
Technische Universität Darmstadt
Hochschulkennziffer D-17
Department of Computer Science
Security Engineering Group

Data-Centric Security with
Attribute-Based Encryption

Dissertationsschrift in englischer Sprache
zur Erlangung des Grades eines Dr.-Ing.

an der Technischen Universität Darmstadt
eingereicht von

Dipl.-Inform. Sascha Müller

geboren 24.10.1978 in Langen (Hessen)

Erstreferent: Prof. Dr. Stefan Katzenbeisser
Korreferent: Prof. Dr. Michael Waidner

Tag der Einreichung: 29. August 2011
Tag der Prüfung: 11. Oktober 2011

Darmstadt, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/11681136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Zusammenfassung

In dieser Dissertation untersuchen wir verschiedene Aspekte der datenzentrierten

Sicherheit. Insbesondere betrachten wir die attributbasierte Verschlüsselung (ABE),

ein kryptographisches Primitiv, das es erlaubt, Dokumente mit Policies über

Attributen zu verschlüsseln, so dass die Entschlüsselung nur für solche Subjekte

möglich ist, deren Attributsmengen die Verschlüsselungspolicies erfüllen.

Das Hauptziel dieser Arbeit ist zu zeigen, auf welche Weise datenzentrierte

Sicherheit in praktischen Anwendungsgebieten einsetzbar ist. Hierzu erweitern wir

zunächst ABE für dynamische und verteilte Szenarien, indem wir die sogenannte

Distributed Attribute-Based Encryption (DABE) einführen. DABE erlaubt es

nicht nur, dass Subjekte ihre Attribute inkrementell über die gesamte Laufzeit des

Systems anfordern (anders als bei konventioneller ABE, wo alle Attribute eines

Subjekts gemeinsam angefordert werden müssen); es ist dadurch auch möglich,

dass diese Attribute von einer beliebigen Anzahl voneinander unabhängiger At-

tribute Authorities bereitgestellt werden, von denen jede ihr eigenes Universum

von Attributen verwaltet. Wir stellen zwei Konstruktionen für das DABE-Schema

vor. Eine davon ist zusätzlich effizienter als jede andere heute bekannte ABE

Konstruktion.

Die zweite Innovation dieser Arbeit ist ein neuartiges Konzept, das die Privatheit

in ABE verbessert, indem es Verschlüsselungspolicies versteckt. Um dies zu

erreichen führen wir den Begriff der Policy-Anonymität ein, definieren ihn formal

und diskutieren ihn. Mithilfe einer Methode aus der Graphentheorie zeigen wir

anschließend, wie ein hoher Grad von Policy-Anonymität in der Praxis erreicht

werden kann, indem man eine bekannte ABE-Konstruktion erweitert. Die komplette

erweiterte Konstruktion wird vorgestellt und ein Sicherheitsbeweis wird geführt.

Wir beschäftigen uns außerdem mit konkreten Anwendungsmöglichkeiten für

ABE. So entwickeln wir ein DRM-Framework, das ABE nutzt, um den Prozess

der Lizenzerzeugung zu vereinfachen und dabei gleichzeitig die Anforderungen an

die Vertrauenswürdigkeit zu verringern. Anschließend beschreiben wir ein Tool,

das in der Lage ist, kryptographisch erzwingbare Komponenten aus Policies zu

bestimmen, die in der Open Digital Rights Language (ODRL) beschrieben sind.

Zum Schluss der Arbeit demonstrieren wir wie ABE in Service-Orientierte

Architekturen (SOA) integriert werden kann. Hierzu identifizieren wir die relevanten

3

Web Service Standards und erweitern diese, um durch ABE geschützte SOAP

Nachrichten zu unterstützen. Ferner beschreiben wir die Implementierung von Web

Services, die zur Umsetzung eines vollständigen DABE Frameworks notwendig sind.

Dadurch wird ein Framework ermöglicht, das genutzt werden kann um bestehende

SOAs so zu erweitern, dass sie die verbesserten Sicherheitsgarantien erfüllen können,

die durch datenzentrierte Sicherheitstechnologie ermöglicht werden.

4

Summary

In this thesis we examine several aspects of data-centric security. In particular, we

take a look at Attribute-Based Encryption (ABE), a cryptographic primitive that

allows to encrypt documents with policies over attributes and allows decryption

only by parties possessing sets of attributes that satisfy the encryption policies.

Our primary goal is to show the applicability of data-centric security to practical

scenarios. We first extend ABE to dynamic and distributed settings, introducing

what we call Distributed Attribute-Based Encryption (DABE). DABE not only

allows parties to claim their attributes incrementally throughout the lifetime

of a system (unlike conventional ABE where all attributes must be claimed at

once), but also supports these attributes to be managed by an arbitrary number

of independent attribute authorities, each of them having control over its own

universe of attributes. We give two constructions of DABE schemes, one of which

is also more efficient than any ABE scheme known today.

Our second contribution is a novel concept that improves privacy in ABE by

hiding the encryption policy. To this end, we introduce, define and discuss policy

anonymity. Using an idea from graph theory we then show how a high degree of

policy anonymity can be achieved by extending a known ABE construction. The

complete construction along with security proofs is given.

We also discuss how ABE can be utilized in practical settings. We develop a

new DRM framework using ABE that offers a simplified license creation process

while requiring less trust. We then describe an extraction tool that is able to

determine cryptographically enforceable components of policies in the Open Digital

Rights Language (ODRL). Finally, we demonstrate how ABE can be integrated

into Service Oriented Architectures (SOA), showing how common Web Service

standards can be used to support ABE encrypted SOAP messages and describing

implementations of web services to build a complete DABE framework. This

resulting framework can be used to extend existing SOAs in order to support the

improved security guarantees offered by data-centric security technology.

5

Acknowledgements

First and foremost I want to thank my supervisor Prof. Dr. Stefan Katzenbeisser.

It has been an honour to be the first of his PhD students to graduate. He not only

taught me about good research, but also about good thinking and the ability to

present results comprehensibly. His invaluable suggestions had a great impact on

how I approached and solved the challenges imposed by my work.

I am grateful to have been part of a great working environment at CASED,

thanks to my colleagues (in alphabetical order) Sami Alsouri, Sebastian Bieder-

mann, Dr. Wolfgang Böhmer, Martin Franz, Dmitry Kravchenko, Heike Meissner,

Dr. Martin Mink, Cuong Hieu Nguyen, Andreas Peter, Bertram Poettering, An-

drea Püchner, and Heike Schröder. The Security Engineering group has grown

considerably during my time, and it has been a great pleasure to be part of that

process.

I am also grateful to my original supervisor Prof. Dr. Claudia Eckert who

unfortunately left Darmstadt shortly after my research gained momentum. She

was the one who got me interested in research when I was still a student, let me

work at Fraunhofer SIT where I did my diploma thesis and later gave me the

opportunity to work as a PhD student at TU Darmstadt.

I dedicate my special thanks to my mother for her support through the years

and to all my friends for being there to take my mind off work from time to time.

Last but not least I want to thank Milena Foerster for a most valuable friendship,

understanding and believing in me, as well as her family, whom I have grown more

accustomed to than I had anticipated.

Darmstadt, 24. October 2011

Sascha Müller

6

Contents

I. Introduction 11

1. Introduction 13

2. Basics 17
2.1. Access Control . 17
2.2. Attribute-Based Encryption . 18
2.3. Mathematical Foundations . 23

2.3.1. Pairing-Based Cryptography 23
2.3.2. Implementations . 25

2.4. CP-ABE Proofs . 26
2.4.1. CPA Security Game . 26
2.4.2. The GDHE Problem . 27

II. CP-ABE Constructions 33

3. Distributed Attribute-Based Encryption 35
3.1. Motivation . 35
3.2. DABE Intuition . 37
3.3. Formal Description . 39

3.3.1. DABE Algorithms . 39
3.3.2. Security Model . 41

3.4. Construction . 43
3.4.1. Description . 43
3.4.2. CPA-Security . 45
3.4.3. Implementation and Performance 51

3.5. Enhancing Waters’ Construction 52
3.5.1. Modified Construction . 52
3.5.2. CPA-Security . 57

7

Contents

3.5.3. Performance . 62
3.6. Conclusion . 63

4. Hiding the Policy 65
4.1. Introduction . 65

4.1.1. Towards Policy Privacy . 65
4.1.2. Related Work . 68

4.2. Syntax Tree Majors . 69
4.3. Building the System . 77

4.3.1. Setup and Key Generation 77
4.3.2. Encryption . 78
4.3.3. Decryption . 82

4.4. Discussion . 84
4.4.1. Anonymity of the Policy 84
4.4.2. Security and Policy Anonymity 85
4.4.3. Reducing the Size of the Ciphertext 90

4.5. Conclusion . 91

III. Applications 93

5. Cryptographic Enforcement of DRM Licenses 95
5.1. Introduction . 95
5.2. Framework . 100
5.3. Processing ODRL Expressions . 102

5.3.1. Content Protection . 103
5.3.2. Parsing Agreements . 104
5.3.3. Path Conversion . 106
5.3.4. Representing ODRL Rules by Attributes 107
5.3.5. Example . 109

5.4. Implementation . 109
5.5. Conclusion . 112

6. Attribute-Based Encryption in SOA 115
6.1. Introduction . 115

6.1.1. Related Work . 117
6.2. Attributes . 118

6.2.1. Unified Naming Scheme 118
6.2.2. Revocation . 120

6.3. Encryption . 121
6.3.1. Incorporating CP-ABE into WS-Security 121
6.3.2. Preparing an Encryption 124

6.4. Decryption . 124
6.4.1. Preparing a Decryption . 124

8

Contents

6.4.2. Access Gates . 128
6.5. Description of System . 132

6.5.1. Central Authority . 132
6.5.2. Attribute Authority . 133
6.5.3. Access Gates . 134
6.5.4. Implementation . 135

6.6. Conclusion . 137

IV. Summary 139

7. Conclusion 141

List of Figures 145

Bibliography 147

9

Part I.

Introduction

11

Chapter1
Introduction

Emerging ubiquitous computing environments need flexible access control mech-

anisms. With a large and dynamic set of users, access rules for objects cannot

easily be based on identities, and the conditions under which access to an object

is granted need to take into account information like the context and the history

of a subject. Due to these shortcomings of traditional access control mechanisms,

cryptographically enforced access control receives increasing attention.

One of the most promising approaches is Ciphertext-Policy Attribute-Based

Encryption (CP-ABE) [BSW07]. In this scheme, users possess sets of attributes

(and corresponding secret attribute keys) that describe certain properties. Ci-

phertexts are encrypted according to an access control policy, formulated as a

Boolean formula over the attributes. The construction assures that only users

whose attributes satisfy the access control policy are able to decrypt the ciphertext

with their secret attribute keys. The construction is required to satisfy a collusion-

resistance property: It must be impossible for several users to pool their attribute

keys such that they are able to decrypt a ciphertext which they would not be able

to decrypt individually.

In this thesis we are concerned with several aspects of CP-ABE, mainly based on

the following papers that were published in international conferences and journals:

• Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert, Distributed Attribute-

Based Encryption, 11th International Conference on Information Security

and Cryptography, ICISC 2008 (Pil Joong Lee and Jung Hee Cheon, eds.),

Lecture Notes in Computer Science, vol. 5461, Springer, 2008, pp. 20–36;

13

1. Introduction

• Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert, On Multi-Authority

Ciphertext-Policy Attribute-Based Encryption, Bulletin of the Korean Mathe-

matical Society (B-KMS) 46 (2009), no. 4, 803–819;

• Sascha Müller and Stefan Katzenbeisser, Hiding the Policy in Cryptographic

Access Control, 7th International Workshop on Security and Trust Manage-

ment (STM’11), 2011. to appear;

• Sascha Müller and Stefan Katzenbeisser, A New DRM Architecture With

Strong Enforcement, ARES, IEEE Computer Society, 2010, pp. 397-403;

as well as some minor contributions from several student theses that were developed

under the author’s supervision.

Roadmap and Contributions

This thesis is organized as follows: Chapter 2 introduces the basic concepts needed

later in the thesis. These include access control, secret sharing, attribute-based

encryption and various mathematical notions.

The first major contribution of this thesis is the concept of Distributed Attribute-

Based Encryption (DABE), which is introduced and discussed in detail in Chapter 3.

In this chapter, we explain the motivation and general concept, give two crypto-

graphic constructions that implement this powerful idea and discuss their security

properties. One of these two constructions is very efficient (in fact, more effi-

cient than any other CP-ABE construction known today) but not very expressive,

while the other one is very expressive, but not as efficient. We also describe an

implementation and give performance results for it.

Chapter 4 approaches another challenge that current CP-ABE constructions face.

The contribution of this chapter is twofold: The primary result is a novel CP-ABE

construction that allows to obfuscate policies such that they can be considered

anonymous in the sense of k-anonymity [CdVFS07]. To this end, we explore a new

method from graph theory that we call Syntax Tree Majors and show how to use

such trees in CP-ABE in order to achieve policy anonymity. As a secondary result,

the construction we give also shows how to extend the expressiveness of certain

CP-ABE schemes. This chapter concludes the theoretical part of the thesis.

14

While a lot of different CP-ABE constructions have been published, the practical

application of such schemes to real-world scenarios is under developed in the

research community. We contribute novel research in this area in Chapter 5,

which shows how to use CP-ABE to improve Enterprise Rights Management

(ERM) scenarios. By shifting parts of the enforcement process to CP-ABE, the

personalization of player keys is made easier, while also reducing the trust into the

DRM viewer.

Our DABE concept is especially suited for very distributed settings. One

such setting are Service Oriented Architectures (SOA). Thus, we describe how to

implement core features of DABE in the form of web services in Chapter 6.

Finally, Chapter 7 summarizes the results and concludes the thesis.

15

Chapter2
Basics

2.1. Access Control

Access control, one of the most central topics in IT security, is concerned with

the question of how to restrict access to objects that are worth protecting (assets)

such that a need-to-know-principle is adhered to, i.e., no subject learns more than

he needs to. To this end, access rules are formulated for each object, usually by its

owner. These rules specify under which restrictions access to the object is to be

granted.

More formally, let O be the set of all objects of a system, and S the set of

all subjects, i.e., objects that want to actively access some of the objects. An

access rule for an object o ∈ O is a function fo : S → {0, 1} such that fo(s)

returns 1 if s ∈ S is allowed to access o ∈ O, and 0 otherwise. We call the set

Π(o) := {s ∈ S | fo(s) = 1} the set of authorized subjects of o. The union of all

subjects with access rules
⋃
o Π(o) is called the set of principals [Gol06].

Frequently, there is a further restriction describing the access operation, which,

for example, could be a read access or a write access. In this work, we are only

concerned with read accesses.

The primary focus of this thesis is the enforcement of access rules. Usually, there

is a trusted party that has full control over the assets, called the reference monitor

[GGKL89]. It enforces rules that it receives from the owners of the objects. The

reference monitor gets active on every access attempt, determines if the accessing

subject has the right to access the object (i.e., fo(s)
?
= 1), and if so, allows the

17

2. Basics

access. The high demands imposed on such a party, especially trustworthiness,

full control over all objects, and good performance even with many object access

requests, motivate the question to construct other ways to enforce access rules.

One promising attempt is information-centric security, which binds security

directly to data and the people who access it [RSA11]: Instead of having a trusted

party in the form of a gateway controlling all accesses, the information essentially

protects itself. Note that throughout this work we will use the term data-centric

security instead, as it appears to be more fitting from a technical point of view.

Cryptographically enforced access control A simple approach to obtain data-

centric security is to use encryption: We can encrypt each object o with an

encryption key Eo and give the corresponding decryption key Do to all authorized

subjects, i.e., elements of Π(o). Thus, the authorized subjects of o can access it (by

decrypting it), while all other subjects can not. In such an approach, everybody

who releases an object has full control over who is able to access it since he controls

the distribution of Do. Furthermore, there needs to be no trusted party to enforce

access rules. They are essentially self-enforcing. Basically, the effect of such an

architecture is that instead of protecting the assets, it is the keys Do that need

protection. This also moves the computational cost of access control from the

trusted party to the decrypting parties.

However, it is obvious that this approach does not scale very well. The owners

of the objects need to create many encryption/decryption key pairs, and the more

open and distributed a setting is, the harder it gets to distribute the keys to all

allowed subjects. Attribute-Based Encryption attempts to solve these challenges.

2.2. Attribute-Based Encryption

In Attribute-Based Encryption (ABE), ciphertexts and/or user keys are associated

with policies that describe who is allowed to access the encrypted information.

Specifically, in Key-Policy Attribute-Based Encryption (KP-ABE) ciphertexts are

encrypted with a set of attributes and each user’s secret key is associated with a

policy describing which ciphertexts he can decrypt (see Figure 2.1). Such a policy

is a predicate over the set of attributes, usually formulated as a Boolean formula.

18

2.2. Attribute-Based Encryption

Plaintext Ciphertext Plaintext

Key policySet of keys

Figure 2.1: Schematic overview of KP-ABE

Conversely, in Ciphertext-Policy Attribute-Based Encryption (CP-ABE) a ci-

phertext is encrypted with a policy. Anyone whose attributes satisfy the policy

can decrypt the ciphertext; otherwise the decryption fails (see Figure 2.2). In a

nutshell, in CP-ABE a policy is applied during encryption and in KP-ABE a policy

is applied during decryption.

An attribute is a property or feature that a subject may have. At some point in

time, any subject may become eligible for a particular attribute, meaning that it

now has the respective property or feature. It then receives a token from a trusted

party called attribute authority that testifies his eligibility and can be used by

him to prove that he has the property or feature that the corresponding attribute

represents.

An attribute is usually represented as a string. For example, an attribute called

isAdmin could be used to describe subjects that are administrators of a certain

domain. We denote the set of all attributes used in a specific domain as the

universe of attributes. In CP-ABE, policies over the universe of attributes are

formulated for each object to describe what prerequisites a subject must have to

access it.

The idea of using policies for encryption was first proposed as a primitive

called Policy-Based Cryptography by Bagga and Molva [BM05, BMC06], in which

– similarly to Ciphertext-Policy Attribute-Based Encryption – policies where used

as encryption/decryption keys. However, their schemes have a crucial drawback:

19

2. Basics

Plaintext Ciphertext Plaintext

Ciphertext policy Set of keys

Figure 2.2: Schematic overview of CP-ABE

They are not secure against collusions, i.e., users with different sets of attributes

are able to combine their sets to collaboratively decrypt ciphertexts that were

encrypted with policies they would not be able to satisfy individually. We note

that later the authors managed to circumvent this problem by also encrypting the

ciphertexts with the public key of a receiver [BM06]. This, however, neglects the

most important property of this approach, namely to encrypt data with a policy

instead of a user or group key.

The notion of Attribute-Based Encryption was first introduced in 2005 by

Sahai and Waters [SW05] as an application of their idea of Fuzzy Identity-Based

Encryption. Here, each user key is associated with a set of attributes ω, and

each ciphertext is associated with a set of attributes ω′. A decryption is possible,

whenever a user’s ω overlaps a ciphertext’s ω′ in at least d attributes, where d is a

fixed value decided on during system setup, i.e., |ω ∩ ω′| ≥ d.

In the following year, Goyal et al. [GPSW06] proposed the first expressive KP-

ABE scheme (that allowed key policies in the form of logical formulas instead of

simple thresholds), which was followed by the first CP-ABE scheme by Bethencourt

et al. [BSW07] in the next year. Bethencourt’s construction could only be proved

secure in the Generic Group Model, and it has since become apparent that CP-

ABE constructions with reduction proofs are hard to construct. In 2007 Cheung

and Newport [CN07] gave a CP-ABE construction with a reduction proof, but

it was restricted to policies in DNF notation. Since then, numerous CP-ABE

20

2.2. Attribute-Based Encryption

schemes have been proposed with varying features that support different types

of policy languages [Cha07, CN07, LCLS08, GJPS08, AI09, BKP09, LCLX09,

NYO09, LOS+10, LW11, ZH10, YWRL10b].

We will now describe the CP-ABE scheme as a 4-tuple of probabilistic polynomial-

time (PPT) algorithms as originally proposed in [BSW07]1:

(PK ,MK)← Setup(1k). The setup algorithm takes no input other than the

security parameter 1k. It outputs the public parameters PK and a master

key MK .

CT ← Encrypt(PK ,M,A). The encryption algorithm takes as input the public

parameters PK , a message M , and an access structure A over the universe

of attributes. The algorithm will encrypt M and produce a ciphertext CT

such that only a user who possesses a set of attributes that satisfies the

access structure will be able to decrypt the message. We will assume that

the policy A is usually sent along with the ciphertext CT , as it is needed for

decryption.

SK L ← KeyGen(MK , L). The key generation algorithm takes as input the master

key MK and a set of attributes L that describe the key. It outputs a private

key SK L that contains a set of keys corresponding to the attributes of L.

{M, NULL} ← Decrypt(PK ,CT , SK L). The decryption algorithm takes as input

the public parameters PK, a ciphertext CT, which contains an access policy

A, and a private key SK L that is a private key for a set L of attributes. If

the set L of attributes satisfies the access structure A then the algorithm

will decrypt the ciphertext and return a message M ; otherwise the algorithm

returns NULL.

CP-ABE allows to enforce access rules in many practical scenarios. For example,

in the popular Role-based Access Control (RBAC) approach, users are assigned to

roles and each user’s roles determine which rights he has. CP-ABE can be used

to efficiently enforce access rights in an RBAC scenario: For each role there is an

attribute, and for each role a user possesses, he receives the corresponding attribute.

1We omit the description of the additional algorithm Delegate in [BSW07] as it will not be
needed in the rest of this thesis and is not implemented in most CP-ABE constructions.

21

2. Basics

(user.adult (= true) OR

creditcard = verified)

AND (

(contprov1.article1234.status = purchased AND

contprov1.account = balanced)

OR

(contprov2.article1234.status = purchased AND

contprov2.account = balanced)

)

Figure 2.3: An example policy

Access rights are described as logical formulas over the universe of attributes. For

example, if data is encrypted with a policy RoleA AND (RoleB OR RoleC), every

user who is active in the role RoleA and also in either RoleB or RoleC (or both)

can decrypt the data.

As another example, consider a company that hosts DRM protected media files.

Users can purchase licenses from various content providers that issue usage licenses

containing keys required to decrypt the protected files. Let us assume that two

such content providers are contprov1 and contprov2. A usage license could be

expressed as a Boolean formula over attributes. For example, the policy could state

that the protected file should only be decrypted by someone who has purchased

licenses from at least one of the given content providers and is authenticated as an

adult (see Figure 2.3). Here, we use the fact that a subject may become eligible

of an attribute at some point in time, i.e., he has to purchase the file before he

gets eligible of the attribute contprov1.article1234.status = purchased. It

is also possible to automatically extract such policies from policies in Open Digital

Rights Language (ODRL), as we will show in Chapter 5.

Note that in both examples, rules are enforced automatically by the cryptographic

construction, and no trusted entity is required to manually enforce the policies on

every access. Also, the access rules may be very complex allowing for elaborate,

fine-grained access control if desired by the scenario.

Many variations of CP-ABE are thinkable. For, example, note that the key SK L

that is received via KeyGen contains a set of private keys corresponding to the

attributes L that the user is eligible for, and the KeyGen algorithm is executed

once to claim the full set of these private keys for a user. In the open, distributed

scenario that we consider interesting for CP-ABE applications, this is not desirable,

22

2.3. Mathematical Foundations

as the number of possible attributes is very large, and users may later become

eligible of attributes that they were not eligible for before (as seen in the DRM

example).

To meet these challenges, we introduce Distributed Attribute-Based Encryption,

where an arbitrary number of Attribute Authorities manage and issue keys, and

users can query for keys at any time. In a way, CP-ABE can be seen as a special

case of DABE with only a single authority.

Similarly, in other scenarios, Broadcast Encryption (BE) is used to restrict access

to media by cryptographic means (see for example [FN93]). In BE, a media is

encrypted in a way that only certain subsets of users can decrypt. In contrast to

ABE, BE schemes are typically designed to later revoke users that for some reason

lose their right to access an object. Clearly, there are some connections between BE

and ABE and combinations of the two seem promising. For example, BE has been

used to add a revocation mechanism to ABE schemes [AI09]. Another example is

Attribute-Based Broadcast Encryption [JK10, ZH10], in which the eligible subsets

of users may be refined by attributes. However, all participants must be known by

their identity when the system is set up, whereas in ABE, user identities can only

be modeled indirectly through attributes (for the purpose of formulating access

rules).

2.3. Mathematical Foundations

2.3.1. Pairing-Based Cryptography

Throughout this work we will use cryptographic pairings as building blocks upon

which we build our constructions. Generalizing the pairing definition from [Bon07],

we define:

Definition 2.1 (Pairings). Let G1,G2,GT be cyclic groups of order p. A function

e : G1 ×G2 → GT is a pairing if

1. the group operations in G1,G2 and GT can be computed efficiently;

2. the function e is bilinear, i.e., for all g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp it holds

that:

e(ga1 , g
b
2) = e(g1, g2)

ab ;

23

2. Basics

3. e can be computed efficiently;

4. e is non-degenerate, i.e., there are g1 ∈ G and g2 ∈ G2, such that e(g1, g2) 6=
1.

There are three types of pairings [GPS08]: If G1 = G2, then the pairing is called

symmetric. Asymmetric pairings, where G1 6= G2, can be classified further into

ones where there is an efficiently computable homomorphism φ : G1 → G2 and

ones which have no such homomorphism. In this thesis, we will not use pairings of

the latter type.

For symmetric pairings, we will usually write all elements of G := G1 = G2

and GT in the form A = ga or A = gaT , where g ∈ G is a generator of G and

gT := e(g, g) ∈ GT is a generator of GT . We assume that for all groups the

Computational Diffie-Hellman Assumption (CDH) holds, i.e., given (g, ga, gb) it is

hard to compute gab and given (gT , g
a
T , g

b
T) it is hard to compute gabT . Note that

due to the properties of pairings, the Decisional Diffie-Hellman Assumption (DDH)

does not hold in G, i.e., given (g, ga, gb, gc) it is easy to determine if c
?
= ab by

comparing e(ga, gb) = e(g, g)ab with e(g, gc) = e(g, g)c. There is, however, a variant

of the DDH which is considered hard in pairing groups, and often used for security

reductions. The decisional Bilinear Diffie-Hellman (d-(BDH)) problem is defined

as follows:

Definition 2.2 (Decisional Bilinear Diffie-Hellman Problem). For a symmetric

pairing e : G×G → GT with generator g ∈ G, given ga, gb, gc ∈ G and Z ∈ GT ,

decide if Z = e(g, g)abc.

An algorithm B that outputs a bit {0, 1} has advantage ε in solving d-(BDH) in

G if

∣∣Pr
[
B(g, ga, gb, gc, Z = e(g, g)abc) = 0

]
− Pr

[
B(g, ga, gb, gc, Z 6= e(g, g)abc) = 0

]∣∣ ≥ ε ,

where the randomness is over the random bits consumed by B.

We say that the decisional Bilinear Diffie-Hellman assumption holds if no PPT

algorithm has a non-negligible advantage in solving the decisional BDH problem.

In cryptography, pairings were first used by Alfred Menezes et al. [MOV93] to

attack elliptic curve cryptosystems. Later, Joux [Jou00] showed that pairings can

24

2.3. Mathematical Foundations

be utilized to implement a one-round Diffie-Hellman-like key exchange protocol for

three parties using a pairing. We briefly describe a variant of this protocol using

a symmetric pairing: Let G := G1 = G2 be groups of order p and let g ∈ G a

generator of G. Each of the three parties chooses a random number, i.e., a, b, c ∈ Zp.
Each party then raises g to the power of its secret number, i.e., A := ga, B := gb,

and C := gc and publishes that value. Now each of the parties can compute the

same secret key using its secret number and the published values from the other

parties, because e(A,B)c = e(A,C)b = e(B,C)a = e(g, g)abc. This key is a shared

secret of the three parties. The task of an attacker is to recover this shared secret

using only the public keys A, B, and C, but neither a, b, or c. It is easy to see

that this protocol is secure under the d-(BDH) assumption.

However, the birth of pairing-based cryptography has to be primarily attributed

to Dan Boneh and Matt Franklin [BF03], who used pairings to solve a problem

that had been open for over 15 years, namely that of Identity Based Encryption,

thus opening a completely new field of cryptographic research.

2.3.2. Implementations

In this thesis we are not concerned with the implementation and inner workings of

pairings, but we will use them in the form of black boxes. However, we need to

understand the implications and demands of existing implementations of pairings:

Computing pairings is quite expensive. The fastest known pairing to date is the

ηT pairing (including some variants of it, like the R-ate pairing), which in its

fastest known implementation requires about 2-3 million clock cycles on modern

CPUs [BGDM+10]. There also exist fast hardware implementations [BDF+10]

and pairings have even been used in smartcards [SCA06] and RFIDs [IOIO07].

The arguably most mature software implementation of pairings is the PBC library

[Lyn] that was developed by Ben Lynn during his PhD thesis [Lyn07] and has

since been ported to many languages besides the original C implementation, e.g.,

C++, Java, Python, and Perl. Whenever we implement cryptographic algorithms,

we will use this library.

25

2. Basics

2.4. CP-ABE Proofs

When building CP-ABE constructions we are primarily interested in their security

against Chosen Plaintext Attacks (CPA). As noted in – for example – [CN07],

CPA secure CP-ABE schemes can be extended to CCA secure schemes by sending

a one-time signature along with each encryption using an approach that is similar

to [BCHK07]. Recently, Yamada et al. [YAHK11] examined this idea more closely

and found that such an extension works for all well-known CP-ABE schemes.

We will not go into details regarding this process, and neither do we claim CCA

security of our proposed constructions. We will, however, prove CPA security. In

this section, we briefly review security definitions specific to CP-ABE constructions,

and most importantly introduce the proof framework that we will use throughout

this thesis.

2.4.1. CPA Security Game

The CPA-Security game for CP-ABE is defined as follows

Setup. The challenger runs the Setup algorithm and gives the public key PK to

the adversary.

Phase 1. The adversary queries the challenger for private keys corresponding to

lists of attributes L. Each time, the challenger answers with a secret key

SK L for L.

Challenge. The adversary submits two messages M0 and M1 of equal length as well

as the challenge access structure A, with the restriction that none of the keys

he received in Phase 1 satisfies A. The challenger chooses b
R←− {0, 1} and

encrypts Mb with A. The resulting ciphertext CT is given to the adversary.

Phase 2. Same as Phase 1. However, the adversary can only query for keys that

do not satisfy A.

Guess. The adversary outputs a guess b′ of b.

An algorithm B that outputs a bit {0, 1} has advantage ε in solving the game if

|Pr [B(b′ = b) = 0]− Pr [B(b′ 6= b) = 0]| ≥ ε ,

26

2.4. CP-ABE Proofs

where the randomness is over the random bits consumed by B.

It is noteworthy that nearly all CP-ABE constructions are only proven secure

in a selective version of this game, which has an additional Init phase and more

restrictive requirements:

Init. The adversary chooses the challenge access structure A.

Setup. The challenger runs the Setup algorithm and gives the public key PK to

the adversary.

Phase 1. The adversary queries the challenger for private keys corresponding to

lists of attributes L. Each time, the challenger answers with a secret key

SK L for L. However, the adversary can only query for keys that do not

satisfy A.

