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Abstract

The shortest vector problem (SVP) in lattices is related to problems in combinatorial

optimization, algorithmic number theory, communication theory, and cryptography.

In 1996, Ajtai published his breakthrough idea how to create lattice-based one-

way functions based on the worst-case hardness of an approximate version of SVP.

Worst-case hardness is one of the outstanding properties of all modern lattice-based

cryptographic schemes. Furthermore, there are no sub-exponential time algorithms

known solving SVP, even on potential, strong quantum computers. These facts

distinguish the shortest vector problem as a good basis for modern cryptography.

In order to theoretically assess the security of lattice-based cryptosystems, knowl-

edge of the asymptotic runtime of SVP solvers is an important issue. For selection

of practical parameters however, the average-case behaviour of these algorithms is

at least as important. SVP solvers are applied as subroutine in so-called lattice

basis reduction algorithms. These build the cornerstone of the fastest attacks on

lattice-based cryptosystems. Therefore, improving SVP algorithms directly affects

the fastest practical attacks on lattice-based cryptosystems.

Building on existing serial SVP algorithms, this thesis presents multiple ap-

proaches towards estimating the practical hardness of the shortest vector problem.

We employ various special hardware, ranging from multicore CPUs and graphics

cards to “supercomputers” and compute clouds. We develop parallel algorithms

and assess their practical running times and scalability. Among others, we present

our parallel version of the Extreme Pruning Enumeration algorithm, the currently

fastest SVP solver available worldwide. Our implementation set the current records

in the SVP challenge, the mostly deployed public SVP solver competition.

The influence of our work on the security of lattice-based cryptosystems is twofold.

First, we help assessing the strength of worst-case problems that build the theoretical

basement of lattice-based cryptography. Second, we show how to improve the fastest

practical attacks on these systems in the average case.

As further result, we present a variant of the sieving algorithm to solve the shortest

vector problem in ideal lattices. Ideal lattices are the most important type of lattices

in cryptography. Our algorithm is the first to exploit their special structure, allowing

us to find shortest vectors faster than in regular lattices.





Zusammenfassung

Schwere Berechnungsprobleme bilden die Grundlage für kryptographische Systeme.

In der modernen Kryptographie wird versucht, das Spektrum dieser Probleme zu

erweitern, und neben den bekannten wie dem Faktorisieren ganzer Zahlen werden

neuartige Probleme betrachtet. Darunter befindet sich auch das Problem, kürzeste

Vektoren in einem Gitter zu finden (“shortest vector problem” - SVP). Im Jahr

1996 veröffentlichte Ajtai seine bahnbrechende Idee zur Erstellung gitterbasierter

Einweg-Funktionen auf der Grundlage einer approximativen Variante des SVP. Das

Außergewöhnliche daran ist, dass das Lösen einer zufälligen Instanz des SVP be-

weisbar mindestens so schwer ist wie das Lösen der schwierigsten Instanzen eines

verwandten Problems. Diese “worst-case hardness” ist eine der herausragenden Ei-

genschaften aller moderner, gitterbasierter Kryptographie-Verfahren. Darüber hin-

aus sind keine subexponentiellen Algorithmen zur Lösung des SVP bekannt, auch

nicht für potenzielle Quantencomputer. Diese Tatsachen zeichnen das “shortest vec-

tor problem” als eine gute Grundlage für die moderne Kryptographie aus.

Um die Sicherheit gitterbasierter Kryptosysteme theoretisch zu beurteilen, ist die

Kenntnis der asymptotischen Laufzeit von SVP-Lösern wichtig. Nur so lässt sich fest-

stellen, ob die Annahmen über die Schwierigkeit von SVP gerechtfertigt sind. Für

die Auswahl praktischer Parameter ist jedoch das durchschnittliche Laufzeitverhal-

ten dieser Algorithmen ebenso wichtig. SVP-Löser werden als Unterprogramme in

sogenannten Gitter-Reduktions-Algorithmen verwendet. Diese bilden die Basis der

schnellsten praktischen Angriffe auf Kryptosysteme. Daher wirkt sich die Verbesse-

rung von SVP Algorithmen hier direkt aus.

Aufbauend auf den vorhandenen seriellen SVP-Algorithmen stellt diese Arbeit

mehrere Ansätze zur Abschätzung der praktischen Schwierigkeit des SVP vor. Da-

bei verwenden wir unterschiedliche Spezial-Hardware, wie Multicore-CPUs, Grafik-

karten oder “Supercomputer”. Wir entwickeln parallele Algorithmen und bewerten

ihre praktischen Laufzeiten. Unter anderem präsentieren wir unsere parallele Version

des “Extreme Pruning Enumeration”-Algorithmus, derzeit der schnellste verfügbare

SVP-Algorithmus weltweit. Unsere Implementierung hält die aktuellen Rekorde in

der SVP Challenge, einem öffentlichen Wettbewerb zum Vergleich von SVP-Lösern.



x Zusammenfassung

Unsere Arbeit beeinflusst die Sicherheit der Gitterkryptographie in zweierlei Hin-

sicht. Zum einen liefern wir einen Beitrag zur Beurteilung der Schwere der Worst-

Case-Probleme, die die theoretische Sicherheitsgrundlage darstellt. Zum anderen

zeigen wir, wie man die schnellsten praktische Angriffe auf diese Systeme im durch-

schnittlichen Fall verbessern kann.

Als weiteres Ergebnis präsentieren wir eine Variante des “Sieving”-Algorithmus,

der ebenfalls kürzeste Vektoren findet, für Idealgitter. Idealgitter sind die wichtigste

Art von Gittern in der Kryptographie. Unser Algorithmus ist der Erste, der die

spezielle Struktur dieser Gitter ausnutzt, so dass wir kürzeste Vektoren schneller als

in regulären Gittern finden können.
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1
Introduction

In the past ten years, lattice-based cryptography gained a lot of interest in the scien-

tific community. The security of commonly applied cryptographic systems is mostly

based on the hardness of classical number-theoretic problems, like integer factoriza-

tion or computing discrete logarithms. Lattice-based cryptosystems can instead be

based on the hardness of the shortest vector problem (SVP) or, more exactly, its

approximate version (α-SVP). Informally, SVP is the search for shortest non-zero

elements in lattices. Its approximate version searches for elements with the size of a

shortest vector multiplied by a small factor α (the approximation factor). Lattices

are discrete, additive groups in the n-dimensional real vector space, represented by

a set of basis vectors. There are different types of lattices used in cryptography.

Random lattices [GM03] are mostly used to test lattice algorithms, since they are

believed to behave the same as structured lattices in the average case. Lattice-

based cryptosystems apply so-called q-ary and ideal lattices. The latter ones allow

for smaller storage space and faster computations and are therefore the most im-

portant type of lattices for cryptographic practice. It is still unclear if their special

structure is a drawback for cryptanalysis, but so far there is no algorithm taking

advantage of this structure and ideal lattices are believed to be as secure as their

regular counterparts.

The shortest vector problem was already mentioned more than a century ago,

in works of Hermite [Her50, Her05], Minkowski [Min96], Korkine/Zolotarev [KZ73],

and Voronoi [Vor08]. The security of lattice-based cryptographic systems can be

solely based on worst-case α-SVP, which means that breaking a cryptographic sys-

tem is proven to be at least as hard as solving any instance of α-SVP in a slightly

smaller dimension (including worst-case instances). This is one outstanding property
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of lattice-based cryptography, since this type of reduction from worst-case problems

are not known in any other field of cryptographic research. It implies that there are

no weak instances of lattice-based systems.

But how hard is it to solve the shortest vector problem? The problem is proven

to be NP-hard under randomized reductions. Even the approximate version is NP-

hard for any constant approximation factor α [Ajt98, CN99, Kho05, Kho10, Mic00].

Therefore, we do not expect to find polynomial time algorithms to solve it. So far,

there is no algorithm known to solve SVP in sub-exponential time (in the input size

or the lattice dimension), even not on potential quantum computers. The fastest

deterministic algorithm known is based on Voronoi cell computations, and runs in

single-exponential time 2O(n) in the lattice dimension n [MV10a]. So-called sieving

algorithms are also single-exponential in n. They are probabilistic algorithms, i.e.,

they fail finding a shortest vector with small probability. In practice, the fastest

algorithms are exhaustive search algorithms, that perform enumeration of all lattice

vectors in a specified search region. Their asymptotic runtime is more than single ex-

ponential 2O(n) ·n n
2e , but in practice they outperform Voronoi cell-based and sieving

algorithms. Furthermore, enumeration algorithms only require polynomial storage

in n, compared to exponential space requirements for the other two algorithm types.

In the SVP challenge, a public competition for comparison of SVP solvers, enumer-

ation algorithms lead the hall of fame, especially the extreme pruning enumeration

algorithm [GNR10] excels.

SVP algorithms output a single non-zero lattice vector of smallest possible norm.

For cryptographic applications, polynomial approximation factors are more impor-

tant. The security of lattice-based cryptosystems is based on the hardness of worst-

case α-SVP with α = poly(n). Therefore, assessing the runtime of SVP and α-SVP

solvers (for polynomial α) is directly related to the security of these systems. Un-

fortunately, no algorithm is known to solve α-SVP with polynomial approximation

factors (besides exact SVP solvers).

For α exponential in the dimension n, there are algorithms that output a complete,

reduced lattice basis, so-called lattice basis reduction algorithms. These are usually

applied as a pre-computation routine before running SVP algorithms. In 1982, the

famous LLL algorithm was presented by Lenstra, Lenstra, and Lovász [LLL82]. It

computes a reduced basis, where the approximation factor of the smallest basis

vector is exponential in the dimension of the lattice. In 1991, the BKZ algorithm, a

generalization of LLL, was presented by Schnorr and Euchner [SE94]. Today, BKZ

is still the mostly used algorithm for lattice basis reduction. No runtime bound for

BKZ is proven, in practice the algorithm appears to run in time polynomial in n. The

approximation factor reached by BKZ is again exponential in the dimension. The
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Random Sampling Reduction [Sch03] and Simple Sampling Reduction [Lud05, BL06]

algorithms apply BKZ in combination with a random method that inserts short

vectors into the basis, reaching about the same approximation factor. BKZ is the

algorithm most commonly used for practical attacks on lattice-based cryptosystems.

It makes use of SVP solvers as a subroutine. by calling a SVP oracles in small

dimension. Therefore, knowing the runtime of SVP algorithms is also an important

issue for practical attacks. Besides attacks against lattice-based cryptosystems, there

are applications of lattice basis reduction in classical (non-lattice) cryptanalysis.

Among others, lattice algorithms were used to break knapsack cryptosystems [LO85,

Odl89], RSA in special settings [May10], DSA signatures in special settings [HGS01],

or solve integer factorization [May10].

Special compute hardware inserts more and more into common hardware like

desktop or mobile computers. Graphics cards, originally developed for intense com-

putations in electronic games, can be used to support the CPU for fast parallel

computations. Multicore CPUs became standard, and even accessing huge compute

clusters and compute clouds is rendered possible even for unexperienced users today.

As a result, it appears necessary to take these types of device into account when

assessing the strength of cryptosystems. Furthermore, public as well as private net-

works and infrastructures are threatened by high-end attackers, be it industrial or

governmental invaders, spending big amounts of money for special hardware.

Algorithms for SVP and α-SVP have been studied for 30 years, but develop-

ment of parallel algorithms only started recently. In his master thesis [Puj08], Pujol

writes about a parallel version of enumeration using heuristic scheduling (in french

language). The implementation [Puj06] offers the opportunity to run enumera-

tion in parallel on multicore CPU systems. The ideas of Pujol were later used in

[DHPS10] for an FPGA version of enumeration. In the field of communication the-

ory, enumeration algorithms have been implemented on ASICs, optimized for small

dimensions only [GN05, SBB08]. In [MS11] the authors present a parallel version of

the GaussSieve algorithm. In small lattice dimensions the speedups scale linear with

the dimension. In bigger dimensions however, the scaling factor decreases. Parallel

versions of the LLL algorithm are known, e.g. [Vil92, BW09].

Building on existing serial algorithms, in this thesis we go a step further and

use special compute hardware in order to speed up the computation of shortest

lattice vectors. We develop parallel algorithms and show that it is indeed possible

to fully utilize the massive compute power of modern hardware, like graphics cards

or supercomputers. With this, we set new records in the SVP challenge and present

the fastest public SVP solvers worldwide. We are able to assess the security of

lattice-based cryptosystems using our experimental results.
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We will use the term of speedup factor for practical comparison of parallel and

serial algorithms. The speedup factor of a parallel algorithm is computed as the

runtime of the serial algorithm divided by the runtime of its parallel competitor. By

scalability we measure the quality of parallelization of an algorithm. On multicore

CPU systems, we say an algorithm scales well if using 10 CPU cores it allows for

a speedup factor of 10, in other words, doubling the hardware power leads to a

runtime divided in half. Since graphics cards have a fixed number of microprocessors,

doubling the hardware amount is only possible by doubling the number of cards.

Summary of Results

Chapter 2 offers required background knowledge for the remainder of the thesis. It

introduces the applied notation for lattices, lattice basis reduction, the shortest vec-

tor problem, algorithms, and special hardware. Chapters 3 - 7 present the results.

They are organized as follows: In a short introduction, the main contribution and

achievement of the chapter are described. If necessary, we introduce further nota-

tion and basic tools in a first section. Then we develop the parallel version of the

respective algorithm followed by a section presenting the experimental study using

an implementation of the parallel algorithm. Chapter 8 concludes the results and

presents open problems in the research area. Here, we present a short summary of

Chapters 3 - 7.

Parallel Enumeration on Multicore CPUs (Chapter 3). This chapter is based

on [DS10] presented in Euro-Par 2010. We describe the algorithm design of parallel

enumeration on multicore CPUs and explain its implementation. Our experimental

study shows a speedup factor that scales nearly linear with the number of used

CPU cores (16 cores - 14.4 times as fast) in practice. In some cases we even reach

a speedup factor more than linear, due to our algorithm improvement.

Parallel Enumeration on GPU (Chapter 4). This chapter is based on [HSB+10]

presented in AFRICACRYPT 2010. The work was motivated by the previous chap-

ter. We describe the algorithm design and the implementation of enumeration on

GPUs. Our experimental study shows a factor 5 speedup compared to the fastest

public single-core CPU implementation in 2010, using a single 2 years old GPU. In

theory, the algorithm scales linearly with the number of graphics cards. Ours is the

first SVP or lattice reduction algorithm that uses the massive compute power of

special hardware like GPUs.
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Extreme Pruning Enumeration on GPU and in Clouds (Chapter 5). This chap-

ter is based on [KSD+11] presented in CHES 2011. It describes the algorithm design

of Extreme Pruning Enumeration on GPUs, which set the current records in the SVP

challenge (1st− 3rd place, dimensions 120, 116, 114). Our implementation of the al-

gorithm was tested on multiple GPUs as well as on the Amazon EC2 compute cloud,

in order to test scalability. Today this is the worlds fastest public implementation

for solving SVP. The chapter includes a runtime extrapolation to higher lattice di-

mensions and a cost prediction of solving SVP challenges in high dimensions in US

dollars, using the Amazon EC2 compute cloud. With this we propose a new notion

of compute cost, replacing Lenstra’s dollarday notation. This work is based on the

previous two chapters.

Parallel Random Sampling on GPU (Chapter 6). This chapter is based on the

paper [SG11] presented in CHES 2011. We describe the algorithm development of

Random Sampling Reduction (RSR) on GPUs. We include the description of a GPU

implementation. The search space of RSR can be distributed without communica-

tion, which renders the theoretical speedup factors nearly linear in the number of

GPUs. Compared to BKZ (the strongest lattice reduction algorithm in practice), the

speedup factors are marginal (≈ 2). Compared to a CPU version, the experimental

study shows a huge speedup (≈ 20 in high dimension, > 100 in small dimensions

n . 100) in practice. We increase the number of samples per second from 5200 to

more than 120, 000.

Sieving in Ideal Lattices (Chapter 7). This chapter is based on [Sch11c]. We

describe the algorithm development of an extension of the ListSieve and GaussSieve

algorithms for ideal lattices. Ideal lattices are the most practical and important

type of lattices for cryptography. The inherent special structure of these lattices

can be used to fasten the sieving process. The IdealSieve algorithm allows for a

speedup factor linear in the degree of the field polynomial, in runtime as well as for

storage space. The chapter also describes our CPU implementation, which can be

used to find shortest vectors in ideal lattices. We are the first to present an approach

how to use the special structure of ideal lattices to speed up SVP algorithms. The

experimental study shows practical speed-up factors that are even more than linear

in the degree of the field polynomial for the tested dimensions.





2
Notation and Definitions

Vectors and matrices are written in bold face, like v and M, respectively. The t× t
identity matrix is denoted It. A t-dimensional row vector consisting of zero and one

entries is denoted 0t and 1t, respectively. The scalar product of two vector elements

x and y is written 〈x | y〉. The Euclidean norm of a vector v ∈ Rn is denoted ‖v‖
or ‖v‖2. Different `p norms are always subscripted, like ‖v‖∞. The logarithm of an

element x to base 2 is denoted log(x) or log2(x). Other logarithms are subscripted,

like loge(x) or log10(x). We define the index set [t] = {0, 1, . . . , t− 1}. Rounding a

value x ∈ R to the nearest integer is denoted by bxe = dx− 0.5e. We use a sans

serif font for implementation packages and libraries, like library.

2.1 Lattices

Lattices are discrete additive subgroups of Rd. We define a lattice as follows.

Definition 2.1 (Lattice). Let n ≤ d and B ∈ Rd×n be a matrix of linearly inde-

pendent column vectors bi ∈ Rd. The set

L(B) = L(b1, . . . ,bn) =

{
n∑
i=1

xibi, xi ∈ Z

}
is called a lattice.

The matrix B = [b1, . . . ,bn] is called a basis of the lattice L(B) spanned by the

column vectors bi. The number of linear independent basis vectors is called the

dimension of the lattice, denoted dim(L(B)). One-dimensional lattices have exactly

two bases. For n > 1 every lattice has infinitely many bases. Switching between
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bases can be done by multiplication of a basis matrix with a unimodular matrix.

A matrix M ∈ Zn×n is called unimodular, if the determinant det(M) is ±1. The

unimodular matrices form the multiplicative group GLn(Z), the general linear group

over Z.

Definition 2.2 (Basis Transformation). Let B = [b1, . . . ,bn] ∈ Zd×n be a lattice

basis. Then for any unimodular matrix M ∈ Zn×n, the matrix B
′

= BM is a basis

of the same lattice, i.e., L(B) = L(B
′
).

We will omit the basis B and write L instead of L(B) if it is clear which basis

is concerned. There are characteristics of lattices that are invariant under basis

transformation, i.e., the lattice determinant and the successive minima.

Definition 2.3 (Lattice Determinant). The determinant of a lattice L(B) is defined

as

det(L(B)) =
√

det(BTB) .

For full-dimensional lattices, where n = d, we have det(L(B)) = |det(B)|.

It is easy to see that the determinant of a lattice does not change when the basis

is transformed. For B
′
= BM with |det(M)| = 1 it is det(MT ) = det(M) and with

that√
det(B′TB′) =

√
det(MTBTBM) =

√
det(MT ) det(BTB) det(M) =

√
det(BTB) .

There exists a geometric view of the lattice determinant: it is the volume of the

parallelepiped spanned by the basis vectors, i.e., the convex hull of the basis vectors:

det(L(B)) = vol

({
n∑
i=1

xibi : xi ∈ R, 0 ≤ xi ≤ 1∀ i ∈ [n]

})
.

With other words, the volume of this parallelepiped remains unchanged, even when

the basis is transformed. The same holds true for the length of short vectors, i.e.,

the successive minima.

Definition 2.4 (Successive Minima). The i-th successive minimum λi(L(B)) is the

minimum radius of a sphere centered at the origin that contains i linear independent

vectors in the lattice L(B). The first minimum λ1(L(B)) is the length of a shortest,

non-zero vector of the lattice.
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A shortest lattice vector is never unique, there is always more than one vector

of length λ1 (at least v and −v, if v is a shortest one). In practice, λ1 is not

always known. In these cases, it is possible to approximate the length of a shortest

vector heuristically, using the Gaussian heuristic. The Gaussian heuristic predicts

the number of lattice points inside a given set S to be approximately the volume of

the set divided by the volume of the lattice parallelepiped (the lattice determinant).

Heuristic 2.5 (Gauss Heuristic). Given a lattice L and a set S, the number of

points in S ∩ L is approximately vol(S)/ det(L).

For random lattices, this heuristic can be used to guess the length of a shortest

lattice vector. Let S be a n-dimensional sphere of radius r, that is supposed to

contain only one lattice vector (i.e., |S ∩ L| = 1). The volume of S is vol(S) =

rn ·
√
π
n

Γ(n/2+1)
, where Γ(x) is the gamma-function. The Gaussian heuristic predicts

|S ∩ L| = vol (S)/ det (L) = 1, which leads to the following heuristic approximation

of the first minimum of L, which we denote FM(L).

Heuristic 2.6 (First Minimum). The norm of a shortest vector of the n-dimensional

lattice L can be estimated to be

λ1(L) ≈ FM(L) =
Γ(n/2 + 1)1/n

√
π

· det(L)1/n .

