
Fully Realistic Multi-Criteria

Timetable Information Systems

Vom Fachbereich Informatik der

Technische Universität Darmstadt

zur Erlangung des akademischen Grades eines

Dr. rer. nat.

genehmigte Dissertation

von Herrn Dipl.-Inf.

Mathias Schnee

geboren am 14.07.1979 in Dernbach

Referent: Prof. Dr. Karsten Weihe

Koreferent: Prof. Dr. Matthias Müller-Hannemann

Datum der Einreichung: 08.09.2009

Tag der mündlichen Prüfung: 29.10.2009

Darmstadt, 2009

Hochschulkennzi�er: D-17

Abstract

Millions of people use public transportation and consult electronic timetable informa-
tion systems. A customer selects from the connections offered by the system according
to personal preferences. The chosen connection is typically a compromise based on the
importance of several criteria, including departure and arrival time, travel time, comfort
and ticket cost. Consequently, multi-criteria optimization should be used to deliver “at-
tractive” alternatives. We developed the concept of advanced Pareto optimality as an
evolution of the classical Pareto optimality approach. It delivers more alternatives and
removes unattractive solutions from the results to suit the notion of attractive connections
for all potential customers.

Realistic modeling of the search for attractive connections leads to shortest-path al-
gorithms. Fast search algorithms are needed to answer customer requests in only a few
milliseconds since the schedules are modeled as large graphs (several hundred thousand
edges and nodes). The graphs are either time-expanded or time-dependent to model the
dimension of time.

In contrast to the majority of scientific work on the subject, our approach is fully
realistic without simplifying assumptions. We extended the time-expanded graph model
to an exact representation satisfying all constraints of a real schedule. Based on a general-
ization of Dijkstra’s shortest-path algorithm, we developed our full-fledged multi-criteria
timetable information system MOTIS (Multi Objective Traffic Information System). It
delivers valid connections according to the principle of advanced Pareto optimality. A cus-
tomer may actually buy a ticket for the connections determined by our system. Further-
more, we also explored the time-dependent model and built a prototype system working
on that model as a proof of concept.

We also investigated several additional criteria that had not been considered before,
for example special offers (reduced ticket cost under certain conditions, e.g. based on the
availability of contingents) or the reliability of interchanges, a measure of how likely it is
to catch all connecting trains of a trip. Moreover, we present approaches to the search for
night trains with the additional objective of ensuring reasonable sleeping times without
the need for train changes. Our algorithms respecting these criteria are fast and deliver
attractive alternatives.

We explored and adapted existing speed-up techniques and developed new ones suit-
able for our scenario. In an extensive computational study we discuss the cost of regarding
the criteria, the effect of various parameterizations of our algorithm, and the impact of
the developed speed-up techniques. Applying these, we achieve runtimes of about one
quarter of a second on average and solve most of the queries (95%) in less than a second.

Delays occur quite frequently in public transportation. They may invalidate connec-
tions as interchanges become infeasible. Current systems do not take that into account.
At the utmost, they add changed departure or arrival times to connections calculated

i

ii Abstract

according to the static schedule. By incorporating information about delays into our
model, we are able to deliver valid connections. We propose a multi-server architecture
that allows several search servers to be updated by a central server distributing delay
data. The simulation of a whole day with more than 6 million status messages takes less
than two minutes. In our architecture, update phases may be scheduled to guarantee the
availability of service at all times.

We have built user interfaces and visualization tools for our system. Additionally, we
have created a new service: proactive route guidance. Within this service a planned trip
is registered in CoCoAS (our Connection Controller and Alternatives System). While the
passenger travels, the system continously checks the status of the connection. As soon as
the system determines that the connection will break, it offers alternatives. By computing
these alternatives as early as possible, an asset of our system, more and better options
can be explored.

Zusammenfassung

Millionen Menschen nutzen täglich öffentliche Verkehrsmittel. Die Deutsche Bahn AG
beförderte in den Jahren 2007 und 2008 jeweils über 1,4 Milliarden Passagiere, welche
pro Jahr über 70 Milliarden Personenkilometer zurücklegteni [Deu09]. Herkömmliche
elektronische Fahrplanauskunftssysteme berechnen mögliche Verbindungen für Kunden.
Der Anbieter der Auskunft für die Deutsche Bahn AG, HaCon,ii gibt an, mehr als 20
Millionen Verbindungen täglich zu berechnen [Haf09]. Sie werden bislang unter Angabe
der Abfahrts- und Ankunftszeit, der Reisezeit, der Anzahl der Umstiege und des Preises
dem Nutzer präsentiert. Unter den angebotenen Alternativen wählt der Kunde nach
individuellen Gesichtspunkten, basierend auf zeitlichen Rahmenbedingungen, Komfort
und Budget. Da diese Entscheidung auf natürliche Weise multikriteriell abläuft, sollten
Fahrplanauskünfte auch nach multikriteriellen Ansätzen berechnet werden, um möglichst
”attraktive Alternativen” anzubieten. Wir haben das Konzept advanced Pareto Optimali-
tät als eine Weiterentwicklung des klassischen Pareto-Prinzips eingeführt. Unser Konzept
liefert nun mehr geeignete Verbindungen und unterdrückt dabei gleichzeitig unpassende
Lösungen des klassischen Ansatzes, um der Zielvorstellung attraktiver Verbindungen für
alle potenziellen Kunden gerecht zu werden.

Die realistische Modellierung der Suche nach Verbindungen auf Bahnfahrplänen führt
zu Kürzeste-Wege-Algorithmen. Um Kundenanfragen in wenigen Millisekunden beant-
worten zu können, werden schnelle Algorithmen benötigt, da die Modellierung des Fahr-
plans zu großen Graphen mit mehreren hunderttausend Knoten und Kanten führt. Diese
Graphen sind entweder zeit-expandiert oder zeit-abhängig, um die zeitliche Komponente
des Fahrplans abzubilden.

Im Gegensatz zu den meisten wissenschaftlichen Arbeiten zum Thema haben wir
ein vollkommen realistisches Modell ohne jegliche vereinfachenden Annahmen entwickelt.
Dazu haben wir zum einen das zeit-expandierte Graphenmodell erweitert, um Fahrpläne
wirklichkeitsgetreu und ohne Einschränkungen abzubilden, und zum anderen einen geeig-
neten Algorithmus entworfen, eine Generalisierung von Dijkstra’s Kürzeste-Wege-Algo-
rithmus. Auf dieser Basis beruht unser multikriterielles Fahrplanauskunftssystem MOTIS
(Multi Objective Traffic Information System). Es berechnet nach dem Prinzip der ad-
vanced Pareto Optimalität gültige Verbindungen, für die ein Kunde am Bahnschalter ein
reguläres Ticket erwerben kann. Darüber hinaus haben wir das zeit-abhängige Modell
erforscht und einen ebenfalls vollkommen realistischen Prototypen auf Grundlage dieses
Graphenmodells entwickelt.

iAnzahl der Passagiere mal durchschnittliche Reiselänge. Zahlen für Fern- und Regionalverkehr, ohne
Stadtverkehre.

iiDas Fahrplanauskunftssystem HAFAS von HaCon wird in 16 Ländern eingesetzt, darunter Deutsch-
land, England, Frankreich und die Schweiz.

iii

iv Zusammenfassung

Außerdem haben wir einige zusätzliche Kriterien untersucht, die bis dato nicht berück-
sichtigt worden sind, wie zum Beispiel Angebotspreise (d.h. reduzierte Tickets zu beson-
deren Konditionen, z.B. nach der Verfügbarkeit von Kontingenten) oder die Zuverlässig-
keit von Umstiegen, als ein Maß zur Bewertung der Wahrscheinlichkeit, alle Anschlusszüge
einer Verbindung auch tatsächlich erreichen zu können (interessant bei Zugverspätungen).
Zusätzlich gelang es uns zwei unterschiedliche Herangehensweisen für die Suche nach
Nachtzugverbindungen zu entwerfen. In diesem Anwendungsfall geht es darum, ausrei-
chend lange Teilstrecken in Nachtzügen ohne hinderliche Umstiege zu verbringen. Unsere
Algorithmen, die diese Kriterien berücksichtigen, sind schnell und ermitteln ansprechende
Alternativen.

Die Suche unter mehreren Zielkriterien auf zeit-expandierten Graphen ist deutlich
anspruchsvoller als z.B. auf statischen Straßengraphen. Wir haben verschiedene exis-
tierende Beschleunigungstechniken untersucht und geeignete an unser Szenario angepasst,
sowie neue Techniken entwickelt. In einer ausführlichen Studie diskutieren wir sowohl
die Kosten der Kriterien im Einzelnen und in Kombination, als auch den Effekt unter-
schiedlicher Parametrisierungen und den Einfluss der Beschleunigungstechniken. Damit
konnten wir durchschnittliche Laufzeiten im Bereich einer Viertelsekunde (275ms) pro
Anfrage erzielen. Die meisten (95%) der Verbindungsanfragen können in weniger als
einer Sekunde beantwortet werden.

Im öffentlichen Verkehrswesen treten häufig Verspätungen aufgrund unterschiedlicher
Ursachen auf. Diese können Verbindungen unmöglich werden lassen, indem Anschlüsse
brechen, da z.B. ein Anschlusszug nicht auf einen Zubringer warten kann. Aktuell einge-
setzte Systeme berücksichtigen dies nicht. Wenn Verspätungsinformationen überhaupt
einbezogen werden, dann werden sie oftmals einfach an Verbindungen, die auf Basis des
Originalfahrplans berechnet wurden, angehängt. Hierbei kann es allerdings zur Beauskunf-
tung nicht mehr realisierbarer Umstiege kommen. Verspätungsinformationen wurden von
uns daher so in unser System integriert, dass im Falle von Zugverspätungen gültige
Auskünfte anhand der aktuellen Verspätungslage berechnet werden. Wir haben eine
Architektur mit mehreren Servern entwickelt, die den Einsatz eines zentralen Servers
erlaubt, der die Verspätungsinformationen an mehrere Auskunftsserver verteilt. Die
Simulation des Verspätungsaufkommens eines gesamten Tages mit mehr als 6 Millionen
Verspätungsmeldungen ist so in unter zwei Minuten möglich. Alle notwendigen Aktuali-
sierungsphasen, um die aktuelle Situation abzubilden, nehmen pro Auskunftsserver nur
0,1% des Tages in Anspruch und können so eingeplant werden, dass die durchgängige
Verfügbarkeit des Auskunftsdienstes garantiert ist.

Wir haben darüber hinaus Nutzerschnittstellen und Werkzeuge zur Visualisierung im-
plementiert und zusätzlich einen neuen Dienst geschaffen. Dieser erlaubt es, eine geplante
Reise in unserem System CoCoAS (Connection Controller and Alternatives System) zu
registrieren und von diesem fortwährend prüfen zu lassen. Sobald die Verbindung eine
große Verspätung aufweist, oder gar, im ungünstigsten Fall, unmöglich wird, bietet unser
System alternative Verbindungen an. Diese werden nicht erst dann berechnet, wenn ein
Umstieg bereits gescheitert ist und der Kunde sich ohne Anschlusszug am Umstiegsbahn-
hof befindet, sondern bereits sobald eine solche Situation absehbar wird. Daher bestehen
meist mehrere und bessere Alternativen, über die unser System Auskunft geben kann.

Contents

Abstract i

German Abstract iii

Introduction 1

1 Setting 7

1.1 Terminology . 7

1.2 Queries . 8

1.2.1 Specification of Queries . 8

1.2.2 Connections Matching a Query . 9

1.3 Pre-Trip / On-Trip Searches . 9

1.4 Fully Realistic Model . 10

2 Multi-Criteria Optimization 11

2.1 Criteria . 11

2.2 Pareto Optimality . 11

2.3 Advanced Pareto Optimality . 13

2.3.1 Relaxed Pareto Dominance . 13

2.3.2 Tightened Dominance . 15

2.3.3 Advanced Pareto Dominance . 16

2.4 Applying Advanced Pareto Dominance . 20

3 Search Algorithms 21

3.1 Introduction . 21

3.2 Dijkstra’s Algorithm . 22

v

vi Contents

3.3 Data Structures Speeding Up Dijkstra’s Algorithm 23

3.3.1 k-heap Implementation . 24

3.3.2 Binary Heap Implementation . 26

3.3.3 Fibonacci Heap Implementation 26

3.3.4 Implementation Using Dial’s Data Structure 27

3.3.5 Priority Queues without decreaseKey-Operation 28

3.3.6 Remarks on Data Structures and Shortest Path Search 29

3.4 The Multi-Criteria Version . 30

3.4.1 Problem Definition . 30

3.4.2 Number of Pareto Optimal Solutions (worst-case) 31

3.4.3 Tractability and State of the Art 31

3.4.4 A Generalization of Dijkstra’s Algorithm 32

3.4.5 Modifications . 34

4 Graph Models 35

4.1 The Basic Time-Expanded Model . 35

4.2 The Basic Time-Dependent Model . 36

4.3 Non-Negligible Interchange Times . 37

4.3.1 Extending the Time-Expanded Graph 37

4.3.2 Extending the Time-Dependent Graph 38

4.4 Discussion: Time-Expanded Vs. Time-Dependent Models 40

5 The MOTIS Algorithm 41

5.1 The Graph Model of MOTIS . 41

5.1.1 Realistic Interchange Rules . 41

5.1.2 Traffic Days . 41

5.1.3 Footpaths . 42

5.1.4 Edge Lengths for the Criteria . 43

5.1.5 Attributes NotIn/NotOut . 44

5.2 Algorithm Refinements . 45

5.2.1 Realization of On-trip/Pre-trip Searches 45

5.2.2 Meta Stations and Source-/Target-Equivalents 45

5.2.3 Attribute Requirements and Class Restrictions 46

Contents vii

5.3 Implementation Details . 46

5.3.1 Edge Hierarchy . 46

5.3.2 Encoding Train Information . 47

5.3.3 Lazy Initialization and Reset . 47

5.4 History of the MOTIS Algorithm . 48

5.5 The Algorithm . 48

5.6 MOTIS Search GUI . 50

6 Additional Criteria and Special Search Forms 51

6.1 Seat Reservation . 51

6.2 Search for Special Offers . 52

6.2.1 Introduction . 52

6.2.2 Modeling Regular Fares and Special Offers 53

6.2.3 Details on the Search Algorithm 57

6.3 Reliability of Transfers . 58

6.3.1 Reliability Measure . 58

6.3.2 Good Measure = Good Additional Criterion? 61

6.3.3 Refinements . 63

6.3.4 Example Result Set . 65

6.4 Sleeping Time in Night Trains . 66

6.4.1 Introduction and Motivation . 66

6.4.2 Attractive Night Train Connections 68

6.4.3 Approaches for Night Train Search 69

7 Delays 73

7.1 Introduction and Motivation . 73

7.2 Up-To-Date Status Information . 76

7.2.1 Primary Delay Information . 76

7.2.2 Secondary Delays . 76

7.3 System Architecture . 77

7.4 Dependency Graph . 79

7.4.1 Graph Model . 79

7.4.2 Computation on the Dependency Graph 81

viii Contents

7.5 Updating the Search Graph . 82

7.6 Traffic Days . 84

7.6.1 Memory Consumption Issues . 84

7.6.2 Moving from One Day to the Next 85

7.7 Evaluation of the Prototype . 86

7.7.1 Overall Performance and Waiting Profiles 87

7.7.2 Multi-Server Performance . 90

7.8 Conclusions and Future Work . 92

8 Speed-Up Techniques for Multi-Criteria Search 95

8.1 Speeding up Dijkstra’s Algorithm . 95

8.1.1 Early Termination . 96

8.1.2 Goal-Direction / Lower Bounding 96

8.1.3 Priority Queues . 97

8.1.4 Reach Based . 97

8.1.5 Bidirectional Search . 98

8.1.6 Arc Flags and Geometric Containers 98

8.1.7 Hierarchical Techniques . 100

8.1.8 Combinations . 100

8.1.9 Steps Towards Our Scenario . 101

8.2 Multi-Criteria Approach . 102

8.3 Goal-Directed Search . 102

8.4 Domination by Labels at the Terminal . 105

8.5 Lower bounds . 106

8.5.1 The Station Graph for Lower Bounds 106

8.5.2 Interchange Graph . 107

8.5.3 Domination by Labels at the Terminal 109

8.5.4 Usage in Goal-Directed Search . 109

8.5.5 Limiting the Search Horizon . 109

8.6 Skipping Nodes in the Graph or Search 111

8.6.1 Chaining Change-Arrival / Change-Departure Nodes 111

8.6.2 Skipping Departure Nodes . 112

8.6.3 Bypassing Departure Nodes . 112

Contents ix

8.7 Important Station Heuristics . 114

8.7.1 Skipping Nodes at Unimportant Stations 114

8.7.2 Shortcuts in the Graph . 115

8.8 The Priority Queue . 116

8.8.1 Smaller Relation for Priority Queues 116

8.8.2 Different Priority Queue Types . 117

8.8.3 Reordering the PQ . 117

8.8.4 Avoid Inserting Minimum Labels 118

8.9 Edge-Blocking . 118

8.9.1 Mass Transportation Heuristic . 118

8.9.2 Route Blocking . 119

8.9.3 Shortcut Blocking . 120

8.10 Bitonic Search . 120

8.11 Speed-Up Techniques and Graph Updates 121

8.12 MOTIS Algorithm with Speed-Up Techniques 122

8.12.1 Changes to the Graph . 122

8.12.2 Changes to the Algorithm . 122

8.13 Further Thoughts on Speed-Up Techniques 123

8.13.1 Ideas for Bidirectional Search . 123

8.13.2 Adapting Multi-Criteria SHARC 124

9 Computational Study 125

9.1 Computational Study on Special Offers 126

9.1.1 Computational Setup . 126

9.1.2 Searching for Multiple Tariffs . 127

9.1.3 Fast Search for Fixed Price Connections 129

9.2 Computational Study on Night Train Search 130

9.2.1 Computational Setup . 130

9.2.2 Experiments . 131

9.3 Computational Studies with Advanced Dominance 133

9.4 Computational Setup . 134

9.4.1 Testing Environment . 134

9.4.2 Measures and Test Procedures . 134

x Contents

9.5 Advanced Pareto Dominance . 137

9.5.1 Pareto to Relaxed Pareto to Advanced Pareto 137

9.5.2 Tests with Dominance . 139

9.6 Goal-Direction and Domination by Terminal 143

9.7 Lower Bounds . 145

9.7.1 Station Graphs . 145

9.7.2 Interchange Graph . 146

9.7.3 Summary Lower Bounds . 148

9.8 Priority Queue . 148

9.8.1 Priority Queue Type and “Smaller”-Relation 148

9.8.2 Weight for Interchanges in Goal-Direction 149

9.8.3 Reordering the Priority Queue . 150

9.8.4 Decreasing the Number of Labels in the PQ 151

9.9 Reliability of Interchanges . 152

9.9.1 Number of Equivalence Classes . 152

9.9.2 Maximal Effective Reliability . 153

9.10 Heuristics . 153

9.10.1 Bitonic Search . 154

9.10.2 Mass Transportation . 154

9.10.3 Routes Blocking . 155

9.10.4 Important Stations . 156

9.10.5 Shortcuts . 158

9.10.6 Combination of the Four Heuristics: Important Station, Shortcuts,

Mass Transportation, and Routes 160

9.11 Detailed Figures for the Reference Version 161

9.11.1 Configuration . 161

9.11.2 Detailed Number Of Significant Operations 161

9.11.3 Number of Optima . 162

9.12 Significant Operations . 163

9.13 Analysis of Heavy-Weight Searches . 163

9.14 Example Connections . 164

9.15 Conclusion . 165

Contents xi

10 A Time-Dependent Timetable Information System 167

10.1 Realistic Time-Dependent Graph Model 168

10.1.1 Basic Time-Dependent Model . 168

10.1.2 Transfers . 169

10.1.3 Fully Realistic Model . 170

10.2 Multi-Criteria Dijkstra and Speed-Up Techniques 171

10.2.1 Algorithm . 171

10.2.2 Speed-Up Techniques . 171

10.3 Computational Study . 172

10.3.1 Train Network and Test Cases . 172

10.3.2 Computational Environment . 172

10.3.3 Experiments . 172

10.4 Conclusions and Future Work . 177

11 Developed Software Tools 179

11.1 GUI Architecture . 179

11.1.1 MOTIS Backbone . 179

11.1.2 GUIs . 179

11.2 Search GUI . 179

11.3 Connection Controller and Alternatives System 181

11.4 Others . 185

11.5 System Architecture: The Big Picture . 186

12 Conclusion and Outlook 189

Appendix A: Transitivity 193

A.1 The Time Difference Formula . 193

A.2 The Hourly Wage Tightening . 197

Appendix B: Speed-Up Techniques 199

B.1 Lower Bounds . 199

B.2 Important Station and Shortcuts Heuristics 201

B.3 Search Space . 201

Appendix C: Curriculum Vitae 203

xii Contents

List of Algorithms 205

List of Tables 208

List of Figures 210

Bibliography 221

Introduction

Millions of people use public transportation every day. The federal German railroad com-
pany, Deutsche Bahn AG, transported 1.4 billion passengers and those traveled more than
70 billion person kilometersiii per year in 2007 and 2008 [Deu09]. Timetable information
systems are available either in the internet, in the form of ticket machines at stations,
or at a counter, where railway staff employ them to determine the desired connections
for customers. The company providing timetable information for Deutsche Bahn AG,
HaCon,iv claims that their servers calculate over 20 million connections per day [Haf09].
Realistic modeling of the search for attractive connections leads to shortest-path algo-
rithms. Fast search algorithms are needed to answer customer requests in only a few
milliseconds since the schedules are modeled as large graphs (several hundred thousand
edges and nodes). The graphs are either time-expanded or time-dependent to model the
dimension of time.

A customer decides which connection to select, according to personal preferences.
It is a multi-criteria choice based on: time, ticket cost, and number of interchanges.
Information systems present those values together with the itinerary. Then the user may
pick a connection suiting his desired travel time, comfort, and budget.

Surprisingly, previous scientific work has put little effort in true multi-criteria opti-
mization. Some systems simply minimize each of the criteria alone and deliver fastest,
most convenient (least number of interchanges) and cheapest connections. The price of a
connection has been neglected for a long time and only recently came into focus. These
connections only fit assumed purist customer profiles, concentrating on a single crite-
rion. However, customers usually do not have purist preferences. Rather, the typical
customer regards all of these criteria important, with different individual preferences.
Unfortunately, interesting compromises are not produced with this approach. For exam-
ple, sometimes a slightly slower connection than the fastest high-speed train is much less
expensive - and preferable over a slow alternative that uses only regional trains but is not
much cheaper.

Furthermore, the classical multi-criteria approach may be extended to produce a
higher number of alternatives which are even more attractive. Think of two connec-
tions that differ in travel time by just two minutes but depart half an hour apart from
each other, within the classical approach only the faster one is found. Additionally, we
may want to suppress obviously unattractive alternatives, e.g. one alternative that travels
1 hour longer but saves only 2 Euros.

We present an algorithm based on Dijkstra’s algorithm that computes shortest paths
on a suitably constructed time-expanded graph. It respects the multi-criteria nature of

iiipassengers times average travel length, long-distance and regional rail traffic without urban traffic
ivTheir system HAFAS is present in 16 countries, among them Germany, UK, France, and Switzerland.

1

2 Introduction

the problem and the aforementioned extensions to the classical multi-criteria approach.
Our algorithm is an exact multi-criteria algorithm optimizing the two criteria: travel time
and number of interchanges. Many railways employ complicated tariff rules that make
finding the cheapest connection really challenging. The algorithm has been extended to
efficiently search for various types of tariffs (regular fares and special offers). We illustrate
and emphasize the flexibility of the multi-criteria approach by adding new criteria. For
example, the reliability of transfers (i.e. how likely it is to catch all connecting trains of
a trip), and the search for night trains.

Still, in contrast to most other scientific work on the subject, our algorithm solves
the fully realistic timetable information problem. We do not make any simplifying as-
sumptions and satisfy all constraints of real schedules. The algorithm produces valid
connections for which a customer may actually buy a ticket.

In public transportation delays occur quite frequently. Research on timetable infor-
mation approaches that correctly treat delay information is still in its infancy. Current
practice is to determine connections according to the original schedule and add delay
information to the departure and arrival times, afterwards. In the process, invalid con-
nections may be reported as interchanges can break due to the delayed arrival of a train
in the chain. We have built a system that takes this information into account. It updates
the representation of the schedule according to the delays and delivers only valid con-
nections. Furthermore, our system is able to do more than just that, it also facilitates a
new service: proactive route guidance for planned itineraries, i.e. our system can confirm
whether the trip is still possible as planned. It continously checks the status, while the
passenger travels, and may offer alternatives as soon as the connection becomes highly
likely to break. By computing these alternatives as early as possible, and earlier than
without our system, more and better options can be explored.

We have a long-term cooperation with Deutsche Bahn AG in the field of timetable
information. They provided us with real-world schedules, rules of operation, meta data,
and real delay messages.

Our Contribution and Overview In this work we present our full-fledged, fully real-
istic timetable information system MOTIS (Multi Objective Traffic Information System).
We will discuss the core algorithm, the time-expanded graph model, and the chosen
multi-criteria approach. Besides, we explore additional criteria and the alternative time-
dependent graph model.

We also study the proper treatment of information about delays and outline the service
of proactive route guidance (status checks for connections and calculation of alternatives).
We propose a multi-server architecture to allow search servers to be updated on request
by a central server distributing delay information. This allows each search server to
be available 99.9% of the time and spend only the remaining tiny amount of time on
updates and maintenance. Amongst several search servers the update phases can easily
be scheduled to allow for permanent availability of the service.

The fully realistic model, the aim of multi-criteria optimization, and the consideration
of dynamical changes to the schedule due to delays are challenging. Straightforward
implementations require several minutes to answer queries for connections. We explored
and adapted existing and developed new speed-up techniques for our scenario to achieve
average runtimes of about one fourth of a second. We are able to solve 95% of the queries
in less than one second. Furthermore, we implemented user interfaces to the search engine
and the system to supervise connections and calculate alternatives.

Introduction 3

The thesis is organized as follows: We start by stating basic terminology and details
that have to be considered to make timetable information fully realistic. Moreover, we
define queries and properties of connections matching these queries in Chapter 1: Setting.

The general multi-criteria approach is introduced in Chapter 2: Multi-Criteria Opti-
mization. First, we explain the classical Pareto version. Then we enhance the approach
to relaxed Pareto by adding relaxation functions (to find the slightly slower but much
later connection from above, too). Finally, we present our extension to the concept of
advanced Pareto (removing unattractive solutions and improving the set of results by
defining trade offs, e.g. save x Euro by traveling at most y minutes longer).

Next, in Chapter 3: Search Algorithms, we introduce Dijkstra’s algorithm for single-
criterion shortest path search. We discuss various data structures for the algorithm,
generalize the algorithm and eventually present a multi-criteria version.

In Chapter 4: Graph Models, we describe the time-expanded and time-dependent graph
models suitable for the representation of schedules. Both of these models allow the appli-
cation of a shortest-path algorithm to find optimal train connections. The time-expanded
model represents each departure and arrival event of a train as a node. Edges with fixed
lengths represent traveling in trains, changing and waiting at stations. In the basic time-
dependent model there is only one node per station. The edges again encode traveling,
changing and waiting, but now one edge represents many possibilities to travel from one
station to another. The edge lengths are determined according to when they are used
and thus change over time.

The algorithmic core is explained in detail in Chapter 5: The MOTIS Algorithm. We
refine the algorithm from Chapter 3 to support the search for advanced Pareto optimal
connections and modify the time-expanded model from Chapter 4 to obtain a fully realistic
yet efficiently searchable graph. In Section 5.4 we give a brief overview of the history and
evolution of the MOTIS system.

Chapter 6: Additional Criteria and Special Search Forms, is devoted to additional cri-
teria. First, we show an illustrative example: seat reservation. Afterwards, in Section 6.2.2,
we present the search for different fare types. We discuss various regular fares and dis-
counts, including contingent based special offers like traveling for a reduced or fixed price
as long as a corresponding contingent is available in all used trains. The new concept of
the reliability of transfers, which is especially interesting in case of delays, is introduced in
Section 6.3, thereafter. We define a measurement for the reliability of transfers and show
how to extend the search to cover this criterion as well. At the end of the chapter, in
Section 6.4, we discuss the search for night trains, with the additional objective of ensur-
ing reasonable sleeping times without need for train changes. We present two approaches
to the search for night trains. One method enumerates all suitable night trains, which is
possible due to the small number of night trains to be considered for a query. The other
one models sleeping time as an additional criterion in our multi-criteria approach.

The consideration and integration of delay information is treated in Chapter 7: Delays.
Delay information is given as a permanent stream of status messages (over 6 million
messages per day, real data from our cooperation partner Deutsche Bahn). We show
how to propagate delays due to waiting connecting trains and how to manage the delay
information. A whole day can be simulated in less than two minutes. This makes the
task obviously manageable. Additionally, we address the issues of fast graph updates and
required adjustments to the graph model. A multi-server architecture and the benefit of
updating in batches is introduced there, as well.

4 Introduction

Chapter 8: Speed-Up Techniques for Multi-Criteria Search deals with speed-up tech-
niques. The main challenges are the realism of our model, the multi-criteria nature of
the problem (that requires a set of “optimal” connections), the schedule requiring a time-
expanded (or time-dependent) graph, the fact that real-world requests specify departure
or arrival intervals in times rather than single points, and the graph updates according
to delay information. After a concise overview on techniques for shortest path search
in general, we show how to adapt some of the techniques to our complex scenario and
develop some new techniques.

An extensive computational study follows in Chapter 9: Computational Study. We
evaluate the search forms for special offers and night trains and the concept of relaxed
Pareto dominance. From Section 9.3 onwards, we work with advanced Pareto optimality,
and thoroughly examine the speed-up techniques and influences of various aspects of the
algorithm (e.g. combinations of the different criteria, varying parameterizations, exact
and heuristic speed-up techniques, etc.).

Although we chose the time-expanded model for our algorithm, we also investigate
the time-dependent model. Our prototype based on that graph model is discussed in
Chapter 10: A Time-Dependent Timetable Information System.

Finally, in Chapter 11: Developed Software Tools we introduce our GUIs and visual-
ization tools. The two major topics are the MOTIS search GUI and CoCoAS (Connection
Controller and Alternatives System), our proactive route guidance system which handles
status updates of journeys and computation of alternatives in the presence of delays.

We close with a conclusion and an outlook in Chapter 12: Conclusion and Outlook.

Introduction 5

Acknowledgments

First of all, I would like to thank my supervisors, Karsten Weihe and Matthias Müller-
Hannemann. I appreciate their collaboration, guidance and impulses regarding my re-
search in general and this thesis in particular.

I am grateful towards our cooperation partner Deutsche Bahn and especially Wolfgang
Sprick and Christoph Blendinger for fruitful discussions, insights into the business, and
the supply of data: schedules, coordinates, status messages, and meta data.

I also enjoyed productive conversations with many researchers from other universi-
ties, most notably Annabell Berger (MLU Halle-Wittenberg), Daniel Delling, Dominik
Schultes, and Frank Schulz (all three formerly at TH Karlsruhe).

Many students have been involved in the development of MOTIS in one or the other
way, including theses, practical courses, research projects and seminars. The following
students wrote a thesis contributing to the whole framework (in alphabetical order):
Miriam Graue [Gra04], Peter Jung [Jun06], Torsten Gunkel [Gun07, GMS07, GMS09],
Kai Mehringskötter [Meh07], Yann Disser [Dis07, DMS08], Lennart Frede [FMS08, Fre08],
Mohammad Keyhani [Key09], Daniel Mäurer [Mäu09], Konstantin Tennhard, and Chris-
tian Weber. The last two are currently writing their Bachelor’s theses in our group.

Special thanks go to our long-time student assistants: Mohammad Keyhani (assistance
in implementation and algorithm design) and Konstantin Tennhard (GUIs, communica-
tion, and maintenance) and my new colleague and PhD student Daniel Mäurer. They
provided invaluable assistance during the writing of the thesis.

I want to thank my girlfriend, Christiane, and my parents, Heidemarie and Vinzenz,
for their love, support and encouragement. Furthermore, I would like to thank Benjamin
Knopp and Jana Kaiser for proofreading and improving my English skills. Last but not
least, thank you to all members of the Algorithms Group at TU Darmstadt for their
support and assistance.

Parts of this thesis have been published in refereed proceedings and journals [MSW02,
MS06, GMS07, MS07, DMS08, FMS08, MS09, GMS09].

6 Introduction

Chapter 1

Setting

In this chapter, we want to introduce and clarify basic terminology. We specify queries
and the necessary requirements for connections to match a query. Furthermore, we will
discuss different search forms, either classical pre-trip search from a planning stage, or
on-trip search, when already at the station or traveling. Finally, we will illustrate the
constraints to consider in fully realistic timetable information.

A train station is a station where a train stops.
- Then, tell me, what is a workstation?

1.1 Terminology

Trains. The term train will be used for all means of transportation, including trains (of
course) but also trams, busses, subways and even ferries. Two different trains do not
necessarily need to be physically different. A train, e.g. “ICE 158” might reach its final
destination, get renamed and head back as “ICE 190”, which will be considered a different
train.

Stations. Each place a train can stop at in order to allow for boarding and disembark-
ment of passengers is a station. This includes railway-stations (major railway stations
like Frankfurt or Paris, small ones like in my hometown with just a single track and a
ticket machine), bus stops, subway stations, landing stages for ferries and so on.

Train classes. Each train is associated a specific train class in the global data. This
includes high-speed trains such as the German ICE and French TGV; ICs and ECs; local
trains, “S-Bahn” and subways; busses and trams.

Attributes. Trains have attributes describing additional services they provide. Such
attributes are, for example: bike transport possible, sleeping car, board restaurant, com-
partment for disabled, place for wheelchairs.

7

8 Chapter 1: Setting

Traffic days. Most trains do not operate on a daily basis. There is a lot of change during
the year. Some trains only operate on workdays, others only on Sundays. National and
local holidays, as well as school holidays, affect the days of operation.

Footpaths. Sometimes a passenger has to walk short distances, like from the long distance
platform to the one for local transport, or from the railway station to the bus station in
front of it. There are a number of these so-called footpaths in the German timetable. A
passenger may use any footpath at any point in time. This makes a footpath very differ-
ent from all other means of transportation, which may only be used at specific points in
time, namely when the corresponding train departs from the station.

Connections. A connection consists of an ordered list of trains and possibly also of foot-
paths, the list of stations the trains passes and the list of stations where train changes
occur. If footpaths are involved, source and target station, length, and description of the
footpath are included, too.

Realistic interchange times We count every time a train change occurs as an inter-
change. The German time table data provides a lower bound for the time between the
arrival of a train and the departure of its connections. This bound does not depend only
on the train classes and the size of the station. In fact, there is a list of different rules that
may be applicable to determine whether a train change is feasible or not. The following
list enumerates the rules for interchanges, arranging them from the most general to the
most specific one.

• Interchange rules at stations. Every station has an interchange time as a default
for all interchanges at this station.

• Transfers between transfer classes. Each train is associated with a transfer class.
The time needed for the train change depends on the transfer classes of the coming
train at arrival and the leaving train at departure.

• Line to line transfers. Similar to the transfer classes, each train may be associated
with a line it serves and specific rules for line changes.

• Service to service transfers. The most specific interchange rule gives interchange
times between individual trains.

1.2 Queries

1.2.1 Specification of Queries

A query to a timetable information system usually includes the following: The (start or)
source station of the connection, the target station and an interval in time in which either
the departure or the arrival of the connection must be, depending on the search direction,
the user’s choice whether to provide the intervali for departure (“forward search”) or
arrival (“backward search”). Additional query options are:

iNote that the specification of an interval is crucial for typical pre-trip queries although previous work
often assumes single point intervals.

1.3 Pre-Trip / On-Trip Searches 9

Vias and duration of stay. A query may contain one (or more) so called vias, stations
the connection is required to visit and where at least the specified amount of time can
be spent, e.g. from Cologne to Munich via Frankfurt with a stay of at least two hours for
shopping in Frankfurt.

Train class restrictions. The query may be restricted to a subset of all train classes. By
excluding high speed trains one might be able to find cheaper connections.

Attribute requirements. A user can specify attributes a connection has to satisfy or is not
allowed to have. We allow Boolean operators for specifying attribute requirements like:

(a restaurant OR a bistro) AND bike transportation.

Passenger related attributes. Additional attributes are relevant for the fare calculation.
The query contains the desired comfort class (i.e. first or second class). In order to
determine possibilities for discounts, the query also includes the number of passengers,
and for each passenger the type of discount card which is available (if any). For families
with children the age of each child must be specified.

1.2.2 Connections Matching a Query

A connection needs to be feasible and must satisfy all requirements of the query specifi-
cation to match the query. Some additional feasibility requirements are:

Meta Stations and Source-/Target-Equivalents. For a passenger the starting station might
not be important, as long as these stations are relatively close together. Virtual meta
stations group such stations together (like the railway station and bus stops that can
be found right next to each other at the central station of any city). Source/target-
equivalents group stations together in a similar fashion, but not as a new virtual station:
Every source/target-equivalent consists of a station and its possible replacements.
Meta-stations or source/target-equivalents may appear as the source and target station
as well as any via in a query.

Special attributes: NotIn / NotOut. There are some train and station related attributes
that do have a special meaning for the stops of a train. Although a train stops at a
station, boarding or disembarking the train or both may not be allowed. Especially for
night and high-speed trains there are some stations near the origin of the train where
one is only allowed to enter the train and some stations near the end where one is only
allowed to leave it. In a night train passengers should not be disturbed by too much
“traffic” inside the train. In both cases the trains should not be used only for a short
transfer. Passengers are encouraged rather to use local transportation.