Challenge. The adversary submits two messages M0 and M1 of equal length. The

challenger chooses b
R←− {0, 1} and encrypts Mb with A. The resulting

ciphertext CT is given to the adversary.

Phase 2. Same as Phase 1.

Guess. The adversary outputs a guess b′ of b.

However, in all proofs that will be given in the context of this thesis, we use the

stronger, non-selective game without the Init phase.

2.4.2. The General Diffie-Hellman Exponent Problem

To prove the security of cryptographic constructions, it is common to use security

reductions to simple mathematical assumptions. To do this, a simulator maps the

elements (i.e., the input and output variables) of the construction to the elements

of the assumption, showing that breaking the construction implies breaking the

assumption. In CP-ABE this approach turns out to be very difficult, because —

as Waters noted in [Wat11] — the elements of CP-ABE include complex access

policies that cannot easily be mapped to the short, fixed number of parameters

of simple assumptions like the decisional Bilinear Diffie-Hellman assumption (see

Definition 2.2).

27

2. Basics

This problem led to the introduction of several new and often rather complex

assumptions that were often tailored to specific crytographic ABE constructions.

The elements of these new assumptions mirror the structure of the elements used

in the respective CP-ABE constructions. To provide evidence that these new

assumptions were correct, the Generic Group Model [Sho97] was used frequently.

This helped to demonstrate the hardness of the invented problem. More recently,

some constructions were published that use the Generic Group Model directly to

show their security. Note that the provability of a protocol in the Generic Group

Model does not imply that there is also a security reduction to any standard

assumption possible for that protocol, as shown in [Pas11].

We will now give a brief introduction to the Generic Group Model developed in

[BB08] as it is used in pairing-based cryptography, which we simplify slightly for

the symmetric case where G1 = G2 =: G.

In the generic group model, the adversary is given only encoded versions of all

group elements, that look like random strings. For groups G and GT of prime

order p and a generator g̃ ∈ G we use random maps ξ, ξT : Zp → {0, 1}m for

sufficiently large m to encode any element g̃x or e(g̃, g̃)x as a random string ξ(x) or

ξT (x). The maps ξ and ξT must be invertible, so that the representations of group

elements can be transformed back to elements of G and GT . To manipulate these

encoded group elements, the attacker gets access to five oracles, which compute

multiplication and division operations in G and GT and the pairing operation

e. All oracles take as input string representations of group elements. Given two

string representations ξ(a) and ξ(b) of elements g̃a, g̃b ∈ G, the adversary can query

two different oracles (the multiplication and the division oracle) for the result of

the group operations g̃a · g̃b and g̃a · g̃−b. Both oracles will map the coded inputs

ξ(a) and ξ(b) back to the respective elements of G using ξ−1, execute the group

operation and map the result to a string using ξ. From the view of the adversary,

the multiplication oracle returns ξ(a+ b), while the division oracle returns ξ(a− b).
The oracles for computing multiplications and divisions in GT operate analogously,

by using the encoding ξT instead of ξ. Note that no oracle will accept input from

different encodings (for example, one cannot feed a value ξT (b) into an oracle for a

group operation of G). The pairing oracle can be implemented easily: Given two

encodings ξ(a) and ξ(b), the encoding of the pairing is given by ξT (a · b). A scheme

proven secure in this model is called generically secure and can only be broken by

28

2.4. CP-ABE Proofs

exploiting specific algebraic properties of the groups used in an implementation.

Due to the random choice of ξ and ξT , two polynomials that evaluate to different

values over Zp yield different encodings when mapped by ξ and ξT , except if

1. for a vector (x1, . . . , xn) and some polynomials pi, pj that can be constructed

using the oracles it holds that (pi−pj)(x1, . . . , xn) = 0 although (pi−pj) 6= 0,

or

2. due to the choice of the random encodings two different values “accidentally”

are mapped to the same string. This can be circumvented by programming

the oracles such that they are injective, i.e., x 6= y ⇒ ξ(x) 6= ξ(y).

By these preliminaries a construction can be proven secure as follows: If it can

be shown that the probability of the first incident occurring is negligible, then an

attacker can only compute the terms that he gains by combining the terms that he

knows by using the group oracles. If he cannot compute a term that would allow

him to win the security game in question, he cannot win it at all.

The General Diffie-Hellman-Exponent assumption as introduced in Appendix

A.2 of [BBG05] is a framework that formalizes these ideas and thus allows to show

the security of a construction by observing the terms given to the adversary. It

is crucial to all our security proofs, so we repeat the important definitions and

theorems here.

First we need to capture the properties of the group oracles by the following

definition:

Definition 2.3 (Dependent Polynomials). Let P̂ , Q̂ ∈ Fp[x1, . . . , xn]s be two s-

tuples of n-variate polynomials over Fp. Write P̂ = (p1, p2, . . . , ps) and Q̂ =

(q1, q2, . . . , qs), where p1 = q1 = 1. We say that a polynomial f ∈ Fp[x1, . . . , xn] is

dependent on the sets (P̂ , Q̂) if there exist s2 + s constants {ai,j}si,j=1, {bk}sk=1 such

that

f =
s∑

i,j=1

ai,jpipj +
s∑

k=1

bkqk .

We say that f is independent of (P̂ , Q̂) if f is not dependent on (P̂ , Q̂).

This definition describes how an adversary can combine the terms that he knows

by calling the group oracles for multiplication, division and the pairing operation.

29

2. Basics

In our proofs, P̂ and Q̂ are all polynomials that are given to the attacker, and

f is a polynomial of GT that he has to construct to break the security of the

respective construction. His task is to distinguish between ξT (f(x1, . . . , xn)) and a

random value. If he succeeds then, under the Generic Group Assumption, he can

distinguish between g
f(x1,...,xn)
T and a random value of GT . Formally:

Definition 2.4 (Decision (P̂ , Q̂, f)-Diffie-Hellman Problem). Let

P̂ , Q̂ ∈ Fp[x1, . . . , xn]s be two s-tuples of n-variate polynomials over Fp. Given a

generator g ∈ G, gT = e(g, g) and the vector

H(x1, . . . , xn) =
(
gP̂ (x1,...,xn), g

Q̂(x1,...,xn)
T

)
∈ Gs ×Gs

T

distinguish g
f(x1,...,xn)
T (with f ∈ Fp[x1, . . . , xn]) from a random value T ∈ GT .

We say that an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving

the Decision (P̂ , Q̂, f)-Diffie-Hellman Problem in G if

∣∣Pr
[
B(H(x1, . . . , xn), gf(x1,...,xn)) = 0

]
− Pr [B(H(x1, . . . , xn), T) = 0]

∣∣ > ε ,

where the probability is over the random choice of the generator g ∈ G, the random

choice of x1, . . . , xn in Fp, the random choice of T ∈ GT , and the random bits

consumed by B.

In [BBG05], the following theorem is shown which shows that the adversary

advantage is negligible if f is independent of (P̂ , Q̂):

Theorem 2.1 ([BBG05]). For a generic bilinear group of order p with oracles

ξ, ξT let P̂ , Q̂, and f defined as above and let d = max(2 deg(P̂), deg(Q̂), deg(f)).

If f is independent of (P̂ , Q̂), then for any adversary A that makes a total of at

most q queries to the oracles computing the group operations in G, GT and the

pairing e : G×G→ GT we have:

∣∣∣∣∣∣∣∣∣∣

Pr



A



p, ξ(P̂ (x1, . . . , xn)),

ξT (Q̂(x1, . . . , xn)),

ξT (t0), ξT (t1)


 = b :

x1, . . . , xn, y
R←− Fp,

b
R←− {0, 1},

tb ←− f(x1, . . . , xn),

t1−b ←− y



− 1

2

∣∣∣∣∣∣∣∣∣∣

≤ (q + 2s+ 2)2 · d
2p

Proof. See Theorem A.2 in [BBG05].

30

2.4. CP-ABE Proofs

Corollary 2.1 ([BBG05]). Let P̂ , Q̂ ∈ Fp[x1, . . . , xn]s be two s-tuples of n-variate

polynomials over Fp and let F ∈ Fp[x1, . . . , xn]. Let d = max(2 deg(P̂), deg(Q̂), deg(f)).

If f is independent of (P̂ , Q̂), then any A that has advantage 1/2 in solving the

decision (P̂ , Q̂, f)-Diffie-Hellman-Problem in a generic bilinear group G must take

time at least Ω(
√
p/d− s).

In Chapter 4 we will also use the asymmetric case:

Definition 2.5 (Dependant Polynomials, Asymmetric case). Let P,Q,R be three

s-tuples of n-variate polynomials over Fp, i.e., P,Q,R ∈ Fp[x1, . . . , xn]s. Write

P = (p1, p2, . . . , ps), Q = (q1, q2, . . . , qs) and R = (r1, r2, . . . , rs) where p1 = q1 =

r1 = 1. We say that a polynomial f ∈ Fp[x1, . . . , xn] is dependent on the sets

(P,Q,R) if there exist 2s2 + s constants {ai,j}si,j=1, {bi,j}si,j=1, {ck}sk=1 such that

f =
s∑

i=1

s∑

j=1

ai,jpiqj +
s∑

i=1

s∑

j=1

bi,jqiqj +
s∑

k=1

ckrk

We say that f is independent of (P,Q,R) if f is not dependent on (P,Q,R).

Boneh et al. prove the following theorem:

Theorem 2.2 ([BBG05]). Let P,Q,R ∈ Fp[x1, . . . , xn]s be three s-tuples of n-

variate polynomials over Fp and let f ∈ Fp[x1, . . . , xn]. Let d = max(deg(P) +

deg(Q), 2 deg(Q), deg(R), deg(f)). If f is independent of (P,Q,R) then any A
that has advantage 1/2 in solving the decision (P,Q,R, f)-Diffie-Hellman Problem

in a generic bilinear group (G1,G2) must take time at least Ω(
√
p/d− s).

31

Part II.

CP-ABE Constructions

33

Chapter3
Distributed Attribute-Based

Encryption

In this chapter we formalize the concept of Distributed Attribute-Based Encryption,

give a security model and describe two possible constructions. The first construction

will be shown to be very efficient, surpassing all other known CP-ABE constructions

in terms of efficiency.

3.1. Motivation

Common to most previous CP-ABE schemes is the existence of a central trusted

authority (master) that knows a secret master key and distributes secret attribute

keys to eligible users. However, for many attribute-based scenarios, it is much

more natural to support multiple authorities [Cha07, SW05]. The limitation to a

single central authority for attribute generation is neither realistic nor desirable

in applications where no single entity has the authority to grant secret keys for

arbitrary attributes.

We can, for exemplary purposes, illustrate one such scenario as follows. Consider

a company that hosts DRM protected media files. Users can purchase licenses

from various content providers that issue usage licenses that contain the keys

required to decrypt the protected files. Let us assume that three such content

providers are contprov1.com, contprov2.com, and contprov3.com. The usage

license (see Figure 3.1) can be expressed as a Boolean formula over attributes.

35

3. Distributed Attribute-Based Encryption

http://db.mycompany.org : isAdmin OR

http://db.mycompany.org : hasFullAccess OR

(http://www.openid.org : is18OrOlder AND

(http://www.contprov1.com : article1234.hasPaidFor OR

http://www.contprov2.com : article4325.hasPaidFor OR

http://www.contprov3.com : articleABC.hasPurchased))

Figure 3.1: An example policy

Here, attributes consist of an URL that specifies a party who has authority over

an attribute and an identifier describing the attribute itself, both represented as

strings and concatenated with a single colon character as separator. Note that we

consider the URL part of the attribute name.

The intuition behind this sample policy is that the protected file should only be

decrypted by someone who either is an administrator of the company database

db.mycompany.org, has the rights to download all files, or is at least 18 years

old (which is established by an identification service www.openid.org) and has

purchased licenses from at least one of the given content providers. Note that the

same media file might be identified by different product codes in different providers’

databases.

It is difficult to use this policy in a standard CP-ABE scheme, since there

is no central authority who maintains and controls all attributes; in the above

example, www.contprov1.com is solely responsible for maintaining the attribute ar-

ticle1234.hasPaidFor, while db.mycompany.org has authority over the attribute

isAdmin. While it is possible that a third party is set up to which the maintenance

of all attributes is delegated, this solution obviously does not scale. In addition,

this solution is problematic if the entities mutually distrust each other.

Outline The remainder of the chapter is structured as follows: Section 3.2

describes the intuition behind DABE, which is then described more formally in

Section 3.3. In the final Sections 3.4 and 3.5 we describe two DABE constructions,

including proofs and evaluations. Section 3.6 concludes this chapter.

36

3.2. DABE Intuition

3.2. DABE Intuition

We propose Distributed Attribute-Based Encryption (DABE) to mitigate this

problem. DABE allows an arbitrary number of authorities to independently

maintain attributes. There are three different types of entites in a DABE scheme:

a master, attribute authorities and users.

A central trusted authority is responsible for the distribution of secret user keys.

However, in contrast to standard CP-ABE schemes, this party is not involved in the

creation of secret attribute keys; the latter task can independently be performed

by the attribute authorities.

Attribute authorities are responsible to verify whether a user is eligible of a

specific attribute; in this case they distribute a secret attribute key to the user.

(Note that determining the users’ eligibility is application dependent and thus

beyond the scope of this chapter. However, we will discuss this process later in

Chapter 6.) In our scheme every attribute is associated with a single attribute

authority, but each attribute authority can be responsible for an arbitrary number

of attributes. Every attribute authority has full control over the structure and

semantics of its attributes. An attribute authority generates a public attribute key

for each attribute it maintains; this public key is available to every user. Eligible

users receive a personalized secret attribute key over an authenticated and trusted

channel. This secret key, which is personalized to prevent collusion attacks, is

required to decrypt a ciphertext.

Users can encrypt and decrypt messages. To encrypt a message, a user first

formulates his access policy in the form of a Boolean formula over some attributes.

The party finally uses the public keys corresponding to the attributes occurring in

the policy to encrypt. In DNF, all negations are atomic, so attribute authorities

should be able to issue negative attributes as well in order to make use of the full

expressive power of DNF formulas, i.e., there should be attributes attesting that a

user does not have a specific property.

To decrypt a ciphertext, a user needs at least access to some set of attributes

(and their associated secret keys) which satisfies the access policy. If he does not

already possess these keys, he may query the attribute authorities for the secret

keys corresponding to the attributes he is eligible of. Figure 3.2 visualizes the

interaction between the participants.

37

3. Distributed Attribute-Based Encryption

Trusted Authority

Decryptors

Attribute Authorities

Encryptors

Figure 3.2: Parties involved in DABE

To illustrate the use of a DABE scheme, we return to the above mentioned

example of the protection of media files. Figure 3.3 shows the policy of Figure 3.1

in DNF. The policy consists of five conjunctions over different sets of attributes.

A user needs all secret attribute keys of at least one of the conjunctive terms to be

able to decrypt a ciphertext that was encrypted with this access policy.

A user who downloads the ciphertext analyzes the policy and tests if he has a

sufficient set of attributes to decrypt. The user may contact attribute authorities

for secret attribute keys he does not already have in his possession but he is

eligible of. For instance, he may query www.openid.org for a secret attribute

key corresponding to is18OrOlder and contprov3.com for a secret attribute key

corresponding to the attribute articleABC.hasPurchased. In this case he is able

to satisfy the last conjunction. It may be necessary for him to perform additional

steps if he is not yet eligible for an attribute. For example, he might decide to buy

the article articleABC from contprov3.com to get the respective attribute.

Note that every attribute authority independently decides on the structure and

semantics of its attributes. For instance, the authority db.mycompany.org offers

the attribute isAdmin. The meaning of this attribute and the semantics (i.e.,

the decision who is eligible of it) is entirely up to db.mycompany.org. Whoever

includes the attribute in an access policy needs to trust the respective authority to

correctly determine eligibility.

Note that a DABE scheme must be collusion-resistant: if a user u has a friend v

who possesses an attribute that u does not have, it should not be possible for u to

use the corresponding secret attribute key of v. Neither should u be able to give

38

3.3. Formal Description

http://db.mycompany.org : isAdmin

OR

http://db.mycompany.org : hasFullAccess

OR

(http://www.openid.org : is18OrOlder AND

http://www.contprov1.com : article1234.hasPaidFor)

OR

(http://www.openid.org : is18OrOlder AND

http://www.contprov2.com : article4325.hasPaidFor)

OR

(http://www.openid.org : is18OrOlder AND

http://www.contprov3.com : articleABC.hasPurchased)

Figure 3.3: Policy of Figure 3.1 in DNF

any of his attribute keys to v in a form that allows v to use them together with

its own keys. All secret attribute keys are bound to their owner, making them

unusable with keys issued for other users.

3.3. Formal Description

3.3.1. DABE Algorithms

A DABE scheme consists of seven algorithms: Setup, CreateUser, CreateAuthority,

RequestAttributePK, RequestAttributeSK, Encrypt and Decrypt. The description

of these algorithms is as follows:

(PK ,MK)← Setup(1k) The Setup algorithm takes as input the security param-

eter 1k. This parameter is often implicitly determined by the application

and implementation. Setup outputs the public key PK which is used in all

subsequent algorithms, and the secret master key MK .

(PK u, SK u)← CreateUser(PK ,MK , u) The CreateUser algorithm takes as input

the public key PK , the master key MK , and a user name u. It outputs

a public user key PK u that will be used by attribute authorities to issue

secret attribute keys for u, and a secret user key SK u, that will be used in

conjunction with secret attribute keys to decrypt ciphertexts. The user must

later be able to prove the connection between his public user key PK u and

39

3. Distributed Attribute-Based Encryption

his identity, for example by the use of a PKI. We will elaborate on this in

Chapter 6, where we describe an implementation of a DABE scheme for a

practical scenario.

SK a ← CreateAuthority(PK , a) The CreateAuthority algorithm is executed by

the attribute authority with identifier a once during initialization. It outputs

a secret authority key SK a.

{PKA, NULL} ← RequestAttributePK(PK ,A, SK a) The RequestAttributePK al-

gorithm is executed by attribute authorities whenever they receive a request

for a public attribute key corresponding to an attribute A. The algorithm

checks whether the authority is responsible for the attribute A. If this is the

case, the algorithm outputs a public attribute key PKA, otherwise NULL.

{SKA,u, NULL} ← RequestAttributeSK(PK ,A, SK a, u,PK u) The RequestAttri-

buteSK algorithm is executed by the attribute authority with identifier a

whenever it receives a request for a secret attribute key. The algorithm

checks whether it has authority over attribute A and whether the user u

with public key PK u is eligible of A. If this is the case, RequestAttributeSK

outputs a secret attribute key SKA,u for user u. Otherwise, the algorithm

outputs NULL.

CT ← Encrypt(PK ,M,A,PKA1 , . . . ,PKAN
) The Encrypt algorithm takes as in-

put the public key PK , a message M , an access policy A and the public keys

PKA1 , . . . ,PKAN
corresponding to all attributes occurring in the policy A.

The algorithm encrypts M with A and outputs the ciphertext CT .

{M, NULL} ← Decrypt(PK ,CT ,A, SK u, SKA1,u, . . . , SKAN ,u) The Decrypt algo-

rithm gets as input a ciphertext CT produced by the Encrypt algorithm,

an access policy A under which CT was encrypted, and a key ring SK u,

SKA1,u, . . . , SKAN ,u for user u, which includes the secret user key SK u and

secret attribute keys SKA1,u, . . . , SKAN ,u for attributes A1, . . . ,AN . The al-

gorithm Decrypt decrypts the ciphertext CT and outputs the corresponding

plaintext M if the attributes A1, . . . ,AN are sufficient to satisfy A; otherwise

it outputs NULL.

40

3.3. Formal Description

Note that, as mentioned, the correct binding between u and PK u must be

ensured. A trusted certificate may be used for this purpose. Alternatively, the

attribute authority may query the trusted authority for the correct public user

key for user u. However, in this solution the central authority may become a

performance bottleneck, so a decentralized solution like a PKI is preferable.

Trusted Authority

Decryptors

Attribute Authorities

Encryptors

Setup, CreateUser

Decrypt

CreateAuthority, RequestAttributePK/-SK

Encrypt

Figure 3.4: Algorithms used in DABE

Figure 3.4 visualizes the algorithms and their relations to the involved parties.

Note that this scheme differs from CP-ABE (see Section 2.2) in that the two

algorithms CreateAuthority and RequestAttributePK were added, and the algorithm

KeyGen of CP-ABE is split into CreateUser and RequestAttributeSK. It also differs

from the construction [Cha07], where all attribute authorities are maintained by

the central authority. It is crucial that RequestAttributeSK does not need any

components of the master key MK as input, so that every attribute authority is

able to independently create attributes. However, we still require that a trusted

central party maintains users (by running CreateUser).

3.3.2. Security Model

Similarly to CP-ABE, we model the security of DABE in terms of a game between

a challenger and an adversary, where the challenger plays the role of the master and

all attribute authorities. We follow the CP-ABE security game (see Section 2.4.1),

but extend it taking into account the added features of DABE.

41

3. Distributed Attribute-Based Encryption

Setup. The challenger runs the Setup algorithm and gives the public key PK to

the adversary.

Phase 1. The adversary asks the challenger for an arbitrary number of user keys.

The challenger calls CreateUser for each requested user and returns the

resulting public and private user keys to the adversary. For each user, the

adversary can request an arbitrary number of secret and public attribute keys,

which the challenger creates by calling RequestAttributeSK or RequestAttri-

butePK, respectively. In this game, eligibility of attributes is not modeled,

and the adversary is implicitly considered eligible to all attributes during

Phase 1. In practice the adversary is weaker since he may not be eligible to

some of the attributes. During the first request for a public or private key

for an attribute of an authority a, the challenger creates the authority by a

call to CreateAuthority ; he stores the secret authority key for future use (but

does not make the key available to the attacker).

Challenge. The adversary submits two messages M0 and M1 and an access policy

A such that none of the users that he created in Phase 1 satisfies A. (If any

user from Phase 1 satisfies A, the challenger aborts.) The challenger flips a

coin b, encrypts Mb under A, and gives the ciphertext CT to the adversary.

Phase 2. Like in Phase 1, the adversary may create an arbitrary number of users.

He can also request more secret attribute keys for the users he created in

Phase 1 and 2, but if any secret attribute key would give the respective user

a set of attributes sufficient to satisfy A, the challenger aborts. As in Phase

1, the adversary is considered eligible for all other secret attribute keys and

he can always request any public attribute key.

Guess. The adversary outputs a guess b′ of b.

The advantage of the adversary in this game is defined as ε = Pr[b′ = b]− 1
2
, where

the probability is taken over all coin tosses of both challenger and adversary. A

DABE scheme is called secure if all polynomial time adversaries have at most

a negligible advantage in the above game, i.e., if ε, viewed as a function of the

security parameter k used for initialization of the scheme, satisfies ε(k) < 1/p(k)

for all polynomials p(·) and sufficiently large k ∈ N.

42

3.4. Construction

3.4. Construction

3.4.1. Description

We next give a first and very efficient construction of a DABE scheme, which

is based on bilinear groups and requires access policies in the form of Boolean

formulas written in Disjunctive Normal Form (DNF); the algorithms introduced in

Section 3.3.1 are implemented as follows:

Setup(1k) The Setup algorithm chooses a symmetric pairing e : G × G → GT

of order p (see Section 2.3.1). Next it chooses a generator g ∈ G, and two

random group elements P,Q ∈ G. The public key of the system is PK =

{G,GT , e, g, P, e(g,Q)}, while the secret master key is given by MK = Q.

Note that our construction can easily be modified to work with asymmetric

pairings e : G1 × G2 → GT , which can be more efficient for high security

settings [GPS08]. In this case, g is a generator of G1 and one chooses the

random elements P,Q ∈ G2.

CreateUser(PK ,MK , u) The algorithm CreateUser chooses a secret mku ∈ Zp
and outputs the public key PK u := gmku and the private key SK u :=

MK · Pmku = Q · Pmku for user u.

CreateAuthority(PK , a) The algorithm CreateAuthority chooses uniformly and

randomly a hash function Hxa : {0, 1}∗ → Zp from a large finite family of

hash functions, which we model as random oracles. It returns as secret key

the index of the hash function SK a := xa.

RequestAttributePK(PK ,A, SK a) If A is handled by the attribute authority a,

RequestAttributePK returns the public attribute key of A, which consists

of two parts: PKA :=
〈
PK ′A := gHSKa (A),PK ′′A := e(g,Q)HSKa (A)

〉
, otherwise

the algorithm returns NULL. The public key can be requested from the

attribute authority by anyone, but RequestAttributePK can only be executed

by the authority responsible for A, as it requires the secret index of the hash

function SK a as input.

RequestAttributeSK(PK ,A, SK a, u,PK u) After determining that the attribute

A is handled by a, the authority tests whether user u is eligible for the

43

3. Distributed Attribute-Based Encryption

attribute A. (The implementation of this operation is application-dependent

and thus outside the scope of this work.) If this is not the case, Request-

AttributeSK returns NULL, else it outputs the secret attribute key SKA,u :=

PK u
HSKa (A) = gmkuHSKa (A). Note that the recipient u can check the validity

of this secret key by testing if e(PK ′A, SK u) = PK ′′A · e(SKA,u, P).

Encrypt(PK ,M,A,PKA1 , . . . ,PKAN
) A policy in DNF can be written as

A =
k∨

j=1


 ∧

A∈Sj

A


 ,

where N sets S1, . . . , Sk denote attributes that occur in the j-th conjunction

of A. The encryption algorithm iterates over all j = 1, . . . , k, generates for

each conjunction a random value Rj ∈ Zp and constructs a tuple CT j =〈
Ej, E

′
j, E

′′
j

〉
, where

Ej := M · (
∏

A∈Sj

PK ′′A)Rj , E ′j := PRj , and E ′′j := (
∏

A∈Sj

PK ′A)Rj . (3.1)

The ciphertext CT is obtained as tuple CT := 〈CT 1, . . . ,CT k〉.

Decrypt(PK ,CT ,A, SK u, SKA1,u, . . . , SKAN ,u) To decrypt a ciphertext CT , De-

crypt first checks whether any conjunction of A can be satisfied by the given

attributes, i.e., whether the input SKA1,u, . . . , SKAk,u contains at least secret

keys for all attributes occurring in a set Sj for some 1 ≤ j ≤ k. If this is not

the case, the algorithm outputs NULL, otherwise

M = Ej ·
e(
∏
i∈Sj

SK i,u, E
′
j)

e(E ′′j , SK u)
.

Correctness. Let aj :=
∑
A∈Sj

HSKaA
(A), where we denote by aA the attribute

authority of A. Then

Ej = M · e(g,Q)ajRj , E ′′j = gajRj (3.2)

44

3.4. Construction

and

Ej ·
e(
∏
i∈Sj

SK i,u, E
′
j)

e(E ′′j , SK u)
= M · e(g,Q)ajRj · e(gmkuaj , PRj)

e(gajRj , Q · Pmku)

= M · e(g,Q)ajRj · e(g, P)Rjmkuaj

e(g,Q)ajRj · e(g, P)Rjmkuaj

= M.

The same is true for the asymmetric case, as SKi,u = gmkuHSKa (A) ∈ G1, E
′
j =

PRj ∈ G2, E
′′
j is product of some PK ′A = gHSKa (A) ∈ G1, and SK u = Q·Pmku ∈ G2.

3.4.2. CPA-Security

To prove the security of our construction, we basically follow the structure of

the security proof of the CP-ABE scheme introduced in [BSW07]. First we show

how any adversary who plays the DABE game of Section 3.3.2 (denoted Adv1 in

the following) can be used to construct an adversary in a slightly modified game

(denoted Adv2). Then we prove that no such Adv2 can exist. Thus, no Adv1 can

exist, either. We define the modified game that is used by Adv2 in the following

manner: The phases Setup, Phase 1, and Phase 2 are equal to the DABE game.

In the Challenge phase, the adversary submits an access policy A such that none

of the users that he created in Phase 1 satisfies A. The challenger flips a coin b,

and creates a ciphertext for the access policy A according to Eq. (3.1), but instead

of computing Ej as in Eq. (3.2), he computes Ej as

Ej =




e(g,Q)ajRj , if b = 1

e(g, g)θj , if b = 0,

where all θj are uniformly and independently chosen random elements of Zp. The

task of Adv2 is thus to distinguish the two group elements e(g,Q)ajRj and e(g, g)θj

of GT .

Lemma 3.1. If there exists an adversary Adv1 who has advantage of ε to win the

original game, then there exists an adversary Adv2 which wins the modified game

with advantage ε/2.

45

3. Distributed Attribute-Based Encryption

Proof. Given an adversary Adv1 that has advantage ε in the DABE game, we can

construct an adversary Adv2 as follows. Adv2 simulates Adv1. In the phases Setup,

Phase 1, and Phase 2, Adv2 forwards all messages he receives from Adv1 to the

challenger and all messages from the challenger to Adv1. In the Challenge phase,

Adv2 receives two messages M0 and M1 from Adv1 and the challenge C (which

contains elements Ej that are either e(g,Q)ajRj or e(g, g)θj for all 1 ≤ j ≤ k) from

the challenger. He flips a coin β, multiplies all Ej of C by Mβ, and sends the

resulting ciphertext as C ′ to Adv1. When Adv1 outputs a guess β′, Adv2 outputs

1 if β′ = β, and 0 if β′ 6= β. If the components Ej of C satisfy Ej = e(g,Q)ajRj ,

then Adv2’s challenge given to Adv1 is a well-formed DABE ciphertext and Adv1

has advantage ε of guessing the correct β′ = β. If Ej = e(g, g)θj , the challenge is

independent of the messages M0 and M1, so the advantage of Adv2 is 0. Thus, we

have

Pr[Adv2 succeeds] = Pr[Ej = e(g,Q)ajRj] Pr[β′ = β |Ej = e(g,Q)ajRj] +

Pr[Ej = e(g, g)θj] Pr[β′ 6= β |Ej = e(g, g)θj]

≤ 1

2
(
1

2
+ ε) +

1

2
· 1

2
=

1 + ε

2

and the overall advantage of Adv2 is ε
2
, as required.

We prove the security of our DABE construction in the generic group using

the Generic Diffie Hellman Exponent assumption (GDHE) as introduced in Sec-

tion 2.4.2. In particular, we show that any polynomial time adversary Adv2, who

plays the modified game cannot have non-negligible advantage to distinguish

e(g,Q)ajRj from e(g, g)θj in his view of the protocol. Lemma 3.1 finally implies

that there exists no efficient successful attacker Adv1 either, which proves the

security of the DABE scheme.

Theorem 3.1. Let Adv2 be a polynomial time adversary in the generic group

model who plays the modified DABE security game and makes q oracle queries.

Then Adv2 has advantage at most O(q2/p) to win the modified game, where p is

the order of the bilinear group.

Proof. Let Adv2 be a polynomial time adversary against the modified security

game. Adv2 plays against a simulator, who takes over the role of the challenger

46

3.4. Construction

and manages all oracles as outlined in Section 2.4.2. In particular, the simulator

operates in the following way:

Setup. The simulator chooses G, GT , e, g̃ and random exponents p̃, q̃ ∈ Zp.
Furthermore the simulator chooses two random encoding functions ξ, ξT for

the implementation of the group and pairing oracles. The public key is given

to the adversary in encoded form, i.e., the adversary obtains ξ(1), ξ(p̃) and

ξT (q̃) as encoded versions of g, P and e(g,Q).