The Gaussian heuristic has shown to be very accurate in practice for random

lattices. It is used, among others, to predict the length of shortest vectors in the

SVP challenge [GS10], or to estimate the runtime of enumeration algorithms [HS07,

GNR10]. In our experiments as well as in the SVP challenge the heuristic shows

to be a good estimate of λ1(L). However, there exist also counterexamples to this

heuristic, for example in Zn [MO90].

For lattice reduction and SVP algorithms we will need the definition of an or-

thogonalized basis. The orthogonal projection to a basis B is defined as πi : Rn →
spanR(b1, . . . ,bi−1)⊥, such that for all b ∈ Rd it is πi(b) ∈ spanR(b1, . . . ,bi−1)⊥

and b− πi(b) ∈ spanR(b1, . . . ,bi−1).

Definition 2.7 (GSO). The Gram-Schmidt orthogonalization (GSO) of a matrix

B ∈ Rd×n is B∗ = [b∗1, . . . ,b
∗
n] ∈ Rd×n, computed via

b∗i = πi(bi) = bi −
i−1∑
j=1

µi,jb
∗
j for i = 1, . . . , n , with µi,j =

bTi b∗j∥∥b∗j∥∥2 ∀ 1 ≤ j ≤ i ≤ n .
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We have B = B∗ µT , where B∗ is orthogonal and µT is an upper triangular matrix.

Note that B∗ is not necessarily a lattice basis of L(B). The values µ are called the

Gram-Schmidt coefficients. For the diagonal entries, it is µi,i = 1 for 1 ≤ i ≤ n.

Further, for the orthogonalized vectors b∗ it is det(L(B)) =
∏n

i=1 ‖b∗i ‖.

Definition 2.8 (Projected Lattice). Given a lattice basis B of the lattice L, the

projected lattices Li are defined as

Li = πi(L) = L (πi(bi), πi(bi+1), . . . , πi(bn)) .

Most of the algorithms considered in this thesis are deterministic algorithms, i.e.,

the same input will lead to the same output in multiple runs. When measuring

average-case runtime of an algorithm, we mean running it on random lattices. The

notion of random lattices follows from Haar measures of classical groups [GM03].

Measures allow for a probability distribution from which random lattices can be

picked. These lattices are used, among many others, in [NS06, GN08b] to test

and compare lattice algorithms. Throughout the remainder of this thesis, when

mentioning random lattices or estimating average-case runtime, we are concerned

with these Goldstein-Mayer lattices [GM03].

Definition 2.9 (Random Lattice). Let p ∈ Z be a fixed constant, and let q ∈ Zn−1

be a row vector with entries of size 0 ≤ qi < p for 1 ≤ i ≤ n− 1. Then the column

matrix

B =

(
p q

0Tn−1 In−1

)
(2.1)

forms a basis of a random lattice.

There is no standard notion of a random basis of a lattice. There are samplers

like Klein’s that output soundly sampled vectors [Kle00]. Nonetheless no sound

standard of random basis is settled so far. Since SVP algorithms mostly require

pre-reduced lattices, it seems sufficient to run LLL or BKZ on the standard basis

of random lattices (Equation (2.1)) in order to generate lattice bases that behave

randomly.

2.1.1 Ideal Lattices

Ideal lattices are lattices with special structure. Let f = xp+fpx
p−1+. . .+f1 ∈ Z[x] be

a monic polynomial of degree p, and consider the ring R = Z[x]/〈f(x)〉. Elements

in R are polynomials of maximum degree p − 1. If there exists an ideal I ⊆ R,
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each element v =
∑p

i=1 vix
i−1 ∈ I naturally corresponds to its coefficient vector

(v1, . . . ,vp) ∈ Zp. Since ideals are additive subgroups, the set of all coefficient

vectors corresponding to the ideal I forms a so-called ideal lattice. For the sake of

simplicity we can switch between the vector and the ideal notations and use the one

that is more suitable in each case.

For each v ∈ R, the elements xi · v for i ∈ [p] form a basis of an ideal lattice. We

call this multiplication with x a rotation, since for special polynomials the vector

x · v consists of the rotated coefficients of v. In vector notation, the multiplication

of an element with x can be performed by multiplication with the matrix

rot =

(
0p−1 −f̄
Ip−1

)
,

where f̄ consists of the coefficients of the field polynomial f . If f ∈ R is a monic,

irreducible polynomial of degree p, then for any non-zero element v ∈ R \ {0},
the elements v,vx, . . . ,vxp−1 are linearly independent (see for example the proof of

Lemma 2.12 in [Lyu08]). For f(x) = xp − 1, which is not irreducible over Z, it is

easy to see that the vectors vxi are also linearly independent, unless the vector has

very special form.

The column matrices of the bases used in practice are of the form(
qIp (roti(v))i∈[p]

0 Ip

)
. (2.2)

Here the right part consists of the p rotations of v, which corresponds to the mul-

tiplications of the ring element v with xi for i ∈ [p]. The left part is necessary to

ensure that every element in the lattice can be reduced modulo q. Bases for higher

dimensional lattices can be generated using multiple points vi and their rotations.

The dimension n of the lattice is then a multiple of the field polynomial degree p.

The usage of ideal lattices reduces the storage amount for a basis matrix from np

elements to n elements, because every block of the basis matrix is determined by its

first column. In addition, for an ideal basis B, the computation B · y can be sped

up using Fast Fourier transformation from O(np) to Õ(n).

In this thesis we are concerned with three types of ideal lattices, defined by the

choice of f :

• Cyclic lattices : Let f1(x) = xp−1, i.e., f̄ = (−1, 0, . . . , 0). We call the ideal lat-

tices of the ring R1 = Z[x]/〈f1(x)〉 cyclic lattices. f1(x) is never irreducible over

Z (x− 1 is always a divisor), therefore cyclic lattices do not guarantee worst-

case collision resistance. The rotation of v is rot(v) = (vp−1,v0, . . . ,vp−2).
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• Anti-cyclic lattices : Let f2(x) = xp + 1, i.e., f̄ = (1, 0, . . . , 0). We call the ideal

lattices of the ring R2 = Z[x]/〈f2(x)〉 anti-cyclic lattices. f2(x) is irreducible

over Z if p is a power of 2. The rotation of v is rot(v) = (−vp−1,v0, . . . ,vp−2).

Anti-cyclic lattices are the ones used most in cryptography.

• Prime cyclotomic lattices : Let f3(x) = xp + xp−1 + . . .+ 1, i.e., f̄ = (1, . . . , 1).

We call the ideal lattices of the ring R3 = Z[x]/〈f3(x)〉 prime cyclotomic

lattices. f3(x) is irreducible over Z if p + 1 is prime. The rotation of v is

rot(v) = (−vp−1,v0 − vp−1, . . . ,vp−2 − vp−1). We only consider cyclotomic

polynomials of degree p where p + 1 is prime. Other cyclotomic polynomials,

where p + 1 is not prime, have different structure, the rotations are hard to

implement, and they are seldom used in practice.

A nice and more detailed overview about ideal lattices is shown in [Lyu08].

2.2 Lattice Reduction

In lattice dimensions above 120, the exponential runtime of SVP algorithms renders

them intractable in practice. Lattice basis reduction (or in short lattice reduction)

algorithms of polynomial runtime in n allow to search for short vectors in higher

dimensions of up to 1000, at the expense of worse approximation factors. Roughly

speaking, lattice basis reduction is the process of transforming a basis of a lattice

into a second one consisting of short vectors which are nearly orthogonal. There is

no fixed definition of the term lattice reduction itself, there are different notations

of a reduced basis. Most of them output a short vector of approximation factor

exponential in the lattice dimension. Here we present some of the most common

notations that will occur in the remainder of the thesis.

Definition 2.10 (Size-reduced Basis). A lattice basis B is called size-reduced, if for

all its Gram-Schmidt coefficients it is

|µi,j| ≤ 0.5 for 1 ≤ j < i ≤ n .

Definition 2.11 (δ-LLL-reduced Basis). A lattice basis B is called LLL-reduced

with parameter δ ∈ (0.25, 1], if it is size-reduced and satisfies

δ
∥∥b∗i−1

∥∥2 ≤ ‖b∗i ‖
2 + µ2

i,i−1

∥∥b∗i−1

∥∥2
for 2 ≤ i ≤ n . (2.3)

Condition (2.3) is the so-called Lovász-condition. It implies that for a δ-LLL-

reduced basis, the lengths of the Gram-Schmidt orthogonalized vectors does not
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decrease too fast. Lenstra, Lenstra, and Lovász presented their algorithm that

computes a δ-LLL-reduced basis in polynomial time (for δ < 1) in 1982 [LLL82].

Important sequels are the L2-algorithm [NS05, NS09] and the recent L1 algorithm

[NSV11].

The following strong definition of lattice reduction follows Hermite and Korkine-

Zolotarev [LJS90].

Definition 2.12 (HKZ-reduced Basis). A lattice basis B is called HKZ-reduced if

it is size-reduced and satisfies

‖b∗i ‖ = λ1(Li(B)) for i = 1 . . . n .

Especially it is ‖b1‖ = λ1(L).

Schnorr combined the definition of HKZ and LLL reduced bases and presented

the definition of a Block Korkine-Zolotarev reduced basis (β-BKZ reduced) [Sch87,

SE94].

Definition 2.13 (β-BKZ-reduced Basis). A lattice basis B is called BKZ-reduced

with parameter β ∈ [2, n], if it is size-reduced and

(πi(bi), πi(bi+1) . . . πi(bi+β−1))

is an HKZ-reduced basis for i = 1 . . . n− β + 1.

If a basis B is (β + 1)-BKZ reduced it is also β-BKZ reduced. An LLL-reduced

basis is the special case of BKZ reduction for blocksize parameter β = 2. The BKZ

algorithm introduced in [SE94] outputs a BKZ reduced basis. It is the algorithm

mainly used in practice for lattice reduction. The BKZ algorithm outputs a basis

whose first vector has length ‖b1‖ ≤ (γβ)(n−1)/(β−1)λ1(L(B)) [Sch94]. Here, γβ is

the Hermite constant of dimension β.

Definition 2.14 (Hermite Constant). The Hermite constant in dimension β is de-

fined as

γβ = sup{λ1(L)2/(det(L))2/β : dim(L) = β} .

Values for the Hermite constant are only known for dimensions 1 ≤ n ≤ 8 and

n = 24. The constant is closely related to sphere packings [CE03]. Numerical upper

bounds on the constant for other dimensions are given in [CE03].

The LLL [LLL82] and BKZ [SE94] algorithms are the most common algorithms

for lattice reduction. BKZ’s blocksize parameter β allows for a trade-off between
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runtime and reduction quality. Higher values of β lead to better reduced bases at

the expense of an exponentially (in β) increasing runtime. Both LLL and BKZ sort

the basis vectors in increasing order, so that b1 is the shortest among the basis

vectors after reduction. Applied to a basis B, LLL provably finds a vector b1 with

‖b1‖ ≤ 2(n−1)/2λ1(L(B)). When LLL or BKZ is applied to a generator system of a

lattice L it outputs a basis of L, so it removes linear dependent vectors. A practical

comparison of LLL and BKZ can be found in [GN08b]. Both LLL and BKZ are

equipped with a parameter δ, which only slightly controls the reduction quality and

is usually set to 0.99.

The Random Sampling Reduction (RSR) algorithm [Sch03] uses BKZ as a subrou-

tine and complements an exhaustive search in a specified search space, which differs

from the enumeration search region. The latest version of random sampling algo-

rithms is the Simple Sampling Reduction (SSR) by Buchmann and Ludwig [BL06].

A more detailed description of RSR and SSR is presented in Chapter 6, where we

develop the parallel sampling variant.

There are more notions of reduction and algorithms, that are not used in this the-

sis. Among others, there is slide reduction [GN08a], segment LLL reduction [KS01],

and many more. There are reduction algorithms for different norms, e.g. the enu-

meration algorithm for arbitrary norms of [Rit97] or the infinity norm enumeration

algorithm of [Kai94]. For further information concerning lattices and lattice reduc-

tion we refer to [MG02, MR08, NV10]. A practical comparison of LLL and BKZ can

be found in [NS06, GN08b]. See [NS01, NV10] for an overview of lattice algorithms

in cryptanalysis.

2.3 The Shortest Vector Problem

As mentioned before, lattice reduction algorithms affect the whole basis and are usu-

ally used as pre-computation routine before running SVP algorithms. Here we define

the shortest vector problem and its approximate versions α-SVP and Hermite-SVP.

Furthermore, we introduce the SVP algorithms that we will use in the remainder of

this thesis.

Definition 2.15 (Shortest Vector Problem (SVP)). Given a lattice basis B, the

shortest vector problem asks to find a shortest non-zero vector in L(B), i.e., a

vector v ∈ L(B) \ {0} subject to ‖v‖ = λ1(L(B)).

The shortest vector problem can be stated in any norm, among which the Eu-

clidean norm is the most usual. Throughout this thesis, we will only consider the
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Euclidean norm. The decisional variant of SVP in the infinity norm [vEB81] is NP-

hard. In `p norms it is only NP-hard under randomized reductions [Ajt98]. Ajtai

showed a probabilistic reduction from the NP-hard SubsetSum problem to SVP. For

a survey on hardness results on SVP and related problems we defer the reader to

[MG02, Kho10, Reg10].

Definition 2.16 (Approximate Shortest Vector Problem (α-SVP)). Given a lattice

basis B and a constant α ≥ 1, find a vector v ∈ L(B) \ {0} subject to ‖v‖ ≤
αλ1(L(B)).

The approximate SVP is solvable in polynomial time in the lattice dimension for

approximation factors α that are of size exponential in the lattice dimension, e.g.,

by the LLL and BKZ algorithm. For constant factors α, the problem is NP-hard.

In practice, the length of a shortest vector λ1(L) is not always known. Therefore,

one can compare short vectors to the lattice determinant. For this purpose, we

introduce the Hermite Shortest Vector Problem.

Definition 2.17 (Hermite Shortest Vector Problem (HSVP)). Given a lattice ba-

sis B and a constant c > 0, find a vector v ∈ L(B) \ {0} subject to ‖v‖ =

cn det(L(B))1/n.

Since the determinant of the lattice is always known, HSVP is useful for compar-

ison of lattices where λ1 is unknown. The constant c is called the Hermite factor

constant. Following [GN08b], the LLL algorithm practically outputs a first basis vec-

tor b1 with Hermite factor constant c = 1.0219, BKZ-20 reaches a Hermite factor

constant c = 1.0128, and BKZ-28 reaches a factor c = 1.0109.

2.3.1 The SVP Challenge

In 2010, Nicolas Gama and Michael Schneider published a set of random lattices in

order to offer a unified testing environment for SVP algorithms: the SVP challenge

[GS10]. Since May 2010, more than 85 shortest vectors were entered by scientists

from all over the world, using a huge variety of algorithms. Figure 2.1 shows the

hall of fame of the SVP challenge in November 2011. The challenge is cited and its

lattices are used in [Sch11a, LP11, HPS11a, KSD+11], for example. This shows the

impact of the SVP challenge to the scientific community.

2.3.2 Algorithms for SVP

There are mainly three different approaches how to solve the shortest vector prob-

lem. First, there are probabilistic sieving algorithms [AKS01, NV08, BN09, AJ08,
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Figure 2.1: Hall of fame of the SVP challenge in November 2011.

MV10b]. They output a solution to SVP with high probability only, but allow for

single exponential runtime 2O(n). The most promising sieving candidate for SVP in

the Euclidean norm in practice at this time is the heuristic GaussSieve algorithm

[MV10b]. The same paper introduces ListSieve, which does not use heuristics and

provably runs in time 23.199n. Further, there exists an algorithm based on Voronoi

cell computation [MV10a]. This is the first deterministic SVP algorithm running in

single exponential time, but experimental results lack so far. In [DPV11] the authors

apply M-Ellipsoid Coverings and make use of the Voronoi cell algorithm in order

to enumerate lattice points in any convex body. As one of their applications they

use their algorithm to solve exact SVP in any norm, requiring deterministic single

exponential time and space 2O(n). Third, there is the group of enumeration algo-

rithms that perform an exhaustive search over all lattice points in a suitable search

region. Based on the algorithms by Kannan [Kan83, Kan87] and Fincke/Pohst

[FP83, FP85], Schnorr and Euchner presented the ENUM algorithm [SE94]. It

was analyzed in more details in [PS08, HS07]. The runtime of Kannan’s algorithm

[Kan87] is 2O(n) · n n
2e . The ENUM of [SE94] requires 2O(n2) polynomial time oper-

ations. The latest improvement to enumeration algorithms called Extreme Prun-

ing Enumeration, providing for huge exponential speedups, was shown by Gama,

Nguyen, and Regev [GNR10].

In this section we will introduce the enumeration algorithm of [SE94] and the

Extreme Pruning Enumeration of [GNR10]. Furthermore, we will give an overview

of sieving algorithms.

Enumeration. Here we give an overview of the ENUM algorithm first presented in

[SE94]. The ENUM algorithm enumerates over all linear combinations [u1, . . . , un]

∈ Zn that generate a vector v =
∑n

i=1 uibi in the search space (i.e., all vectors v with

‖v‖ smaller than a specified bound). Those linear combinations are organized in a

tree structure. Leafs of the tree contain full linear combinations, whereas inner nodes
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contain partly filled vectors. The search for the tree leaf that determines the shortest

lattice vector is performed in a depth first search order. The most important part

of the enumeration is cutting off parts of the tree, i.e. the strategy which subtrees

are explored and which ones cannot lead to a shorter vector. An algorithm listing

is shown as Algorithm 2.1. Let t be the current level in the tree, t = 1 being at the

bottom and t = n at the top of the tree. Each step in the enumeration algorithm

consists of computing an intermediate squared norm lt (Line 4), moving one level

up or down the tree (to level t′ ∈ {t− 1, t+ 1}, Lines 7 and 13) and determining a

new value for the coordinate ut′ .

Algorithm 2.1: Basic Enumeration Algorithm

Input: Gram-Schmidt coefficients (µi,j)1≤j≤i≤n, ‖b∗1‖
2 . . . ‖b∗n‖

2

Output: umin such that ‖
∑n

i=1 uibi‖ = λ1(L(B))

1 A← ‖b∗1‖
2, umin ← (1, 0, . . . , 0), u← (1, 0, . . . , 0), l← (0, . . . , 0), c← (0, . . . , 0)

2 t = 1

3 while t ≤ n do

4 lt ← lt+1 + (ut + ct)
2 ‖b∗t ‖

2

5 if lt < A then

6 if t > 1 then

7 t← t− 1 B move one layer down in the tree

8 ct ←
∑n

i=t+1 uiµi,t, ut ← bcte
9 else

10 A← lt, umin ← u B set new minimum

11 end

12 else

13 t← t+ 1 B move one layer up in the tree

14 choose next value for ut using the zig-zag pattern

15 end

16 end

To find a shortest non-zero vector of a lattice L(B) with B = [b1, . . . ,bn],

ENUM takes as input the Gram-Schmidt coefficients (µi,j)1≤j≤i≤n, the quadratic

norm of the Gram-Schmidt orthogonalization ‖b∗1‖
2 , . . . , ‖b∗n‖

2 of B, and an initial

bound A. The search space is the set of all coefficient vectors u ∈ Zn that satisfy

‖
∑n

t=1 utbt‖
2 ≤ A. Starting with a pre-reduced basis, it is common to set A = ‖b∗1‖

2

in the beginning. If the norm of a shortest vector is known beforehand, it is possible

to start with a lower A, which limits the search space and reduces the runtime of

the algorithm. If a vector v of length smaller than A is found, A can be reduced to
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the norm of v, that means A always denotes the size of the current shortest vector.

The goal of ENUM is to find a coefficient vector u ∈ Zn satisfying the equation∥∥∥∥∥
n∑
t=1

utbt

∥∥∥∥∥
2

= min
x∈Zn

∥∥∥∥∥
n∑
t=1

xtbt

∥∥∥∥∥
2

. (2.4)

Therefore, all coefficient combinations u that determine a vector of norm less than

A are enumerated. In Equation 2.4 we replace all bt by their orthogonalization, i.e.,

bt = b∗t +
∑t−1

j=1 µt,jb
∗
j and get Equation (2):∥∥∥∥∥

n∑
t=1

utbt

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
t=1

(
ut · (b∗t +

t−1∑
j=1

µt,jb
∗
j)
)∥∥∥∥∥

2

=
n∑
t=1

(ut +
n∑

i=t+1

µi,tui)
2 · ‖b∗t‖

2 .

For index k, enumeration is supposed to check all coefficient vectors u with

n∑
t=n+1−k

(ut +
n∑

i=t+1

µi,tui)
2 · ‖b∗t‖

2 < A , 1 ≤ k ≤ n . (2.5)

Let c ∈ Rd with ct =
∑n

i=t+1 µi,tui (line 8), which is predefined by all co-

efficients ui with n ≥ i > t. The intermediate norm lt (line 4) is defined as

lt = lt+1 + (ut + ct)
2 ‖b∗t‖

2. This is the norm part of Equation 2 that is

predefined by the values ui with n ≥ i ≥ t.