1.3 Pre-Trip / On-Trip Searches

Most timetable information systems consider a pre-trip scenario: The user is at home and
requests a connection from station s1 to s2 departing or arriving around some time τ or
inside an interval [τ1, τ2]. In such a scenario, it is important that the search delivers all
attractive connections with respect to several criteria which suit the query. Even if you

10 Chapter 1: Setting

use information systems at a station or click “Right-now” in an online system you will
usually be offered several alternatives.

In an on-trip scenario one is much closer to an earliest arrival problem. We differentiate
two cases of the on-trip search:

1. A customer is at a certain station and wants to travel right now. Either he comes
without a travel plan (for example, he was unable to plan the end of some meeting)
or he may have just missed a connecting train.

2. The customer sits already in a train and wants to search for alternatives, for exam-
ple, because he has been informed that a connecting train will be missed.

In both cases travelers want to reach their destination as fast and convenient as pos-
sible. In case of delays many railway companies even remove restrictions on train-bound
tickets, so it might be possible to completely forget about ticket costs, since the ticket is
already paid and the passenger may use any means of transportation available. If there
is a restriction like “no high speed train” (like the German ICE or French TGV) which
is not revoked, an on-trip search with train category restrictions should be supported.

On-trip search at a station. While in a pre-trip search travel time is measured as
the difference between the arrival at the destination and the departure with the first used
train, on-trip search measures the travel time from “now” on and takes it as one of the
optimization goals. However, in the presence of delays it may become more important to
search for reliable connections (cf. Section 6.3).

On-trip search in a train. In case the user currently travels in a train, the on-trip
search is different from the scenario at a station. Instead of leaving the train and standing
at a station with the connecting train long gone (or canceled), we can often do better if
we know of this problem in advance. Interesting additional alternatives may either be
to leave the train before arriving at the station where the connection breaks, or to stay
longer in the train to change trains at a subsequent station.

1.4 Fully Realistic Model

Our model of the timetable is fully realistic. We did not make any simplifying assump-
tions. You can actually buy a ticket for connections computed by our MOTIS system.
All interchange rules are realized and only connections with valid change times are com-
puted. Trains operate according to their real traffic days. We consider footpaths between
stations as well as meta stations and source/-target-equivalents and respect the specific
attributes prohibiting boarding or disembarking at certain times and stations.

Chapter 2

Multi-Criteria Optimization

In this chapter we will introduce our multi-criteria approach for the search for attractive
train connections.

2.1 Criteria

We want to base our discussion in this chapter on the following criteria:

• Travel time (time) is the classical optimization criterion in timetable information
systems.

• The number of interchanges (ic) is a measure for the convenience and reliability of
a connection.

• Another important criterion for rating a connection is ticket cost (cost).

• As we will introduce further criteria in Chapter 6, we will use an additional criterion
(add) in our discussions, where needed. Think of a measure for the reliability of
interchanges or sleeping time in night trains, for example.

The remainder of this chapter is devoted to the questions of how to compare con-
nections using multiple criteria and how to obtain all attractive connections. In the
subsequent chapters we will see what algorithm to use and how to design a timetable
representation to find “attractive” connections according to multiple criteria.

2.2 Pareto Optimality

Measuring the Quality of Connections

Most timetable information systems only regard one criterion, namely travel time (cf.
[MSWZ07]). As mentioned before we want to focus on the three criteria, travel time, ticket
costs, and number of interchanges. Simply minimizing any of these three independently
(or all three separately) is obviously not the method of choice. In the weighted multi–
criteria case an evaluation function f may look like:

f = ϕ · time + ξ · ic + ϑ · cost.

11

12 Chapter 2: Multi-Criteria Optimization

Name Departure Travel time Number of Price Pareto
time (minutes) interchanges optimal

c1 7 : 30 110 1 75e
c2 8 : 00 100 1 75e

√

c3 8 : 00 160 0 60e
√

c4 8 : 00 200 2 35e
√

c5 8 : 00 260 2 34e
√

c6 8 : 15 120 1 50e
√

Table 2.1: Example connections for Pareto dominance and extensions.

Different choices for the set of parameters P = {ϕ, ξ, ϑ} express the difference in im-
portance of the three criteria (called a preference profile). Users may never see some
interesting alternatives (for them) if either they or a system/operator sets the wrong
parameters.

To overcome this problem, the concept of Pareto optimality treats all criteria simul-
taneously. For two given k-dimensional vectors x = (x1, . . . , xk) and y = (y1, . . . , yk), we
define x dominates y (denoted by x <p y) if

xi ≤ yi for all 1 ≤ i ≤ k and
xi < yi for at least one i ∈ {1, . . . , k}.

The smaller relation x <p y is an irreflexive, transitive relation. Together with the canon-
ical multidimensional equality we have a partial order x ≤p y (a reflexive, antisymmetric,
and transitive relation). Our approaches will depend on the transitivity, antisymmetry
and irreflexivity of the smaller relation. Note that vectors can be incomparable, that is,
neither x <p y nor y <p x holds even though x 6= y. Vector x is Pareto optimal in set X
if there is no y ∈ X that dominates x. Here, we assume for simplicity that all cost criteria
shall be minimized. In our scenario we compare 3-dimensional vectors encoding travel
time, ticket cost, and the number of interchanges of our connections. Each of the xi is
called a Pareto criterion. This approach is easily extendable to cover further criteria.

Consider the connections of Table 2.1: Connections c2 to c6 are Pareto optimal. Nei-
ther the single-criterion nor weighted-criteria approaches (for some parameters) find c6,
which is probably the most promising connection for the majority of people. Unfortu-
nately, the classical Pareto approach has its limits as well: Suppose connection c6 does
not exist in the list. Although connection c1 is dominated by c2 it still arrives earlier
at its destination. A passenger using a timetable information system at the departure
station might prefer c1 as it leaves more time to get to his final destination from the
target station instead of waiting 30 minutes at the departure station. In spite of being
Pareto optimal, connection c5 is of no practical use at all. Alternative c4 is much faster
and only minimally more expensive.

Antisymmetry, irreflexivity, and transitivity Suppose our smaller relation <′ were
neither antisymmetric nor irreflexive and we wanted to compare two connections A and
B. If both A <′ B and B <′ A hold, it would depend on the order of the evaluation, as
to whether we keep A or B. This is clearly undesirable.

Due to the desired use in dominance testing, during algorithm execution, we also
require our smaller relation to be transitive.

2.3 Advanced Pareto Optimality 13

2.3 Advanced Pareto Optimality

2.3.1 Relaxed Pareto Dominance

To tackle the drawbacks of the simple Pareto dominance approach we relax the dominance
rule in the relaxed Pareto dominance case (as published in [MS07]). This means that more
pairs of connections become mutually incomparable. In addition to the four cost criteria,
travel time, ticket cost, number of train changes, and our additional criterion, further
aspects are taken into account to define the smaller relation between connections.

Formally, we now consider n-dimensional (integral or real-valued) vectors

x = (x1, . . . , xk, xk+1, . . . , xn) ∈ S,

where the first k components are cost criteria and the remaining n−k components encode
additional data (like departure and arrival time, highest used train class). Furthermore,
for each cost criterion we have a non-negative relaxation function fi : S×S 7→ R+

0 ∪{+∞}.
For any two x, y ∈ S we now define that x dominates y (in the relaxed sense) if

xi + fi(x, y) ≤ yi for all 1 ≤ i ≤ k and
xi + fi(x, y) < yi for at least one i ∈ {1, . . . , k}.

We will denote relaxed Pareto dominance by x <r y.
In order to be able to apply relaxed Pareto dominance in the computation of attractive

connections, it is essential that dominance is a transitive relation. This restricts the set
of reasonable relaxation functions.

Next we give examples of how to specify suitable relaxation functions fi.

• The larger the time difference between the departure and arrival times of two con-
nections, the less these connections should influence each other.

Suppose we want to compare connections A and B which have departure times
dA, dB , arrival times aA, aB and travel times timeA, timeB (all data given in min-
utes), respectively. Then connection A dominates B with respect to the criterion
travel time if A overtakes B or

timeA + α(A,B) ·min{|dA − dB |, |aA − aB |} < timeB , (2.1)

where, e.g., we may choose α(A,B) := 1
2 timeA/timeB .

With this relaxation, connection c1 is no longer dominated by c2.

• Different kinds of connections shall not dominate each other (e.g., connections using
night trains or no night trains, or an event train (e.g. a special train to a sports
event). Using night trains a customer does not want to arrive as fast (and/or cheap)
as possible. He would rather arrive relaxed and even save a night’s stay at a hotel.
Neither of these alternatives should be dominated by connections using other kinds
of transportation. This can be modeled by defining a relaxation function to be +∞
if the encoding of the train class attributes forbids a mutual domination.

Incomparable connections do not dominate each other, thus attractive alternatives are
not suppressed. It is easy to check that all the proposed relaxation functions preserve the
desired transitivity of our Pareto dominance relation. In Section 6.2 it will turn out that
this concept can also be used to handle special offers in pricing systems.

14 Chapter 2: Multi-Criteria Optimization

Antisymmetry and irreflexivity For two connections A and B we have

cA + f(A,B) ≤ cB ⇒ cA ≤ cB ,

due to the fact that f(A,B) ≥ 0, and, obviously,

cA ≤ cB ∧ cA ≥ cB ⇔ cA = cB .

Pareto smaller <p only holds if, at least in one of the dimensions, the inequality is
fulfilled by a strict smaller. Thus, antisymmetry and irreflexivity follow immediately for
all relaxations.

Transitivity Suppose we have A <r B and B <r C for three connections A, B, and
C. Looking at a criterion c and the associated relaxation function f(·, ·) we have

cA + f(A,B) ≤ cB and cB + f(B,C) ≤ cC .

If we replace cB in the second inequality with the left hand side of the first inequality, we
get

cA + f(A,B) + f(B,C) ≤ cC .

Thus, the classical triangle-inequality

f(A,B) + f(B,C) ≥ f(A,C)

is sufficient for the transitivity of our relation.

Examples for suitable relaxation functions

The classical triangle-inequality obviously holds for the following types of relaxation
functions:

• constant non-negative additive term δ ≥ 0:

cA + δ < cB

• addition of non-negative fraction (constant multiplicative term δ ≥ 0):

cA + δ · cA = cA · (1 + δ) < cB

• non-negative weighted additive term using another criterion, weight δ ≥ 0:

cA + max{xB − xA, 0} · δ < cB

• addition of non-negative fraction (multiplicative term using another criterion),
weight δ ≥ 0:

cA + max{xB − xA, 0} · δ · cA < cB

Arbitrary combinations of these types of functions do not violate the desired properties
of our relation. This can be shown by a simple inductive argument.
See Appendix A.1 for a proof of transitivity for our relaxation of travel time as modeled
in Inequality 2.1.

2.3 Advanced Pareto Optimality 15

2.3.2 Tightened Dominance

In order to remove undesired optima from the set of solutions we want to tighten the
dominance. One approach could be to subtract non-negative real valued functions instead
of adding them like in relaxed dominance. We give two examples:

• The travel time spent for getting less expensive connections has to yield a fair hourly
wage, say of δcost Euros per hour. (In the examples of Table 2.1 an hourly wage of
less than one Euro is not enough to make connection c5 worth considering.) This
can be modeled as follows. Suppose we want to compare connections A and B with
associated costs costA, costB in Euros and travel times timeA, timeB in minutes,
respectively. Then connection A dominates B with respect to the cost criterion only
if

costA −
max{timeA − timeB , 0}

60
· δcost < costB . (2.2)

• One might even argue that a faster connection with too many additional inter-
changes is not desired. This can be achieved by tightening the travel time criterion
with

timeA −max{icB − icA, 0} · δic < timeB or

timeA −max{icB − icA, 0} · δ′ic
100

· timeA < timeB

for the number of interchanges icA, icB , respectively, and constants δic, δ
′
ic > 0.

Now each additional interchange must be compensated for by at least δic minutes
less travel time or by at least a δ′ic percent shorter travel time.

We will denote tightened Pareto dominance by x <t y.

Tightening and transitivity Unfortunately, tightening does not harmonize well with
transitivity. Looking at a straightforward idea for a tightening function, namely subtract-
ing a constant, we already get a counter-example:

A <t B ⇔ costA − δ < costB .

For three connections A, B, and C with costs costA = 9, costB = 6, and costC = 2 with
δ = 5 we have:

costA − δ = 9− 5 < 6 = costB ⇒ A <t B and
costB − δ = 6− 5 < 2 = costC ⇒ B <t C, but
costA − δ = 9− 5 6< 2 = costC ⇒ A 6<t C

The function is not even antisymmetric, for the same connections A and B we have

costA − δ = 9− 5 < 6 = costB ⇒ A <t B and
costB − δ = 6− 5 < 9 = costA ⇒ B <t A, but

A 6= B.

16 Chapter 2: Multi-Criteria Optimization

Hourly wages: properties of the smaller relation
In the hourly wage example, transitivity does not hold if ticket cost is the only criterion
(see Appendix A.2). Besides, neither asymmetry nor irreflexivity hold.

However, let us consider a combination of two criteria, the hourly wage tightening for
ticket cost and non-tightened dominance on travel time. From A <t B and B <t C we
have timeA ≤ timeB and timeB ≤ timeC . Furthermore, the following two inequalities

costA −max{timeB − timeA, 0} · δcost

60
≤ costB (2.3)

and
costB −max{timeC − timeB , 0} · δcost

60
≤ costC (2.4)

hold and the differences in the max{·} terms are always non negative. We insert 2.3 (left)
for cB into 2.4 and receive:

costA − (timeB − timeA) · δcost

60 − (timeC − timeB) · δcost

60

= costA − (timeC − timeA) · δcost

60

≤ costC .

Here, A <t B and B <t C guarantee that at least one of the less-or-equal relations (either
regarding time, cost, or both) between A and B, as well as between B and C, is a strict
less. Consequently the same holds between A and C, thus A <t C. No other evaluations
of the max{·} term will ever occur due to the travel time criterion.

2.3.3 Advanced Pareto Dominance

In this section we will discuss how to combine the concepts of relaxation and tightening,
which will result in what we call advanced Pareto dominance. We will first look at an
example. Suppose we want to minimize the following criteria: travel time, number of
interchanges, ticket cost, and an additional criterion (add) measured in some unit U .
The last criterion acts as a wildcard for the further criteria (a measure for the reliability
of interchanges and the sleeping time in night trains among others) that we will introduce
in Chapter 6.

Using Pareto optimality, all connections in Table 2.2 except connection F are optimal.
Now we define our desired goal as

• the travel time should be a relaxed Pareto criterion,

• the number of interchanges should be a Pareto criterion,

• we want an hourly wage of at least 5e in ticket cost, and

• we want an hourly wage of at least 10U in the additional criterion.

We relax the travel time using our time difference formula

reltime(AB) = α(A,B) ·min{|dA − dB |, |aA − aB |, ω(A,B)} (2.5)

with the third argument to min(·)

ω(A,B) =
{

0 if A overtakes B
100, 000 otherwise

2.3 Advanced Pareto Optimality 17

Name Departure Criteria Dominance Rules
time time ic add cost Pareto I II III

A 8:00 120 1 50U 90 e
√ √ √ √

B 8:00 180 1 50U 84 e
√ √ √

C 8:00 180 1 39U 90 e
√ √ √

D 8:00 180 1 42U 86 e
√ √ √

E 8:00 240 1 49U 89 e
√

F 8:45 125 1 50U 90 e
√ √ √

Table 2.2: Example connections for advanced Pareto dominance and different sets of
rules. Hourly Wages of 5e for ticket cost or 10U in our additional criterion are assumed.

to void the relaxation if A overtakes B and α(A,B) = 1
2 timeA/timeB as introduced on

Page 13. To use tightening on ticket cost and our additional criterion we define

ΛAB(c) := max{cB − cA, 0}

for criterion c. Let the relation symbol 4 describe the concept of “less or equal in all
dimensions and less in at least one of the dimensions.”

Ruleset (I) Our first set of rules (I) consists of these inequalities:

timeA + reltime(AB) 4 timeB

icA 4 icB

costA − ΛAB(time) · δcost 4 costB

addA − ΛAB(time) · δadd 4 addB

with the parameters δcost = 5e/h and δadd = 10E/h. With this set of rules we relax the
time criterion, have interchanges as a Pareto criterion and tighten the additional and cost
criteria requiring hourly wages.

Now all but connections D and E are optimal. The time difference formula ensures
that connection F is not dominated by connection A. Connections B and C achieve the
desired decrease in either ticket cost or our additional criterion for the additional hour
travel time. Connection D is dominated by connection A as it fails to reach the desired
hourly wages.

Ruleset (II) However, connection D obtains an hourly wage of 4e and 8U simultane-
ously and therefore could be considered attractive as well. We might even want connection
D to dominate connections B and C (and not be dominated itself). To this end we may
use ∆AB(c) := cB − cA instead of adding or subtracting ΛAB(c) := max{cB − cA, 0}. In
doing so, we are able to reward and penalize for a single criterion at the same time. As
we replace the maximum term by a simple difference, we automatically gain transitivity,

18 Chapter 2: Multi-Criteria Optimization

asymmetry, and irreflexivity (see Page 19). This leads to our second, alternative set of
rules (II):

timeA + reltime(AB) 4 timeB

icA 4 icB

costA −∆AB(t) · δcost −∆AB(add) · δadd · δcost 4 costB (2.6)
addA −∆AB(t) · δadd −∆AB(cost) · δcost · δadd 4 addB (2.7)

timeA −∆AB(add) · δadd −∆AB(cost) · δcost 4 timeB (2.8)

where δi = 1
δi

.
In the formulae the terms ∆AB(c) · δc are used to determine the tradeoff in time from

the difference in criterion c. By multiplying it with δc′ , we obtain the tradeoff in criterion
c′, e.g. a difference of 15U is equivalent to 7.50e, because we have

∆AB(add) · δadd · δcost = 15E · 1h

10E
· 5e

1h
=

3h

2
· 5e

1h
= 7.5e.

The Inequalities 2.6, 2.7, and 2.8 convert time, ticket cost and the additional criterion
into only one of them. Either of them is suitable to make our connections A and D
optimal and allow connection D to dominate connections B and C, but only one of them
is needed. So, although we have four criteria, only three equations are necessary.

Ruleset (III) If we do not want to lose connections B and C, we only need to keep
separate inequalities for the ticket cost and the additional criterion. Note that we will
again use ∆AB(c) instead of ΛAB(c). Our rule set (III) is:

timeA + reltime(AB) 4 timeB

icA 4 icB

costA −∆AB(time) · δcost 4 costB

addA −∆AB(time) · δadd 4 addB

timeA −∆AB(add) · δadd −∆AB(cost) · δcost 4 timeB (2.9)

This is essentially the rule set (I) plus Equation 2.8. Thus we keep the tightening for ticket
cost and the additional criterion (protecting connections B and C) as well as the weighted
sum that protects connections reaching a “combined” hourly wage, like connection D.

We could also incorporate our trade-off for the number of interchanges from Sec-
tion 2.3.2. For example by adding

−∆AB(ic) · δ′ic
100

· timeA

on the left hand side of Formula 2.9.

Reformulation by sorting If we sort the terms on the left and right hand side in
Formula 2.9 appropriately, we obtain

timeA − addA · δadd − costA · δcost 4 timeB − addB · δadd − costB · δcost.

2.3 Advanced Pareto Optimality 19

i ai
time ai

ic ai
add ai

cost reli(AB)
1 1 0 0 0 reltime(AB)
2 0 1 0 0 0
3 δcost 0 0 1 0
4 δadd 0 1 0 0
5 1 0 δadd δcost 0

Table 2.3: The coefficients ai
c and relaxation terms reli(A,B) in Formula 2.11 for rule set

(III).

That is, we only compare two weighted sums as our fifth criterion. Similarly, we may
sort the whole rule set (III) to look as follows:

timeA + reltime(AB) 4 timeB (2.10)
icA 4 icB

timeA · δcost + costA 4 timeB · δcost + costB

timeA · δadd + addA 4 timeB · δadd + addB

timeA − addA · δadd − costA · δcost 4 timeB − addB · δadd − costB · δcost

In fact, this leads to our final formulation for advanced Pareto Dominance.

Formulation for Advanced Pareto Dominance
Given k criteria and r inequalities, we can formulate each of our inequalities (i) for
i ∈ {1, . . . , r} as

(i)
k∑

j=1

αi
cj

cjA + reli(A,B) 4
k∑

j=1

αi
cj

cjB (2.11)

with cjA and cjB denoting the value of criterion cj for connections A and B. Function
reli(A,B) is our relaxation for criterion ci, e.g. a constant or the time difference rule
(Formula 2.5).

The coefficients for the rule set (III) are shown in Table 2.3. For example, we have
α4

time = δadd, α4
add = 1, rel4(A,B) = 0, for the fourth formula, and all α4

cj
= 0 for all

other criteria cj .

Transitivity, Antisymmetry, and Irreflexivity
We compare only weighted sums of the criteria in an extension of the fundamental Pareto
formulation, which is of course transitive, antisymmetric, and irreflexive. Applying relax-
ation using functions of the type discussed in Section 2.3.1 does not violate the desired
properties of our smaller relations.

Expressiveness of Our Formulation Our formulation for advanced Pareto domi-
nance can model all introduced variants of multi-criteria dominance. Classical Pareto
dominance and relaxed Pareto dominance are obtained, with k = 4, r = 4 and ai

cj
= 1 for

i = j, and ai
cj

= 0, otherwise. With relaxation functions reli(AB) we get relaxed Pareto
dominance. Without relaxation functions we have Pareto dominance. We will use these

20 Chapter 2: Multi-Criteria Optimization

formulations in the computational study in Section 9.5. There, they are also given in a
less condensed form including coefficient tables like Table 2.3.

Using only one equation (r = 1) and weights a1
cj
6= 0 for each of the criteria cj , we

have a simple weighted sum. If all but one of the a1
cj

are zero with r = 1, we model
dominance on a single criterion.

2.4 Applying Advanced Pareto Dominance

The relaxed approach requires additional computational effort during the search, other-
wise we miss desired connections. The tightening, on the other hand, does not need to
be considered before a search has been completed. It suffices to only use it in the final
filtering step before presenting the connections to the customer. However, if this filter is
applied anyway, it may be used during the search to improve runtime.

One can opt for any of these modus operandi:

1. Relaxed Pareto dominance during the search, final filtering using advanced Pareto
dominance, or

2. advanced Pareto dominance using a widely accepted parameter set during search
with additional final filtering, or

3. advanced Pareto dominance using a customer specific parameter set so that only
interesting alternatives for this customer are found.

We believe that the first modus is never needed, for two reasons: a) Relaxed Pareto
dominance finds far too many connections, and these have to be filtered before presenting
them to a customer. So there is no reason to waive some sort of early filtering. And b) a
widely accepted parameter set exists, e.g. at least 1 Euro per additional hour travel time.
Additionally, virtually nobody would want to spend more than double the travel time for
saving one interchange.

It might also qualify as natural, that a faster connection should save at least 5 minutes
travel time per additional interchange. On the other hand, some might argue the point
of not producing the fastest connection.

In Section 9.5, we will discuss the changes in the solutions and computational effort
when moving from Pareto to relaxed Pareto and to advanced Pareto. There, we will also
study the impact of the second and third modus changing wage profiles in Section 9.5.2.5.

Our overall goal is to determine the complete set of connections not dominated by
advanced Pareto dominance. However, some other aspects are still not covered. Such as:
the reliability of interchanges of a connection, i.e. how likely is it to realize all interchanges
(cf. Section 6.3), the aim of using a sleeping cart for a reasonable time during the night
(cf. Section 6.4), the maximization of a stay at “nicer” locations, scenic views etc.

Chapter 3

Search Algorithms

In this chapter, we will introduce shortest-path search on graphs with non-negative edge
lengths using Dijkstra’s algorithm. We will discuss different priority queue implementa-
tions and generalize Dijkstra’s algorithm to cover multi-criteria optimization.

3.1 Introduction

A directed graph or digraph is a pair G = (V,E). V is the set of nodes and E ⊆ V ×V the
set of edges. We will frequently be referring to the cardinality of V and E and will denote
|V | by n and |E| by m. An edge (v, w) is directed from v to w. A node v is adjacent to
node w if either (v, w) ∈ E or (w, v) ∈ E or both.

A path P in G is an ordered collection of nodes and edges:

P = (v0, e1, v1, . . . , vm−1, em, vm)

with vi ∈ V and (vi, vi+1) ∈ E for 0 ≤ i < m. An (s-t)-path is a path from s to t, i.e.
s = v0 and t = vm.

For any length function ` : E → R and any path P = (v0, e1, v1, . . . , em, vm) the
length `(P) of P is defined by: `(P) :=

∑m
i=1 `(ei). The definition for the general shortest

path problem reads as follows:

The General Shortest Path Problem
Instance: A digraph G = (V,E),

lengths ` : E → R,
and two vertices s, t ∈ V .

Task : Find an (s-t)-path of minimum length.

The problem is hard to solve in case of arbitrary edge lengths. Namely, if all lengths
are −1 then the (s-t)-paths of length 1 − |V | are precisely the Hamiltonian (s-t)-paths.
Deciding whether such a path exists is NP -complete. However, the problem becomes
much easier, if it is restricted to non-negative lengths, referred to as the shortest path
problem throughout this text.

In this thesis, we will only consider non-negative lengths, as all natural cost functions
for our application (travel time, number of interchanges, fares) have this property. We

21

22 Chapter 3: Search Algorithms

will see in Chapter 6 how additional criteria can be modeled and handled to fit into this
scenario as well.

3.2 Dijkstra’s Algorithm

The distance from s to t (with respect to `), denoted by dist(t), is equal to the minimum
length of any (s-t)-path. If no (s-t)-path exists, dist(t) is set to +∞.

Dijkstra’s algorithm [Dij59] maintains a distance label d(vi) for each node vi, which is
an upper bound on the shortest path length to node vi. The algorithm divides the nodes
into two groups at any intermediate step: For any permanently labeled node the distance
label is exactly the shortest distance from the source to that node. The distance label
of any temporarily labeled node is an upper bound on the shortest path distance to that
node.

The basic idea is to start at s and to permanently label nodes in the order of their
distance to s. Initially, only s is permanently labeled, d(s) is set to zero. For any node v,
a finite label is the length of an (s-v)-path whose nodes are all permanently labeled except
v. The algorithm takes the temporarily labeled node v with minimum label (breaking
ties arbitrarily), labels it permanently and scans all arcs leaving v to update the distance
labels of adjacent nodes.

Algorithm 1 is a textbook version of Dijkstra’s algorithm (from [KV00]), the nodes
v ∈ R are permanently labeled, those in V \ R are temporarily labeled. Distance d(v) is
the length of a shortest s-v-path, which consist of a shortest (s-p(v))-path together with
the edge (p(v), v). If v is not reachable from s, then d(v) = +∞ and p(v) is undefined.

Note that the node t is not part of the input. Dijkstra’s algorithm in fact calculates
shortest paths from s to all other nodes in G (or the information that a node is not
reachable from s in G).

Input : A digraph G = (V,E),
edge weights c : E → R+,
and a vertex s ∈ V .

Output: Shortest paths from s to all v ∈ V and their lengths.
More precisely distances d(v) and predecessors p(v) for all v ∈ V .

begin

d(v) :=
{

0 : v = s
∞ : otherwise

for all v ∈ V do p(v) :=⊥;
R := ∅;
while R 6= V do

[Find a vertex v ∈ V \R such that d(v) = minw∈V \R d(w);
R := R ∪ {v};
for w ∈ V \R, (v, w) ∈ E do

if d(w) > d(v) + `((v, w)) then
] d(w) := d(v) + `((v, w)) and p(w) := v;

end

Algorithm 1: Textbook version of Dijkstra’s algorithm.

3.3 Data Structures Speeding Up Dijkstra’s Algorithm 23

Definition 3.1. A directed tree is a digraph T = (U,A) in which exactly one node r,
the root, has no entering edge and there is a unique (r-v)-path for all v ∈ U \ {r}. The
depth of a node v ∈ U is the length of the unique (r-v)-path.

Definition 3.2. A directed tree T = (U,A), with root node s, is called a shortest paths
tree for a graph G = (V,E) and a length function ` : E → R+, if U ⊆ V is the set of
vertices reachable from s and A ⊆ E such that for each t ∈ V ′ the (s-t)-path in T is a
shortest (s-t)-path in G.

Lemma 3.3. Dijkstra’s algorithm correctly determines a shortest paths tree with root s
for a graph G = (V,E) and a length function ` : E → R+.

Proof. Trivially d(v) ≥ dist(v) for all v, throughout all iterations. We prove that through-
out the iterations, d(v) = dist(v) for each v ∈ R (all permanently labeled nodes). After
the initialization this is trivial (as R = {s}).
Consider any iteration. It suffices to show that d(v) = dist(v) for the chosen v ∈ V \ R.
Suppose d(v) > dist(v). Let (s = v0, e1, v1, . . . , ek, vk = v) be a shortest (s-v)-path.
Let i be the smallest index with vi ∈ V \ R. Then d(vi) = dist(vi). Indeed, if
i = 0 then d(vi) = d(s) = 0 = dist(s) = dist(vi). If i > 0, then (as vi−1 ∈ R):
d(vi) ≤ d(vi−1) + `((vi−1, vi)) = dist(vi−1) + `((vi−1, vi)) = dist(vi). This implies
d(vi) ≤ dist(vi) ≤ dist(v) < d(v), contradicting the choice of v.

Theorem 3.4. Dijkstra’s algorithm solves the shortest path problem in O(n2).

Proof. The correctness follows from the previous Lemma. The computational time is
allocated to the following two basic operations:

1. Node selections (in line [)
This operation is executed O(n) times, each execution requires the scanning of each
temporarily labeled node. The total time spent on node selection is

∑n
i=1 i ∈ O(n2).

2. Distance updates (in line])
The algorithm performs this operation at most |{(v, w) : (v, w) ∈ E}| times for all
v, thus the total time is

∑
v∈V |{(v, w) : (v, w) ∈ E}| = |E| ∈ O(m) for updating

all distance labels.

This runtime is clearly best possible for dense graphs, i.e. graphs where |E| ∈ Θ(n2).

3.3 Data Structures Speeding Up Dijkstra’s Algorithm

The bottleneck operation in Dijkstra’s algorithm is node selection. If |E| is asymptotically
smaller than n2 the runtime of Dijkstra’s algorithm can be reduced by storing the nodes
according to their distance labels, instead of scanning all temporarily labeled nodes at
each iteration to find the one with minimum distance label. In this section, four data
structures will be discussed that all speed up Dijkstra’s algorithm by decreasing the
computational time required for node selection. All of them can be treated as different
implementations of the abstract data type priority queue. A priority queue PQ stores a
collection of objects, each with an associated real number called its key. It provides the
following operations:

24 Chapter 3: Search Algorithms

• createPriorityQueue(). Create an empty priority queue.

• extractMin(). Find, return and remove an object of minimum key from the priority
queue.

• decreaseKey(o, val). Reduce the key of object o from its current value to val which
must be smaller than the key it is replacing.

• insert(o, val). Insert a new object o with key val.

In an implementation of Dijkstra’s algorithm using a priority queue, the priority queue
is the collection of nodes with finite temporary distance labels with their distance values
as key. An implementation is given in Algorithm 2.

d(v) :=
{

0 : v = s
∞ : otherwise

for all v ∈ V do p(v) :=⊥;
R := ∅;
PQ := createPriorityQueue();
PQ.insert(s, d(s));
while PQ 6= ∅ do

v = PQ.extractMin(); R := R ∪ {v};
for w ∈ V \R, (v, w) ∈ E do

\ if d(w) > d(v) + `((v, w)) then
if d(w) = ∞ then

d(w) := d(v) + `((v, w)) and p(w) := v;
[PQ.insert(w, d(w));

else
d(w) := d(v) + `((v, w)) and p(w) := v;

] PQ.decreaseKey(w, d(w));

Algorithm 2: Dijkstra’s algorithm using a priority queue.

There are now two different versions of the distance update operation if the test in \
succeeds: If the distance label of any node is to be updated the first time, it is set from
∞ to a finite value, the node with the distance label as its key is to be inserted into
the PQ (in line [). If a node is already stored in the PQ the distance update requires a
decreaseKey(·, ·) operation (in line]).
Clearly the operations extractMin() and insert(·, ·) are executed at most n times, the
operation decreaseKey(·, ·) at most m times. We now analyze the runtimes and discuss
the data structures for different implementations of the priority queue.

3.3.1 k-heap Implementation

A k-heap is a data structure that stores the elements in a tree T = (U,A). Each node has
at most k children. Nodes are added to the tree in increasing depth, and for the same
depth value from left to right. Formally this contiguity property reads as follows:

3.3 Data Structures Speeding Up Dijkstra’s Algorithm 25

Property 3.5 (Contiguity).

1. At most ki nodes have depth i.

2. At most (ki+1 − 1)/(i− 1) nodes have depth between 0 and k.

3. The depth of a k-heap containing n nodes is at most blogk nc.

The ordering of the elements satisfies the following invariant:

Property 3.6 (Heap Order). d(v) ≤ d(w) for all (v, w) ∈ A.

As a consequence the root node has the smallest d(·)-value of all elements.
During heap-operations Property 3.6 may be violated but after completion of any

operation both properties hold again. We need two procedures to restore the heap order
property after any operation on the heap.

The siftup() procedure restores the heap order property after d(v) has decreased for
a v ∈ U and d(w) > d(v) for a (w, v) ∈ A. It repeatedly swaps v and its parent node
until either v is the root or d(v) < d(x) for all (v, x) ∈ A. The depth of node v decreases
O(logk n) times, since its initial depth is in O(logk n) by item 3 of Property 3.5. Therefore
the runtime of siftup() is in O(logk n).

The siftdown() procedure lets a node “sink” in the heap if for some reason d(v) > d(w)
for (v, w) ∈ A. It repeatedly swaps v and the smallest of its children until either v is a
leaf or d(v) ≤ d(x) for all (v, x) ∈ A. The depth of node v increases O(logk n) times, since
the max depth of the tree is in O(logk n) again by item 3 of Property 3.5. Finding the
minimal child of v requires O(k) time, thus the runtime of siftdown() is in O(k logk n).
Inductive arguments show that both procedures correctly restore the heap order property.

An array can be used to store a k-heap in an ordered fashion: Nodes of same depth are
ordered from left to right and all nodes are ordered by increasing depth. The parent of
node v at position i is stored at d(i− 1)/ke, the children at positions ik− k + 2 to ik + 1.
Utilizing an additional array that stores the position of each node and a variable last
specifying the number of elements stored in the heap all operations can be implemented
efficiently.

All priority queue operations are implemented as described here:

• extractMin() The node of minimum distance to be returned is the root r of the heap.
The last node x is placed at the root, the number of elements is decreased by one
and siftdown() is called for x if necessary. Clearly, this operation takes O(k logk n)
time.

• decreaseKey(o, val). After the key of node o is decreased to val, siftup() restores
the heap order property if violated. This takes O(logk n) time.

• insert(o, val). First variable last is incremented by one, then node o with key val
is placed at position last, and finally operation siftup() restores the heap order
property if violated. This also takes O(logk n) time.

The performance of k-heaps can be summarized as follows:

Theorem 3.7. The k-heap data structure requires O(logk n) runtime to perform each
of the operations insert(·) and decreaseKey(·, ·) and O(k logk n) runtime to perform
extraxtMin().

26 Chapter 3: Search Algorithms

If a k-heap implementation for the priority queue is used in Algorithm 2 the runtime is
in O(m logk n+nk logk n). The extractMin operation for node selection is executed O(n)
times. O(m) times either a new node is inserted or a label is decreased, these operations
take O(logk n) time each. An optimal choice of k is k = max{2, dm

n e} obtained by
equating the two terms m logk n and nk logk n. The resulting runtime is O(m logk n).

Theorem 3.8. The shortest path problem can be solved in O(m logk n) using a k-heap.

The runtime is even linear for non sparse graphs (i.e. m ∈ Ω(n1+ε) for some ε > 0), as

O(m logk n) = O(
m log n

log k
)

(∗)
= O(

m log n

log nε
) = O(

m

ε
) = O(m).

For the equality marked with (∗) remember our choice of O(k) = O(m
n) = O(n1+ε

n) =
O(nε). The last equality is true since ε is a constant. For very sparse networks (i.e.
m ∈ O(n)) the runtime is O(n log n).

3.3.2 Binary Heap Implementation

A binary heap is the simplest form of a k-heap for k = 2. As a Corollary from Theorem 3.7
for the special case k = 2 we have:

Theorem 3.9. The binary heap data structure requires O(log n) runtime to perform each
of the operations insert(·), extraxtMin() and decreaseKey(·, ·).

Therefore, the runtime of Algorithm 2 is O(m log n) if a binary heap implementation of
the priority queue is used. For very dense graphs (i.e. m ∈ Θ(n2)) this is slower than the
original implementation of Dijkstra’s algorithm in O(n2), but faster when m ∈ O(n2

log n).

Theorem 3.10. The shortest path problem can be solved in O(m log n) using a binary
heap.

3.3.3 Fibonacci Heap Implementation

The Fibonacci heap is a data structure that performs the heap operations more efficiently
than k-heaps. The data structure was named after the well-known Fibonacci numbers
that are used to prove its runtime bounds. Basically, a Fibonacci heap is a dynamically
changing collection of directed trees that all satisfy the heap order property (Property 3.6).
Basic operations are linking two trees together or cutting a tree into two. To discuss
Fibonacci heaps in full detail is beyond the scope of this work, a nice introduction to
Fibonacci heaps can be found in [AMO93]. The runtimes for the various priority queue
operations are summarized in:

Theorem 3.11. The Fibonacci heap data structure requires O(1) amortized time to per-
form each of the operations insert(·, ·) and decreaseKey(·, ·) and O(log n) time to perform
the operation extractMin().

If a Fibonacci heap implementation for the priority queue is used in Algorithm 2, the
runtime reduces to O(n log n + m).

Theorem 3.12. The shortest path problem can be solved in O(n log n + m) using a
Fibonacci heap.