Phase 1. When the adversary calls CreateUser for some u, the simulator chooses

a random mku ∈ Zp and returns encoded versions ξ(mku) and ξ(q̃ + p̃ ·mku)

of the user keys PK u and SK u.

Whenever the simulator gets a request involving an attribute A that the

adversary has not used before, he chooses a new unique random value mkA,

which simulates the term HSKa(A) of an attribute A maintained by attribute

authority a; the association between values mkA and attributes A is stored

internally by the simulator. If the adversary queries for an attribute A that

was used before, the value mkA is retrieved from storage. During every

request of a public attribute key for A (a call to RequestAttributePK), the

simulator returns ξ(mkA) and ξT (q̃mkA) as encoded versions of the public

attribute keys PK ′A and PK ′′A. If queried for a secret attribute key (through

a call to RequestAttributeSK), the simulator returns ξ(mkumkA) as encoded

secret key SKA,u.

Whenever the adversary makes oracle queries for group operations or the

pairing, the adversary gets the desired result: on input ξT (a) and ξT (b),

the multiplication oracles returns ξT (a+ b) and the division oracle returns

ξT (a− b). Similarly, on input ξ(a) and ξ(b), the multiplication oracle returns

ξ(a+ b) and the division oracle returns ξ(a− b). On input ξ(a) and ξ(b), the

pairing oracle returns ξT (ab).

Challenge. When the adversary asks for a challenge by submitting the access

policy A, the simulator flips a coin b. Then he chooses a random Rj ∈ Zp for

each conjunction in A and computes aj =
∑
A∈Sj

mkA. If b = 0, he sets θj to

a random value from Zp, otherwise θj := q̃ajRj. Finally he returns encoded

components of the ciphertext CT j as 〈ξT (θj), ξ(p̃Rj), ξ(ajRj) 〉.

47

3. Distributed Attribute-Based Encryption

Phase 2. The simulator behaves as in Phase 1. However, the simulator refuses any

secret attribute key that would give the respective user a set of attributes

satisfying A.

Due to the restriction of the generic group model, all values that the adversary

can access at any time during his attack are either encodings of random values of Zp
(namely 1, p̃, q̃,mku,mkA and θ), encodings of combinations of these values given

by the simulator (such as the term mkumkA which represents SKA,u), or results

of oracle queries, which are encodings of sums and differences of such values. We

keep track of the knowledge of an attacker by using symbolic algebraic expressions

over these variables which represent inputs of oracle queries.

We will now use the General Diffie-Hellman Exponent Problem as introduced in

Section 2.4.2. By showing that the target polynomial f = q̃ajRj is independent of

the terms the adversary is given according to Definition 2.3, the proof follows from

Theorem 2.1.

After Phase 2, the adversary received the following information from the simulator,

all in encoded form. Since we are only interested in the polynomials and not their

representations, we write x ∈ P̂ instead of ξ(x) and y ∈ Q̂ instead of ξT (y):

• The public system key PK: p̃ ∈ P̂ and q̃ ∈ Q̂ (not q̃ ∈ P̂ , since the adversary

only receives e(g,Q) = e(g, g)q̃ and not gq̃).

• PK u and SK u for an arbitrary number of users. Let N be the number of

users, denote the jth secret user key mk (j)
u : mk (j)

u , q̃ + p̃ ·mk (j)
u ∈ P̂ .

• PK ′A and PK ′′A for an arbitrary number of attributes: mkA ∈ P̂ and q̃mkA ∈ Q̂.

• SKA,u for an arbitrary number of attributes and users. Let L(j) be the

attribute list for the jth user: {mk (j)
u mkA}A∈L(j) ∈ P̂ , with the restriction

that for no user u, he has a sufficient set of secret attributes keys that satisfies

A.

• Ej, E ′j, and E ′′j of the challenge ciphertext, i.e., ajRj, p̃Rj ∈ P̂ and θj ∈ Q̂,

where θj may be equal to ajRj for all j.

Hence, for N users and a DNF of k conjunctions, the polynomials that he knows

are:

48

3.4. Construction

P̂ =




1, p̃, {mkA}A,
{mk (j)

u , q̃ + p̃ ·mk (j)
u }1≤j≤N ,{

mk (j)
u mkA

}
A∈L(j),1≤j≤N

,

{p̃Ri, aiRi}1≤i≤k ,




Q̂ =

(
1, q̃, {q̃mkA}A,
{θi}1≤i≤k

)

where the subset L(j) does not satisfy A for any 1 ≤ j ≤ k. The polynomial that

he needs to construct is f = q̃ajRj for any 1 ≤ j ≤ k. We show that he cannot do

this because f is independent of (P̂ , Q̂) according to Definition 2.3.

As aj and Rj are not contained in Q̂, f must contain a product of two polynomials

of P̂ such that each of the components q̃, aj, and Rj is contained in any of the

terms.

First we show how the adversary can find polynomials containing aj =
∑
A∈Sj

mkA

in P̂ , since aj is contained in f . Aside from Ej and E ′′j , aj can only be constructed

by multiplying polynomials of P̂ containing mkA for all A ∈ Sj and some j with

1 ≤ j ≤ n. These values occur only in PK ′A, PK ′′A, and SKA,u. Since PK ′′A ∈ GT

(the polynomial is an element of Q̂), it cannot be used as input of the pairing.

Thus, the only possibility for the attacker is to combine any PK ′A and SKA,u.

Multiplying representations of PK ′A yields polynomials of the form γ
∑
AmkA for

some γ, and multiplying this by SKA,u for some u and A yields polynomials of

the form

∑

u


γumk (j)

u

∑

A∈L(j)

γA,umkA


+ γ

∑

A

mkA,

for some γ, γu and γA,u. Since the adversary does not have all secret attribute keys

corresponding to one user u to satisfy any conjunction of A, no sum
∑
A γA,umkA

will evaluate to the required aj. Furthermore, the simulator chooses all mkA

randomly, so any oracle query involving any sum over
∑
AmkA with a set of

attributes that does not precisely correspond to the attributes of the challenge A
will not yield a term containing aj. Thus, the first sum of the above term can not

yield aj. The only way that the sum γ
∑
AmkA evaluates to aj for some j is as a

product of corresponding public attribute keys, which is obtained by multiplying

all representations of PK ′A,A ∈ Sj, yielding ξ(aj). It follows, that to construct a

polynomial containing aj , the adversary has no other option than to use either Ej ,

49

3. Distributed Attribute-Based Encryption

Table 3.1: Results of pairings

Source Polynomial Pairing with SK u Pairing with E ′j
(in P̂) (in Q̂) (in Q̂)

PK u′ mku′ mku′ q̃ + p̃mkumku′ mkup̃Rj

SK u′ q̃ + p̃mku′ q̃2 + q̃p̃(mku′ +mku) q̃p̃Rj + p̃2mkuRj

+ p̃2mkumku′∏
A∈Sj

PK ′A aj q̃aj + p̃mkuaj aj p̃Rj

E ′j p̃Rj q̃p̃Rj + p̃2mkuRj p̃2R2
j

E ′′j ajRj q̃ajRj + p̃mkuajRj aj p̃R
2
j

E ′′j , or
∏
A∈Sj

PK ′A. Other polynomials containing mkA are not useful for him.

Next we consider how to obtain terms containing q̃ ·Rj . None of the values of P̂

or Q̂ contains both q̃ and Rj. Thus to get a polynomial containing the product

q̃ · Rj, two polynomials of P̂ need to be multiplied, where each of the values is

contained in any term. The only polynomials in P̂ that contain q̃ are SK u. We

examine all possible results from multiplying γSK u with some other value. As

shown above, we need not consider polynomials containing mkA, since these are

not useful for the adversary.

The first three columns of Table 3.1 list all remaining combinations. It can be

seen that the only result that contains all q̃, aj and Rj is the product of some SKu

and some E ′′j which results in a polynomial of the form

p̃Rjmkuaj + q̃ajRj.

In order to obtain the required term q̃ajRj, the adversary has to eliminate

p̃Rjmkuaj, which can be done by a division with another term of Q̂ if Q̂ contains

a polynomial p̃Rjmkuaj. To construct this, he needs to multiply a polynomial

from P̂ containing p̃ with another polynomial from P̂ . Thus we need to examine

all possible results from pairing SK u or E ′j (the only elements of P̂ depending on

p̃) with another value. Once again, Table 3.1 lists all possible combinations not

containing terms involving results of the hash oracle. (Including terms given by

the oracles one gets terms of the above form that will not help, either.)

From this case analysis it follows that no term of the form p̃Rjmkuaj can be

constructed by the adversary Adv2, so f is independent of the terms (P̂ , Q̂) by

50

3.4. Construction

our Definition 2.3. This allows us to apply Theorem 2.1 to conclude that the

adversary’s advantage is O(q2/p), proving the theorem.

3.4.3. Implementation and Performance

Compared to other ABE schemes, the proposed DABE construction is very efficient.

Nearly all operations are group operations in G and GT . The only computationally

expensive operation, the pairing e : G × G → GT , is needed during decryption

exactly two times, no matter how complex the access policy is. No pairings are

needed for any other algorithms. In all other known ABE schemes, the number of

pairings grows at least linearly with the minimum number of distinct attributes

needed for decryption. Furthermore, each conjunction requires only three group

elements in the ciphertext, regardless of the number of attributes involved in the

conjunction.

To further demonstrate the high efficiency of our DABE construction, we imple-

mented it in C using the PBC library [Lyn] and compared it to the implementation

of Bethencourt’s original CP-ABE scheme [BSW07] (henceforth simply called

CP-ABE) which is also built on PBC. To make the comparison as fair as possible,

both implementations were linked against the same PBC instance and both used

similar curves, i.e., curves of the PBC-predefined type denoted Type A that are

based on the equation y2 = x3 + x.

We created 1 000 000 random alphanumeric strings of length 10-20. These strings

were used as attribute descriptors and all tests were run with subsets of this

attribute list. As a first test, we created a large set of attribute keys (10 000

and 100 000) using both implementations. For DABE, both RequestAttributePK

and RequestAttributeSK were executed for each attribute, and for CP-ABE, the

algorithm KeyGen was called to create a key ring containing keys for all given

attributes. In the next step, a random group element was encrypted and then

decrypted with a large conjunction of attributes (100, 2 500, and 5 000). For

CP-ABE, the function bswabe enc was used. Note that when given policies that

are not simple conjunctions, both implementations will need to find a conjunction

of attributes that satisfies the policy and apply computations to all attributes

of the conjunction. Thus, testing only one large conjunction is sufficient for a

representative performance comparison. Also, note that in real world settings, a

51

3. Distributed Attribute-Based Encryption

KeyGen Encrypt Decrypt
of attributes: 10 000 100 000 100 2 500 5 000 100 2 500 5 000

CP-ABE [BSW07] 101 988 1.084 25.585 56.106 0.401 24.305 80.941
Our construction 52 465 0.006 0.036 0.066 0.004 0.029 0.056

Table 3.2: Performance comparison of DABE and Bethencourt’s CP-ABE (all
values given in seconds)

hybrid encryption will usually be utilized, where a single random group element

will be chosen for ABE encryption and a binary representation of it (for example

computed by a hash function H : GT → {0, 1}k for an integer k) is used to

symmetrically encrypt an actual message. We will use such an approach in our

Web Service implementation later in Chapter 6.

All tests were performed on a standard desktop PC equipped with an Intel

Core 2 Duo processor at 3 GHz and 4 GB bytes of RAM running Kubuntu Linux.

Table 3.2 summarizes the results (all time values are given in seconds).

As it can be seen, DABE outperforms CP-ABE in every aspect. The large

difference in the KeyGen phase can be explained by the fact that CP-ABE is

probabilistic and requires the computation of a pseudorandom value for each

attribute. DABE, on the other hand, creates two keys (whereas in CP-ABE

the public attribute key is the attribute name itself), but altogether only three

exponentiations and two hashes are needed for each attribute. For Decrypt, the

large differences (factor 103) are obviously caused by the different numbers of

pairings required for decryption: In CP-ABE two pairings must be computed

for each attribute of the conjunction, resulting in a superlinear growth of the

time required for decryption, while DABE requires only two pairing operations

regardless of the number of attributes involved. Instead, the only action that is

dependent on the number of attributes is the multiplication of the private attribute

keys associated with each attribute.

3.5. Enhancing Waters’ Construction

3.5.1. Modified Construction

It is easy to modify the CP-ABE constructions from [Wat11] in order to obtain

a DABE construction since the structure of the secret attribute keys is similar

52

3.5. Enhancing Waters’ Construction

to the DABE construction given in the preceding section. For this construction

the access policy A must be given as a linear secret sharing scheme. For a formal

definition of secret sharing schemes and access structures we refer the reader to

[Sti92]. We define a linear secret sharing scheme (LSSS) as follows [Bei96]:

Definition 3.1. A secret-sharing scheme Π over a set of parties P is called linear

(over Zp) if

1. The shares for each party form a vector over Zp.

2. There exists a matrix M called the share-generating matrix for Π. The

Matrix M has ` rows and n columns. Let ρ : {1, . . . , `} → P a function

that maps each row of M to a party. When we consider the column vector

v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp
are randomly chosen, then Mv is the vector of ` shares of the secret s

according to Π. The share λi := (Mv)i belongs to party ρ(i).

We will not discuss share-generating matrices in detail here, but give an intuition.

Consider the following example:

ρ :=





(1, A),

(2, B),

(3, C)





M :=




1 1

1 0

0 −1




As described above, the column vector v = (s, r1), so the first share is λ1 =

(Mv)1 = s+ r1 and is given to ρ(1) = A, the second share is λ2 = s and is given

to ρ(2) = B, and the third share is λ3 = −r1 which is given to ρ(3) = C. Note

thatM and ρ are publicy known. With these shares, s can be reconstructed by B

alone and by A and C together (by adding their shares), so the matrix represents

the formula B ∨ (A ∧ C).

It has been shown in [Bei96] that if S is a set of parties that is allowed to receive

the secret according to Π (i.e., an authorized subset of the access structure realized

by Π) and I = {i | ρ(i) ∈ S} is the set of rows ofM corresponding to the elements

of S, then there exist constants {ωi ∈ Zp}i∈I , such that
∑

i∈I ωiλi = s for the

shares λi = (Mv)i = Miv. These constants can be found in polynomial time.

In our setting, the parties P resemble attributes, so an encryptor first needs to

53

3. Distributed Attribute-Based Encryption

formulate his access policy as a secret sharing scheme Π and construct a matrix

M along with a row-labeling function ρ for it.

In general, a LSSS matrix can be efficiently generated from any policy. A simple

approach is sketched in Appendix D of [LW11]. More recently, a very efficient

algorithm was proposed in [LC10]. Moreover, as that algorithm is deterministic,

the LSSS matrix needs not be included along with the ciphertext. If both parties

(encryptor and decryptor) use the same algorithm to create theM and ρ, it suffices

to send the policy. In fact, this is the preferred approach as the policy is a lot

more readable than a LSSS matrix, and the decryptor should be able to easily

understand the rules under which decryption is possible.

After the encryptor has createdM and ρ for his policy, he also needs the public

keys PKA of all attributes used in the access policy as input to the encryption

algorithm. Using the notation from Section 3.4, the construction is as follows:

Setup(1k) The Setup algorithm chooses a pairing e : G×G→ GT of order p. Next

it chooses a generator g ∈ G, and two random group elements P,Q ∈ G. The

public key of the system is PK = {G,GT , e, g, P, e(g,Q)}, while the secret

master key is given by MK = Q.

CreateUser(PK ,MK , u) The algorithm CreateUser chooses a secret mku ∈ Zp
and outputs the public key PK u := gmku and the private key SK u :=

MK · Pmku = Q · Pmku for user u.

CreateAuthority(PK , a) The algorithm CreateAuthority chooses uniformly and

randomly a hash function Hxa : {0, 1}∗ → Zp from a large finite family of

hash functions, which we model as random oracles. It returns as secret key

the index of the hash function SK a := xa.

RequestAttributePK(PK ,A, SK a) If A is handled by the attribute authority a,

RequestAttributePK returns the public attribute key of A: PKA := gHSKa (A).

RequestAttributeSK(PK ,A, SK a, u,PK u) After determining that the attribute

A is handled by a, the authority tests whether user u is eligible for the

attribute A. If this is not the case, RequestAttributeSK returns NULL, else it

outputs the secret attribute key SKA,u := PK u
HSKa (A) = gmkuHSKa (A).

54

3.5. Enhancing Waters’ Construction

CT =
〈
C = Me(g,Q)s, C ′ = gs,

C1 = P λ1PK ρ(1)
−r1 , D1 = gr1 ,

. . .

C` = P λ`PK ρ(`)
−r` , D` = gr`

〉
.

Figure 3.5: Ciphertext in Water’s construction

Encrypt(PK ,M,A,PKA1 , . . . ,PKAN
) Given an access policy of the form A =

〈M, ρ〉, Encrypt chooses a random vector ~v = (s, y2, . . . , yn) ∈ Zn+1
p . For

i = 1 to `, it calculates the share λi =Mi · v. In addition, it chooses random

elements r1, . . . , r` ∈ Zp. The complete ciphertext is given in Figure 3.5

Decrypt(PK ,CT ,A, SK u, SKA1,u, . . . , SKAN ,u) The algorithm first verifies that

the access structure A can be satisfied by the attributes of SKA1,u, . . . ,

SKAN ,u. If not, it aborts, returning NULL, else it proceeds as follows: Let I

be the set of all row indices of M that are associated with the attributes

of SKA1,u, . . . , SKAN ,u, i.e., I = {i | ρ(i) ∈ {A1, . . . ,AN}}. As noted above,

there are constants {ωi | i ∈ I} so that
∑

i∈I ωiλi = s, that can be found in

polynomial time. The algorithm computes

e(C ′, SK u)/

(∏

i∈I

(e(Ci,PK u) · e(Di, SKρ(i),u))
ωi

)
= e(g,Q)s (3.3)

and divides the ciphertext component C by this value, thus retrieving M .

The only major difference to the construction from Section 3.4 is in the algorithms

Encrypt and Decrypt.

Correctness. Decryption works if the set of attributes given as input to the

Decrypt algorithm satisfies the access structure A. In the CPA security proof in

Section 3.5.2 we will show that decryption is not possible if the attribute set is not

sufficient. If, however, it is sufficient, Equation (3.3) yields the correct result as

follows:

55

3. Distributed Attribute-Based Encryption

e(C ′, SK u)/

(∏

i∈I

(e(Ci,PK u) · e(Di, SKρ(i),u))
ωi

)

= e(gs, QPmku)/

(∏

i∈I

(e(P λiPK−riρ(i),PK u) · e(gri ,PKHSKa (A)
u)ωi

)

= e(gs, QPmku)/
(∏

i∈I

(e(P λig−riHSKa (A), gmku) · e(gri , gmkuHSKa (A)))ωi

)
. (3.4)

For any pairing e : G1 × G2 → GT with generators g1, g2 and a, b, c ∈ Zp the

following equations hold:

e(ga1 , g
b
2 · gc2) = e(ga1 , g2)

b+c = e(ga1 , g
b
2) · e(ga1 , gc2) and

e(ga1 , g
b
2) = e(gb1, g

a
2) .

For symmetric groups (G = G1 = G2), the last equation implies that the pairing

operation is commutative, i.e., ∀A,B ∈ G, e(A,B) = e(B,A). Using these rules,

Equation (3.4) can be split up and rearranged as follows:

(3.4) = e(g,Q)s · e(g, P)smku/
(∏

i∈I

(e(g, P)λimku · e(g, g)−riHSKa (A)mku · e(g, g)riHSKa (A)mku)ωi

)

= e(g,Q)s · e(g, P)smku/

(∏

i∈I

(e(g, P)λimku)ωi

)

= e(g,Q)s · e(g, P)smku/e(g, P)
∑

i∈I ωiλimku

= e(g,Q)s · e(g, P)smku/e(g, P)smku

= e(g,Q)s .

As seen in the Decrypt algorithm, if the ciphertext component C is divided by this

value, the result is the plaintext message M , so the decryption succeeds.

56

3.5. Enhancing Waters’ Construction

3.5.2. CPA-Security

We prove the security of this construction in two ways. First we show how to apply

Waters’ original proof to the DABE version. This proof allows a security reduction

to a mathematical assumption. However, the reduction requires a very restrictive

security model. We call this non-adaptive security. The construction can also be

proven secure in the stricter adaptive security model that was used in the previous

DABE construction by using the General Diffie Hellman Exponent Assumption

(Section 2.4.2).

Non-adaptive Security. To prove the security of his construction, Waters [Wat11]

uses a security assumption that he introduces in his paper, the decisional q-parallel

Bilinear Diffie Hellman Exponent assumption. He shows that any adversary who

breaks the scheme can be used to construct an algorithm that breaks the decisional

q-parallel BDHE assumption.

This proof also works for the DABE modification. However, we have to weaken

the attack model that is considered. In particular we allow only non-adaptive key

queries, similar to the Multi-Authority Threshold ABE scheme by Chase [Cha07]:

In this scheme, a sequence of calls of CreateUser to request user keys for a user u

and an arbitrary number of calls to RequestAttributeSK to request all attributes

for u are treated as a single call. The adversary will only get the user keys and

secret attribute keys after having submitted the complete set of attributes for

the user. This means that an adversary is not able to adaptively request secret

attribute keys to users, but needs to define the whole set of attributes that a user

has at once. If an adversary wants to add attributes to a user he has already

created, he can instead create a new user by submitting another sequence of

CreateUser, RequestAttributeSK calls. Note that due to the CP-ABE property of

collusion-resistance he cannot mix the new keys with the old ones, so he has to

create the new key ring containing all required attributes for the user. Note that

this constraint prevents the attacker from utilizing the complete flexibility of the

DABE scheme.

We also need to change the scheme to a selectively secure scheme, where the

adversary submits the challenge access structure to the challenger in advance

during an additional Init phase (see Section 2.4.1). The attack model is as follows:

57

3. Distributed Attribute-Based Encryption

Initialization. The adversary submits a challenge access structure A to the chal-

lenger that he wants to be challenged on.

Setup. The challenger runs the Setup algorithm and gives the global key PK to

the adversary.

Phase 1. The adversary asks the challenger for an arbitrary number of public

attribute keys, which the challenger creates by calling RequestAttributePK.

The adversary also requests an arbitrary number of users by calling Crea-

teUser and secret attribute keys for each user by calling RequestAttributeSK.

However, each sequence of attribute claims for a user is considered a single

call, so the dispatch of the secret user keys and secret attribute keys for

each user is stalled until the adversary has called RequestAttributeSK for all

attributes that he wants the user to have. The adversary cannot request a

set of secret attribute keys that would give a user the ability to satisfy A.

During the first request for a public or private key for an attribute of an

authority a, the challenger creates the authority by a call to CreateAuthority ;

he stores the secret authority key for future use (but does not make the key

available to the attacker).

Challenge. The adversary submits two messages M0 and M1. The challenger flips

a coin b, encrypts Mb under A, and gives the ciphertext CT to the adversary.

Phase 2. Like in Phase 1, the adversary may create an arbitrary number of users

along with secret attribute keys for them. He can not add secret attribute

keys to users that he has already created, and as before, if any request is

made for a set of user keys that would satisfy A, the challenger aborts.

Guess. The adversary outputs a guess b′ of b.

As in the original security definition, the advantage of the adversary is defined

as ε = Pr[b′ = b] − 1
2
, where the probability is taken over all coin tosses of both

challenger and adversary. The scheme is called non-adaptive key query secure

if all polynomial time adversaries have at most a negligible advantage in the

non-adaptive DABE game.

58

3.5. Enhancing Waters’ Construction

This modified model is from an adversary’s point of view equal to the model of

[Wat11]. Thus, the proof of [Wat11], Section 4.1, can directly be applied to the

above construction.

Adaptive Security. However, using generic groups we can also prove security

in the strict security game (see Section 3.3.2) similar to our original DABE

construction. Similarly to the proof in Section 3.4.2, we define a modified game

that is used by an adversary Adv2:

The phases Setup, Phase 1, and Phase 2 are equal to the original game. In

the Challenge phase, the adversary submits an access policy A such that none of

the users that he created in Phase 1 satisfies A. The challenger flips a coin b, and

creates a ciphertext for the access policy A according to Eq. (3.1), but instead of

computing the ciphertext component C as in the construction, he computes C as

C =




e(g,Q)s, if b = 1

e(g, g)θ, if b = 0 .

Lemma 3.2. If there exists an adversary Adv1 who has advantage of ε to win the

original game, then there exists an adversary Adv2 which wins the modified game

with advantage ε/2.

The proof is similar to the one of Lemma 3.1.

Theorem 3.2. Let Adv2 be a polynomial time adversary in the generic group

model who plays the modified DABE security game and makes q oracle queries.

Then Adv2 has advantage at most O(q2/p) to win the modified game, where p is

the order of the bilinear group.

Proof. The challenger plays the modified game by using the oracles to compute

representations of all terms similarly to the challenger that is described in the

proof of the original DABE construction. To emulate the random group elements

P and Q, we write P = gp̃ and Q = gq̃ for p̃, q̃
R←−Z∗p, so e(g,Q)s = e(g, g)q̃s.

As before, we use the GDHE assumption to prove this theorem. In order to

prove the security, we need to show that the adversary’s target polynomial f = q̃s

is independent of (P̂ , Q̂), where P̂ and Q̂ are the polynomials he receives from the

challenger. We begin by examining P̂ and Q̂.

59

3. Distributed Attribute-Based Encryption

After the challenge phase, the adversary has the following polynomials:

• The public system key PK: p̃ ∈ P̂ and q̃ ∈ Q̂ (not q̃ ∈ P̂ , since the adversary

only receives e(g,Q) = e(g, g)q̃ and not gq̃).

• Public attribute keys for all attributes: {HSKa(A)}A ∈ P̂ . Since we model

H as a random oracle, all hash values are independent from each other and

from any other values in the system.

• For an arbitrary number of users u the public and secret user keys and

for each u secret attribute keys for a number of attributes: Let N be the

number of users, denote the jth user u(j), his secret user key mk (j)
u and his

set of attributes L(j). Then the polynomials are mk (j)
u , q̃ + p̃mk (j)

u ∈ P̂ and

{mkuHSKa(A)}A∈L(j) ∈ P̂ .

However, for no j does L(j) satisfy the challenge access structure A.

• The ciphertext components:

– The component C ′: s ∈ P̂ .

– The component C: θ ∈ Q̂, where θ is either q̃s or a random value.

– For 1 ≤ i ≤ ` (with ` the number of rows of the LSSS matrix M), the

components Ci and Di: p̃λi −HSKa(ρ(i))ri, ri ∈ P̂ for random ri and

the shares λ(i).

Thus the vectors are:

P̂ =




1, p̃, s,{
mk (j)

u , q̃ + p̃mk (j)
u

}
1≤j≤N

,

{HSKa(A)}A,{
mk (j)

u HSKa(A)
}
A∈L(j),1≤j≤N

,

{p̃λi −HSKa(ρ(i))ri, ri}1≤i≤`




,

Q̂ = (1, q̃, θ) and f = q̃s.

First we examine how the adversary can build polynomials containing q̃. This

value occurs in Q̂ as q̃ ∈ Q̂ and as part of the polynomials q̃ + p̃mk (j)
u ∈ P̂ for any

user u(j). A term in Q̂ can not be multiplied with any other term, so f = q̃s ∈ Q̂

60

3.5. Enhancing Waters’ Construction

can not be computed from q̃ ∈ Q̂, and the only way to have q̃s as an addend is to

multiply q̃ + p̃mk (j)
u with a value that contains s.

Now we examine how to construct such a polynomial containing s, but with

the restriction that s does not have an additional factor x. If s was part of sx

for some x, then the multiplication with q̃ + p̃mk (j)
u would yield a polynomial

of Q̂ containing q̃sx, which still contains x as a term. However, x cannot be

removed from this polynomial, as after one multiplication the result is in Q̂ and

no further multiplication is possible. The vector P̂ contains s ∈ P̂ , which could be

used, but there is potentially another way to construct a polynomial containing s:

Since
∑

i∈I ωiλi = s, a polynomial containing s can be computed using the terms

p̃λi −HSKa(ρ(i))ri. However, the resulting polynomial would have p̃ as factor of s

which cannot be removed.

Thus, f = q̃s can only be computed by multiplying q̃ + p̃mk (j)
u (for any j) with

s ∈ P̂ , resulting in sq̃ + sp̃mk (j)
u , so the adversary needs to build sp̃mk (j)

u in order

to remove it and arrive at the desired term f = q̃s.

Again, s occurs only in two polynomials: s ∈ P̂ and in the form p̃λi−HSKa(ρ(i))ri.

To compute sp̃mk (j)
u from s ∈ P̂ , the adversary needs a term of P̂ containing both

p̃ and mk (j)
u . However, these two values are only both contained in q̃ + p̃mk (j)

u , but

when using this to remove sp̃mk (j)
u , the adversary would also cancel out the target

polynomial q̃s.

So the adversary needs to multiply a suitable linear combination of p̃λi −
HSKa(ρ(i))ri for some i with a polynomial containing mk (j)

u . All possible multipli-

cation results are:

(p̃λi −HSKa(ρ(i))ri) ·mk (j)
u = p̃λimk (j)

u −HSKa(ρ(i))rimk (j)
u (3.5)

(p̃λi −HSKa(ρ(i))ri) · (q̃ + p̃mk (j)
u) = p̃2mk (j)

u λi + p̃q̃λi − q̃HSKa(ρ(i))ri

− p̃mk (j)
u HSKa(ρ(i))ri (3.6)

(p̃λi −HSKa(ρ(i))ri) ·mk (j)
u HSKa(A) = p̃λimk (j)

u HSKa(A)−H2
SKa

(ρ(i))rimk (j)
u

(3.7)

Only equation (3.5) on the first line contains a term that can be used to construct

p̃smk (j)
u . Determining a set I and coefficients ωi such that

∑
i∈I ωiλi = s, the

adversary can create a linear combination of the product (3.5) that contains the

61

3. Distributed Attribute-Based Encryption

desired polynomial:

∑

i∈I

(
ωi · (p̃λi −HSKa(ρ(i))ri) ·mk (j)

u

)

=
∑

i∈I

p̃ωiλimk (j)
u − (ωi ·HSKa(ρ(i))rimk (j)

u)

= p̃smk (j)
u −

∑

i∈I

(ωi ·HSKa(ρ(i))rimk (j)
u) .

(Note that scalar multiplication is still possible in Q̂ because addition is possible

in Q̂.)

In order to eliminate the right-hand term, the adversary finally needs to build

polynomials of the form HSKa(ρ(i))rimk (j)
u for the same j that was used for the

rest of the computation and for all i ∈ I. The only other term that contains ri is

ri ∈ P̂ , so the adversary needs to multiply ri with a polynomial that contains both

HSKa(A) and mk (j)
u . The only term that qualifies is HSKa(A)mk (j)

u ∈ P̂ , which

represents a private attribute key. Now the important observation is that no user

satisfies the LSSS matrix. This means that for each possible I, with
∑

i∈I ωiλi = s,

there is at least one non-null coefficient ωi where ρ(i) points to an attribute that

is not element of L(j), i.e., there is no corresponding secret attribute key for the

jth user. Thus, the adversary will arrive at a polynomial of the form

q̃s−
∑

i

HSKa(ρ(i))rimk (j)
u ,

where the right-most sum contains at least one element that cannot be removed

by the adversary. It follows that f = q̃s is independent of (P̂ , Q̂).