The algorithm enumerates the coefficients in reverse order, from un to u1. This

can be considered as finding a minimum in a weighted search tree. The height of

the tree is uniquely determined by the dimension n. The root of the tree denotes

the coefficient un. The coefficient values ut for 1 ≤ t ≤ n determine the values of the

vertices of depth (n− t+1), leafs of the tree contain coefficients u1. The inner nodes

represent intermediate nodes, not complete coefficient vectors, i.e., a node on level

t determines a subtree (⊥, . . . ,⊥, ut, ut+1, . . . , un), where the first t − 1 coefficients

are not yet set. lt is the norm part predefined by this inner node on level t. We only

enumerate parts of the tree with lt < A. Therefore, the possible values for ut on

the next lower level are in an interval around ct with (ut + ct)
2 < (A − lt+1)/ ‖b∗t‖,

following the definition of lt.

ENUM iterates over all possible values for ut, as long as lt ≤ A, the current

minimal value. If lt exceeds A, enumeration of the corresponding subtree can be

cut off, the intermediate norm lt will only increase when stepping down in the tree,

as lt ≤ lt−1 always holds. The iteration over all possible coefficient values is (due

to Schnorr and Euchner) performed in a zig-zag pattern. The values for ut will be

sequenced like either ct, ct+1, ct−1, ct+2, ct−2, . . . or ct, ct−1, ct+1, ct−2, ct+2, . . ..
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ENUM starts at the leaf (1, 0, . . . , 0) and gives the first possible solution for a

shortest vector in the given lattice. The algorithm performs its search by moving up

(when a subtree can be cut off due to lt ≥ A) and down in the tree (lines 13 and 7).

The norm of leaf nodes is compared to A. If l1 ≤ A, it stores A← l1 and umin ← u

(line 10), which define the current shortest vector and its size. When ENUM moves

up to the root of the search tree it terminates and outputs the computed global

minimum A and the corresponding shortest vector umin.

In each step of enumeration, the algorithms performs a polynomial number of

operations. Following [HS07, GNR10], the total runtime is N times this polynomial

number of operations, where N is the total number of tree nodes. Using the Gaussian

heuristic, the number of nodes on each level t can be estimated to be about Ht =

0.5 · Vt(A)∏n
i=n+1−t‖b∗i‖

, where Vt(A) is the volume of a t-dimensional sphere of radius A.

So heuristically, the total runtime of enumeration is
∑n

t=1Ht times a polynomial

in n. When LLL and the BKZ are used for pre-reduction of the lattice, it aims at

increasing the norms of the b∗i , i.e., increasing the product in the denominator of

the fraction Ht. With this, pre-reduction diminishes the size of the enumeration tree

and by this speeds up the enumeration process. Bigger blocksize β for BKZ leads to

a more reduced basis and speeds up enumeration more, but the BKZ runtime grows

exponentially in β, so there is a trade-off between BKZ runtime and enumeration

runtime. It is an important issue to find suitable blocksize parameters for pre-

reduction.

If ENUM is not supposed to find a shortest vector of the lattice but only a vector

below bound A, the algorithm stops as soon as a first vector below the bound was

found.

Extreme Pruning Enumeration. Schnorr and Hörner already presented an idea

to prune some of the subtrees that are unlikely to contain a shorter vector [SH95].

Their pruned enumeration runs deterministically with a certain probability to miss

a shortest vector. The [SH95] pruning idea was analyzed and improved by Gama

et al. in 2010 [GNR10]. The authors of [GNR10] also showed some flaws in the

analysis of [SH95]. Instead of using the same norm bound A on every layer of

the enumeration tree (Equation (2.5)), Gama et al. introduce a bounding vector

(R1, . . . , Rn) ∈ [0, 1]n, with R1 ≤ . . . ≤ Rn. A on the right side of the testing

condition (2.5) is replaced byRk·A. It can be shown that, assuming various heuristics

[GNR10], the lattice vectors cut off by this approach only contain a shortest vector

with low probability.

With this pruning technique, an exponential speedup compared to deterministic

enumeration can be gained. Gama et al. show that using a randomization technique
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it is possible to speed up enumeration even more. The idea of Extreme Pruning is

to randomly generate many enumeration trees. Instead of spending a lot of time

searching one tree, one randomly generates many trees and only spends a small

amount of time on each of them by aggressively pruning the subtrees unlikely to

yield short vectors using a bounding function. That is, one focuses on the parts

of the trees that are more “fruitful” in terms of the likelihood of producing short

vectors per unit time spent. In other words, one should try to maximize the success

probability of finding a short vector per unit of computing time spent by choosing an

appropriate bounding function in pruning. In the original paper, various bounding

function vectors were presented in theory. For the experiments, the authors use a

numerically optimized function.

Sieving. Sieving algorithms were first presented in 2001 by Ajtai, Kumar, and

Sivakumar [AKS01]. The runtime and space requirements were proven to be in

2O(n). Nguyen and Vidick [NV08] carefully analyzed this algorithm and presented

the first competitive timings and results. They show that the runtime of AKS sieve

is 25.90n+o(n) and the space required is 22.95n+o(n). The authors also presented a

heuristic variant of AKS sieve without perturbations. Their runtime is 20.41n+o(n)

and they require space 20.21n+o(n). In 2010, Micciancio and Voulgaris [MV10b] pre-

sented a provable sieving variant called ListSieve and a more practical, heuristic

variant called GaussSieve. ListSieve (as well as the algorithms of [AKS01, NV08])

samples perturbed points with a small error instead of lattice points. This allows to

prove the generation of non-zero vectors, which is necessary for the runtime proof.

ListSieve runs in time 23.199n+o(n) and requires space 21.325n+o(n). For GaussSieve,

the maximum list size can be bounded by the kissing number τn, whereas, due to

collisions, a runtime bound can not be proven. The practical runtime is 20.52n, the

space requirements is expected to be less than 20.21n and turns out to be even smaller

in practice. ListSieveBirthday by Pujol and Stehlé [PS09] uses multiple lists and

improves the theoretical bounds of ListSieve [MV10b] using the birthday paradox

to runtime 22.465n+o(n) and space 21.233n+o(n). The proof is completed in [HPS11a].

Wang et at. [WLTB10] present a heuristic variant of the Nguyen-Vidick sieve run-

ning in 20.3836n+o(n) with space complexity of 20.2557n. The work of [BN09] deals with

all `p norms, generalizing the AKS sieve. There is only one public implementation

of a sieving algorithm, namely gsieve [Vou10], which implements the GaussSieve

algorithm of [MV10b].

A more detailed explanation of ListSieve including some pseudo-code is presented

in Chapter 7.
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2.3.3 Public Implementations

There are public implementations of lattice reduction and SVP algorithms. Some

of them, like the LLL and BKZ implementations, will be used throughout the re-

mainder of this thesis, as pre-reduction routines. Some SVP implementations will

be used in a comparison with our improved implementations.

• The NTL library of Victor Shoup [Sho] offers implementations of LLL and

BKZ using different floating point precision. We will use NTLs LLL and BKZ

for pre-reduction of lattices.

• The fpLLL library [CPS] offers an implementation of L2, as explained in [NS05,

NS09]. As an aside, using the switch −a svp it allows to run enumeration to

solve the shortest vector problem. We will use the enumeration of fpLLL for

comparison with our SVP algorithms.

• The gsieve implementation of Panagiotis Voulgaris [Vou10] runs GaussSieve,

as explained in [MV10b]. We extended the code of gsieve for sieving in ideal

lattices, cf. Chapter 7.

• SSR of Ludwig [Lud05], segment-LLL and primal-dual reduction [Fil02] are

available on request, cf. [BLR08].

• SHVEC 1.0 [Val06] from 1999 computes shortest and closest vectors in lattices,

using the algorithm by Fincke-Pohst.

• latenum [Puj06] is a library to solve the shortest and the closest vector problem

on integer lattices, using floating point arithmetic. It includes a parallel version

of enumeration. Besides the parallel enumeration, latenum was integrated into

fpLLL.

Most of our implementations are also available online, in order to offer the possibil-

ity to reproduce the experiments shown in this thesis. Our public implementations

include

• gpuenum [HKS11] implemented the parallel GPU version of enumeration, as

explained in Chapter 4. It was later extended by extreme pruning enumeration,

as shown in Chapter 5.

• gpussr [GS11] of Chapter 6 contains a CPU version of SSR as well as our GPU

implementation.
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• idealsieve [Sch11b] extends gsieve and offers faster SVP solving in ideal lattices,

as explained in Chapter 7.

• our generator for cryptographic lattices sage.crypto.lattice.gen lattice has been

included into sage 4.5.2 and above [S+]. It produces modular, random, ideal,

and cyclotomic lattice bases and their scaled duals in sage and NTL readable

format.

For the LLL and BKZ algorithm, the floating point precision used in the imple-

mentations plays a major role [SE94, NS09]. The NTL library offers a couple of

different versions of LLL and BKZ, concerning floating point precision, while fpLLL

offers to specify the precision as parameter. For enumeration, the authors of [PS08]

prove that enumeration using double precision values should be possible up to lattice

dimension at least 90. Our experience shows that even in dimension 120, precision

errors do not occur.

This concludes the introductory part concerning lattices and related topics. For

more information on lattices, hard lattice problems, lattice reduction, and SVP we

refer to the surveys of [MG02, MR08, NV10]. A recent survey of SVP algorithms

can be found in [HPS11a].

2.4 Parallelization and Special Hardware

2.4.1 Graphics Cards

A Graphical Processing Units (GPUs) is a piece of hardware that is specifically

designed to perform a massive number of specific graphical operations in parallel.

It is used as a coprocessor of the host processor unit. The introduction of platforms

like CUDA by NVIDIA [NVI07a, KH10] or CTM by ATI [AMD06], that make it

easier to run custom programs instead of limited graphical operations on a GPU, has

been the major breakthrough for the GPU as a general computing platform. The

introduction of integer and bit arithmetic also broadened the scope to cryptographic

applications. GPUs follow the SPMD (single program, multiple data) programming

model, where grids of GPU threads run the same program (the kernel), dedicated

to perform massively data-parallel computations.

Applications. Many general mathematical packages are available for GPU, like the

BLAS library [NVI07b] that supports basic linear algebra operations.

An obvious application in the area of cryptography is brute force searching us-

ing multiple parallel threads on the GPU. There are also implementations of AES
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[CIKL05, Man07, HW07] and RSA [MPS07, SG08, Fle07] available as well as imple-

mentations of the SHA3 hash competition finalists [BS10]. GPU implementations

can also be used (partially) in cryptanalysis. In 2008, Bernstein et al. use paral-

lelization techniques on graphics cards to solve integer factorization using elliptic

curves [BCC+09]. Using NVIDIA’s CUDA parallelization framework, they gained

a speed-up of up to 6 compared to computation on a four core CPU. However, to

date, no applications based on lattices are available for GPU.

Programming Model. For the work in this paper the CUDA platform will be

used. The GPUs from the Tesla range, which support CUDA, are composed of

several multiprocessors, each containing a small number of scalar processors. For

the programmer this underlying hardware model is hidden by the concept of SIMT-

programming: Single Instruction, Multiple Thread. The basic idea is that the code

for a single thread is written, which is then uploaded to the device and executed in

parallel by multiple threads.

The threads are organized in multidimensional arrays, called blocks. All blocks are

again put in a multidimensional array, called the grid. When executing a program

(a grid), threads are scheduled in groups of 32 threads, called warps. Within a warp

threads should not diverge, as otherwise the execution of the warp is serialized.

Memory Model. The Tesla GPUs provide multiple levels of memory: registers,

shared memory, global memory, texture and constant memory. Registers and shared

memory are on chip and close to the multiprocessor and can be accessed with low

latency. The number of registers and shared memory is limited, since the number

available for one multiprocessor must be shared among all threads in a single block.

Global memory is off-chip and is not cached. As such, access to global memory can

slow down the computations drastically, so several strategies for speeding up memory

access should be considered (besides the general strategy of avoiding global memory

access). By coalescing memory access, e.g. loading the same memory address or a

consecutive block of memory from multiple threads, the delay is reduced, since a

coalesced memory access has the same cost as a single random memory access. By

launching a large number of blocks the latency introduced by memory loading can

also be hidden, since other blocks can be scheduled in the meantime. The constant

and texture memory are cached and can be used for specific types of data or special

access patterns.

Instruction Set. Modern GPUs provide the full range of (32 and) 64 bit floating

point, integer and bit operations. Addition and multiplication are fast, other op-
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erations can, depending on the type, be much slower. There is no point in using

other than 32 or 64 bit numbers, since smaller types are always cast to larger types.

Most GPUs have a specialized FMAD instruction, which performs a floating point

multiplication followed by an addition at the cost of only a single operation. This

instruction can be used during the BKZ enumeration.

One problem that occurs on GPUs is the fact that today GPUs are not able to

deal with higher precision than 64 bit floating point numbers. For lattice reduction,

sometimes higher bit sizes are required to guarantee the correct termination of the

algorithms. For an n-dimensional lattice, using the floating point LLL algorithm of

[LLL82], one requires a precision of O(n logB) bits, where B is an upper bound for

the length of the d-dimensional vectors [NS05]. For the L2 algorithm of [NS05], the

required bit size is O(n log2(3)), which is independent of the norm of the input basis

vectors. For more details on the floating point LLL analysis see [NS05] and [NS06].

Degree of Parallelization. The goal of parallelization on graphics cards is to oc-

cupy all microprocessors of the GPU as much as possible. Since GPUs work in

SIMD mode, branching is one of the main drawbacks of algorithms for GPU im-

plementations. So-called diverging branches leads to a loss in total speedup, since

some warps are idle while others compute their branch. When speaking about linear

speedup on GPUs we consider the use of multiple cards, i.e., if considering twice the

number of cards leads to half the runtime.

2.4.2 Multicore CPUs

There exist many parallel environments to perform operations concurrently. Basi-

cally, on today’s machines, one distinguishes between shared memory and distributed

memory passing. A multi-core microprocessor follows the shared memory paradigm

in which each processor core accesses the same memory space. Nowadays, such

computer systems are commonly available. They possess several cores, while each

core acts as an independent processor unit. The operating system is responsible

to deliver operations to the cores. There exist multiple parallelization libraries for

most programming languages, like Boost or MPI for C++.

Parallel algorithms such as graph search algorithms may benefit from communi-

cation, in such a way that fewer operations need to be computed. As soon as the

number of saved operations exceeds the communication overhead, an efficiency of

more than 1.0 might be achieved. For instance, branch-and-bound algorithms for

Integer Linear Programming might have superlinear speedup, due to the interde-

pendency between the search order and the condition which enables the algorithm
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to disregard a subtree. The enumeration algorithm falls into this category as well.

When dealing with multicore CPUs, our goal is to occupy all CPU cores as much

as possible. We measure this by speedup factor, i.e., the desired outcome is always

a linear speedup factor in the number of cores. A second question is the scalability

of the parallelization. We ask if the speedup factors gained with small number of

CPU cores still hold when we increase their number, and to which extent.





3
Parallel Enumeration on Multicore

CPUs

In this chapter we describe our first parallel algorithm for enumeration of a shortest

lattice vector and its multicore CPU implementation. The algorithm is a parallel

version of the enumeration algorithm presented in Chapter 2.3.2. It performs full

enumeration, i.e., processes the enumeration tree completely without pruning or

early termination, and outputs a vector of length λ1(L). We are aiming at linear

speedup in the number of CPU cores. First, we explain our main idea of parallel

enumeration and the motivation for our strategy. Second, we present a detailed de-

scription. Algorithms 3.1 and 3.2 depict our parallel enumeration algorithm. Third,

we show some improvements that speed up the parallelization in practice. Finally,

we present an experimental study that shows the strength of our parallel enumer-

ation algorithm in concerns of scalability (and also pure runtime). We will use the

notation presented in the previous chapter.

A preliminary version of this chapter was published in Euro-Par 2010 [DS10]. The

dissertation author was one of the principal investigators and authors of this paper.

3.1 Parallel Algorithm Design and Implementation

3.1.1 Parallel Lattice Enumeration - High Level Description

Our main idea for parallelization of the enumeration algorithm is the following.

Different subtrees of the complete search tree are enumerated in parallel indepen-

dently from each other representing them as threads (Sub-ENUM threads). Using
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Figure 3.1: Comparison of serial (solid line) and parallel (dashed line) processing of the

search tree.

numcores processors, numcores subtrees can be enumerated at the same time. All

threads ready for enumeration are stored in a thread list L, and each CPU core

that has finished enumerating a subtree picks the next subtree from the list. Each

of the subtrees is an instance of SVP in smaller dimension; the initial state of the

sub-enumeration can be represented by a tuple (u, l, c, t) (cf. Chapter 2.3.2).

The main challenge is selecting suitable subtrees of the enumeration tree. A naive

way of selection would be to select numerous subtrees by enumerating the top of the

tree using breadth first search strategy. This (serial) approach of selection would

lead to a huge number of threads, which can be processed in parallel. The main

disadvantage of this approach is the serial enumeration of the top tree, which avoids

perfect parallelization.

Our selection strategy is different. We stick to the original depth first search

strategy and enumerate the tree in usual manner. As soon as the algorithm steps one

level up in the tree we can generate new subtrees for enumeration. We generate new

enumeration instances “on the fly”, which minimizes the serial part of the algorithm.

More exactly, when the ENUM algorithm increases the level in the search tree, the

center (ct) and the range (A−lt+1)/ ‖b∗t‖ of possible values for the current coefficient

value are calculated. Therefore, it is possible to open one thread for every value in

this range. Depending on the size of the interval of possible values, this number of

threads is sufficient to fully occupy all CPU cores at hand.

Figure 3.1 shows a 3-dimensional example and compares the flow of the serial

ENUM with our parallel version. Beginning at the starting node the procession

order of the serial ENUM algorithm follows the directed solid edges to the root.
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In the parallel version dashed edges represent the preparation of new Sub-ENUM

threads which can be executed by a free processor unit. Crossed-out edges point

out irrelevant subtrees. Threads terminate as soon as they reach either a node of

another thread or the root node. Chapter 3.1.2 presents our detailed algorithm for

parallel enumeration.

Extra Communication - Updating the Shortest Vector. Like in the previous

chapter, we denote the current, global minimum, as A. In our parallel version, it is

the global minimum of all threads. As soon as a thread has found a new minimum,

the Euclidean norm of this vector is written back to the shared memory, i.e. A

is updated. At a certain point every thread checks the global minimum whether

another thread has updated A and, if so, uses the updated one. The smaller A is,

the faster a thread terminates, because subtrees that exceed the current minimum

can be cut off in the enumeration. The memory access for this update operation is

minimal, only one integer value has to be written back or read from shared memory.

This is the only type of communication among threads, all other computations can

be performed independently without communication overhead.

3.1.2 The Algorithm for Parallel Enumeration

Algorithm 3.1 shows the main thread for the parallel enumeration. It is responsible

to initialize the first Sub-ENUM thread and manage the thread list L. A Sub-ENUM

thread (SET) is represented by the tuple (u, l, c, t), where u is the coefficient vector,

l the intermediate norm of the root to this subtree, c the search region center and t

the lattice dimension minus the starting depth of the parent node in the search tree.

Whenever the list contains a SET and free processor units exist, the first SET

of the list is executed. The execution of SETs is performed by Algorithm 3.2. We

process the search tree in the same manner as the serial algorithm (Algorithm 2.1),

except the introduction of the loop bound bound and the handling of new SETs

(lines 9 − 11). First, the loop bound controls the termination of the subtree and

prohibits that nodes are visited twice. Second, only the SET whose bound is set to

the lattice dimension is allowed to create new SETs. Otherwise, if we allow each

SET to create new SETs by itself, this would lead to an explosion of the number of

threads and each thread would have too few computations to perform. We denote

the SET with bound set to n by unbounded SET (USET). At any time, there exists

only one USET that might be stored in the thread list L.

As soon as a USET has the chance to find a new minimum within the current

subtree (lines 5−6), its bound is set to the current t value. Thereby, it is transformed
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Algorithm 3.1: Main thread for parallel enumeration

Input: Gram-Schmidt coefficients (µi,j)1≤j≤i≤n, ‖b∗1‖
2 . . . ‖b∗n‖

2

Output: umin such that ‖
∑n

i=1 uibi‖ = λ1(L(B))

1 A← ‖b∗1‖
2, umin ← (1, 0, . . . , 0) B Global variables

2 u← (1, 0, . . . , 0), l← 0, c← 0, t← 1 B Local variables

3 L← {(u, l, c, t)} B Initialize list

4 while L 6= ∅ or threads are running do

5 if L 6= ∅ and cores available then

6 pick ∆ = (u, l, c, t) from L

7 start Sub-ENUM thread ∆ = (u, l, c, t) on new core

8 end

9 end

Algorithm 3.2: Sub-ENUM thread (SET)

Input: Gram-Schmidt coefficients (µi,j)1≤j≤i≤n, ‖b∗1‖
2 . . . ‖b∗n‖

2, (ū, l̄, c̄, t̄)

1 u← ū, l← (0, . . . , 0), c← (0, . . . , 0)

2 t← t̄, lt+1 ← l̄, ct ← c̄, bound← n

3 while t ≤ bound do

4 lt ← lt+1 + (ut + ct)
2 ‖b∗t ‖

2

5 if lt < A then

6 if t > 1 then

7 t← t− 1 B move one layer down in the tree

8 ct ←
∑n

i=t+1 uiµi,t, ut ← bcte
9 if bound = n then

10 L← L ∪ (u, lt+2, ct+1, t+ 1) B insert new SET in list L

11 bound← t

12 end

13 else

14 A← lt, umin ← u B set new global minimum

15 end

16 else

17 t← t+ 1 B move one layer up in the tree

18 choose next value for ut using the zig-zag pattern

19 end

20 end
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to a SET and the recent created SET becomes the USET.