3.3 Data Structures Speeding Up Dijkstra’s Algorithm 27

This bound is better than that of binary heaps, k-heaps and Dial’s data structure
(discussed in the next section).

Unfortunately, the better worst-case bound does not make Fibonacci heaps the data
structure of first choice. The overhead of the dynamically changing structure hidden in
the O(·) notation is enough to let other heap implementations do far better in empirical
studies.

3.3.4 Implementation Using Dial’s Data Structure

Dial’s algorithm from [Dia69] uses the following fact to store the objects in a sorted
fashion:

Property 3.13. The distance labels of permanently labeled nodes are nondecreasing
throughout the execution of the algorithm.

This fact follows from noting that the algorithm permanently labels a node v with
smallest temporary label d(v) and, while scanning the nodes adjacent to v, does not
decrease the distance label of any temporarily labeled node below d(v), as all edges have
non-negative length.

Let C = maxe∈E `(e). Than nC is an upper bound on the distance label of any
finitely labeled node. Nodes with infinite distance label need not to be stored until they
receive a finite distance label for the first time. Dial’s algorithm stores nodes in nC + 1
sets, called buckets. Bucket k contains all nodes v with temporary distance label d(v) = k.

We scan buckets 0, 1, 2 . . . until we identify the first nonempty bucket, say i. Each
node v in bucket i has a minimum distance label. For each of these nodes v all adjacent
nodes are scanned and their distance labels are updated, v is permanently labeled and
removed from bucket i.

If the label of node w is updated from d1 to d2, node w is deleted from bucket d1 and
inserted into bucket d2. Property 3.13 ensures that d2 ≥ k for all updated node labels,
thus scanning resumes with buckets k, k +1, . . . in the following iteration to find the next
nonempty bucket.

Storing the content of each bucket as a doubly linked list and keeping pointers from
each node v to its distance label in bucket d(v) the following operations require O(1) time
each:

1. checking whether a bucket is empty or not,

2. removing an element from a bucket,

3. inserting an element into a bucket.

The algorithm performs each distance update in O(1) time and thus requires a total of
O(m) time for all distance updates. The scanning of nC + 1 buckets is the bottleneck of
this implementation. The runtime of Dial’s algorithm is in O(m + nC).

Due to the large number of nC + 1 buckets the memory requirements can be pro-
hibitively large. The following fact allows a significant reduction in the number of required
buckets:

28 Chapter 3: Search Algorithms

Property 3.14. If v is permanently labeled at the beginning of an iteration, then at the
end of the iteration all finitely labeled nodes w ∈ V \R have labels d(w) ≤ d(v) + C.

The fact follows from (a) d(x) ≤ d(v) for all x ∈ R (from Property 3.13) and (b) for
each finitely labeled node w ∈ V \R, d(w) = d(x)+`((x,w)) for some node x ∈ R (by the
property of distance updates). Consequently, d(w) = d(x) + `((x,w)) ≤ d(v) + C. The
values of all finite temporary labels are in [d(v), d(v) + C]. Thus, all nodes with finite
temporary distance labels can be stored in C + 1 buckets.

So in a modified version, the buckets are numbered 0, 1, 2, . . . , C. Every tempo-
rary labeled node w with distance label d(w) is stored in bucket d(w) mod (C + 1).
Therefore during the execution of the algorithm bucket k contains nodes with tempo-
rary distance labels k, k + (C + 1), k + 2(C + 1), and so on in that order. However,
due to Proposition 3.14 this bucket will hold only nodes with the same distance label at
any point in time. If bucket k contains a node with minimum distance label, buckets
k + 1, k + 2, . . . , C, 0, 1, . . . , k − 1 store nodes in increasing values of the distance labels.

The buckets are examined sequentially in a wrap-around fashion to identify the first
nonempty bucket, i.e. after bucket C has been tested, bucket 0 is next. Let k be the bucket
where the minimum was found. In the subsequent iteration Dial’s algorithm reexamines
the buckets starting at bucket k.

Compared to the original implementation with runtimeO(n2) and linear space require-
ment, the amount of storage required for large C may still be too large. Furthermore,
because the algorithm might take as many as n−1 wrap-arounds, the computational time
in O(m+nC) is large or not even polynomial, e.g. if C = n5 the algorithm runs in O(n5)
or requires even exponential runtime in the worst case, if C ∈ O(2n).
However, the bound of O(m + nC) is almost never touched. In most domains the size of
C is modest and the number of passes through all of the buckets is much less than n− 1.
In consequence, the runtime of Dial’s algorithm is much better than that indicated by its
worst-case complexity.

Implementing the priority queue interface using Dial’s data structure

Dial’s data structure can be used as the priority queue PQ in Algorithm 2, as well,
since all functions of the priority queue interface can be implemented using Dial’s data
structure:

• createPriorityQueue(). Create C + 1 empty buckets.

• extractMin(). Find next empty bucket, return an element from it and remove this
element from the bucket.

• decreaseKey(o, val). Remove element of node o from bucket
(d(o) mod (C + 1)) and insert it into bucket (val mod (C + 1)).

• insert(o, val). Insert a new object o into bucket val mod (C + 1).

Theorem 3.15. The shortest path problem can be solved in O(m+nC) using Dial’s data
structure.

3.3.5 Priority Queues without decreaseKey-Operation

A priority queue with fewer operations (namely without a decreaseKey(·, ·) operation)
allows an even more compact and easier to implement version of Algorithm 2 and is
described in Algorithm 3:

3.3 Data Structures Speeding Up Dijkstra’s Algorithm 29

d(v) :=
{

0 : v = s
∞ : otherwise

for all v ∈ V do p(v) :=⊥;
R := ∅;
PQ := createPriorityQueue();
PQ.insert(s, d(s));
while PQ 6= ∅ do

v := PQ.extractMin();
[if v ∈ R then continue;

R := R ∪ {v};
for w ∈ V \R, (v, w) ∈ E do

if d(w) > d(v) + `((v, w)) then
] d(w) := d(v) + `((v, w)) and p(w) := v;

PQ.insert(w, d(w));

Algorithm 3: Dijkstra’s algorithm using a priority queue without decreaseKey.

If the value of d(w) is decreased (in line]), a new entry (w, d(w)) is inserted into the
priority queue. Note that d(·) never increases. So multiple labels for w may be stored in
PQ. Labels of nodes that have already been permanently labeled may simply be ignored
(in line [). The algorithmic complexity using one of the introduced priority queue types
is the same as if the entry (w, d(w)) is decreased and the position of the label in the
priority queue is adjusted accordingly: There are at most m insert(·, ·) operations as no
more than m edges are to be inspected and so the number of executions extractMin() is
restricted to m as well.

But in contrast to the other version, ignoring all v ∈ R does not require pointers from
v to (v, d(v)) in the PQ and is easier to implement, as there are only insert(·, ·) and
extractMin() operations on the PQ.

3.3.6 Remarks on Data Structures and Shortest Path Search

This introduction to shortest path algorithms relies on [AMO93] and [Sch03]. The first
algorithm discussed in this chapter was suggested by Dijkstra [Dij59]. The use of heaps
was introduced by Williams [Wil64]. The use of k-heaps is due to Johnson [Joh77].
Fibonacci heaps were introduced by Fredman and Tarjan in [FT84]. Dial’s data structure
was suggested by Dial [Dia69].

Although Dial’s implementation has a poor worst-case runtime bound it has led to
algorithms with better worst case behavior. An improved version that runs better in
practice can be found in [DGKK79]. Researchers have extensively tested shortest path
algorithms empirically. Computational results [HD88, DH90] suggest that Dial’s imple-
mentation is the fastest algorithm for many classes of graphs.

Variants and combinations of data structures achieve even better theoretical run-
time bounds, e.g. with the priority queue due to Van Emde Boas et al. [EKZ76] in
O(m · log log C) and with a combination of Radix and Fibonacci Heaps in O(m + n

√
C)

[AMOT90].

30 Chapter 3: Search Algorithms

3.4 The Multi-Criteria Version

3.4.1 Problem Definition

Multi-criteria shortest-path problems with non-negative edge lengths occur in many ap-
plications. To mention just a few, problems of this kind arise in communication networks
(cost vs. reliability), in individual route planning for trucks and cars (fuel costs vs. time),
in route guidance [JMS00], and in curve approximation [MZ00, MZ01]

Formally, we have a digraph G = (V,E) and for a fixed positive integer k a k-
dimensional length-function ` : E → Rk that assigns a k-dimensional length vector
`(e) = (`1(e), . . . , `k(e)) to each edge e ∈ E. For any path P = (v0, e1, v1, . . . , em, vm) the
length `(P) of P is defined by:

`(P) :=
m∑

i=1

`(ei) =

(
m∑

i=1

`1(ei),
m∑

i=1

`2(ei), . . . ,
m∑

i=1

`k(ei)

)

The path P has k lengths `j(P) =
∑m

i=1 `j(ei), j = 1, . . . , k.
Recall our Definition in Section 2.2 of Pareto dominance and Pareto optimality.
Like in the normal shortest path problem (k = 1) it makes sense to consider the node-

to-node case, i.e. computing all Pareto optimal paths Popt of all paths Ps,t from s ∈ V to
t ∈ V .

Variants

Interesting variants of optimization in the multi-criteria Pareto case are:

1. finding the so-called Pareto curve which is the set of all Pareto optimal solution
vectors (i.e. lengths of the Pareto optimal paths);

2. finding all Pareto optimal paths;

3. finding just one Pareto optimal path;

4. finding some lexicographically interesting Pareto optimal path(s)
(e.g. find among all paths that minimize one criterion the paths that minimize a
second criterion).

We are mainly interested in finding the set of all Pareto optimal paths. In fact, we
will extend the algorithm in Chapter 5 to even find all advanced Pareto optimal solutions
as discussed in Section 2.3.3.

The definition for the multi-criteria shortest path problem with non-negative edge
lengths reads as follows:

The Multi-Criteria Shortest Path Problem
Instance: A digraph G = (V,E),

a positive integer k,
lengths ` : E → (R+)k,
and two vertices s, t ∈ V .

Task : Find all Pareto shortest (s-t)-paths.

3.4 The Multi-Criteria Version 31

3
0 2

1 5
6

(2,4) (4,8) (8,16)

(2,1)(2,1) (4,2)(4,2) (8,4) (8,4)

4
(2 ,2)i+1 i+2

i+1(2 ,2)i (2 ,2)i+1 i

2i
2i+1

2i+2

Figure 3.1: Example for exponentially many Pareto optimal paths.

3.4.2 Number of Pareto Optimal Solutions (worst-case)

Lemma 3.16. The number of Pareto optima can be exponentially large even in the two
criteria case.

Proof. We construct a class of instances, each of which is basically an acyclic chain, with
two alternative paths between node v2i and v2i+2, see Figure 3.1. Formally, let G = (V,E)
be a digraph with n + 1 nodes, numbered from 0 to n. The edge set consists of the edges
(v2i, v2i+1) and (v2i+1, v2i+2) with lengths (2i+1, 2i) and the edges (v2i, v2i+2) with lengths
(2i+1, 2i+2).

Now it is easy to prove by induction, that there are as many as 2i different Pareto
optimal paths at node 2i (in fact, every directed path is Pareto optimal). The objective
values of the Pareto optimal labels at node 2i are of the form (2i + 2j , 2i+1 − 2j) for
j = 0, 1, . . . , 2i − 1 and i ≥ 1. (Example from [MW01]).

3.4.3 Tractability and State of the Art

We sketch the previous work on multi-criteria shortest path problems only briefly. For a
more complete overview, we refer to the section on shortest paths in the recent annotated
bibliography on multi-objective combinatorial optimization [EG00].

The standard approaches to the case that all Pareto optima have to be computed
are generalizations of the standard algorithms for the single-criterion case. Instead of
one scalar distance label, each node v ∈ V is assigned a number of k-dimensional vectors,
which are the lengths of all Pareto optimal paths from s to v (clearly, for k = 1 the Pareto
optima are exactly the distance labels). For the bi-criteria case, generalizations of the
standard label setting (Dijkstra’s algorithm) [Han79, Mar84] and label correcting [SA00]
methods have been developed. In the monograph of Theune [The95] algorithms for the
multi-criteria case are described in detail in the general setting of cost structures over
semi-rings. A two-phase method has been proposed by Mote et al. [MMO91]. They use
a simplex-type algorithm to find a subset of all Pareto optimal paths in the first place,
and a label-correcting method to find all remaining Pareto optimal paths in the second
phase.

The crucial parameter for the runtime and the space consumption is the total num-
ber of Pareto optima over all visited nodes. The insight that this number is expo-
nential in |V | in the worst case has motivated the design of approximation algorithms.
Hansen [Han79] and Warburton [War87] both present a fully polynomial-time approxima-
tion scheme (FPTAS) for finding a set of paths which are approximately Pareto optima
for the bi-criteria shortest-path problem. The (resource)-constrained or weight-restricted
shortest-path problem [MZ00] is a simplifying (yet still NP-hard) variation of the bi-
criteria case. Here only one Pareto optimal path is to be computed, namely the one
that optimizes the first criterion subject to the condition that the second criterion does
not exceed a given threshold value. More than two criteria have mostly been studied
in the field of network communications, Tsaggouris and Zaroliagis presented an FPTAS
for multi-objective optimization problems with application in traffic optimization [TZ06].

32 Chapter 3: Search Algorithms

A theoretical study on the size of the Pareto set in practical applications appeared in
[MW01, MW06].

There are several experimental studies. Mote et al. [MMO91] investigate problem
instances on random graphs and grid graphs with a positive correlation between the two
length values of each edge. More precisely, the first length value is randomly generated
from a uniform distribution within a certain range, whereas the second length value is
a convex combination of the first length value and a randomly generated value from
the same distribution. Their experiments indicate that the number of Pareto optimal
paths decreases with increasing correlation and that the overall number of such paths
is quite small. Brumbaugh-Smith and Shier [BSS89] studied implementations of label-
correcting algorithms on graphs where pairs of edge lengths are randomly generated from
a bivariate normal distribution. For such instances, their empirical observation was that
the asymptotic runtime of the label-correcting method has a very good fit for O(m

√
p),

where p denotes the average number of labels per node.

3.4.4 A Generalization of Dijkstra’s Algorithm

In the case that all Pareto optimal paths have to be computed, a generalization of
Dijkstra’s algorithm for the single-criterion case is applicable (see Algorithm 5).

It is not at all clear how to organize the priority queue as there are most likely labels
of paths P and P ′ with neither `(P) <k `(P ′) nor `(P ′) <k `(P) in the priority queue
at some time during the execution of the algorithm. So no straightforward generaliza-
tion of any priority queue discussed for the single-criterion case by simply replacing the
smaller relation by Pareto dominance is applicable. Let us assume the priority queue is
implemented in a fashion that allows the following operations:

• insert a label (P, `(P)),

• remove a label (P, `(P)),

• extractMin() return some label (P, `(P)) with (P ′, `(P ′)) 6<k (P, `(P)) for all other
labels (P ′, `(P ′)) ∈ PQ.

Many unnecessary steps may be saved in the following algorithm depending on certain
properties of the order in which extractMin() returns the labels. Note that the correctness
does not depend on the order in which the labels are extracted from the priority queue.
Any order suffices to calculate all Pareto optimal paths, only the number of updates and
extractMin() operations changes. The advantages and disadvantages of implementing

updateNodeList(v, (P, `(P))):
begin

for all labels (P ′, `(P ′)) ∈ nodelist(v) do
[if `(P ′) <k `(P) then exit;
] if `(P) <k `(P ′) then

remove (P ′, `(P ′) from nodelist(v) and PQ;

\ insert new label (P, `(P)) into nodelist(v) and PQ;
end

Algorithm 4: Procedure updateNodeList(...) for Algorithm 5.

3.4 The Multi-Criteria Version 33

d(v) :=
{

(0, . . . , 0) : v = s
∞ : otherwise

for all v ∈ V do nodelist(v) = ∅;
PQ := createPriorityQueue();
PQ.insert({s}, (0, . . . , 0);
begin

while PQ 6= ∅ do
((P, `(P)) = PQ.extractMin();
v := last node of P ;
for all edges (v, w) ∈ E do

P ′ := P ∪ {(v, w), w};
updateNodeList(w, (P ′, `(P ′)));

end

Algorithm 5: Generalization of Dijkstra’s algorithm for the multi-criteria case.

such a priority queue in one or another fashion may differ from application to application
so we will not describe any implementation at this point. However, the influence of dif-
ferent priority queues in our application of calculating train connections will be discussed
in Section 8.8.2 and the ordering criterion on our priority queue will be discussed when
dealing with speeding up multi-criteria search in general (see Section 8.3).

Each node v ∈ V is assigned a number of labels stored in a list nodelist(v). Each label
stores the path P and the k-dimensional length `(P) for its corresponding (s-v)-path.
Throughout the execution of the algorithm nodelist(v) satisfies the following invariant at
the beginning and end of each iteration.

Property 3.17. The paths of labels in nodelist(v) are Pareto optimal in the set of all
(s-v)-paths computed so far.

To prove that the property holds we need the following two simple facts:

Fact 3.18. Pareto dominance is transitive.

Fact 3.19. If P is a Pareto optimal path, then any sub-path P ′ of P must also be Pareto
optimal.

As all nodelists are initially empty, Property 3.17 trivially holds. If a new path P
with length `(P) reaches v, the updateNodeList(v, ·) -procedure (see Algorithm 4) restores
Property 3.17 if it has been violated during the current iteration.

If any label in nodelist(v) dominates `(P) (in line [), P is not only not Pareto
optimal, but all paths P̂ that start with P are not Pareto optimal either and need not be
inspected, due to Fact 3.19.

If the label (P, `(P)) is inserted into nodelist(v) (in line \) there is no label (P̂ , `(P̂))
in nodelist(v) with `(P̂) <k `(P), thus label (P, `(P)) is Pareto optimal in the set of
all (s-v)-paths computed so far.

If for any label (P̂ , `(P̂)) in nodelist(v) `(P) <k `(P̂) holds, label (P̂ , `(P̂)) is not
Pareto optimal. Again due to Fact 3.19 no path P ‘ with sub-path P̂ has to be considered
at all, therefore the label is not only removed from nodelist(V) but also from the priority
queue PQ.

34 Chapter 3: Search Algorithms

If a label (P ∗, `(P ∗)) is removed while updating nodelist(v) (in line]), the new
label (P, `(P)) is later inserted into nodelist(v) (in line \). Assume for a contradiction
`(P) <k `(P ∗) and ∃P ′ ∈ nodelist(v) such that `(P ′) <k `(P). Due to the transitivity
of Pareto dominance (Fact 3.18) `(P ′) <k `(P) <k `(P ∗). This implies `(P ′) <k `(P ∗)
violating Property 3.17 as P ′, P ∗ ∈ nodelist(v) at the beginning of the iteration. Con-
tradiction.

As soon as the priority queue is empty, all Pareto optimal paths to node v are stored
in the labels in nodelist(v) for all v ∈ V and nodelist(t) contains all Pareto optimal
(s-t)-paths.

Theorem 3.20. The multi-criteria shortest path problem can be solved by a generalization
of Dijkstra’s algorithm.

3.4.5 Modifications

3.4.5.1 Generalizing the s-t-Case

Consider the scenario where the input does not consist of two nodes s and t but of start
nodes s1, s2, . . . , su and target nodes t1, t2, . . . , tv with either u > 1 or v > 1 or both
u, v > 1.

Our algorithm can easily be modified to handle more than one source at a time: A
new start node s is added to V . Let E′ := E ∪ {(s, si)} and set `((s, si)) to zero for all
new edges (s, si). Any shortest path from s to t in G′ = (V ∪ {s}, E′) is a shortest path
from an si to t.

By connecting all target nodes tj to a new target t with edge cost zero in the same
fashion, more than one target can be handled, too. Thus, all shortest s-t-paths are a
shortest path from a start node si to some target node tj .

The new nodes and edges need not be introduced into the graph (as this would require
many changes for each search). The search can more efficiently be initialized by setting

d(v) :=
{

0 : v = si for some i
∞ : otherwise

and inserting all labels (si, d(si)) into the priority queue.
Labels representing optimal paths are gathered at all tj once the priority queue is

empty.

3.4.5.2 Limited Priority Queue

A limited priority queue data structure that only supports insertion of labels and ex-
traction of a minimum label is sufficient as for the standard Dijkstra algorithm (cf. Sec-
tion 3.3.5). Since there are now multiple labels for one node a set storing the nodes that
are permanently labeled is replaced by flags in the labels themselves. These flags are ini-
tialized to valid. Every time a label is removed from a nodelists its flag is set to invalid
instead of removing the label from the priority queue. After every extractMin()-operation
the flag of the new label is checked. The label is ignored if its flag is set to invalid. This
one bit information saves a pointer from the label in the nodelist to its position in the
priority queue as there is no need to access the latter from anywhere in the algorithm
except in the extractMin()-operation.

Chapter 4

Graph Models

There are basically two approaches for modeling public transportation timetable data: the
time-expanded [PS98, SWW00, MW01, Sch04, Gra04, Sch05, MS07, PSWZ04b, PSWZ08],
and the time-dependent approach [CH66, OR90, OR91, KW93, Nac95, BJ04, PSWZ04b,
PSWZ08]. The common characteristic of both is that a query can be answered by applying
a shortest path algorithm (as introduced in the previous chapter) on a suitably constructed
digraph.

4.1 The Basic Time-Expanded Model

In a basic version of the time-expanded graph (as described e.g. by Schulz, Wagner and
Weihe in [SWW00]) each arrival or departure of a train is called an event and is repre-
sented by a node of a directed graph G = (V,E). Each event has its timestamp. There
are two types of edges: train edges and waiting edges. We call a connection between two
stations A and B elementary if the train departs from station A and arrives at station B
without stopping in between. For every elementary connection c in the timetable, node v
corresponding to its departure event at station Sd is connected by a directed edge (v, w)
to node w corresponding to its arrival event at station Sa. This type of edge is called
a train edge. Put differently: The set of all elementary connections in the timetable is
equivalent to the set of train edges EZ ⊂ E, whose endpoints induce the set of nodes V .

To facilitate the description of the second set EW of edges, we order the nodes of V .
For each Station S, all nodes belonging to S are arranged according to their time values.
In case that there are several nodes sharing the same time stamp, the arrival events are
placed before the departure events.

Let v1, v2, . . . , vk be the nodes of a station S. Two successive nodes vi, vi+1 are linked
by a waiting edge representing waiting within a station. Let tu, tv be the time stamps of
two nodes u, v, respectively. Then the length of edge (u, v) ∈ E is tv − tu.

In the time-expanded graph there is a directed path for every connection and under
our simplifying assumptions the reverse is true as well (see Figure 4.1 for an example).

The construction of a time-expanded graph usually leads to very large but sparse
graphs, i.e. m ∈ O(n).

This model appears to be the a natural representation of scheduled traffic.

35

36 Chapter 4: Graph Models

a

b

d

c

f

e

S1

S2

S3

b
a

c

e

d
f

S1

S2

S3

Figure 4.1: The time-expanded (left) and time-dependent (right) model for the same small
timetable with three stations S1, S2 and S3. There are two elementary connections, a and
b, from S1 to S2, one from S2 to S1 (connection c), two between S2 and S3 (connections
d and f), and one direct connection (e) from S3 to S2.

4.2 The Basic Time-Dependent Model

Alternatively, a timetable may be represented by a so-called time-dependent digraph.
This description follows Brodal and Jacob [BJ04]. In this graph G = (V,E) there is only
one node per station. The set of nodes V consists of all stations of the associated train
network. Two nodes v and w are connected by an edge (v, w) if, at some time, there is
an elementary connection from station v to station w.

The length (or cost) of an edge (v, w) depends on the point in time when it is
used. More specifically, every edge e = (v, w) has an associated link-traversal function
fe : T → T , where T represents the time domain. The cost `((v, w)) of (v, w) can be
calculated by f(v,w)(t)−t, where t is the departure time from v and f(v,w)(t) is the earliest
possible arrival time at w.

If the function f : T → T satisfies f(t) ≥ t for all t ∈ T , f is said to have non-negative
delay. Function f is called monotonic, if t ≤ t′ implies f(t) ≤ f(t′).

Definition 4.1 (Timed path). A timed path in G is a sequence v1, v2, . . . , vk of nodes in
G and a sequence t1, t2, . . . , tk of times, ti ∈ T , such that (vi, vi+1) ∈ E and f(vi,vi+1)(ti) =
ti+1 for all 1 ≤ i < k − 1.

The vertex v1 is called the departure location or source of the path, t1 the departure
time, vk the destination, and tk the arrival time. The corresponding timed path is denoted
as a timed (v1, vk, t1)-path.

It can be proven that a modified version of Dijkstra’s algorithm can be used to find
fastest train connections in a time-dependent graph given the link-traversal functions are
monotonic and have non-negative delay.

Brodal et al. showed in [BJ04] that for every timed (vA, wB , t)-path in G there is an
equivalent train connection, and that for every connection c from A to B there is a path
which arrives not later at B than connection c does.

4.3 Non-Negligible Interchange Times 37

4.3 Non-Negligible Interchange Times

Towards a more realistic scenario we need to take the time necessary for changing trains
into account as well. Therefore, we will now extend both models to cover non-negligible
interchange times.

4.3.1 Extending the Time-Expanded Graph

In a first step, we extend the basic time-expanded model to cover constant interchange
times, which we will modify further at the end of this section to be applicable to variable
interchange times as well.

4.3.1.1 Constant Interchange Times

Pyrga et al. [PSWZ04a] propose the concept of change nodes in the time-expanded graph.
In this approach a copy of all departure and arrival nodes is kept for each station. These
are called change nodes. The waiting edges are only introduced between change nodes,
linking them by increasing time values at each station. For every original arrival node
there are two additional outgoing edges: one, called entering edge, connecting a change
node to the departure node of the same train and the other, called leaving edge, connecting
an arrival node to the change node whose time stamp is no less than the time stamp of
the arrival event plus the minimum interchange time for this station.

In order to describe the model formally, let S, S′ be stations, z be a train, dz
S the

departure node at station S belonging to train z, and az
S the arrival node at station S for

train z. Then G = (V,E), with V = D ∪A ∪ C and E = Z ∪W ∪ L ∪ E ∪ Y , where

• D is the set of departure nodes,

• A is the set of arrival nodes,

• C is the set of change nodes with |C| = |D ∪A|,

• Z =
⋃

SS′ ZSS′ is the set of train edges, where for each pair of stations S, S′:
ZSS′ = {(dz

S , az
S′) : dz

S ∈ D, az
S′ ∈ A, z is a train} ,

• W =
⋃

S WS is the set of waiting edges connecting a change node to the next change
node at the same station, where WS = {(cS , c′S) : cS , c′S ∈ C},

• L = {(az
S , cS) : az

S ∈ A, cS ∈ C} is the set of edges for leaving a train,

• E = {(cS , dz
S) : cS ∈ C, dz

S ∈ D} is the set of edges for entering a train, and

• Y = {(az
S , dz

S) : az
S ∈, dz

S ∈ D} is the set of edges for staying in a train, connecting
the arrival of a train at a station to the departure of the same train at that station.
An example can be seen in Figure 4.2.

4.3.1.2 Variable Interchange Times

As mentioned in Section 1.1, there are several different interchange times in the German
timetable data. In the case that these interchange times depend on the train class, we
see two possibilities to further extend the model.

38 Chapter 4: Graph Models

t*

t’

t’

t

t

 t’’

change

departurearrival

f

g

e

h

b

a

time

Figure 4.2: Example for the time-expanded model with change nodes for constant
interchange times and the extension with a special-interchange edge (f) for non-constant
interchange times. Edge f allows the change from t to t∗ although the change to the later
departing t′ is not allowed.

(a) The platform model. At each station we introduce virtual platforms pi, i ∈ PS . The
change nodes are organized not only in one cycle per station but there is a cycle for
each of the virtual platforms pi. The arrival event a of a train at virtual platform
pi at time τ is connected to the event vj at platform pj with timestamp τ + τij

where τij is the time needed for a transfer from a train at platform pi to a train at
platform pj .

(b) Adding special-interchange edges. Instead of introducing virtual platforms, we can
add what we call special-interchange edges. We define τχ to be the maximum over
all interchange times at station S for a train arriving at node a with time τ . Arrival
node a is connected to the change node c with time stamp τ ′ ≥ τ + τχ by a regular
leaving edge. For all departure events di with a time stamp τi < τ +τχ which can be
reached according to the interchange regulations, an additional special-interchange
edge (a, di) is introduced.

An example for the second model is provided in Figure 4.2.
If there are many events reachable from a before τ + τχ but not many platforms the

platform-based model is better in terms of memory consumption. But note that the
second model can easily be extended to handle a range of different kinds of interchanges
independent of platforms and train classes.

4.3.2 Extending the Time-Dependent Graph

Pyrga, Schulz, Wagner and Zaroliagis proposed two approaches for modeling the Earliest
Arrival Problem with non-zero interchange time using a time-dependent graph [PSWZ04a].
One is based on platform information, the other incorporates train routes. Both variants
are applicable for constant as well as variable interchange times. We will only show the
extensions to model constant interchange times using train routes.

4.3 Non-Negligible Interchange Times 39

0

0

0

0

0

0

0

A B

A B

p
A
0

p
A
1

p
A
2

p
B
0

p
B
1

p
B
2

p
B
3

p
C
i

p
D
j

fpA

0
pB

0

fpB

1
pA

2

gA
gA

gA

gB

gB

gB

gB

Figure 4.3: An example for modeling a time-dependent graph with non-negligible constant
interchange times using train routes.

Constant interchange times using train routes

Nodes v1, v2, . . . , vk, k > 0 form a train route if there is a train starting its journey at v1,
and visiting v2, . . ., vk consecutively. If there is more than one train following the same
schedule (with respect to the order in which they visit the above nodes) all these trains
belong to the same train route R. Note that it can be vi=vj for i 6= j , for example when
the train performs a loop.

For u ∈ S, let Σu denote the set of different train routes that stop at u. Let Ru be
the set containing exactly one node at u for each of the train routes R in Σu. We define
ρ(u) = |Ru| and R =

⋃
u∈S Ru. Then the new node set of the time-dependent graph

G = (V,E) is V = S ∪ R. For u ∈ S let pu
i , 0 ≤ i < ρ(u), denote the node representing

the i-th train route R ∈ Σu.
Again, the edge set E = A∪D∪D̂∪R consists of four different types of edges, namely

the following:

• A =
⋃

u∈S Au, where Au =
⋃

0≤i<ρ(u){(pu
i , u)},

• D =
⋃

u∈S Du, where Du =
⋃

0≤i<ρ(u){(u, pu
i)},

• D̂ =
⋃

u∈S D̂u, where D̂u = ∅ if all trains that stop at u have identical interchange
time, and D̂u =

⋃
0≤i,j<ρ(u),i 6=j{(pu

i , pu
j)} otherwise, and

• T =
⋃

u,v∈S Tuv, where Tuv = ∅ if there is no train route visiting u and v successively
and

Tuv =
⋃

0≤i<ρ(u)
0≤j<ρ(v)

{(pu
i , pv

j) : pu
i , pv

j being the corresponding route-nodes},

otherwise.

40 Chapter 4: Graph Models

Edges e ∈ T are called train edges and edges e ∈ A ∪D ∪ D̂ are called transfer edges.
The modeling with train routes is based on the following assumption.

Assumption 4.2. For any two nodes pu
i , pv

j connected by a train edge (pu
i , pv

j) ∈ T and
departure times τd, τd

′ from pu
i , for the respective arrival times τa, τa

′ at pv
j it holds that

τd ≤ τd
′ ⇒ τa ≤ τa

′.

In other words, there is no train t1 serving the same connection as t2 which departs
later than t2, overtakes t2, and arrives earlier than t2 at the next station. In case the
assumption is violated the train route concerned is split into two (or more) different train
routes, for example by separating the trains into different speed classes.

Using a graph constructed in this way a fastest connection can be calculated by a
time-dependent variant of Dijkstra’s algorithm.

Further Extending the Time-Dependent-Model For more steps towards a realis-
tic scenario we refer to the description of our prototype of a time-dependent timetable
information system in Chapter 10.

4.4 Discussion: Time-Expanded
Vs. Time-Dependent Models

For single–criterion shortest path search, the time-dependent model seems to be more
attractive due to its smaller sized graph that drastically speeds up the search. This ad-
vantage does not hold for more realistic scenarios. In their experiments for computing
all Pareto optima for two criteria Pyrga et al. [PSWZ04b] did not show a big advantage
for time-dependent models. Not only did the size of the graph significantly grow due to
the modeling – as we have seen – of constant interchange times (which are still far from
reality), the computational time required for solving the problem on the time-expanded
graph was only 58% higher than for the time-dependent graph. Their constructions in
[PSWZ04a] show how difficult the extension to model more realistic scenarios is. The gen-
eral interchange rules and the special attributes disallowing boarding and disembarkment
even violate assumptions made for the most realistic model of interchanges known for
time-dependent graphs. The time-dependent approach seems not to be as easily extend-
able to attribute requirements and train class restrictions as the time-expanded approach
as already observed in [MSW02]. It is well suited for solving the earliest arrival problem
given a time of departure. Considering time intervals instead of a single point in time for
the departures, searching from each departure in the interval separately is not an option.
Alternatively, many more labels have to be made mutually incomparable than due to
multi-critiera search alone.

As a consequence of these reasons and especially the flexibility and extendibility of the
time-expanded model we used it for our algorithm MOTIS. However, we also investigated
the possibilities of an algorithm on a time-dependent graph in Chapter 10.

Chapter 5

The MOTIS Algorithm

The MOTIS-algorithm basically is a multi-criteria version of Dijkstra’s algorithm as intro-
duced in Chapter 3 on a graph based on a time-expanded graph model from the previous
chapter. In this chapter, we will present the algorithm itself and some issues affecting
graph model and algorithm likewise.

5.1 The Graph Model of MOTIS

5.1.1 Realistic Interchange Rules

All interchange rules introduced in Section 1.1 can be modeled using only the station
dependent interchange time and service to service transfers by adding service to service
transfers for all interchanges defined by transfers between transfer classes or lines.

If boarding is permitted we have an entering edge from the change node copy to the
original departure node. If leaving a train is possible, we have one leaving edge connecting
the arrival node to the appropriate change node. Namely the node at the time from which
on all other events are reachable, i.e. the time difference of this node to the arrival is the
maximum over the interchange times required by all change rules concerning this train at
this station. For all trains reachable before this point in time we have special-interchange
edges from the arrival to the departure nodes of the corresponding trains.

Example See Fig. 5.1 for an exemplary excerpt. It is easy to see that we have indeed
covered all interchange rules. Arriving with train t we can either stay-in-train t (use
stay-in-train edge e) or change to t∗ which is possible due to some interchange rule e.g.
service to service transfer (special-interchange edge f). However, we can not take t′ (for
example, if the minimum interchange time at the station does not allow this). Therefore,
we needed the special interchange edge to reach t∗ and not to reach t′ from t although
entering t′ is allowed from the change level. Every event from time b on is again reachable
(using leaving edge g to the change node at time b), e.g., we can take train t′′ (via entering
edge h).

5.1.2 Traffic Days

Recall that not all trains operate on a daily basis, e.g. some only on workdays, others
only on Sundays. To correctly model the traffic days of trains and still achieve a bearable

41

42 Chapter 5: The MOTIS Algorithm

t*

t’

t’

t

t

 t’’

change

departurearrival

f

g

e

h

b

a

time

Figure 5.1: Example for the time-expanded model with change nodes and special-
interchange edges.

memory footprint, the days of operation are coded into the train edges only. All time
values of nodes are taken modulo a single day (more precisely 1440 minutes, as the
granularity of the schedule is one minute). During construction of the graph, an additional
waiting edge from the last change node before to the first change node after midnight.
Let tu, tv be the time stamps of two nodes u, v, respectively. Then the length of edge
(u, v) ∈ E is tv − tu (mod 1440).

We maintain the exact time t throughout the execution of the algorithm (i.e. not
only modulo a single day). Every time an edge is considered the exact departure time
is known. The time of day is determined by t mod 1440 and the traffic day is bt/1440c.
A look-up in the traffic days of the involved train shows whether the edge is available at
that day or can be ignored.

5.1.3 Footpaths

Inserting all the footpaths into the graph straightforwardly would result in a tremendous
increase in the number of edges, as we would have to insert all footpaths of a station
directly “behind” each arrival event. To avoid this problem the idea is to store the
footpaths at the station and calculate the correct arrival node at the target station S of
the footpath with a search in the node list of station S. Thus, the footpaths are inserted
without time dependency. They are always available and have constant length.

We calculate the reflexive, transitive hull of the “footpath-relation” using a textbook
version of Floyd-Warshall algorithm (Algorithm 6). To this end we set the walking time
from station SX to station SX to zero and remove these loops afterwards. Using this
modified “footpath-relation” we never need to consider more than one footpath in a row
without traveling edges in between and still find all feasible connections containing any
number of footpaths.

5.1 The Graph Model of MOTIS 43

Input : Digraph G = (V = {1, ..., n}, E) with nonnegative edge weights
0 < `ij < ∞ for all (i, j) ∈ E.

Output: A matrix D = (dij)1≤i,j≤n where dij is the length of a shortest path from
i to j if it exists and dij = ∞ otherwise.

for i, j ∈ V do dij :=

 0 : i = j
`ij : (i, j) ∈ E
−∞ : otherwise

;

for j := 1 to n do
for i := 1 to n do if i 6= j then

for k := 1 to n do if k 6= j then
dik = max{dik, dij + djk};

return D;

Algorithm 6: Floyd-Warshall algorithm.

Masking in Iterators Footpaths virtually connect arrival nodes to change-departure
nodes. The footpaths of a station are stored once per station. They are only considered
when iterating over the leaving edges of an arrival node.