3.5.3. Performance

Since ` pairings are needed for decryption, the complexity is obviously linear in

the number of rows of the secret sharing matrixM. Since ` ≥ n (linear dependant

columns can be eliminated), ` is a measure for the complexity of the matrix.

In general, the size of M can grow exponentially in the size of the policy, but

depending on the structure of the desired access policy, smaller matrices can be

found [LC10, LW11].

62

3.6. Conclusion

3.6. Conclusion

CP-ABE is a promising concept for next-generation access control and arguably

the most interesting technology to implement data-centric security at the moment.

However, to be usable in a pervasive and highly distributed environment, its

extension to settings with multiple authorities is necessary. In this chapter, we

proposed a scheme where an arbitrary, non-static set of independent attribute

authorities is able to issue attributes to users, taking as input only public user

keys and the names of the attributes. A central trusted authority is only needed

for the creation of users. Later in Chapters 5 and 6 we will discuss the practical

implications of such an architecture and demonstrate how this can be used in

real-world settings.

We also proposed a DABE construction that supports every possible access

policy expressed in DNF and proved its CPA security in the Generic Group Model.

Our performance analysis of an implementation of that construction showed that

all algorithms are much more efficient than conventional CP-ABE. This can be

explained by the fact that the construction uses only a constant number of pairing

operations, while in conventional CP-ABE, that number is linearly dependent on

the size of the policy. Furthermore, we showed how a recent CP-ABE construction

can be extended to fit the DABE scheme. We proved the security of that second

construction both in the Generic Group Model and – by using a relaxed, weaker

security model – in the form of a reduction proof.

In both constructions, the size of the ciphertext might be exponential in the

size of the policy, depending on its structure. However, in practical settings, both

constructions are likely to achieve small ciphertexts.

63

Chapter4
Hiding the Policy

4.1. Introduction

In most CP-ABE constructions, the policy is sent along with the ciphertext. This

appears sensible as the decryptor needs to know which of his attributes are needed

to access the data. However, the policy itself might be considered worth to protect

as it might reveal clues to the content of the encrypted data. For example, consider

a patient report in a hospital setting that is encrypted with a policy that allows

encryption only by parties with the role neurologist or gerontologist. This policy

alone reveals some information about the content, i.e., the patient seems to be

advanced in years and might have a neurological condition. Thus, policy privacy

can be an essential feature.

4.1.1. Towards Policy Privacy

Currently, there are two approaches to realize policy privacy. The first and most

well-understood approach is predicate encryption (PE), which can be seen as a

generalization of ABE in which policies are hidden. Unfortunately, while some PE

constructions today are very expressive, they are still quite limited: No particular

PE instance is able to support every possible Boolean formula and PE policies

are often formulated in unintuitive or inefficient ways. (We will elaborate on

this important aspect later on.) This is contrary to our goal of offering high

expressiveness and intuitive policies.

The second approach, which we are concerned with here, is to modify common

65

4. Hiding the Policy

CP-ABE constructions to somehow hide the policy while still allow an eligible user

to decrypt. We first examine that a policy can never been completely hidden in a

ciphertext, as it has to be stored in a finite space and a known format, so there is

always a limited, finite set of possible policies that can be encoded in a particular

ciphertext. This motivates to introduce the notion of policy anonymity, which

is similar to the established notion of anonymity sets [SD02] and k-anonymity

[CdVFS07]: Given a number of candidates for a policy, the anonymity set, an

attacker cannot determine which actual policy was used for the encryption.

Extending a CP-ABE construction to support a policy hiding feature has been

attempted by Nishide et al. [NYO09] and Yu et al. [YRL08], both of which extend

the CP-ABE scheme of [CN07], where the policy consists of a single AND-gate.

Simply speaking, in these extensions the policy is still an AND-gate, but the

decryptor does not now the particular configuration and has to apply all his

attribute keys to decrypt. In both cases the anonymity set consists of all policies

that consists of a single AND-gate over a subset of all attributes of the system.

In this chapter we show that one of Nishide’s CP-ABE constructions [NYO09]

can be modified in order to support the encryption with every Boolean formula by

combining several AND-gates in a specific way and using a novel idea from graph

theory. This in turn allows the encryptor to choose a particular anonymity set

which contains – among with the original policy – many more.

The idea of the construction is as follows: Given a policy, represented by a

Boolean syntax tree with ∧ and ∨-gates, we construct a major of this tree, i.e., a

supertree that is built by expanding nodes of the original tree into new subtrees.

Such a major can be used to express many different policies by assigning different

expressions to its leaves. The set of all such policies makes up the anonymity set.

The decryptor knows only that the used policy is among all policies that can be

encoded by the supertree. The leaves of this major are encryptions of blinded

partial secrets that represent ∧-gates. As these ∧-gates are hidden, an adversary

does not know which of the possible policies of the anonymity set is used in the

encryption, but by our construction he is still able to decrypt the message if he

fulfills the hidden policy. He will determine which of the leaves he is able to satisfy,

obtain some of the encoded partial secrets, combine them according to the tree

structure using his private key, and unblind the resulting combination to retrieve

the secret. Our application of Nishide’s construction takes collusion attacks into

66

4.1. Introduction

∧

∨ ∨

v1 v2 v3 v4
←− leaves hidden by construction

Figure 4.1: Sample obfuscated policy

P1 : RoleA ∧ (RoleB ∨ RoleC)

P2 : (adult ∨ cc = verified) ∧
((contprov1.article1 = purchased ∧ account1 = balanced) ∨
(contprov2.article1 = purchased ∧ account2 = balanced))

P3 : userrole = surgeon ∧ employer = hospitalx

P4 : ((x1 ∧ x2 ∧ x3) ∨ x4) ∧ ((x5 ∧ x6) ∨ (x7 ∧ x8 ∧ x9 ∧ x10))

Figure 4.2: Example policies for Figure 4.1

account, so no group of users (who fulfill different parts of a policy) can decrypt

the policy unless one member of the group fulfills the complete policy.

Example To give an intuition of the hiding property of our system, examine the

tree in Figure 4.1 which may be sent along with the ciphertext. It represents the

structure of a policy anonymity set, and its topology is known to everyone, but

the leaves are hidden using the ideas of Nishide’s construction. Each leaf hides

an ∧-gate with an unknown configuration. Each ∧-gate could also represent the

constant values ⊥ (false) or > (true). Figure 4.2 shows some policies that might be

encoded with this tree. Consider, for example, policy P4. In our construction, each

of x1, . . . , x10 may represent an expression of the form A = x for an attribute A and

an attribute value x. Here, the leaf v1 could encode the expression v1 ≡ x1∧x2∧x3,
v2 could encode v2 ≡ x4, v3 ≡ x5 ∧ x6, and v4 ≡ x7 ∧ x8 ∧ x9 ∧ x10. There are

various ways to encode simpler policies like x1 ∧ x2 or x1 ∧ (x2 ∨ x3). For example,

the former policy can be encoded by mapping, v1 ≡ ⊥, v2 ≡ x1 ∧ x2 v3 ≡ >, and

v4 to a random ∧-gate, or by mapping v1 ≡ x1, v2 ≡ ⊥, v3 ≡ x2, and v4 ≡ ⊥.

Several other mappings are possible. This small example already shows that the

policies encoded in a simple tree can be very complex and diverse.

67

4. Hiding the Policy

An attacker cannot know the concrete semantics of the leaves, but he can

determine if an attribute set satisfies the partial policy of a leaf. We will use this

ability in the decryption algorithm.

4.1.2. Related Work

In predicate encryption schemes [LOS+10, KSW08, SBC+07, BW07], decryption

is possible if a predicate over the user attributes and the ciphertext attributes is

fulfilled. Current PE constructions are very powerful and support rather expressive

predicates. Currently the most versatile solutions seem to be those that use inner

product queries [LOS+10, KSW08]. It has been shown [KSW08] that such a scheme

can be used to construct a scheme that supports, for example, DNFs or CNFs

of some bounded degree, or a predicate that can be expressed by a polynomial

over the attributes. However, this predicate (for example a predicate for DNFs of

some degree d) is encoded in the user keys, so it is fixed after the key generation

algorithm. The complexity of the system is dependent on the size of that predicate.

This means that no single PE scheme is able to express every possible policy in

polynomial size and due to the bounded size of the predicate can only support a

limited set of policies. Speaking in terms of anonymity, there is a fixed anonymity

set that applies to all ciphertexts of an instantiation of a PE system.

In our approach, there is no fixed anonymity set. Instead, each encrypting party

decides on the anonymity set while encrypting. All policies are expressed as syntax

trees, so every Boolean formula can be expressed in polynomial size. As we will

show in Section 4.4.1, the anonymity set is exponential in the size of the tree major

that was used to encode the policy.

Furthermore it should be noted that predicate encryption schemes require very

large groups and are only efficient for small attribute sets thereby making them

infeasible for many applications.

Aside from PE schemes, policy privacy has also been examined in the context of

trust negotiation [FLA06]. Here, large scrambled circuits are used to obfuscate

the underlying policy, which is similar to our idea of using large tree majors.

Trust negotiation is an interactive process whereas in this thesis we are concerned

with an off-line access control mechanism. Recently, Seyalioglu and Sahai [SS10]

proposed an encryption scheme which also uses garbled circuits and hides the

68

4.2. Syntax Tree Majors

policy. However, in their scheme, the public key of a recipient must be used for

the encryption, making it infeasible in the CP-ABE setting where the identities of

the recipients are not known.

Outline In the following section we discuss how to obfuscate policies by creating

syntax tree majors. The syntax tree majors are then used in our CP-ABE system

described in Section 3. Section 4 discusses various security aspects of this system.

Section 5 concludes.

4.2. Syntax Tree Majors

The basic idea of our system is to take a policy, encoded as a monotonic syntax

tree, and find another policy that semantically contains many different policies,

including the original one. Seeing only the ciphertext, one is not able to decide

which policy was actually used for the encryption.

Definition 4.1 (monotonic syntax tree). A monotonic syntax tree T is a tree

where all inner nodes are labeled with either ∧ or ∨ and the leaves represent either

Boolean variables or the constant values ⊥ or >. If the root of T is labeled ∧, then

every inner node of odd depth is labeled ∨, and every inner node of even depth is

labeled ∧. We call such a tree ∧-rooted. Analogously, a ∨-rooted tree is a tree

whose root is labeled ∨ and where every inner node of odd depth is labeled ∧, and

every inner node of even depth is labeled ∨.

It is easy to see that any syntax tree over the operands ∧ and ∨ can be

transformed into a monotonic syntax tree by contracting adjacent ∧- and ∨-nodes.

As the labeling of all inner nodes follows from the labeling of the root node, we

usually omit the labels of the inner nodes, calling the resulting tree implicitly

labeled.

As explained in the introduction, we will use a CP-ABE scheme that encrypts the

leaves, which correspond to attributes, but the construction will hide the concrete

correspondence between leaves and attributes. Also note that our construction

supports only monotonic syntax trees, but as there might be negative attributes

(i.e., attributes that attest that the possessor does not have a certain property),

69

4. Hiding the Policy

∧

∨ ∨

∧ ∧x

y ⊥

⊥

⊤ z

Figure 4.3: Monotonic syntax tree

even non-monotonic policies can be represented by monotonic syntax trees by

applying DeMorgan’s laws until all negations are atomic.

In order to further obfuscate the policy, we compute a larger policy such that

by mapping some of its leaves to the values > and ⊥ we are able to encode the

original policy. For example, the monotonic syntax tree in Figure 4.3 represents

the formula x∧z. As an adversary does not know which leaves (if any) are mapped

to > and ⊥, there are many possible forms the encoded policy might have. As the

configuration of the leaves is hidden, he is not able to access the concrete policy.

We say that the larger policy semantically contains many smaller policies. More

formally:

Definition 4.2 (semantic containment). Let F and G be Boolean formulas over

vectors of Boolean variables ~x = (x1, . . . , xn), resp. ~y = (y1, . . . , ym) where m ≤ n.

We call F semantically contained in G if there exists a function φ that maps the

variables of ~x to either variables of ~y or to constant values > or ⊥, such that

G(ψ(φ(~x))) = F (ψ(~x)) for all configuration mappings ψ : ~x 7→ {⊥,>}n.

We can apply this definition to syntax trees as follows: Let Q be a monotonic

syntax tree with leaves L(Q) =
{
u1, . . . , u|L(Q)|

}
and R a monotonic syntax tree

with leaves L(R) =
{
v1, . . . , v|L(R)|

}
. We say that R semantically contains Q, if

there is a function φ : L(R) → L(Q) ∪ {⊥,>} such that for all configurations

ψ : L(Q)→ {>,⊥}, it holds that ψ(φ(R)) ≡ ψ(Q), i.e., after applying φ to R, it

computes the same value as Q for every possible configuration of the variables.

The type of supertree we examine is closely related to the notion of tree majors.

Informally, a tree R is a major of a tree Q, if Q can be obtained from R by

contracting a number of edges. Equally, a major of Q can be constructed by

expanding some nodes into subtrees. A major can be characterized by a mapping

70

4.2. Syntax Tree Majors

Q

Rf

T = R
[
f−1(a)

]
a

Figure 4.4: A mapping f of a major to a minor (leaves omitted)

f : V (R)→ V (Q) of vertexes of a tree R to Q. For details we refer the reader to

the extensive literature about smallest common supertrees and related topics, for

example, [RV06, Val05, RB09]. Also, for a good, though somewhat dated, survey

see [Bil05]. However, the specific constraints we are dealing with in our scenario

have to our knowledge not yet been discussed.

We call R a syntax tree major of Q if we can find a mapping f with the following

properties: Given a node a ∈ Q, the nodes of f−1(a) form a connected subtree T

of R, which we denote T = R [f−1(a)]. This is illustrated in Figure 4.4. Different

subtrees must not overlap and all edges of Q must be preserved in R. This is

similar to the definition of a tree major.

However, in our scenario we additionally require the expanded tree to preserve

the labeling of all nodes, as it needs to have the same semantics as the original

tree. To understand the implications of this, let the label of a in Figure 4.4 be

∨. All other labels of Q follow from this by Definition 4.1. Now consider the

subtree T of R. As our definition does not allow adjacent ∨-nodes, some nodes of

T must be labeled ∧. However, as both the direct predecessor of T in R and all

direct successors of T in R are labeled with ∧, no node of T can have the label ∧.

From this consideration, it follows that all subtrees introduced in a tree major of a

syntax tree must have even height.

Both R1 and R2 of Figure 4.5 are examples of such majors. Note the placements

of the leaves a and b. In both cases, the root of the smallest subgraph that contains

both nodes has a root labeled with ∨. This node will take on the role that the

parent of f(a) and f(b) in Q has (which is also an ∨-node).

Generally, all syntax tree majors must follow the rule that if two nodes a and b

have a common parent in Q, then their unique common ancestor in R must have

the same label as that parent. As a counter example consider the tree major R3 in

71

4. Hiding the Policy

Q

fR1 fR2

∧

∨

∧ ∧

∧
R1

∨

∧∧

∨ ∨

∧
b

∨

∧
a

∧
R2

∨

∧ ∧

∨∨

∧
a

∨

∧
b

Figure 4.5: Two valid syntax tree majors

Figure 4.6, where the root of the smallest subtree containing a and b is an ∧-node,

thus not qualifying as a syntax tree major. The original graph contained a formula

f(a) ∨ f(b), but this cannot be encoded in the given major, as a and b are only

connected by an ∧-node. It is now easy to see that in these cases the smallest

subtrees containing a and b must have odd height.

More formally, we adapt the definition of tree minors from [NRT99] to implicitly

labeled monotonic syntax trees and define syntax tree majors as follows:

Definition 4.3 (syntax tree major). A tree R is a syntax tree major of a tree Q

if there exists a surjection f : V (R)→ V (Q) such that

1. for each a ∈ V (Q), T = R [f−1(a)] is a connected subtree of R, and every

path from the root of T to a leaf of T consists of an even number of edges;

2. for each pair a, b ∈ V (Q), f−1(a) ∩ f−1(b) = ∅;

3. for S = {(u, v) ∈ E(R) | f(u) 6= f(v)}, there exists a bijection ξ : S → E(Q)

such that for each e(s, t) ∈ S, ξ(e) = (f(s), f(t)).

4. For each pair of edges (x, a) ∈ E(Q) and (x, b) ∈ E(Q), let U be the smallest

subtree of R that has both a and b as leaves. Then the paths from the root of

U to the roots of the subtrees f−1(a) and f−1(b) have odd length.

We call f the characteristic function of the major.

We will now construct a mapping M̃ : V (R)→ {F ,>,⊥, rand} that allows us

to embed Q in a syntax tree major R such that R computes the same function as

72

4.2. Syntax Tree Majors

Q

f

∧

∨

∧
f(a)

∧
f(b)

∧
R3

∨

∧ ∧

∨∨

∧
a

∨

∧
b

Figure 4.6: An invalid syntax tree major

Algorithm 1: MarkRelevantNodes(R,Q, f)

Input : R, Q, f : V (R)→ V (Q)
Output: M : V (R)→ {∅,F}
forall T ∈ V (R) do M(T)←− ∅;
M(root(R))←− F ;
foreach leaf u of Q do

T
R←− leaf of f−1(u);

while M(T) 6= F do
M(T)←− F ;
T ←− parent(T);

end

end

Q. This is achieved by mapping some of the leaves of R to the constant values ⊥
or >. The effect of this is that some inner nodes of R that are connected to these

leaves will map to trivial formulas like x ∧ > or x ∧ ⊥, which are equal to x or ⊥.

For an example, we refer to Figure 4.3. The remaining leaves (that are not set to

> or ⊥) are then mapped to leaves of Q such that R evaluates the same function

as Q.

Finding such a mapping can be done in a two step process. In the first step, we

will mark all inner nodes of R that are needed to encode nodes of Q with a special

symbol that we call F . For convenience, all other nodes will be marked with ∅.
Call this mapping M : V (R) → {∅,F}. As R is a syntax tree major of Q, this

marking can be found by the following iterative algorithm: For each leaf of Q, a

corresponding leaf in R is selected and the path from the root of R to this node is

marked by traversing upwards (see Algorithm 1).

73

4. Hiding the Policy

In the second step, the other inner nodes (not marked with F by Algorithm 1)

will be marked with > or ⊥, such that they do not affect the computation of the

encoded policy. Furthermore, we will mark all leaves that have no impact on the

computation with the value rand. This value shall indicate the leaf can be chosen

randomly from {⊥,>} or any randomly chosen policy that can be encoded as a

single ∧-gate in the system. This will be useful in the cryptographic construction

presented in Section 4.3. Algorithm 2 (on page 76) marks all nodes that were

marked with ∅ to ⊥, >, or rand. Call this mapping M̃ : V (R)→ {F ,>,⊥, rand}.
The algorithm marks the nodes as follows: If a node is an ∧-node marked F , all

children marked ∅ will recursively be set to >. Similarly, if a node is an ∨-node

marked F , all children marked ∅ will recursively be set to ⊥. For nodes that are

not marked F , an appropriate mapping of the children to ⊥, >, or rand is chosen,

such that the nodes do not influence the computation.

Theorem 4.1. Let R be a syntax tree major of a monotonic syntax tree Q and

let f be the characteristic function of this major, as described in Definition 4.3.

Applying the function φ : L(R)→ L(Q) ∪ {⊥,>}, defined as

φ(v) =




f(v), if M̃(v) = F ,
M̃(v), otherwise

to the leaves of R yields a tree φ(R), which is semantically equal to Q, i.e., for all

configurations ψ : L(Q)→ {>,⊥}, ψ(φ(R)) = ψ(Q).

For every node q ∈ Q, let T (q) := R[f−1(q)] be the subtree of R that q is

expanded into. Consider Definition 4.3. As f is a surjection, all nodes of Q are

reached by applying f to the nodes of R. By (1), for each node q ∈ Q, f−1(q) is a

connected subtree and by (2), all expanded subtrees T (q) of nodes q are disjoint.

We will show that after applying φ to the leaves of R, each subtree of Q starting

with any q ∈ Q is semantically equivalent to the respective subtree of R rooted

at the root of T (q), i.e., they compute the same function for all configurations

ψ : L(Q) → {⊥,>}. For any node q and extended subtree T (q) we will write

q ≡ T (q) if this is the case.

We need the following lemmas:

Lemma 4.1. For the root rR of R and the root rQ of Q, it holds that f(rR) = rQ.

74

4.2. Syntax Tree Majors

Proof. Suppose not. Then f(rR) has a predecessor x and is connected to this

predecessor by an edge (x, rR). By (3) of Definition 4.3, this edge is preserved

in R, so rR also has a predecessor. This contradicts the assumption that rR is a

root.

Lemma 4.2. Let R be a syntax tree major of Q, and let Q and R be equally rooted

(i.e., both are ∧-rooted or both are ∨-rooted). Then for each node q ∈ Q, the root

of the subtree T (q) has the same (implicit) label as q.

Proof. We prove this lemma by induction over the structure of the tree. Lemma

4.1 implies that the root rQ of Q has the same label as the root of T (rQ) (because

the root of T (rQ) is the root of R and both trees are equally rooted). Now let

q ∈ Q be a node for which Lemma 4.2 holds, i.e., the root of T (q) has the same

label as q. By (1) of Definition 4.3, T (q) has even height, so the leaves of T (q)

also have the same label as q. Suppose that the label of q is ∧ and let r be a child

of q in Q. Then the label of r must be ∨ (by Definition 4.1). By the induction

hypothesis, the root of T (q) is labeled ∧. Then the leaves of T (q) are also labeled

∧. Again, by (3), the edge (r, q) ∈ E(Q) is preserved in R, so there is an edge

from a leaf of T (q) to the root of T (r). This root must be labeled ∨. If the label

of q is ∨, a similar argument holds.

We are now in a position to prove Theorem 4.1 by structural induction.

Proof. Let u be a leaf of Q. Algorithm 1 randomly marked a leaf v ∈ T (u) of R

with F , as well as all nodes of the single path from v to the root of T (u). Algorithm

2 configured all nodes on this path such that they return the value of their single

marked child (this means that they compute the identify function). By this, the

value of the marked leaf is propagated along the path to the root. It follows that

for all configurations ψ : L(Q)→ {⊥,>}, ψ(T (u)) = ψ(φ(v))) = ψ(f(v))) = ψ(u).

Now suppose that for all children wi, 1 ≤ i ≤ nq of a node q, wi ≡ T (wi) (where

nq is the number of children of q). We need to show that this implies that q ≡ T (q).

By (3) of Definition 4.3, the unexpanded edges of Q are preserved in R. This

means that for each edge (q, wi) ∈ E(Q) there is an edge in R that that connects

a leaf of T (q) to the root of T (wi). From Lemma 4.2 we know that the root of

T (q) and all leaves of T (q) have the same label as q. From (4) of Definition 4.3 we

conclude that marked paths meet only at nodes that have the same label as the

75

4. Hiding the Policy

Algorithm 2: SetNodeValue(T,m)

Input : Tree R with label M : V (R)→ {∅,F}, subtree T of R
(represented by its root), m ∈ {F ,⊥,>, rand}

Output: M̃ : V (R)→ {F ,⊥,>, rand}
if T is not a leaf then

M̃(T)←− m ;
if T is an ∧-node then t ←−⊥ else t ←−>;
switch m do

case F
foreach child c,M(c) = F do SetNodeValue(c, F);
foreach child c,M(c) 6= F do SetNodeValue(c, not t);

end
case t

Select a random child c;
SetNodeValue(c, t);
forall other children c do SetNodeValue(c, rand);

end
otherwise

forall children c do SetNodeValue(c, m);
end

end

end

root of T (q). All other nodes on the marked paths are set by Algorithm 2 such

that they compute the identity function, and all other nodes that are unmarked

are configured to have no influence on the computation.

If q is an ∧-gate (q computes w1 ∧ w2 ∧ . . . ∧ wnq) then the roots of all T (wi) will

be connected by ∧-gates in T (q) and T (q) computes T (w1) ∧ T (w2) ∧ . . . ∧ T (wnq)

But we know that wi ≡ T (wi), so q ≡ T (q). Similarly, if q is an ∨-gate (q computes

w1 ∨ w2 ∨ . . . ∨ wnq) then the roots of all T (wi) will be connected by ∨-gates

in T (q) and T (q) computes T (w1) ∨ T (w2) ∨ . . . ∨ T (wnq). But we know that

wi ≡ T (wi), so q ≡ T (q).

A direct consequence of this Theorem is:

Corollary 4.1. Every syntax tree major R of a monotonic syntax tree Q semanti-

cally contains Q.

76

4.3. Building the System

4.3. Building the System

We now describe a CP-ABE system with hidden policies, where policies are

represented as syntax trees. It is based on [NYO09], but extended to support any

Boolean formula by utilizing syntax tree majors. The leaves of the syntax tree are

expressions of the form A = x, where A identifies an attribute and x the value

that this attribute must have. See Figure 4.2 for some examples. Our construction

supports n attributes, denoted L1, . . . , Ln. Each attribute can take on one of a

number of symbolic values. Note that this is different from the other constructions

in this thesis, were attributes are binary – a user either has a specific attribute

or not. Binary attributes can easily be emulated by allowing each attribute to

have one of two possible values, one representing that a user has the corresponding

property and one representing that he does not have it. We denote the number of

possible values of an attribute Li by ni and the symbolic values of the attribute by

vi,1, . . . , vi,ni
. Thus, each leaf of the tree encodes an expression Li = vi,t. Using this

approach, we are able to support every policy that can be expressed as a Boolean

formula.

Note that we can also emulate numeric attributes using a bag of bits representa-

tion [BSW07], where each number is represented by a bit string and there are two

attributes for each bit. To use this, the policy would first be formulated in a more

abstract form, using comparisons with numbers in the leaves like A = x, A ≤ x,

or A ≥ x. These leaves would then be expanded into subtrees that evaluate the

expressions using the bit representations, as outlined in [BSW07].

4.3.1. Setup and Key Generation

Setup. An asymmetric bilinear group e : G1×G2 → GT of order p with generators

g1 ∈ G1 and g2 ∈ G2 is chosen. The trusted authority randomly selects random

values for ω, ω, β, β ∈ Z∗p and for each value vi,t of each attribute it also selects

a random
{
ai,t ∈ Z∗p

}
1≤t≤ni,1≤i≤n

. The public key PK consists of the bilinear

group with generators g1, g2 and the values
{
Ai,t = g

ai,t
1

}
1≤t≤ni,1≤i≤n

, as well as

Y = e(g1, g2)
ω, Y = e(g1, g2)

ω, B = gβ1 , and B = gβ1 . The master key MK is

MK =
〈
ω, β, ω, β, {{ai,1}1≤t≤ni

}1≤i≤n
〉
.

77

4. Hiding the Policy

Intuitively we hereby construct two parallel cryptosystems that use the same

group structure and the same secret attribute keys but differ in the values of the

secret key components ω and β. We will the denote the cryptosystem that uses ω

and β as the primary cryptosystem and the one that uses ω and β as the secondary

cryptosystem. The primary cryptosystem will be used to encrypt the actual secret

message, while the secondary one will help the decryptor to decide which nodes he

can access with his attribute set. To this end, we encrypt the fixed value 1 using

the secondary cryptosystem. The decryptor will try to decrypt this value from the

ciphertext to see if he can satisfy the policy of the gate.

KeyGen. Let L = [L1, L2, . . . , Ln] = [v1,t1 , v2,t2 , . . . , vn,tn] be the attribute list for

the user who wishes to obtain the secret key. If the user is not eligible of the

requested attributes, the trusted authority returns ⊥. Otherwise, it picks random

values s, λi ∈ Z∗p for 1 ≤ i ≤ n, and computes D0 = g
β−1(ω−s)
2 and D0 = g

β
−1

(ω−s)
2 .

For 1 ≤ i ≤ n, the authority also computes [Di,1, Di,2] = [g
s+ai,ti λi
2 , gλi2] where

Li = vi,ti . The secret key SKL is
〈
D0, D0, {Di,1, Di,2}1≤i≤n

〉
.

4.3.2. Encryption

After the encryptor has decided on the encryption policy and constructed a

monotonic syntax tree Q, he creates a syntax tree major R of Q which is used to

hide the actual policy Q.

Constructing a tree major. There are three ways to construct a syntax tree

major of a syntax tree Q that represents a policy: One way is to randomly expand

edges of Q into trees of even height. This will result in a random major R.

Another, more interesting approach is to “mix” Q with other trees, constructing

a common major that from an adversary’s point of view could encode all of

the input trees as well as numerous combinations of them. Ideally, we would

like combinations of trees to be as small as possible. This problem is known

as the smallest common supertree problem and is well-studied for tree majors

[RV06, Val05, RB09]. Generally, this problem is NP-hard, but by adding some

reasonable constraints on the input trees, it becomes tractable. We can adopt

the algorithm for finding the smallest common major of two trees described by

78

4.3. Building the System

Nishimura et al. [NRT99] to our definition of syntax tree majors. The only

constraint of Nishimura’s algorithm is that the input trees must have a bounded

degree. This is reasonable for our settings as a sufficient upper bound for all

realistic syntax trees of a particular scenario can easily be estimated.

As our notion of syntax tree majors is based on the definition of tree majors

used in [NRT99], we can modify Nishimura’s algorithm to work for our definition

of syntax tree majors. We briefly describe the necessary modifications: The most

important restriction in our definition, compared to the original one, is that nodes

of tree R can only be combined with nodes of Q that have equal labels. As the

algorithm of [NRT99] always combines the roots of Q and R, both trees must be

either ∧-rooted or ∨-rooted. If they are not equally rooted, we construct a new

node N and attach either Q or R as a subtree. The main loop of the algorithm

tries all possible combinations of nodes of Q with nodes of R. For syntax tree

majors, we must restrict these combinations to combinations that map nodes of

equal labels, i.e., the distances of the combined nodes to their respective root must

both be even or odd. Finally, the remainder of the algorithm must be restricted

such that only mappings that preserve the labels and furthermore adhere to (4)

are tried.

With this modification the algorithm can be utilized by the encryptor to system-

atically construct a tree R that is a syntax tree major of a set of trees: In addition

to the monotonic syntax tree Q, select some monotonic syntax trees P1, . . . , Pn.

Find the smallest common tree major of all Q and Pi as follows: Set Q0 := Q and

for all i ∈ {1, . . . , n} let Qi be the smallest common major of Qi−1 and Pi. The

resulting tree Qn is a syntax tree major of P1, . . . , Pn and Q and can be used to

encode any of the formulas encoded by Q, any Pi, and numerous combinations.

Figure 4.7 shows an example.

A third approach to construct suitable syntax tree majors could be to initially

decide on a large generic tree R0 that semantically contains all possible policies

that are used in a given setting. For example, an encryptor may find that all

policies that he normally uses are syntax tree minors of a 3-ary tree of height 4.