3.1.3 Improvements

We presented a first solution for the parallelization of the ENUM algorithm providing

a runtime speedup by a divide and conquer technique. We distribute subtrees to

several processor units to search for the minimum. Our improvements deal with the

creation of SETs and result in significantly shorter running time. By now we call

a node, where a new SET can be created, a candidate. Note that a candidate can

only be found in a USET.

The following paragraphs present possible worst case situations for the presented

parallel ENUM algorithm and present possible solutions to overcome the existing

drawbacks. The parallelization approach shown so far is also suitable for different

architectures. The following improvements however showed good speedups for our

multicore CPU implementation and might be disadvantageous on different hardware.

Therefore, a new examination should be carried out for different platforms.

Threads within threads. So far only the unbounded USET is allowed to create

new sub threads. If a USET creates a new SET at a node of depth 1, then this new

SET enumerates a subtree of height n − 1 sequentially on one processor core. In

this case, where the depth of a node is sufficiently far away from the depth t of the

starting node, the creation of a new SET is advantageous considering the number

of simultaneously occupied processors. Therefore, we introduce a bound sdeep which

expresses what we consider to be sufficient far away, i.e. if a SET visits a node with

depth k fulfilling the equation k − t ≥ sdeep where t stands for the depth of the

starting node and it is not a USET, then this SET is permitted to create a new SET

once.

Thread Bound. We achieve additional performance improvements by the following

idea. Instead of generating SETs in each possible candidate, we consider the depth

of the node. This enables us to avoid big subtrees for new SETs by introducing an

upper bound sup representing the minimum distance of a node to the root to become

a candidate. If ENUM visits a node with depth t fulfilling n − t > sup we do not

generate a new SET. Instead we advance like the serial ENUM algorithm. Good

choices for the above bounds sdeep and sup are evaluated in the next section.
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3.2 Experimental Results

We performed numerous experiments to test our parallel enumeration algorithm.

We created 5 different random lattices of each dimension n ∈ {42, . . . , 56} in the

sense of Goldstein and Mayer [GM03]. The bit size of the entries of the basis matri-

ces were in the order of magnitude of 10n. We started with bases in Hermite normal

form and LLL-reduced the bases (using LLL parameter δ = 0.99). The experiments

were performed on a compute server equipped with four AMD Opteron (2.3GHz)

quad core processors. We compare our results to the highly optimized, serial ver-

sion of fpLLL in version 3.0.12, the fastest ENUM implementation known, on the

same platform. The programs were compiled using gcc version 4.3.2. For handling

parallel processes, we used the Boost-Thread-sublibrary in version 1.40. Our C++

implementation uses double precision to store the Gram-Schmidt coefficients µi,j
and the ‖b∗1‖

2 , . . . , ‖b∗n‖
2. Due to [PS08], this is suitable up to dimension 90, which

seems to be out of the range of pure enumeration algorithms.

We tested the parallel ENUM algorithm for several sdeep values and concluded

that sdeep = 25
36

(n− t) is a good choice, where t is the depth of the starting node in

a SET instance. The exact selection of this parameter only slightly influences the

total runtime of enumeration. The same holds for sup, which was set to sup = 5
6
n in

our experiments. Clearly sup should be set close to the root on level n, but small

enough to guarantee sufficiently small size of the selected subtrees.

Table 3.1 and Figure 3.2 present the experimental results that compare our parallel

version to our serial algorithm and to the fpLLL library. We only present the timings,

as the output of the algorithms is in all cases the same, namely a shortest non-zero

vector of the input lattice.

The corresponding speedup factors are shown in Figure 3.4. To show the strength

of parallelization of the lattice enumeration, we first compare our multicore versions

to our single-core version. For 4 and 8 cores the speedup is exactly linear (4 and 8

times as fast). The best speedup factors are 4.5 (n = 50) for 4 cores, 8.6 (n = 50) for

n 42 44 46 48 50 52 54 56

1 core 3.81 27.7 37.6 241 484 3974 10900 223679 (62h)

4 cores 0.99 7.2 8.8 55 107 976 2727 56947 (16h)

8 cores 0.62 4.0 4.8 28 56 504 1390 28813 (8h)

16 cores 0.52 2.6 3.5 18 36 280 794 16583 (5h)

fpLLL 1 core 3.32 23.7 29.7 184 367 3274 9116 184730 (51h)

Table 3.1: Average time in seconds for enumeration of lattices in dimension n.
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8 cores, and 14.2 (n = 52) for 16 cores. This shows that, using numcores processor

cores, we sometimes gain speedup factors of more than numcores, which corresponds

to an efficiency of more than 1. The efficiency computes as the speedup factor

divided by the number of used processors. An efficiency of 1.0 means that numcores

processors lead to a speed-up factor of numcores which can be seen as a “perfect”

parallelization. This is a very untypical behavior for (standard) parallel algorithms,

but understandable for graph search algorithms like our lattice enumeration. It is

caused by the extra communication for the write-back of the current minimum A.

The highly optimized enumeration of fpLLL is around 10% faster than our serial

version. Compared to the fpLLL algorithm, we gain a speedup factor of up to 6.6

(n = 48) using 8 CPU cores and up to 11.7 (n = 52) using 16 cores. This corresponds

to an efficiency of 0.825 (8 cores) and 0.73 (16 cores), respectively.

Figure 3.3 shows the average, the maximum, and the minimum occupancy of all

CPU cores during the runtime of 5 lattices in dimension n = 52. The average

occupancy of more than 90% points out that all cores are nearly optimally loaded;

even the minimum load values are around 80%. These facts show a good balanced

behaviour of our parallel algorithm.

On a computer equipped with 24 CPU cores, we ran a second series of our experi-

ments, in order to show the scalability on more than 16 cores. The computer contains

four AMD Opteron 8435 processors, each containing 6 cores running at 2.6 GHz.

Table 3.2 shows the runtime and Figure 3.5 shows the corresponding speedups. The

results on this machine are comparable to the results seen before. The maximum

speedups using 24 cores are 23.4 in dimension 50 and 23.2 in dimension 56.
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n 42 44 46 48 50 52 54 56

1 core 3.26 24.2 29.7 194 250 3361 9428 200491 (55.7h)

4 cores 0.83 6.1 7.5 48 53 842 2365 49222 (13.7h)

8 cores 0.43 3.1 3.8 24 27 417 1179 24734 (6.9h)

16 cores 0.33 1.7 2.2 13 14 206 591 12470 (3.5h)

24 cores 0.31 1.4 1.9 10 11 149 423 8635 (2.4h)

fpLLL 1 core 2.95 20.9 26.0 161 323 2888 8046 163580 (45.4h)

Table 3.2: Average time in seconds for enumeration of lattices in dimension n, on a

24-core AMD Opteron machine.

Further Comments. The experiments in this chapter use lattices in dimension less

than 60. Using pruning strategies, it would be possible to extend the experiments

to higher dimensions of more than 100. Our parallelization technique is also appli-

cable for pruned enumeration, and we expect the same linear speedups in higher

dimensions with pruning. Pruning leads to thinner trees, but since the number of

possible parameter selections on each tree level increases with the lattice dimension,

we expect that it is still possible to generate sufficient many subtrees on each level

of the tree.

Concerning scalability, we expect the linear speedup to hold even for huge numbers

of CPU cores. In fixed dimension, the number of subtrees that are processed in

parallel is upper bounded. For the tested dimensions however, this bound was large

(> 10.000 subtrees were queued in our experiments). When the lattice dimension

increases, the number of existing subtrees increases as well. Therefore we expect the

linear speedup to scale even for large numbers of CPU cores.
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Figure 3.5: Average speedup factor of parallel ENUM compared to our single-core ver-

sion, on a 24-core machine.





4
Parallel Enumeration on GPU

In this chapter we present our parallel algorithm for shortest vector enumeration in

lattices using graphics cards. Our goal is to develop an algorithm that occupies a

single GPU as much as possible. Using multiple graphics cards, the speedup factor

is desired to be linear in the number of cards.

We present the basic idea for multi-thread enumeration in Section 4.1.1 and we

explain our parallel algorithm in detail in Section 4.1.2. Again, we aim at full

enumeration, i.e., we solve the exact shortest vector problem. On graphics cards,

parallel threads have to be started at the same time. Applying the parallel algorithm

of Chapter 3 would lead to a massive number of idle threads on a GPU. Therefore, we

use a different approach in this chapter, by enumerating the top of the tree in serial

manner before applying the parallel hardware acceleration in subtrees. Section 4.2

presents an experimental study using our GPU implementation. Again we will use

the notation introduced in Chapter 2.

A preliminary version of this chapter was published in AFRICACRYPT 2010

[HSB+10]. The dissertation author was one of the principal investigators and authors

of this paper.

4.1 Parallel Algorithm Design and Implementation

4.1.1 Multi-Thread Enumeration

In comparison to the parallel CPU enumeration (cf. Chapter 3), we will first use

serial enumeration on top of the tree in our GPU version. The SIMD nature of

graphics cards requires to perform the same operation on each microprocessor at
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the same time. On CPU, we generate subtrees “on the fly” during enumeration

and start threads at any time. This would lead to a huge number of diverging

threads and idle processor units on the GPU. Therefore, we enumerate the top of

the tree first on CPU, in order to have enough start vectors at hand to start parallel

enumeration on GPU. Since the size of these subtrees differ a lot we use an iterated

enumeration process, which switches between top enumeration on CPU and subtree

enumeration on GPU iteratively.

The search tree of combinations that is explored in the enumeration algorithm

can be split at a high level of the tree, distributing subtrees among several threads.

Each thread then runs an enumeration algorithm, keeping the first coefficients fixed.

These fixed coefficients are called start vectors. The subtree enumerations can run

independently, which limits communication between threads. The top level enumer-

ation is performed on CPU and outputs start vectors for the GPU threads. When

the number of postponed subtrees is higher than the number of threads that we can

start in parallel, then we copy the start vectors to the GPU and let it enumerate

the subtrees. After all threads have finished enumerating their subtrees we proceed

in the same manner: caching start vectors on CPU and starting a batch of subtree

enumerations on GPU. Figure 4.1 illustrates this approach. The variable α defines

the region where the initial enumeration is performed. The subtrees where GPU

threads work are also depicted in Figure 4.1.
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Figure 4.1: Illustration of the algorithm flow. The top part is enumerated on CPU, the

lower subtrees are explored in parallel on GPU. The tiny numbers illustrate which subtrees

are enumerated in the same iteration.

If a GPU subtree enumeration finds a new optimal vector, it writes back the

coordinates u and the squared norm A of this vector to the main memory. The

other GPU threads will directly receive the new value for A, which will allow them

to cut away more parts of the subtree.

Early Termination. The computation power of the GPU is used best when as many

threads as possible are working at the same time. Recall that the GPU uses warps
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as the basic execution units: all threads in a warp are running the same instructions

(or some of the threads in the warp are stalled in the case of branching).

In general, more starting vectors than there are GPU threads are uploaded in

each run of the GPU kernel. This allows us to do some load balancing on the GPU,

to make sure all threads are busy. To avoid the GPU being stalled by a few long

running subtree enumerations, the GPU stops when just a few subtrees are left. We

call this process, by which the GPU stops some subtrees even though they are not

finished, early termination.

At the end of Section 4.1.2 details are included on the exact way early termination

and our load balancing algorithm works. For now it suffices to know that, because of

early termination, some of the subtree enumerations are not finished after a single

launch of the GPU kernel. This is the main reason why the entire algorithm is

iterated several times. At each iteration the GPU launches a mix of enumerations:

new subtrees (start vectors) from the top enumeration and subtrees that were not

finished in one of the previous GPU launches. Experimental results without early

termination of threads are presented in Table 4.3 the experiments section.

4.1.2 The Iterated Parallel ENUM Algorithm

Algorithm 4.1: High-level Iterated Parallel ENUM Algorithm

Input: bi(i = 1, . . . , n), A, α, n

1 Compute the Gram-Schmidt orthogonalization of bi
2 while true do

3 S = {(uk,∆uk, Lk = α, sk = 0)}k ← Top enum: generate at most

numstartpoints−#T vectors

4 R = {(ūk,∆uk, Lk, sk)}k ← GPU enumeration, starting from S ∪ T
5 T ← {Rk : subtree k was not finished}
6 if #T < cputhreshold then

7 Enumerate the starting points in T on the CPU.

8 Stop

9 end

10 end

Output: (u1, . . . , un) with ‖
∑n

i=1 uibi‖ = λ1(L)

Algorithm 4.1 shows the high-level layout of the GPU enumeration algorithm.

Details concerning the update of the bound A, as well as the write-back of newly

discovered optimal vectors have been omitted. The actual enumeration is also not
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shown: it is part of several subroutines which are called from the main algorithm.

The whole process of launching a grid of GPU threads is iterated several times

(Line 2), until the whole search tree has been enumerated either on GPU or CPU.

In Line 3, the top of the search tree is enumerated, to generate a set S of starting

vectors uk for which enumeration should be started at level α. More detailed, the

top enumeration in the region between α and n outputs distinct vectors

uk = [0, . . . , 0, uk,α, . . . , uk,n] for k = 1 . . .numstartpoints−#T .

The top enumeration will stop automatically if a sufficient number of vectors from

the top of the tree have been enumerated. The rest of the top of the tree is enumer-

ated in the following iterations of the algorithm.

Line 4 performs the actual GPU enumeration. In each iteration, a set of starting

vectors and starting levels {uk, Lk} is uploaded to the GPU. These starting vectors

can be either vectors generated by the top enumeration in the region between α

and n (in which case Lk = α) or the vectors (and levels) written back by the

GPU because of early termination, so that the enumeration will continue. In total

numstartpoints vectors (a mix of new and old vectors) are uploaded at each

iteration. For each starting vector uk (with associated starting level Lk) the GPU

outputs a vector

ūk = [ūk,1, . . . , ūk,α−1, uk,α, . . . , uk,n] for k = 1 . . .numstartpoints

(which describes the current position in the search tree), the current level Lk, the

number of enumeration steps sk performed and also part of the internal state of the

enumeration. This state {ūk,∆uk, Lk} can be used to continue the enumeration

later on. The vectors ∆uk are used in the enumeration to generate the zig-zag

pattern and are part of the internal state of the enumeration [SE94]. This state is

added to the output to be able to efficiently restart the enumeration at the point it

was terminated. The values for c and l can be computed out of u and Lk. Other

than on CPU, we aim at saving storage on GPU and do only copy the necessary

information to the GPU device.

Line 5 will select the resulting vectors from the GPU enumeration that were

terminated early. These will be added to the set T of leftover vectors, which will

be relaunched in the next iteration of the algorithm. If the set of leftover vectors is

too small to get an efficient GPU enumeration, the CPU takes over and finishes off

the last part of the enumeration.

GPU Threads and Load Balancing. In Section 4.1.1 the need for a load balancing

algorithm was introduced: all threads should remain active and to ensure this, each
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thread in the same warp should run the same instruction. One of the problems in

achieving this is the length difference of each subtree enumeration. Some very long

subtree enumeration can cause all the other threads in the warp to become idle after

they finish their subtree enumeration.

Therefore the number of enumeration steps that each thread can perform on a

subtree is limited by M. When M is exceeded, a subtree enumeration is forced

to stop. After this, all threads in the same warp will reinitialise: they will either

continue the previous subtree enumeration (that was terminated by reaching M) or

they will pick a new starting vector of the list S ∪ T delivered by the CPU. Then

the enumeration starts again, limited to M enumeration steps.

In our experimental setting, numstartpoints was around 20-30 times higher

than numthreads, which means that on average every GPU thread enumerated

20-30 subtrees in each iteration. M was chosen to be around 50-200. The influence

of all these parameters are depending on the GPU in use. Here we present the values

that led to the best performance on our GTX 280 card.

4.2 Experimental Results

In this section we present some results of the CUDA implementation of our algo-

rithm. For comparison we used the highly optimized ENUM algorithm of the fpLLL

library in version 3.0.11 from [CPS]. NTL does not allow to run ENUM as a stan-

dalone SVP solver, but [Puj08] and the ENUM timings of [GN08b] show that fpLLL’s

ENUM runs faster than NTL’s (the bit size of the lattice bases used in [GN08b] is

higher than what we used, therefore a comparison with those timings is to be drawn

carefully).

The CUDA program was compiled using nvcc, for the CPU programs we used g++

with compiler flag -O2. The tests were run on an Intel Core2 Extreme CPU X9650

(using one single core) running at 3 GHz, and an NVIDIA GTX 280 graphics card.

We run up to 100000 threads in parallel on the GPU. The code of our program can

be found online [HKS11].

We chose random lattices following the construction principle of [GM03] with bit

size of the entries of 10 · n. This type of lattices was also used in [GN08b] and

[NS06]. We start with the basis in Hermite normal form and LLL-reduce them with

δ = 0.99. At the end of this section, we present some timings using BKZ-20 reduced

bases, to show the capabilities of stronger pre-reduction.

Both algorithms, the enumeration of fpLLL (run with parameter -a svp) and our

CUDA version, always output the same coefficient vectors and therefore a lattice
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vector with shortest possible length. We now compare the throughput of GPU and

CPU concerning enumerations steps. Section 2.3.2 gives the explanation what is

computed in each enumeration step. On the GPU, up to 200 million enumeration

steps per second can be computed, while similar experiments on CPU only yielded 25

million steps per second. We choose the parameter α = n− 11 for our experiments,

this shapes up to be a good choice in practice. If the value is too close to the root

at level n, the serial part on top is minimized, but the number of subtrees is small

and their size enormous (and enumeration of each subtree takes too long). If α

is too small, the total number of subtrees is huge, which leads to a big number of

iterations. Our choice is a compromise between both extremes. Table 4.1 and Figure

4.2 illustrate the experimental results.
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Figure 4.2: Timings for enumeration, in linear (left) and logarithmic scale (right). The

left graph shows the time needed for enumerating five different LLL-reduced random lat-

tices in each dimension n, the right graph presents average times. Both compare the

ENUM algorithm of the fpLLL-library with our parallel CUDA version.

The figure shows the runtimes of both algorithms when applied to five different

lattices of each dimension. The left picture indicates the runtime difference between

different instances in one dimension. In the fight picture as one notices that in

dimension above 44, our CUDA implementation always outperforms the fpLLL im-

plementation. Both curves show super-exponential runtime, which conforms with

theory.

Table 4.1 shows the average value over all five lattices in each dimension. Again

one notices that the GPU algorithm demonstrates its strength in dimensions above

44, where the time goes down to 22% in dimensions 54 and 56 and down to 21%

in dimension 52. Therefore we state that the GPU algorithm gains big speedups in

dimensions higher than 45, which are the interesting ones in practice. In dimension
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n 40 42 44 46 48 50 52 54 56 60

fpLLL - ENUM 0.96 2.41 17.7 22.0 136 273 2434 6821 137489 (38h) -

CUDA - ENUM 2.75 4.29 11.7 11.4 37.0 63.5 520 1504 30752 (9h) 274268 (76h)

286% 178% 66% 52% 27% 23% 21% 22% 22% -

Table 4.1: Average time in seconds needed for enumeration of LLL pre-reduced lattices

in each dimension n. The table presents the percentage of time that the GPU version

takes compared to the fpLLL version.

60, fpLLL did not finish the experiments in time, therefore only the average time of

the CUDA version is presented in the table.

Table 4.2 presents the timing of the same bases, pre-reduced using BKZ algorithm

with blocksize 20. The time of the BKZ-20 reduction is not included in the timings

shown in the table (it is the same for both implementations). For dimension 64 we

changed α (the subtree dimension) from the usual n−11 to α = n−14, as this leads

to lower timings in high dimensions. First, one can notice that both algorithms run

much faster when using stronger pre-processing, a fact that was already mentioned

in [HS07]. Second, we see that the speedup of the GPU version goes down to 13%

in the best case (dimension 62).

n 48 50 52 54 56 58 60 62 64

fpLLL - ENUM 2.96 7.30 36.5 79.2 190 601 1293 7395 15069 (4.2h)

CUDA - ENUM 3.88 5.42 16.9 27.3 56.8 119 336 986 4884 (1.4h)

131% 74% 46% 34% 30% 20% 26% 13% 32%

Table 4.2: Average time needed for enumeration of BKZ-20 pre-reduced lattices in each

dimension n. The time for pre-reduction is omitted in both cases.

As pruning would speed up both the serial and the parallel enumeration, we expect

the same speedups with pruning.