Start Labels after Footpaths Footpaths affect the creation of start labels, as well.
Consider the departure interval specified to be [τfirst, τlast] and the footpaths f1, . . . , fk,
k > 0 from the departure station A to the stations S1, . . . Sk in time τ1, . . . , τk. We collect
all departure events dSi

j at station Si with departure time in [τfirst + τi, τlast + τi]. Start
labels for the events dSi

j need to be initialized with the duration τi of footpath fi and the
footpath as first travel edge, whereas all other start labels do not have a first travel edge.

5.1.4 Edge Lengths for the Criteria

We associate component-wise non-negative cost vectors to the edges. Here we describe
only the choice for forward search, the necessary modifications for backward search should
be obvious.

travel time For the cost criterion travel time, the cost for edge e = (v, w) is the difference
between the timestamps of the nodes w and v.

number of interchanges For the cost criterion number of train changes, all entering
edges and all special-interchange edges get a cost value of 1, and all other edges a
value of 0.

ticket cost Ticket costs are more difficult to handle:
Pricing systems of railway companies are very complex. Unfortunately, ticket costs
are typically not proportional to the distance traveled. In distance-based fares
the cost of the distance traveled in one train depends not only on the number of
kilometers but also on its train class and other train classes used in the connection.
Additionally, there are relation-based fares for which origin-destination pairs and
regional corridors determine the cost. Currently there are different supplementary
fares for the different higher speed train classes. For more details see our discussion

44 Chapter 5: The MOTIS Algorithm

of regular fares in Section 6.2.2. Furthermore, the system undergoes rapid change.
In building timetable information systems it should not be the task to rebuild pricing
components.

To be resistant to the changes in the pricing system (to some degree) we have a
black-box pricing component (BPC) that can be used to calculate the ticket cost for
some connection. Unfortunately, one call to this black-box routine is very costly:
The path information stored in labels has to be converted into structures for the
BPC. Much additional information like attributes on the train edges has to be set
to get a correct price. Therefore, it is not at all possible to calculate the correct
price for every label and achieve a bearable runtime.

As a consequence we use price estimates in the labels that are updated during the
search. The distance between the two stations of a train edge is taken as the straight
line distance obtained from the coordinates of the stations. For every train edge the
price estimate is increased by the distance times a factor depending on the train
class used. The supplementary fare is paid once and only for the highest train class
involved.

This simplified model provides helpful estimates for the search. After a search is
completed, all connections are correctly priced by the BPC and advanced Pareto
dominance can be applied to true fares.

Here another benefit of the Pareto relaxation (compare Section 2.3.1) comes into play,
enabling us to model some exceptions: For example, there might be a special offer (like
“Schönes-Wochenende-Ticket” in Germany) for traveling on weekends for a fixed price
independent of the distance but valid only on non-high speed trains. The relaxation allows
us to make connections using no high speed trains and connections with high speed trains
on weekends incomparable. We come back to the edge lengths regarding ticket cost in
Section 6.2 when talking about special offers.

In Chapter 6 we will introduce some additional criteria and how the edge lengths for
these are defined and calculated.

5.1.5 Attributes NotIn/NotOut

Handling the special attributes forbidding boarding or disembarkment of a train at one
of its stops during the execution of the algorithm calls for many exceptional rules:

1. We may not enter a train, if boarding is not allowed.

2. We may not leave a train, if disembarkment is not allowed.

3. If we reach our destination but may not leave the used train, we have to continue
our journey until we reach the destination again (and are allowed to leave the train).

4. No start label is to be created for a departure event at station A where boarding is
not allowed.

The first two problems can be solved on the graph level: If boarding a train is not
allowed, the corresponding departure event has no entering edge. Analogously, if disem-
barkment is not allowed, the corresponding arrival event has no leaving edge.

The last two issues are treated in the algorithm itself: Whenever a label at (one of
the) terminal station(s) is created, we only consider the terminal as “reached” (and thus

5.2 Algorithm Refinements 45

the connection as complete) if leaving the train is allowed. During the creation of start
labels only departure nodes with entering edges are considered as start labels.

Let us again take a look at Figure 5.1 on Page 42 for an example. Train t′ stops at the
station only for boarding (no leaving edge for the arrival at time a). If it is not possible
to enter train t∗ there will be neither the entering edge to the departure of t∗ nor the
special-interchange edge f .

5.2 Algorithm Refinements

5.2.1 Realization of On-trip/Pre-trip Searches

5.2.1.1 Start Interval for Pre-Trip Searches

Pre-trip search amounts to a multi-source shortest path problem from all departure events
in the departure interval. We create start labels at all departure nodes in the given interval
at the source station and if applicable all its meta replacements. At any station reachable
via a foot edge of length τ minutes from any of these stations we also create start labels
in the departure interval shifted by τ minutes. These have the foot edge as first edge and
τ minutes travel time so far. Respecting the attributes prohibiting entering a train, start
labels are not created for a train when boarding is forbidden at that station.

5.2.1.2 On-Trip Searches

In contrast, both on-trip searches can be realized as single-source shortest path problems
in our timetable information system using different starting events. We either

• create only a single start label at the change level of the source station and measure
travel time including the waiting time before taking any train (on-trip station), or

• create only a single start label at the arrival event of the train edge the traveler
uses when receiving the information about a connecting train that will be missed
(on-trip train).i

Note that in the on-trip train case, using the arrival node of the train instead of
any of the departure nodes, the modeling of interchanges in the time expanded graph
guarantees that only valid train changes at the first stop after receiving the information
are used. It would not be feasible to solve the on-trip train case with a single departure
at that station, because we need to ensure that the departure of the train with which
one arrives, all departures below the station dependent change time (through special
interchange rules) and all later departures are considered and all but the first case are
counted as an additional interchange.

5.2.2 Meta Stations and Source-/Target-Equivalents

Recall the concept of new virtual meta stations and of stations grouped in source/target-
equivalents from Section 1.2.1. Both may be represented as a pair (S, (R1, R2, ..., Rn)).
The sole difference is that for meta stations S is a new station and S 6= Ri for all i while
for Source/target-equivalents S = Ri for some i ∈ {1, ..., n}.

ior the train edge in use when the traveler is ready to change, cf. ??

46 Chapter 5: The MOTIS Algorithm

During the execution of the algorithm it is irrelevant whether (S, (R1, R2, ..., Rn))
describes one or the other possibility. Every time S is source, target or via in a query,
it is “replaced” by all the Ri. Thus we change the creation of start labels and the test
whether the terminal is reached:

• start labels are created at all Ri in the interval for departure/arrival, depending on
the search direction. Only footpaths reaching stations T 6= Ri for all i are allowed
as first footpaths in a connection.

• The terminal in any iteration ending at S is reached, if any of the Ri is reached.
(cf. Generalizing the s-t-Case in Section 3.4.5.1).

5.2.3 Attribute Requirements and Class Restrictions

Possible attribute requirements and train class restrictions with respect to a given query
can be handled quite easily. We simply mark train edges as invisible for the search if
they do not meet all requirements of the given query. With respect to this visibility of
edges, there is a one-to-one correspondence between feasible connections and paths in the
graph.

Checking Attribute Combinations Specifying wanted and excluded attributes is not
just giving a list of attributes. Wanted attributes may appear in groups as there are e.g.
many attributes for “bike transportation possible” specifying, for example, a place to
store up to eight bikes in a coach where passengers are allowed or a whole coach only for
bikes (“Fahrradtransportzug”).

The attribute requirements are given in n groups of required attributes and m excluded
attributes bk. Each group of required attributes consists of ni ≥ 1 attributes aij. The
requirement: n∧

i=1

(ni∨
j=1

aij

) ∧
(m∧

k=1

¬bk

)
is satisfied by an attribute combination if of each group of required attributes at least one
attribute aij is in the combination and none of the excluded attributes bk.

Instead of checking the attribute requirements every time a train edge is used during
the search, we check each of the attribute combinations in a preprocessing step of a search
and mark them as either admissible or not. Thus, we only have to check less than 1000
combinations once per search.

5.3 Implementation Details

5.3.1 Edge Hierarchy

We use seven different types of edges, which we designed using two levels of inheritance.
The complete edge type hierarchy is depicted in Figure 5.2. All edges are derived from an
abstract base class MetaEdge. On the second level of abstraction we differentiate between
the classes FootEdge and Edge.

Foot edges connect stations and not nodes and are treated differently from standard
edges. They have no time dependency, store their length, and are allowed only when
iterating over the leaving edges of arrival nodes, see also Section 5.1.3).

5.3 Implementation Details 47

Figure 5.2: The edge class hierarchy in MOTIS

Class Edge is an abstract class for all edge types connecting two nodes in the time-
expanded graph. An instance of class Edge can be of one of the following types:

• Train edges connect a departure node at a station to the corresponding arrival node
at the next station of the train.

• Stay-in-train edges connect an arrival node to a departure node belonging to the
same train at the same station.

• Leaving edges connect an arrival node to the first feasible (according to interchange
rules) change-departure node at the same station.

• Entering edges connect a change-departure node to a departure node at the same
station at the same point in time.

• Special-interchange edges connect an arrival node to a departure node at the same
station realizing all interchanges possible below the station dependent interchange
time.

• Waiting edges connect two nodes on the waiting level of one station.

The length of any of these edge types is the time difference between the time stamps
of the tail and head nodes.

5.3.2 Encoding Train Information

On many subsequent train edges the relevant information about the train like its name
and number, category, class, and attributes does not change. Therefore, we use a struct
ConnectionInfo to bundle this information and only store pointers to these objects in
the train edges themselves. Thus, we just need roughly 1.5 times the number of trains
many of these structs instead of storing the data on each train edge separately.

This and some other ideas to save memory have been introduced in [MSW02].

5.3.3 Lazy Initialization and Reset

The graph representing a time table usually consists of several million nodes, not all of
which are touched during a search. Instead of iterating over all nodes and reseting its
label list and a “visited”-flag, we keep an iteration counter for each station and each node.

48 Chapter 5: The MOTIS Algorithm

Any node or station touched with an iteration counter different from the current iteration
is touched for the first time during this search. In the clean-up phase only the flags and
lists of nodes at stations with iteration counter matching the current iteration need to be
considered. This saves iterating over a large portion of the graph and especially speeds
up the clean-up phase after quick searches that only visit few nodes.

5.4 History of the MOTIS Algorithm

As a predecessor to the MOTIS Algorithm we developed our early fully realistic timetable
information system PARETO [MSW02, Sch04]. It used the simpler time-expanded graph
model introduced in Section 4.1 and Pareto dominance (cf. Section 2.2). Due to the treat-
ment of train changes on the algorithmic level rather than on the graph level, we could
not guarantee optimality of our results, but already outperformed commercial systems.
We redesigned the algorithm, changed to the current graph model and introduced the
idea of relaxed Pareto dominance [Gra04, MS07] (cf. Section 2.3.1). We then studied the
application of relaxed Pareto dominance to the search for special offers [MS06] (cf. Sec-
tion 6.2.2) and developed two approaches for night train search [Gun07, GMS07, GMS09]
(cf. Section 6.4). Afterwards, we investigated the time-dependent model [DMS08, Dis07]
(cf. Chapter 10) and started our research on incorporating and dealing with delay informa-
tion [FMS08, Fre08, Key09, MS09] (cf. Chapter 7). The latter motivated our investigation
of the reliability of interchanges as an additional criterion [Meh07] (cf. Section 6.3). The
ideas of advanced Pareto dominance have been around for some time and were finalized
for this thesis (cf. Section 2.3.3). Throughout the whole development, we worked on the
design of speed-up techniques [Jun06, Mäu09] (cf. Chapter 8) and built visualization tools
and GUIs (cf. Chapter 11).

5.5 The Algorithm

Our algorithm is an “advanced Pareto version” of Dijkstra’s algorithm using multi-
dimensional labels. In Algorithm 7 we present a pseudo-code formulation for the core
of our algorithm. Each label is associated with a node v in the search graph. A label
contains key values of a connection from a start node up to v. These key values include
the travel time, the number of interchanges, a ticket cost estimation and some additional
information. For every node in the graph we maintain a list of labels that are not domi-
nated by any other label at this node. Every time a node is extracted from the priority
queue, its outgoing edges are scanned and (if they are not infeasible due to traffic days,
attributes and train class restrictions etc.) labels for their head nodes are created. Such
a new label is compared to all labels in the list at the head node. It is only inserted into
that list and the priority queue if it is not dominated by any other label in the list. On
the other hand, labels dominated by the new label are removed. Our dominance relation
is advanced Pareto dominance as introduced in Chapter 2, the specific parameters will be
introduced in Section 9.5.1 after the introduction of some additional criteria and special
search forms in Chapter 6.

In the following short overview we mention some of the details and points to consider
in the individual steps or method calls:

5.5 The Algorithm 49

Input: a timetable graph and a query
Output: a set of advanced Pareto optimal labels at the terminal

foreach node v do
labelListAt(v) := ∅;

PriorityQueue pq := ∅;
createStartLabels();

while ! pq.isEmpty() do
Label label := pq.extractLabel();
foreach outgoing edge e=(v,w) of v=label.getNode() do

if isInfeasible(e) then continue; // ignore this edge
Label newLabel := createLabel(label, e);
if isDominated(newLabel) then continue;
// newLabel is not dominated
if isTerminalReached(newLabel) then

terminalList.insert(newLabel);
else

labelListAt(w).insert(newLabel);
labelListAt(w).removeLabelsDominatedBy(newLabel);
pq.insert(newLabel);

filterList(terminalList);

Algorithm 7: Pseudocode for the MOTIS algorithm.

createStartLabels() in pre-trip search labels for all nodes in the start interval, maybe
at metas and stations reachable via footpaths as well, respecting attribute NotIn,
in on-trip search either at one arrival node or one change-departure node.

outgoing edge e=(v,w) all leaving edges, for arrival nodes additionally the foot edges
stored for this station

isInfeasible(e) edge e is infeasible due to traffic days, attribute requirements, or train
class restrictions

isDominated (newLabel) test against other labels at the same node

isTerminalReached(·) if leaving allowed (attribute NotOut) at a node belonging to the
terminal station (or any of the meta replacements)

filterList(terminalList) after a final evaluation of the complete connections repre-
sented by the labels in terminalList remove dominated labels

Correctness

The construction of the graph and the associated edge costs guarantee

• that a valid connection exists for each path in the graph and

• that the key characteristics (travel time, number of interchanges) are computed
correctly.

50 Chapter 5: The MOTIS Algorithm

Figure 5.3: Search results for a search from Darmstadt to Halle (Saale).

See Möhring [Möh99] or Theune [The95] for correctness proofs for a multi-criteria
Dijkstra. Since the employed advanced Pareto dominance relation is transitive and anti-
symmetric, it may replace classical Pareto dominance.

Ticket cost is only estimated, therefore we cannot guarantee optimal results regard-
ing prices. However, the results are much better than that of the commercial systems
currently in use. Because they rely on heuristics only, our advanced Pareto approach
outperforms these systems even with estimates.

5.6 MOTIS Search GUI

Our graphical user interface for querying the system and displaying the computed connec-
tions will be introduced in Section 11.2. Figure 5.3 shows a screen-shot for the query from
Darmstadt to Halle. We can see the fastest connection (the second) with 2 interchanges
for 71e. There are alternative with less interchanges (first, third), one of them is only
slightly slower (first), the other significantly slower but less expensive (third). The fifth
and sixth connection do not use high-speed trains and are much cheaper, albeit much
slower.

Chapter 6

Additional Criteria and Special
Search Forms

In this chapter, we will present ways of modeling and treating other concepts and search
goals to fit into our multi-criteria approach.

We start with a simple yet descriptive example, the possibility to reserve a seat.
Afterwards, we will introduce a way of modeling and actively improving the likelihood of
catching all connecting trains by our concept of “reliability of transfers.” In Section 6.2
we will talk about efficiently searching for special price offers, like a x% discount ticket or
a fixed price ticket subject to some restrictions. The chapter will end with two different
approaches to searching for night trains, one using a different kind of algorithm, the other
an additional optimization criterion.

6.1 Seat Reservation

An illustrative example of how we can use the tools of multi-criteria optimization is the
search for connections with the possibility of seat reservations. We assume that it is too
costly to constantly query the reservation server therefore we use a “traffic light encoding”
for the reservation status of each train section:

red All seats are already reserved.

yellow Only a few seats are left for reservation.

green There are still many seats left that can be reserved.

These status information flags for all train sections can be updated in regular intervals.
Thus, no queries to a reservation server are required during individual searches. The flags
may be used for serving a number of connection requests between updates. As usually
only high-speed trains allow seat reservations, the total amount of reservation data is
relatively small.

If we now search with an additional criterion “seat reservation desired”, we define the
status of a connection as follows:

red At least one section is red.

yellow At least on section is yellow and no section is red.

green There are neither yellow nor red sections.

51

52 Chapter 6: Additional Criteria and Special Search Forms

The possibility to reserve a seat is considered good for green connections, maybe
possible for yellow connections and impossible for red connections. Upon selecting a
connection for booking, a request to the reservation sever is made for yellow and green
connections. We code red, yellow, and green as 2, 1, and 0, respectively, and minimize
the additional criterion seat reservation.

When comparing two connections a green connection may dominate any other con-
nection, yellow connections may only dominate yellow and red connections and red con-
nections may not dominate any other than red connections. Thus, we expect to find
alternative connections with a more promising reservation status with the typical trade
off being a potential loss in the quality of the other criteria. If even the best connections
have status green, no additional alternative needs to be returned.

The benefit of treating reservability as an additional criterion instead of a constraint is
the chance to deliver these alternatives after one search. If we used a constraint and found
no reservable connection, we would need an additional search (without the constraint).
Furthermore, a customer might originally want a seat reservation but decide against it, in
case a large detour is required.i On the other hand, a reservable connection may be not
much worse in the other criteria. Thus, a customer not very interested in seat reservation
might opt to take the reservable one nonetheless.

6.2 Search for Special Offers

Finding cheap train connections for long-distance traffic is algorithmically a hard task
due to very complex tariff regulations. Several new tariff options have been developed in
recent years. In such an environment, it becomes more and more important that search
engines for travel connections are able to find special offers efficiently.

The purpose of this section is to show by means of a case study how several of the most
common tariff rules (including special offers) can be embedded into our multi-objective
search tool MOTIS. These results have been published in [MS06].

6.2.1 Introduction

Pricing systems of railway companies are very complex and actual fares depend on many
parameters. In recent years, railway companies faced higher competition caused by the
strong increase of low-cost airlines. As a reaction to this development, marketing depart-
ments of railway companies answer with the introduction of different types of special offer
tariffs. For origin-destination pairs with a low-cost competitor the relation-based prices
are occasionally decreased.

For this and several other reasons, the fare of a connection cannot be modeled in an
exact way as an additive function on the edges of a graph which can simultaneously be
used for a fastest connection search.

Apart from our initial work (published in [MS07]) we are not aware of any previ-
ous work which takes fares as an optimization criterion into account. There is even no
literature to heuristic approaches concerning minimizing ticket cost.

Our Contribution. Usually, marketing experts design a new tariff with respect to
expected sales but without considering how such an offer can be found in an efficient

iThis information would require the results of the constrained search.

6.2 Search for Special Offers 53

way. It seems that Germany has one of the most complicated tariff systems of the world,
providing us with the most challenging task to find cheap connections systematically.

In this section, we analyze the different tariff options with respect to searchability. We
show that a systematic, simultaneous search for different tariffs can be integrated into a
suitable graph model and a generalized version of Dijkstra’s algorithm. In particular, we
focus on tariff options which are based on the availability of contingents, yielding either
a fixed price or a certain discount.

Overview. The rest of the section is organized as follows. In Subsection 6.2.2, we
present a systematic overview on fare regulations. For each tariff class we analyze the
algorithmic consequences for efficient searchability of connections which fall into this
class. Thereafter, we present more details on the modifications to the search algorithm
of MOTIS and introduce specialized search modes as subroutines in Subsection 6.2.3.

6.2.2 Modeling Regular Fares and Special Offers

The purpose of this subsection is to provide an overview on the many different classes of
tariffs commonly used by train companies.

As the number of different tariffs is very large, they differ considerably from country
to country, and they are subject to frequent changes, this overview is far from being
comprehensive. However, we try to group the most commonly used tariffs into certain
classes. For each tariff class, we analyze how a search for connections which fall under
this class can be modeled and incorporated into our general framework of MOTIS.

In some rare cases it might be profitable to partition the desired connection into smaller
connections. To each partial connection a different tariff option may apply, yielding
an overall saving if several tickets are bought. However, this is very impractical and
potentially confusing for the customer. In this section, we therefore restrict our discussion
to a single tariff for each connection.ii

6.2.2.1 Regular Fares

Regular fares apply at any time to everyone without any restrictions. To calculate regular
fares, two main principles are in use: distance-based and relation-based fares.

Distance-based fares. For this type, regular fares are modeled by piecewise affine-
linear functions which depend on the number of kilometers of the connection and the
used train classes. These functions are encoded in tables and the calculation of fares
is done with a table look-up. For example, regular fares in France (SNCF) follow this
scheme.iii

Relation-based fares. For long-distance travel in a highly connected network like that
of Germany the regular fare is more often based on relations, i.e. origin-destination pairs
associated with a regional corridor. The corridor of a relation describes what is considered
as a common route. A relation can only be applied to a connection if the connection passes
stations from a relation-specific set which specifies the corridor.

iiNote that a combination of tariffs is necessary in multi-vendor systems.
iiisee http://www.voyages-sncf.com/guide/voyageurs/pdf/calcul prix tarif normal.pdf

(retrieved September, 8th, 2009).

54 Chapter 6: Additional Criteria and Special Search Forms

If a connection leaves the corridor of a relation, the fare has to be determined by
partitioning the entire connection into smaller connections. The details of this procedure
are beyond the scope of this work.

Marketing considerations influence the price for each relation. In general, the fare of
a relation is derived from the travel distance, but it may be changed in either direction.

Properties of regular fares. In most cases, we can assume that regular fares are
monotonously increasing and sub-additive. That is, for a connection c from station s to
station t via station v, the price pc(s, t) satisfies

pc(s, t) ≤ pc(s, v) + pc(v, t).

Distance-based fares are degressive functions in the travel kilometers. Hence, they are
always strictly sub-additive.

In dominance tests, good lower bounds are of crucial importance for the efficiency of
the search (discussed in detail in Section 8.5). Hence, we need a lower bound on the price
of a connection. With distance-based fares, we get a lower bound on the distance of a
connection from the distance traveled from s to v plus a lower bound on the distance
from v to t.

In sharp contrast, valid lower bounds are hard to obtain for relation-based fares
as these may even violate our sub-additivity assumption. But even if we assume sub-
additivity, it is not clear how to get a reasonably tight lower bound on the price of a
connection from s to t given the prices from s to v and from v to t.

Frequent user cards. For holders of frequent user cards (like “BahnCard”) a general
x% discount applies to the regular fare. As this kind of discount yields the same reduction
rate for all connections, our price estimation merely needs a flag indicating whether such
a card is available or not. The flag is necessary for a comparison with other tariff options.

Sometimes the discount is only available for tickets above some minimum ticket cost.
This condition can easily be evaluated to determine the actual ticket cost before comparing
prices.

Approximation of regular fares. We use a simple and efficiently computable model
to approximate regular fares. Basically, we simulate a distance-based fare and associate
a travel distance with each edge. The distance between the two stations of a train edge is
taken as the straight line distance obtained from the coordinates of the stations. During
the search, we add for each train edge the travel distance times a constant factor (in
Euros/km) depending on the train class used.

6.2.2.2 Surcharges

An additive surcharge applies to certain trains (night trains, ICE sprinter) or train classes
(IC,EC). It has to be paid once, if such a train is used. If a connection uses several trains
to which a surcharge applies, then usually only the highest surcharge has to be paid once.

During the search, the amount of the surcharge is added to the price estimation when
a partial connection first enters a train with a surcharge. In order to guarantee that a
surcharge is paid only once, the labels characterizing a partial connection store in flags
which surcharges have already been applied.

6.2 Search for Special Offers 55

6.2.2.3 Contingent Based Discount Fares

Contingent-based offers are intended to increase (and balance out) the average passenger
load on high-speed trains. For each train in a connection for such an offer, a contingent of
available seats must not be exceeded by previous bookings. For high-speed trains the con-
tingent may be something like 10% of all seats. For local trains, there is typically no con-
tingent restriction, i.e. the contingent is regarded as being unlimited. As a consequence,
such offers are only valid for connections which contain at least one contingent-restricted
train.

Many train companies offer discounted fares on long-distance travel under certain
restrictions. These restrictions typically include that

• the ticket has to be bought a certain time in advance
(for example, at least three days in advance),

• passengers restrict themselves to a particular day and a certain connection which
has a contingent available,

• passengers make a return journey to and from the same station.

Discount rates may also be subject to weekend restrictions. For example, Deutsche
Bahn AG offers “Savings Fare 50” (“Sparpreis 50”) only if the following restrictions apply:
For trips starting from Monday to Friday, the return trip cannot be any sooner than the
following Sunday. If you travel on Saturday or Sunday you may return that same day.

To incorporate such types of offers into the search, we add and maintain a contingent
flag in our labels. It is a Boolean flag which is set to true if and only if all previous
high-speed train edges of this connection have a contingent available.

6.2.2.4 Fixed Price Offers

Contingent-Based Restrictions. Certain special tariffs offer fixed price tickets within
a limited time period (of several weeks or even months, like “Summer Special”) subject
to the availability of contingents.

A further restriction is that the itinerary of a connection from station A to B must
use a “common route”. This rule is to prevent possible misuse by making round-trips or
stop-overs during the travel for which one usually would have to buy several tickets or at
least to pay for the deviation.

The easiest way to model common routes is to impose the restriction that the length
of an itinerary of a connection shall not be more than a certain percentage, say 20%,
longer than the shortest route from A to B. Alternatively, the travel time shall not be
more than a certain percentage longer than the fastest route from A to B.

The modification of our model for this kind of tariff is similar to the previous case.
We also maintain a contingent flag in each label indicating whether a contingent has been
available on all previous edges. As contingents for discounts and for fixed prices may be
different, we use different kind of contingent flags. At each intermediate station, we also
check whether the partial connection up to this station can still be extended in such a way
that it stays on a “common route”. To this end, we use lower bounds for the remaining
path from this intermediate station to the final destination.

56 Chapter 6: Additional Criteria and Special Search Forms

Time Interval Restrictions. Tickets allowing unlimited travel may be available for a
fixed price provided the time of the trip falls into a certain time interval.

For example, Deutsche Bahn AG offers a “Happy-Weekend-Ticket” which can be used
on all trains except high-speed trains on Saturdays or Sundays between 12 a.m. until
3 a.m. of the following day for a fixed price. Another example would be a fixed price
ticket valid from 7 p.m. until the end of the same business day (“Guten-Abend-Ticket”).

Such offers can be handled in the following way. For a given query, we first check
whether the given start interval falls into the interval of a special offer. If not, the corre-
sponding tariff is definitely not applicable. In case the offer has no train class restrictions,
we can use the standard multi-objective search. For each alternative found by this search,
we finally have to check whether the complete connection falls into the time interval. If
this is the case, the price for this connections is the minimum of the regular fare and the
fixed price.

If train class restrictions apply, we could use two independent searches, one with
train class restriction and one without. However, it is more efficient to treat train class
restrictions as a further criterion in the multi-criteria search and to run just a single
simultaneous search for both cases.

Rail Passes. Many train companies also offer different kinds of so-called rail passes
which allow unlimited travel. Prices depend on country and number of days. Rail passes
may be restricted to special user groups (students, disabled, unemployed), restrictions
may be based on the age (children, seniors), or restrictions on the place of permanent
residence apply.

Further restrictions may be imposed on the set of allowed train classes. For example,
a regional rail pass like “Hessenticket” offered by Deutsche Bahn AG is only valid for
local trains.

Passengers with rail passes can use the standard multi-objective search on the basis
of regular fares which delivers, in particular, all attractive connections with respect to
travel time and convenience. The price information can simply be ignored. The search
has only to make sure that the whole connection lies within the region where the rail pass
is valid.

6.2.2.5 Discounts for Groups

Groups of 2 or more passengers either get an x% discount on the regular tariff which can
be applied to all trains, or they get an even larger discounts of y > x% based on the
availability of certain contingents. During the search, both options can be handled in the
same way as for single passengers.

6.2.2.6 Further Possibilities for Discounts

Discounts for single passengers or groups may also be restricted to certain Boolean condi-
tions which depend only on properties of the travelers but not on the particular trip they
are going to make. For example, if the group is a family with children below a certain
age, then special discounts apply. Another example would be discounts for employees of
certain companies (corporate clients).

6.2 Search for Special Offers 57

6.2.3 Details on the Search Algorithm

6.2.3.1 Simultaneous Search

The aforementioned modeling of the various tariffs allows the search for combinations of
tariffs simultaneously. This is preferable over having individual searches for each of the
tariff rules that apply in a scenario and can be done without sacrificing search speed (as
we will show in the computational study in Section 9.1).

However, as the number of tariff rules increases, more and more labels become mutu-
ally incomparable. For example, consider two labels representing partial connections that
can gain a fixed price or discounted fare, respectively. Either connection might not be
extendable to a connection from source to target with contingents available on all edges.
So neither of them can dominate the other depending on an estimate of the special price.
Furthermore, they cannot even be compared regarding the estimation for the regular
price, as the final price may differ substantially if a special tariff is applicable.

The dominance test between a connection that has already reached the terminal sta-
tion and a partial connection has to compare the lowest possible price reachable by ex-
tending the partial connection to the actual price of the complete connection. So it is
even more important to have a fast and cheap connection at the terminal fairly early in
the search process.

6.2.3.2 Fast Search for the Fastest Fixed Price Connection

For several reasons we implemented a specialized version of our algorithm to search for
fixed price connections. Our motivation was

1. to have a stand alone tool to find one fixed price connection, and

2. to strengthen our dominance with terminal labels (a speed-up technique introduced
in Section 8.4), or

3. to have a certificate that no fixed price connection is available at all. In the latter
case, we can turn off our fixed price search.

Our specialized algorithm for fixed price search (“fixed price Dijkstra”) is a single-
criterion goal-directed search algorithm (see Section 8.3 for details on goal-direction). It
determines a fastest connection among all connections using only available contingent
edges and edges without contingent restrictions.

6.2.3.3 Determining Lower Bounds in the Preprocessing Phase

The initialization phase now consists of up to two searches: First we use the standard
single-criterion goal-directed search algorithm to determine a fastest connection from
source to target. It keeps track of the contingent information, and

• either finds a connection with a fixed price (it includes a high-speed train and
contingents are available on all contingent edges),

• or finds a connection without high-speed trains (therefore no fixed price is possible
for it). As it is the fastest connection, we may use it for dominance testing later on.
It is also quite often cheaper than the fixed price (see Subsection 9.1.3).

• Otherwise, it triggers the specialized algorithm for fixed price search.

58 Chapter 6: Additional Criteria and Special Search Forms

If triggered, the “fixed price Dijkstra” algorithm

• either finds a connection with a fixed price (it includes a high-speed train, contin-
gents are available on all contingent edges, and it is within the allowed margin (here
20% more travel time) compared to the fastest connection),

• or finds a connection without high-speed trains (therefore no fixed price is possible
for it). If a fixed price connection exists, it must be slower than this connection.

• Otherwise, it finds a connection with contingents available on all contingent edges
but that does not stay within the allowed margin. In this case no fixed price con-
nection exists (as all other connections with contingents available are even slower).

In the latter case the following multi-criteria search is performed with the option to
search for fixed price connections turned off. Note, that in case two the algorithm fails to
compute a connection with a fixed price although one may exist. However, it delivers an
alternative connection for dominance testing that is faster than any fixed price connection,
if there are any, and in most cases cheaper than the fixed price (see Subsection 9.1.3).

The search for special offers will be evaluated in Section 9.1 in Chapter 9: Computa-
tional Study.

6.3 Reliability of Transfers

The reliability of transfers is an important facet of the quality of a connection. Especially
when dealing with delayed scenarios, a higher probability of not missing a connecting
train may be worth a lower score for the other quality criteria. To our best knowledge
nobody has tried to capture this notion of reliability before, although we consider it a
very important criterion. The number of interchanges is already included in the most
common criteria, together with travel time and ticket cost (cf. Chapter 2.1). Consider
choosing between two connections that only differ in the buffer time when changing trains.
Think of the buffer time as the time to spare after reaching the platform of the connecting
train.iv One connection has a buffer of 1 minute, the other 6 minutes. Intuitively, the
larger buffer seems to result in a higher reliability of transfers.

In this section we will define the key values for a single interchange. Then we will
discuss how to determine the score for a complete connection from these key values, and
how to search optimizing this criterion.

6.3.1 Reliability Measure

Consider two otherwise equivalent connections a and b with 2 interchanges each. Connec-
tion a has 5 minutes buffer time for each interchange, connection b has 9 minutes buffer
time for the first and 1 minute for the second interchange. Although the sum is identical,
connection a seems somehow more secure. If any one of its trains is delayed by at most 5
minutes, there is no problem. But if the second train for connection b is only 2 minutes
late, the connection breaks. It gets even more complicated if we compare connections
with different numbers of interchanges. Connection a from above might be considered
safer than a connection with just one train change and 0 minutes buffer.

ivWe will formally define the buffer time later.

6.3 Reliability of Transfers 59

6.3.1.1 Definition of the Buffer Time for a Single Interchange

To obtain a confidence measure for the reliability of transfers there are a number of
factors to consider: the excess time when changing trains, empirical values for delays at
the station, the number of passengers entering the connecting train / leaving the feeding
train, the current situation at neighboring stations, condition of the tracks, . . .

As most of these are not easy to observe, impossible to estimate, and/or simply not
available beforehand, we opted to use the available buffer time to base our calculation on.

Apart from the arrival arrs(f) and departure time deps(t) of the feeding train f and
the connecting train t at station s we need the change time cts(f, t) to define the buffer
time. Time cts(f, t) is the time needed to walk from train f to train t. It depends on
the station layout (number of platforms, distances in the station) and the platforms the
trains stop at (for more details see Section 1.1). In the basic case we can determine the
buffer time

buf := deps(t)− arrs(f)− cts(f, t).

Scenario with delays In a scenario with delay information additional values determine
the buffer time. We have the minimum change time minct(f, t) that is applicable if a
train arrives late. In this case announcements in the train or even railway personnel
guiding passengers can make it possible to change faster. The change time can often
be decreased by up to two minutes. Furthermore, connecting trains may wait for the
arrival of feeding trains according to a set of waiting rules (cf. Chapter 7.2.2). We can
increase the buffer time by the number of additional minutes available, e.g. if t would
wait for train f at station s up to wts(t, f) minutes and is already x minutes late we have
wait+s (t, f) = max{wts(t, f) − x, 0} additional minutes. If train t waits for train f , it
departs not later than depsched

s (t) + wts(t, f). The additional waiting time is zero if train
t has a higher delay than wts(t, f) on its own.

For an interchange i from train t to f with ∆ := dep(t) − arr(f) for the (possibly
delayed) event times, we now get the buffer time:

buf(i) :=

 ∆− cts(f, t) + wait+s (t, f) if cts(f, t) ≥ ∆
0 + wait+s (t, f) if mincts(f, t) ≤ ∆ < cts(f, t)
⊥ if ∆ < mincts(f, t)

For the first case we simply apply the rules from above. When a train arrives too
late to use change time cts(f, t), we switch to using the minimum change time. In that
case, we do not want to gain additional buffer time in our model by defining buf(i) as
∆ − mincts(f, t) > 0. Therefore, the buffer time is set to zero in the second interval.
In the last case the interchange will break as the train would have to wait more than
wts(t, f) minutes to make the interchange possible (as train t arrived later than time
depsched(t) + wts(t, f)−mincts(f, t)).

6.3.1.2 Reliability Rating

We assume we have a buffer time for each of the interchanges of a connection and want
to determine the reliability of transfers for the whole connection.

In his Bachelor thesis Kai Mehrungskötter [Meh07] investigated evaluation functions
to determine the reliability of transfers rel(c) for the whole connection c with interchanges
i1, . . . , ik:

60 Chapter 6: Additional Criteria and Special Search Forms

Min Obtaining the reliability measure from the minimum over the buffer times of all
interchanges rel(c) := minj(buf(ij)) is not sufficient, e.g. a connection with two
interchanges, with 1 and 20 minutes buffer, is regarded as equally reliable as a
connection with 1 and 2 minutes buffer time.

Sum Defining the reliability rel(c) :=
∑

j(buf(ij)) as the sum of the buffer times is not
a good measure, e.g. two interchanges with 3 minutes of buffer each are considered
better than only one interchange with 5 minutes buffer.

Arith If we define the reliability rel(c) :=
P

j(buf(ij))

k as the average of the buffer times, it
fixes the previous example, but as we disregard the number of interchanges and the
distribution of buffer times, this is still not enough. For example, two interchanges
with 1 and 9 or 4 and 6 as well as one interchange with 5 minutes buffer, all evaluate
to the same result.

To overcome all these drawbacks we decided to calculate a probability factor sec(ij)
for each interchange ij and to determine the reliability as

rel(c) :=
k∏

j=1

(sec(ij)).

6.3.1.3 Reliability-Functions for an Interchange

Now we want to determine the security factor sec(ij) for a single interchange ij with
a buffer of x = buf(ij). We need some preliminary considerations. According to the
schedule construction a railway company does not consider a buffer time of zero minutes
as an endangered or impossible interchange. So we cannot set the security factor for zero
minutes to 0% but have to choose a much higher value instead, e.g. η = 60%. From the
introductory example it is clear that a connection without interchanges should obtain the
highest possible reliability measure of 100%. Connections with at least one interchange
can obtain a reliability of at most µ < 1, e.g. µ = 99%. On the other hand we do not want
to impose a buffer of say at least 100 minutes to reach the highest possible reliability µ.
Here we could choose θ = 45 minutes (as within 60 minutes another train operates the
same route for most frequencies).