Then he could always set R to that tree and use it as a syntax tree major for all

encryptions. Using such an approach for a policy represented by a syntax tree Q,

a mapping f : V (R)→ V (Q) must be found that adheres to Definition 4.3. If Q

is indeed a minor of R, such a mapping can be found in O(|V (R)|) by a brute

79

4. Hiding the Policy

Q0 Q1 Q2

R

∧

∨ ∨

∧ ∧

∨

∧ ∧

∨

∧

∨

∧

∨ ∨

∧ ∧

∨

Figure 4.7: Constructing R as a comon major

force algorithm that tries to match vertices of Q to vertices of R starting from the

leaves of both trees. In this case, after initially selecting the generic tree R0, the

process of constructing a tree major is omitted for all further encryptions, and

instead the encryptor simply sets R := R0.

The result of any of these the possible approaches is a syntax tree major R and

a mapping f : V (R)→ V (Q) that characterizes the relationship between Q and R.

We will configure R such that it computes exactly the same function as Q, but

keep this configuration invisible to an attacker.

Encoding the formula. After constructing a syntax tree major R with root

T and mapping f , the encryptor randomly chooses an r ∈ Z∗p and executes

EncodeSecret(T, r) (see Algorithm 3). This algorithm encodes the secret value

r ∈ Z∗p into the tree in the following way: Beginning from the root of the tree, the

algorithm recursively traverses downwards to the leaves. If a node is an ∧-node,

the secret r is split into partial secrets, one for each child of the node (the decryptor

must satisfy all children to recover the secret), so that the sum of all partial secrets

equals r. If a node is an ∨-node, the secret is propagated to all child nodes. The

80

4.3. Building the System

Algorithm 3: EncodeSecret(T, r)

Input : Tree R, Subtree T of R (represented by its root), number r
Output: m : V (R)→ Z∗p
m(T)←− r;
if T is no leaf then

if T is ∧-rooted then
Let the number of child nodes be n.
ri

R←−Z∗p, 1 ≤ i ≤ n, such that
∑

i ri = r.
forall children c do EncodeSecret(c, ri)

else
forall children c do EncodeSecret(c, r)

end

end

output is a labeling m(c) of all nodes of c ∈ R to partial secrets in Z∗p. The idea

is that a decryptor needs to be able decrypt a sufficient set of partial secrets to

recover the main secret r. The encryptor then applies the Algorithms 1 and 2 of

Section 4.2 to find the mapping M̃ . After this process, each leaf v is marked with

M̃(v), a partial secret m(v), and there is a mapping f(v) that maps v to a leaf of

Q that represents an expression of the form Li = vi,t. (Note that the algorithms

mark all nodes of R, but from now on we will only need the marks of the leaves.)

The first part of the ciphertext is C̃ = MY r and C0 = Br, which encodes the

value r and the secret message M .

The basic idea of our approach is to encrypt every leaf’s partial secret m(v)

with either the constant value represented by M̃(v) or — if M̃(v) = F — with

the attribute f(v). Wlog, assume that the last inner nodes of every path to a leaf

are ∧-gates (if such a last inner node is an ∨, replace every leaf v of that gate

with an ∧-gate having the sole child v). For each of these last inner ∧-gates v, the

encryptor computes ciphertext components CT (v) for the primary cryptosystem as

follows:

Case 1: If all children of v are either > or F , encode a genuine ∧-gate as follows:

Pick random values r
(v)
i , ∀i = 1 . . . n, such that m(v) =

∑
i r

(v)
i . For each

attribute 1 ≤ i ≤ n set C
(v)
i,1 = g

r
(v)
i

1 and compute {C(v)
i,t,2}1≤t≤ni

as follows: if

the ith attribute is not found in the children of f(v) (i.e., the value is don’t

care) or the attribute value vi,t is found in the children, set C
(v)
i,t,2 = A

r
(v)
i
i,t ;

otherwise (i.e., the value vi,t is forbidden for this attribute), select C
(v)
i,t,2

randomly.

81

4. Hiding the Policy

Case 2: If one of the children is ⊥, the decryption must never succeed. In this

case, all C
(v)
i,1 and C

(v)
i,t,2 are set to random values.

Case 3: If all children are marked rand, flip a coin to decide whether to proceed

with Case 1 (encrypting with a random ∧-gate) or with Case 2.

Finally, compute the ciphertext components H(v) = Y
m(v)

and C0
(v)

= B
m(v)

. This

encrypts an additional ciphertext in the secondary cryptosystem which equals to 1.

Combining these components, the ciphertext for leaf v is

CT (v) =

〈
C0

(v)
, H(v),

{
C

(v)
i,1 ,
{
C

(v)
i,t,2,

}
1≤t≤ni

}

1≤i≤n

〉
.

The final ciphertext is

CT =
〈
C̃, C0,

{
CT (v) for all leaves v

}〉
,

along with a topological description of the tree (including the labels but excluding

any other marks).

4.3.3. Decryption

In order to decrypt, the decryptor determines which leaves his attribute set

satisfies. This is done by decrypting the second encrypted value using the second

cryptosystem with all attributes that he has and comparing the result to the value

1. If the decryptor’s attribute set does not fulfill the policy, he gets a value different

from 1. For each leaf v ∈ L(R) set C ′
(v)
i,2 = C

(v)
i,ti,2

, where 1 ≤ i ≤ n and Li = vi,ti

and compute

M (v) =
n∏

i=1

e(C
(v)
i,1 , Di,1)

e(C ′
(v)
i,2 , Di,2)

and τ (v) =
H(v) ·M (v)

e(C0
(v)
, D0)

.

For each v, M (v) = e(g1, g2)
s·m(v), where s is specific to the used attribute set and

was set in the KeyGen algorithm, and τ (v) = 1 if the leaf can be satisfied by the

decryptor, and otherwise a random value. Note that if the decryptor can not

82

4.3. Building the System

satisfy the leaf, τ (v) might also be equal to 1. However, the probability for this

occurring is 1/p for p the order of the bilinear group, which is negligible.

Note that while the decryptor now knows which parts of the tree he satisfies,

he does not know the policies of the respective leaves since their configuration is

hidden by the construction. However, with all τ (v), he is able to decrypt as follows:

First he removes some of the leaves that he does not satisfy (i.e., where τ (v) 6= 1)

as they do not contain any information that he can use. For all τ (v) 6= 1, replace v

with the constant value ⊥ and simplify the tree by substituting subtrees with their

obvious results using the formulas A ∧ ⊥ = ⊥ and A ∨ ⊥ = A. The remaining

tree either contains only leaves that can be satisfied or is a single node ⊥. In the

latter case, return ⊥ (as the attribute set does not satisfy the policy). For each

remaining ∨-node N , randomly choose a subtree of N and substitute N with it.

(This works because Algorithm 3 encoded the same value in all subtrees of an ∨
node, so we can use any of them to retrieve it.)

Finally, collapse all remaining ∧-nodes to a single one. The message M can now

be retrieved as

M =
C̃
∏

vM
(v)

e(C0, D0)
,

where v are all remaining leaves of that single ∧-node. By multiplying a valid

combination of M (v) together, the partial secrets m(v) add up to the secret value

r which then is unblinded by the above formula.

Correctness. Using a secret key SKL that satisfies the tree, we have

C̃
∏

vM
(v)

e(C0, D0)
= M · Y r

e(C0, D0)

∏

v

∏

i

e(C
(v)
i,1 , Di,1)

e(C ′
(v)
i,2 , Di,2)

= M · e(g1, g2)ωr−βrβ
−1(ω−s)+

∑
v

(∑
i(r

(v)
i ·(s+ai,tiλi)−(ai,tr

(v)
i λi)

)

= M · e(g1, g2)−rs+
∑

v

(∑
i r

(v)
i s

)
.

The tree is constructed such that for a leaf v that is satisfied,
∑

i r
(v)
i = m(v) and

for a sufficient subset of the leaves,
∑

vm(v) = r, so
∑

v

(∑
i r

(v)
i s
)

= rs and the

equation yields M · e(g1, g2)rs−rs = M . Note that if the equation is computed

using a key SKL that does not satisfy the tree, then some C ′
(v)
i,2 will be random

values instead of g
ai,tr

(v)
i

1 . In this case, some m(v) will not be computed correctly,

83

4. Hiding the Policy

so the exponents do not cancel out and the result will be different from M (with

overwhelming probability).

4.4. Discussion

4.4.1. Anonymity of the Policy

In our construction the ciphertext is encrypted with a major of the syntax tree.

As the leaves of this tree are hidden from an adversary, he cannot decide which of

the possible policies was actually used. The anonymity set A(E,L) is determined

by the ciphertext E and the attribute set of the decryptor L = [L1, . . . , Ln]. We

will now briefly discuss the size of A(E,L). As a lower bound, assume ni = 2

for all 1 ≤ i ≤ n, i.e., every attribute has only two possible symbolic values. If

the decryptor can access an ∧-gate with his attribute set L, he can conclude that

each ith attribute encoded in the policy of the ∧-gate is either set to the value

Li that he owns or is a “don’t care”. Similarly, if he cannot decrypt an ∧-gate,

he can conclude that there is at least one attribute i in the policy of the ∧-gate

that is different from his attribute value Li. In both cases the number of possible

∧-gates is O(2n). For a tree R with leaves L(R), the number of possible policies is

in O(2n·|L(R)|).

In some scenarios, it might suffice if the attacker knows only the general form

of the policy, i.e., he wants to know which nodes of the tree belong to the actual

policy and which ones are dummy gates introduced in order to obfuscate the policy.

In our construction, the form of the policy is determined by the leaves. Some of

these are set to a constant value (> or ⊥) to render unused inner nodes inoperative,

some are genuine ∧-gates encoding parts of the policy. Thus, to find out which

form the original policy has, an attacker must know which ∧-gates are constant

values and which ones are not, which for a tree R with leaves L(R) gives O(2|L(R)|)

combinations. However, for reasons of symmetry, some of these forms may be

topologically identical, so the number of forms might be smaller than that. More

concrete, the most symmetries are found in a complete n-ary tree. However, in

[Mat70] it is shown that even in such a tree, the number of subtrees is exponential

in the number of nodes, so it is at least exponential in the number of leaves. Thus,

even taking into account symmetries, the number of possible forms of a policy

84

4.4. Discussion

encoded in a syntax tree major is exponential in the number of leaves.

4.4.2. Security and Policy Anonymity

CPA-Security. As the system uses the same structures as Nishide’s construction,

its CPA-security can directly be derived from it. We can model the security using

a standard security game similar to the ones we used in Sections 2.4.1 and 3.3.2,

modified to take into account the properties of our construction. As we only claim

security in the generic group model, the more powerful non-selective version of the

models can be used:

Setup. The challenger runs the Setup algorithm and gives the public key PK to

the adversary.

Phase 1. The adversary queries the challenger for private keys corresponding to

lists of attributes L = [L1, L2, . . . , Ln] = [v1,t1 , v2,t2 , . . . , vn,tn].

Challenge. The adversary declares two messages M0 and M1 and a policy W .

The policy must not be satisfied by any of the queried attribute lists. The

challenger flips a random coin b ∈ {0, 1} and encrypts Mb under W , producing

CT . It gives CT to the adversary.

Phase 2. The adversary queries the challenger for private keys corresponding to

lists of attributes L = [L1, L2, . . . , Ln] = [v1,t1 , v2,t2 , . . . , vn,tn] with the added

restriction that none of these lists must satisfy W .

Guess. The adversary outputs a guess b′ for b. The advantage for the adversary

in this game is defined to be Pr[b = b′]− 1
2
.

The CP-ABE system is said to be secure if all polynomial time adversaries have

at most negligible advantage in this security game.

Theorem 4.2. The construction given in Section 4.3 is secure in the generic group

model.

Proof. Similar to our proof of DABE in Section 3.4.2, we show how any adversary

who plays the CP-ABE game (denoted Adv1) can be used to construct an adversary

in a slightly modified game (Adv2). Then we prove that no such Adv2 can exists,

85

4. Hiding the Policy

so no Adv1 can exist, either. We define the modified game in the following manner:

The phases Setup, Phase 1, and Phase 2 are equal to the CP-ABE game. In

the Challenge phase, the adversary declares a policy W . The policy must not be

satisfied by any of the queried attribute lists. The challenger flips a random coin

b ∈ {0, 1} and encrypts Mb under W , producing CT , but instead of computing C̃

as described in the algorithm, he computes C̃ as

C̃ =




Y r, if b = 1

e(g1, g2)
θ, if b = 0,

where θ is chosen randomly from Z∗p. The task of Adv1 is to distinguish the two

group elements Y r = e(g1, g2)
ωr and e(g1, g2)

θ.

Lemma 4.3. If there exists an adversary Adv1 who has advantage of ε to win the

original CP-ABE game, then there exists an adversary Adv2 who wins the modfied

game with advantage ε/2.

Proof. Given an adversary Adv1 that has advantage ε in the CP-ABE game, we

can construct an adversary Adv2 as follows: Adv2 simulates Adv1. In the phases

Setup, Phase 1, and Phase 2, Adv2 forwards all messages he receives from Adv1

to the challenger, and all messages from the challenger to Adv1. In the Challenge

phase, Adv2 receives to messages M0 and M1 from Adv1 and the challenge CT

(which contains C̃ that is either e(g1, g2)
ωr or e(g1, g2)

θ for a random θ) from the

challenger. He flips a coin b and multiplies C̃ by Mb and sends the resulting

ciphertext CT ′ to Adv1. When Adv1 outputs a guess b′, Adv2 outputs 1 if b′ = b

and 0 if b′ 6= b. If for the original C̃ = e(g1, g2)
ω, then Adv2’s challenge given to

Adv1 is a well-formed CP-ABE ciphertext and Adv1 has advantage ε of guessing

the correct b′ = b. Otherwise, the challenge is independent of the message M0 and

M1, so the advantage of Adv2 is 0. Thus, we have

Pr[Adv2 succeeds] = Pr[C̃ = Y r] Pr[β′ = β | C̃ = Y r]+

Pr[C̃ = e(g1, g2)
θ] Pr[β′ 6= β | C̃ = e(g1, g2)

θ]

≤ 1

2
(
1

2
+ ε) +

1

2
· 1

2
=

1 + ε

2
.

86

4.4. Discussion

To prove Theorem 4.2, we use the asymmetric case of the Generic Diffie-Hellman

Exponent problem as introduced in Section 2.4.2. We need to show that the adver-

sary’s target term f = ωr is independent of (P,Q,R) according to Definition 2.5,

where (P,Q,R) are the polynomials from G1, G2 and GT that he knows. If this is

the case, the security follows from Theorem 2.2. After the challenge phase, the

adversary has the following terms:

• The public system key PK:
{
ai,t ∈ Z∗p

}
1≤t≤ni,1≤i≤n

, β, β ∈ P . ω, ω ∈ R,

• Private keys SKL for several queries L. Let the number of these sets be N

and denode the jth query L(j). For each query 1 ≤ j ≤ N , the challenger

created a secret value s(j) and random values λ
(j)
i , 1 ≤ i ≤ n (n being the

number of attributes): β−1(ω − s(j)), β−1(ω − s(j)), s(j) + ai,tiλ
(j)
i , λ

(j)
i ∈ Q.

No L(j) satisfies the policy per the definition of the security game.

• The ciphertext components

– C0: βr ∈ P for a randomly chosen r.

– For all leaves that contain genuine ∧-gates and are satisfied for an L(j)

C
(v)
i,1 , 1 ≤ i ≤ n and C

(v)
i,t,2, 1 ≤ t ≤ ni, 1 ≤ i ≤ n: r

(v)
i , ai,tr

(v)
i ∈ P .

– For all leaves the unblinding values of the secondary cryptosystem H(v)

and C0
(v)

: ωm(v) ∈ R, βm(v) ∈ P .

From this examination we follow that the polynomial vectors P , Q, and R are as

follows:

P =




1, β, β, βr,{
ai,t ∈ Z∗p

}
1≤t≤ni,1≤i≤n

,

{r(v)i , ai,tr
(v)
i }∀v,1≤t≤ni,1≤i≤n,

{βm(v)}∀v



,

Q =




1,

{β−1(ω − s(j))}1≤j≤N ,
{β−1(ω − s(j))}1≤j≤N ,

{s(j) + ai,tiλ
(j)
i , λ

(j)
i }L(j)

i =vi,ti ,1≤j≤N,1≤i≤n



, R =

(
1, ω, ω,

{ωm(v)}∀v

)
,

and f = ωr.

87

4. Hiding the Policy

βr r
(v)
i a

(v)
i,t r

(j)
i

β−1(ω − s(j)) ωr − s(j)r β−1r
(v)
i (ω − s(j)) β−1a

(v)
i,t r

(v)
i ω − β−1a(v)i,t r(v)i s(j))

β
−1

(ω − s(j)) β
−1
βr(ω − s(j)) β

−1
r
(v)
i (ω − s(j)) β

−1
r(ω − s(j))a(v)i,t

s(j) + ai,tiλ
(j)
i βr(s(j) + ai,tiλ

(j)
i) r

(v)
i s(j) + ai,tiλ

(j)
i r

(v)
i r

(v)
i (ai,tis

(j) + a2i,tiλ
(j)
i)

Table 4.1: Pairing a term containing r with a term containing s(j)

The adversary needs to build the target polynomial ωr from P,Q,R using only

the combinations implied by Definition 2.5. The product ωr is not contained in

any term, so he needs to multiply a polynomial of Q with a polynomial of P or

Q such that both factors ω and r are contained in either term. First observe

which terms contain ω. There is only ω ∈ R which cannot be multiplied with

any other polynomial as it is in R and β−1(ω − s(j)) ∈ Q for any 1 ≤ j ≤ N . As

this has β−1 as additional factor, the adversary must eliminate β−1 from any of

these polynomials by multiplying it with a polynomial from P or Q that contains

β. There are two possibilities to achieve this: Multiplying with β ∈ P yields

(ω − s(j)) ∈ R, and multiplying with βr ∈ P yields (ωr − rs(j)) ∈ R. These are

the only two methods to create a polynomial that contains ω, but not β−1. We

now examine which of these two combinations can be used to build the target

polynomial ωr.

Case 1: (ω − s(j)) ∈ R. Since the adversary has to build ωr, he is required to

have r as another factor. However, only terms of P and Q can be multiplied, and

the current polynomial is already in R, so there is no way to build ωr.

Case 2: (ωr − rs(j)) ∈ R for some (any) 1 ≤ j ≤ N , which contains ωr. Note

that this is an element of R and no other multiplication is possible. It follows that

this is the only way to create the product ωr. The adversary now has to build

rs(j) in order to remove that term from the polynomial.

To construct a polynomial that contains rs(j), the adversary now needs to

multiply a polynomial that contains s(j) with a polynomial that contains r or at

least r
(v)
i (as r can be constructed using a sum over some r

(v)
i). Table 4.1 lists all

results.

The only useful term is r
(v)
i s(j) + ai,tiλ

(j)
i r

(v)
i . As explained in the correctness

proof, summing up all attribute keys for an appropriate set of leaves, the sum

becomes equal to rs(j) +
∑

v

∑
i ai,tiλ

(j)
i r

(v)
i , and adding that to our current term,

we get

88

4.4. Discussion

(
ωr − rs(j)

)
+

(
rs(j) +

∑

v

∑

i

ai,tiλ
(j)
i r

(v)
i

)
= ωr +

∑

v

∑

i

ai,tiλ
(j)
i r

(v)
i .

The adversary can then cancel out
∑

v

∑
i ai,tiλ

(j)
i r

(v)
i by multiplying the ciphertext

components a
(v)
i,t r

(j)
i with his secret key components λ

(j)
i .

However, note that none of the adversary’s keyrings satisfies the access policy.

This means that for each j there is at least one v, for which he does not have

a sufficient set s(j) + ai,tiλ
(j)
i to build the partial secret m(v). If he uses such a

wrong attribute set, he will not be able to cancel out the term
∑

v

∑
i ai,tiλ

(j)
i r

(v)
i ,

as the corresponding ciphertext components are not a
(v)
i,t r

(j)
i ∈ P but were set by

the encryptor to random values. Without a sufficient set of partial secrets, he

cannot build r and thus not rs(j) +
∑

v

∑
i ai,tiλ

(j)
i r

(v)
i for any j.

As this is the only remaining possibility to remove the unneeded term rs(j) from

the polynomial, it can now be seen that f = ωr is independent of (P,Q,R), and

from Theorem 2.2 it follows that the adversary cannot build f and thus cannot

break the system.

Anonymity. We also need to show that an attacker cannot distinguish encryptions

performed by two policies that are in the same anonymity set. As shown in

Section 4.4.1, from an adversary’s view the anonymity set is defined by the tree

major and the set of nodes that he can decrypt. The latter set is in turn defined

by his attribute set.

To formally define anonymity, we utilize a game as follows: The adversary

decides on two policies W0 and W1 as well as a common syntax tree major R

of both W0 and W1. Note that there is only a fixed number of ways that each

policy can be embedded in R, as the process is defined by our algorithms given in

Section 4.2. Given an attribute list and a syntax tree major R, an adversary can

determine if exactly one of W0 and W1 is an element of the anonymity set. This

can only be the case if one of the leaves of R can be decrypted for one of the two

policies W0 and W1 and cannot be decrypted for the other one. If this is the case

for any of the leaves, the attacker can determine which of the policies was used,

and the anonymity is broken. This also means that the anonymity set for this list

89

4. Hiding the Policy

of attributes does not contain both W0 and W1, but only one of them. However,

as we only claim policy anonymity for the case that either both or neither of W0

and W1 are in the anonymity set, we restrict the adversary to only query attribute

lists where the adversary is not able to make such a distinction.

Setup: The challenger runs the Setup algorithm and gives the public key PK to

the adversary.

Challenge: The adversary commits to the challenge ciphertext policies W0,W1 as

well as a common syntax tree major R of W0 and W1 and a message M . The

challenger flips a random coin b and passes the ciphertext E := Encrypt(PK,

M , Wb) to the adversary.

Query: The adversary sends a number of attribute list Li, 0 ≤ i ≤ n for any

polynomial n. For each attribute list Li, the challenger verifies that either

both W0 and W1 are in the anonymity set derived from Li or that neither

W0 or W1 are in that anonymity set. If this is the case, the challenger gives

the adversary the secret key SKLi
. Note that these queries can be adaptive.

Guess: The adversary outputs a guess b′ of b.

The adversary wins the game if his advantage
∣∣Pr[b = b′]− 1

2

∣∣ is negligible.

Theorem 4.3. If Nishide’s construction is secure, the adversary cannot win the

game.

Proof sketch As the leaves of the tree are encrypted using Nishide’s construction

(without the unblinding step), the adversary’s views are identical for both b = 0

and b = 1. This is the case because by our restriction each leaf that can be

decrypted if b = 0 can also be decrypted if b = 1 and each leaf that cannot be

decrypted if b = 0 can also not be decrypted if b = 1. Thus he cannot distinguish

between the two policies.

4.4.3. Reducing the Size of the Ciphertext

For each leaf’s encryption every attribute of the system is used. This is the only

way to maximize the anonymity set, because when some attribute A is not used

90

4.5. Conclusion

for the decryption of a leaf v, then the decryptor can obviously conclude that

the partial policy of v does not contain A. However, if the universe of attributes

of a given system is very large, it might be feasible to use only a subset of all

attributes for the encryption of each leaf while still using enough attributes to

get a sufficiently large anonymity set. Similarly to [NYO09], each leaf v may be

encrypted with its own set of attributes Av. Av can be a random superset of

the set attributes actually used in the leaf. However, in order to hide as much

of the semantics of each partial policy, some care must be taken, as it should

be understood which information an attacker gains by the knowledge of Av. It

must also be considered that Av must be sent along with each leaf, which slightly

increases the size of the ciphertext.

As a more systematic approach, the universe of attributes could be partitioned

into different domains Di, 1 ≤ i ≤ nD with nD the number of domains. For

example one domain D1 could contain all user-specific attributes, D2 could contain

all device-specific attributes, D3 all location-specific attributes, etc. If each domain

Di consists of |Di| attributes, then the anonymity set of a respective leaf Av with

Av = Di is O(2|Di|). With this approach, an adversary knows that a leaf v with

Av = D1 might encode a partial policy over some user-specific properties (or as

always an encoding of ⊥ or >), but he does not know which one or which ones.

This gives the encryptor precise control over what information is disclosed with an

encrypted leaf. Moreover, instead of listing each element of Av, with this approach

only the index i of Di needs to be sent along with the partial ciphertext of v, CT (v).

4.5. Conclusion

We introduced the notion of policy anonymity in cryptographic access control. To

this end, we proposed the idea to obfuscate the policy used in an encryption by

constructing a syntax tree major of the syntax tree that encodes the desired policy.

The leaves are then hidden from an adversary using a cryptographic primitive.

We discussed how these majors can be characterized and how the leaves need to

be configured to encode a specific, given policy in one of its majors. The majors

can be chosen arbitrarily large, and the larger a major is the larger becomes the

anonymity set. From the anonymity set, an adversary gains only very general

informations about the encoded policy; for example he knows an upper bound

91

4. Hiding the Policy

of its complexity and that some of his attribute sets satisfy certain parts of the

major. We then used these primitives to modify a CP-ABE scheme with partially

hidden policies to support every policy that can be expressed as a Boolean formula

and enable an encryptor to obfuscate that policy.

Our construction compares favorably to [NYO09], as it is able to efficiently

encode any policy that can be expressed as a Boolean formula and is not limited to

policies with small DNF represenations, and to the various Predicate Encryption

schemes. However, it may be possible to construct a scheme that hides even

more properties of the encoded policy by using a different encoding of the it, like

garbled circuits which presently have been utilized to solve different problems

[FLA06, SS10]. We leave this as future work. Also, our approach may be applicable

to other CP-ABE system that like Nishide’s support only ∧-conjunctions.

92

Part III.

Applications

93

Chapter5
Cryptographic Enforcement of DRM

Licenses

5.1. Introduction

Digital Rights Management (DRM), as its variants Enterprise Rights Management

(ERM) and Information Rights Management (IRM) [Tho09], provide mechanisms

for fine-grained access and usage control for documents. To this end, documents are

encrypted, and decryption is controlled by a DRM viewer that runs on the clients’

system. This viewer enforces the access rules associated with each document. The

basic idea of enforcing policies on the client side using encrypted documents is

very similar to Attribute-Based Encryption, so we will now take a close look at

Digital Rights Management (DRM), as it seems to be an especially interesting

application scenario for cryptographic access control.

In DRM, usage rules of a document are represented in the form of a license, a

digital object that contains both the usage policy and a decryption key. A user

needs to undertake two steps in order to use content protected with DRM: First he

must obtain a license, then he downloads the content itself which is encrypted by

the content provider and can be decrypted with the decryption key specified in the

usage license. These two data objects may be acquired independently from two

different parties. There are a number of different DRM standards that describe

different architectures.

For simplicity, in this chapter we examine only the Open Mobile Alliance DRM

95

5. Cryptographic Enforcement of DRM Licenses

Policy

Rights
Object

Protected
Content

Content
Issuer

Rights
Issuer

DRM
Viewer

Usage

Figure 5.1: OMA architecture (simplified)

architecture (OMA DRM) [Mot07, All08]. In OMA DRM, a protected content

object is called a media object. It is offered for download by a content issuer. The

usage license is contained in a rights object (RO) which is purchased from a rights

issuer. This license contains usage rules and a key that is personalized for the

device that is (by the rules of the license) allowed to render the content. The

license may also differ depending on the payment model (i.e., what usage rights

the user has payed for specifically) and other aspects that are up to the rights

issuer. Figure 5.1 visualizes this concept.

An advantage of such an architecture is that the content can be stored on

untrusted devices and distributed without restrictions because it is encrypted and

cannot be used without obtaining a rights object. As the content is often very

large (e.g., video and audio data), this is an especially useful property because

cheap, insecure data storage can be used for the content and a trusted party is

only needed to distribute the small rights objects.

From a more abstract point of view, we can consider that the owner of a content

has specified a policy made up of rules for every possible usage scenario for the

content (publishing license). The issuing process of the license done by the rights

96

5.1. Introduction

issuer can be seen as an enforcement of some parts of that policy (for example

parts describing who is eligible to purchase what kind of licenses), while other

parts that are only applicable to specific usages and specify restrictions that apply

to a specific user extracted into the license. The task of the player (DRM agent)

is to enforce such remaining parts. Our approach is to embed the publishing

license directly into the ciphertext using Attribute-Based Encryption. This way,

the first enforcement process is done implicitly by cryptographic means, and the

personalization of the license is no longer necessary. Another advantage of this

approach is that the rights issuer does not have to be queried (or contacted at all)

on each transaction in the process of obtaining a usage license. This reduces the

number of network transmissions and lowers the demands on the rights issuer’s

servers (especially in regard to reachability).

In this approach, a rights object that is purchased from a right issuer contains a

policy over attributes that was created using public attribute keys. Each user has

secret attribute keys representing information about the devices he owns and other

properties that may be interesting for a DRM provider. Using these attribute keys,

the user can decrypt the media object if his attributes satisfy the policy.

However, in practice not all parts of such a DRM policy can be represented by

static attributes. For example, a rights issuer may allow customers to purchase

rights to play a particular video on a certain device at most 3 times. While it is

easy to grant the user an attribute key that allows him to access the video on a

device, it is not obvious how he can be forced to give up this ability if there is no

way for the rights issuer to revoke the respective attribute. Generally, revocation of

attribute keys is an open problem of all ABE constructions and – more generally –

of all variants of cryptographic access control. We will discuss this issue later in

Section 6.2.2.

Using ABE for such a scenario leads to a new architecture for DRM systems that

enforces parts of the policies cryptographically, while at the same time reduces the

trust required in DRM viewers. To do this, we partition the set of rules into static

and dynamic rules. Static rules are enforced by cryptographic means before an

access to the media takes place, while dynamic rules are enforced at runtime by a

trusted DRM viewer. To give an intuition of this idea, consider a typical license of

a DRM protected system where a media can only be accessed by a certain type

of device. This is an example of a static rule: It must checked before any kind of

97

5. Cryptographic Enforcement of DRM Licenses

access to the media, no matter what specific usage (e.g., playing or copying) is

desired. To statically enforce this rule, we can encrypt the media with a key that is

only given to valid devices. In fact, simple static rules like this are already in use:

In most DRM systems, each media is encrypted with a title key KT , which is sent

encrypted along the license and can only be decrypted by using a private player

key KP that is known only to authenticated DRM viewers (and the rights issuer).

This construction can be seen as a static rule stipulating that access must only be

granted to an authenticated DRM viewer. If one manages to restrict usage of KP

to authorized viewers, trust relies upon the issuer of the key KP , who – unlike the

viewing platform – can be controlled by the media distributor. This observation is

crucial to our approach.

Opposed to traditional DRM architectures, DRM content in our framework is

not directly encrypted by a single title key, but with an arbitrary Boolean formula

over a set of keys. In the most general case, these keys may even be maintained by

different, independent authorities. A DRM viewer has to retrieve the relevant keys

from the respective authorities in order to decrypt the media. Each of these keys is

associated with a certain property of the user or the platform that is executing the

viewer and is only granted to the viewer if certain conditions and/or obligations

(that are part of the license) are fulfilled.

ODRL Expression

Attribute Policy Modified ODRL Expression

Figure 5.2: Extraction of static rules

More formally, let m be a media and KP the player specific key that is needed

to access the media. We denote the title key that is needed to access m by

KT . In traditional DRM schemes, the encrypted media is distributed along with

E(KP , KT). Generalizing this approach, we can use cryptography to enforce

properties statically. For example, let KD be another key that is only granted by a

98

5.1. Introduction

key-issuer after a certain date has passed. Using this approach, we can additionally

encrypt the media with KD to enforce that the media can only be accessed by an

authorized viewer and after the given date:

E(KD, E(KP , KT)) .