It is hard to give an estimate of the achieved speedup compared to the number

of threads used: since GPUs have hardware-based scheduling, it is not possible to

know the number of active threads exactly. Other properties, like memory access

and divergent warps, have a much greater influence on the performance and cannot

be measured in thread counts or similar figures. When comparing only the number

of double fmadds, the GTX 280 should be able to do 13 times more fmadd’s than

a single Core2 Extreme X9650. A GTX 280 can do 30 double fmadds in a 1.3GHz

cycle, a single Core2 core can do 2 double fmadds in every two 3GHz cycle, which

gives us a speedup of 13 for the GTX 280. Based on our results we fill only 30

to 40% of the GPUs ALUs. Using the CUDA Profiler, we determine that in our
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experiments around 12% of branches was divergent, which implies a loss of paral-

lelism and also some ALUs being left idle. There is also a high number of warp

serializations due to conflicting shared and constant memory access. The ratio warp

serializations/instructions is around 35%.

To compare CPUs and GPUs, we can have a look at the cost of both platforms

in dollardays, similar to the comparison in [BCC+09]. We assume a cost of around

$2200 for our CPU (quad core) + 2x GTX 295 setup. For a CPU-only system, the

cost is only around $900. Given a speedup of 5 for a GPU compared to a CPU,

we get a total speedup of 24 (4 CPU cores + 4 GPUs) in the $2200 machines and

only a speedup of 4 in the CPU-only machine, assuming we can use all cores. This

gives 225 · t dollardays for the CPU-only system and only 91 · t dollardays for the

CPU+GPU system, where t is the time. This shows that even in this model of

expense, the GPU implementation gains an advantage of around 2.4.

To show the necessity of load balancing we include timings of our GPU enumer-

ation in the same LLL pre-reduced lattices using the same hardware without the

early termination approach in Table 4.3. The runtimes can be compared to those

in Table 4.1. In dimension 54 for example the runtime of enumeration decreases

from 2599 to 1504 seconds when early termination is used. The fpLLL times were

performed twice and therefore differ slightly in both tables. The comparison of both

n 45 48 50 52 54

fpLLL 18.3 139 277 2483 6960 (116min)

CUDA 20.2 92 133 959 2599 (43min)

110% 66% 48% 39% 37%

Table 4.3: Average time in seconds needed for enumeration in dimension n, without

early termination.

tables shows that the naive approach of top enumeration itself is not sufficient for

a good parallelization. It requires some more sophisticated scheduling in order to

occupy the GPU and gain more meaningful speedups.

Further Comments. In this chapter we only show experimental results up to di-

mension 64, since running pure enumeration without pruning is only suitable in

small dimensions. The ideas of this chapter can as well be applied in combination

with pruning techniques, as shown in Chapter 5. In order to test scalability of the

algorithm, it is possible to distribute the start vectors to several graphics cards, and

perform subtree enumeration in parallel on multiple cards. Since the subtrees are
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independent and the memory overhead is limited, we expect linear speedup with the

number of cards, i.e., doubling the number of GPUs will lead to about half runtime.

The parameter α controls the number of iterations (GPU calls), which is already

at least bigger than 10 in all tested cases (α ≤ 14). This offers the possibility

to generate more start points by increasing α, i.e., enlarging the top part of the

enumeration tree. With increasing lattice dimension, the number of start points

increases directly. Therefore, it is possible to use generate sufficiently many subtrees

and distribute them to multiple GPUs. For small numbers of cards (say ≤ 15) this

allows for linear speedup in the number of cards. Using more cards than that is

more practical for the extreme pruning approach shown in the next chapter.





5
Extreme Pruning Enumeration on

GPU and in Clouds

In this chapter, we describe our improvements to Extreme Enumeration, in order

to evolve the fastest public SVP solver implementation. We aim at combining the

fastest existing SVP algorithm with fast compute hardware. First, we integrate the

Extreme Pruning idea of Gama et al. [GNR10] into the GPU implementation of

Chapter 4. Second, we extend the implementation by using a more flexible bounding

function in polynomial representation. We run it on multiple GPUs as well as on

Amazon’s EC2 compute cloud (via the MapReduce framework) in order to harness

the immense computational power of such cloud services. Third, we extrapolate our

average-case runtimes in order to estimate the running time of our implementation

for solving α-SVP instances of the SVP Challenge in higher dimensions. Conse-

quently, we set new records for the SVP challenge in dimensions 114, 116, and 120.

The previous record was for dimension 112. Our implementation allows us to find

a short vector at dimension 114 using 8 NVIDIA video cards in less than two days.

Spending 2,300 USD, Amazon’s cloud service solved the 120-dimensional challenge

and set the new SVP challenge record.

As a result, the average “cost” of solving α-SVP with our implementation can

henceforth be measured directly in U.S. dollars, as rent paid to cloud-computing

service providers, taking Lenstra’s dollarday metric [Len05] to a next level. That is,

the cost will be shown literally as an amount on your invoice, e.g., the effort in our

solving a 120-dimensional instance of the SVP Challenge translates to a 2, 300 USD

bill from Amazon. Moreover, this new measure of complexity is simpler and more

practical in that the parallelizability of the algorithm or the parallelization of the
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implementation is explicitly taken into account, as opposed to being assumed or un-

specified in the dollarday metric. Needless to say, such a cost should be understood

as an upper bound obtained based on our implementation, which can certainly be

improved, e.g., by using a better bounding function or better programming.

Throughout the rest of this chapter, our goal will be to find a vector below

1.05 · FM(L), the same as in the SVP challenge. We do not aim at solving ex-

act SVP. In this chapter we first present an overview of cloud computing, focusing

on Amazon’s EC2. Second, we explain our algorithm design and details of the im-

plementations. The crucial part here is the selection of a suitable bounding function

for pruning. Third, we present experimental results including a cost function that

allows to estimate the cost of breaking SVP challenges in higher dimensions.

A preliminary version of this chapter was published in CHES 2011 [KSD+11]. The

dissertation author was one of the principal investigators and authors of this paper.

Parts of the computations of this chapter were performed on the compute clusters

of the Center for Scientific Computing Frankfurt [csc].

5.1 Cloud Computing and Amazon EC2

Cloud computing is an emerging computing paradigm that allows data centers to

provide large-scale computational and data-processing power to the users on a “pay-

as-you-go” basis. Amazon Web Services (AWS) is one of the earliest and major

cloud-computing providers, who provides, as the name suggests, web services plat-

forms in the cloud. The Elastic Compute Cloud (EC2) provides compute capacity

in the cloud as a foundation for the other products that AWS provides. With EC2,

the users can rent large-scale computational power on demand in the form of “in-

stances” of virtual machines of various sizes, which is charged on an hourly basis.

The users can also use popular parallel computing paradigms such as the MapRe-

duce framework [DG04], which is readily available as the AWS product “Elastic

MapReduce.” Furthermore, such a centralized approach also frees the users from

the burden of provisioning, acquiring, deploying, and maintaining their own physical

compute facilities.

Naturally, such a paradigm is economically very attractive for most users, who

only need large-scale compute capacity occasionally. For large-scale computations,

it may be advisable to buy machines instead of renting them because Amazon pre-

sumably expects to make a profit on renting out equipment, so our extrapolation

might over-estimate the cost for long-term computations. However, we believe that

these cloud-computing service providers will become more efficient in the years to
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Elastic Compute Cloud 1 Year Reserved Pricing Elastic MapReduce

cc1.4xlarge 1.60 USD/hour 4290 USD + 0.56 USD/hour 0.33 USD/hour

cg1.4xlarge 2.10 USD/hour 5630 USD + 0.74 USD/hour 0.42 USD/hour

Table 5.1: Pricing information from http://aws.amazon.com/ec2/pricing/.

come if cloud computing indeed becomes the mainstream paradigm of computing.

Moreover, trade rumors has it that Amazon’s profit margins are around 0% (break-

even) as of mid-2011, and nowhere close to 100%, so we can say confidently that

Amazon rent cannot be more than 2× what a large-scale user would have spent if he

bought and maintained his own computers and networking. Thus, Amazon prices

can still be considered a realistic measure of computing cost and a good yardstick

for determining the strength of cryptographic keys.

In estimating complexity such that of solving (α-)SVP or problems of the same or

similar nature, Amazon EC2 can be used to provide a common measure of cost as

a metric in comparing alternative or competing cryptanalysis algorithms and their

implementations. Moreover, when using the Amazon EC2 metric, the parallelizabil-

ity of the algorithm or the parallelization of the implementation is explicitly taken

into account, as opposed to being assumed or unspecified. In addition to its sim-

plicity, we argue that the EC2 metric is more practical than the dollardays metric

of [Len05], and a recent report by Kleinjung, Lenstra, Page, and Smart [KLPS11]

also agrees with us in taking a similar approach and measure with Amazon’s EC2

cloud.

AWS offers several different compute instances for their customers to choose based

on their computational needs. The one that interests us the most is the largest

instance called “Cluster Compute Quadruple Extra Large” (cc1.4xlarge) which

is designed for high-performance computing. Each such instance consists of 23 GB

memory provide 33.5 “EC2 Compute Units” where each unit roughly “provides the

equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor,”

according to Amazon.

Starting from late 2009, AWS also adds to its inventory a set of instances equipped

with GPUs, which is called “Cluster GPU Quadruple Extra Large” (cg1.4xlarge),

which is basically a cc1.4xlarge plus two NVIDIA Tesla “Fermi” M2050 GPUs.

As of the time of writing, the prices for renting the above compute resources are

shown in Table 5.1. The computation time is always rounded up to the next full

hour for pricing purposes.

For computations lasting less than 172 days it is cheaper to use on-demand pricing.

http://aws.amazon.com/ec2/pricing/
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For longer runs, there is an option to “reserve” an instance for 1 year (or even 3),

which means that the user pays an up-front cost (see table above) to cut the on-

demand cost of these instances.

5.2 Parallel Algorithm Design and Implementation

For each randomized basis, we use LLL-XD followed by BKZ-FP of the NTL library

[Sho] with δ = 0.99, different blocksizes β, and pruning parameter p = 15. NTL

allows to prune the enumeration tree in the enumeration subroutine of BKZ, in the

sense of [SH95]. The effect of this pruning is not well-understood since its theory

was flawed [GNR10], but since it allows for bigger block sizes for pre-reduction we

decided to run pruned BKZ. As already mentioned above, the problem we address

is finding a vector below a search bound 1.05 ·FM(L) that heuristically guesses the

length of a shortest vector of the input lattice. Adapting our implementations to

other goal values is straight forward. It will only change the success probability and

the runtime, therefore, we have to fix the bound for this work.

5.2.1 Bounding Function

As mentioned above, selecting a suitable bounding function is an important part of

extreme enumeration. It influences the runtime as well as the success probability

of each enumeration tree. The bounding function we use is a polynomial p(x) of

degree eight that aims to fit the best bounding function of [GNR10] in dimension

110. We use

p(x) =
8∑
i=0

vix
i

where v = (9.1·10−4, 4·10−2,−4·10−3, 2.3·10−4,−6.9·10−6, 1.21·10−7,−1.2·10−9, 6.2·
10−12,−1.29 · 10−14) to fit the 110-dimensional bounding function. For dimension n

we use p(x ·110/n). Figure 5.1 shows our polynomial bounding function p(x), scaled

to dimension 90. This bounding function gave the best results compared to linear,

piecewise linear, and step bounding functions introduced in the theoretic part of

[GNR10]. Table 5.2 shows example results of Extreme Enumeration, indicating that

the polynomial function is superior among the bounding functions. We ran Extreme

Pruning using different bounding functions in dimension 80. Higher dimensions are

impractical due to the huge runtime of some bounding functions. We use BKZ-15

pre-reduction, since in dimension 80, stronger BKZ with higher blocksize (say 20 or

25) would directly find shortest vectors. The timings show the typical behaviour of
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polynomial linear piecewise linear step

1. runtime [s] 1937 32795 > 12000 7006

2. enum calls 48 12 > 6000 82

3. single enum time [s] 490 32755 ≈ 1 1072

(2.) · (3.) 23,520 393,060 - 87,904

Table 5.2: Extreme Pruning using different bounding functions on 12 CPU cores, in an

80-dimensional lattice, with BKZ-15 pre-reduction. The BKZ pre-reduction took about

1s for each instance and is omitted in the table. With piecewise linear pruning, the

experiments were stopped after 6000 enum calls without result.

the different bounding functions. The linear bounding function takes quite a long

time for single enumeration, and finds a shortest vector in the first run (12 enum

calls indicates that in the first iteration on 12 cores a shortest vector was found).

Piecewise linear pruning cuts off too many parts of the search tree and therefore

runs very fast (1 second for an enum instance) but does not find a shortest vector.

Stepwise bounding function cuts off the “wrong” parts of the tree. Compared to

the polynomial function, it takes more time for a single enumeration and it has

to start more instances. So the polynomial bounding function promises the best

total runtime, since it gives the best trade-off between single enum runtime and the

number of instances that have to be started (success probability) among the tested

candidates.

Using an MPI-implementation for CPU we gained a success probability of finding

a vector below 1.05 · FM(L) of psucc > 10%. We ran experiments using the SVP

challenge lattices, in order to assess the practical success probability (the probability

of a single ENUM run to find a short vector) of extreme pruning using the polynomial

bounding function p(x). Using a multicore CPU implementation we started extreme

pruning on up to 10, 000 lattices in each dimension (we stopped each experiment

after 20 hours of computation). Figure 5.3 shows the average success rate of BKZ

(with pruning parameter 15) and ENUM in dimensions 80 to 96 for different BKZ

blocksizes. The values shown are the number of successfully reduced lattices divided

by the number of started lattices in each dimension.

With BKZ blocksize 20, the pre-reduction was not strong enough, so neither BKZ

nor ENUM could find a vector below the search bound in dimensions ≥ 96 within

20 hours. In dimension 100, the number of finished enumeration trees was already

too small to derive a meaningful success rate.

The success rate of BKZ vanishes in higher dimensions. For each BKZ blocksize,
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Figure 5.1: The new polynomial bounding

function p(x), scaled to lattice dimension
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function.
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Figure 5.2: The final success probability of

Extreme Enum assuming a success probabil-

ity psucc = 10% for one single tree. On aver-

age, we have to start 44 trees to finish with

success probability > 99%.

the success rate of ENUM stabilizes at a value > 10%. Since the success rate is

higher than this value in almost every case, we assume a value of psucc = 10% for

our polynomial bounding function p(x).

Figure 5.3 shows the expectation values of the success of BKZ and ENUM. More

exactly, it shows the expectation value E(X) of P (X ≤ t), which gives a success

probability of p = 1/E(X). For higher dimensions m > 90 the success probability

of BKZ tends to zero in every tested case. P (t) = 1 − (1 − psucc)
t is the success

probability to find a shortest vector below 1.05·FM(L) when starting t enumeration

trees in parallel. Figure 5.2 shows the success probability P for psucc = 10%. This

implies that on average we have to start 44 trees to find a vector below the given

bound with probability P (t) > 99% (and not 1/psucc many trees, as one could

imagine).

For a comparable bounding function, the authors of [GNR10] get a much smaller

success probability. This is due to the fact that in our case we expect about 1.05n

many vectors below the larger search bound, whereas the analysis of Gama et al.

assumes that only a single vector exists below their bound.

5.2.2 Parallelization of Extreme Pruning using GPU and Clouds

Our overall parallelization strategy of Extreme Pruning Enumeration follows the

model shown in Figure 5.4. For success, it is sufficient if one randomized instance of

ENUM finishes. The number of instances we start depends on the success probability
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Figure 5.3: Average values of success of the polynomial bounding function. total =

number of samples; BKZ = number of samples solved by BKZ; ENUM = number of

samples solved by pruned enumeration.

of each instance, which itself is depending on the bounding function used. The high-

level algorithm run by each multicore-Enum or GPU-Enum instance is illustrated

in Figure 5.5.

For the calculation of the cost, it makes no difference if we use 8 cores for a

multicore-tree or only one core. In practice, however, we can stop the whole com-

putation if one of the trees has found a vector below the bound. Therefore, using

multiple cores for enumeration may have some influence on the running time.

GPU Implementation. We used the implementation of Chapter 4 and included

pruning according to [GNR10]. The GPU enumeration uses enumeration on top of

the tree, which is performed on CPU, to collect a huge number of starting points, as

shown in Figure 5.5. These starting points are vectors (×, . . . ,×, xn−α+1, . . . , xn),
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Figure 5.4: The model of our parallel SVP solver. The basis B is randomized, and each

instance is solved either on CPU or on GPU. In the end, the shortest of all found vectors

is chosen as output. Since we use pruned enumeration, not all instances will find a vector

below the given bound.
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Figure 5.5: Illustration of the parallel enumeration process. The top tree xn, xn−1, ..., xα
is enumerated on a single core, and the lower trees xα−1, ..., x2, x1 are explored in parallel

on many mappers.
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where only the last α coefficients are set. A starting point can be seen as the root

of a subtree in the enumeration tree. All starting points are copied to the GPU

and enumerated in parallel. Due to load balancing reasons, this approach is done

iteratively, until no more start points exist on top of the tree (see Chapter 4 for

more details).

Since the code of extreme pruning only changes a few lines compared to usual

enumeration, including pruning to the GPU implementation is straightforward. The

improvement mentioned in [GNR10] concerning storage of intermediate sums was in

parts already contained in the implementation of Chapter 4, so only slight changes

were integrated into the GPU ENUM.

The GPU implementation allows the usage of different bounding functions, but

for simplicity reasons we stick to the polynomial function specified above. Our

implementation is available online [HKS11].

MapReduce Implementation. Our MapReduce implementation is also based on

Chapter 4. The MapReduce framework requires to start all ENUM instances at

the same time, which is only possible with the GPU approach, using top level

enumeration first. The overall search process is illustrated in Figure 5.6. Specifically,

we divide the search tree to top and lower trees. A top tree, which consists of levels

xn through xα, is enumerated by a single thread in a DFS fashion, outputting

all possible starting points (xα, . . . , xn) to a WorkList. When a mapper receives

a starting point (xα, . . . , xn) from the WorkList, it first populates the unspecified

coordinates x1, . . . , xα−1 and obtains the full starting point

(x1 = d−
n∑
k=2

µk,1, xkc, . . . , xα−1 = d−
n∑

k=α

µk,α−1, xkc, xα, ..., xn).

It then starts enumerating the lower tree from level 1 through α− 1.

Figure 5.6: Illustration of our MapReduce implementation of the enumeration algorithm.
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Because we scan the coefficients in a zigzag path, the lengths of the starting points

usually show an increasing trend from the first to the last starting point. This can

result uneven work distribution among the mappers. Therefore, we subdivide and

randomly shuffle the WorkList so that each mapper gets many random starting

points and hence have roughly equal amount of work among themselves. The effect

is evident from the fact that the load-balancing factor, i.e., average running time

divided by that of the slowest mapper, increases from 24% to 90%.

5.3 Experimental Results

In this section, we present the experimental results for our algorithmic improvements

and parallel implementations on GPU and with MapReduce.

5.3.1 GPU Implementation

The GPU enumeration using extreme pruning solved the 114-dimensional SVP-

challenge in about 40 hours using one single workstation with eight NVIDIA GeForce

GTX 480 cards in parallel. Each GTX 480 has one GPU with 480 cores running at

1.4 GHz. The performance decreases from 200 Msteps/s to ≈ 100 Msteps/s using

polynomial bounding function compared with an instance without pruning. With

linear pruning, the decrease is less noticeable, but still apparent. This decrease is

caused by the fact that subtrees are much thinner when pruning the tree. The

number of starting points per second increases a lot, which coincides with the fact

that subtrees, even though their dimension is much bigger now, are processed faster

than without pruning.

We use 10 different lattices of the SVP challenge in each dimension 80–104 on

the workstation equipped with eight GTX 480 cards to generate the timings of

Figures 5.7 and 5.8 as well as Tables 5.3 and 5.4. The tables omit some dimensions

n, whereas the figure does not contain a graph for each blocksize, due to readability

reasons.

Workload Distribution between BKZ and ENUM. We note that in general, if

we spend more time in BKZ to produce a better basis, we would have a higher

probability of finding a short vector in the subsequent ENUM phase. A natural

question is, what is the optimal breakdown of workload between BKZ and ENUM?

We conjecture that the distribution should be roughly equal, as is supported by

empirical evidence that we obtained from our experiments (cf. Figure 5.9). In our

experiments, BKZ 40 performs the best in 104-dimensional instances, whereas in
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n 80 84 88 92 96 100 104

BKZ-30 87 291 502 736 1847 10523 59317 (16h)

BKZ-35 113 254 957 1819 3502 7854 30256 (8h)

BKZ-40 143 350 1153 3246 4026 13307 21930 (6h)

BKZ-45 283 427 1272 3758 7896 12800 27021 (8h)

BKZ-50 122 456 1222 4521 11442 25691 45488 (13h)

BKZ-55 172 731 1272 2225 5081 19457 61131 (17h)

Table 5.3: Total running time in seconds for solving SVP instances with Extreme Pruning

Enumeration on 8 GPUs from dimension 80 to 104 using different BKZ blocksizes and NTL

pruning parameter 15.

n 80 84 88 92 96 100 104

BKZ-30 22 33 55 90 243 1032 6378 (106min)

BKZ-35 43 62 108 198 373 882 3219 (54min)

BKZ-40 65 130 183 342 601 1358 3225 (54min)

BKZ-45 83 178 296 545 951 2032 4094 (68min)

BKZ-50 111 217 340 655 1204 2447 4891 (82min)

BKZ-55 132 252 471 890 1588 2780 6113 (102min)

Table 5.4: Running time for one single instance of pruned ENUM.
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Figure 5.9, it has a ratio that is the closest to 0.5. Similar trends can be observed

for dimensions 86–97, for which the best BKZ block size is 30.