With this consideration we can discuss the following examples:

linear With a linear function

sec(x) :=
{

µ−η
θ x + η : 0 ≤ x ≤ θ

µ : otherwise

the increase of the buffer by δ minutes increases the security factor by µ−η
θ δ. This

is clearly not intended, as the increase in reliability from 0 to 5 minutes should be
much higher than that from 30 to 35 minutes.

discrete For interval bounds x0 = 0, . . . , xn and y0 = η < y1 < . . . < yn = µ a discrete
function

sec(x) :=
{

yj : xj ≤ x < xj+1 for some j
µ : x > xn

requires too many intervals and guessing or fine-tuning too many yj . Additionally,
it is not strictly monotonically increasing, so a small change in buffer time either
changes nothing or jumps from yj to yj+1.

6.3 Reliability of Transfers 61

Parameters
η 60%
µ 99%
θ 45min
α 8

x sec(x)
0 60%
1 65%
4 75%
6 80%
8 85%

x sec(x)
12 90%
13 91%
14 92%
15 93%
17 94%

x sec(x)
19 95%
21 96%
24 97%
30 98%
45 99%

Table 6.1: The parameters for the reliability function sec(x) and sample values for some
buffer times x.

piecewise linear For a piecewise linear function we need interval bounds and constant
slopes aj , with a0 > ai > . . . an in the intervals we again have to determine and
adjust too many values for intervals and slopes.

exponential Addressing all the concerns from above we use an exponential function

sec(x) = µ− eln(µ−η)− 1
α x.

The formula evaluates to values in the range [η, µ], as we have

lim
x→∞

sec(x) = lim
x→∞

µ− eln(µ−η)− 1
α x = µ− 0 = µ

for large x, and for x = 0:

sec(0) = µ− e(lnµ−η)− 1
α 0 = µ− eln(µ−η) = µ− (µ− η) = η.

We only have to fix the parameter α defining the steepness. A nice choice seems
to be α = 8, which results in the values given in Table 6.1, e.g. it gives us for our
“long waiting time” θ a reliability of sec(θ) = µ− 0.0014(≈ µ) which rounds to µ.

Thus, we selected the exponential function to calculate the reliability for a single inter-
change. Different sets of parameters have been evaluated in [Meh07] and we finally agreed
on the parameters in Table 6.1 (left).

6.3.2 Good Measure = Good Additional Criterion?

Unfortunately, this measure cannot directly be used as an additional criterion. In Di-
jkstra’s algorithm we have to sum non-negative integers for each of our criteria. The
following problems arise from taking the reliability of interchanges as another dimension
in our labels:

Maximization All other criteria have to be minimized, but we want to maximize the
reliability. By simply minimizing the “unreliability” as 1 minus the reliability, or replac-
ing all relevant smaller-than with larger-than operators (possible, since the criterion is
bounded), we overcome this issue.

62 Chapter 6: Additional Criteria and Special Search Forms

label a label b
this interchange total attainable this interchange total
buffer sec sec max sec buffer sec sec

before e 1 min 65% 58.5% 89.1% 12 min 90% 67.50%
after e 8 min 85% 76.5% 89.1% 19 min 95% 71.25%

Table 6.2: Comparing the reliability of interchanges of two labels a and b with one previous
interchange with a buffer of 12 minutes (rating 90%) for label a and a buffer of 4 minutes
(rating 0.75%) for label b. Using total sec for both labels allows b to dominate a before
using edge e. The modified version with comparison against the maximal attainable
reliability of a does not allow domination.

Multiplication Instead of adding the length of an edge to the length stored in the label
we multiply. This can be fixed by using the group isomorphism from the multiplicative
group of nonnegative real numbers to the additive group of real numbers provided by the
logarithm. We may calculate the reliability rating sec(c) after using an interchange i for
connection c′ = c + i as

log(sec(c′)) = log(sec(c)) + log(sec(i)).

Different signs of edge lengths In our graph model all train edges and stay-in-train
edges do not influence the reliability rating. But the edges modeling train changes do.
For the use of special interchange edges the constructions from above may directly be
applied (as only one edge represents the interchange and the waiting time). However, we
cannot do likewise for regular interchanges consisting of a leaving (or foot) edge followed
by an arbitrary number of waiting edges and an entering edge. If we update the reliability
after each used edge, we have the following developments:

• The rating drops significantly after leaving the train (leaving or foot edge), because
we have an additional interchange (thus the rating is multiplied by η).

• The rating increases with each waiting edge used, as the buffer time increases.

History aware edge lengths Depending on the amount of time already spent waiting
at a station, the increase from the same waiting edge varies. Looking at the values in
Table 6.1 (middle and right) we see that 7 additional minutes of buffer nets us 20% when
increasing the buffer from 1 to 8, whereas we only gain 5% from 12 to 19 minutes.

Example Consider the following situation (cf. Table 6.2): We have two labels a and b
at some node, with buffer times 1 and 12 minutes, respectively. Both already have one
earlier interchange, label a with a buffer of 12 minutes (rating 90%), and label b a buffer
of 4 minutes (rating 75%). When we compare these two labels we have sec(a) = 58.5%
and sec(b) = 67.5%. Label b is better, regarding reliability. After using a waiting edge
with a length of 7 minutes, the updated reliability rating is sec(a′) = 76.5% and sec(b′) =
71.25%. This makes a′ better than b. Sadly, we would not have created a′ because label
a was dominated. Note that all other criteria could have been identical for a and b and
thus would be identical for a′ and b′ as well.

6.3 Reliability of Transfers 63

Modified comparison

To overcome the last two problems, we have to modify the comparison of labels. When
we ask whether label a is dominated by label b, we enter a case distinction:

1. At event nodes (i.e. after traveling or staying in a train or after an interchange is
completed) we compare the values of a and b as usual.

2. On the change level, where the reliability might still improve due to additional
waiting time, we use the current rating for label b and the maximal attainable
reliability for label a. To obtain this value we multiply the reliability after the
previous interchange (or 100% if no previous interchange exists) by µ.

In the previous example, label a would not have been dominated, because we now use
maxsec(a) = µ · 90% = 89.1% instead of sec(a) = 65% · 90% = 58.5%. The new score is
better than the 67.5% of label b.

6.3.3 Refinements

After the implementation of the reliability measure as an additional criterion and the
necessary adjustments in our label data structures and the methods for dominance testing,
we were able to test our search for more reliable connections.

6.3.3.1 Discretization and Filtering

As the evaluation of the exponential function leads to floating point values, we have a huge
set of possible values. So a solution set may contain a very large number of connections
because of increased reliability of interchanges, but all of them only differ by an absolute
value of say 2%. An increase of 0.1% at the expense of traveling 1 hour longer leads to
a new Pareto optimum but is surely neither desired nor acceptable. To overcome these
problems we did two things.

Discretization Firstly, we consider the reliability measure to be an integer between zero
and one hundred, thus obtaining 100 equivalence classes. For more than one interchange
we can get below our µ = 60% for one interchange and arbitrarily close to zero, because
all factors are at most 1.0, (e.g. 0.74 rounds to 24%).

Although 100 seems to be the natural choice, we can use this discretization step to
speed up computation and observe a run time - quality tradeoff. For example, using
only 1 equivalence class, we completely disable the search for connections with higher
reliability of interchanges and if we change the number from 10 to 50, 100, or even 1000
classes, the number of investigated labels increases, as we will see in Section 9.9.1.

Advanced Dominance And secondly, we added the following conditions a label with
longer travel time but higher reliability measure has to fulfill:

• the travel time increase may not exceed a certain threshold δ (e.g. 90 minutes)

• the travel time may not exceed twice the travel time of the other connection

• for each additional minute the reliability has to increase by at least 1%.

64 Chapter 6: Additional Criteria and Special Search Forms

Figure 6.1: Comparison display of the search results determined by two servers, one
with (blue) and the other without (yellow) reliability of interchanges as an optimization
criterion.

We implemented the third point only. Using reliability of interchanges as an optimization
criterion in advanced Pareto dominance, we require a wage of δsec increased reliability per
additional minute travel time (similar to the hourly wage for ticket cost already introduced
in Chapter 2).

6.3.3.2 Limiting the Maximal Effective Reliability

When introducing the highest reliability rating µ of an interchange, we thought about
using µ = 99%. However, discussions with practitioners made us wonder, whether a lower
value, still above 90%, might actually improve the desired quality. We introduced the
maximal effective reliability µ̂ and define θ(µ̂) = min{x|sec(x) ≥ µ̂} as the first minute x
for which the reliability is higher than µ̂. For µ̂ ∈ [90%, 99%] the values θ(µ̂) are given in
Table 6.1. We now use the truncated reliability function

sec′(x) =
{

µ− eln(µ−η)− 1
α x if x < θ(µ̂)

µ̂ otherwise.

So for times below θ(µ̂) we use the reliability function exactly as introduced in Section 6.3,
for times greater or equal θ(µ̂), we limit the reliability to µ̂.

Due to the exponential function in sec′(·), the increase of θ(µ̂) in minutes per addi-
tional percent in µ̂ is not linear. In fact for µ̂ ∈ [90%, 93%] it is one minute, in [93%, 96%]
two minutes and 3, 6, and 15 minutes from 96% to 97%, 97% to 98%, and 98% to 99%,
respectively (cf. Table 6.1).

After extensive regression tests and single case analysis we agreed on the value µ̂ =
96%. In our discussion with practitioners they appreciated the values for α, η, µ, and
µ̂ (and especially the connections obtained when using this model). The investigation of
the effect of changing µ̂ is presented in Section 9.9.2.

6.3 Reliability of Transfers 65

Figure 6.2: Details for the third (upper) and fourth (lower) connections from the previous
figure. The higher reliability of the upper connection is due to the higher buffer time in
Hamburg-Harburg.

6.3.4 Example Result Set

In Figure 6.1 we see the results for an example query from Hamburg main station (Hbf) to
Würzburg main station (Hbf). The screen-shot was taken from the multi-server display
of our MOTIS Search GUI (introduced in Section 11.2). One server was configured with
(blue #1), the other without (yellow #2) reliability of interchanges as an optimization
criterion. Results marked with a square half yellow half blue were determined by both
servers, the one with a blue square only by server #1. The reliability of interchanges score
is visualized as intuitively understandable graphics, here stars for whole connections and
clocks for individual interchanges; the more the better. One can easily observe that
the additional result delivered by #1 increases the reliability of transfers, usually at the
cost of only a few (here three) additional minutes of travel time. The third connection,
obtained by server #1 only, departs three minutes earlier than the fourth and drastically
increases the reliability rating. Both connections use ICE 583 from Hamburg Harburg to
Würzburg Hbf (see Figure 6.2). The third connection uses a RB from Hamburg Hbf to
Hamburg Harburg, whereas the fourth uses an S-Bahn from the S-Bahn station Hamburg
Hbf (S-Bahn) of Hamburg Hbf to the S-Bahn station Hamburg-Harburg(S) of Hamburg
Harburg and a footpath with duration 10 minutes to the long distance station Hamburg
Harburg. As the RB is much faster than the S-Bahn, the buffer time at Hamburg Harburg
is increased by more than the three minutes the RB leaves earlier and the five minutes
difference between the change time at Hamburg Harburg and the length of the footpath.
A buffer increment of 16 minutes is achieved, thus the reliability score is significantly
improved.

66 Chapter 6: Additional Criteria and Special Search Forms

6.4 Sleeping Time in Night Trains

The search for attractive night train connections is fundamentally different from an ordi-
nary search: the primary objective of a customer of a night train is to have a reasonably
long sleeping period without interruptions from train changes. For most passengers it is
also undesirable to reach the final destination too early in the morning. These objectives
are in sharp contrast to standard information systems which focus on minimizing the
total travel time.

In this section, we present and compare two new approaches to support queries for
night train connections. These approaches have been integrated into our timetable infor-
mation system MOTIS.

Our work on night trains has appeared in [GMS07]. An extended journal version has
been accepted for publication in [GMS09].

6.4.1 Introduction and Motivation

Marketing campaigns of major railway companies praise the advantages of night trains:
“By traveling at night you save paying for a hotel night, and you gain a full day of
activities.” Compared to traveling by plane, passengers can take more luggage with
them, and they save the check-in procedures at airports and transfers from the airport to
the city center.

At a first glance, it may seem surprising that the same railway companies put little
effort into supporting potential customers in their search for attractive night train connec-
tions. To be applicable in practice, night train queries have to be answered more or less
instantly (i.e., in very few seconds). Given the size of the search graph (about 2.5 million
nodes), the challenge is to design an approach which runs in linear or even sublinear time
for typical instances.

Current search engines support the search for night trains in one of two types. One
is not all, the other is limited and supports only direct connections. It requires the
user to already know the stations served by night trains from which he wants to start
and at which he wants to leave the train. Of course, the search of direct connections is
algorithmically very simple. The problem immediately becomes much more difficult if
the starting point or the final destination are not served by a night train connection at
all. Usually, there will be several night train stations in the neighborhood of the starting
point and the destination of a planned journey. Thus, this section deals with the complex
environment of a relatively dense network (like the railway network of central Europe),
which offers many alternatives. The goal of this section is to introduce and to discuss
several approaches for an effective night train search.

In general, we look for a connection consisting of three parts:

• one or more trains from the origin to the point of boarding a night train (called
feeder train),

• a night train, and

• again one or more feeder trains from the station of disembarking the night train to
the final destination.

The first or last of the parts may be missing.

6.4 Sleeping Time in Night Trains 67

Mannheim Hbf

Hannover Hbf

Stuttgart Hbf

Hamburg Hbf

Karlsruhe Hbf

Stuttgart Hbf

Hamburg Hbf

Figure 6.3: Alternative night train connections from Stuttgart to Hamburg.

The purpose of the initial feeder trains is to bring the customer on time (with a certain
safety margin) to the night train. For the feeder trains (in the first and the third part),
we aim for the fastest and most convenient connections with respect to the number of
interchanges, whereas the night train section should have a minimum length of h hours.
The parameter h can be set by the customer; a typical choice might be h = 6 hours.

Thus, the overall connection which we are looking for will typically not be the fastest
possible, and that is why information servers which focus on fastest connections will fail to
find and offer them. If there are several alternatives for the arrival time at the destination,
the search engine should present all alternatives. Fig. 6.3 shows an example of a query
from Stuttgart main station (Hbf) to Hamburg main station (Hbf) with two alternative
night train connections. The first connection is faster with a total duration of 8h 23min,
but requires two train changes and has a sleeping period of only 5h 19min. The second
connection has a total duration of 9h 54min and only one train change, but offers an
uninterrupted sleeping period of 8h 02min.

Our Contribution. We are not aware of any previous work on searching for night
trains. Our first contribution in this section is a formal model which tries to capture the
notion of attractive night train connections. Afterwards, we discuss how to model that a
connection offers enough sleeping time and other aspects which should be considered.

Based on this formal model, we develop two general approaches for night train search.
The first approach is an enumerative approach. It is based on the idea that there are
only relatively few night trains which are candidates for a given query. This approach
was explained and evaluated in more detail by our student Torsten Gunkel in [Gun07].
Our second approach considers sleeping time as an additional criterion in a multi-criteria
search. Here, we extend a multi-criteria version of Dijkstra’s algorithm to this additional
criterion.

The basic versions of both general approaches are quite inefficient. Therefore, we have
engineered them both. By using appropriate speed-up techniques, we achieve acceptable
average runtimes of only a few seconds per query. In an extensive computational study
we show that our fastest versions yield high quality solutions, much better than those
that we can reach by standard methods.

68 Chapter 6: Additional Criteria and Special Search Forms

6.4.2 Attractive Night Train Connections

6.4.2.1 Discussion of Objectives for Night Trains

How can we ensure that a connection offers enough sleeping time? From a modeling point
of view, we could simply impose a lower bound on the sleeping time as a side constraint.
Let us call this lower bound minimum sleeping time and denote its value by lbst.

Unfortunately, the choice of some suitable constant lbst is not obvious since different
customers may have very different opinions on what they regard as sufficient sleeping
time. But even if customers are allowed to choose this constant individually according to
their personal preferences, any sharp border imposed by such a constant is questionable.
If we choose lbst too large we may miss valuable alternatives (which are just below the
given value). In contrast, choosing the constant lbst too small may lead to relatively short
sleeping periods, since the search algorithm has no incentive to favor alternatives with
longer sleeping periods.

However, to use the pure objective “maximize the sleeping time” is also questionable
as it supports unnecessary, but costly detours. Thus, we have to balance the goal of
maximizing the sleeping time with the usual goal of minimizing the overall travel time.

Therefore, we combine both ideas and propose the following model. We choose a fairly
small lower bound on the minimum sleeping time, to distinguish night train connections
which include a reasonable sleeping period from other connections which only partially
use a night train.

Suppose we want to compare two connections c1 and c2 with total travel times tt(c1)
and tt(c2) and sleeping times st(c1) and st(c2), respectively, with st(c1), st(c2) > lbst. We
suggest the following domination rules:

1. If connection c1 is faster than c2, then the increase in sleeping time st(c2)− st(c1)
should be at least as large as the increase in total travel time tt(c2)− tt(c1). Oth-
erwise, we consider c2 as dominated by c1 with respect to these two criteria.

2. We also impose an upper bound on the sleeping time ubst. The idea is that sleeping
times longer than this upper bound should not be considered as beneficial for the
customer. Thus, instead of using the original sleeping time st, we use a modified
sleeping time mst := min{st, ubst} in our comparisons of connections.

6.4.2.2 Filtering Attractive Solutions

Trains are considered as night trains if they are officially labeled as such (and not just
operate during the night). A connection is considered as a night train connection only if
it includes a night train with a sleeping time of at least lbst minutes.

This definition does only partially capture what passengers will consider as an at-
tractive night train connection. Therefore, we propose applying additional constraints to
remove undesired solutions from the set of found connections. In this subsection, we use
the following additional rules:

• We remove all night train connections with an extremely long feeder section, since
such connections usually imply a large detour. To this end, we use an upper bound
on feeder lengths ubfe.

• We also remove all connections which have more than two additional interchanges
than some other night train connection as such connections are quite uncomfortable.

6.4 Sleeping Time in Night Trains 69

• From the remaining solutions, we filter out all dominated solutions, where we use
modified sleeping time mst := min{st, ubst} as explained above.

Since ticket costs depend very much on the chosen train category and the fare system
is quite complicated, we do not consider ticket costs in this section for ease of exposition.

6.4.2.3 Size of Solution Set

While in general the number of Pareto optima can be exponentially large for multi-criteria
shortest path problems [MW01, MW06], our application is more restrictive and can be
bounded under quite reasonable assumptions.

Namely, it is an easy observation that the number of different k-tuples of Pareto
optimal solution vectors (with k criteria) is polynomially bounded if the possible values
in all but one criterion are polynomially bounded. Since the number of interchanges is
polynomially bounded (in fact, in practice a small constant) and the number of possible
sleeping times is also polynomial, we conclude that our application has only polynomially
many different solution vectors.

Since we do not use ordinary Pareto dominance but relaxed Pareto dominance, the
solution set can be larger, but only by constant factors if our relaxation allows only a
constant increase on each criterion.

As several different paths may have the same solution vectors (and we also want
to find these alternatives) this observation does not directly imply polynomiality of our
approach. However, in night train search the number of alternative connections with
identical objective values is empirically very small. This can be explained by the obser-
vation that the likelihood to have two connections with different night train sections but
the same sleeping time is small, and that for some fixed night train the corresponding
feeder sections have only very few interchanges.

6.4.3 Approaches for Night Train Search

In this section we describe two new approaches which we have developed for night train
search.

6.4.3.1 Pre-Selection of Night Trains

We first present an enumerative approach. Its general idea is to select suitable night train
sections first, and then to compute corresponding feeder sections. The main steps can be
stated quite easily.

1. Iterate over all night trains of the train schedule which operate on the query day.

2. For each such train, determine all stations which may serve as entry point and all
stations which may serve as exit points.

3. For each such pair, determine feeder sections to compose complete connections.

4. Let C be the collection of connections determined. Apply Pareto dominance to filter
out all dominated connections from C. Return the result.

In the following we will first describe steps 2 and 3 in more detail. Afterwards, we
will discuss how to speed up this general approach.

70 Chapter 6: Additional Criteria and Special Search Forms

a

Entrance

Start station Terminal station

b

c

Alternative entranceNight Train

Exit

Alternative exit

Figure 6.4: Selection of pairs of entry and exit points. Pairs are rejected if a + b > α · c,
i.e., if they would induce too large a detour.

6.4.3.1.1 Selection of Entry and Exit Points. Given a query and a particular
night train, we have to select suitable pairs of entry and exit points to this train in
Step 2. This has to be done with care to achieve a reasonable efficiency. Thus, in this
phase we intend to reject as many pairs as possible without losing valuable solutions.

A station where a night train stops (and entering/leaving is allowed) qualifies as a
possible entry or exit point if it is close, with respect to some distance metric, to the start
or to the terminal station of the query, respectively.

To this end, two metrics can be used: Euclidean distance and lower bounds on the
travel time for the feeder section. The advantage of Euclidean based bounds is that we
can compute them in constant time. However, such bounds completely ignore the railway
network and the train schedule. Two stations which are geographically close may be
far from each other with respect to public transport. Estimates of the required travel
time between two stations would allow us to make more accurate decisions. We propose
using lower bound on the travel time as estimates. These bound can be computed quite
efficiently.

As the length of required feeder sections depends very much on the given query, we
do not use any fixed absolute bound to decide whether two stations are close enough to
each other. Instead we propose using a query-dependent rejection rule which is visualized
in Figure 6.4. A pair of entry and exit points is rejected for a query if the bound a on
the feeder length from the start station to the entry point and the bound b on the feeder
length from the exit point to the terminal station together exceed the bound c on the
length of a direct connection between start and terminal station by some factor α, i.e., if

a + b > α · c.

Our experiments revealed that setting α := 1 is a suitable conservative choice.
Finally, we accept a pair of entry and exit stations only if the travel time of the

corresponding night train between these two stations is above our lower bound on the
sleeping time lbst.

6.4.3.1.2 Computation of Feeders. Given a pair of entry and exit points for a
night train the next step is to compute feeder trains.

The entry point for the night train determines when we have to arrive at this particular
station at the latest. Since we really want to reach the night train we incorporate some
extra safety margin to this calculation. Then we can use an ordinary backward search
(with the same safety margin for interchanges) from this station and the latest arrival

6.4 Sleeping Time in Night Trains 71

time to the start station to find suitable feeder trains.v Likewise we perform an ordinary
forward search from the exit point to the terminal station.

Since entry and exit points are likely to appear in several pairs, we have to make sure
not to compute the same feeder sections several times. To avoid repeated calculations, we
therefore introduced a caching mechanism which stores the results of each feeder search.

6.4.3.1.3 Pruning the Search Space. A naive implementation of our enumerative
approach would do the feeder computation in an arbitrary order for all selected pairs.
Since the selection of pairs is done in a very conservative way, the resulting algorithm
would be quite inefficient.

A more clever refinement of this approach uses a priority queue to determine the order
of feeder computations. Our motivation is that already computed solutions can be used
to prune the search space. The priority queue contains all pairs for which at least one
feeder has not yet been computed. The key by which we order the entry and exit point
pairs in the priority queue is an estimate of the travel time of the overall connection.
This travel time estimate is composed of the known length of the night train section plus
estimates on the feeder lengths. When a particular feeder has been determined during the
course of the algorithm, our estimates are updated for all elements in the priority queue
where this feeder fits. In each iteration we select and remove the top element from the
priority queue. For the corresponding pair we check whether it is already dominated by
previously computed connections. If this is the case, we discard this pair. Otherwise, we
compute one missing feeder. Afterwards, we either obtain a set of complete connections
for this pair, or the other feeder section is still missing. In the latter case, we reinsert the
pair into the priority queue with the updated key information.

6.4.3.2 Multi-Criteria Search with an Additional Criterion

The second approach, which we propose, adds sleeping time as a new criterion to the
multi-criteria search for attractive connections. Form a software-engineering point of view
the multi-criteria framework implemented in MOTIS is easily extendable to an additional
criterion. In general, only two modifications are necessary.

1. We have to make sure that the labels representing partial connections keep track of
the additional criterion.

2. The domination rules have to be adapted so that they effectively prune labels.

While the modification of labels is straightforward, finding good domination rules is much
more difficult (and usually requires some experimental evaluation).

Pruning of labels during search by domination can only be done with the help of good
and efficiently computable bounds, lower bounds for minimization and upper bounds for
maximization, respectively. See Section 8.5 for details on lower bounds and Section 8.4
for an introduction of the speed-up technique domination by labels at the terminal.

Thus, for the maximization criterion sleeping time we need an upper bound. Given
a partial connection, this bound should limit the maximum additional sleeping time this
connection can accumulate en route to the terminal station. With the help of such an
upper bound a label of a partial connection can be dominated with respect to the criterion

vOrdinary search allows the replacement of start and terminal stations by equivalent meta-stations.
The possibility for such a replacement has to be switched off for the entry and exit point as in our scenario
we really have to arrive at the pre-selected station and not at some equivalent one.

72 Chapter 6: Additional Criteria and Special Search Forms

sleeping time if the current sleeping time plus the additional sleeping time is smaller than
the sleeping time of some known complete connection. Unfortunately, we do not know
such upper bounds, except for trivial ones which are far too loose to help in pruning.

Since a Pareto search without pruning is hopeless (although the search space is polyno-
mially bounded in practice [MW01, MW06], it is still far too large to achieve computation
times of a few seconds), we have to use heuristic domination rules which cannot guarantee
finding all attractive solutions.

We adapt the domination rules of MOTIS as follows: A complete connection c is only
allowed to prune a partial connection p

• if p “has used and already left” a night train but did not reach at least lbst sleeping
time, or

• if p “has used and already left” a night train but did not reach more sleeping time
than c, or

• if p is currently “in a night train”, then c has to have sleeping time above the
threshold lbst, and the sleeping time of c has to be at least the sleeping time of p
plus β times a lower bound on the remaining travel time for p (for some constant
β), or

• if p contains no night train at all.

While the first two rules are still exact, the two others are aggressive heuristics.vi

If c is allowed to prune it still needs to be “relaxed Pareto smaller” with respect to
the other criteria. For the comparison of labels belonging to the same node (i.e., partial
connection against partial connection) nothing has to be changed.

We will evaluate both approaches to the search for night trains in Section 9.2 in
Chapter 9: Computational Study.

viInitial experiments showed that without these heuristics the average CPU time would be about one
minute. This is clearly not acceptable for on-line use of information systems.

Chapter 7

Delays

The search for train connections in state-of-the-art commercial timetable information
systems is based on a static schedule. Unfortunately, public transportation systems suffer
from delays for various reasons. Thus, dynamic changes of the planned schedule have
to be taken into account. A system that has access to delay information about trains
(and uses this information within search queries) can provide valid alternatives in case a
connection is not possible as planned due to a broken interchange. Additionally, it can
be used to actively guide passengers as these alternatives may be presented before the
passenger becomes stranded at a station due to an invalid transfer.

In this chapter, we present an approach which takes a stream of delay information and
schedule changes on short notice (partial train cancellations, extra trains) into account.
Primary delays of trains may cause a cascade of so-called secondary delays of other trains
which have to wait according to certain policies for delays between connecting trains.
We introduce the concept of a dependency graph to efficiently calculate and update all
primary and secondary delays. This delay information is then incorporated into a time-
expanded search graph which has to be updated dynamically. These update operations
are quite complex, but turn out not to be time-critical in a fully realistic scenario.

We finally present a case study with data provided by Deutsche Bahn AG, showing
that this approach has been successfully integrated into the multi-criteria timetable in-
formation system MOTIS and can handle massive delay data streams instantly.

Our early results on this subject have appeared in [FMS08]. The extended results
presented here have been accepted for publishing in [MS09]. We want to thank our
students Lennart Frede [Fre08] and Mohammad Keyhani [Key09] who contributed to the
software design and implementation.

7.1 Introduction and Motivation

In recent years, the performance and quality of service of electronic timetable informa-
tion systems has increased significantly. Unfortunately, not everything runs smoothly in
scheduled traffic and delays are the norm rather than the exception.

Delays can have various causes: Disruptions in the operations flow, accidents, mal-
functioning or damaged equipment, construction work, repair work, and extreme weather
conditions like snow and ice, floods, and landslides, to name just a few. On a typical day

73

74 Chapter 7: Delays

of operation in Germany, an online system has to handle about 6 million forecast mes-
sages about (mostly small) changes with respect to the planned schedule and the latest
prediction of the current situation. Note that this high number of changes also includes
cases where delayed trains catch up some of their delay.

A system that incorporates up-to-date train status information (most importantly,
information about future delays based on the current situation) can provide a user with
valid timetable information in the presence of disturbances.

Such an on-line system can additionally be utilized to verify the current status of a
journey.

• Journeys can either be still valid (i.e., they can be executed as planned),

• they can be affected such that the arrival at the destination is delayed, or

• they may no longer be possible.

In the latter case, a connecting train will be missed, either because the connecting train
cannot wait for a delayed train, or the connecting train may have been canceled. In a
delay situation, such status information is very helpful. In the positive case – all planned
train changes are still possible – passengers can be reassured that they do not have to
worry about missing their connecting train(s). To learn that one will arrive x minutes
late with the planned sequence of trains may allow a customer to make arrangements,
e.g. inform someone to pick one up later. In the unfortunate case that a connecting train
will be missed, this information can now be obtained well before the connection breaks
and the passenger is stranded at a station. Therefore, valid alternatives may be presented
while there are still more options to react. This situation is clearly preferable to missing a
connecting train and then using any information system (ticket machine, service counter)
to request an alternative.

Up to now commercial systems do not take the current situation into account. Even
though estimated arrival times may be accessible for a given connection, these times are
not used actively during the search. Their recommendations may be impossible to use, as
the proposed alternatives already suffer from delays and may even already be infeasible
at the time they are delivered by the system.

From Static to Real-Time Timetable Information Systems.

Previous research on timetable information systems has focused on the static case, where
the timetable is considered as fixed.

Here we start a new thread of research on dynamically changing timetable data as a
consequence of disruptions. Our contribution is:

• the development of a first prototypal yet completely realistic timetable informa-
tion system that incorporates current train status information into a multi-criteria
search for attractive train connections. Modeling issues have been discussed in the
literature on a theoretical level [DGWZ08] but no true-to-life system with real delay
data has been studied and, to our knowledge, no such system that guarantees opti-
mal results (with respect to even a single optimization criterion) exists. We provide
results of implementing such a system for a real world scenario with no simplifying
assumptions.

• We propose a system architecture intended for a multi-server environment, where
the availability of search engines has to be guaranteed at all times. Our system

7.1 Introduction and Motivation 75

consists of two main components, a real-time information server and one or several
search servers. The real-time information server receives a massive stream of status
messages about delayed trains. Its purpose is to integrate this information into the
“planned schedule”. Moreover, based on the received messages (primary delays) it
has to compute all so-called secondary delays which result from trains waiting for
each other according to certain waiting policies. The new overall status information
is then sent to the search servers which incorporate all changes into their internal
model. Search servers, in turn, are used to answer customer queries about train
connections.

• Both servers require a specific graph model as the underlying basic data structure.
We here introduce the concept of a dependency graph as a model to efficiently
propagate primary delay information according to policies for delays in the real-time
information server. Our dependency graph (introduced in Section 7.4) is similar
to a simple time-expanded graph model with distinct nodes for each departure
and arrival event in the entire schedule for the current and following days. This
is a natural and efficient model, since every event has to store its own update
information.

For the search server we use a search graph. Here, we are free to use either the
time-expanded or the time-dependent model. In this chapter, we have chosen to
use the time-expanded model for the search graph, since MOTIS is based on this.
Although update operations are quite complex in this model, it will turn out that
they can be performed very efficiently, averaging 17µs per update message.

• To store a full timetable over a typical period of a year, static timetable systems
are usually built on a compact data structure. For example, they identify the same
events on different days of operation and use bitfields to specify valid days. This
space saving technique does not work in a dynamic environment since the members
of such an equivalence class of events have to be treated individually, as they will
generally have different delays. We will show how a static time-expanded graph
model can be extended to a dynamic graph model without undue increase in space
consumption.

Related work. Independently of us, Delling et al. [DGWZ08] came up with ideas
on how to regard delays in timetabling systems. In contrast to their work we do not
primarily work on edge weights, but consider nodes with timestamps. The edge weight
for time is the difference between head and tail node. Thus, it automatically updates with
the timestamps of the nodes, whereas edge weights for transfers and cost do not change
during the update procedures. This is important for the ability to do multi-criteria search.
Due to a number of low-level optimizations we achieve a considerable speed-up over the
preliminary work in Frede et al. [FMS08].

A related field of current research is disposition and delay management. Gatto et
al. [GGJ+04, GJPS05] have studied the complexity of delay management for different
scenarios and have developed efficient algorithms for certain special cases using dynamic
programming and minimum cut computations. Various policies for delays have been dis-
cussed, for example by Ginkel and Schöbel [GS07]. Schöbel [Sch07] also proposed integer
programming models for delay management. Stochastic models for the propagation of
delays are studied, for example, by Meester and Muns [MM07]. Policies for delays in a
stochastic context are treated in [APW02].

76 Chapter 7: Delays

Overview. The remainder of this chapter is organized as follows. In Section 7.2, we
will discuss primary and secondary delays. We introduce our system architecture in
Section 7.3, and describe its two main components afterwards. First, we explain our
dependency graph model and the propagation algorithm for delays (in Section 7.4). Then,
we present the update of the search graph (in Section 7.5). A major issue for a real
system, the correct treatment of days of operation, will be discussed in Section 7.6. Next,
we provide our experimental results in Section 7.7. Finally, we conclude and give an
outlook.

7.2 Up-To-Date Status Information

7.2.1 Primary Delay Information

The input stream of status messages mainly consists of reports that a certain train de-
parted or arrived at some station at time τ either on time or delayed by x minutes. In
case of a delay, such a message is followed by further messages about predicted arrival
and departure times for all upcoming stations on the train route.

Additionally, there can be information about additional trains (specified by a list of
departure and arrival times at stations plus category, attribute and name information).
Furthermore, we have (partial) train cancellations, which include a list of departure and
arrival times of the canceled stops (either all stops of the train or from some intermediate
station to the last station).

Moreover, we have manual decisions by the transport management. They are of the
form: “Change from train t to t′ will be possible” or “will not be possible”. In the first
case it is guaranteed that train t′ will wait as long as necessary to receive passengers
from train t. In the latter case the connection is definitively going to break although the
current prediction might still indicate otherwise. This information may depend on local
knowledge, e.g. that not enough tracks are available to wait or that additional delays are
likely to occur, or may be based on global considerations about the overall traffic flow.
We call messages of this type connection status decisions.

7.2.2 Secondary Delays

Secondary delays occur when trains have to wait for other delayed trains. Two simple,
but extreme examples for policies for delays are:

• never wait

In this policy, no secondary delays occur at all in our model. This causes many
broken connections and in the late evening it may imply that customers do not
arrive at their destination on the same travel day. However, nobody will be delayed
who is not in a delayed train.

• always wait as long as necessary

In this strategy, there are no broken connections at all, but massive delays are
caused for many people, especially for those whose trains wait and have no delay
on their own.

Both of these policies seem to be unacceptable in practice. Therefore, train companies
usually apply a more sophisticated rule system specifying which trains have to wait for

7.3 System Architecture 77

others and for how long. For example, the federal German railroad company, Deutsche
Bahn AG, employs a complex set of rules, dependent on train type and local specifics.

In essence, this works as follows: There is a set of rules describing the maximum
amount of time a train t may be delayed to wait for passengers from a feeding train f .
Basically, these rules depend on train categories and stations. But there are also more
involved rules: e.g. if t is the last train of the day in its direction, the waiting time is
increased. Or during peak hours, when trains operate more frequently, the waiting time
may be decreased.

The waiting time wts(t, f) is the maximum delay acceptable for train t at station s
waiting for a feeding train f . Let depsched

s (t) and deps(t) be the departure time according
to the schedule and the new departure time of train t at station s, respectively. Further-
more, arrs(t) is the arrival time of a train and mincts(f, t) the minimum change time
needed to change from train f to train t at station s. Note that in a delayed scenario the
change time can be reduced, as guides may be available that show changing passengers
the way to their connecting train. Train t waits for train f at station s if

arrs(f) + mincts(f, t) ≤ depsched
s (t) + wts(t, f).

In this case, train t will incur a secondary delay. Its new departure time is determined
by the following equation

deps(t) =
{

arrs(f) + mincts(f, t) if t waits
depsched

s (t) otherwise.

In case of several delayed feeding trains, the new departure time will be determined as
the maximum over these values.

During day-to-day operations these rules are always applied automatically. If the
required waiting time of a train lies within the bounds defined by the rule set, trains
will wait. Otherwise they will not. All exceptions from these rules have to be given as
connection status decisions.

7.3 System Architecture

Our system consists of two main components (see Figure 7.1 for a sketch). One part is
responsible for the propagation of delays from the status information and for the calcula-
tion of secondary delays, while the other component handles connection queries. The core
of the first part, our real-time information server, is a dependency graph which models all
the dependencies between different trains and between the stops of the same train. It is
used to compute secondary delays (in Section 7.4 we introduce the dependency graph and
propagation algorithm in detail). The dependency graph stores the obtained information
needed to update the search servers and transmits this information in a suitable format
to them. The search servers in turn update their internal graph representation whenever
they receive these changes. This decoupling of dependency and search graph allows us to
use any graph model for the search graph.

In a distributed scenario this architecture can be realized with one server running as
the real-time information server that continuously receives new status information and
broadcasts it. We will present some details in the following subsection. Load balancing
can schedule the update phases for each server. If this is done in a round-robin fashion,
the availability of service is guaranteed.

78 Chapter 7: Delays

real time
information
server

search
server 2

search
server k

search
server 1

...

queries

queries

queries

result list of connections

result list of connections

result list of connections

sends state
delta upon

request

maintains updated
real−time schedule

receives stream of

status messages

Figure 7.1: Sketch of the system architecture.

Multi-Server Approach

The search server mainly consists of a search graph, an update component for the search
graph, and a query algorithm.