We can further generalize this idea so that any Boolean formula can be used to

represent conditions that have to be met before decryption. To achieve this, we

use the notion of Attribute-Based Encryption (ABE) as introduced in Section 2.2

and discussed in the preceding chapters of this thesis. In our example, where both

KD and KP are required to decrypt KT , the encryption policy could be written as

p(K) := KD ∧KP , where KD, KP ∈ K. The title key would then be encrypted as

E(p(K), KT) .

In order to decrypt, a user has to acquire a set of attributes such that he is able to

satisfy p(K). We call the set of obligations that are enforced by such a predicate

static rules.

Static rules add an additional layer to the dynamic DRM enforcement framework

supplementing the enforcement of the dynamic rules with cryptographic primitives.

Figure 5.3 visualizes this relationship. Even if an attacker is able to overcome the

enforcement of the dynamic rules, there are static rules that must be fulfilled before

he is able to access the media. However, the player lacks cryptographic keys for

this step. This is favourable as it allows a reduction of trust in the viewers: While

classic DRM schemes are completely broken if an attacker manages to extract a

secret player key, our scheme at least ensures that – even in case of a compromised

viewer – some parts of the license, i.e., the static rules, are always enforced, since

crucial keys are not available to the attacker. Furthermore, using cryptography

to enforce static rules can replace the license personalization process, as outlined

before, as the publisher license itself can be used directly instead.

It is, however, not very practical to require two policies (one containing the static

rules and one containing the dynamic rules), and in fact, the distinction between

static and dynamic rules might not be clear to license authors. Thus, we propose a

license conversion tool as a central component of our framework. This conversion

tool takes as input a DRM license and gives as output the static enforceable sub-

99

5. Cryptographic Enforcement of DRM Licenses

Figure 5.3: Structure of DRM rules

policy, containing only static rules which are suitable for use with a cryptographic

algorithm (called attribute policy), and a modified DRM license that contains the

remainder of the rules. The attribute policy is enforced through a cryptographic

construction, while the remainder of the policy (i.e., the dynamic rules) needs to

be enforced at runtime by the DRM viewer. This strategy effectively allows to

reduce the trust in the viewer, as some important rules like group membership,

payed fees, or a temporal usage range can be enforced cryptographically even on

compromised DRM viewers.

Outline. The rest of this chapter is structured as follows: We describe a DRM

framework that utilizes DABE in Section 5.2. To illustrate the practicability of

our framework, we describe a conversion process for DRM licenses in a scenario

where ODRL policies are used in Section 5.3. We describe an implementation of

this conversion process in Section 5.4. Finally, Section 5.5 concludes the chapter.

5.2. Framework

We propose the DRM framework as depicted in Figure 5.4. As usual, the media

distributor formulates a license that he attaches to the media. This license

includes both dynamic rules and static rules. In fact, from the point-of-view of

the distributor there may not be any obvious differences between the two types

of rules. Subsequently, he runs a conversion tool that takes as input the license

and a set of conversion rules. The tool analyses the policy to find the components

that contain static rules, and extracts an attribute policy A (i.e., a sub-policy

containing only the static rules) from the license. This attribute policy A contains

all cryptographically enforceable parts of the license and is used in the DABE

encryption step. The media distributor furthermore obtains public attribute keys

100

5.2. Framework

Figure 5.4: Involved parties, relationships, and data structures

for all attributes referenced in A from the attribute authorities. In a multi-authority

scenario he might have a choice between different, independent authorities, and the

media distributor can modify the conversion rules used for extracting static rules

from ODRL policies to constitute his decision of the authorities he trusts most.

This allows for much greater flexibility. For example, the distributor may entrust

different parties with the control of different aspects of a policy, or he may even

give the decryptor alternatives that allow him to request some attributes from one

a set of different authorities in case one of them is unreachable or the decryptor

does not trust it. However, it must be clear from the names of the attributes in

the attribute policy which attribute authority was chosen, so that the users can

request secret attribute keys from the same authorities.

The media is then encrypted using a title key, which is in turn encrypted with

the Encrypt algorithm of the DABE scheme. Thus, only users with secret attribute

key rings that satisfy the attribute policy A can decrypt the title key and the

media. The media is distributed along with the encrypted title key, the attribute

policy A and the modified ODRL expression.

Whenever a user downloads protected content, he inspects the attribute policy

101

5. Cryptographic Enforcement of DRM Licenses

and obtains a set of secret attribute keys that fulfill the policy, unless he is already

in possession of the required keys. He is able to access the title key by executing

the Decrypt algorithm, which in turn can be used to access the media.

Not shown in Figure 5.4 is the central authority that initializes the global system

parameters (algorithm Setup) and grants every user u a key pair (PK u, SK u) that

is used by the attribute authorities to personalize the secret attribute keys. The

global system parameters and public user keys created by this trusted authority

are made available securely to all participants.

The task of the attribute authorities is the provision of attribute keys. At

creation, each authority executes CreateAuthority, taking as input the global

system parameters. Whenever queried for public attribute keys – usually by media

distributors – the authority executes RequestAttributePK. All attribute keys are

identified by strings, and each attribute authority is able to maintain an arbitrary

number of attributes. Users may query the authorities for secret attribute keys.

When this happens, the queried attribute authority has to verify if the user is

eligible of the attribute, and if so, execute RequestAttributeSK, giving as input

the public user key. Depending on the implementation and the semantics of the

attributes, a user may have to perform some actions (e.g. make a payment) before

he becomes eligible for some of the keys. Note that this incremental claim of

attributes is not supported by most conventional CP-ABE constructions, as there

is usually a single KeyGen operation that gives a user all of his attribute keys at

once. DABE, however, is specifically designed to support settings where users may

request new attribute keys at any time.

Also note that the attribute policy limits general access to the media by enforcing

certain prerequisites for decryption, but it cannot control how the media is used

once the attribute policy is fulfilled. Thus, only those rules are enforceable that

specify conditions that must be fulfilled by the viewers before access is granted for

the first time. Static rules are thus a subset of all rules of a policy. Dynamic rules

must still be enforced at runtime by the DRM viewer.

5.3. Processing ODRL Expressions

To illustrate the practicability of our framework, we consider a DRM scenario in

which the Open Digital Rights Language (ODRL) [Ini02] is used to express licenses.

102

5.3. Processing ODRL Expressions

An ODRL expression allows to describe a set of actions a user is allowed to perform

and a set of rules associated with each action. The rules describe properties

that the user or the executing device has to fulfil before the associated actions

can be taken. They are classified into constraints, requirements, and conditions.

Constraints are limits to exercising the actions, requirements are obligations that

must be fulfilled in order to be allowed to perform the action, and conditions specify

exceptions that, if they become true, expire the permissions. We will subsume

ODRL constraints and requirements as rules and further partition them into static

rules and dynamic rules. For example, static rules could mandate that an action

can only be performed by members of a certain group, on certain hardware, after

a certain time has passed, or that the user must pay some fee before taking the

action.

5.3.1. Content Protection

In detail, the encryption process, executed by media distributors, contains the

following phases (see also Figure 5.5 for a visualization of the process):

1. XML Extraction. This phase takes as input an ODRL expression Pol and

a set of conversion rules that map cryptographically enforceable ODRL rules

within Pol to a single attribute policy. It outputs a Boolean expression in the

form of a circuit containing a predicate p(K) that describes the enforceable

sub-policy of Pol. It also outputs a modified ODRL expression Pol′. In Pol′,

all static attribute nodes are marked with a special XML attribute, so that

the DRM viewer knows that they do not need to be enforced at runtime.

2. Attribute Expansion. The Boolean expression created by the XML extrac-

tion phase may contain numerical and date/time attributes and numerical

comparisons. As ABE constructions usually support only Boolean attributes

and comparisons, these numerical attributes need to be suitably encoded,

see Section 5.3.4. The result of the first two steps is a logical expression that

can be represented as a syntax tree.

3. Policy Finalization. The final steps are dependent on the DABE con-

struction that is used. The tree obtained in the last phase is optimized

(e.g. by combining adjacent AND/OR nodes) and converted to the required

103

5. Cryptographic Enforcement of DRM Licenses

Figure 5.5: ODRL expression conversion process

access structure format (i.e., DNF [KTS07, CN07, MKE08], access trees

[BSW07, BKP09, GJPS08, LCLX09], or share-generating matrices of linear

secret-sharing schemes [Wat11]). Call the result A.

4. Encryption. The media distributor retrieves public keys for all attributes

used in A from the respective attribute authorities. The distributor executes

the algorithm Encrypt(PK , KT ,A,PKA1 , . . . ,PKAN
) with the random title

key KT and the public attribute keys as input and receives as output a

ciphertext CT . Subsequently, he encrypts the plaintext media m with the

title key KT and publishes the encrypted media together with KT , the license

and access policy:

〈E(KT ,m),CT ,A, Pol′〉 .

In our implementation we decided to also include statically enforced rules in the

modified license, but mark them with a special XML tag. This gives the DRM

viewer additional information about what is already enforced by the cryptographic

components, (i.e., what attributes the decryptor is proven to have) so that the

entire license is accessible by the user.

5.3.2. Parsing Agreements

An ODRL expression consists of offers and agreements; agreements are used as

DRM licenses and are thus the only components that have to be enforced at

runtime. Agreements are XML blocks enclosed in <agreement> . . . </agreement>

tags. An agreement consists of a set of permissions, where a set of rules can be

associated with each permission. Figure 5.6 shows an example permission that

104

5.3. Processing ODRL Expressions

<permission>

<print>

<requirement>

<prepay>

<payment>

<amount currency="USD">20</amount>

</payment>

</prepay>

</requirement>

</print>

</permission>

Figure 5.6: Sample permission with rule

allows printing of a document once an amount US$ 20 has been payed in advance.

This rule is an example of a static rule, as an attribute rule

media1234.hasPayedFor.USD >= 20

can be added to the attribute policy A, where 1234 is the identifier of the media.

For permissions with multiple rules, all rules must be honored, so the enforable

rules in the attribute policy must be combined with the AND operator.

ODRL supports the declaration of various permissions inside a single permissions

block, corresponding to different rule sets associated with different actions that

can be performed alternatively. We can not control the type of action that a user

performs once the decryption has taken place, but obviously he has to fulfil at

least one rule set to be able to decrypt. Thus we allow decryption of the title key

if any of the rule sets is satisfied (all other parts of the license must be enforced

at runtime). To achieve this, the rule sets of different permissions are connected

by an OR operator to produce the policy A. Formally, given a set of permissions

Pi, where each permission contains enforceable rules Ri,j, the generated attribute

policy has the form

∨

i

∧

j

Ri,j.

Note, however, that some Ri,j could themselves become Boolean expressions after

the Attribute Expansion phase (see Section 5.3.4), so the final access policy might

not yet be in DNF.

105

5. Cryptographic Enforcement of DRM Licenses

constraint/group/context/uid/(\w+)

=> user.groupname.uid{str[0]}

requirement/prepay/payment/amount\[@currency=

"(\w+\?)"\]/(\d+)

=> media{id}.hasPayedFor.{str[0]} >=

{int[1]}}

constraint/spatial/constraint/datetime/

start/\(\d\d\d\d-\d\d-\d\dT\d\d:\d\d:\d\d)

=> datepassed.{year[0]}.{month[0]}.{day[0]} OR

datepassed.numerical >= {numericaldate[0]}

Figure 5.7: Sample Conversion rules

5.3.3. Path Conversion

We automate the extraction of rules from ODRL permissions by conversion rules

that map an ODRL rule to an attribute.

Consider, for example, the rule shown in Figure 5.6. The ODRL rule can

be written in its XPath form as permission/print/requirement/prepay/pay-

ment/amount[@currency="USD"]/20. To find all rules of this form within an

ODRL expression, we can use a regular expression: requirement/prepay/pay-

ment/amount[@currency="(.+)"]/(.+). This expression will match all ODRL

rules of the type prepay, and output two match groups : One that represents the

currency as a string (“USD” in our example), and one that represents the amount

(20 in our example). We can subsequently use these match groups to automatically

create the above rule in the attribute policy.

Our conversion tool takes as input a set of conversion rules that define mappings

of XPath-like regular expressions to attribute names. Figure 5.7 shows two example

conversion rules as understood by our framework. Each rule conists of two parts,

separated by the character sequence =>. The first part of each rule is a regular

expression over an XPath, describing a node in a permission subtree. The second

part of each rule describes the destination attribute for any rule matching the

regular expression. This destination attribute can contain patterns enclosed in {}

brackets that will be replaced by values of the match groups. Table 5.1 summarizes

these patterns. Note that we are using Perl regular expressions, which offer some

additional features over conventional regular expressions. For example, in a Perl

106

5.3. Processing ODRL Expressions

Pattern Replaced by
id Media ID
uid UID of current context block
str[i] String representation of ith group
int[i] Integer representation of ith group
year[i] Year component of ith group
month[i] Month component of ith group
day[i] Day component of ith group
numericaldate[i] Numeric date representation of ith group

Table 5.1: Substituting match groups in destination attributes

regular expression, the substring \d can be used to represent a single decimal digit.

In a conventional regular expression, this would have been written as [0-9].

For example, the first rule of Figure 5.7 maps an ODRL element of type group,

described further by a context field UID, to an attribute that represents the viewer’s

desired group membership. The term {str[0]} of the second part of the rule will

be replaced by the string representation of the first match group, which is matched

by the term (\w+) of the regular expression. Consider again the ODRL expression

from Figure 5.6. The XML subtree inside permission/modify matches the second

conversion rule of Figure 5.7.

5.3.4. Representing ODRL Rules by Attributes

In this section we show how enforceable ODRL rules, as encoded by the extraction

process described above, are represented as attributes. Enforceable attributes deal

with properties of the user who tries to access the media, as his identity, affiliation,

age, role, and group membership. Alternatively they could be connected to the

document itself, like payments made for purchase. Table 5.2 lists all ODRL rules

that can be expressed as static rules.

In our sample implementation we use a systematic naming scheme where attribute

names incorporate URLs of attribute authorities, components describing ODRL

context blocks, and unique identifiers.

The names also support attributes that can represent integers. For many

scenarios it might be enough to use Boolean attributes to represent numerical

values. For example, if a license requires the payment of US$ 20, inclusion of an

attribute media{id}.hayPayedFor.USD20 is enough to enforce the rule. However,

107

5. Cryptographic Enforcement of DRM Licenses

ODRL Name Attribute
Individual user.<context>

Group user.groupmember.<context>

CPU device.cpu.<context>

Network device.network.<context>

device.network.ip

Screen device.screen.<context>

Storage device.storage.<context>

Memory device.memory.<context>

Printer device.printer.<context>

Hardware device.hardware.<context>

Software device.software.<context>

Date Time datepassed.<year>

datepassed.<year> -<month>

datepassed.<year> -<month> -<day>

datepassed.numerical

Prepay media<id>.hasPayedFor.<currency>

Accept media<id>.accepted

Register media<id>.registered

Table 5.2: Static rules of the ODRL standard with standardized attribute mappings

ODRL allows very flexible rules that may, for example, restrict the number of

pages that a user can read depending on the concrete amount of money that he

has payed. Thus, the attributes should be represented in a way to allow numerical

comparisons within the attribute policy A. We thus encode integers as “bags

of bits”, as described in [BSW07]: In a bag of bits representation a number is

represented as a binary string of fixed length. For each of these bits there exist

two attributes. One of these represents a binary 1 in the respective position, one

represents a 0. The syntax that we use is

attributeName [bitPosition].bitValue ,

where bitPosition is the index of the bit in the bit string and bitValue is either 1 or

0, depending on the value of the respective bit. For example, if someone possesses

a secret key for the attribute x[2].0, then the binary representation of his integer

attribute x has a binary 0 at position 2. If x has a bit length of 3, a complete set

of attributes for x could be, for example,

x[2].0, x[1].1, x[0].1,

meaning that the attribute x has the value 0112 = 310 for the respective user. To

encode an ODRL expression that represents a numerical comparison, for example,

108

5.4. Implementation

the expression x ≥ 3, we can use a Boolean expression over these bit attributes:

x[2].1 OR (x[1].1 AND x[0].1) .

To fulfill this expression, a decryptor could either have the bit number 2 set (then

x would be at least 4), or both bits 1 and 0 (then x would be 3).

Attributes that deal with date or time can be encoded in various ways. There

could be Boolean attributes that are only issued after some point in time has

passed (this approach is similar to using a key KD as mentioned in the introductory

example), or the time could be encoded numerically in the way described above.

5.3.5. Example

Figure 5.8 shows a complete ODRL expression, and Figure 5.9 shows the resulting

attribute policy after XML Extraction (reformatted for better readability). Note

that the second permission (the <o-dd:print> block) is the same as the example

of Figure 5.6, which was already discussed. Here, the media ID was taken from the

<asset> block near the beginning of the ODRL expression. In the Attribute Expan-

sion phase, the two numeric comparisons (datepassed.numerical >= 20011231

and mediasamplemedia.hasPayedFor.USD >= 20) will be expanded to their bags

of bits representation.

5.4. Implementation

The conversion process was implemented during a bachelor’s thesis project [Bra10].

Our tool takes as input an ODRL policy and a set of conversion rules as described

in the preceding sections. It converts the XML file to its DOM representation and

parses it, listing all rules contained in its agreement blocks, and identifying which

of them are enforceable according to the given conversion rules. In the next step it

applies the conversion rules and outputs all resulting attribute rules. The tool is also

able to convert rules containing a comparison of numerical attributes with constants

to comparisons with “bag of bits” representations. For example, Figure 5.10 shows

a subtree of a set of static rules before the bags of bits conversion, and Figure 5.11

shows the same tree after a bags of bits conversion. Briefly, in this example, the

numerical attribute device.network.uidnet1.version is represented as a three

bit value (encoded by six Boolean attributes), and the left side of the tree evaluates

109

5. Cryptographic Enforcement of DRM Licenses

<?xml version="1.0" encoding="UTF-8"?>

<o-ex:rights xmlns:o-ex="http://odrl.net/1.1/ODRL-EX

xmlns:o-dd="http://odrl.net/1.1/ODRL-DD">

<o-ex:agreement>

<o-ex:asset>

<o-ex:context>

<o-dd:uid>samplemedia</o-dd:uid>

<o-dd:name>A Sample Media</o-dd:name>

</o-ex:context>

</o-ex:asset>

<o-ex:permission>

<o-dd:play>

<o-ex:constraint>

<o-dd:group>

<o-ex:context>

<o-dd:uid>samplegroup</o-dd:uid>

</o-ex:context>

</o-dd:group>

<o-dd:datetime>

<o-dd:start>2001-12-31T00:00:00</o-dd:start>

</o-dd:datetime>

</o-ex:constraint>

</o-dd:play>

<o-dd:print>

<o-ex:requirement>

<o-dd:prepay>

<o-dd:payment>

<o-dd:amount o-dd:currency="USD">

20

</o-dd:amount>

</o-dd:payment>

</o-dd:prepay>

</o-ex:requirement>

</o-dd:print>

</o-ex:permission>

</o-ex:agreement>

</o-ex:rights>

Figure 5.8: Example ODRL expression

110

5.4. Implementation

(

(

user.groupmember.samplegroup AND

(

datepassed.2001-12-31 OR

datepassed.numerical >= 20011231

)

) OR

mediasamplemedia.hasPayedFor.USD >= 20

)

Figure 5.9: Attribute policy after XML Extraction phase

AND

>= device.network.uidnet1

device.network.uidnet1.version 2

Figure 5.10: Static rule as tree

to true, if any of the upper two bits (with index 1 and 2) is set to true.

In the next step, several optimizations of the tree are performed, like joining

adjacent AND/OR nodes or removing unneeded nodes. Finally, in order to be

usable with an existing implementation of the DABE construction of Section 3.4,

the tree is converted to its DNF representation. Due to the simple structure of

ODRL policies this final conversion can be done efficiently, and the resulting DNF

trees are usually quite small.

The implementation was written in Java, using JDOM to access the DOM

representation of ODRL policies and SableCC [Éti98] as a parser generator, which

was needed to process the large number of more than 100 conversion rules that

were created to support all relevant fields of ODRL. For details, we refer the reader

to Appendix B of the bachelor thesis [Bra10].

111

5. Cryptographic Enforcement of DRM Licenses

Data type Attribute type Example
Numerical Numerical The user has paid 10 e

Date Numerical The content is usable only after January 1st, 2011
Boolean Boolean The user is a member of group “Samplegroup”

Table 5.3: Data types of implemented tool

AND

OR device.network.uidnet1

device.network.uidnet1.version[1].1 device.network.uidnet1.version[2].1

Figure 5.11: Static rule of Figure 5.10 after bags of bits conversion

5.5. Conclusion

In this chapter, we proposed a new DRM architecture that uses Distributed

Attribute-Based Encryption to enforce policies by cryptographic means. We

argued that this not only allows stronger security claims, as we do not rely on

a trusted reference monitor anymore, but may in many cases also remove the

necessity of a user license creation process by the rights issuer by instead using the

publishing license. This greatly simplifies the architecture of a DRM system and

reduces network load.

Taking OMA DRM as an example architecture, we have then identified those

ODRL expressions that can be cryptographically enforced through ABE and

proposed a framework that automatically extracts the enforceable policies from

ODRL expressions as Boolean attribute policies and encodes them. This allows to

implement a DRM scheme where an enforceable attribute policy is automatically

extracted from an ODRL expression. This attribute policy can in turn be used as

input to a DABE scheme which encrypts the title key with the policy.

We also implemented an extraction utility that can be used as part of a complete

112

5.5. Conclusion

DRM framework and described implementation details, showing specifically how

such a conversion process can be done.

113

Chapter6
Attribute-Based Encryption in SOA

6.1. Introduction

The application of attribute-based encryption is particularly attractive in dis-

tributed settings. DABE shows its strengths when a large number of parties are

present and central trusted authorities are undesired. Such settings are commonly

found in Service-Oriented Architectures (SOA). In SOA, functionality is provided

through standardized services. A service is initiated by a service request message

that is sent to a service provider and contains all information about the request.

This request triggers the functionality on the provider’s site. The provider then

replies with the result of the service with another standardized message, the service

result. (This chapter will only briefly introduce SOA concepts. For a more thorough

introduction, we refer to [Erl08].) Obviously, the results of a service request must

adhere to certain privacy requirements. In this chapter we use the SOA setting as

an example to take a more detailed look on how data-centric security with DABE

can be implemented. (Note that many of the results here are also applicable to

other variants of ABE.) We describe technical details like attribute revocation and

the creation of LSSS matrices that we have mentioned only briefly in the preceding

chapters.

The core object of SOA is the SOAP message [W3C07]. Such messages usually

contain data, i.e., documents, but may also have RPC-like information (i.e., active

objects). In a typical SOA setting, all messages exchanged between parties follow

the SOAP standard, and from a security perspective it should be ensured that

115

6. Attribute-Based Encryption in SOA

SOAP messages are only accessible to eligible users. For example, if a service

requester is a company that uses a service to acquire some sensitive information that

is needed for a certain project, then the service results should be accessible by some,

but not all employees of the company. These eligible employees can be described

by a policy. However, due to the highly distributed nature of SOA scenarios and

the potentially very high number of requests, a central policy enforcement point

would quickly become a bottleneck.

It appears natural to utilize ABE to improve both efficiency and security in SOA,

but several obstacles make this difficult: In this chapter, we show that DABE, as

opposed to conventional CP-ABE fits the highly distributed setting of SOA very

well.

For the SOA setting, we also take a look at the of problem of attribute revocation:

When a property of a user, represented by one of his attributes, changes, he must

lose the ability to access any encrypted message for which the revoked attribute

would be needed. While there are some constructions that support variants of

this idea [YWRL10b], they are limited in several ways, and it is unclear what

kinds of revocation are actually possible in the specific settings of Attribute-Based

Encryption. We show that although attribute revocation is problematic under

the flexible scenario of the ABE schemes, DABE allows for a deterministic and

well-defined revocation mechanism, and we describe the infrastructure needed for

it.

WS-Security is commonly used to describe access control policies [JSGI09].

However, the WS-Security standard [OAS06] does not take into account the special

features and implications of cryptographic types of access control, such as ABE.

Nevertheless, we show that WS-Security is well-suited for ABE policies and can

easily be extended to allow DABE policies to be embedded in WS-Security.

Finally, we show that nearly all expensive calculations of common ABE schemes

can be outsourced to third parties which can help the decryption without gaining

any information about the encrypted messages. These third parties will be denoted

access gates as they are able to enforce a policy (i.e., do access control) but need not

be completely trusted. Even if these gates are corrupted or under full control of an

attacker, they are not able to violate the policies encoded in the ciphertexts, and no

information about the encrypted messages is leaked. Of course, an attacker could

shut down corrupted access gates completely, so they do not offer any functionality

116

6.1. Introduction

anymore. In that case, a decryptor can choose a different access gate. In regard

to that property, we model access gates as honest-but-curious for our analysis, so

we consider them willing to do the functionality but interested to gain as much

information as possible. We show that no part of the encrypted data is revealed to

access gates.

6.1.1. Related Work

In his dissertation, Shucheng Yu [Yu10] discussed the applicability of ABE for

cloud computing (also published as [YWRL10a]), and his work was later extended

by Jeong-Min Do et. al. [DSP11]. This setting bears some similarities to SOA.

However, only KP-ABE was considered in these papers. A cloud computing setting

was also considered in [LWG11]. In the short paper [LbHC10], it is briefly shown

how conventional single-authority CP-ABE can be included in WS-Security. We

expand on these ideas.

When using ABE for any setting, one must choose a specific construction that

implements all required features. In our SOA setting we use DABE, and more

specifically the construction of Section 3.5.

We note that in [LW11], the authors propose a CP-ABE scheme similar to DABE

that does not need any central authority as there are no secret user keys. We do

not consider this a useful addition in most practical scenarios for the following

reasons:

1. Everybody who gets a suitable set of attribute keys is able to decrypt messages,

so all attribute keys must be delivered through a secure (encrypted) channel.

In DABE systems with a secret user key, the secret attribute keys can be

delivered unencrypted, as they are of no use to anybody who has no access

to the secret user key. We will use this feature later in this chapter when we

introduce Access Gates. This means that while [LW11] offers the advantage

of requiring one key less (the secret user key) than DABE, it suffers from the

disadvantage of having all other keys delivered in a much more expensive

way.

2. For most practical scenarios, a user’s eligibility of an attribute requires

authentication, so each user needs to have an identity that can be verified

117

6. Attribute-Based Encryption in SOA

by using a trusted authority. Also, to build a secure channel, the decryptor

needs a unique key which cannot be maintained outside of the system, so

the proposed advantage seems to be only of theoretical nature.

3. The ciphertexts are 50% larger as three group elements are required for

each row of the LSSS matrix, whereas the construction we use requires only

two group elements per row. Also, for the reduction proof to work, the

construction requires very large groups of order p1p2p3 for p1, p2, p3 being

large primes. This makes all group elements much larger.

Outline. The rest of this chapter is structured as follows: First we discuss

attributes in a global setting in Section 6.2. We take a detailed look on how to

implement the crucial functionalities of encryption (Section 6.3) and decryption

(Section 6.4). Finally, we describe the complete SOA system in Section 6.5. We

conclude the chapter in Section 6.6.

6.2. Attributes

6.2.1. Unified Naming Scheme

In a multi-authority setting as described by DABE, each attribute authority is

responsible for its own universe of attributes and the encryptors decide which

authorities they trust (see our description of DABE in Section 3.2). From a

technical point of view, each authority may have its own way of naming attributes.

Nonetheless, from a usage point of view it may be desirable to have a unified

naming scheme that all authorities follow. Consider the naming scheme we used

in the preceding chapter, for example

device.network.ip

Here, the naming follows a hierarchical pattern, where the name starts with a

specifier of the domain (i.e., device, meaning that the attribute is concerned with

a device), followed by a specifier of a more specific sub-domain (i.e., network),

followed by the name (i.e., ip).

We propose a similar naming scheme for the DABE setting. Attribute names

are prefixed by the authority URI to make them unique. The delimiters shall be /

118

6.2. Attributes

characters instead of dots. Similar to web services we also prepend the http://

prefix to all attribute names, making each attribute name a valid URL. Such

a URL could be used to point to resources that provide information about the

attribute, for example explaining what property it represents, its semantics and

how a user can prove his eligibility. We discuss this process later in Section 6.4.1.

For example, an attribute that specifies the memory size in gigabytes and is

managed by an attribute authority identified by http://www.someauthority.com

might look like this:

http://www.someauthority.com/device/memory/size/gb/

Note that we also added an additional slash character at the end. This last /

marks the end of the attribute name. We will later use this feature to append

additional information about the attribute (that is not part of the name) after

that character.

It is noteworthy that we consider the name of the attribute authority part of

the attribute name. For example, an attribute

http://www.authority1.com/user/role/admin/

while having a similar meaning is different from the attribute

http://www.authority2.com/user/role/admin/

In both cases, the user is supposed to be an administrator, but probably for different

domains. He may request the admin attribute from the respective authority, but it

only certifies his role within the specified domain.

Numerical attributes. Inspired by the Hungarian notation [Klu88] we propose

to append the information on the bit length to the attribute name, followed by the

bags of bits qualifiers that we introduced in Section 5.3.4. A complete attribute

name might then look like this:

http://www.someauthority.com/device/memory/size/gb/i8[2].1

This specific attribute specifies that the bit with index 2 of the 8 bit value is set.

119

6. Attribute-Based Encryption in SOA

6.2.2. Revocation

Revocation is frequently used in the context of Digital Rights Management infras-

tructures. Here, certain user keys can be revoked, making the respective users

unable to access (i.e., decrypt) documents. This is very useful because over time

user properties change and user may lose some of their access rights. We now

discuss how this can be applied to ABE.

In DABE, access is restricted not by users but by their properties, so the meaning

of revocation changes: If a user loses a certain property, this property is called

revoked, and it the future, he must be unable to access objects that require this

property, even if he was able to access them before the revocation took place. In

settings with a single trusted authority that controls all accesses, this is easy to

accomplish as the authority can simply deny users access.

For ABE, where an access attempt is equal to a decryption attempt, things get

a bit more complicated. In [YWRL10b], the authors try to solve the revocation

problem in the ABE case by proposing a CP-ABE construction that supports

efficient proxy re-encryption. The idea is that whenever an attribute gets revoked,

the master key components of that attribute are changed and all stored ciphertexts

are re-encrypted, forcing future users to request an updated secret attribute key.

This new attribute key will only be given to users that are still eligible. In effect,

a new attribute is introduced that takes on the role of the old one but is only

given to non-revoked users. However, this solution is negligent of the fact that

in the ABE setting, ciphertexts are stored on untrusted media. (Note that if

the storage is on trusted media, there is usually no need for a cryptographically

expensive technology as ABE, as trusted storage entities can also be trusted to do

conventional access control.) Untrusted storage can not be trusted to delete the

old versions of the ciphertexts that can still be decrypted with the old attribute

keys. This observation about revocation of data stored on untrusted media is true

for most revocation mechanisms. Even in broadcast encryption schemes [NNL01]

commonly used in DRM architectures1, revocation is only effective for data created

after the revocation event took place.