We use the data shown in Figure 5.9 to assess which of the curves from Figure 5.8

is the fastest one, and we use the extrapolation of this curve gained from data in

dimension 80–104. This results in the cost function shown in Conjecture 5.1.

Conjecture 5.1 (GPU timing function). Running BKZ and our implementation of

pruned enumeration once on an NVIDIA GTX 480 GPU takes time

timeGPU(n) =


t30(n) = 20.0138n2−2.2n+93.2 for n ≤ 97

t35(n) = 20.0064n2−0.92n+38.4 for 98 ≤ n ≤ 104

t45(n) = 20.001n2+0.034n−2.8 for 105 ≤ n ≤ 111

t55(n) = 20.00059n2+0.11n−5.8 for 112 ≤ n

sec .
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Figure 5.9: Ratio of BKZ runtime to total runtime for a single enumeration tree.

A more theoretic way to extrapolate the runtime would be to compute BKZ

reduced bases, note the slope of the orthogonalized basis vectors, and use the runtime

function of [GNR10] to compute the runtime. This approach ignores the runtime of

BKZ (which is up to 50%) of the total runtime and relies on the Gaussian heuristic,

while we are interested in practical runtime.

From the regression results shown in Figures 5.7 and 5.8, we can see that the run

times for BKZ and ENUM are indeed polynomial and super-exponential, respec-

tively. However, we notice that a larger BKZ block size does have a positive effect

on the per-round running time of subsequent ENUM.

One difference is that Amazon uses M2050 GPU, not GTX 480 (like in our exper-

iments). The M2050 has better double precision performance. Since many opera-

tions in enumeration are performed using double precision operations, we expected a
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huge speed-up for enumeration. However, tests on M2050 GPUs did not show large

speed-ups. One possible explanation is as follows. On the GPU, many additional

operations have to be performed in integer-precision in order to split the work and

reach a good load balancing. Therefore, double-precision operations are less than

a fourth of the total number of operations, which makes the speed-ups on M2050

GPUs minor.

5.3.2 MapReduce Implementation

Our MapReduce implementation is compiled by g++ version 4.4.4 x86 64 with the op-

tions -O9 -ffast-math -funroll-loops -ftree-vectorize. Using the MapRe-

duce implementation, we are able to solve the 112-dimensional SVP-challenge in a

few days. More exactly, we were using 10 nodes, 84 physical cores (totaling 140

virtual cores as some of the cores are hyperthreaded), which gives a total number of

334 GHz.

We note that the bounding function used in this computation is different from

the polynomial bounding function described earlier. We were lucky in that only

after 101 hours, or 1/9 of the estimated time, a shorter vector was found. We also

noticed that the runtime scales linearly with the number of CPU cores used in total,

meaning if we increase the number of CPU cores by a factor of 10, the runtime will

decrease by factor 10.

Overall, from the test data of solving SVPs at dimension 100, 102, and 104 using

the same set of seeds, we found that a GTX 480 is roughly two to three times faster

than a four-core, 2.4 GHz Intel Core i7 processor for running our SVP solvers. We

conjecture that the running time for our MapReduce implementation is also similar

to that of our GPU implementation, as shown in Conjecture 5.1.

5.3.3 Final Pricing

We use Conjecture 5.1 to derive the final cost function for solving SVP challenges

in higher dimensions n ≥ 112. Recall that Amazon instances have to be paid for

complete hours, therefore we round the runtime in hours to the next highest integer

value. Using 44 enumeration trees leads to a success probability of at least 99%.

Conjecture 5.2 (Final Pricing). Solving an SVP challenge with our implementation

in dimension n ≥ 112 with a success probability of ≥ 99% on Amazon EC2 (using

on demand pricing) costs

costGPU(n) = dtimeGPU(n)/3600e · 44 · 2.52 USD .
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Following Conjecture 5.2 solving the 120-dimensional instance of the challenge

costs 1, 885 USD, which is a bit less than the amount we paid for practically solving

it (due to conservative reservation of compute resources on EC2). We actually fired

up 50 cg1.4xlarge instances for a total of 946 instance-hours, and incurred a bill of

2, 300 USD. For instance, solving the 140-dimensional challenge would cost roughly

72, 405 USD.

5.3.4 Scalability

Our implementation allows for arbitrary hardware effort. To solve α-SVP with

probability of more than 99% we require to run 44 random enumeration instances.

Each instance can be solved either on single or multiple CPU, GPU, or a clustered

combination of both. Therefore, the scalability is as in Chapters 3 and 4. An upper

bound is only given by the available amount of money and the cloud resources.
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Parallel Random Sampling on GPU

In this chapter we present CUDA-SSR, a GPU implementation of the Simple Sam-

pling Reduction (SSR) algorithm that searches for short vectors in lattices. Here,

the SVP approximation factor is bigger than in the last chapters. SSR changes

the whole lattice basis, therefore falls into the category of lattice basis reduction

algorithms. SSR makes use of the BKZ algorithm and complements an exhaustive

search in a suitable search region to insert random, short vectors to the lattice basis.

The sampling of short vectors can be executed in parallel. Although it is already

mentioned in [BL06] that SSR is a good candidate for parallelization, we are the

first to present a distributed version of SSR.

Our main goal is to develop a parallel algorithm that allows for good occupation

of the ALUs of a single GPU. Considering multiple GPUs, linear speedup in the

number of cards is desired. The main challenge here is the distribution of sampled

vectors to the GPU. Adequate scheduling of vectors is crucial in order to get high

performance on the GPU. We compute the maximum number of points that fit

to the storage of the graphics card, and upload the exact amount of vectors to the

card. This results in reasonably good occupation of the card and guarantees minimal

number of calls to the GPU. This is the obvious way to perform scheduling, and it

is already sufficient to occupy the GPU, as our results indicate.

The authors of [BL06] mention a sampling rate of up to 5, 200 samples per second

(on a 2.4GHz Intel Pentium 4). On an NVIDIA GTX295 GPU (which was released

in 2009) we get rates of more than 120, 000 samples per second. With this we are the

first to present a parallel implementation of SSR and we make use of the computing

capability of modern graphics cards to enhance the search for short vectors even

more.
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In this chapter we first present the required background knowledge about SSR in

Section 6.1. Then we introduce the parallel algorithm design in Section 6.2. Finally,

Section 6.3 shows the experimental study using the GPU implementation of SSR.

Our experiments are twofold. First we compare CUDA-SSR to BKZ, and second we

compare it to our CPU-SSR implementation to show the strength of the GPU.

A preliminary version of this chapter was published in CHES 2011 [SG11]. The

dissertation author was the principal investigator and author of this paper. In order

to gain more meaningful results, the experiments of Section 6.3.2 were extended for

this thesis using more test lattices than [SG11].

6.1 Random and Simple Sampling Reduction

Schnorr presented the first sampling algorithm called Random Sampling Reduc-

tion (RSR) in [Sch03]. It is an adaption of BKZ, and applies BKZ together with the

insertion of some randomly sampled vectors. Ludwig and Buchmann refine the algo-

rithm and promise to make sampling practical with their Simple Sampling Reduction

(SSR) in [BL06]. They get rid of two RSR assumptions, namely the Randomness As-

sumption (RA) and the Geometric Series Assumption (GSA), which they claim both

do not hold in practice. They replace the independent random sampling of vectors

in the search space by a deterministic exhaustive search. This makes it impossible

to sample the same vector multiple times, which was the case for RSR. Ludwig gives

a more detailed view on SSR in his dissertation thesis [Lud05]. The implementation

of Ludwig is available upon request. Comparisons of his SSR implementation with

BKZ on cryptographic lattices can be found, e.g., in [BLR08, BL09].

The idea of random sampling is the following. Iteratively, it switches between

reduction of the basis (using BKZ) and sampling a random short vector of norm

< 0.99 ‖b1‖2, which is then prepended to the reduced basis (cf. Algorithm 6.1).

Every basis vector v = [v1, . . . , vn] can be written in its orthogonalized form

v =
∑n

i=1 νib
∗
i . We can write its squared norm as

‖v‖2 =
n∑
i=1

ν2
i ‖b∗i ‖

2 . (6.1)

Therefore, shortening a vector v is done either by decreasing νi or by decreasing the

‖b∗i ‖.
For a reduced basis B (either LLL or BKZ reduced), it is known that the norm of

the orthogonalized vectors ‖bi‖ decreases for increasing index i. This implies that for

higher indices, the influence of the coefficient νi in Equation (6.1) is less noticeable
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than for smaller indices. This fact helps interpreting the following definition of a

search space. For a basis B ∈ Zn×n and an integer u with 1 ≤ u ≤ n we define the

set Su,B as the set of all lattice vectors v =
∑n

i=1 νib
∗
i with

|νi| ≤

{
0.5 for 1 ≤ i < n− u
1 for n− u ≤ i < n

, νn = 1 (6.2)

and call it the search space. It is Su,B ⊆ L(B), and this search space is supposed

to contain short lattice vectors. The algorithm sample (Algorithm 6.2, original

in [Lud05]) uses as input a lattice basis B and an integer value x, and as output

it computes a vector v ∈ Su,B in the search space. The bit representation of the

integer x controls the sampling deterministically. If the search space Su,B consists

of 2u many points, running sample with all values x ∈ {1, . . . , 2u} guarantees that

the complete search space is sampled.

Algorithm 6.1: SSR

Input: Lattice basis B ∈ Zn×n, GS-coefficients R ∈ Qn×n, bound umax ∈ N,

blocksize β, norm bound A

Output: reduced basis B s.t. ‖b1‖ < A

1 B← BKZ([b1, . . . ,bn], β)

2 while ‖b1‖ > A do

3 for x = 1 to 2umax do

4 v← sample(B,R, x)

5 if ‖v‖2 ≤ 0.99 ‖b1‖2 then break

6 end

7 if x = 2umax then terminate(“No short vector found”)

8 B← BKZ([v,b1, . . . ,bn], β)

9 end

Algorithm 6.1 shows a pseudo-code listing of SSR, Algorithm 6.2 shows a listing

of sample. For more details on random sampling we refer to the works of [Sch03,

Lud05, BL06].

6.2 Parallel Algorithm Design and Implementation

The CUDA-SSR approach in Algorithm 6.3 is a slightly changed variant of the

original SSR algorithm. In each outer while loop, up to 2umax vectors are sampled

in parallel, and the m shortest samples are added to the basis. The main difference
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Algorithm 6.2: sample

Input: Lattice basis B ∈ Zn×n, GS-coefficients R ∈ Qn×n, x ∈ Z
Output: vector v ∈ Su,B

1 v← bn, ν ← rn
2 for j = n− 1 to 1 do

3 y ← dνj − 0.5e
4 if x = 1 mod 2 then

5 if νj − y ≤ 0 then y ← y − 1

6 else y ← y + 1

7 end

8 x← bx/2c, v← v − ybj , ν ← ν − yrj
9 end

10 return v

to the original SSR is the sampling of new vectors v, which is done on the GPU

and returns not only a single vector but multiple ones within a bound of m. The

calculated vectors [v1,v2, . . . ,vm] are added to the front of the lattice B in a sorted

order, before the extended lattice is reduced by the BKZ algorithm. With the adding

of multiple vectors we get a benefit of a more stabilized reduction, as we will see in

the experiments section.

The algorithm terminates if a given norm of the first vector of B is undercut by

a new vector v or if no smaller vector is found in the given search space.

The subroutine par-sample (which is now executed on GPU) is a slightly changed

variant of sample (Algorithm 6.2). The original sample algorithm was parallelized,

so that it computes a huge number of vectors per call. The possibility of paralleliza-

tion is based on the independence of the samples. The only difference among two

samples is the input value x, which can be interpreted as an unique identifier or

seed.

One sample is stored in the shared memory of a CUDA block. The amount of

shared memory, which is used for producing one sample, consists of memory for the

vector v (4Byte · dimension), for the vector ν (4Byte · dimension), for y (4Byte),

and for a valid-Byte (1Byte). For one CUDA block a number of

samplesPerBlock =

⌊
available shared memory

(4 + 4Byte) · dimension+ 4Byte+ 1Byte

⌋
vectors are produced. If we use all available CUDA blocks, the overall number of

samples is 65535 · samplesPerBlock per call. For example, at a dimension of 80

one call calculates 65535 · b 16344
8·80+5

c = 1, 638, 375 samples. The shared memory of
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Algorithm 6.3: CUDA-SSR

Input: Lattice basis B ∈ Zn×n, GS-coefficients R ∈ Qn×n, bound umax ∈ N,

blocksize β, norm bound A, add vector bound m

Output: BKZ-β reduced basis B s.t. ‖b1‖ ≤ A

1 B← BKZ([b1, . . . ,bn], β)

2 foundSmaller = true

3 xOffset = 0

4 while ‖b1‖ > A and foundSmaller = true do

5 while xOffset < 2umax do

6 parallel [i = xOffset . . . xOffset + maxSamplesPerCall] do

7 [v1,v2, . . . ,vm], foundSmaller ← par-sample(B,R, xi,m)

8 end

9 if foundSmaller = true then break inner while loop

10 xOffset += maxSamplesPerCall

11 if xOffset ≥ 2umax then terminate

12 end

13 B← BKZ([v1,v2, . . . ,vm,b1, . . . ,bn], β)

14 end

16384Byte is decreased by the parameters of the kernel call, which are also stored in

shared memory (16Byte for dimBlock and dimGrid, 24Byte for 3 pointers). These

values might change for other CUDA compute capabilities.

6.2.1 Parallel Implementation of Subroutine Sample

Here we describe how we implemented the sampling of samplesPerBlock many

vectors in Su,B on GPU. This is the main contribution of the paper.

The first step for determining samplesPerBlock samples in one CUDA block is

to copy the entries of the last vector of the matrices B and R to v and ν in parallel.

The matrices B and R resist in the texture memory, because they are read multiple

times and this memory is cached.

The second step is to compute the factor y for every sample and build new vectors

inside a for-loop. A single y is processed by one CUDA thread, therefore all y′s of one

CUDA block can be calculated in parallel. Afterwards the temporary new vectors

v and ν are built, whereby all entries of a vector are assigned in one parallel step.

If an integer overflow is noticed in this step, the sample will be indicated as invalid.

When the loop is finished, the square norms of the new samples are calculated with

the common vector reduction approach, after squaring all entries of v in parallel.
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Figure 6.1: Computation of the norm of a single vector v in parallel.

Figure 6.1 illustrates this procedure. Once a square norm of 2x (with x = max{y ∈
Z : 2y ≤ dimension}) is determined, the result will be added to the first entry of

the next interval. This procedure continues, until there is no more than one entry

left.

Because the square norms of all vectors are calculated step by step, we can register

the smallest square norm of a CUDA block. Therefore a CUDA block writes only

the smallest vector back to the global memory, assumed that the square norm is less

than 99% of ‖b1‖2 and the sample is valid. With this we save a lot of global memory.

Instead of writing 65535 · samplesPerBlock many vectors to global memory we use

shared memory for samplesPerBlock many vectors of each block and only write

65535 many vectors to the device.

For achieving higher performance we introduce a counter, which increases if a vec-

tor with a square norm less than 99% of ‖b1‖2 is found. When m vectors below this

bound have been found, we break the parallel sampling. The counter is increased

with so called atomic operations, which provides an exclusive read-modify-write op-

eration for one CUDA thread. The parallel processing of the CUDA framework is

only “semi-parallel”, because only a part of all CUDA blocks are processed parallel

for real (we have 65535 blocks but only 30 multiprocessors available). Therefore we

can abort further calculations, if the counter m reached a defined value. A flow chart

of our GPU algorithm of sample is shown in Appendix A of [SG11]. In order to

remove serialization we also tested replacing the condition in Line 4 of sample by

arithmetic computations, but recognized no speedups. Since there is no else-block,

the fact that (on average) half of the threads are idle does not influence the total

runtime.
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For establishing the gain of parallel sampling we also implement a CPU version

of the SSR algorithm (called CPU-SSR), which produces new vectors step by step.

Our CPU as well as the GPU implementation are available online [GS11].

6.3 Experimental Results

We are using an NVIDIA GTX 295 GPU for our experiments. The CPU that we

use is an Intel Core2 Duo E8400 CPU running at 3GHz. The lattices we use are the

SVP challenge lattices [GS10]. For LLL and BKZ reduction we use the NTL library

[Sho] in version 5.5.2. The parameter δ is always set to the standard value 0.99. We

run LLL with precision RR followed by BKZ with precision QP.

First we compare our results of CUDA-SSR to BKZ, and second we present ex-

periments comparing CUDA-SSR to CPU-SSR.

6.3.1 Comparison of CUDA-SSR and BKZ

Let B be the basis of L(B) in dimension n and c be a constant. Using BKZ with

blocksize β, Gama and Nguyen [GN08b] predict the average norm of the first basis

vector after BKZ reduction to be

gn = cn det(L(B))1/n , (6.3)

where the Hermite factor constant c relies on the blocksize used. For BKZ-20, e.g.,

they experimentally gain a value of c = 1.0128.

Our experiments are performed as follows. First, we reduce a lattice basis with

BKZ with increasing blocksize, until we reach a vector of desired goal norm gn, cf.,

Equation (6.3). We use a value of c = 1.0129 to calculate our goal norm (due to

a typo, which has minor influence). In order to reduce the total runtime of the

experiment we only use one lattice per dimension. The resulting runtimes and the

reached norms are shown in Figures 6.2 and 6.3. Second, we use CUDA-SSR with

half the blocksize (rounded up) that BKZ needed to reach the goal norm and run

CUDA-SSR on the same lattice; i.e., random sampling has to close the gap between

BKZ with half blocksize and BKZ with full blocksize. We stop the GPU sampling

when m = 0.25 · n vectors below 0.99 · ‖b1‖2 were found by par-sample.

Figure 6.4 shows the blocksize that BKZ needed to find the resulting vector. The

picture shows that the blocksize is around 20 in most of the cases, as predicted by

[GN08b]. Figure 6.5 shows the speedup factor of CUDA-SSR compared to BKZ.

We notice that with both approaches, BKZ as well as CUDA-SSR, we find vectors

of comparable length (Figure 6.2). CUDA-SSR is always faster (up to 40%). For
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comparison reason, Figure 6.3 includes the runtime of BKZ with blocksize dβ/2e,
the pre-processing step of SSR (Line 1 of Algorithm 6.3). The picture shows that it

takes a huge part of the random sampling time (dashed line). This implies that the

later part of SSR (sampling - BKZ - sampling - . . .) takes a lot less time (the time

difference between the dotted and dashed curve) than the initial BKZ. Therefore,

the total SSR runtime cannot profit too much from the parallel sampling part in

this setting.

The runtime speedup factor (Figure 6.5) seems to increase with the dimension,

from 1.1 in dimension 80 to a maximum value of 1.6 in dimension 160. The peek

in dimension 150 is also apparent in Figure 6.4 and seems to result from special

structure in the lattice (SSR is working less in this lattice).

6.3.2 Comparison of GPU and CPU Variant of SSR

Our second block of experiments is supposed to show the strength of parallelization

on GPU of the SSR algorithm. For this, we run our CPU implementation and

our GPU implementation of SSR for the same lattices until they undercut the goal

norm. The values noted are average values for 10 different lattices in each dimension.

For pre-reduction, we use LLL only. We note the reached norm (cf. Figure 6.6)

and the runtime (cf. Figure 6.7). Figure 6.8 shows the speedup factor gained by

the GPU version. We prepend m = 0.1 · n vectors to the basis in each GPU

iteration. Figure 6.9 compares a typical behaviour of SSR on GPU and CPU over

time, concerning the norm of the sampled vectors.

On CPU, the sampling rate was about 160 samples per second for a 180- dimen-

sional lattice. The GTX 295 GPU reached about 120, 000 samples per second for a

180 dimensional lattice. In smaller dimension, sampling rates of more than 250, 000

are possible, e.g. in dimension 60.

We noticed that the runtime of SSR on GPU is very stable compared to the CPU

version. We conclude that sampling multiple vectors in each iteration helps SSR to

run much more stable. Figure The speedup factor shown in Figure 6.8 shows the

potential of the CUDA version compared to the CPU version. In small dimension we

gain speedup factors of up to 180. On GPU, in the first iteration a vector below the

bound is already found, whereas on CPU multiple iterations have to be performed.

In bigger dimensions, the speedup factor decreases, depending on the behaviour

pattern.

Figure 6.9 shows a typical behaviour of SSR on CPU and GPU. CUDA-SSR starts

with lower norm, which implies that the first iterations of SSR decreases the norm

much more than on CPU. We noticed that in the first iterations, there exists a huge
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number of vectors below the 0.99 ‖b1‖2 bound. Therefore, on GPU we have good

chance to find a much shorter vector. On CPU only the first vector below the bound

is picked, whereas on GPU multiple vectors are prepended to the basis, and all these

vectors are potentially smaller than the CPU one.