In a multi-server environment, updates of a search server are either triggered by a
load balancer or an internal clock after a maximum amount of time without update.
The data it receives (called state delta for the remainder of this work) consists of lists
of changed departure and arrival times as well as meta-information about additional
and canceled trains and connection status decisions. Subsequently, it adjusts the search
graph accordingly and thereafter the graph looks exactly as if it were constructed from a
schedule with all these updated departure and arrival times. Thus, the search algorithm
does not need to know whether it is working on a graph with updated times or not.

The real-time information server receives all the up-to-date status information, uses
its internal dependency graph to compute updated departure and arrival times (cf. Sec-
tion 7.4) and stores these and the meta-information in a data structure UDS (update data
structure). UDS maintains for every event with a changed timestamp a 3-tuple consisting
of (1) a reference to the event itself, (2) the latest updated timestamp of this event, and
(3) the release time when the last update of this event took place. Whenever a search
server requests an update, it receives all events with a release time later than the last
update of that server. If the timestamp of an event (or node in the graph model) changes,
we call the necessary update a (node) shift.

For a true multi-server architecture with multiple search servers we basically have two
update scenarios:

• An additional search server joins in and has to be initialized to the current time:
We iterate over all existing event entries in UDS and transmit all those with times
differing from the scheduled time.

• A search server has answered a number of queries and now enters update mode:
We could simply transmit all events with release time greater than the last update
time of the search server (referenced as iterator version). As this requires iterating
over all stored events even to calculate a small delta, we can do so more efficiently
utilizing a map (referenced as map version).

7.4 Dependency Graph 79

In the map version a map of all changed events and their previous event times is
maintained for each search server individually. Whenever a new event time is released,
we look for that event in the map. Only if it is not already present, we store the event
itself and its event time before the last change. This is the current timestamp of the
event in the search server. To answer an update request we simply return all events in
this map, whose new event time differs from the event time in the map (and thus the
time in the current server), and clear the map afterwards. Using this technique we not
only save iterating over all entries to determine the set of changed events (our state delta)
but also avoid transmitting events that have been changed more than once and do not
require a shift, since their new event time is the same as in the last update.

Our UDS data structure enables us to transmit only consistent state deltas on demand.
Thereby, we can decrease both the time spent in communication and updating the graphs
(e.g. if between two update phases more than one information for a single event is pro-
cessed in the dependency graph, it is not required to transmit the intermediate state and
adjust the graph accordingly).

7.4 Dependency Graph

7.4.1 Graph Model

Our dependency graph (see Figure 7.2) models the dependencies between different trains
and between the stops of the same train. Its node set consists of four types of nodes:

• departure nodes,

• arrival nodes,

• forecast nodes, and

• schedule nodes.

For each event, there are three nodes, an event node (either departure or arrival), a
schedule node, and a forecast node. Each node has a timestamp which can dynamically
change. The timestamps of departure and arrival nodes reflect the current situation,
i.e. the expected departure or arrival time subject to all delay information known up to
this point. Schedule nodes are marked with the planned time of an arrival or departure
event, whereas the timestamp of a forecast node is the current external prediction for its
departure or arrival time.

The nodes are connected by five different types of edges. The purpose of an edge is
to model a constraint on the timestamp of its head node. Each edge e = (v, w) has two
attributes. One attribute is a Boolean value, signifying whether this edge is currently
active or not. The other attribute τ(e) denotes a point in time which basically can be
interpreted as a lower bound on the timestamp of its head node w, provided that the
edge is currently active.

• Schedule edges connect schedule nodes to departure or arrival nodes. They carry
the planned time for the corresponding event of the head node (according to the
published schedule). Edges leading to departure nodes are always active, since a
train will never depart prior to the published schedule.

80 Chapter 7: Delays

Figure 7.2: Illustration of the dependency graph model.

• Forecast edges connect forecast nodes to departure or arrival nodes. They represent
the time stored in the associated forecast node. If no forecast for the node exists,
the edge is inactive.

• Standing edges connect arrival events at a certain station to the following departure
event of the same train.

They model the condition that the arrival time of train t at station s plus its
minimum standing time stands(t) must be respected before the train can depart
(to allow for boarding and disembarkment of passengers). Thus, for a standing edge
e, we set τ(e) = arrs(t) + stands(t). Standing edges are always active.

• Traveling edges connect a departure node of some train t at a certain station s to the
very next arrival node of this train at station s′. Let deps(t) denote the departure
time of train t at station s and tt(s, s′, t) the travel time for train t between these
two stations. Then, for edge e = (s, s′), we set τ(e) = deps(t) + tt(s, s′, t). These
edges are only active if the train currently has a secondary delay (otherwise the
schedule or forecast edges provide the necessary conditions for its head node).

Due to various, mostly unknown factors determining the travel time of trains in
a delayed scenario, e.g. speed of train, condition of the track, track usage (by
other trains and freight trains that are not in the available schedule), used engines
with acceleration/deceleration profiles, signals along the track etc. we assume for
simplicity that tt(s, s′, t) is the time given in the planned schedule. However, if
a more sophisticated, but efficiently computable oracle for tt(s, s′, t) taking the
mentioned factors into account were available, it could be used without changing
our model.

7.4 Dependency Graph 81

• Transfer edges connect arrival nodes to departure nodes of other trains at the same
station, if there is a planned transfer between these trains. Thus, if f is a potential
feeder train for train t at station s, we set τ(e) = waits(t, f), where

waits(t, f) =
{

arrs(f) + mincts(f, t) if t waits for f
0 otherwise

(cf. Section 7.2.2) if we respect the waiting rules. Recall that t waits for f only if
the following inequality holds

arrs(f) + mincts(f, t)− depsched
s (t) ≤ wts(t, f)

or if we have an explicit connection status decision that t will wait.

By default these edges are active. In case of an explicit connection status decision
“will not wait” we mark the edge in the dependency graph as not active and ignore
it in the computation.

For an “always wait” or “never wait” scenario we may simply always set τ(e) to the
resulting delayed departure time or to zero, respectively.

7.4.2 Computation on the Dependency Graph

The current timestamp for each departure or arrival node can now be defined recursively
as the maximum over all deciding factors: For a departure of train t at station s with
feeders f1, . . . , fn we have deps(t) =

max{depsched
s (t), depfor

s (t), arrs(t) + stands(t),maxn
i=1{waits(t, fi)}}.

For an arrival we have

arrs(t) = max
{
arrsched

s (t), arrfor
s (t), deps′(t) + tt(s′, s, t)

}
with the previous stop of train t at station s′. Inactive edges do not contribute to the
maximum in the preceding two equations.

If we have a status message that a train has finally departed or arrived at some given
time depfin resp. arrfin, we do no longer compute the maximum as described above.
Instead we use this value for future computations involving the node.

We maintain a priority queue (ordered by increasing timestamps) of all nodes whose
timestamps have changed since the last computation was finished. Whenever we have
new forecast messages, we update the timestamps of the forecast nodes and, if they have
changed, insert them into the queue. For a connection status decision we modify the
corresponding transfer edge and update its head node. If its timestamp changes, it is
inserted into the queue. As long as the queue is not empty, we extract a node from the
queue and update the timestamps of the dependent nodes (which have an incoming edge
from this node). If the timestamp of a node has changed in this process, we add it to the
queue as well.

For each node we keep track of the edge emax which currently determines the maximum
so that we do not need to recompute our maxima over all incoming edges every time a
timestamp changes. Only if τ(emax) was decreased or τ(e) for some e 6= emax increases
above τ(emax), the maximum has to be recomputed. The other possible cases are:

82 Chapter 7: Delays

• If τ(e) decreases and e 6= emax, nothing needs to be done.

• If τ(e) increases and e 6= emax but τ(e) < τ(emax), nothing needs to be done.

• If τ(e) increases and e = emax, the new maximum is again determined by emax and
the new value is given by the new τ(emax).

When the queue is empty, all new timestamps have been computed and the nodes
with changed timestamps can be sent to the search graph update routine or, in the multi
server architecture, to the UDS data structure.

A note on the implementation. For ease of exposition we have introduced all kinds
of nodes and edges in the dependency graph as being real nodes and edges. Of course,
in our implementation we do not use a node and an edge to encode nothing more than
a single timestamp for schedule and forecast times. Only arrival and departure nodes
are real nodes with entering and leaving edges plus two integer variables representing
the scheduled and forecast time. The latter is set to some predefined value to specify
“no real-time information available (yet)”. An arrival node has a container of leaving
transfer edges, one entering traveling edge and one leaving standing edge. Analogously,
a departure node has a container of entering transfer edges, one entering standing edge
and one leaving traveling edge. Iterators over incoming dependencies and markers for
the current input determining the timestamp of the node (the incoming edge, schedule
time, or forecast time with maximum timestamp) have to be able to traverse resp. point
to the different representations. We deemed the much more elegant version of the update
routines - pretending the existence of nodes and edges for schedule and forecast times -
better suited for presentation.

7.5 Updating the Search Graph

The Dynamic Model

The static time-expanded graph model (as introduced in Chapter 4 and refined in Sec-
tion 5.1) has been slightly adapted for the dynamic scenario. Compared to the standard
search graph we have to store additional information, namely status decisions, a second
timestamp for each node to report actual and scheduled time in query results, additional
strings containing reasons for the delays, and the like. Moreover, we need a slightly dif-
ferent representation of trains with identical schedules on multiple days. We defer details
of this modification to Section 7.6.

The Update Process

The update in the search graph does not simply consist of setting new timestamps for
nodes (primary and secondary delays), insertions (additional trains) and deletions (can-
cellations) of nodes and resorting lists of nodes afterwards. All the edges modeling the
changing of trains at the affected stations have to be recomputed respecting the changed
timestamps, additional and deleted nodes, and connection status information. The fol-
lowing adjustments are required on the change level (see Figure 7.3):

7.5 Updating the Search Graph 83

t’

t*

t*

t

t

t’’

change

departurearrival

f

g

e

h

time

t’

t*

t*

t

t

t’’

change

departurearrival

f

g

e

h

time

n

t’

t*

t*

t

t

t’’

change

departurearrival

g

h

time

e

Figure 7.3: The change level at a station (left) and necessary changes if train t∗ arrives
earlier (middle) or train t arrives later (right).

• Updating the leaving edges pointing to the first node reachable after a train change.

• Updating the nodes reachable from a change node via entering edges.

• Inserting additional change nodes or unhooking them from the chain of waiting
edges at times where a new event is the only one or the only event is moved away
or canceled.

• Recalculating special-interchange edges from resp. to arrival resp. departure nodes
with a changed timestamp (either remove, adjust or insert special-interchange edges).

The result of the update phase is a graph that looks and behaves exactly as if it was
constructed from a schedule describing the current situation. Additionally, it contains
information about the original schedule and reasons for the delays.

Next, we give two examples for updating the search graph. In Figure 7.3 (left) it is
possible to change from train t to all trains departing not earlier than t′′ using leaving
edge g, any number of consecutive waiting edges and an entering edge (e.g. h to enter
t′′). A change to train t′ on the same platform is also feasible using special-interchange
edge f and, of course, to stay in train t via stay-in-train edge e. However, it is impossible
to change to train t∗ although it departs later than t′, because it requires more time to
reach it.

Suppose train t∗ manages to get rid of some previous delay and now arrives and departs
earlier than previously predicted (see Figure 7.3, middle part). In the new situation it is
now possible, to change from t∗ to train t′′ using the new leaving edge n and the existing
entering edge h.

In our second example let train t arrive delayed as depicted in Figure 7.3 (right). As
it now departs after t′, it is not only impossible to change to t′ (special-interchange edge
f is deleted), but also the departure nodes for the departures of t′ and t are in reverse
order. Therefore, the waiting edges have to be re-linked.

84 Chapter 7: Delays

7.6 Traffic Days

A common simplification in theoretical work on timetable information systems is the as-
sumption that trains operate periodically. Often even a periodicity of one hour is used.
In real schedules, however, there is a considerable difference between peak hours, late
evenings and “quiet” nights. For our timetable server MOTIS we take time modulo a
single day in order to have a better manageable graph size as opposed to full time expan-
sion. Recall that traveling edges carry traffic day flags (stored in bitfields) to model the
days of operation, e.g. trains operating only on weekdays, or weekends, different schedules
for school days and non school-days, trains operating on public holidays according to the
weekend schedule etc.

In our scenario with delay information we have to take care of multiple traffic days as
well. To be able to supply the customer with updated information we need to model not
only “today” (the current day) but also tomorrow as some connections might pass the
midnight border (have a so-called “night jump”), especially if we query with a departure
in the afternoon or evening. Resulting alternative journeys, requested after a delay on a
journey, may even end on the next day due to delays, although no night jump was present
in the original connection.

Therefore, we chose a schedule length of two days. In our time-expanded graph we
represent all the trains operating today and tomorrow. However, trains that have the
same schedule on both days can no longer be represented just once with two traffic day
flags set. To be able to shift today’s train without affecting the version of tomorrow, thus
not incorrectly cloning delays, or vice versa, we need two distinct versions of such trains.

7.6.1 Memory Consumption Issues

The simplest version to attain separate nodes for today’s and tomorrow’s events is to use
full time expansion on all our schedule days and not take time modulo 1440 and use traffic
day flags on the train edges. Unfortunately, this would not only increase the number of
event nodes and edges as well as the change edges, it would also significantly increase
the number of change nodes and waiting edges. Whereas there is no way to avoid the
increase for the former type of nodes and edges, we found a way to keep the size of the
rest the same: We only use full time expansion for departure and arrival events and link
all events to a change level with only one node per necessary timestamp, regardless of the
day of that event, i.e. the number of change nodes and waiting edges remains the same,
only the number of adjacent edges to the change nodes increases. Three different models
for the search graph arise.

• Model (A) is the static model where the same events on two subsequent days are
represented only once but two traffic day flags are set.

• Model (B) treats each arrival and departure event individually and uses the sparse
change level implementation as described above.

• Model (C) also treats each arrival and departure event individually but uses full
change level expansion.

Note that in the dependency graph we opted for full time expansion. There is no
change level with waiting edges and all the change representation is between the trains
themselves and only necessary to decide whether trains wait for others or not and compute

7.6 Traffic Days 85

event tr/std change wait total total
model unit nodes edges nodes edges edges nodes edges

We & Th (A) (in k) 988 950 459 988 459 1,447 2,397
We & Th (B) (in k) 1,956 1,878 459 1,954 459 2,415 4,291
We & Th (C) (in k) 1,956 1,878 912 1,954 912 2,868 4,744
increase (A → B) (in %) 98.0 97.7 0.0 97.8 0.0 66.9 79.0
increase (A → C) (in %) 98.0 97.7 98.7 97.8 98.7 98.2 97.9
Su & Mo (A) (in k) 1,181 1,134 498 1,180 498 1,679 2,812
Su & Mo (B) (in k) 1,702 1,634 498 1,701 498 2,200 3,833
Su & Mo (C) (in k) 1,702 1,634 798 1,701 798 2,500 4,133
increase (A → B) (in %) 44.1 44.1 0.0 44.2 0.0 31.0 36.3
increase (A → C) (in %) 44.1 44.1 60.2 44.2 60.2 48.9 47.0

Table 7.1: Sizes of the search graph for two days, Wednesday and Thursday resp. Sunday
and Monday and the increase when changing between the models (A), (B), and (C) as
described in the text.

the resulting changes. In this model a source delay propagation may or may not delay
events on the following day. There is no need for case distinctions due to day changes.

Test data. To study the effect of these models on the space consumption, we use the
train schedule of Germany in 2008. The schedule contains 68,300 trains for the whole
year with over 5,000 distinct bitfields for the days of operation. We look at the graphs
prepared for two subsequent days, either two weekdays, Wednesday and Thursday (We
& Th) with 38,600 trains with distinct schedules or for Sunday and Monday (Su & Mo)
with 46,600 trains with distinct schedules.

Comparison of models. In Table 7.1, we compare our three different models for the
search graph. For the more homogeneous case of two weekdays version (C) requires double
the amount of space while for our variant (B) we manage to increase the number of nodes
by two thirds and the number of edges by four fifths. The tremendous increase of (C) is
due to the large number of trains operating identically each weekday. If we look at the
graph for Sunday and Monday the increase is much smaller as many of the trains operate
either on Monday or on Sunday, therefore the increase in nodes and edges for the trains is
below 50%. Still our model improves the additional required memory space from nearly
one half to about one third.

During the actual search for train connections, variant (B) has a slight running time
overhead in comparison with full time expansion (C). This overhead turns out to be
negligible if a look-ahead in the search process categorizes entering edges as not allowed
if they lead to a departure node for a train not operating on the required day.

7.6.2 Moving from One Day to the Next

At midnight we have to change the current day for our real-time information server as
well as the search servers. Now, information about yesterday is no longer relevant as
tomorrow becomes today and we need to load the “new tomorrow”.

86 Chapter 7: Delays

The real-time information server loads the dependency graph for tomorrow and “for-
gets” yesterday. With the fully time-expanded model there is no hassle in doing so. Note
that we still have to keep yesterday’s events that are delayed to today and have not hap-
pened yet, but nothing more about yesterday is needed any longer. Thus, we can delete
all information about yesterday’s events in the data structure. With our prototype, this
whole procedure is finished in less than 35 seconds for the complete German timetable.

The search servers need a longer update phase than usual as they have to be restarted
with the now current day and the following day. Afterwards, they request an update for
a new server (exactly as described for a new server in Section 7.3). In this update they
receive all information for today currently available. These updates typically take less
than ten seconds. Together with the restart time of about 20 seconds a single search server
is down for about half a minute. Even a server that has not yet changed days can still be
updated after midnight and produce correct search results, as only the information about
the next day is missing, not the current day. So there is no problem with the last server
updating at say 01:00 a.m. Since midnight is not a peak hour for timetable information
systems a number of servers might change days concurrently without compromising the
availability of service. In summary, within a multi-server solution down-times of individual
servers can easily be hidden from the customer.

7.7 Evaluation of the Prototype

We implemented the dependency graph and the update algorithm described in Section 7.4
and extended our time table information system MOTIS to support updating the search
graph (cf. Section 7.5). Although these update operations are quite costly, we give a
proof of concept and show that they can be performed sufficiently fast for a system with
real-time capabilities.

Our computational study uses the German train schedule of 2008. During each oper-
ating day all trains that pass various trigger points (stations and important points on
tracks) generate status messages. There are roughly 5000 stations and 1500 additional
trigger points. Whenever a train generates a status message on its way, new predictions
for the departure and arrival times of all its future stops are computed and fed into a
data base. German railways Deutsche Bahn AG provided delay and forecast data from
this data base for a number of operation days. The simulation results for these days look
rather similar without too much fluctuation neither in the properties of the messages nor
in the resulting computational effort.

In the following subsection, we present results for a standard operating day with an
average delay profile. We tested various waiting profiles with an implementation that
broadcasts the update information as soon as it becomes available. In the succeeding
subsection we will present first results for the multi-server architecture (as described in
Section 7.3) and test different update intervals. All experiments were run on 2 cores of an
Intel Xeon 2.6 GHz with 8GB of RAM under Ubuntu 8.04 in a Virtual Machine (VMWare
ESXi 3.5.0). Our code was compiled with gcc V.4.3 with compile option 02.

As no system with the capabilities of our prototype exists, we cannot compare our
results to others. To ensure the correctness of our approach we used automated regression
tests continuously checking the status of a large number of connections and determining
alternatives, and collected meta-information about the encountered delays in the process.
Furthermore, we intensively investigated isolated test cases (e.g. explicit search for trains

7.7 Evaluation of the Prototype 87

search graph
event nodes 0.99 mil

change nodes 0.46 mil
edges 2.40 mil

dependency graph
events 0.97 mil

standing edges 0.45 mil
traveling edges 0.49 mil

Table 7.2: Properties of the search graph (left) and dependency graph (right) modeling
a single day of the schedule.

known to be delayed, searches for trains departing next to a delay, searches for which the
off-line optimum was affected by a delay).

7.7.1 Overall Performance and Waiting Profiles

To test our system, we used five sets of waiting profiles. Basically, the train categories
were divided into five classes: high speed trains, night trains, regional trains, urban trains,
and class “all others.” Waiting times are then defined between the different classes as
follows:

• standard High speed trains wait for each other 3 minutes, other trains wait for high
speed trains, night trains, and trains of class “all others” 5 minutes, night trains
wait for high speed and other night trains 10 minutes, and 5 minutes for class “all
others.”

• half All times of scenario standard are halved.

• double All times of scenario standard are doubled.

• all5 All times of scenario standard are set to five minutes, and in addition regional
trains wait 5 minutes for all but urban trains.

• all10 All times of the previous scenario are doubled.

It is important to keep in mind that the last two policies are far from reality and are
intended to strain the system beyond the limits it was designed to handle.

Our dependency graph model assumes that we know at each station which pairs of
trains potentially have to wait for each other, i.e., which transfer edges are present. In our
implementation we use the pragmatic rule, that if the difference between the departure
event of train t1 and the arrival event of another train t2 at the same station does not
exceed a parameter δ, then there is a transfer edge between these two events.

For each of our waiting profiles we tested different maximum distances (in minutes)
of feeding and connecting trains δ ∈ {5, 15, 30, 45, 60}, and compare them to a variant
without waiting for other trains (policy no wait). In this reference scenario it is still
necessary to propagate delays in the dependency graph to correctly update the train
runs. Thus, the same computations as with policies for delays is carried out, only the
terms for feeding trains are always zero.

We constructed search and dependency graphs from the real schedule consisting of
36,700 trains operating on the selected day. There are 8,817 stations in the data. The
number of nodes and edges in both graphs are given in Table 7.2. The number of standing
and traveling edges are in one-to-one correspondence to the stay-in-train and traveling
edges of the search graph. The number of transfer edges depends on the waiting policy

88 Chapter 7: Delays

transfer edges 5min 15min 30min 45min 60min
std / half / double 7.1k 54.7k 123.8k 207.8k 267.8k
all5 / all 10 14.6k 168.3k 399.6k 665.4k 874.3k

Table 7.3: The number of transfer edges depending on the waiting policy and the maxi-
mum allowed time difference δ between feeding and connecting train.

and parameter δ and can be found in Table 7.3. Note that, whether a transfer edge exists
or not, depends on the classes that wait for each other and not on the actual number
of minutes they wait. Therefore, the number of edges are identical for the policies half,
standard, and double as well as for the policies all5 and all10. There is a monotonous
growth in the number of transfer edges depending on the parameter δ. Additionally, the
number of these edges increases as more trains wait for other trains because of additional
rules.

In Table 7.4, we give the results for our test runs for the different policies and values
of δ. Running times are averages over 25 test runs. For the chosen simulation day
we have a large stream of real forecast messages. Whenever a complete sequence of
messages for a train has arrived, we send them to the dependency graph for processing.
336,840 sequences are handled. In total we had 6,340,480 forecast messages, 562,209
messages of the type “this train is now here” and 4,926 connection status decisions. Of
all forecast messages 2,701,277 forecasts are identical to the last message already processed
for the corresponding nodes. The remaining messages either trigger computations in the
dependency graph or match the current timestamp of the node. The latter require neither
shifting of nodes nor a propagation in the dependency graph. The resulting number of
node shifts is given in the seventh column of Table 7.4. Depending on the policy we have
a different number of nodes that were shifted and stations that have at least one delayed
event (last two columns of the table).

The key figures for the computational efficiency (required CPU times in seconds, oper-
ation counts for the number of touched stations and node shifts in multiples of thousand)
increase when changing to policies for which trains wait longer or more trains have to
wait. Increasing δ yields a higher effect the more trains wait. The overall small impact
of changing δ is due to the majority of delays being rather small. We notice a significant
growth in all key criteria when increasing δ from 5 to 15. All policies behave rather
similarly for δ = 5, whereas the differences between the realistic policies and the extreme
versions and even from all5 to all10 for higher values of δ are apparent.

Amongst the plausible policies there is only a 16% difference in the number of moved
nodes. It little more than doubles going to policy all5 and even increases by a factor of
3.8 towards policy all10. Roughly 40 seconds of our simulation time are spent extracting
and preprocessing the messages from the forecast stream. This IO time is obviously
independent of the test scenario. The increase in running time spent in the search graph
update is no more than 3 seconds for δ > 5 for all policies except all10 with 7 seconds
and differs by at most 10 seconds or 17% among the realistic scenarios. The running time
scales with the number of shifts. An increase of factor 1.9 resp. 3.4 of node shifts results
in a factor of 1.8 resp. 3.3 in running time (compare policies double to all5 and all10 with
δ = 60). The time spent in the dependency graph differs by at most 1 second (about
16%) for realistic scenarios and stays below 30 seconds even for the most extreme policy.

7.7 Evaluation of the Prototype 89

Instance Computation time for Node With delay
policy δ SG DG IO total shifts nodes stations

in min in s in s in s in s in k in k
no wait - 59.8 6.4 39.4 105.6 3,410 396.2 5,385

5 59.1 6.2 40.0 105.3 3,432 396.6 5,397
15 60.7 6.4 39.7 106.8 3,525 400.1 5,483

half 30 60.8 6.4 40.4 107.7 3,535 400.4 5,494
45 61.2 6.5 40.0 107.8 3,539 400.6 5,494
60 62.3 6.8 39.7 108.8 3,540 400.7 5,496
5 59.1 6.2 39.3 104.6 3,443 396.8 5,408
15 62.6 6.5 39.5 108.5 3,614 402.5 5,532

standard 30 63.4 6.7 40.1 110.2 3,636 403.2 5,541
45 63.6 6.8 39.9 110.2 3,646 403.6 5,541
60 63.6 6.7 40.3 110.7 3,651 403.7 5,545
5 58.9 6.3 39.7 104.9 3,447 396.8 5,419
15 66.4 6.6 40.4 113.4 3,835 406.2 5,590

double 30 67.9 6.9 40.5 115.3 3,908 407.5 5,639
45 69.4 7.2 40.1 116.7 3,945 408.0 5,642
60 69.0 7.3 39.9 116.2 3,959 408.1 5,642
5 60.7 6.4 40.3 107.4 3,623 403.5 5,588
15 123.1 11.5 40.0 174.6 7,603 440.5 6,051

all5 30 124.9 13.0 40.4 178.3 7,670 442.8 6,064
45 124.9 14.7 40.6 180.2 7,687 443.4 6,064
60 126.0 16.5 40.4 182.9 7,689 443.7 6,070
5 60.7 6.4 40.4 107.5 3,651 404.0 5,608
15 193.8 19.0 39.8 252.6 13,052 457.9 6,118

all10 30 195.2 21.6 40.9 257.7 13,231 463.0 6,145
45 198.0 24.6 40.6 263.2 13,346 464.4 6,148
60 200.7 27.3 40.7 268.7 13,466 465.3 6,162

Table 7.4: Computation time for the whole day (propagation in the dependency graph
(DG) and update of the search graph (SG), IO and total) and key figures (in multiples of
thousand) for the executed node shifts in the search graph and the number of nodes and
stations with changed status information with respect to different policies for delays.

Even for the most extreme scenario a whole day can be simulated in less than 5 min-
utes. The overall simulation time for realistic policies lies around 2 minutes. For the
policy standard with δ = 45, we require on average 17µs reconstruction work in the
search graph per executed node shift. By incident, the overall runtime per computed
message is also 17µs.

Worst-case considerations (based on policy standard with δ=45)

The highest number of messages received per minute is 15,627 resulting in 29,632 node
shifts and a computation time of 0.66 seconds for this minute. However, the largest
amount of reconstruction work occurred in a minute with 5,808 messages. It required
172,432 node shifts and took 2.38 seconds; this is the worst case minute which we observed

90 Chapter 7: Delays

in the simulation. Thus, at our current performance we could easily handle 25 times the
load without a need for event buffering. This clearly qualifies for live performance.

7.7.2 Multi-Server Performance

As we have seen in the previous subsection most of the time is spent in reconstructing
the search graph. Applying sophisticated software engineering the update process has
been sped up considerably. Additionally, a big potential lies in doing less reconstruction
work. In a real-time environment it is not necessary to update multiple times per minute
as soon as new information is available (as we did in the previous subsection). It clearly
suffices to update each minute. Depending on the load balancing scheme, update cycles
of 2 or 3 minutes still produce results of high quality.

To be able to compare the numbers to the previous section we tested the two servers
as introduced in Section 7.3 “in line”, i.e. one waited for the other to finish computation
before continuing its own work. We use our waiting profile “standard” with δ = 45 for all
versions. The baseline version does not use the UDS and immediately updates the search
graph. The version split additionally inserts and retrieves events into/from the UDS.
Our code spends about 47 seconds on extracting and preprocessing the messages from
the forecast stream and propagation in the dependency graph. Pushing all the events
through the UDS data structure in the split architecture only requires an additional 7.2
seconds.

As we do not see a need for update intervals shorter than one minute, we now read
all incoming messages for a particular minute and calculate the resulting changed event
times in the dependency graph. These are transmitted to the data structure UDS in our
real-time information server part. Meanwhile the search graph requests an update every
1, 2, 3, 4, or 5 minutes, using either the iterator or map version. The results can be found
in Table 7.5. The numbers are averages over 25 runs.

By sending the state delta of the last x minutes as a batch job to the search graph we
save a lot of reconstruction work due to mutually interacting messages arriving between
two subsequent updates, e.g. oscillating forecasts for trains, or reconstruction is done for
a train but later it is shifted again due to a changed arrival time of one of its feeding
trains.

With increasing interval size the number of messages to transmit significantly de-
creases. The resulting time required for updating the search graph is sped up by nearly
10 seconds when changing from immediate update to an interval of one minute. The
increase of the interval size by one additional minute within the range of [1-5] reduces the
execution time by a few seconds.

The iterator version of detecting events to transmit (cf. Section 7.3) only uses the re-
lease time information and cannot detect that an event does not require shifting, therefore
it transmits 149k to 404k (depending on the update interval) of these irrelevant messages
demanding a node “shift” to the node’s current position. On the other hand, the map
version only transmits events with changed timestamp, even if the release time is newer,
therefore we do not have unnecessary transmissions. As shifts to the same position are
never executed we only have the unnecessary transmission and no extra work, as we can
see with the identical runtimes for the search graph update (column SG).

Inserting the information (column UDS ins) about changed event times into the UDS
takes between 2.8 and 3.7 seconds, depending on the number of insertions (and thus the
interval size). For the map version the bookkeeping requires an additional 1.8 to 2.0
seconds for the whole day. While the extraction (column UDS ext) using the map version

7.7 Evaluation of the Prototype 91

Instance Transmissions Computation time
needed unnec- SG UDS total

Version interval essary ins ext
in min in k in k in s in s in s in s

baseline - 3646 0 63.5 0.0 0.0 110.3
split - 3646 0 63.7 3.7 3.5 117.7

1 3143 0 53.9 3.1 55.6 159.0
2 2809 149 45.5 2.9 29.3 124.4

iterator 3 2447 284 38.3 2.9 20.4 108.2
4 2177 360 33.3 2.8 15.8 98.6
5 1954 404 29.3 2.8 13.1 91.4
1 3143 0 54.3 4.9 2.1 107.4
2 2809 0 45.4 4.9 1.9 98.5

map 3 2447 0 38.3 4.8 1.8 91.2
4 2177 0 33.4 4.7 1.7 86.3
5 1954 0 29.2 4.7 1.5 81.7

Table 7.5: The number of transmitted events, node shifts and execution time for simulat-
ing the whole day. We compare versions with and without two server architecture using
an iterator or a map to determine the relevant events (cf. Section 7.3) for different update
intervals.

requires 1.5 to 2.1 seconds, iterating for each update over all stored events to find the
relevant new information in the iterator version is very costly and takes 13.1 to 55.6
seconds. Obviously, these times do not depend on the number of transmissions but on
the number of iterations, as we observe that the extraction time is inversely proportional
to the interval size.

The improvement in runtime of 3 seconds (from 110.3 to 107.4 seconds), when changing
from the baseline version to the split version with an interval of one minute, does not
seem like much. However, it enabled us to do load balancing and handle updates on
demand with our multi-server approach. The update time for the search servers consists
of the time for receiving events from the UDS plus the time for the search graph update.
Therefore, instead of taking 110.3 seconds to read messages, propagate delays and update
the search in our baseline version, we only need 56.4 seconds in the split architecture for
keeping the search graph up-to-date. Thus, we gain more than 50 seconds of available
computation time per search server (about half the time required by the baseline version
that does all the work on its own). Together with the initial startup phase and the first
update with all relevant information for today depending on yesterday’s data of about
half a minute (cf. Subsection 7.6.2) a search server is only busy with startup and updating
for 60 to 90 seconds per day. This means that each search server can use 99.9% of its
time for answering search queries.

The real-time information server spends about 47 seconds for reading messages and
propagation in the dependency graph and additional 3 seconds storing the data. For each
registered server (in our tests just one) it takes 2 seconds maintaining the map of relevant
events and 2 seconds to extract and transmit those events. Thus, we have by far enough
time to update a multitude of search servers.

92 Chapter 7: Delays

Figure 7.4: CoCoAS example: Alternatives for a broken connection from Kaiserslautern
to Mönchengladbach. The upper two alternatives arrive less than 10 minutes after the
original arrival time but are delayed themselves. The lower two arrive half an hour later
than the original connection.

7.8 Conclusions and Future Work

We have built a first prototype which can be used for efficient off-line simulation with mas-
sive streams of delay and forecast messages for typical days of operation within Germany.
Using the presented multi-server solution, the correct handling of all necessary updates is
so fast that each search server can use almost all of its time for answering search queries.
Stress tests with extreme policies for delays showed that the update time scales linearly
with the amount of work. So even for cases of major disruptions we expect a sufficient
performance of such a multi-server solution. Compared to typical stream profiles, we are
able to handle about 25 times as much reconstruction work.

It remains an interesting task to implement a live feed of delay messages for our
timetable information system and actually test real-time performance of the resulting
system. Since update operations in the time-dependent graph model are somewhat easier
than in the time-expanded graph model, we also plan to integrate the update informa-
tion from our dependency graph into a multi-criteria time-dependent search approach
developed in our group (see Chapter 10).

A true real-time timetable information system as demonstrated by our prototype
opens the door for a new service to passengers who want a system that supports them
until they have reached their destination. The provider of such a service would constantly

7.8 Conclusions and Future Work 93

check the validity of planned connections, and in case of necessary changes due to delays
inform the affected passenger. The service would propose new alternative connections by
sending messages to a mobile phone or an email address.

In Figure 7.4 we see four alternatives for a broken connection from Kaiserslautern
to Mönchengladbach. Two arrive delayed and 11 or 12 minutes later than the broken
connection. The other two arrive as scheduled but about 20 minutes later than the
delayed alternatives. The four alternatives were determined using CoCoAS (Connection
Controller and Alternatives System), our implementation of this service. The system will
be introduced in Section 11.3.

94 Chapter 7: Delays

Chapter 8

Speed-Up Techniques

Introduction

Speeding up shortest path search is a very active field due to the importance of short-
est paths themselves in route-planing (cars, trucks, trains, airlines), as a modeling tool
for many optimization problems (e.g. scheduling) and as a subroutine for important tech-
niques (most prominently network flows). The biggest progress has been made in the field
of route-planning on road-networks, where query times in milliseconds for whole Western
Europe are possible (usually at the cost of long preprocessing), a part of the development
there has been summarized in [SS07a].

This chapter is not intended to give a complete overview of these techniques. Instead,
we will start with the introduction of basic concepts and main characteristics of many of
the approaches. In the process we will point out the challenges we are facing when we try
to adapt certain techniques to our scenario. The main part of this chapter will deal with
details about adapted and specially tailored techniques for the search for advanced Pareto
optimal connections in dynamically changing time-expanded graphs for time table infor-
mation. Towards the end of the chapter we will outline how all our techniques harmonize
with dynamic graph updates due to delay information. Afterwards, we present all the
changes to the graph model and the algorithm resulting from the speed-up techniques.
The chapter will end with further thoughts on speed-up techniques for the future

8.1 Speeding up Dijkstra’s Algorithm

Most of the approaches discussed in the literature differ from our scenario in at least one
of the following areas.

• Time Dependency of the network
Road networks are usually modeled without time-dependency. Recently, some time-
dependent edges have been added to model traffic jams or slower traffic during rush-
hours. Our networks, however, do not only have some time-dependent edges but are
inherently time-dependent as modeled in our time-expanded graph (cf. Chapter 4).

• Static networks vs. dynamically changing networks
As seen in the previous chapter, a lot of changes to the graph have to be performed
when incorporating delay messages. These messages appear in rapid succession
making long update cycles infeasible.

95

96 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

• Single point of departure vs. departure interval
Shortest-path search on railway networks has been dominated for years by solving
the earliest arrival problem only, i.e. given a point and time of departure the earliest
possible arrival at another station is to be determined. Even if the classical pre-
trip scenario is considered, a single point in time as the possible starting moment
is typically assumed. We explicitly want to optimize over an interval of possible
departure times.

• Single-criterion vs. multi-criteria
Only very little effort has been put into determining the set of all Pareto optimal
solutions. Recall from Chapter 2 that we actually want to compute all attractive
alternatives based on the concept of advanced Pareto optimality. Due to the depar-
ture intervals we employ a relaxation on travel time based on the difference in the
departure or arrival times of connections. This requires even more connections to
be inspected.

Due to the last two points we almost always have more than a single optimal path
which makes preprocessing more involved.

8.1.1 Early Termination

Dijkstra’s algorithm solves the one-to-all version of the shortest path problem. When
querying for a pair (s, t), the shortest paths and distances to other nodes is of no im-
portance. In the worst case it may happen that t is the very last node to be labeled
permanently. However, in most graphs and for most searches this is very unlikely. There-
fore, the attention may be restricted to a (hopefully small) subset of nodes instead of
calculating the distances for all nodes. The algorithm safely terminates once node t is
removed from the priority queue and labeled permanently and thus a shortest path has
been computed (cf. Figure 8.1 (left)).