While we cannot circumvent this limitation, we can use the idea of changing

attribute keys in order to revoke attributes, but note that this only has an effect

1Such as AACS, http://www.aacsla.com/specifications/

120

http://www.aacsla.com/specifications/

6.3. Encryption

on newly encrypted content as we cannot be sure that old data is always re-

encrypted. Our revocation mechanism works as follows: Whenever an attribute

is revoked for a set of users, the respective attribute authority creates a new

attribute key pair. This should be reflected in the attribute name, for example, by

appending a sequential number. For example, an attribute that represents a user’s

eligibility to access movies of a site could be initially called moviedownload/1/.

The respective keys are given to all eligible users. After a revocation, a new

attribute called moviedownload/2/ is issued. From that point in time, the old

attribute moviedownload/1/ is not used anymore, and all newly created movies

are encrypted using the new keys. The corresponding secret attribute key is given

to all users that are still eligible, but not to revoked users. This way, revoked users

cannot access the newly encoded documents anymore. Note that to implement

this efficiently, the underlying ABE construction is required to support incremental

attribute claims (DABE explicitly is).

Instead of sequential numbers, it can be more useful to periodically update

attributes and reflect the validity period in the attribute names. For example, an

attribute name could look like this:

http://www.someauthority.com/subscription/moviedownload/2011-10/

A user who has an attribute key corresponding to this attribute is eligible to

download movies encrypted in October 2011. If the user’s subscription ends in

October, he is not able to decode movies encrypted after that date anymore, as

he will not get the corresponding key for November. The effect of this is that his

subscription property is revoked.

6.3. Encryption

6.3.1. Incorporating CP-ABE into WS-Security

In [LbHC10], the authors propose a SOAP format that supports encoding data

directly encrypted with CP-ABE. Unfortunately, the approach is limited: ABE

is computationally very expensive and usually described in terms of encrypting

a single group element of a group GT . For all practical purposes, one will use

a hybrid encryption where only a symmetric key is encrypted with ABE, and

121

6. Attribute-Based Encryption in SOA

the actual data is encrypted symmetrically with that key. Also, instead of using

established XML and SOA standards, the authors introduce their own headers.

Our approach is as follows: The core standard that allows for security claims in

SOAP messages is WS-Security [OAS06]. (For a good introduction to WS-Security

we refer to [KC08], which we implicitly use as source for most of the technical claims

in this section.) To support encrypted documents, WS-Security commonly uses

the W3C recommendation XML Encryption Syntax and Processing [IDS02] that

supports several powerful ways to encrypt XML data, including hybrid encryption

properties by using an element called EncryptedKey. This element is used to

transport (usually symmetric) encryption keys. The information on how to decrypt

such an EncryptedKey can be stored in an element called EncryptionProperties.

Note that there are standards that deal with general policies (i.e., WS-Policy

[W3C06]) and security policies (WS-SecurityPolicy [LK07]), but we do not use

these, as we are only concerned with access policies written as Boolean formulas

and these standards were tailored for a much more general case.

Figure 6.1 shows an example of a SOAP message encrypted with DABE using

the policy discussed earlier in Section 3.1. Briefly, the SOAP header (lines 8–29)

contains a symmetric key encrypted with DABE using the policy depicted in lines

9–14. For simplicity we omit the public keys of the system and instead consider a

system were the public key (including the URI of the Central Authority) is publicy

known. The EncryptedKey element references both the policy (line 25) and the

actual encrypted message (line 22). After decrypting the symmetric key, it can be

used to decrypt the actual message that is contained in the SOAP message body

(lines 31–41). In this example, AES was used for symmetric encryption (see line

33).

In our architecture, the decryptor processes the policy and examines if he can

satisfy it. If he needs to have more attributes, he invokes a web service to query an

attribute authority for a specific secret attribute key, for example for the attribute

http://www.openid.org/user/is18OrOlder. We get into more detail on this in

the following section. If he satisfies the policy, he decrypts the symmetric key

using the DABE construction and then uses the symmetric key to decrypt the

actual message. How such an encrypted message is encoded is specified by the

core standards and can be done with conventional web service tools.

122

6.3. Encryption

1 <?xml version="1.0" encoding="UTF8"?>

2 <SOAP -ENV:Envelope xmlns:SOAP -ENV="http:// schemas.xmlsoap.org/soap

/envelope/">

3 <SOAP -ENV:Header >

4 <wsse:Security

5 xmlns:wsse="http: //docs.oasis -open.org/wss /2004/01/ oasis -...

6 xmlns:xenc="http: //www.w3.org /2001/04/ xmlenc#">

7
8 <wsse:BinarySecurityToken Id="abe -policy">

9 http://db.mycompany.org/user/role/admin OR

10 http://db.mycompany.org/user/permissions/fullAccess OR

11 (http: //www.openid.org/user/is18OrOlder AND

12 (http://www.contprov1.com/article/byid /1234/ hasPaidFor OR

13 http: //www.contprov2.com/article/byid /4325/ hasPaidFor OR

14 http: //www.contprov3.com/article/byid/ABC/hasPurchased))

15 </wsse:BinarySecurityToken >

16 <xenc:EncryptedKey xmlns:xenc="http://www.w3.org /2001/04/ xmlenc#

">

17 <xenc:EncryptionMethod Algorithm="wsdabe" />

18 <xenc:CipherData >

19 <xenc:CipherValue >

sMqPjXpGrM24SsmP8NVXJ1WhWuudpim9TjtsNzeWvrShNgytPoYx6GH0v27xvZu

</ xenc:CipherValue >

20 </xenc:CipherData >

21 <xenc:ReferenceList >

22 <xenc:DataReference URI="#Enc1"/>

23 </xenc:ReferenceList >

24 <wsse:securityTokenReference >

25 <wsse:Reference URI="#abe -policy" />

26 </wsse:securityTokenReference >

27 </xenc:EncryptedKey >

28 </xsse:Securiy >

29 </SOAP -Env:Header >

30
31 <SOAP -Env:Body >

32 <xenc:EncryptedData xmlns:xenc="http://www.w3.org /2001/04/ xmlenc#

" Id="Enc1" Type="http: //www.w3.org /2001/04/ xmlenc#Content">

33 <xenc:EncryptionMethod Algorithm="http://www.w3.org /2001/04/

xmlenc#aes -192-cbc"/>

34 <xenc:CipherData >

35 <xenc:CipherValue >

36 cU5vDITPk78thObr7AxoEsHTkdp2VOsTDSJEnkNMMj4jbhkdRUpNK6QbcEAoM

37 RvYVEZDPKbCPrBfvvyMkCuXNkUJ6T5YN1DSKKoooG8zNXNsUHcTm9ghX8Dr67

38 </xenc:CipherValue >

39 </xenc:CipherData >

40 </xenc:EncryptedData >

41 </SOAP -ENV:Body >

42 </SOAP -ENV:Envelope >

Figure 6.1: Sample DABE-encrypted SOAP object

123

6. Attribute-Based Encryption in SOA

6.3.2. Preparing an Encryption

In order to protect a document, the encryptor must decide on the policy, and for

each attribute he must choose one attribute authority he trusts that is able to

specify the attribute. As described in Chapter 3, he needs public attribute keys for

all attributes that he uses in the policy. Note that if a single-authority scenario

is deployed and no incremental attribute claims are required, a conventional CP-

ABE construction like [BSW07] may be used. In such single-authority CP-ABE

constructions, public attribute keys are generated by computing a publicly know

hash function H : {0, 1}∗ → G (with G a bilinear group) that maps an attribute

name to a group element.

In this chapter, we realize attribute claims through web services. Figure 6.2

shows an example for an attribute claim in SOAP for the attribute http://www.au-

thority1.com/user/role/admin/ (see line 10). The web services are defined in a

file wsdabe.wsdl that is referenced in line 7 of the code. The result of such a claim

is shown in Figure 6.3. It consists of a structure of type ws:publicAttributeKey

that has the fields name (the name of the attribute) and pka (the actual public

key encoded as base 64 of a string representation of the key2). The encryptor can

decode this to a binary string and use this binary string to create a new element t

value that represents the public attribute key PKA = gHSKa (a) for attribute PKA.

This value can be used as input for the encryption function.

6.4. Decryption

6.4.1. Preparing a Decryption

Managing identities and user keys. Everybody can request a user key pair from

the central authority. In our framework, there is a single service getUserKeyPair

that takes no argument and returns a new user key pair. It is the only service

offered by the central authority. There must be a connection between the public

user key PK u and the user identity u. For example, the user could sign PK u using

a signature key that is bound to him by means of a certificate that is propagated

through an established PKI. It is also possible to bind PK u to some pseudonyms

2In our implementation that is described in Section 6.5.4, we use the return value of libpbc’s
function element to bytes.

124

6.4. Decryption

1 <?xml version="1.0" encoding="UTF -8"?>

2 <SOAP -ENV:Envelope

3 xmlns:SOAP -ENV="http: // schemas.xmlsoap.org/soap/envelope/"

4 xmlns:SOAP -ENC="http: // schemas.xmlsoap.org/soap/encoding/"

5 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

6 xmlns:xsd="http: //www.w3.org /2001/ XMLSchema"

7 xmlns:ws="http: // localhost:8080/wsdabe.wsdl">

8 <SOAP -ENV:Body SOAP -ENV:encodingStyle="http:// schemas.xmlsoap.org

/soap/encoding/">

9 <ws:getPublicAttributeKey >

10 <name>http: //www.authority1.com/user/role/admin/</name>

11 </ws:getPublicAttributeKey >

12 </SOAP -ENV:Body >

13 </SOAP -ENV:Envelope >

Figure 6.2: Sample public attribute key request

1 <?xml version="1.0" encoding="UTF -8"?>

2 <SOAP -ENV:Envelope

3 xmlns:SOAP -ENV="http: // schemas.xmlsoap.org/soap/envelope/"

4 xmlns:SOAP -ENC="http: // schemas.xmlsoap.org/soap/encoding/"

5 xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

6 xmlns:xsd="http: //www.w3.org /2001/ XMLSchema"

7 xmlns:ws="http: // localhost:8080/wsdabe.wsdl">

8 <SOAP -ENV:Body SOAP -ENV:encodingStyle="http:// schemas.xmlsoap.org

/soap/encoding/">

9 <ws:publicAttributeKey >

10 <name>http: //www.authority1.com/user/role/admin/</name>

11 <pka>RGllIEhvZmZudW5nIGlzdCBkaWUgU+

R1bGUsIHdlbGNoZSBkaWUgV2VsdCB0cuRndC4 </pka>

12 </ws:publicAttributeKey >

13 </SOAP -ENV:Body >

14 </SOAP -ENV:Envelope >

Figure 6.3: Sample public attribute key result

125

6. Attribute-Based Encryption in SOA

in order to achieve anonymity when dealing with certain services.

To be able to do this, a slight modification is required. This modification works

for both DABE constructions we proposed in Chapter 3: For each ith pseudonym

a user u wants to create, he chooses a random bi ∈ Z∗p and computes his ith

public user key PK
(i)
u as PK (i)

u := PK bi
u . For example, a user could create an

(anonymous) account on a license provider site and associate it with his second

pseudonymous public user key PK (2)
u = PK b2

u for some random b2. Whenever he

buys something with this account, the license provider site offers an attribute

representing this purchase and personalizes it for PK (2)
u , returning a secret attribute

key SK
(2)
A,u = (PK (2)

u)HSKa(A) (as explained in the RequestAttributeSK algorithms).

The user can now raise this value to the power b−12 to retrieve a valid secret

attribute key SKA,u for his real user key PK u without ever having revealed PK u

to the attribute authority:

(SK
(2)
A,u)

b−1
2 = (PK (2)

u)b
−1
2 HSKa(A) = PK

HSKa(A)
u = SKA,u .

The effect of this is that although the user u does not reveal his true identity

to the site, he is still able to use the attributes together with his other attributes.

Getting attributes using different identities is desirable in many scenarios. For

example, an attribute like http://www.openid.org/user/is18OrOlder probably

requires the respective attribute authority to know the user’s real identity, while

he might prefer to use only a pseudonym when acquiring other attributes. Due to

the DABE construction, the user can freely mix attributes gained under his true

identity with attributes gained under pseudonyms.

Requesting secret attribute keys. Using his public user key the user can now

request secret attribute keys. To issue these secret user keys, an attribute authority

must have a way to decide if user represented by his PK u is actually eligible

of the attribute. As we have described, this decision can be based on the user

identity or on a pseudonym. How this works in particular may vary greatly between

the many different possible types and domains of attributes, so the details are

beyond the scope of this work. However, in general we can describe this process

as a communication protocol where the authority request a set of information

from the user that proves his eligibility. This protocol may contain, for example,

126

6.4. Decryption

<message name="getSecretAttributeKey">

<part name="name" type="xsd:string" />

<part name="usertoken" type="xsd:string" />

<part name="pku" type="xsd:string" />

</message>

Figure 6.4: WSDL definition of getSecretAttributeKey service

∧

∨ ∨

A B C D E

(a) Original policy syntax tree

∧

∨ E

A B

(b) Missing attributes

Figure 6.5: Determining missing attributes

challenge-response steps that let the user prove his possession of certain keys or

other means of convincing the authority of a property. The last step is the sending

of the actual secret attribute key. Figure 6.4 is a WSDL description of such a final

message, denoted getSecretAttributeKey. It contains the name of the attribute

as well as some usertoken that identifies the result of the communication protocol

and the public user key pku of the user. The usertoken may be as simple as a

user identity or the session key of a session opened between the authority and

the user, where he proved his eligibility. In order to have the greatest possible

versatility, we do not limit the format of this token.

Determining how to satisfy the policy. In a typical system, a user may be

eligible to a large number of attributes, but he only needs to request secret

attribute keys required for the ciphertexts he wants to decrypt. Whenever a user

receives a ciphertext, he analyses the policy to see if his current set of secret

attribute keys satisfies it or if he needs to request more keys.

If he does not satisfy the policy, it is useful to give him some representation

describing possible steps that he can do to satisfy it. Such a representation can

directly be done by removing all parts of the policy that the user already satisfies.

To illustrate this, we give a short example: Consider the syntax tree in Fig-

ure 6.5(a) that represents a ciphertext policy and assume that the decryptor only

127

6. Attribute-Based Encryption in SOA

has secret attribute keys for the attributes C and D. The decryptor automatically

removes these nodes (by replacing them with > and simplifying the resulting tree)

and gets the tree shown in Figure 6.5(b). It shows not only that the policy is not

(yet) satisfied, but also tells the decryptor that to be able to decrypt, he needs to

acquire secret attribute keys for either both A and B or for E. This tree may be

displayed to the decryptor to help him decide on his next steps.

6.4.2. Access Gates

When a ciphertext policy is satisfied, the ciphertext can be decrypted. As decryp-

tion is the most expensive process of ABE constructions, we now briefly take a

look at the computational cost of this process and propose a new concept that

allows to improve the efficiency in many cases:

Implementations of pairing-based cryptosystems on smart cards [SCA06], mobile

phones [KTO06], and even wireless sensor nodes [SKSC09] have shown that the

technology is feasible. However, the actual pairing operation is about 150-500

times slower than even inversion, which is the slowest commonly used operation

within public-key cryptography (see especially Table 1 of [KTO06] and Table 5

of [SKSC09]), a single pairing operation being approximately as expensive as a

complete RSA exponentiation [SCA06]. While we have already proposed a CP-ABE

construction that requires only two pairing operations in Section 3.4, in all other

known constructions the number of pairing operations in the decryption function

is in O(n), where n is the number of attributes used for the decryption. (Note

that in some constructions like [NYO09] all attributes are used for decryption, so

in these cases n denotes the number of attributes in the system.)

As the parties accessing ABE protected documents may be light-weight, it is

important to look for ways to speed up decryption. In this section, we show that in

most common CP-ABE constructions decryption can be seen as a two-step process

and that the first step, which is the computationally expensive part, can be done

by a third party without compromising security. We consider such third parties as

“honest, but curious” as introduced in [dVFJ+07] and denote them Access Gates.

Figure 6.6 gives an overview of the involved parties and their relationships.

We note that these findings apply to many CP-ABE constructions, for example all

of [MKE09, LOS+10, NYO09, ZH10, CN07]. (Recently, in [GHW11], the authors

128

6.4. Decryption

Decryptor

Access Gate Trusted
Authority

CT

CT

Attribute
Authority

Attribute
Authority

SK
A,u

SK
A,u

Encryptor

PK
A

P
K

A SK
u

SKu

SKu

C
T

'

C
T

'

Figure 6.6: Overview of SOA architecture

proposed a modification of [Wat11] that achieves a similar speed up. However,

their modification is more expensive, probably in debt of their security proof, while

we show how to directly apply the speed up without modifying the constructions at

all. Also, as explained, unlike [GHW11] our result is more general and applicable

to several CP-ABE constructions.)

In most CP-ABE constructions, the message is encrypted with a formula of the

following type:

C = MY s ,

where M is the plaintext message, Y is a publicly known system parameter of the

form Y = e(g1, g2)
y for generators g1, g2 (in the symmetric case, g1 = g2), some

random value y chosen during system setup, and a random value s decided on by

the encryptor during the encryption process.

The only way to decrypt the ciphertext and recover M is to find the value of

Y s and compute M = C/Y s. This is done with an elaborate computation process

where the decryptor’s attribute keys are combined with ciphertext components in

129

6. Attribute-Based Encryption in SOA

a way specific to the ciphertext policy. The ciphertext components used in the

step are not related to the original value M in any way, as they are only used

to recover Y s. To prevent collusions, all attribute keys are blinded with a user

specific value, so they are not compatible with attribute keys from a different user,

so the actual result is Y s blinded by this user specific value, too.

This is why the decryptor has another secret key that is used to unblind the

result of the computation, which we call the unblinding key. This unblinding step

is different for each construction, but usually it requires a single pairing operation

which has as input the unblinding key and another ciphertext component. Before

this step, the data can be considered to be still encrypted, with the unblinding key

being the decryption key. After unblinding, the value of Y s is obtained, and M

can be decrypted.

Note that without the unblinding key, one ends up with encrypted data, so having

only the attribute key is not enough to decrypt. On the other hand, the unblinding

key is not needed in the first part of the decryption process at all, so anyone who

has the attribute keys can compute this part without learning anything about M ,

while the attribute keys are not needed to compute the second part that requires

only a constant number of computation steps using the unblinding key.

This means that the two steps can be done separately by two parties. The

first party (the access gate) has access to the user’s attribute keys and does

the expensive first part of the decryption, ending up with a partially encrypted

ciphertext that does not contain information that it can use to recover M . In fact,

for some constructions it may not even need to have access to the single ciphertext

component C that is dependent on the plaintext message M . The decryptor needs

only the unblinding key to be able to complete the decryption.

We will not go into too many cryptographic details here but give an intuition by

showing how access gates can be realized for two ABE constructions. For example,

in our DABE construction, the complete decryption step is:

M = C ·
∏

i∈I
(
e(Ci, PKu) · e(Di, SKρ(i),u)

)ωi

e(C ′, SKu)
.

Note that only the secret attribute keys and the public user key are used for

computing the numerator of the right-hand fraction, while the secret user key is

used to compute the denominator. This observation gives us an intuition how to

130

6.4. Decryption

realize access gates for this construction. If – as explained – the secret attribute

keys are given to the access gate, decryption can be split up into two separate

steps as follows:

Access Gate: The access gate knows the public user key PK u as well as the secret

attribute keys SKA,u for the same user u, but it has no access to the secret

user key SK u. Using the ciphertext components Ci and Di, 1 ≤ i ≤ `, it

computes constants {ωi|i ∈ I}, such that
∑

i∈I ωiλi = s and creates M ′ as

follows:

M ′ =
∏

i∈I

(
e(Ci, PKu) · e(Di, SKρ(i),u)

)ωi = e(g, P)smku .

(For details on this equation we refer to the correctness proof of the respective

construction in Section 3.5.1.) Note that the result of this computation is not

related to M , as during encryption M was only used in C = Me(g,Q)s, while

the ciphertext components Ci and Di are independent of M . Also note that

the only way to compute M from C is by dividing it by e(g,Q)s. However,

the access gate cannot recover this value using M ′ because M ′ is blinded:

Instead of having e(g,Q)s, the access gate has computed e(g, P)smku . One

more value, the secret user key SK u is needed to complete the decryption.

Decryptor: Using his secret user key SK u = MK · Pmku , the decryptor is able to

decrypt the message:

M = C · M ′

e(C ′, SKu)

Obviously, the computation time is constant and requires one pairing opera-

tion, one inversion in GT and two multiplications in GT .

The same steps can also be applied to the decryption operations of [LOS+10] and

[Wat11].

To give another example, [ZH10] proposes a CP-ABE construction with a very

interesting property: While the ciphertext policies are restricted to a single AND

gate (similar to [CN07] and [NYO09]), the ciphertext size is constant, consisting of

only two group elements. In this construction, access gates are especially interesting

as each user has one key component for each attribute in the system and all these

components are required for each decryption. By storing these key components

131

6. Attribute-Based Encryption in SOA

remotely on an access gate and only giving the user key component (denoted D0

in the paper) to the user, both space and time efficiency can be improved. The

decryption step again can be split up into to separate steps.

Access Gate: For each attribute of the system, each user has a secret key compo-

nent Di. These values are given to the access gate, but the value D (that

we can view as the secret user key) is kept secret by the user. With public

keys gi for all i and the ciphertext component C1, the step performed by the

access gate is:

M ′ =
∏

i

e(gi, C1)/e(C0, Di ·
∏

j∈S,j 6=i

gK+1−j+i) .

As before, the result M ′ of this computation is an intermediate result that

contains the decryption key but is blinded with a value that the access gate

does not know and can not remove using the values it knows. One more

value, the secret user key D is needed to complete the decryption.

Decryptor: The decryptor needs the intermediate value M ′ as well as the secret key

component D and the ciphertext component C0 to recover M by computing

M = M ′ · e(D,C0) .

Again, this computation is very inexpensive, requiring only one pairing

operation and one multiplication, so it can be done efficiently even on a

resource constrained device in reasonable time.

6.5. Description of System

We now describe each of the parties involved in our system as depicted in Figure 6.6,

the services they offer, and briefly discuss our proof-of-concept implementation.

6.5.1. Central Authority

The central authority is the only party that knows the system’s master key. As

explained before, the public system key PK is supposed to publicly available to all

132

6.5. Description of System

parties, and it is not explicitly distributed by the central authority. So the only

service offered by the central authority is the creation of new user key pairs as

discussed in Section 6.4.1:

Service getUserKeyPair

Input: (Nothing)

Output: Public and secret user key (PK u, SK u)

Create a new user key pair and return it. Both public and secret user keys are

single elements of the group G, and can be represented by a string of characters

as explained above. The user will later send the encoded public user key to

attribute authorities. However, for the decryption functionality he needs to

convert the string representation of the secret user key into a cryptographic

value. To do this, he needs to acquire the public system parameters that describe

the cryptographic groups used in the system.

Note: The response of this service has to be secure against eavesdroppers.

The authenticity of the central authority can easily be verified by testing if the

user key pair is valid in the context of the public system key. This is done as

follows: Given the public key components P and e(g,Q) and the public user

key PK u compute: e(g,Q) · e(PK u, P). If the result is equal to e(g, SK u) for

the secret user key SK u, then (PK u, SK u) is a valid key pair.

The test is correct as for any well-formed user key pair it holds that with

PK u = gmku ,

e(g,Q) · e(gmku , P) = e(g,Q) · e(g, Pmku) = e(g,Q · Pmku) = e(g, SK u) .

6.5.2. Attribute Authority

Service getPublicAttributeKey

Input: Attribute name A
Output: Public attribute key PKA

This service returns a public attribute key for the given attribute. The key is

a single element of the group G, and can be represented by a single string of

characters as explained above.

133

6. Attribute-Based Encryption in SOA

Service getSecretAttributeKey

Input: Attribute name A, user token u, and public user key PK u

Output: Secret attribute key SKA,u

This service returns a secret attribute key for the given attribute, personalized

for the user with the given public user key. The service only returns a valid key

if the user (identified by the user token) is eligible of the attribute key. This is

discussed in Section 6.4.1.

6.5.3. Access Gates

Service storeAttribute

Input: User id u, secret attribute key SKA,u

Output: (Nothing)

Stores the secret attribute key, associated with the given user id in the access

gate’s attribute database. The access gate does not need to verify the secret

attribute key. Interestingly, the gate can verify if two secret attribute keys belong

to the same user (even if the secret attribute keys are from different authorities):

Note that given two secret attribute keys for the same user SKA1,u from an

authority a1 and SKA2,u from an authority a2, as well as the respective public

attribute keys PKA1 and PKA2 , it holds that

e(PKA1 , SKA2,u) = e(g, g)mkuHSKa1
(A1)HSKa2

(A2) = (PKA2 , SKA1,u) .

This equation is not true if the secret attribute keys are associated with different

users. This feature can be used as a simple sanity check that may be used to

avert the storage of invalid keys.

Service decryptPartial

Input: ABE ciphertext (CT ,A), user id u

Output: Modified ciphertext M ′

Returns a modified ciphertext that can be decrypted by using only a secret user

key.

134

6.5. Description of System

To this end, the access gate applies all secret user keys that it has stored for the

given user id to the partial decryption formula (see Section 6.4.2). The result of

this is a ciphertext that can be decrypted by the secret user key corresponding

to the secret attribute keys.

6.5.4. Implementation

To implement pairing-based algorithms, we use the libpbc [Lyn], which in turn is

based on the GNU MP Bignum library3. As we also require symmetric cryptography,

we use the cryptographic libraries supplied by the OpenSSL Project4. The result

of all the cryptographic functionality is a library libdabe. This library is able to

convert between cryptographic keys stored in libpbc format and binary strings,

such that the interface does not rely on cryptographic libraries and uses only char*

elements and the dependencies of libdabe are invisible to the parts of the code

that implement the actual web services.

All web services were written using the gsoap toolkit5, where the services were

described in a C .h header file and then converted into WSDL descriptions by the

gsoap compiler as well as C interfaces to use. See Figure 6.7 for an excerpt from the

generated WSDL definitions. Specifically, the excerpt exemplarily shows the parts

that are relevant for the definition of the service getPublicAttributeKey that we

already described above. Using these definitions, we implemented server programs

for central and attribute authorities as well as a test client that interacted with

them.

All services could be realized directly using gsoap without any modifications,

using interfaces that conform to the libraries and the standards. Building a

complete library from this proof-of-concept implementation is straightforward.

This shows that DABE for SOA as developed in this chapter is feasible and can be

incorporated smoothly into existing projects using modular software components.

The current reliance on three cryptographic libraries in addition to the DABE

functions may be mitigated in the future as pairings-based cryptography matures

and more complete libraries are developed.

3http://gmplib.org/
4http://www.openssl.org/
5http://www.cs.fsu.edu/~engelen/soap.html

135

http://gmplib.org/
http://www.openssl.org/
http://www.cs.fsu.edu/~engelen/soap.html

6. Attribute-Based Encryption in SOA

1 <?xml version="1.0" encoding="UTF -8"?>

2 <definitions name="wsdabe"

3 targetNamespace="http://localhost:8080/wsdabe.wsdl"

4 xmlns:tns="http://localhost:8080/wsdabe.wsdl"

5 [...]

6 xmlns="http://schemas.xmlsoap.org/wsdl/">

7 <types>

8 <schema targetNamespace="http://localhost:8080/wsdabe.wsdl"

9 [...]

10 elementFormDefault="unqualified"

11 attributeFormDefault="unqualified">

12 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

13 <complexType name="getPublicAttributeKeyResponse">

14 <sequence>

15 <element name="name" type="xsd:string" minOccurs="0"

maxOccurs="1" nillable="true"/>

16 <element name="pka" type="xsd:string" minOccurs="0" maxOccurs

="1" nillable="true"/>

17 </sequence>

18 </complexType>

19 [...]

20 </schema>

21 </types>

22 <message name="getPublicAttributeKey">

23 <part name="name" type="xsd:string"/>

24 </message>

25 [...]

26 <portType name="wsdabePortType">

27 <operation name="getPublicAttributeKey">

28 <documentation>Returns public attribute key for the given

attribute</documentation>

29 <input message="tns:getPublicAttributeKey"/>

30 <output message="tns:getPublicAttributeKeyResponse"/>

31 </operation>

32 [...]

33 </portType>

34 <binding name="wsdabe" type="tns:wsdabePortType">

35 <SOAP:binding style="rpc" transport="http://schemas.xmlsoap.

org/soap/http"/>

36 <operation name="getPublicAttributeKey">

37 <SOAP:operation style="rpc" soapAction=""/>

38 <input>

39 [...]

40 </input>

41 <output>

42 [...]

43 </output>

44 </operation>

45 </definitions>

Figure 6.7: WSDABE WSDL definition (excerpt)

136

6.6. Conclusion

6.6. Conclusion

In this chapter, we examined how DABE can be incorporated into Service-Oriented

Architectures. To achieve good performance, we used hybrid encryption, where

the documents are encrypted symmetrically with a randomly generated key, and

only the key is encrypted with DABE.

While the relevant standards were not designed with data-centric security in

mind, we showed how we still can use them to support DABE encrypted documents

with only minor modifications.

To manage the large number of cryptographic keys required for DABE, we

implemented a number of Web Services. These services could be realized using

only standard tools, in addition to several libraries that implement the crypto-

graphic functionality. We showed how the user can even maintain a number of

pseudonymous identities, retrieve attributes for each of them and use all of them

together for his real identity.

We also extended the DABE framework with a new functionality called access

gates. Computationally weak decryptors can use such gates to outsource the most

expensive parts of the DABE decryption. The gates are secure in an honest-but-

curious model.

Finally, we described a proof-of-concept implementation that demonstrates that

the ideas proposed in the chapter are applicable to SOA settings and can be

implemented with reasonable effort.

137

Part IV.

Summary

139

Chapter7
Conclusion

Data-centric security is a powerful and versatile concept with many possible

applications, and it has the potential to vastly improve trust in many scenarios by

removing the necessity of costly fine-grained access control and of a trusted party

to enforce accesses. With Attribute-Based Encryption, there is now a technology

that allows to realize data-centric security in an efficient way.

However, as diversified as the possible applications are, as broad are the fea-

tures that are expected from an ABE construction. Among the possible ABE

features that we discussed in thesis are different formats for the ciphertext policies,

single- vs. multi-authority, policy anonymity, and attribute revocation mechanisms.

There are also some more exotic features that we have not covered here, such as

different kinds of attribute hierarchies [LWG11, LCbHC11], user accountability

[LRZW09], conditional proxy re-encryption [ZFZ10] as well as a large number

of concepts that use attribute policies to improve other primitives like in ABBE

[JK10, ZH10, AHS05] or Worry-free encryption [SS10]. ABE constructions can

further be categorized by the underlying security assumptions and models. Thus,

when planning to use ABE in any particular setting, there is a large selection of

possible constructions, each with its own benefits and drawbacks. To date, the

Swiss Army knife of ABE has not yet been discovered, and no known construction

supports a majority of wanted features.