To show the strength of our GPU version, Figure 6.10 shows the time needed by

CUDA-SSR and CPU-SSR to sample the same amount of vectors, namely 221 many.

It is evident that on GPU, the sampling is much faster, with a maximum factor 14.5

in dimension 190. This speedup is even a bit higher than the maximum speedup

factor in the number of FMADD operations that the hardware allows for (factor

13, cf. Chapter 4). Therefore, sampling itself reaches a good occupation of a single

GPU.
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Figure 6.10: Time to sample 221 many vectors using CUDA-SSR and CPU-SSR.

Further Comments. The percentage of BKZ of the total runtime was up to 97%.

This is not optimal, since BKZ does not apply the hardware acceleration of the

graphics card. LLL took 67% of the total runtime in dimension 100. The potential

of parallelization is visible, but SSR does not take full advantage of it.

In this chapter we considered higher approximation factors exponential in the lat-

tice dimension. We also tried to solve SVP challenge instances with lower approxi-

mation factors using SSR.This was only possible in reasonable runtime in dimension

up to 85 (this took already more than a week). In higher dimensions, the goal

norm of the challenge (i.e., the SVP approximation factor) is too small for SSR to

be successful. Apparently SSR is stronger in higher lattice dimensions with higher

approximation factors.

Distributing the samples to multiple graphics cards is possible by allocating the

seeds 1, . . . 2u to different cards. The parameter u controls the number of samples
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in the search space. With increasing dimension u can be chosen larger, therefore

occupying multiple cards is possible with increasing dimension.



7
Sieving in Ideal Lattices

So far there is no SVP algorithm making use of the special structure of ideal lattices.

It is widely believed that solving SVP (and all other lattice problems) in ideal lattices

is as hard as in regular lattices [MR08, ADL+08, Lyu09]. Our intention is to show

how sieving algorithms can be strengthened in ideal lattices using their circular

structure. The idea was already mentioned in [MV10b]. There, the authors assume

that the amount of storage required by their algorithm decreases with a factor of p,

where p is the degree of the field polynomial. We show that in practice not only the

storage but as well the practical runtime of sieving algorithms decreases by a factor

of p.

Micciancio and Voulgaris propose to use the cyclic rotations of each sampled vec-

tor to reduce the size of the vectors. For ideal lattices, the “rotation” of each lattice

vector is still an element of the lattice. Therefore, it can be used in the sieving

process, for ListSieve as well as GaussSieve. They expect a reduction of ListSieve’s

list size linear in the degree of the field polynomial, and a substantial impact on

the practical behaviour of the GaussSieve algorithm. In this chapter, we present ex-

perimental results using this approach. We implement ListSieve and IdealListSieve

without perturbations as well as IdealGaussSieve (based on an existing GaussSieve

implementation). So far, there is not much insight to the behaviour of ListSieve

and GaussSieve. Therefore, the main challenge is to understand and explain the

performance of these algorithms, in order to allow for comprehension of the effect of

rotations. There is a huge difference between worst case runtime of ListSieve using

perturbations and the heuristic variants that we use in this chapter.

Our experiments show that indeed the storage requirements decrease as expected

by [MV10b]. But even more, sieving in ideal lattices can find a shortest lattice
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vector much faster, with a practical speedup factor linear in the degree of the field

polynomial. To explain the results, we use the assumption that the number of vector

reductions used in the sieving process stays the same in both the original and the

ideal case. We will show that this assumption conforms with our experiments. To

give an example, the measured and fitted runtime of IdealListSieve in cyclic lattices

is 20.51n−21.2 seconds, compared to 20.67n−26.8 seconds for ListSieve. In dimension n =

60, the runtime difference is about 4 hours, which corresponds to a time advantage of

94% for IdealListSieve. The worst-case runtime of IdealListSieve remains the same

as for ListSieve, since considering all rotations cancels out the factor p in theory.

To our knowledge, this is the first SVP algorithm that uses the special structure

of ideal lattices. (For cyclic NTRU lattices, there is a LLL-variant using the cyclic

rotations [MS01].) Since the runtime of sieving algorithms is exponential in p, this

linear speedup does not effect the asymptotic runtime of sieving algorithms. It

only helps to speed up sieving in ideal lattices in practice noticeably. For the fully

homomorphic encryption challenges for example p is bigger than 210, which would

result in a speedup of more than 1000 for sieving. The signature scheme of [Lyu09]

uses p ≥ 512. These numbers show that even if we only allow for a linear speedup

this still might give huge speedups in practice.

In this chapter we aim at solving exact SVP, i.e., given a basis B of a lattice

find a non-zero vector v ∈ L(B) with norm equal to λ1(L(B)). In comparison

to enumeration, sieving algorithms output a shortest lattice vector only with high

probability. There is an exponentially small probability (in the lattice dimension)

of missing a shortest vector. In this case, sieving algorithms output an approximate

solution of SVP only. In Section 7.1 we describe the original ListSieve and develop

the IdealListSieve algorithm. In Section 7.2 we present the theoretical analysis of

the algorithm, and Section 7.3 shows experimental results of our implementation.

We will use the notation introduced in Chapter 2.

A preliminary version of this chapter appeared in [Sch11c]. The dissertation

author was the principal investigator and author of this paper. Parts of this chapter

were presented in WALCOM 2011 [Sch11a].

7.1 IdealListSieve Algorithm

In this section we will present the IdealSieve algorithm of [MV10b] and introduce

the ideal lattice variant IdealListSieve. More details about the implementation will

follow in Section 7.3.
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ListSieve. The idea of ListSieve is the following. A list L of lattice vectors is stored.

In each iteration of the algorithm, a new random vector p is sampled uniformly at

random from a set of bounded vectors. This vector p is then reduced using the list

L in the following manner. If a list vector l ∈ L can be subtracted from p lowering

its norm more than a factor δ < 1, p is replaced by p− l. With this, p gets smaller

every time. When the vector has passed the list it is appended to L. In the end, L

will contain a vector of minimal length with high probability. If the sampled vector

p is a linear combination of smaller list vectors it will be reduced to 0 and not be

appended. This rare case is called a collision. Collisions are important for runtime

proofs (they avert a runtime proof for GaussSieve, for example). For practical issues,

they are negligible, since they occur very seldom. Algorithm 8 shows a pseudo-code

of ListSieve without perturbations. Function ListReduce is shown on Page 76.

Algorithm 7.1: ListSieve(B, targetNorm)

1 List L← LLL(B) B Pre-reduction with the LLL algorithm

2 while currentBestNorm > targetNorm do

3 p ← sampleRandomLatticeVector(B) B Sampling step

4 ListReduce(p, L, δ = 1− 1/n) B Reduction step

5 if p 6= 0 then

6 L.append(p) B Append step

7 end

8 end

9 return lbest

Originally, ListSieve does not work with lattice points p, but with a perturbed

point p + e with a small error e. The use of perturbations is necessary in order

to upper bound the probability of collisions, which is essential for proving runtime

bounds for the algorithm. Since in practice collisions play a minor role we will skip

perturbations in our implementation. For the sampling of random vectors in Line 3

the authors of [MV10b] use Kleins randomized rounding algorithm [Kle00], which

we will also apply for our implementations.

IdealListSieve. One of the properties of ideal lattices is that for each lattice vector

v, rotations of this vector are also contained in the lattice. This is due to the

property of the ideal I corresponding to the ideal lattice. Ideals in R are closed

under multiplication with elements from R, and since vectors in ideal lattices are

the same as elements of the ideal, multiplications of these vectors are also elements

of the lattice.
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To compute the rotation of a vector v one has to rotate each block of length p of

v. If n = 2p, the first half of v, which belongs to the qIp part in the first rows of the

basis matrix (2.2), is rotated and so is the second half. So when ListSieve tries to

reduce the sample p with a vector l = (l1, . . . , lp, lp+1, . . . , ln), we can also use the

vectors

l(j) = (rotj((l1, . . . , lp)), rotj((lp+1, . . . , ln))), for j = 1 . . . p− 1 ,

where the first and the second half of the vector is rotated. Therefore, the sample

p can be more reduced in each iteration. Instead of reducing with one single vector

l per entry in the list L, p vectors l(j) can be used.

Function IdealListReduce shows a pseudo-code of the function that is respon-

sible for the reduction part. Compared to the ListSieve algorithm of [MV10b], this

function replaces the ListReduce function. Unfortunately, only the case where n is

a multiple of p allows the usage of rotations of lattice vectors. For the case where

p - n, it is not possible to apply the rotation to the last block of a lattice vector v.

Func. ListReduce(p, L, δ)

1 while

(∃l′ ∈ L : ‖p− l′‖ ≤ δ ‖p‖)
do

2 p←p− round( 〈p | l
′〉

〈l′ | l′〉) · l
′

3 end

4 return p

Func. IdealListReduce(p, L, δ)

1 while

(∃j ∈ [p] , l ∈ L, l′ = rotj(l) : ‖p− l′‖ ≤ δ ‖p‖)
do

2 p←p− round( 〈p | l
′〉

〈l′ | l′〉) · l
′

3 end

4 return p

The while loop condition in Line 1 introduces the rotation step. The reduction

step in Line 2 differs from the original ListSieve description in [MV10b]. It uses

the reduction step known from the Gauss (respectively Lagrange) algorithm (an

orthogonal projection), that is also used in the LLL algorithm [LLL82]. This step is

not explained in [MV10b], whereas their implementation [Vou10] already uses this

improvement. The slackness parameter δ = 1− 1/n is used to ensure that the norm

decrease is sufficient for each reduction in order to guarantee polynomial runtime in

the list size.

IdealGaussSieve. For ListSieve, when a vector joined the list once it remains un-

changed forever. GaussSieve introduces the possibility to remove vectors from the

list if they can be more reduced by a newly sampled vector. The reduction process is

twofold in GaussSieve. First, the new vector p is reduced as in ListSieve. Second, all

list vectors are reduced using p. If a vector from the list is shortened, it will leave the
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list, be stored on a stack, and pass the list again in one of the next iterations (called

stackpoints). Therefore the list will consist of less and shorter vectors than in the

ListSieve case. GaussSieve is the heuristic variant of ListSieve with better practical

runtime, with less theoretical background knowledge about its runtime behaviour.

It is straightforward to include the rotations into GaussSieve in the same man-

ner as for ListSieve. We can replace the function GaussReduce of [MV10b] by

IdealGaussReduce, which uses the rotations twice. First it is used for the reduc-

tion of p, second for the reduction of list vectors. The rest of GaussSieve remains

unchanged. IdealGaussSieve is also included in our implementation. Since the be-

haviour of the GaussSieve variant is even harder to predict, it is more convenient to

study the influence of rotations on ListSieve first.

7.2 Predicted Advantage of IdealListSieve

In this section we theoretically analyze the IdealSieve algorithm and try to predict

the results concerning number of iterations I, the total number of reductions R, and

the maximum size L of the list L. For comparison of an algorithm and its ideal

lattice variant we will always use the quotient of a characteristic of the non-ideal

variant divided by the ideal variant. We will always denote it with speedup. For

example, the speedup in terms of reductions is Rorig/Rideal.

Recall that the only change we made in the algorithm is that in the reduction step,

all rotations rotj(l) (for j ∈ [p]) of l ∈ L are considered instead of only considering l.

The runtime proof for ListSieve in [MV10b] uses the fact that the number of vectors

of bounded norm can be bounded exponentially in the lattice dimension. Therefore,

the list size L cannot grow unregulated. All list vectors have norm less than or equal

n ‖B‖. For cyclic and anti-cyclic lattices, the norm of a vector remains unchanged

when rotated. Therefore each list vector corresponds to p vectors of the same size,

which results in a proven list size of factor p smaller. For prime cyclotomic lattices,

the norm might increase when rotated (the expansion factor is > 1 in that case),

therefore it is a bit harder to prove bounds on the size of the list.

We assume that for finding a shortest vector in the lattice, the total number of

reductions is the same. Our experiments show that this assumption is reasonable

(cf. Section 7.3). In this case we predict the number of iterations of IdealListSieve

compared to ListSieve. When ListSieve performs t iterations (sampling - reducing

- appending), we assume that IdealListSieve would take t/p iterations, since in

t/p steps it can use the same number of list vectors for reduction, namely p · t/p.
Therefore, we expect the number of iterations for IdealListSieve to be a p-th fraction
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of ListSieve.

Since in every iteration one single vector is sampled and appended to the list,

the maximum list size will be in the order of magnitude of the iteration count. The

runtime of the whole algorithm is depending on the number of iterations itself. Since

we are performing p possible reductions instead of one in each iteration, the time

needed for one iteration is supposed to increase a bit. So we expect the total runtime

to increase a bit less than the number of iterations. Figure 7.1 shows the expected

speedup factors of IdealListSieve compared to ListSieve.
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Figure 7.1: Predicted speedups for IdealListSieve compared to ListSieve. The values for

the number of iterations I and the list size L are computed with f(n) = n/2. The number

of reductions R is expected to be close to 1, the total runtime a bit less than I.

Recall that the speedups predicted in this section are asymptotic. They do not

necessarily hold in practice, since we can only run experiments in dimensions n ≤ 80.

In the next section, we present experimental results comparing the two algorithms

to show if our predictions hold in practice.

7.3 Experimental Results

The public implementation of [Vou10] (called gsieve) implements the GaussSieve

algorithm. Based on this, we implemented ListSieve, IdealListSieve, and Ideal-

GaussSieve. ListSieve is essentially the gsieve implementation without stack func-

tionality. IdealListSieve uses the function IdealListReduce of Section 7.1 in ad-

dition. Both algorithms do not use perturbations. IdealGaussSieve implements

GaussSieve with the additional function IdealGaussReduce. All implemented algo-

rithms are published online [Sch11b].
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Since we are using the NTL-library [Sho], it would be possible to implement a

generic function IdealReduce for arbitrary field polynomials f . However, specializ-

ing on a particular class of polynomials allows some code improvements and leads to

a huge speed-up in practice. Therefore, we have implemented three different func-

tions, namely AntiCyclicReduce, CyclicReduce, and CyclotomicReduce. These

functions can be used for sieving in anti-cyclic, cyclic, or prime cyclotomic lattices,

respectively. Here we present experimental results for cyclic and prime cyclotomic

lattices.

Pre-Reduction. We only apply LLL as pre-reduction, not BKZ. This is due to the

fact that BKZ-reduction is too strong in small dimensions, and the sieving algorithms

are not doing any work if BKZ already finds the shortest vector. Interestingly,

we encountered in our experiments that the effect of pre-reduction for sieving is

much less noticeable as in the enumeration case. To give more evidence to this, we

generated 20 random bases, pre-reduced them with BKZ using different block sizes

from 2 to 35 and measured the runtime of gsieve applied to the reduced matrices

[Sch11a]. These experiments were performed on an Intel Core2 Duo 3GHz CPU. The

results (for clearness reason some block sizes are omitted) are shown in Figures 7.2

and 7.3.
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It is noticeable that the runtime of gsieve decreases when the pre-reduction quality

of the bases increases. In dimension 55 the runtime reduces from 55.8 seconds

(blocksize 2) to 37.0 seconds (blocksize 35). Compared to enumeration, this effect
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is much smaller for sieving algorithms. Measured with the fpLLL library [CPS],

the runtime for enumeration decreases from 29451 seconds (blocksize 2) to 83.0

seconds (blocksize 35) for 55-dimensional lattices. Figure 7.3 presents the sum of

the runtimes of gsieve and the BKZ pre-reduction. We can state that the bigger the

dimension grows, the bigger the blocksize for pre-reduction is required to get the

smallest possible runtime in total. In dimension n = 65, a blocksize of β = 25 gives

the best results in our setting. In small dimension < 60 however LLL is sufficient

to guarantee good runtimes for sieving.

IdealSieve Experiments. The results shown in the remainder of this section are

average values of 10 random lattices in each dimension. All experiments were per-

formed on an AMD Opteron (2.3GHz) quad core processor, using one single core.

Since we do not know the length of a shortest vector in these lattices, we ran an

SVP algorithm first to assess the norm. So we can stop our sieving algorithms as

soon as we have found a vector of that norm. For cyclic and prime cyclotomic

lattice we chose p ∈ {10, 12, 16, 18, 20, 22, 28, 30, 32} and n = 2p. These are the

values where p + 1 is prime, which is important for prime cyclotomic lattices. We

chose these values for cyclic lattices as well in order to have results for both lattice

types in the same dimensions. Our generator of the ideal lattices is included in Sage

[S+] since version 4.5.2. The modulus q was fixed as 257. Naturally, the determi-

nant of the lattices is qp, i.e., 257p. This value is comparable to the determinant of

the SVP challenge lattices. For a second series of experiments, we generate cyclic

and prime cyclotomic lattices with n = 4p. We choose p ∈ {6 . . . 15} (cyclic) and

p ∈ {6, 10, 12, 16} (prime cyclotomic), q is again 257.
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Figure 7.4: Results for cyclic lattices. Left: The number of reductions is comparable

for ListSieve and IdealListSieve, whereas the number of iterations differs. Right: The

maximum list size as well as the runtime goes down for IdealListSieve.
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Time ListSize L Iterations I Reductions R

cyclic
ideal 20.51n−21.2 20.29n−5.3 20.31n−6.4 20.36n−2.3

orig 20.67n−26.8 20.34n−2.5 20.35n−2.7 20.33n−0.6

cyclotomic
ideal 20.52n−19.7 20.29n−1.7 20.27n−1.1 20.32n+2.9

orig 20.64n−24.0 20.30n+0.4 20.30n+0.5 20.29n+2.4

Table 7.1: Fitted values for cyclic and cyclotomic lattices with n = 2p.

Time ListSize L Iterations I Reductions R

cyclic
ideal 20.57n−24.7 20.32n−6.4 20.43n−12.6 20.45n−7.3

orig 20.67n−26.5 20.33n−1.5 20.33n−1.5 20.32n+0.5

cyclotomic
ideal 20.55n−21.9 20.30n−2.6 20.30n−2.9 20.34n+1.4

orig 20.62n−23.3 20.29n+1.0 20.29n+1.0 20.28n+2.8

Table 7.2: Fitted values for cyclic and cyclotomic lattices with n = 4p.

Table 7.1 and Figure 7.4 show the results concerning R, I, L, and the runtime for

cyclic lattices for n = 2p. The speedups for cyclic lattices are shown in Figure 7.5

and for prime cyclotomic lattices in Figure 7.6. Figure 7.5(a) shows the speedups

of IdealListSieve compared to ListSieve. More exactly it shows the values for the

number of iterations I, the maximum list size L, the runtime, and the total number of

reductions R of ListSieve divided by the same values for IdealListSieve in the same

lattices. Table 7.2 and Figure 7.5(b) show the same data for n = 4p. Figures 7.6(a)

and (b) show the same data using cyclotomic lattices. All graphs contain a line for

the identity function f(n) = n, and a line for f(n) = n/2 or f(n) = n/4, in order

to ease comparison with the prediction of Figure 7.1.

Interpretation. In small dimensions, the results are kind of abnormal. In some

cases, the ideal lattice variant of an algorithm finds a shortest vector very quickly,

which results in speedups of more than 100, e.g. in dimension n = 36 in Fig-

ure 7.5(b). Therefore, small dimensions of (say) less than 40 should be taken into

account only carefully. Testing higher dimensions > 64 failed due to time reasons.

Neither better pre-reduction nor searching for longer vectors helped decreasing the

runtime noticeably.

A first thing that is apparent is that the number of reductions R stays nearly the

same in all cases. With increasing dimension the speedup tends to 1 in all cases.

Our assumption was reasonable, namely that the number of reductions required to
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Figure 7.5: Speedup (original value divided by ideal variant value) of IdealListSieve com-

pared to ListSieve, for cyclic lattices.
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Figure 7.6: Speedup (original value divided by ideal variant value) of IdealListSieve com-

pared to ListSieve, for cyclotomic lattices.
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find a shortest vector is the same for the ideal and the non-ideal variant of ListSieve.

The higher the dimension gets, the closer the list size L and the iteration counter

I get. Again this is how we expected the algorithms to behave. The runtime grows

slower than the number of iterations. In dimension n = 64 for example, IdealList-

Sieve finds a shortest vector 53 times faster than ListSieve.

Considering the number of iterations I, we see that our prediction was too pes-

simistic. For cyclic lattices, the speedups of IdealListSieve are higher than the

predicted factor p; the factor is between p and n (for both n = 2p and n = 4p).

This implies that compared to the non-ideal variant, the same number of reduc-

tions is reached in less iterations. In other words, rotating a list vector l is better

than sampling new vectors, for cyclic lattices. Unfortunately, it is not possible from

our experiments to reasonably predict the asymptotic behaviour. Testing higher

dimension is not possible due to time restrictions.

In case of prime cyclotomic lattices, the situation is different. The speedup of

iterations is much smaller than for cyclic lattices (≤ 10 in all dimensions). The

only difference between both experiments is the type of lattices. The rotations of

prime cyclotomic lattices are less useful than those of cyclic lattices. A possible

explanation for this is that rotating a vector of a cyclic lattice does not change the

norm of the vector, whereas the rotations of prime cyclotomic lattice vectors have

increased norms. The expansion factor of a ring R denotes the maximum “blow

up” factor of a ring element when multiplied with a second one. More exactly, the

expansion factor θ2(f) of a polynomial f ∈ R in the Euclidean norm is defined

θ2(f) = min
{
c :
∥∥axi∥∥

2
≤ c ‖a‖2 ∀a ∈ Z[x]/〈f〉 for 0 ≤ i ≤ p− 1

}
.