Towards our Scenario In multi-criteria search, and when considering multiple start
nodes (departure intervals), there are many optimal paths. Hence, the search may not
be stopped after the first (or a certain number) of optimal paths have been computed.
However, the labels at the terminal station may be used to dominate partial connections
at other nodes due to the transitivity of the smaller relation. For details on the technique
domination by labels at the terminal see Section 8.4.

8.1.2 Goal-Direction / Lower Bounding

Goal-Direction is a strategy to help the search reach its target faster. Instead of extract-
ing the node or label with the currently shortest distance from the priority queue, the
algorithm selects the most promising one. This is done by modifying the edge lengths
using a potential function λ(·) that is a lower bound on the distance from a node to the
target (cf. Figure 8.1 (middle)). This modification shortens edges in the “right direction”
and lengthens those that bring you farther away from the terminal. These lower bounds
are often obtained from geographical information (e.g. coordinates).

Precomputing and storing better lower bounds for all nodes to all others requires pre-
processing and has quadratic memory consumption. Instead of computing lower bounds
for all nodes, a small set of landmarks ([GH05]) can be used. For each node the distance to

8.1 Speeding up Dijkstra’s Algorithm 97

Early termination

Goal-direction

Bidirectional

Figure 8.1: Schematic visualization for the speed up-techniques early termination, goal-
direction, and bidirectional search.

all landmarks and between all of the landmarks are precomputed. Applied in conjunction
with the triangle inequality these landmarks are a substitute for lower bounds. If chosen
wisely, only a few of these landmarks result in really good lower bounds. Landmarks
that lie “behind” the terminals seem to work well, as well as sets of landmarks with large
distances between the individual landmarks.

Another approach is to partition the graph and determine the distances between
clusters (Precomputed Cluster Distances (PCD) [MSM06]). However, these distances
cannot be used for goal-direction (modified edge lengths may become negative). But
they give upper and lower bounds for pruning and can be computed efficiently using
many to many routing.

Towards our Scenario Our approach is to compute good lower bounds for all nodes
in a preprocessing step before each single search without the need to store those results
for all possible source/terminal pairs, for details we refer to Section 8.5. This can be done
for all our criteria in a reasonable amount of time.

8.1.3 Priority Queues

Details on the implementation and effects on the performance of different priority queues
have already been mentioned in Chapter 3. There are no issues when utilizing priority
queues in our scenario, details on priority queues (different types, the smaller relation, and
a heuristic reducing the number of insert and extract operations on the priority queue)
will be given in Section 8.8.

8.1.4 Reach Based

The concept of the reach of a vertex ([Gut04, GKW07]) encodes the lengths to either
end of all shortest paths on which the vertex lies. The reach of a node v with respect
to a single shortest path P from s to t, reach(v, P), is defined as the minimum over the
length of the sub-path from s to v and from v to t. For the set P of all shortest path in
the graph, we have the reach of v as the maximum over all reach(v, P) with P ∈ P and
v on P . In order to have a high reach, a node has to be on shortest paths that extend

98 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

a long distance in both directions. Dijkstra’s algorithm does not need to scan a node
whose reach is smaller than its distance to the source or terminal, as it cannot be part of
a shortest path.

To correctly determine reaches, the all pairs-shortest paths problem has to be solved,
which may take months for interesting graph sizes. Bounding techniques and bootstrap-
ping produce reliable estimates for the reach of a node within acceptable time frames.

Towards our Scenario Remember from Section 8.1.2 that we have lower bounds for
the distances from all nodes to the target. If such a lower bound for a node is already
higher than the distance from source to target, this node may be ignored, similarly to
the idea of reach. This insight is the basis for our pruning techniques introduced in
Section 8.5.5.

8.1.5 Bidirectional Search

Two searches are run simultaneously, one forward search from the source and one back-
ward search from the target. Once the search spaces meet, the shortest path can be
obtained from the search frontiers. On road networks with nearly circular search spaces,
a speedup of factor two is expected, since one circle with the radius of the shortest path
has twice the area of two circles with half the radius (cf. Figure 8.1 (right)).

This technique can not only be combined with most of the other techniques, it is also
essential for many of the hierarchical approaches.

Towards our Scenario In time-expanded and time-dependent networks the time (or
interval) of arrival is not known beforehand. Under certain conditions guessing the right
time might be possible. In our scenario with search intervals, determining the arrival
interval leads to rather large intervals, e.g. by shifting the start of the departure interval
by a lower bound on the travel time and the end of the departure interval by some upper
bound. Moreover, analogously to early termination, we are not finished once the search
space of forward and backward searches meet. Therefore, we did not realize bidirectional
search. See Section 8.13.1 for ideas on bidirectional search in our scenario as part of
future work.

Bidirectional lower bounding The combination of goal-direction and bidirectional
search is not as trivial as it might seem. Depending on the lower bounds, forward and
backward searches may use different lengths on the same edges. Consequently, it is not
clear whether the shortest path is indeed found when they meet. With certain conditions
on the lower bounds this is possible (e.g. using lower bounds obtained in the same way
for forward and backward searches).

8.1.6 Arc Flags and Geometric Containers

These techniques basically store the set of all nodes for an edge that are reachable on a
shortest path starting with the edge. Due to the fact that all sub-paths of shortest paths
are shortest paths as well. An edge only needs to be considered if the target is contained
in the set of that edge. Storing explicit sets requires too much space, thus two main
approaches to tackle this problem have been studied:

8.1 Speeding up Dijkstra’s Algorithm 99

TS

Level 0

Level 1

Level 2

TS

Level 0

Level 1

Level 2

Figure 8.2: Schematic view of a graph partitioning for arc flags (left) and a multi-level
overlay graph (right). In the upper right image the layered graph is shown, in the lower
right image the effective subgraph for a shortest path search from s to t consists of the
red edges only.

• Geometric containers. Geometric information about the nodes reachable on a short-
est path is used to design containers for those sets. Depending on the type of
container more or less nodes not in the set are included as well. The following
different containers have been proposed, angular sectors (two angles relative to the
edge) [SWW00], bounding boxes (axes parallel rectangles), rectangles (edge paral-
lel), circles, ellipses etc. and intersections of objects. A comprehensive study can
be found in the dissertation of Willhalm [Wil05]. Bounding boxes work extremely
well. Complicated objects containing fewer nodes that are not in the set are usually
too expensive to evaluate. Preprocessing requires growing a shortest path tree from
each node.

• Arc flags. The graph is partitioned into r regions and for each edge r bits mark the
regions in which target nodes of shortest paths are [Lau04, KMS07] (see Figure 8.2
(left) for an example). This approach seems to work best for non-trivial partitions.
Extensions like multi-level partitions (kd-trees) reduce the memory requirements
of finer partitions with more regions [MSS+05]. For this approach single-source
shortest path searches from all boundary nodes of regions are executed in the pre-
processing phase.

Towards our Scenario In the multi-criteria case there is not only one shortest path but
several optimal paths starting at one node. The shortest-path tree becomes an optimal-
path subgraph (with parallel edges). Every reasonable partitioning will not be able to
separate nodes belonging to the same station. Thus, lots of nodes, namely all departures
at each of the stations will have to be considered at region borders. Updating this
optimal-path subgraph in the presence of delay information is costly.

100 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

8.1.7 Hierarchical Techniques

Multi-Level Techniques. A hierarchical coarsening results in a much smaller subgraph
for searching that still contains the shortest path. A separating set of nodes is selected
and lifted to a higher lever. On this level, shortcuts representing the shortest paths be-
tween the nodes are introduced. Choosing suitable separators improves the effectiveness.
A single-pair version of Dijkstra’s algorithm only considers the components containing
source and target, and the shortcuts on the higher levels. Iterating this process yields a
hierarchy of overlay graphs ([SWW00, SWZ02, Hol08, HSW08]. Graphs on higher levels
become rather dense, as shortcuts between nearly all pairs of nodes are inserted.

See Figure 8.2 (right) for an example with three levels. On the lowest level (the original
graph) only the components containing s and t are drawn in detail. The small graph in
the other regions may represent much larger components. The blue nodes on Level 0
separate the graph into five components. We see the edges between those components
and the lifted nodes on Level 1. The edges on Level 1 represent shortest paths between
the nodes on that level. This construction process is repeated with the selection of the
blue nodes on Level 1. In the lower picture, the edges forming the relevant subgraph for
the search from s to t are red. The search never even enters the other three components
on Level 0 and the component between the selected nodes on Level 1.

Most of the more involved variants rely on bidirectional search to improve search speed.
For the following improved hierarchical approaches bidirectional search is essential:

For Highway Hierarchies a definition of local neighborhood separates nodes. “High-
ways” are introduced between nodes that are not in the neighborhood. The construc-
tion iterates contraction of unimportant (low degree) nodes and addition of shortcut
edges [SS06, Sch08]. Technique Highway Node Routing no longer requires separators and
works by stalling searches in non-promising lower regions in a hierarchy of overlay graphs
[SS07b]. Contraction Hierarchies use one level per node and store only edges from unim-
portant to important nodes. Searches are a simple bidirectional Dijkstra on the resulting
graph [GSSD08].

Distance Tables For any hierarchical technique this approach computes and stores
information about all pairs-shortest paths on a small enough graph on some level (in
O(
√

n)). Once a query reaches this level, shortest-path computation can be done as a
lookup on this level. Technique transit node routing uses a distance table for important
(transit) nodes (e.g. highway ramps) and additionally precomputes the shortest paths to
all remaining nodes on the same level [BFSS07]. Interestingly, selecting nodes categorized
as important by other techniques as transit nodes seems to work best. Preprocessing times
are huge.

Towards our Scenario Most techniques (basically all except the classical multi-level
overlay graph technique) require bidirectional search. Growing shortest path trees is
an auxiliary step. Issues with both of these concepts in our scenario have already been
discussed (cf. the end of the previous section for details on shortest-path trees that become
optimal-path subgraphs and Section 8.1.5 for bidirectional search).

8.1.8 Combinations

Various combinations of the different techniques have been evaluated, e.g. different hier-
archical and goal-directed speed-up techniques in [HSWW05, BDS+08]. Technique ALT,

8.1 Speeding up Dijkstra’s Algorithm 101

for example, combines landmarks and bidirectional search and adds shortcuts to reduce
reaches [GKW06]. A nice overview can be found in [DSSW09]. We want to highlight
SHARC (shortcuts and arc-flags ([BD09, Del08a]) which combines the ideas of contrac-
tion and arc-flags. It builds a contraction based hierarchy and sets arc-flags such that
removed edges on a level are only feasible at the beginning and end of a search on that
level. This construction allows unidirectional search.

8.1.9 Steps Towards Our Scenario

Dynamically Changing Graphs Incorporating delay information requires updating
the search graph. For most of the speed-up techniques with heavy preprocessing the
precomputed data has to be rebuild which is usually not feasible in a real-time environ-
ment. Techniques that are robust to graph changes often decrease in their performance
after some update steps. A notable exception is the fully dynamic data structure for
shortest path problems in [FR01]. Updating a shortest-path tree after the change of one
single edge weight requires recomputation from scratch [DI04]. Dynamic approaches have
been proven to be useful [DI06] but have not been evaluated for such complex scenarios
and work only for much smaller graphs. Landmarks based approaches (ALT) have been
adapted [DW07] and, additionally, first results for arc-flags exist [BDD09]. The tech-
nique of highway-node routing allows updating the cost of edges with only minimal time
overhead per edge [SS07b]. However, the last three were again specifically designed for
road-networks. Delling et al. presented a model different from ours to regard delays in
timetabling systems [DGWZ08], changing edge weights rather than moving event nodes
as in our model (cf. Chapter 7).

Search on Graphs with Time Dependency As mentioned in the introduction and
throughout this section, most of these techniques were developed for road-networks and
support no dependency on time at all. Even the concept of time-dependent edge lengths
due to rush-hours or traffic jams (as e.g. for time-dependent SHARC [Del08b] and con-
traction hierarchies [BDSV09]) is inherently easier than a whole time-expanded or time-
dependent graph. Delling et al. observed that the adaption of speed-up techniques to
time-expanded graphs is not as easy as one might think [DPW08] and they did not even
consider departure intervals. An overview on time-dependent routing can be found in
[DW09b].

Multi-Criteria Search The investigation of shortest-path search has not been focused
on multi-criteria approaches. Previous and related work [Han79, Mar84, BSS89] has
already been mentioned in Chapter 3 when we introduced multi-criteria search. Müller-
Hannemann and Weihe [MW01, MW06] observed that the number of optima is bounded
by a small constant in our scenario. In conjunction with speed-up techniques there is a
recent result from Delling and Wagner on a Pareto version of SHARC (for road networks)
[DW09a].

Multi-Criteria Search with Time Dependency There is not much previous work
in this field: The publications [CH66, KW93, HRT06] concentrate on other applications
than timetable information. The most recent publication by Berger et al. in which they
try to develop speed-up techniques for multi-criteria timetable information is even enti-
tled “Accelerating Time-Dependent Multi-Criteria Timetable Information is Harder Than
Expected” [BDGM09].

102 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

Speeding up Our Search Algorithm

In spite of the problems and challenges illustrated in the previous section, we developed
and adapted some techniques for our scenario. We did not investigate preprocessing heavy
techniques and those requiring bidirectional search for two reasons: a) as a consequence
of the inability to produce the correct intervals for bidirectional search. And b) because
of the expensive preprocessing to calculate optimal-path subgraphs. Updating those due
to delay information is very costly and thus renders real-time updates impossible.

For the remainder of this chapter we will present the speed-up techniques to be inves-
tigated for MOTIS. Major contributors to these ideas and implementations were Matthias
Müller-Hannemann, Peter Jung [Jun06], and Daniel Mäurer [Mäu09].

Search Graph For the sizes of auxiliary graphs and the motivation of some of the
techniques we will refer to either absolute figures or relate to a certain search graph. It
was constructed from the schedule of German Railways (Deutsche Bahn AG) for 2008. It
encompasses all German long distance and local trains. Its key criteria are presented in
Table 8.1.

Number of
trains 68073
footpaths 425
attribute combinations 951

node type (in k)

arrival 801.8
departure 801.8
change-departure 556.6
nodes total 2160.2

edge type (in k)

train 801.8
stay-in-train 733.7
entering 796.7
leaving 795.7
waiting 556.6
special-interchange 20.2
edges total 3704.7

Table 8.1: Number of trains, stations, edges, and nodes for our schedule.

8.2 Multi-Criteria Approach

Compared to single criteria optimization the Pareto approach is costly. Aiming to find
even more attractive alternatives with relaxation, increases the computational effort re-
quired even further. However, discarding undesired alternatives by means of advanced
Pareto dominance drastically speeds up the search without sacrificing quality, since ac-
cording to our definition of advanced Pareto dominance all interesting alternatives will
be found.

We will also experiment with different parameter sets, namely our least common pa-
rameter set or a customer specific one for e.g. a businessman, as presented as one way to
apply advanced Pareto Dominance at the end of Chapter 2.

8.3 Goal-Directed Search

The strategy goal-direction [HNR68, GH05] is based on a real valued function λ : V →
R+. λ(v) is a lower bound on the minimal distance from v to t for any v ∈ V . For all

8.3 Goal-Directed Search 103

(v, w) ∈ E the values λ(v) and λ(w) must additionally satisfy the condition λ(v)−λ(w) ≤
`(v, w). The modified length `′((v, w)) is then:

`′(v, w) := `(v, w)− λ(v) + λ(w) ≥ 0.

It can be shown that the shortest paths with respect to the length function `′(·) are
identical with the shortest paths with respect to the original length function `(·). Hence,
we may alternately compute a shortest path with respect to l′(·).

Lemma 8.1. Once t is extracted from the priority queue in goal-directed search, a shortest
(s-t)-path is found.

Proof. We use the notation bP cx = {s, . . . , x} for the sub-path from s to x of any path
P = {s, . . . , x, . . . , v}.

Let P ∗ = {s = u0, . . . , uz = t} be a shortest (s-t)-path. Suppose the algorithm
extracted t from the priority queue and found path P = {s = vo, . . . , vk = t} with
`(P) > `(P ∗). The modified length of path P is:

`′(P) =
k−1∑
i=0

`′((vi, vi+1))

=
k−1∑
i=0

(
`((vi, vi+1))− λ(vi) + λ(vi+1)

)
=

k−1∑
i=0

`((vi, vi+1))−
k−1∑
i=0

λ(vi) +
k∑

i=1

λ(vi)

= `(P)− λ(v0) + λ(vk)︸ ︷︷ ︸
λ(t)=0

= `(P)− λ(s).

Since `(bP ∗cui) + λ(ui) ≤ `(P ∗) < `(P) we have

d(ui) = `′(bP ∗cui
) = `(bP ∗cui)− λ(s) + λ(ui) < `(P)− λ(s) = `′(P)

for all ui on P ∗. Therefore t can not be extracted from the priority queue before all ui

have been computed. Then the value of d(t) has been updated to

d(t) = `′(bP ∗cuz−1 + (`′((uz−1, t))) = `′(P ∗)

and p(t) is set to uz−1. Thus the shortest path P ∗ is found.

Hence, the algorithm may terminate once t is extracted from the priority queue.
If the λ(v)-values are just any estimation of the distance from v to t the property

`′(·) ≥ 0 will not hold. Suppose we have an edge (v, t) ∈ E with length `((v, t)) = k and
a distance estimation λ(v) = k + c for some c > 0. Clearly this estimation is too high.
The modified length of edge (v, t) is `′((v, t)) = k − (k + c) + 0 = −c < 0.

Roughly speaking, the tighter the lower bounds λ(·) are, the larger the speed-up
effect will be. Using the trivial lower bounds λ ≡ 0 clearly does not provide any speed-up
whatsoever. If the λ(v) values are the exact length of a shortest path from all nodes v ∈ V
to the target t, all shortest paths will have a modified length of zero. The algorithm will
not extract any node from the priority queue except those on the shortest path from s to
t that is computed.

104 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

Goal-Direction and Dial’s Data Structure

Using goal-direction in combination with Dial’s data structure the maximum difference
between labels in the queue may exceed the maximum edge length C:

Suppose a shortest path P to the terminal with `′(P) = `(P) − λ(s) < C/2 exists,
because the lower bounds are tight. Furthermore, there is a very long edge e = (s, v)
with length `(e) = C − ε to a node v. Let v be farther away from t than s with λ(v) =
λ(s) + C − ε2 for ε2 < ε and ε + ε2 < C/2.

Thus, the path Pv at v has a modified distance value

`′(Pv) = `′(s, v) = `(s, v) + λ(v)− λ(s) = C − ε︸ ︷︷ ︸
`(s,v)

+λ(s) + C − ε2︸ ︷︷ ︸
≥λ(v)

−λ(s) = 2C − (ε + ε2).

Due to its large distance value the label at v will stay in the priority queue very long,
even until path P reaches the terminal. The difference in the distance values for the labels
at v and t exceeds C, since `′(Pv) = 2C − (ε + ε2) > C + C/2 and `′(P) < C/2.

This problem may be overcome by using some upper bound U on the path length
instead of C. This increases the worst case running time, but for our application the
upper boundi is easy to obtain. Employing this modification still results in excellent
runtimes for Dial’s data structure (as we will see in Section 9.8.1).

Goal-Direction in Multi-Criteria Search

In the single-criterion case the search can be terminated once the first (and optimal) label
at the target station is removed from the priority queue (see Section 8.3). If all Pareto
optimal solutions have to be computed this speed-up approach may not be used.

However, if we are interested in item 4 of the variants of multi-criteria optimization
(see page 30): finding some lexicographically interesting path(s), goal-direction may be
used to speed up searching. For example looking for a path that minimizes `i(·) at a first
place and minimizes `j(·) over all paths that minimize `i(·) at a second place.

Let us first consider the bi-criteria case. Formally, the following strategy computes
every path P with

• 6 ∃P ′ : `i(P ′) < `i(P) and

• 6 ∃P ∗ : `i(P) = `i(P ∗) and `j(P) > `j(P ∗).

We use two-dimensional labels storing the modified length regarding criterion i and
the length for criterion j: (`′i(P), `j(P) instead of `(P) in each label. The modified ith
length of edge (v, w) ∈ E reads:

`′i(v, w) := `i(v, w)− λ(v) + λ(w) ≥ 0,

λ(v) being a lower bound on the distance from v to t with respect to the length
function `i(·) only (compare Section 8.3). Any implementation of a priority queue as
discussed in Section 3.3 may be utilized with the following definition of addition

(a1, a2) + (b1, b2) = (a1 + a2, b1 + b2)

and smaller relation on pairs:

(a1, a2) <∗ (b1, b2) ⇔ (a1 < b1) ∨
(
(a1 = b1) ∧ (a2 < b2)

)
iFor searches within Germany an upper bound of 36 hours on the travel time is quite pessimistic.

8.4 Domination by Labels at the Terminal 105

The first label at t removed from the priority queue minimizes `i(·), since goal-direction
was used. The path P found has minimal `j(·)-value over all paths as for all other paths
P ′ of same `i(·)-value `j(P ′) ≥ `j(P).
This is a goal-directed version of the approach considering labels of the form (`i(P), `j(P))
and the same smaller function. That approach minimizes `i(P) due to the properties of
Dijkstra’s algorithm.

This strategy can easily be adapted to handle any “ranking” in the distance functions,
i.e. given a permutation σ : {1, . . . k} → {1, . . . k} the algorithm may find paths satisfying
the following

1. P minimizes `σ(1)

2. P minimizes `σ(2) over all paths minimizing `σ(1) (item 1)

3. P minimizes `σ(2) over all paths fulfilling item 1 and item 2

. . .

k. P minimizes `σ(k) over all paths fulfilling items 1. to (k − 1).

The algorithm uses the same k-dimensional distance labels as in the standard case. Goal-
direction for the criterion σ(1) can be applied. The smaller relation for the priority queue
simply has to be modified to:

(aσ(1), . . . , aσ(k)) <∗k (bσ(1), . . . , bσ(k)) ⇔(
aσ(1) < bσ(1)

)
∨

(
(aσ(1) = bσ(1)) ∧ (aσ(2) < bσ(2))

)
∨(

(aσ(1) = bσ(1)) ∧ (aσ(2) = bσ(2)) ∧ (aσ(3) < bσ(3))
)
∨ . . .

Note that the algorithm still computes all optimal paths if it is not terminated once
the first label at t is removed from the priority queue.

Goal-direction alone will not speed-up the search for all optimal paths. However,
together with the strategy introduced in the following section it significantly reduces
computation times, as it improves the performance of the that technique.

8.4 Domination by Labels at the Terminal

Recall that early termination is not possible in the multi-criteria scenario. However, once
a first result has been found, the search can profit from it. Relying on Fact 3.19 (all
sub-paths of Pareto optimal paths are also Pareto optimal), we can narrow the search
horizon by discarding all intermediate labels which are dominated by any labels already
created at the terminal.

The correctness of the strategy follows from the fact and the observation, that any
edge added to a path does not reduce the travel time, number of interchanges or the
cost. When using the maximal attainable reliability of interchanges (cf. Section 6.3.2)
this also works for the reliability criterion. Therefore all labels dominated in such a
fashion may be dropped. (Essentially the same trick has been used to speed up the
single criterion Dijkstra algorithm for the one source many targets case [MS01]). See also
[MW01, MW06].

106 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

If lower bounds λi(v) on the cost `i(P̂) of a v-t-path P̂ are known, labels (P, `(P))
that satisfy

(`1(P ∗), . . . , `k(P ∗)) <k (`1(P) + λ1(P), . . . , `k(P) + λk(P))

compared to a label (P ∗, `(P ∗)) at the target, can also be discarded. Even lower bounds
for only some and not all of the length functions `i(·) can reduce the number of labels
significantly. If lower bounds for some criterion i are unknown or too expensive to cal-
culate, they can always be replaced by the trivial lower bounds λi ≡ 0. Together with
goal-direction this strategy works even better, since via goal-direction labels at the target
are generated very early in the search process. This results in a considerable speed-up.

8.5 Lower bounds

Lower bounds can be used to improve the search speed and limit the number of nodes and
stations visited. Two approaches, namely goal-direction (Section 8.3) and domination by
labels at the terminal (Section 8.4) have already been mentioned from a more theoretical
point of view.

In this section we will first show how to calculate lower bounds for the criteria travel
time, ticket cost, number of interchanges, and reliability of interchanges and afterwards
how exactly they are used to speed up the search process via the aforementioned methods
and a pruning technique.

Note that for storing the lower bound to one station from all other stations we need
memory space quadratic in the number of stations. Saving the pruning status of each
station for each possible pair of source and terminal station would even require cubic
space.

8.5.1 The Station Graph for Lower Bounds

Let us first consider lower bounds for the criterion travel time: Regarding space efficiency,
it is not reasonable to store a precomputed lower bound for every pair of stations. Thus,
these values must be computable “on the fly” during the search. One easy approach for
calculating a lower bound on the remaining travel-time is to calculate the straight-line
distance from the station S(n) of node n to the target station Ω and divide this value by
the fastest travel speed of all trains in the data, as used for example by Schulz, Wagner
and Weihe [SWW00]. Empirical testing revealed that this method leads only to a small
speed-up since the bounds are too weak.

Our idea, giving tighter lower bounds, uses the station graph. This graph consists
of one node per station and we insert an edge from station A to B if there is a direct
connection between those stations The minimum travel time over all such connections
(not considering traffic days) defines the travel time of the edge. We simply reverse all
edges in the station graph and use one Dijkstra-search on the station graph starting at
the target station Ω at the beginning of each search. Thus we get a lower bound on the
travel time to Ω for every station or the information that no connection to Ω exists.

Ticket Cost

The same type of graph can be used to obtain lower bounds for fares. Instead of taking
the fastest direct connection between two stations we use the cheapest connection (or

8.5 Lower bounds 107

Time Interval-
Name exp. Intervals width Nodes Edges
simple - - - 8,820 22,537
sixhours

√
4 6h 35,280 113,896

rushhours
√

4 var 35,280 117,762
fourhours

√
6 4h 52,920 163,835

Table 8.2: Sizes of the station graphs for lower bounds on travel time or ticket cost,
standard version (standard), with fixed interval sizes (sixhours / fourhours) or variable
interval sizes for the two rush hours and the times in between (rushhours).

rather an estimate derived from the length and train class cf. Section 6.2.2) and store its
cost on the edges. Now one Dijkstra-search gives us lower bounds on the ticket cost to Ω
for every station which we can reach Ω from.

Expanded Station Graph

If we use time expansion on the station graph (to some degree) we might be able to
calculate tighter lower bounds. A station is now represented by a number of k nodes ni

S ,
each representing an interval Ii = [τi, τi+1) in time with τk+1 = τ1. The intervals cover
the whole day, i.e.

⋃k
i=1 Ii = [0, 1440). Now, we have an edge between stations S and R

connecting ni
S and nj

R if a train departs in interval Ii at station S and arrives in interval
Ij at station R. Its length is the fastest travel time over all trains sharing that property.
Additionally, an edge connects nodes ni

S and ni+1
S (1 ≤ i ≤ k) representing waiting from

the latest arrival in interval Ii to the first departure in interval Ii+1. Its length is the
time difference between those two events.

These lower bounds are tighter but more costly: The computation of the bounds is
more involved as we have a bigger graph with multiple start labels since the arrival time
at the terminal is not known in advance. During the search we are no longer querying
the lower bound for a station but for an interval at a station.

We used the following four graphs in our computational study

standard Standard station graph without time expansion

sixhours Four nodes per station with an interval width of 6 hours each

fourhours Six nodes per station with an interval width of 4 hours each

rushhours Four nodes per station, two for the morning and afternoon rush hours and
two for the times in between

The sizes of these graphs can be found in Table 8.2.

8.5.2 Interchange Graph

To obtain lower bounds for the number of interchanges, a graph representing train changes
is required. The easiest way to obtain such a graph from the search graph is to contract
all the change nodes (including all waiting edges) at a station to a single station node and
each pair of arrival and departure nodes of train t at station S to an event node for t at
S (removing the stay-in-train edge). We assign edge weights of zero to all edges except

108 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

Q
R

S

T

Q
R

S

T

Figure 8.3: Example section of an interchange station graph with four stations (white
nodes Q,R,S,T) and five routes (colored edges), route nodes are solid black (left). Same
example with contraction of bidirectional routes (all except the blue one) to single event
nodes (right).

entering edges. A backward Dijkstra-search from the terminal Ω may label all stations
S with the minimum number of trains required to get from S to Ω. This number minus
one is, of course, the minimum number of train changes required.

Unfortunately, this graph is nearly as big as the original graph and the computation
of the bounds is very slow. Instead of trains we can use routes. Every train is represented
in exactly one route with the same sequence of stations. As there are many more trains
than routes, the graph size significantly reduces (cf. Table 8.3).

In Figure 8.3 (left) we see an example. It is possible to get from Station S to station
T with one train, namely the blue train. On the other hand, to get from station T to S
two trains are required (the purple and green ones).

Contracting Bidirectional Routes If a train route is available in forward and back-
ward direction for a list of stations (S1, . . . , Sk), it is possible to reach any of the Si from
station Sj (i 6= j) using only one train. We may contract all event nodes in forward and
backward direction on such a bidirectional route to a single event node (see Figure 8.3
(right)). For a bidirectional route serving k stations we need only half the number of
entering and leaving edges. We have 1 node plus 2k edges instead of 2k nodes plus 6k−2
edges (k − 1 train edges and k leaving as well as k entering edges in either direction).
This construction saves 28% of the nodes and 40% of the edges (cf. Table 8.3).

Reliability of Interchanges

The lower bound on the number of interchanges can also be used to determine an upper
bound (as we maximize this criterion) on the reliability score of a connection. In Sec-
tion 6.3 we have set the highest reliability factor for an interchange µ := 96%. So an
upper bound for reliability of the remainder of a connection is µic for the lower bound on
the number of interchanges ic. In case the destination is reachable without an additional

8.5 Lower bounds 109

Routes Standard Bidirectional
total routes routes Nodes Edges

Trains 68,073 68,073 - 810,622 2,414,433
Routes 7,267 7,267 - 105,048 281,842
Unified routes 4,946 2,625 2,321 75,648 168,874

Table 8.3: Sizes of the interchange station graph using trains (Trains) or routes without
(Routes) and with (Unified routes) contraction of bidirectional routes.

interchange this evaluates to the neutral factor 1 = µ0. However, this upper bound seems
not really tight (in fact for 4 additional interchanges we have a factor of µ4 = 85% only).

8.5.3 Domination by Labels at the Terminal

The technique to dominate labels by labels at the terminal (cf. Section 8.4) is implemented
as follows. We use these lower bounds on the cost of a path from node v to station Ω for
the criteria:

time: bound from the station graph with time as edge cost

interchanges: bound from the interchange graph

fare: bound from the station graph with ticket cost as edge cost

reliability of transfers: the highest reliability factor for an interchange µ := 96%
to the power of the bound for the number of interchanges (from the interchange
graph)

We maintain a list of relaxed Pareto optimal labels at the terminal station Ω. Every
new label is checked against each label in this list. If the values of the label plus the lower
bounds are dominated by any label in the list, there is no need to further regard the new
one. It is discarded and not inserted into the priority queue.

8.5.4 Usage in Goal-Directed Search

Travel time is our relevant criterion for goal-direction. We use already accumulated
travel time and a lower bound on the remaining travel time to the target station. The
lower bound is computed via the station graph (see Section 8.5.1). For details we refer
to Section 8.8.1. Although the search cannot be terminated once the first label at the
target station Ω is extracted from the priority queue using goal-direction, labels at Ω are
generated fairly early in the search process, thus improving the efficiency of the strategy
“domination by labels at the terminal” from the previous subsection.

8.5.5 Limiting the Search Horizon

We can use the lower bounds determined using the station graphs and the interchange
graph to further improve the processing time. By labeling stations as unnecessary for our
search we can prohibit the creation of labels and inspection of edges at these stations. In
Figure 8.4 we can see the results of the pruning steps introduced in the following.

110 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

Figure 8.4: Pruning results using the station graph. Dark blue are too far from the termi-
nal, violet too far from the source, blue are pruned by triangles and green by biconnected
components rule (left: Fulda to Hannover / right: Nürnberg to Kassel).

The basic idea is to use the lower bound β on the distance from source to target and
label all stations unnecessary that have a lower bound of more than f(β) for some suitable
function f(·). For example, for travel time the function could be ftt : x → 2x or for the
number of interchanges fic : x → x + 4. This technique is similar to the concept reach
(introduced in Section 8.1.4).

Bidirectional Station Graph Dijkstra It is not mandatory to limit oneself to only
the distance to the terminal. If we are willing to perform an additional search to determine
the distance βs from the source, we can discard even more stations. Namely the ones we
deem too far away from the source as well.

With two distances at our disposal it is possible to prune additional stations by our
triangles heuristic: those with a sum of distances to source and to target over the thresh-
old dists + distt > g(min{β, βs}) for some g(·) with e.g. g(x) = 1.4f(x) for all x.

Pruning Biconnected Components of the Graph A careful inspection of the re-
sulting graphs with some regions removed by pruning led to the discovery of dead ends
and even articulation points in these graphs. It is not at all sensible to head into dead
ends or cross articulation points, unless the destination is in that component. Otherwise,
the only way to continue is to turn back and, in case of articulation points, cross them
again. During dominance testing this is discovered, but not before the station is visited
for the second time. To prevent that we employ the following approach:

After using all (or some) of the above mentioned pruning techniques, we calculate
the biconnected components of the resulting graph. Then we perform a BFS from the
component containing the source to the component containing the target. All stations in
components not touched by this search can safely be ignored, since it is unrewarding to

8.6 Skipping Nodes in the Graph or Search 111

Figure 8.5: Biconnected components for a search from Chemnitz (cyan) to Arnsberg
(red). All colored regions are considered in biconnected component pruning. Only the
pink region containing the source and the green region containing the target are allowed.

pass the same station more than once.
In Figure 8.5 we see the biconnected components for a search from Chemnitz (cyan)

to Arnsberg (red). The colored regions are left to be explored after using our bidirectional
Dijkstra on the station graph with the triangles heuristic. Each component has a different
color than its neighboring components. The BFS only visits the big pink and green
components containing source and target. All stations in other components are discarded.

8.6 Skipping Nodes in the Graph or Search

In this section we will present techniques to reduce the number of nodes that are visited
during the search. Most of these techniques modify the graph structure, either decreasing
the overall number of nodes and edges or the number of nodes and edges on the paths.

8.6.1 Chaining Change-Arrival / Change-Departure Nodes

We do not need a copy of each arrival or departure event on the change level. For every
departure time at a station only one change-departure node is required. This single node
is connected to all departures at that point in time (observed in [MSW02]) We already
save 30.6% of the change nodes and waiting edges (see Table 8.1 on Page 102).

The existence of a arrival and d departure nodes on the change level results in 2·(a+d)
waiting edges, a + d for forward and backward search each (see Figure 8.6 (left)). In
forward search there is no need to consider arrival events except the ones that are extracted
from the priority queue (inserted as the target of a feasible train edge). Therefore, we
can unhook the change-arrival nodes from the change level and arrange the change nodes
in two cycles, one by linking the departure change nodes with waiting edges according
to increasing time values (for forward search) and the other by linking arrival change
nodes ordered by decreasing time value (see Figure 8.6 (right), showing the edges for
forward search only). This construction technique does not reduce the number of nodes.
Applying this construction we only need d waiting edges for forward search and a for
backward search. Thus, we save half of the edges and operations on the change level.

112 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

t*

t’

t’

t

t

 t’’

change

departurearrival

f

g

e

h

b

a

time

t*

t’

t’

t

t

 t’’

change

departurearrival

f

g

e

h

b

a

time

Figure 8.6: Time expanded model with change-departure and change-arrival nodes
chained (left) and the extension to skip change-arrival nodes in forward search (right).

8.6.2 Skipping Departure Nodes

In our graph model, departure nodes have exactly one outgoing edge, namely the train
edge. So whenever a label at a departure node survives dominance testing, it is entered
into the priority queue. Later, it is extracted, and its outgoing train edge is inspected and,
if the check does not fail, the label at the arrival node is created, tested, and potentially
inserted into the priority queue.

As we have already decided to use the train as soon as the label at the departure node
has passed testing, we may immediately check the train edge and upon success create the
label at the arrival node without ever inserting and extracting the label at the departure
node. Because our search only terminates once the priority queue is empty, we would have
extracted these labels anyway. Since we normally insert about one third of the labels at
departure nodes, we expect to save one third of the operations on the priority queue.

Note that this is done during computation opposed to changing the graph for the
other speed-up techniques in this section. Of course, this can be done analogously for
arrival nodes in backward search.

8.6.3 Bypassing Departure Nodes

The natural evolution of the technique in the preceding subsection is to eliminate depar-
ture nodes from the graph altogether (the same idea can be found in [DPW08] under the
designation “Omitting Departure Nodes”). For this construction we introduce new edge
types that model entering a train, staying in a train, or a special interchange together
with using the train up to its next stop. This way we can bypass all the departure nodes
and remove them from the graph. These bypass edges represent entering edges, stay-in-
train edges or special-interchange edges and the succeeding train edges. They connect
the arrival or change-arrival tail nodes of the other edge types to the head node of the
train edge and replace the edges from the original model.

In Figure 8.7 we see an example with two bypassed departure nodes. The entering
and stay-in-train edges before the upper train edge towards S2 and the entering, stay-

8.6 Skipping Nodes in the Graph or Search 113

S1

S2

S3

departurearrival change

S1

S2

S3

departurearrival change

Figure 8.7: Example for bypassing departure nodes. From the left to the right figure, two
departure nodes at station S1 have been removed from the graph.

in-train, and special-interchange edge before the lower train edge towards S3 have been
transformed into bypass edges of the appropriate type and redirected to the arrival of their
respective train edge. The leaving edges are not affected. In this example, we only need
five bypass edges instead of seven edges adjacent to the departure nodes (five incoming
edges plus two train edges).