In this thesis we approached a number of these challenges, focussing on what

we consider relevant in practical scenarios, and we successfully tackled some

crucial challenges. We found that when considering practical applications, more

141

7. Conclusion

interesting constructions are possible when allowing security proofs in the Generic

Group Model instead of restricting oneself to reduction proofs. One of the main

contributions of this work was our approach to support the multi-authority case

where an arbitrary number of independent attribute authorities is allowed to

issue secret attribute keys. In Chapter 3 we described this scenario in detail,

defined a scheme named Distributed Attribute-Based Encryption and proposed

two constructions that implement it. These constructions differ in the format of

the input policy as well as the security proof. We found a proof for the second

construction that is based on a security reduction, but had to rely on a weaker

security model to make it work, while security in the Generic Group Model of both

constructions could be proven in a model that is the strongest one used for ABE.

This gives further evidence that accepting the Generic Group Model for security

proofs allows more versatility and more powerful and efficient constructions.

In Chapter 4 we took a look at privacy issues caused by sending the ciphertext

policy in clear. Our new concept of policy anonymity allows to approach this

problem by obfuscating the policy so that an attacker cannot identify the used

policy in a candidate policy set. To this end, we introduced the notion of Syntax

Tree Majors that allow to construct suitable policy anonymity sets for any policy

expressible as a monotonic syntax tree. A modification of a know CP-ABE scheme

was then used to demonstrate the applicability of policy anonymity using syntax

tree majors.

Our examination of ABE in practical settings showed that data-centric security

is feasible not only in theory, but also from the technical point of view. While

data-centric security has its limits and cannot be used for all real-world access

policies (exemplified in a Digital Rights Management scenario), we showed that

the classification of access rules into static, i.e., cryptographically enforceable, and

dynamic ones is intuitive and that the process of separating the former from the

latter ones can be automatized easily. As an example for this we analyzed the

Open Digital Rights Language in Chapter 5 and described such an automation

process in detail.

Finally, in Chapter 6 we took the leap from theory to practice by extending

the standards used for Service Oriented Architectures with ABE technology. We

concluded that while not all standards are directly ready to express concepts

of data-centric security, modifications that add the relevant parts are possible

142

without breaking compatibility with conventional access control settings. Our

implementation of relevant core services could be done using a well developed and

mature SOA framework that is widely used in the web services community.

Throughout this work we have gained an understanding about data-centric

security using ABE in practical settings: While the restriction of data-centric

security to static access rules prevents it from being a complete replacement for

conventional access control mechanisms, it can in practically all cases be used to

improve the enforcement step of access control, allowing to base security assurances

on cryptographic methods instead of trust. Using constructions as proposed in this

thesis, we have shown ABE to be a useful cryptographic primitive for IT security

and ready for implementation in real-world settings.

143

List of Figures

2.1. Schematic overview of KP-ABE 19

2.2. Schematic overview of CP-ABE 20

2.3. An example policy . 22

3.1. An example policy . 36

3.2. Parties involved in DABE . 38

3.3. Policy of Figure 3.1 in DNF . 39

3.4. Algorithms used in DABE . 41

3.5. Ciphertext in Water’s construction 55

4.1. Sample obfuscated policy . 67

4.2. Example policies for Figure 4.1 . 67

4.3. Monotonic syntax tree . 70

4.4. A mapping f of a major to a minor (leaves omitted) 71

4.5. Two valid syntax tree majors . 72

4.6. An invalid syntax tree major . 73

4.7. Constructing R as a comon major 80

5.1. OMA architecture (simplified) . 96

5.2. Extraction of static rules . 98

5.3. Structure of DRM rules . 100

5.4. Involved parties, relationships, and data structures 101

5.5. ODRL expression conversion process 104

5.6. Sample permission with rule . 105

145

List of Figures

5.7. Sample Conversion rules . 106

5.8. Example ODRL expression . 110

5.9. Attribute policy after XML Extraction phase 111

5.10. Static rule as tree . 111

5.11. Static rule of Figure 5.10 after bags of bits conversion 112

6.1. Sample DABE-encrypted SOAP object 123

6.2. Sample public attribute key request 125

6.3. Sample public attribute key result 125

6.4. WSDL definition of getSecretAttributeKey service 127

6.5. Determining missing attributes . 127

6.6. Overview of SOA architecture . 129

6.7. WSDABE WSDL definition (excerpt) 136

146

Bibliography

[AHS05] André Adelsbach, Ulrich Huber, and Ahmad-Reza Sadeghi, Property-

based broadcast encryption for multi-level security policies, 8th Inter-

national Conference on Information Security and Cryptology, ICISC

2005 (Dongho Won and Seungjoo Kim, eds.), Lecture Notes in Com-

puter Science, vol. 3935, Springer, 2005, pp. 15–31.

[AI09] Nuttapong Attrapadung and Hideki Imai, Conjunctive broadcast

and attribute-based encryption, Pairing (Hovav Shacham and Brent

Waters, eds.), Lecture Notes in Computer Science, vol. 5671, Springer,

2009, pp. 248–265.

[All08] Open Mobile Alliance, OMA DRM architecture, 2008, Ver-

sion 2.1, http://www.openmobilealliance.org/Technical/

release_program/docs/DRM/V2_1-20081106-A/OMA-AD-DRM-V2_

1-20081014-A.pdf.

[ASKS10] Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov (eds.),

Proceedings of the 17th acm conference on computer and communi-

cations security, ccs 2010, chicago, illinois, usa, october 4-8, 2010,

ACM, 2010.

[BB08] Dan Boneh and Xavier Boyen, Short signatures without random

oracles and the SDH assumption in bilinear groups, J. Cryptology 21

(2008), no. 2, 149–177.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh, Hierarchical identity

147

http://www.openmobilealliance.org/Technical/release_program/docs/DRM/V2_1-20081106-A/OMA-AD-DRM-V2_1-20081014-A.pdf
http://www.openmobilealliance.org/Technical/release_program/docs/DRM/V2_1-20081106-A/OMA-AD-DRM-V2_1-20081014-A.pdf
http://www.openmobilealliance.org/Technical/release_program/docs/DRM/V2_1-20081106-A/OMA-AD-DRM-V2_1-20081014-A.pdf

Bibliography

based encryption with constant size ciphertext, in Cramer [Cra05],

pp. 440–456.

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz, Chosen-

ciphertext security from identity-based encryption, SIAM J. Comput.

36 (2007), no. 5, 1301–1328.

[BDF+10] Jean-Luc Beuchat, Hiroshi Doi, Kaoru Fujita, Atsuo Inomata, Piseth

Ith, Akira Kanaoka, Masayoshi Katouno, Masahiro Mambo, Eiji

Okamoto, Takeshi Okamoto, Takaaki Shiga, Masaaki Shirase, Ryuji

Soga, Tsuyoshi Takagi, Ananda Vithanage, and Hiroyasu Yamamoto,

FPGA and ASIC implementations of the ηT pairing in characteristic

three, Computers & Electrical Engineering 36 (2010), no. 1, 73–87.

[Bei96] Amos Beimel, Secure schemes for secret sharing and key distribution,

Ph.D. thesis, Dept. of Computer Science, Technion, 1996.

[BF03] Dan Boneh and Matthew K. Franklin, Identity-based encryption from

the weil pairing, SIAM J. Comput. 32 (2003), no. 3, 586–615.

[BGDM+10] Jean-Luc Beuchat, Jorge E. González-Dı́az, Shigeo Mitsumari, Eiji

Okamoto, Francisco Rodŕıguez-Henŕıquez, and Tadanori Teruya,

High-speed software implementation of the optimal ate pairing over

barreto-naehrig curves, 4th International Conference on Pairing-Based

Cryptography, Pairing 2010 (Marc Joye, Atsuko Miyaji, and Akira

Otsuka, eds.), Lecture Notes in Computer Science, vol. 6487, Springer,

2010, pp. 21–39.

[Bil05] Philip Bille, A survey on tree edit distance and related problems,

Theor. Comput. Sci. 337 (2005), no. 1-3, 217–239.

[BKP09] Rakeshbabu Bobba, Himanshu Khurana, and Manoj Prabhakaran,

Attribute-sets: A practically motivated enhancement to attribute-based

encryption, 14th European Symposium on Research in Computer

Security, ESORICS 2009 (Michael Backes and Peng Ning, eds.),

Lecture Notes in Computer Science, vol. 5789, Springer, 2009, pp. 587–

604.

148

Bibliography

[BM05] Walid Bagga and Refik Molva, Policy-based cryptography and ap-

plications, 9th International Conference on Financial Cryptography

and Data Security, FC 2005 (Andrew S. Patrick and Moti Yung,

eds.), Lecture Notes in Computer Science, vol. 3570, Springer, 2005,

pp. 72–87.

[BM06] Walid Bagga and Refik Molva, Collusion-free policy-based encryp-

tion, 9th International Conference on Information Security, ISC 2006

(Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritza-

lis, and Bart Preneel, eds.), Lecture Notes in Computer Science, vol.

4176, Springer, 2006, pp. 233–245.

[BMC06] Walid Bagga, Refik Molva, and Stefano Crosta, Policy-based encryp-

tion schemes from bilinear pairings, ACM Symposium on InformAtion,

Computer, and Communications Security, ASIACCS (Ferng-Ching

Lin, Der-Tsai Lee, Bao-Shuh Lin, Shiuhpyng Shieh, and Sushil Jajo-

dia, eds.), ACM, 2006, p. 368.

[Bon07] Dan Boneh, A brief look at pairings based cryptography, 48th Annual

IEEE Symposium on Foundations of Computer Science, FOCS 2007,

IEEE Computer Society, 2007, pp. 19–26.

[Bra10] Erik Brangs, ODRL-Policies für kryptographische Zugriffskontrolle

mit verteilter attributbasierter Verschlüsselung, Bachelorarbeit, April

2010.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters, Ciphertext-policy

attribute-based encryption, IEEE Symposium on Security and Privacy,

2007, pp. 321–334.

[BW07] Dan Boneh and Brent Waters, Conjunctive, subset, and range queries

on encrypted data, 4th IACR Theory of Cryptography Conference,

TCC 2007 (Salil P. Vadhan, ed.), Lecture Notes in Computer Science,

vol. 4392, Springer, 2007, pp. 535–554.

[CdVFS07] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti,

and Pierangela Samarati, k-anonymity, Secure Data Management in

149

Bibliography

Decentralized Systems (Ting Yu and Sushil Jajodia, eds.), Advances

in Information Security, vol. 33, Springer, 2007, pp. 323–353.

[Cha07] Melissa Chase, Multi-authority attribute based encryption, 4th IACR

Theory of Cryptography Conference, TCC 2007 (Salil P. Vadhan, ed.),

Lecture Notes in Computer Science, vol. 4392, Springer, February

2007, pp. 515–534.

[CN07] Ling Cheung and Calvin C. Newport, Provably secure ciphertext

policy ABE, ACM Conference on Computer and Communications

Security, CCS 2007 (Peng Ning, Sabrina De Capitani di Vimercati,

and Paul F. Syverson, eds.), ACM, 2007, pp. 456–465.

[Cra05] Ronald Cramer (ed.), Advances in cryptology - eurocrypt 2005, 24th

annual international conference on the theory and applications of

cryptographic techniques, aarhus, denmark, may 22-26, 2005, pro-

ceedings, Lecture Notes in Computer Science, vol. 3494, Springer,

2005.

[DSP11] Jeong-Min Do, You-Jin Song, and Namje Park, Attribute based proxy

re-encryption for data confidentiality in cloud computing environ-

ments, Computers, Networks, Systems and Industrial Engineering,

CNSI (Yung-Cheol Byun, Kiumki Akingbehin, Petr Hnetynka, and

Roger Lee, eds.), IEEE, 2011, pp. 248–251.

[dVFJ+07] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Ste-

fano Paraboschi, and Pierangela Samarati, Over-encryption: Man-

agement of access control evolution on outsourced data, 33rd Interna-

tional Conference on Very Large Data Bases, VLDB 2007 (Christoph

Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava,

Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan,

Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J.

Neuhold, eds.), ACM, 2007, pp. 123–134.

[Erl08] Thomas Erl, Service-oriented architecture: Concepts, technology, and

design, Prentice Hall, 2008.

150

Bibliography

[Éti98] Gagnon Étienne, Sablecc, an object-oriented compiler-framework,

Master’s thesis, 1998.

[FLA06] Keith B. Frikken, Jiangtao Li, and Mikhail J. Atallah, Trust ne-

gotiation with hidden credentials, hidden policies, and policy cycles,

Network and Distributed System Security Symposium, NDSS 2006,

The Internet Society, 2006.

[FN93] Amos Fiat and Moni Naor, Broadcast encryption, 13th Annual Inter-

national Cryptology Conference, CRYPTO 1993 (Douglas R. Stinson,

ed.), Lecture Notes in Computer Science, vol. 773, Springer, 1993,

pp. 480–491.

[GGKL89] Morrie Gasser, Andy Goldstein, Charlie Kaufman, and Butler Lamp-

son, The digital distributed system security architecture, 12th National

Computer Security Conference, vol. 95, 1989.

[GHW11] Matthew Green, Susan Hohenberger, and Brent Waters, Outsourcing

the decryption of ABE ciphertexts, 20th USENIX Security Sympo-

sium, 2011.

[GJPS08] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai,

Bounded ciphertext policy attribute based encryption, 35th Inter-

national Colloquium on Automata, Languages and Programming,

ICALP 2008 (Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,

Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,

eds.), Lecture Notes in Computer Science, vol. 5126, Springer, 2008,

pp. 579–591.

[Gol06] Dieter Gollmann, Computer security, 2nd ed., John Wiley & Sons

Ltd, 2006, pp 52ff.

[GPS08] Steven D. Galbraith, Kennth G. Paterson, and Nigel P. Smart, Pair-

ings for cryptographers, Discrete Applied Mathematics 156 (2008),

no. 16, 3113–3121.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters,

Attribute-based encryption for fine-grained access control of encrypted

151

Bibliography

data, ACM Conference on Computer and Communications Security

(Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,

eds.), ACM, 2006, pp. 89–98.

[IDS02] Takeshi Imamura, Blair Dillaway, and Ed Simons, XML encryption

syntax and processing, Tech. report, W3C Recommendation, http:

//www.w3.org/TR/xmlenc-core/, 2002.

[Ini02] ODRL Initiative, Open Digital Rights Language (ODRL) Specification,

August 2002, Version 1.1, http://odrl.net/1.1/ODRL-11.pdf.

[IOIO07] Piseth Ith, Yoshihito Oyama, Atsuo Inomata, and Eiji Okamoto,

Implementation of ID-based signature in RFID system, Asian Pacific

Conference on Communications 2007, APCC, IEEE, 2007, pp. 233–

236.

[JK10] Pascal Junod and Alexandre Karlov, An efficient public-key attribute-

based broadcast encryption scheme allowing arbitrary access policies,

10th ACM DRM Workshop, 2010.

[Jou00] Antoine Joux, A one round protocol for tripartite Diffie-Hellman, 4th

International Symposium on Algorithmic Number Theory, ANTS-IV

(Wieb Bosma, ed.), Lecture Notes in Computer Science, vol. 1838,

Springer, 2000, pp. 385–394.

[JSGI09] Meiko Jensen, Jörg Schwenk, Nils Gruschka, and Luigi Lo Iacono,

On technical security issues in cloud computing, IEEE International

Conference on Cloud Computing, CLOUD ’09, IEEE, 2009, pp. 109–

116.

[KC08] Ramaro Kanneganti and Prasad Chodavarapu, SOA security, Man-

ning Publications Co., 2008.

[Klu88] Doug Klunder, Hungarian naming conventions, Tech.

report, Microsoft, http://www.byteshift.de/msg/

hungarian-notation-doug-klunder, January 1988.

152

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://odrl.net/1.1/ODRL-11.pdf
http://www.byteshift.de/msg/hungarian-notation-doug-klunder
http://www.byteshift.de/msg/hungarian-notation-doug-klunder

Bibliography

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters, Predicate encryption

supporting disjunctions, polynomial equations, and inner products,

27th Annual International Conference on the Theory and Applications

of Cryptographic Techniques, EUROCRYPT 2008 (Nigel P. Smart,

ed.), Lecture Notes in Computer Science, vol. 4965, Springer, 2008,

pp. 146–162.

[KTO06] Yuto Kawahara, Tsuyoshi Takagi, and Eiji Okamoto, Efficient imple-

mentation of tate pairing on a mobile phone using java, International

Conference on Computational Intelligence and Security, CIS 2006

(Yuping Wang, Yiu ming Cheung, and Hailin Liu, eds.), Lecture

Notes in Computer Science, vol. 4456, Springer, 2006, pp. 396–405.

[KTS07] Apu Kapadia, Patrick P. Tsang, and Sean W. Smith, Attribute-based

publishing with hidden credentials and hidden policies, 14th Annual

Network and Distributed System Security Symposium, NDSS 2007,

2007, pp. 179–192.

[LbHC10] Song Luo, Jian bin Hu, and Zhong Chen, Implementing attribute-based

encryption in web services, IEEE International Conference on Web

Services, ICWS 2010, IEEE Computer Society, 2010, pp. 658–659.

[LC10] Zhen Liu and Zhenfu Cao, On efficiently transferring the linear secret-

sharing scheme matrix in ciphertext-policy attribute-based encryption,

Tech. report, http://eprint.iacr.org/2010/374.pdf, 2010.

[LCbHC11] Song Luo, Yu Chen, Jian bin Hu, and Zhong Chen, New fully secure

hierarchical identity-based encryption with constant size ciphertexts,

7th Information Security Practice and Experience Conference, ISPEC

2011 (Feng Bao and Jian Weng, eds.), Lecture Notes in Computer

Science, vol. 6672, Springer, 2011, pp. 55–70.

[LCLS08] Huang Lin, Zhenfu Cao, Xiaohui Liang, and Jun Shao, Secure thresh-

old multi authority attribute based encryption without a central au-

thority, 9th International Conference on Cryptology in India, IN-

DOCRYPT 2008 (Dipanwita Roy Chowdhury, Vincent Rijmen, and

153

http://eprint.iacr.org/2010/374.pdf

Bibliography

Abhijit Das, eds.), Lecture Notes in Computer Science, vol. 5365,

Springer, 2008, pp. 426–436.

[LCLX09] Xiaohui Liang, Zhenfu Cao, Huang Lin, and Dongsheng Xing, Prov-

ably secure and efficient bounded ciphertext policy attribute based

encryption, 4th ACM Symposium on Information, Computer and

Communications Security, ASIACCS 2009 (Wanqing Li, Willy Susilo,

Udaya Kiran Tupakula, Reihaneh Safavi-Naini, and Vijay Varadhara-

jan, eds.), ACM, 2009, pp. 343–352.

[LK07] Kelvin Lawrence and Chris Kaler, WS SecurityPolicy 1.2,

2007, Version 1.2, http://docs.oasis-open.org/ws-sx/

ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.

html.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki

Takashima, and Brent Waters, Fully secure functional encryption:

Attribute-based encryption and (hierarchical) inner product encryp-

tion, 29th Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, EUROCRYPT 2010 (Henri

Gilbert, ed.), Lecture Notes in Computer Science, vol. 6110, Springer,

2010, pp. 62–91.

[LRZW09] Jin Li, Kui Ren, Bo Zhu, and Zhiguo Wan, Privacy-aware attribute-

based encryption with user accountability, 12th International Confer-

ence on Information Security, ISC 2009 (Pierangela Samarati, Moti

Yung, Fabio Martinelli, and Claudio Agostino Ardagna, eds.), Lecture

Notes in Computer Science, vol. 5735, Springer, 2009, pp. 347–362.

[LW11] Allison Lewko and Brent Waters, Decentralizing attribute-based en-

cryption, 30th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, EUROCRYPT 2011 (Ken-

neth G. Paterson, ed.), Lecture Notes in Computer Science, vol. 6632,

Springer, 2011, pp. 568–588.

[LWG11] Jun’e Liu, Zhiguo Wan, and Ming Gu, Hierarchical attribute-set

based encryption for scalable, flexible and fine-grained access control

154

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html

Bibliography

in cloud computing, 7th Information Security Practice and Experience

Conference, ISPEC 2011 (Feng Bao and Jian Weng, eds.), Lecture

Notes in Computer Science, vol. 6672, Springer, 2011, pp. 98–107.

[Lyn] Ben Lynn, Pbc library, http://crypto.stanford.edu/pbc/.

[Lyn07] Ben Lynn, On the implementation of pairing-based cryptosystems,

Ph.D. thesis, Stanford University, 2007.

[Mat70] David W. Matula, On the number of subtrees of a symmetric n-

ary tree, SIAM Journal on Applied Mathematics 18 (1970), no. 3,

668–703.

[MK10] Sascha Müller and Stefan Katzenbeisser, A new DRM architecture

with strong enforcement, Fifth International Conference on Availabil-

ity, Reliability and Security, ARES 2010, IEEE Computer Society,

2010, pp. 397–403.

[MK11] Sascha Müller and Stefan Katzenbeisser, Hiding the policy in cryp-

tographic access control, Tech. report, http://eprint.iacr.org/

2011/255.pdf, 2011.

[MKE08] Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert, Distributed

attribute-based encryption, 11th International Conference on Infor-

mation Security and Cryptography, ICISC 2008 (Pil Joong Lee and

Jung Hee Cheon, eds.), Lecture Notes in Computer Science, vol. 5461,

Springer, 2008, pp. 20–36.

[MKE09] Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert, On multi-

authority ciphertext-policy attribute-based encryption, Bulletin of the

Korean Mathematical Society (B-KMS) 46 (2009), no. 4, 803–819.

[Mot07] Motodev, Introduction of basic concepts in OMA DRM v1.0, Techni-

cal article, Motorola, Inc., July 2007, http://developer.motorola.

com/docstools/articles/OMA_DRM.pdf/, Retrieved 14/02/11.

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone, Reduc-

ing elliptic curve logarithms to logarithms in a finite field, IEEE

Transactions on Information Theory 39 (1993), no. 5, 1639–1646.

155

http://crypto.stanford.edu/pbc/
http://eprint.iacr.org/2011/255.pdf
http://eprint.iacr.org/2011/255.pdf
http://developer.motorola.com/docstools/articles/OMA_DRM.pdf/
http://developer.motorola.com/docstools/articles/OMA_DRM.pdf/

Bibliography

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech, Revocation and tracing

schemes for stateless receivers, 21st Annual International Cryptology,

CRYPTO 2001 (Joe Kilian, ed.), Lecture Notes in Computer Science,

vol. 2139, Springer, 2001, pp. 41–62.

[NRT99] Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos,

Finding smallest supertrees under minor containment, 25th Interna-

tional Workshop on Graph-Theoretic Concepts in Computer Science,

WG 1999 (Peter Widmayer, Gabriele Neyer, and Stephan Eidenbenz,

eds.), Lecture Notes in Computer Science, vol. 1665, Springer, 1999,

pp. 303–312.

[NYO09] Takashi Nishide, Kazuki Yoneyama, and Kazuo Ohta, Attribute-

based encryption with partially hidden ciphertext policies, IEICE

Transactions 92-A (2009), no. 1, 22–32.

[OAS06] OASIS, WS-security core specification 1.1, Tech. report,

http://www.oasis-open.org/committees/download.php/16790/

wss-v1.1-spec-os-SOAPMessageSecurity.pdf, 2006.

[Pas11] Rafael Pass, Limits of provable security from standard assumptions,

43rd ACM Symposium on Theory of Computing, STOC 2011 (Lance

Fortnow and Salil P. Vadhan, eds.), ACM, 2011, pp. 109–118.

[RB09] Kaspar Riesen and Horst Bunke, Approximate graph edit distance

computation by means of bipartite graph matching, Image Vision

Comput. 27 (2009), no. 7, 950–959.

[RSA11] RSA, Information-centric security, http://www.rsa.com/node.

aspx?id=3151, 2011, retrieved 09/02/11.

[RV06] Francesc Rosselló and Gabriel Valiente, An algebraic view of the rela-

tion between largest common subtrees and smallest common supertrees,

Theoretical Computer Science 362 (2006), 33–53.

[SBC+07] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong

Song, and Adrian Perrig, Multi-dimensional range query over en-

156

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.rsa.com/node.aspx?id=3151
http://www.rsa.com/node.aspx?id=3151

Bibliography

crypted data, IEEE Symposium on Security and Privacy, S&P 2007,

IEEE, 2007, pp. 350–364.

[SCA06] Michael Scott, Neil Costigan, and Wesam Abdulwahab, Implementing

cryptographic pairings on smartcards, 8th International Workshop

on Cryptographic Hardware and Embedded Systems, CHES 2006

(Louis Goubin and Mitsuru Matsui, eds.), Lecture Notes in Computer

Science, vol. 4249, Springer, 2006, pp. 134–147.

[SD02] Andrei Serjantov and George Danezis, Towards an information theo-

retic metric for anonymity, Privacy Enhancing Technologies (Roger

Dingledine and Paul F. Syverson, eds.), Lecture Notes in Computer

Science, vol. 2482, Springer, 2002, pp. 41–53.

[Sho97] Victor Shoup, Lower bounds for discrete logarithms and related prob-

lems, 14th Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, EUROCRYPT 1997 (Walter

Fumy, ed.), Lecture Notes in Computer Science, vol. 1233, Springer,

1997, pp. 256–266.

[SKSC09] Piotr Szczechowiak, Anton Kargl, Michael Scott, and Martin Collier,

On the application of pairing based cryptography to wireless sensor

networks, Second ACM Conference on Wireless Network Security,

WISEC 2009 (David A. Basin, Srdjan Capkun, and Wenke Lee, eds.),

ACM, 2009, pp. 1–12.

[SS10] Amit Sahai and Hakan Seyalioglu, Worry-free encryption: functional

encryption with public keys, 17th ACM Conference on Computer and

Communications Security, CCS 2010 (Ehab Al-Shaer, Angelos D.

Keromytis, and Vitaly Shmatikov, eds.), ACM, 2010, pp. 463–472.

[Sti92] Douglas R. Stinson, An explication of secret sharing schemes, Des.

Codes Cryptography 2 (1992), no. 4, 357–390.

[SW05] Amit Sahai and Brent Waters, Fuzzy identity-based encryption, 24th

Annual International Conference on the Theory and Applications

of Cryptographic Techniques, EUROCRYPT 2005 (Ronald Cramer,

157

Bibliography

ed.), Lecture Notes in Computer Science, vol. 3494, Springer, 2005,

pp. 457–473.

[Tho09] Simon Thorpe, IRM, ERM, EDRM, DRM! What does it all mean?,

Tech. report, Oracle, 2009, Oracle IRM blog, http://blogs.oracle.

com/irm/entry/irm_erm_edrm_drm_what_does_it, retrieved 20.

July 2011.

[Val05] Gabriel Valiente, Constrained tree inclusion, J. Discrete Algorithms

3 (2005), no. 2-4, 431–447.

[W3C06] W3C, Web services policy 1.2 - framework (WS-policy), April 2006,

http://www.w3.org/Submission/WS-Policy/.

[W3C07] W3C, Simple object access protocol (SOAP) 1.2, 2007, http://www.

w3.org/TR/soap/.

[Wat11] Brent Waters, Ciphertext-policy attribute-based encryption: An ex-

pressive, efficient, and provably secure realization, 14th International

Conference on Practice and Theory of Public Key Cryptography,

PKC 2011 (Dario Catalano, Nelly Fazio, Rosario Gennaro, and Anto-

nio Nicolosi), Lecture Notes in Computer Science, vol. 6571, Springer,

2011, pp. 53–70.

[YAHK11] Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and

Noboru Kunihiro, Generic constructions for chosen-ciphertext secure

attribute based encryption, 14th International Conference on Practice

and Theory in Public Key Cryptography, PKC 2011 (Dario Catalano,

Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, eds.), Lecture

Notes in Computer Science, vol. 6571, Springer, 2011, pp. 71–89.

[YRL08] Shuyeng Yu, Kui Ren, and Wnjing Lou, Attribute-based content

distribution with hidden policy, 4th workshop on Secure Network

Protocols, NPSEC 2008, 2008.

[Yu10] Shucheng Yu, Data sharing on untrusted storage with attribute-based

encryption, Ph.D. thesis, Worcester Polytechnic Institute, July 2010.

158

http://blogs.oracle.com/irm/entry/irm_erm_edrm_drm_what_does_it
http://blogs.oracle.com/irm/entry/irm_erm_edrm_drm_what_does_it
http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/

Bibliography

[YWRL10a] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou, Achieving se-

cure, scalable, and fine-grained data access control in cloud computing,

29th IEEE International Conference on Computer Communications,

INFOCOM 2010, IEEE, 2010, pp. 534–542.

[YWRL10b] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou, Attribute

based data sharing with attribute revocation, 5th ACM Symposium

on Information, Computer and Communications Security, ASIACCS

2010 (Dengguo Feng, David A. Basin, and Peng Liu, eds.), ACM,

2010, pp. 261–270.

[ZFZ10] Jing Zhao, Dengguo Feng, and Zhenfeng Zhang, Attribute-based con-

ditional proxy re-encryption with chosen-ciphertext security, Global

Communications Conference, GLOBECOM 2010, IEEE, 2010, pp. 1–

6.

[ZH10] Zhibin Zhou and Dijiang Huang, On efficient ciphertext-policy at-

tribute based encryption and broadcast encryption: extended abstract,

in Al-Shaer et al. [ASKS10], pp. 753–755.

159

Sascha Müller

Wissenschaftlicher Werdegang

1999 – 2006 Studium der Informatik

TU Darmstadt, Darmstadt

2005 – 2006 Prakikant/Werkstudent im Bereich Smart Devices and Embedded Security

Fraunhofer SIT, Darmstadt

September 2006 Diplomarbeit Bewertung der Qualität von Unterschriften für

die biometrische Erkennung

Fraunhofer SIT, Darmstadt

2006 – 2011 Wissenschaftlicher Mitarbeiter / Doktorand in den Fachgebieten

Sicherheit in der Informationstechnik und Security Engineering

TU Darmstadt, Darmstadt

161

	Introduction
	Introduction
	Basics
	Access Control
	Attribute-Based Encryption
	Mathematical Foundations
	Pairing-Based Cryptography
	Implementations

	CP-ABE Proofs
	CPA Security Game
	The GDHE Problem

	CP-ABE Constructions
	Distributed Attribute-Based Encryption
	Motivation
	DABE Intuition
	Formal Description
	DABE Algorithms
	Security Model

	Construction
	Description
	CPA-Security
	Implementation and Performance

	Enhancing Waters' Construction
	Modified Construction
	CPA-Security
	Performance

	Conclusion

	Hiding the Policy
	Introduction
	Towards Policy Privacy
	Related Work

	Syntax Tree Majors
	Building the System
	Setup and Key Generation
	Encryption
	Decryption

	Discussion
	Anonymity of the Policy
	Security and Policy Anonymity
	Reducing the Size of the Ciphertext

	Conclusion

	Applications
	Cryptographic Enforcement of DRM Licenses
	Introduction
	Framework
	Processing ODRL Expressions
	Content Protection
	Parsing Agreements
	Path Conversion
	Representing ODRL Rules by Attributes
	Example

	Implementation
	Conclusion

	Attribute-Based Encryption in SOA
	Introduction
	Related Work

	Attributes
	Unified Naming Scheme
	Revocation

	Encryption
	Incorporating CP-ABE into WS-Security
	Preparing an Encryption

	Decryption
	Preparing a Decryption
	Access Gates

	Description of System
	Central Authority
	Attribute Authority
	Access Gates
	Implementation

	Conclusion

	Summary
	Conclusion
	List of Figures
	Bibliography