The expansion factor in the Euclidean norm is considered in [SSTX09]. For cyclic

(and anti-cyclic) lattices it is easy to see that this factor equals 1. For prime cyclo-

tomic lattices, it is

θ2(f) =

√√√√p+ 1

2
+

√(
p+ 1

2

)2

− 1 ≈ √p .

For a proof see Appendix A of [Sch11c]. So when the norm of the rotated list

vectors l increases, this lowers the probability of a vector to be useful for reduction

of the new sample. Therefore, compared to cyclic lattices, the speedup for iterations

decreases. But still, sieving in prime cyclotomic lattices using the IdealListSieve is

up to 10 times faster than in the original case.

IdealGaussSieve. We also performed experiments using the GaussSieve implemen-

tation of Voulgaris and our IdealGaussSieve version. Here we present our results
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comparing GaussSieve to IdealGaussSieve. Figure 7.7 shows the experimental data.

The speedup factors are comparable to those of IdealListSieve. The number of iter-

ations I decreases by a factor of more than p, as well as the stackpoints (the points

that are removed from the list and pushed on the stack, cf. [Sch11a]). A difference

to ListSieve can be noted in the number of reductions. GaussSieve performs more

reduction than IdealGaussSieve. With this, our original assumption that the same

number of reductions holds for both sieving variants is no more true for GaussSieve

and IdealGaussSieve.

 0

 20

 40

 60

 80

 100

 20  30  40  50  60  70

S
pe

ed
up

Dimension n

max. list size
iterations

runtime
reductions

stackpoints

(a) GaussSieve, cyclic lattices n = 2p

 0

 20

 40

 60

 80

 100

 20  30  40  50  60  70

S
pe

ed
up

Dimension n

max. list size
iterations

runtime
reductions

stackpoints

(b) GaussSieve, cyclic lattices n = 4p

Figure 7.7: Speedup (original value divided by ideal variant value) of IdealGaussSieve

compared to GaussSieve, for cyclic lattices.

Anti-Cyclic Lattices. Lattices corresponding to ideals in the ring factored with

f(x) = xp + 1 behave exactly as cyclic lattices. The algebra of both rings differs,

but the algorithmic behaviour is exactly the same. In order to have the polynomial

f irreducible, we choose p ∈ {2, 4, 8, 16, 32} and n = 2p.

Ideal Enumeration. The enumeration algorithm for exhaustive search for shortest

lattice vectors can also exploit the special structure of cyclic lattices. In the enumer-

ation tree, linear combinations
∑p

i=1 xibi in a specified search region are considered.

For cyclic (and also anti-cyclic) lattices, a coefficient vector x = (x1, . . . ,xp) and its

rotations roti(x) for i ∈ [p] specify the same vector. Therefore it is sufficient to enu-

merate the subtree predefined by one of the rotations. It is for example possible to

choose only the coefficient vectors where the top coordinate xp is the biggest entry,

i.e., xp = maxi(xi). This would decrease the number of subtrees in the enumeration

tree with a factor of up to p.
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Unfortunately, this approach is only applicable if the input matrix has circular

structure. When LLL-reducing the basis, usually the special structure of the matrix

is destroyed. Therefore, when applying enumeration for ideal lattices one loses the

possibility of pre-reducing the lattice. Even the symplectic LLL [GHGN06] does not

maintain the circulant structure of the basis.

A second flaw of the ideal enumeration is that it is not applicable to prime cyclo-

tomic lattices. For cyclic lattices it is easy to specify which rotations predefine the

same vector, which does not work in the non-cyclic case.
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Conclusion and Open Problems

We have presented parallel versions of the enumeration algorithm on multicore CPU

(Chapter 3) and on NVIDIA graphics cards (Chapter 4). We have extended the lat-

ter algorithm by Extreme Pruning and have run it on GPU clusters as well as the

Amazon EC2 cloud (Chapter 5). Further, we have presented a GPU version of

Simple Sampling Reduction (Chapter 6) and an adaption of ListSieve as well as

GaussSieve for ideal lattices (Chapter 7). We are the first to make use of the cir-

cular structure of ideal lattices to speed up SVP or similar algorithms. The CPU

enumeration algorithm scales linearly in the number of used processor cores, some-

times even more, due to extra communication. The GPU algorithm requires some

more sophisticated scheduling, and allows for good speedups of up to 6 compared

to a single-core CPU. Using multiple GPUs, the speedup of our GPU enumeration

scales linearly in the number of graphics cards. The experience of both paralleliza-

tion techniques led to the extreme pruning enumeration of Chapter 5, which is the

fastest published SVP solver of today.

Impact to Lattice-Based Cryptography

We have extended the practical limits of SVP algorithms and shown what is reach-

able with today’s algorithms on powerful hardware. Our work points out that as-

sumptions made in cryptographic practice are reasonable, i.e., that today SVP with

small approximation factors is indeed intractable in the proposed dimensions. The

hardness of breaking lattice-based cryptographic schemes is either based on the SIS

problem or on the LWE problem. Both the SIS and the LWE problem can be

proven to be as hard as approximate versions of SVP in lattices of a certain smaller
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dimension (so-called worst-case to average-case reduction). A successful attacker

of a cryptographic system is able to solve α-SVP for α = poly(n) in all lattices

of a smaller dimension. As an example, the treeless signature scheme of [Lyu09]

(using the smallest parameter set proposed) works in lattice dimension n = 2048.

If the system is not strongly unforgeable, there exists a polynomial time algorithm

that solves the shortest vector problem with approximation factor α ∈ Õ(n2) in

all lattices of dimension n = 512 corresponding to ideals in the ring Z[x]/〈xn + 1〉
[Lyu09, RS10].

Figure 8.1 summarizes the most important data for lattice-based cryptanalysis.

The graph shows the approximation factors and the corresponding algorithm run-

time. The approximation factor reached by BKZ-20 is not sufficient to threaten

cryptosystems. On the other side, extreme enumeration takes far too much time,

and reaches an approximation factor that is smaller than necessary. The figure

includes expected runtimes for polynomial approximation factors (for worst-case in-

stances) as well es the factor required to break the system of [LP11] practically

(details given below).

The worst-case reduction gives a basement for security of lattice-based schemes.

Nevertheless, it is important to consider direct attacks against the instantiated

schemes as well. Practical attacks against cryptographic systems directly with enu-

meration algorithms is intractable in practice. But since there is no algorithm that

reaches approximation factors polynomial in the lattice dimension, exact algorithms

are the only algorithms finding short enough vectors. As an example, we consider

the LWE-based cryptosystem of [LP11], and its “medium” parameter set n = 256,

q = 4093, s = 8.35, ε ≈ 0. According to Figure 4 of [LP11], breaking the system

using the stronger decoding attack requires a vector that reaches a Hermite factor of

δ = 1.0052 in a 640-dimensional q-ary lattice of determinant qn = 4093256 ≈ 23072.

Our extreme enumeration implementation of Chapter 5 would run for 2195 years

(cf. Conjecture 5.1). It would reach a vector of size less than or equal to 1.05·FM(L),

which corresponds to a Hermite factor of (1.05·Γ(n/2+1)1/640/
√
π)1/640 = 1.0029 (in

random lattices of determinant 26400). This factor is smaller than required. Adapt-

ing extreme enumeration to higher (more practical) approximation factors requires

the effort of developing new bounding functions, which we leave for future work.

Real attacks on cryptosystems mostly apply approximation algorithms, like BKZ

with exponential approximation factors. Our experience with BKZ shows that in

higher blocksizes of about 50, enumeration takes more than 99% of the complete run-

time. Therefore, our speedup of enumeration will directly speed up BKZ reduction,

which in turn affects direct attacks on lattice-based cryptosystems. Implementations

of BKZ including our improvements are left for future work.
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Figure 8.1: Expected runtime for BKZ-20 and extreme enumeration (Conjecture 5.1),

including the reached approximation factors α. The runtime of BKZ-20 was fitted from

Figure 12 of [GN08b] as tBKZ-20(n) = 0.00075n3 − 0.2n2 + 17.6n− 506 seconds. Breaking

lattice-based cryptosystems is at least as hard as solving the worst case SVP with α =

poly(n). Practical attacks require approximation factor about α ≈ 1.0052n in dimension

n > 500, like the LWE scheme of [LP11]. The runtime of worst and average case (two

middle lines) in the picture is drafted.

To predict the runtime of BKZ with extreme pruning one needs to know the

number of SVP subroutine calls that BKZ performs during reduction. The recent,

theoretical work of [HPS11b] analyzes the Hermite factor that BKZ reaches when

it is terminated after a fixed number of enumeration calls. More exactly, it states

that after

C
n3

β2
·
(

log n+ log log(max
i

‖bi‖
(det(L))1/n

)

)
calls of enumeration, the first vector output by the BKZ algorithm reaches a Hermite

factor of

2(1 +
β

4
)

n−1
2(β−1)

+ 3
2 .

Here C is a constant factor, and we used the upper bound maxi≤β(γi) ≤ (1 + β
4
) for

the Hermite constants. For the LWE system parameter set used above, terminating

BKZ after 219 enumeration calls using blocksize β = 100 reaches a Hermite factor
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of δ = 1.0255, which is too big to threaten the system. Even blocksize β = 500,

which is far from being practical, would only reach δ = 1.0174. This analysis shows

that this theoretical work is not applicable for practical attacks. The practical

number of enumeration subroutine calls, that are required to reach a certain Hermite

factor (and with this to break cryptographic systems), is unknown. To get evidence

about this number requires a huge set of experiments using big blocksizes of extreme

pruning enumeration inside BKZ. This implementation is as well future work.

We nevertheless try to estimate the runtime of BKZ with extreme pruning against

the LWE system of [LP11]. It is known that the upper bound on the number of

enumeration calls in BKZ, which is (nβ)n [GN08b, HPS11b], is too huge. Therefore,

we ran experiments with NTL’s BKZ implementation, in order to estimate the num-

ber of enumerations calls in BKZ. Figure 8.2 shows the results. From Figure 8.2 we

expect the number of iterations of BKZ to grow single exponential in the blocksize

β and in the order of a degree three polynomial in the dimension n, extending the

analysis of [GN08b, Figure 14]. Therefore, we assume a number of

iter(n, β) = 2aβ+b · n3

calls of the enumeration subroutine. Least-squares fitting outputs a parameter set

(a, b) = (0.214,−9.73). Therefore we assume that running BKZ with blocksize β in

a n-dimensional lattice calls iter(n, β) = 20.214·β−9.73 · n3 enumeration oracles.
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Figure 8.2: Number of calls to enumeration subroutine in BKZ, gained with the NTL

implementation, for different blocksizes β and dimensions n. In order to estimate con-

servatively, we assume a polynomial growth of degree 3 (≈ n3) in n (left) and single

exponential growth (≈ 2aβ+b) in β (right).

In order to reach a Hermite factor of δ < 1.0052, we experienced that blocksize

β = 60 is a suitable value [SB10]. Using Conjecture 5.1, the runtime of a single
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extremely pruned enumeration call is 1885 seconds, which gives a total runtime of

BKZ-60 in a 640-dimensional lattice of

iter(640, 60) · 1885 = 231.1 · 1885 ≈ 242 seconds ,

which is about 130, 000 years. Assuming a hardware cost of 1000 USD for a common

CPU and one GTX-480 GPU, this corresponds to an attack cost of 235.6 dollardays.

This is the minimum effort an attacker has to spend using BKZ with extreme pruning

enumeration in order to run a successful decoding attack against the LWE scheme of

[LP11]. We will now apply the framework of [RS10, Rüc10] to compare this attack

effort to known values.

The works of [BDR+96, ECR11] define different attacker classes, depending on

their hardware and time effort, measured in dollardays (time × money). The classes

range from “hacker” (willing to spend one day and 400 dollars =̂ 400 dollardays)

to a powerful “intelligence agency” (spending 300 Million USD and one year =̂

108 Billion dollardays). The authors of [RS10] complement an attacker class called

“Lenstra” (40 Million dollardays), in order to allow a comparison between lattice-

based attacks and the work of [Len05] concerning symmetric ciphers and classical

asymmetric schemes. Following Lenstras “double Moore law”, in order to estimate

future hardware as well as algorithmic developments, an attackers compute capa-

bility grows by a factor of 2x·12/9 in x years. By the year y, the attacker Lenstra

can spend 40M · 2(y−2011)·12/9 dollardays, and in the year 2019 his effort of 235.6 dol-

lardays is sufficient to run the decoding attack against the LWE scheme. Following

[Len05, Blu11] this corresponds to a symmetric security of 81 bit or a key length

of 1523 bit for asymmetric keys (e.g. RSA). The framework of [RS10] uses BKZ

without extreme pruning and estimates that a value of δ = 1.0052 is not reachable

for the Lenstra attacker until year 2054 (=̂ 104 bit symmetric security). This shows

that the exponential speedup of Extreme Enumeration compared to regular enumer-

ation has a huge impact on the security of LWE, and since the analysis is applicable

to all lattice-based systems the influence is the same in the whole field of research.

The hacker will not be able to break the LWE system before 2032. The powerful

intelligence agency might break the scheme today already.

The asymptotic runtime of GaussSieve and ListSieve in ideal lattices remains

unchanged, our improvements of Chapter 7 influence the practical runtime by a

linear factor in the degree of the field polynomial. In BKZ the search for shortest

vectors is performed in projected lattices. Since the projection of an ideal lattice

is no more ideal, the ideal sieving variant is not applicable in BKZ. Solving α-SVP

directly with sieving is intractable due to runtime reasons again. Therefore, our

ideal lattice variants do not directly threaten cryptosystems based on ideal lattices.
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Open Problems

Concerning extreme pruning enumeration, it is crucial to examine the influence of

different bounding functions. The functions used today are gained by experimental

results and can be improved. For different approximation factors, different bounding

functions perform best. On graphics cards, the hardware performance of enumera-

tion decreases with pruning. The development of bounding functions is henceforth

also influenced by the hardware in use.

Our new versions of enumeration can be integrated into BKZ in order to speed up

the fastest practical solver of approximate SVP. Extreme enumeration in BKZ using

big blocksizes of more than 50 promises the best improvement. For solving α-SVP it

is sufficient to terminate BKZ earlier, as shown in [HPS11b]. This early-termination

approach together with extreme pruning will lead to the fastest BKZ possible at the

moment.

There is no evidence about the influence of pre-reduction of input bases before

running SVP algorithms. For Extreme Pruning we assumed that BKZ pre-reduction

should take about 50% of the total runtime. Heuristics like this require more theo-

retical basis as well as more experimental work. While for enumeration algorithms,

the influence of pre-reduction to runtime is known in parts, for sieving algorithms

we have no information.

The Voronoi cell algorithm of [MV10a] has not been implemented so far. It would

be interesting to see if it competes with enumeration algorithms. Developing heuris-

tic improvements is an important open task. The asymptotic runtime of Voronoi

cell and sieving algorithms is smaller than for enumeration. Still in small dimen-

sions enumeration (combined with heuristics like Extreme Pruning) outperforms

all concurrent algorithms. It is an interesting question to find out the crossover

dimension of these different algorithms. As an example, the practical GaussSieve

runtime 20.52n of [MV10b] and our ExtremeEnum runtime of Chapter 5 overlap at

dimension n = 708, i.e., in dimensions higher than 708 GaussSieve runs faster than

ExtremeEnum.

Dealing with floating point arithmetic is an important issue for implementations

of lattice reduction and SVP algorithms. For graphics cards double precision compu-

tations are slow, and therefore should be avoided. Up to dimension 120, we did not

experience problems with enumeration or sieving algorithms. For higher dimension,

as well as for LLL and BKZ, using a multi-precision framework on special hardware

is essential. It is future work to develop this kind of instrument, in order to render

SVP solvers suitable for modern compute hardware.

To threaten cryptographic schemes one only needs to find approximate solutions
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to SVP and comparable problems. It is to examine if algorithms that solve α-SVP

with polynomial approximation factor can be developed, with polynomial or at least

sub-exponential runtime. These algorithms are more interesting for cryptography

than exact SVP solvers.

Concerning sieving, no implementation uses the improvement of [PS09]. It will

improve the efficiency of the algorithm. Sieving algorithms that abandon perturba-

tions (like the GaussSieve) are more efficient in practice, but few is known about this

heuristic in theory. A parallel version of GaussSieve allows only for minor speedups

[MS11]. Since the slower ListSieve is more suitable for parallelization, it is to ex-

amine if parallelization can overcome the disadvantages of ListSieve compared to

GaussSieve.

The Voronoi cell algorithm as well as the probabilistic sieving algorithms require

exponential storage, whereas the polynomial space algorithms like enumeration have

runtime higher than single exponential. The main open problem in theory in the

area of SVP algorithms is the development of a deterministic SVP algorithm running

in single exponential time and only using polynomial space.





Bibliography

[ADL+08] Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio,

Chris Peikert, and Alon Rosen. SWIFFTX: A proposal for the SHA-3

standard, 2008. In The First SHA-3 Candidate Conference. Cited on

page 73.

[AJ08] Vikraman Arvind and Pushkar S. Joglekar. Some sieving algorithms for

lattice problems. In FSTTCS, volume 2 of LIPIcs, pages 25–36. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008. Cited on page 16.

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for random-

ized reductions. In STOC 1998, pages 10–19. ACM, 1998. Cited on

pages 2 and 15.

[AKS01] Miklos Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the

shortest lattice vector problem. In STOC 2001, pages 601–610. ACM,

2001. Cited on pages 16 and 20.

[AMD06] Advanced Micro Devices. ATI CTM Guide. Technical report, ATI, 2006.

Cited on page 22.

[BBD08] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors.

Post-Quantum Cryptography. Springer, 2008. Cited on page 102.

[BCC+09] Daniel J. Bernstein, Tien-Ren Chen, Chen-Mou Cheng, Tanja Lange,

and Bo-Yin Yang. ECM on graphics cards. In EUROCRYPT 2010,

volume 5479 of LNCS, pages 483–501. Springer, 2009. Cited on pages

23 and 44.

[BDR+96] Matt Blaze, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, Tsutomu

Shimomura, Eric Thompson, and Michael Wiener. Minimal key lengths

for symmetric ciphers to provide adequate commercial security. A report

by an ad hoc group of cryptographers and computer scientists, 1996.

Cited on page 91.



96 Bibliography

[BL06] Johannes Buchmann and Christoph Ludwig. Practical lattice basis sam-

pling reduction. In ANTS 2006, volume 4076 of LNCS, pages 222–237.

Springer, 2006. Cited on pages 3, 14, 61, 62, and 63.

[BL09] Johannes Buchmann and Richard Lindner. Secure parameters for

SWIFFT. In INDOCRYPT 2009, volume 5922 of LNCS, pages 1–17.

Springer, 2009. Cited on page 62.

[BLR08] Johannes Buchmann, Richard Lindner, and Markus Rückert. Explicit

hard instances of the shortest vector problem. In PQCrypto 2008, LNCS,

pages 79–94. Springer, 2008. Cited on pages 21 and 62.

[Blu11] BlueKrypt. Cryptographic key length recommendation. http://www.

keylength.com, 2011. Cited on page 91.
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[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Ef-

ficient public key encryption based on ideal lattices. In ASIACRYPT

2009, volume 5912 of LNCS. Springer, 2009. Cited on page 83.

[Val06] Frank Vallentin. SHVEC: shortest and closest vectors in lattices, 2006.

http://fma2.math.uni-magdeburg.de/~latgeo/. Cited on page 21.

[vEB81] Peter van Emde Boas. Another NP-complete problem and the com-

plexity of computing short vectors in a lattice. Technical Report 81-04,

Mathematisch Instituut, Universiteit van Amsterdam, 1981. Cited on

page 15.

http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/mischnei.html
http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/mischnei.html
http://eprint.iacr.org/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://fma2.math.uni-magdeburg.de/~latgeo/


106 Bibliography

[Vil92] Gilles Villard. Parallel lattice basis reduction. In ISSAC 1992, pages

269–277. ACM, 1992. Cited on page 3.

[Vor08] Georgy Feodosevich Voronoi. Nouvelles applications des paramètres con-
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Notation

d ∈ Z Dimension of the embedding space

n ∈ Z, n ≤ d Dimension of lattices

B Lattice basis

L(B) Lattice generated by basis B

bi for 1 ≤ i ≤ n Basis vector

λ1(L(B)) Length of a shortest, non-zero vector of the lattice L(B)

det(L(B)) Determinant of the lattice L(B)

‖b‖ , ‖b‖2 Euclidean norm of vector b

‖b‖∞ Maximum norm of vector b

bxe Rounding to the nearest integer, dx− 0.5e
It t× t identity matrix

0t, 1t t-dimensional row vector consisting of zero and one entries

log(x), log2(x) logarithm of x to base 2

loge(x), log10(x) logarithm of x to base e and 10

[t] index set {0, . . . , t− 1}
B∗ Gram-Schmidt orthogonalization of basis B

FM(L) Estimation of the first minimum of L
〈x | y〉 Scalar product of vectors x and v
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