, April 2002 

[61] Mihalachi M., Mutschler P., ”Position Acquisition for Long Primary Linear Drives with Passive 

Vehicles”, IEEE annual meeting of the Industrial Applications Society, IAS 2008 

[62] Khong P. C., Leidhold R., et al., ”Magnetic Guiding and Capacitive Sensing for a Passive Vehicle of 

a Long-Primary Linear Motor”, 14th International Conference on Power Electronics and 

Motion Control, EPE/PEMC 2010 

[63] Rettenmaier T., ”Positionserfassung und Kommunikation zwischen zwei DSPs in modularen 

Servoantriebssystemen”, Diplom Thesis Nr. 1349, Darmstadt University of Technology, 

Institute of Power Electronics and Control of Drives, 2009 

[64] Tomita M., Senjyu T., et al., ”New Sensorless Control for Brushless DC Motors using Disturbance 

Observers and Adaptive Velocity Estimations”, IEEE Transactions on Industrial Electronics, Vol. 

45, No. 2, April 1998, pp. 274-282 

[65] Holtz J., ”Pulsewidth Modulation for Electronic Power Conversion”, Proceedings of the IEEE, Vol. 

82, No 8, August 1994, pp. 1194-1214 

[66] Seung-Gi J., Min-Ho P., ”The Analysis and Compensation of Dead-Time Effects in PWM inverters”, 

IEEE Transactions on Industrial Electronics, Vol. 38, No. 2, April 1991, pp. 108-114 

[67] Munoz A. R., Lipo T. A., ”On-line Dead-Time Compensation Technique for Open-Loop PWM-VSI 

Drives”, IEEE Transactions on Power Electronics, Vol. 14, No. 4, July 1999, pp. 683-689 

[68] Wang G. L., Xu D. G., ”A Novel Strategy of Dead-Time Compensation for PWM Voltage-Source 

Inverter”, 23rd IEEE annual Conference and Exposition on Applied Power Electronics, APEC 

2008 

[69] Urasaki N. T., Senjyu T., ”Dead-Time Compensation Strategy for Permanent Magnet Synchronous 

Motor Drive tacking Zero-Current Clamp and Parasitic Capacitance Effects into Account”, IEE 

Proceedings of Electric Power Applications, Vol. 152, No. 4, July 2005, pp. 845-853 

[70] Hyun-Soo K., Hyung-Tae M., et al., ”On-line Dead-Time Compensation Method using Disturbance 

Observer”, IEEE Transactions on Power Electronics, Vol. 18, No. 6, November 2003, pp. 1336-

1345 

[71] Leggate D., Kerkman R. J., ”Pulse-based Dead-Time Compensator for PWM Voltage Inverters”, 

IEEE Transactions on Industrial Electronics, Vol. 42, No. 2, April 1997, pp. 191-197 

[72] Leidhold R., Mutschler P., ”Speed Sensorless Control of a Long-Stator Linear Synchronous Motor 

Arranged in Multiple Segments”, IEEE Transactions on Industrial Electronics, Vol. 54, No. 6, 

December 2007, pp. 3246-3254 



 

 105 

 

Curriculum vitae 

 

 

 

 

 

Name Sorin Mihail Silaghiu 

Birth date/place 31.08.1983/Romania 

Nationality Romanian 

Educational 
achievements 

 

1997-2001 High School Liceul Nichita Stanescu, Ploiesti, Romania 

2001-2006 Study of Electrical Engineering and Computer Science at 
Transilvania University, Brasov, Romania. Specialization: 
Automation Systems and Industrial Informatics 

Professional 
experience 

 

2006 Student trainee at Siemens (Power Generation), Erlangen, Germany 

2007-2011 Assistant at the department of Power Electronics and Control of 
Electrical Drives, Darmstadt University of Technology, Germany 

since January 2012 Development engineer at GIGATRONIK company in Stuttgart, 
Germany  

  

  

  

  

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /Batang
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /Charter
    /Charter-Bold
    /Charter-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /FencesPlain
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FrontPage
    /FrontPageMedium
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /Kartika
    /Latha
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MS-Mincho
    /MSOutlook
    /MT-Extra
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /PMingLiU
    /Raavi
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /SegoeUI-Regular
    /Shruti
    /SimSun
    /Stafford
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