In Table 8.4 we can see the reduction of the graph size., We save all the train edges
and departure nodes, whereas of the combinations of an edge type with a train edge we
have exactly the same number as the edge type in the original model. Note that the
edges now carry more information, e.g. an entering edge originally only consisted of its
two adjacent nodes and now has to store all train information. The technique connection
infos from Section 5.3.2 now becomes even more important as there are not only a number
of (subsequent) train edges without a change in train number, category, attributes etc. but
also instead of one train edge we have at least two edges (bypass edges for entering edge or
stay-in-train edge plus following train edge, maybe additional ones for special-interchange
edges) that have to store this information from the same original train edge.

We did not test additional removals (arrival, change nodes). Delling et al. observed
in [DPW08] that these removals actually increase query times because the overall graph
size grows, due to a tremendous increase in the number of edges and only a moderate
decrease in the number of nodes.

Again, this can be done analogously for arrival nodes in backward search.

nodes (in k) edges (in k)

dep arr change sum saved train total saved
org 802 802 557 2,160 0% 802 3,705 0%
bypass 0 802 557 1,358 37.1% 0 2,902 21.6%

Table 8.4: Number of edges and nodes saved using the “bypass” heuristic.

114 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

Variant Routes Neighbors
Threshold R5 R10 R15 N3 N4 N5
Important Stations in % 60.2 35.2 21.3 29.6 15.9 9.2
Average number of N/F 1.0 1.0 1.0 1.0 1.0 1.0
shortcuts per node A 8.7 7.1 5.9 5.1 3.8 3.1

Table 8.5: The share of important stations as determined by the important stations
heuristic using the neighbors (N) or routes (R) variant and the number of shortcuts when
connecting each departure to the final stop of the train (F), the next (N) or all subsequent
(A) important stations.

8.7 Important Station Heuristics

Imagine a small station S served by only two routes, one from A to B and the other from
B to A. Traveling in a train from A to B it does not make sense to exit at station S and
either take a later train in the same direction, much less a train in the opposite direction.
This simple observation was the starting point for the important station heuristic. The
important station heuristic allows leaving a train only at important stations determined
using one of the following measurements.

Routes The size of a station measured in the number of routes passing the station is
one way of deciding the importance of a station.

Neighbors Only stations, where a route begins or ends or two routes meet (for the first
time) or separate might be considered important. A similar idea has been used by
[BDGM09]. For routes to meet or separate a station has to have at least 3 neighbors.
Consequently, one possibility to decide for a station whether it is important or not
is the number of neighbors. Requiring more than 3 neighbors picks more important
hub stations.

The resulting share of important stations for selected threshold values is given in
Table 8.5. Note that even for the smallest sensible value of 3 for the neighbors heuristic
we already have more than two thirds of the stations categorized as unimportant.

8.7.1 Skipping Nodes at Unimportant Stations

The idea of skipping departure nodes (cf. Section 8.6.2) may be adapted for the important
station heuristic as well. Whenever an arrival at an unimportant station is processed, its
stay-in-train edge is the only allowed edge (unless we are at the target station). Instead
of inserting the arrival into the priority queue, we immediately process the target node of
that edge. Like in the original skip departure nodes heuristic, the label at this departure
node is not inserted into the priority queue, as well. Instead, the next arrival is processed
immediately. Should this arrival occur at an unimportant station, it and the next depar-
ture are treated likewise, and so on. So after entering a train, the next label inserted into
the priority queue is the first label of this train at an important station or the terminal.

8.7 Important Station Heuristics 115

A

B

C

D

E

A

B

C

D

E

train

stay

shortcut

Figure 8.8: A train with additional shortcuts to its important stations C and E. Short-
cuts are introduced either from each node to the next important station (left) or to all
subsequent important stations (right).

8.7.2 Shortcuts in the Graph

Starting from the concept of important stations we want to add shortcuts to the graph
that bypass stations which are not important. With this technique we want to decrease
the number of visited stations before the terminal is reached. Instead of joining two edges
to one (as in the case of bypassing departure nodes), we are now interested in bypassing
whole sections of a train. Let us first give an example (see Figure 8.8): Train t serves five
stations A,B,C,D, and E. Stations C and E are important.

Our first concept is to add shortcuts to the next important station (scnext). Thus, we
have shortcuts (A,C) and (B,C) to station C and shortcuts (C,E) and (D,E) to station
E (left figure). Alternatively, we could add shortcuts from each station to all succeeding
important stations (scall). To this end, we add shortcuts (A,C), (B,C), and (C,E) as
before and additionally the shortcuts (A,E) and (B,E) from before important station C
to E (right figure).

Simply adding these edges is not enough, of course. If we ignore the parallel edges for
the time being, we now have 4 paths in (scnext), instead of one from A to E; in (scall)
even 6 paths. Therefore, we have to slightly modify the search, namely the decision
whether an edge is feasible or not. Additionally to the standard test for traffic days,
categories, attributes etc. we use the following:

Shortcut edges are always allowed, except when they bypass the terminal or a station
from which the terminal is reachable via a foot path. On the other hand, train edges are
not allowed during the search in general, only if a shortcut has been blocked that starts
with this train edge.

In our example let station D be our target and our current node the departure at
station A. In mode (scnext) we are allowed to take shortcut edge (A,C), but not train
edge (A,B). No label at station B is created. We use the stay-in-train edge at C and are
not allowed to use the shortcut (C,E) since it bypasses terminal D. The failed feasibility

116 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

check of the shortcut enables us to use train edge (C,D) and we arrive at our destination.
In variant (scall) we even disallow stay-in-train edges (as long as the departure after

the edge has no feasible train edges) to prevent exploring the same train section more
than once. The previous example would work like described for variant (scnext) except
that we disallow shortcuts (A,E) and (B,E) as well. But if our terminal were E, we would
not allow the stay-in-train edge at C and thus not explore both of the two paths from A
to E (shortcut (A,E) and the two shortcuts (A,C) and (C,E) with the stay-in-train edge
at C) which both model going from A to E in train t. Of course we still have to create an
arrival at C and explore other ways to get from C to E since C is an important station.

The last station of a train is always important to guarantee capturing all stations
of each train. The other important stations may be determined for example using the
important station heuristics presented earlier (in Section 8.7).

We propose the following three variants:

scfinal Shortcuts from all nodes to the final stop of the train,

scnext Shortcuts to the next important station, and

scall Shortcuts to all succeeding important stations.

The number of shortcuts depending on the small station heuristic and the variant
of the shortcut heuristic can be found in in Table 8.5 on Page 114. While for scfinal
and scnext each departure node receives one shortcut edge (either to the final or next
important station), the number of shortcuts for scall lies between 3.1 and 8.7 for our
sample values.

8.8 The Priority Queue

In this section we will introduce the employed data types for our priority queues, discuss
the binary relation (or for Dial’s data structure: the function) used to order elements in
these queues, and present two techniques related to priority queues that might improve
the search speed.

8.8.1 Smaller Relation for Priority Queues

In multi-criteria search the smaller relation <′ used for domination (either standard,
relaxed or advanced Pareto) cannot be used for sorting labels, as for many pairs of labels
x, y neither x <′ y nor y <′ x holds, although x 6= y. Therefore, we need to define a
smaller relation for the priority queue.

This smaller relation may either be a lexicographic smaller for a certain ranking of
the criteria, (e.g. time, number of interchanges, reliability of transfers, and price in that
sequence of priority) or a smaller on a weighted sum of some of the criteria. The lexico-
graphic smaller leads to a version that is closest to the classical label-setting version of
the algorithm. However, since all labels at a node (and not only the smallest) have to be
evaluated and processed in a multi-criteria approach anyway, using exactly that smaller
relation is not essential for the correctness. Actually, we apply a label-correcting scheme.

The lexicographic ordering is formulated and implemented straightforwardly. The
relevant value for comparisons for the smaller relation on weighted sums may be
based on:

8.8 The Priority Queue 117

one dominant criterion e.g. travel time so far,

goal-direction e.g. travel time so far plus lower bound, or

goal-direction plus other criterion e.g. travel time so far plus lower bound plus
weighted number of interchanges, or

any of the above plus some tie-breaking rule e.g. travel time so far plus lower
bound plus weighted number of interchanges and some rule to be applied if the
difference between the relevant values is zero.

Let SA denote the last station of connection A and lbtime(S) the lower bound on the
remaining travel time from S to the terminal Ω (cf. Section 8.5.1). Then

value(A) = timeA + θ · lbtime(SA) + γ · (icA)

describes one promising way to calculate the relevant value for connection A with travel
time timeA and number of interchanges icA. For θ = 0 and γ = 0 we have the first
variant. The second is used if we set θ = 1 and γ = 0. To additionally involve the
number of interchanges, we set θ = 1 and γ > 0, resulting in the third variant. Should
we encounter ties in any of these variants, we may use the FIFO principle to break them.
Interestingly, Dial’s data structure (as introduced in 3.3.4) automatically breaks ties this
way, as it uses FIFO-queues to store labels with the same values.

8.8.2 Different Priority Queue Types

The smaller relation from the previous subsection will be used to test four different priority
queue types:

• Dial’s data structure ([Dia69], cf. Section 3.3.4).

• Binary Heap (cf. 3.3)

• k–heap with k = 4 (cf. 3.3)

• Pairing Heap ([FSST86])

For the heaps the smaller relation

smaller(A,B) : timeA + θ · lbtime(SA) + γ · icA < timeB + θ · lbtime(SB) + γ · icB

and for Dial’s data structure value(A) = timeA + θ · lbtime(SA) + γ · icA is used to order
the labels.

For the heaps we may additionally use the FIFO principle to break ties or let the
details of the restructuring methods decide, what happens to labels scoring the same
value.

8.8.3 Reordering the PQ

A nice idea to speed up multi-criteria Pareto search is based on the following insight for
bi-criteria search. We look at the exemplary case of the criteria travel time and number
of interchanges with goal-direction for travel time. Assume the first Pareto optimal solu-

118 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

tion P1 has been found with cost (tt1, ic1). We were using goal-direction, hence no faster
connection exists. In fact, all Pareto optimal connections Pi with cost (tti, ici) have the
properties tti ≥ tt1 and ici ≤ ic1. Therefore, it does not make sense to test partial connec-
tions with more interchanges than ic1 as they cannot lead to optimal connections. For the
remaining part of the search we can safely discard all labels that lead to connections with
more than ic1 interchanges. Furthermore, we can reorder the priority queue according to
our second criterion number of interchanges (using lexicographic search, breaking ties by
favoring faster connections). All further connections have at most ic1 interchanges (oth-
erwise the labels were discarded). Once the priority queue is empty, all Pareto optimal
connections have been found. Without discarding labels leading to connection with more
than ic1 interchanges, the search can be terminated as soon as the first label with more
than ic1 interchanges is extracted from the queue.

In our scenario, ordering the priority queue according to other criteria than time and
number of interchanges (i.e. ticket cost or reliability of transfers) does not seem useful.
Besides, it is not at all clear how to adapt this technique to not simply finding the Pareto
optimal connections but the relaxed or advanced Pareto optimal ones. Although we may
not stop early or discard labels, reordering after the first solution will produce a good
solution with the least possible number of interchanges fairly early in the search, so there
is hope that we may nonetheless profit from reordering the queue, especially for the
technique domination by labels at the terminal.

8.8.4 Avoid Inserting Minimum Labels

There are many edges of relatively short length: Entering edges have duration zero. Most
waiting edges are only one or two minutes long. Furthermore, Many high-speed train
edges on a shortest path increase the travel time by nearly the same amount as they
reduce the bound on the remaining travel time. Thus, the labels at head and tail have
values (cf. Section 8.8.1) close to each other when using goal-direction. Whenever a label
is created after such an edge, it is highly likely that the label will be the new minimum
element minPQ in the priority queue. Instead of inserting and extracting these elements
into/from the priority queue, we keep an additional FIFO queue that stores those elements
x for which minPQ 6< x holds. During the execution of the algorithm we first empty the
FIFO queue before taking the next element from the priority queue.

8.9 Edge-Blocking

In this section we will introduce a framework of heuristics we will call edge-blocking.
Whenever we call method checkEdge for some label and edge we use information stored
during this search to decide whether an edge is allowed or not. Every time we create a
new label after a successful edge inspection, we update the information pool used in our
decision process.

8.9.1 Mass Transportation Heuristic

This heuristic tries to avoid using multiple alternatives of highly frequent means of trans-
portation like busses, trams, subways, and the like (mass transportation) to get from
some station to another. After the arrival with say a high-speed train t at station S we
face different tram lines with differing terminal stations (therefore they are in different

8.9 Edge-Blocking 119

routes and not covered by the routes heuristic introduced in Section 8.9.2). Many of these
tram lines may meet again at some hub station. Usually, which tram is used between
two stations is immaterial, especially if they do not differ in travel time. Assume we have
left train t at S and arrived in S′ via mass transportation. Having thus already reached
the change level at S′ after mass transportation, leaving a means of mass transportation
reaching S′ later in the search process does not create interesting alternatives unless we
get from S to S′ faster, with less interchanges or with any better label than we reached
S′ in the first place. Especially taking the next means of mass transportation of the same
line to arrive at S′ is only favorable if reliability of interchanges is among the optimization
criteria.

Consequently, whenever we leave such a highly frequent means of transportation at
some station, we store the last used train edge describing a non mass transportation part
of the journey and the label in a list at the station. In checkEdge calls we will not allow
leaving mass transportation after exactly the same previous non mass transportation edge
in case the new label is not better than the information associated with the other label.
Note that the algorithm usually does not compare labels at a station that do not belong
to the same node.

We implemented three variants of this heuristic. They all only differ in the definition
of whether another exit is allowed for the new label or not:

mass transport changes only if it has used less interchanges between means of mass
transportation to get to this station,

travel time only if it has used less travel time to get to this station, and

advanced Pareto dominance only if it is not advanced Pareto dominated by any
other label that has left a means of mass transportation at this station.

This heuristic was motivated by the observation that many searches requiring high
computational effort explore several possibilities of using mass transportation (cf. Sec-
tion 9.13).

8.9.2 Route Blocking

We are interested in finding all Pareto optima and have an interval of starting points,
therefore we may not simply allow only one train edge to each of the neighboring stations
of one node (a technique Delling et al. call “node blocking” in [DPW08]). However, we
developed an adaption of that technique. Think of a reference item as either a label
created at an arrival or a train arriving at a station S. For each such reference item we
only allow a subset of the trains available at S. We restrict the choice to just the very
next train of each route at the station.

To realize this heuristic we create an entry at a station S for each reference item with
a list of all routes that are available at S. When we now use a train belonging to a route
we mark this route as no longer permitted for the corresponding item. In subsequent
checkEdge calls we only select from routes that are marked as still permitted for the
corresponding arrival label.

We implemented three versions of this heuristic, each maintaining the set of already
used and therefore not eligible routes according to different strategies. Every route is
eligible at most once for each reference item, either of the following:

120 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

station A route may only be used once per station, all connections arriving later at the
station may only pick one of the remaining routes.

arriving train edge All connections arriving later with the same train may only pick
one of the remaining routes.

arrival label Each different connection reaching the station may continue using any of
the routes at that station.

Note that the first variant is an implementation for comparison to the “node blocking”
approach. We do not expect useful quality from this crude version of the heuristic.

8.9.3 Shortcut Blocking

The same mechanics can be used to implement the search using shortcuts (cf. Sec-
tion 8.7.2). Whenever a shortcut edge fails the feasibility check as it bypasses the terminal,
we mark the first train edge of the shortcut as feasible. Train edges are only allowed if
they have been marked as feasible for a shortcut edge at the same tail node during the
current iteration over the leaving edges of that node.

For the variant scall the routines get somewhat more involved, as train edges can be
part of multiple shortcuts and stay-in-train edges have to be checked as well, but it still
fits within the framework.

8.10 Bitonic Search

A simple heuristic, intuitively used on road networks, is to look for bitonic paths. It is
motivated by the idea to first take urban and regional roads to get to the nearest national
roads, then using them to reach highways and once you leave the highways you take
again national roads to bring you close to your target and regional and urban roads to
the target. Usually, no trip contains a regional road in between two highway segments.
For train networks we can group the trains into four groups:

1. urban services (bus, streetcar, etc.)

2. local trains (IR, RE, RB, etc.)

3. long-distance trains like IC and EC

4. high speed trains (ICE, TGV, Thalys, etc.)

Each connection has a sequence of means of transportation (or products) πi, i =
1, . . . , n each in group g(πi). A connection is bitonic if

∃j : g(πi) ≤ g(πi+1) for 1 ≤ i ≤ j and g(πi) ≥ g(πi+1) for j < i < n.

Müller-Hannemann and Weihe tested Pareto optimal paths in their train graph model
using two criteria: travel time and fares. They stated in [MW01, MW06] that 84% of all
paths were indeed bitonic.

The heuristic bitonic records for each partial connection, whether the sequence of
products has already started to descend. Initially, ascending and descending in the hier-
archy of groups is allowed. Once a search has started descending for a partial connection,
it may never ascend again for all extensions of the connection.

8.11 Speed-Up Techniques and Graph Updates 121

8.11 Speed-Up Techniques and Graph Updates

Delays and information about additional and canceled trains (cf. Chapter 7) require
constantly updating the search graph. In this section we will take a backward glance
at the speedup techniques introduced earlier in this chapter and will see how well they
harmonize with these kinds of updates.

Lower Bounds: Station Graphs, Interchange Graphs and Goal-Direction
Delays and train cancellation or additional trains may require updating the auxiliary
graphs for the computation of lower bounds. If a train has a delay at its departure and
manages to cancel out/compensate for it, the minimum travel time between two stations
may decrease. Additional or canceled trains may require changes to both the station
graphs and the interchange graph. Trains traveling slower can safely be ignored, as the
lower bounds stay valid, nonetheless, we may increase the fastest travel time if needed.
Updating the auxiliary graphs is mostly limited to recomputing the values for a few edges
and rarely changing anything at all. This is another advantage of actually computing the
bounds in a preprocessing step before each search instead of preprocessing and storing all
the values.

Modifications Bypass and Shortcuts All edges that have replaced or represent mul-
tiple edges in techniques bypass departure nodes (cf. Section 8.6.3) and shortcuts (from
Section 8.7.2) connect regular nodes to regular nodes and, in the latter case, know the
represented edges. After shifting nodes, the length of the bypass and shortcut edges au-
tomatically adjusts, as edge lengths are determined according to the time stamps of the
head and tail nodes of an edge. Whenever an edge needs to be deleted, the corresponding
bypass and shortcut edges are easy to determine. Adding new trains may require com-
puting this type of edges for that train in a straightforward way. Note that our shortcuts
only represent sections of trains and no train changes, thus they exist as long as all their
train edges exist. No special treatment according to broken train changes due to delays
is required.

Techniques avoid and skip The techniques avoid inserting minimum labels (cf. Sec-
tion 8.8.4) and skip departure nodes (see Section 8.6.2) only modify the processing of
labels (by not inserting some of them into the priority queue), so they are immune to
graph updates.

Heuristics Bitonic Search and Edge-Blocking: Mass Transportation
As long as the train classes of all train edges in the schedule are available, dynamic graph
changes do not concern these heuristics.

Heuristic Route Blocking This heuristic only requires updating the route informa-
tion according to additional and canceled trains.

Heuristic Important Stations Although additional and canceled trains may change
the number of trains at a station, neither the topology of the network changes (to deter-
mine importance from the number of neighbors) nor the number of routes is significantly
affected (to determine the importance from the number of routes).

122 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

Input: a timetable graph and a query
Output: a set of advanced Pareto optimal labels at the terminal

foreach node v do
labelListAt(v) := ∅;

PriorityQueue pq := ∅;
createStartLabels();

while ! pq.isEmpty() do
[Label label := pq.extractLabel();

foreach outgoing edge e=(v,w) of v=label.getNode() do
if isInfeasible(e) then continue; // ignore this edge
Label newLabel := createLabel(label, e);
if isDominated(newLabel) then continue;
// newLabel is not dominated
if isTerminalReached(newLabel) then

terminalList.insert(newLabel);
else

metaData.update(newLabel);
labelListAt(w).insert(newLabel);
labelListAt(w).removeLabelsDominatedBy(newLabel);
pq.insert(newLabel);

filterList(terminalList);

Algorithm 8: Pseudocode for the MOTIS algorithm with speed-up techniques.

8.12 MOTIS Algorithm with Speed-Up Techniques

In this section, we present the adjustments and extension to the graph and algorithm
according to the speed-up techniques introduced throughout this chapter.

8.12.1 Changes to the Graph

The following changes affect the final graph model as introduced in Chapter 5:

• Chaining change-arrival and change-departure nodes in separate change levels
(cf. Section 8.6.1).

• Additional shortcut edges are inserted (cf. Section 8.7.2).

• Departure nodes are bypassed, these nodes are removed from the graph
(cf. Section 8.6.3).

8.12.2 Changes to the Algorithm

In Figure 8 we give a pseudocode description of the MOTIS algorithm with speed-up
techniques. The algorithm looks nearly identical to the version presented in Section 5.5
without those techniques. The differences are highlighted in blue in the following list of
details influencing certain steps and method calls.

8.13 Further Thoughts on Speed-Up Techniques 123

createStartLabels() in pre-trip search labels for all nodes in the start interval, maybe
at metas and stations reachable via footpaths as well, respecting attribute NotIn,
in on-trip search either at one arrival node or one change-departure node.

pq.insert/extract(·) depending on priority queue type (Section 8.8.2), lower bounds
(Section 8.5) and smaller relation (Section 8.8.1) used in goal-direction (Section 8.3),
heuristics avoid inserting minimum labels (separate queue for those, cf. Section 8.8.4),
and for heuristic skip departure (Section 8.6.2):

- at departure nodes, do not perform pq.insert(newLabel)

- instead goto line [

- there, execute label := newLabel instead of label := pq.extractLabel()

outgoing edge e=(v,w) all leaving edges, for arrival nodes additionally the foot edges
stored for this station

isInfeasible(e) whether edge e is infeasible due to traffic days, attribute requirements,
train class restrictions, or heuristics: bitonic search (Section 8.10), mass transporta-
tion (Section 8.9.1), route blocking (Section 8.9.2), shortcut blocking (Section 8.9.3)
for shortcuts (either only shortcut or regular edges, cf. Section 8.7.2), or the head
node is infeasible due to pruning techniques (Section 8.5.5) or the important station
heuristic (Section 8.7)

isDominated (newLabel) test against other labels at the same node and labels at the
terminal (Section 8.4), for the latter using lower bounds (Section 8.5)

isTerminalReached(·) if leaving allowed (attribute NotOut) at a node belonging to the
terminal station (or any of the meta replacements)

metaData.update(·) edge blocking heuristics: mass transportation (Section 8.9.1),
route blocking (Section 8.9.2) or shortcuts (Section 8.9.3)

terminalList.insert(newLabel) label is stored for technique domination by labels at the
terminal (Section 8.4)

filterList(terminalList) after a final evaluation of the complete connections repre-
sented by the labels in terminalList remove dominated labels

8.13 Further Thoughts on Speed-Up Techniques

8.13.1 Ideas for Bidirectional Search

To implement bidirectional search for the multi-criteria case on time-expanded (or time-
dependent) networks assume we have somehow guessed the correct arrival interval. A
label at a node that already has at least one label from the opposite search direction
is stored and its leaving edges are not explored. Connections are constructed from the
new label and all the labels from the other direction. These connections are used for
domination by labels at the terminal. The search to determine all optimal paths continues
until the queues for both directions are empty. Instead of guessing the correct arrival
interval let us consider the following examples:

124 Chapter 8: Speed-Up Techniques for Multi-Criteria Search

• empty arrival interval: the single-directed search is executed

• arrival interval too small: some of the shortest path from source to terminal are
found only in forward direction (namely those arriving outside the assumed arrival
interval) and we waste some speedup potential

• arrival interval too big: some additional paths from the terminal to the source are
found, but they do not start in the departure interval. We have wasted search time

For the latter case we may employ an additional bounding technique discarding labels
that will arrive later than the end of the departure interval.

A promising way of determining the arrival interval might be shifting the start of the
departure interval by a lower bound on the travel time and the end of the departure
interval by some upper bound. Note that good lower bounds are already present as part
of our original algorithm. Upper bounds on the other hand are always hard to obtain.
The better our estimation of the arrival interval, the more improvement we would expect.

8.13.2 Adapting Multi-Criteria SHARC

The unidirectional speed-up technique SHARC seems to be a prime candidate for adaption
to our scenario. It has already been extended to cover multiple criteria [DW09a] and time-
dependency in road-networks [Del08b]. Recently, it has been extended to multi-criteria
timetable information in time-dependent graphs modeling train schedules [BDGM09]. We
plan to apply their results to our time-expanded graph and advanced Pareto dominance
approach. We hope to advance the techniques of arc-flag computation, graph partitioning,
and contraction in our scenario.

Chapter 9

Computational Study

In this chapter, we will present an extensive computational study. We will start with the
search for special offers and for night trains. These two were conducted based on the
concept of relaxed Pareto optimality (see the history of the algorithm in Section 5.4). In
the remainder of the chapter we will present an in-depth analysis of various aspects of
our algorithm and the concept of advanced Pareto optimality.

In the section about special offers (Section 9.1) we will search for connections respect-
ing the criteria travel time, number of interchanges, and ticket cost. For ticket cost we
will look at regular fares and two contingent based fares, either fixed price or reduced
price, simultaneously (as introduced in Section 6.2)

We will evaluate our two approaches for the search for night trains, our enumerative
approach and sleeping time as an additional criterion (from Section 6.4) in Section 9.2. We
will compare their performance and quality to the standard version without the capability
of searching for night trains.

The importance of the criterion reliability of interchanges is much higher than that of
these two other criteria or special search forms. Especially in a scenario with information
about delayed trains available (cf. Chapter 7), the most important criteria are travel
time, number of interchanges, and reliability of interchanges. Therefore, this criterion
has become an integral part of the system and will be evaluated from Section 9.3 onwards
together with our three principle criteria travel time, number of interchanges, and ticket
cost (without special offers) in the advanced Pareto optimality approach. After a short
overview of the testing environment and measurements for speed and quality, we will look
at the influence of the different concepts of domination and the combinations of criteria.
Then, speedup techniques without quality loss (lower bounds, priority queue types, goal-
direction, basic modifications to the graph and the number of labels entered into the
priority queue) and later heuristics that may fail to find all optimal connections (bitonic
search, edge blocking heuristics: mass transportation and route blocking, the important
station heuristic, and shortcuts, as well as combinations) will be thoroughly examined.

125

126 Chapter 9: Computational Study

9.1 Computational Study on Special Offers

In this section, we will evaluate our approach to the search for special offers, fixed price
and reduced price tickets subject to availability of contingents on high-speed edges as
introduced in Section 6.2.

9.1.1 Computational Setup

9.1.1.1 Test Cases

We took the train schedule of trains within Germany from 2003. For our experiments, we
used a snapshot of about 5,000 real customer queries of Deutsche Bahn AG falling within
the week January 13-19, 2003. For all queries, we searched for valid connections within a
two-hours time interval. This schedule and the derived time-expanded graph have sizes
as shown in Table 9.1.

Ticket contingents exist for high-speed trains (like ICE, Thalys, TGV, IC, EC) or
night trains. Each train t has a certain capacity cap(t) (depending on the train type).
We do not have access to real pre-booking data for trains. Therefore, we simulate the
booking status for each train.

A random number of passengers uses each train with contingent restrictions. This
number is based on the train class and some other criteria (number of stops, importance
of the served stations, etc.). For each of the passengers a random station for entering and
leaving the train is chosen evenly distributed from the stations the train visits. We then
set thresholds xA(t) for the number of passengers required to exhaust the contingent on
a train edge of train t according to the desired level of availability A = x%. A travel edge
which may have a contingent restriction is called contingent edge. For two availabilities
A,A′ with A < A′ we require xA(t) ≥ xA′(t) for all trains t. So the contingent edges that
are not available for some availability A are not available for every availability A∗ < A.

We consider the following scenarios for the availability of contingents: C10, C20, C40,
C60, C80 and C100, where Cx has an availability of A = x% on the contingent edges.
For comparison we also include the numbers for the search for regular fares (denoted by
MOTIS).

For all queries, we assume the same type of passenger, namely a single adult booking
early enough to get a 50% discount if a contingent is available. The fixed price for special
offers is assumed to be 29 Euros.

9.1.1.2 Computational Environment

All computations are executed on a standard Intel P4 processor with 3.2 GHz and 4 GB
main memory running under Suse Linux 9.2. Our C++ code has been compiled with
g++ 3.x and compile option -O3.

number of
stations 8,861
trains 45,370
high-speed trains 1,006
nodes 1,427,726
edges 2,395,703

Table 9.1: Size of the time-expanded graph.

9.1 Computational Study on Special Offers 127

Runtime PQ extracts Number of
Scenario average average Pareto relaxed

in ms Optima
MOTIS 1,702 169,114 3.93 7.26
C10 1,889 176,861 4.22 8.05
C20 1,839 175,221 4.13 7.92
C40 1,776 170,976 3.90 7.73
C60 1,734 167,114 3.67 7.46
C80 1,676 161,446 3.43 7.32
C100 1,605 155,219 3.19 7.06

Table 9.2: Computational results for simultaneous search for several tariff types (minimum
of regular fare, contingent-restricted special offer and contingent-restricted 50% discount).

9.1.2 Searching for Multiple Tariffs

In the following, we compare computational results for running our code with regular fares
only (this version is called MOTIS in the following) and a simultaneous search of several
tariff types for different scenarios of available contingents. In the simultaneous search, we
finally select the relaxed Pareto optimal connections where the fare is taken as the mini-
mum of the regular fare, a contingent-restricted special offer and a contingent-restricted
50% discount on the regular fare if the contingent is available. Table 9.2 summarizes the
key figures obtained in our experiment. In the first column of numbers we present the
average CPU time in milliseconds for a single query. The average CPU time lies within
the relatively small range of 1.6s and 1.9s for all scenarios.

As CPU times are very hardware-dependent, we prefer to add representative oper-
ations counts for the performance evaluation of algorithms. Previous studies [MS07]
indicated that a suitable parameter for operation counts of a multi-criteria version of Di-
jkstra’s algorithm is the number of extract minimum operations from the priority queue.
This parameter is highly correlated with the CPU time for the corresponding query.
Therefore, we display in the second column of numbers in Table 9.2 also the average
number of these extract operations.

The computational effort increases with decreasing availability of contingents mainly
due to two reasons: On the one hand, very few available contingent edges force the
algorithm to take longer detours to find cheap contingent prices. On the other hand,
a high availability of contingent edges leads to many cheap connections. These help in
dominance. There are actually less connections to explore to find cheap alternatives. If
about half or more of the contingent edges are available, the contingent version has less
operations than the version MOTIS not considering different tariffs.

We note that dominance rules are faster to evaluate if only regular fares are considered
(case MOTIS) as less connections are mutually incomparable, see Subsection 6.2.3.1.
Therefore, the workload per extract minimum operation is smaller in this version. For
all versions using contingent information the correlation between runtime and number of
extract min operations is plain to see.

128 Chapter 9: Computational Study

Figure 9.1: Histogram showing the distribution of the number of extract operations from
the priority queue. We compare MOTIS (search only for regular fares) with a new version
which simultaneously searches for a mixture of fare types.

In Figure 9.1, we show a histogram on the distribution of extract minimum operations.
Case MOTIS mostly lies between the easiest (C100) and most difficult (C10) contingent
scenario. The overall distribution looks very similar for all versions of our algorithm. It
turns out that about half of all test cases require less than 50,000 extract operations.
Such queries are very easy and take only a few milliseconds.

The two remaining columns of Table 9.2 display the average number of true Pareto
optima and the number of relaxed Pareto optima, respectively.

MOTIS offers about 7-8 attractive connections on average, i.e. about four additional
connections in comparison to standard Pareto filtering. The more contingents are avail-
able, the smaller is the number of Pareto optima, since more fast connections have a
cheaper price. Figure 9.2 shows the distribution of the number of Pareto optima and
relaxed Pareto optima over the test cases for MOTIS and the most difficult contingent
version C10.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >20

Number of Relaxed Pareto Optima

N
u

m
b

er
 o

f
ca

se
s

multiple fare types C10

regular fares

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 >13

Number of Pareto Optima

N
u

m
b

er
 o

f
ca

se
s

multiple fare types C10

regular fares

Figure 9.2: Histogram showing the distribution of the number of Pareto optima and
relaxed Pareto optima.

9.1 Computational Study on Special Offers 129

Runtime Calls to Fixed Price Certificates Non high-speed
Scenario average SFPC conn. from no fixed price total too ex-

in ms FTTD SFPD conn. exists pensive
C10 204 3641 82 317 2790 1811 373
C20 153 3502 221 841 2224 1714 321
C40 111 3101 622 1490 288 2450 256
C60 90 2579 1144 1742 194 1920 216
C80 70 1534 2189 1275 59 1477 171
C100 45 0 3723 - 0 1277 152

Table 9.3: Results for the fast search for fixed price connections. Either a fixed price
connection was found (by FTTD or SFPD), a certificate that no fixed price connection
exists was computed, or a non high-speed connection was found which is cheaper than
the fixed price in most cases.

9.1.3 Fast Search for Fixed Price Connections

We also evaluated the results of the preprocessing phase with our test set. In this ex-
periment, we have run the subroutines “fastest travel time Dijkstra” (FTTD) and our
“specialized fixed price Dijkstra” (SFPD). Recall that the purpose of these routines is
to find either a fixed price connection, a suitable connection for dominance testing or a
certificate, that no fixed price connection exists.

Table 9.3 shows the average runtime, the number of calls to the SFPD, the number of
different types of connections and the number of certificates that no fixed price connection
exists. The connections are either fixed price connections found by either of the algorithms
or non-high-speed connections. In the last column we give the number of cases where such
a non-high-speed connection was more expensive than the fixed price. These cases are
the only ones, where we have neither a connection to use in dominance testing (either a
fixed price connection or a connection without high-speed train that is faster than any
fixed price connection) nor the knowledge that no fixed price connection exists. This
only happens in 152 to 373 cases, which is 3.04% to 7.5% of the cases, depending on the
availability of contingent edges. This is acceptable for a heuristic that runs in at most a
fifth of a second on average.

Not surprisingly the total number of fixed price connections increases with the avail-
ability of contingents. With decreasing availability the runtime, the number of calls to the
SFPD, and the number of certificates that no fixed price connection exists increase. As
the availability of contingent edges increases, the number of fixed price connections deter-
mined by the FTTD increases and the number of calls to the SFPD decreases, therefore
the runtime improves. The number of fixed price connections SFPD determines increases
with the availability but decreases if many fixed price connections have already been
found by FTTD.

Fixed price search in MOTIS becomes harder the less contingent edges are available
(as more detours have to be investigated).

Fortunately, with decreasing availability of contingents we can turn off the tariff op-
tion fixed price search in the multi-criteria search due to the preprocessing phase for a
significantly increasing number of queries.

130 Chapter 9: Computational Study

9.2 Computational Study on Night Train Search

Our two approaches to the search for night trains (introduced in Section 6.4), either as a
specialized search for night trains only or modeling sleeping time as an additional criterion
for multi-criteria optimization will be evaluated in this section.

Figure 9.3: The railway network of Germany. All night train routes are highlighted.

9.2.1 Computational Setup

9.2.1.1 Test Cases

We took the train schedule of trains within Germany of July 2007; the night train routes
are shown in Figure 9.3. For our experiments, we used a snapshot of about 25,000 real
customer queries of Deutsche Bahn AG. From these we selected and processed only those
1771 queries where the straight line distance between the start and terminal stations was
at least 350 km. For all other queries the distance is likely to be too short to allow for a
reasonable night train connection.

Among the 1771 queries, we have 347 queries which possess a direct night train con-
nection and 937 require only one feeder. The remaining 487 queries need two feeders.
The used schedule and the derived time-expanded graph have sizes as shown in Table 9.4.

9.2.1.2 Specific Definition of Attractive Solutions

We have chosen the following constants to specify our notion of attractive night train
connections as introduced in Section 6.4.2.

• A connection is considered as a night train connection only if it includes a night
train with a sleeping time of at least lbst = 240 minutes.

• We limit the maximal travel time of some feeder section also to ubfe := 240 minutes.

• In our definition of the modified sleeping time mst := min{st, ubst} (as introduced
in Section 6.4.2) we have chosen the upper bound as ubst = 420 minutes.

9.2.1.3 Computational Environment

All computations are executed on an AMD Athlon(tm) 64 X2 dual core processor 4600+
with 2.4 GHz and 4 GB main memory running under Suse Linux 10.2. Our C++ code
has been compiled with g++ 4.1.2 and compile option -O3.

9.2 Computational Study on Night Train Search 131

number of
stations 8,916
trains 56,994
night trains 229
nodes 2,400,534
edges 3,715,557

Table 9.4: Key parameters of the schedule and the corresponding graph.

We compare the following variants:

• Algorithm A: our standard MOTIS version which was designed to find all attrac-
tive train connections with respect to travel time minimization and minimizing the
number of train interchanges. MOTIS requires a time interval specifying when the
connection has to start. To use MOTIS for a night train search, we set this start
interval to a period between 6:00 pm on the traffic day and 2:00 am on the follow-
ing day. For our comparison with other variants, we considered only night train
connections.

• Algorithm B: the enumerative approach of pre-selecting night trains as described in
Section 6.4.3.1.

• Algorithm C: a heuristic version of Algorithm B. We replace the multi-criteria search
for feeders by a single-criterion search with respect to travel time. The latter is much
more efficient, but may lead to additional interchanges. The idea behind this variant
is that feeder connections should in general not be very complicated.

• Algorithm D: the multi-criteria version of MOTIS with sleeping time as an addi-
tional criterion as described in Section 6.4.3.2.

9.2.2 Experiments

9.2.2.1 Experiment 1.

In our first experiment we want to study the basic question: How often is it necessary to
use a specialized night train search to find any suitable night train connection?

To answer this question we compared Algorithm A with all other variants; see Ta-
ble 9.5. Algorithm A (standard MOTIS) does not find any true night train connection in

Algorithm # connections Runtime # failures
A (standard MOTIS) 2334 1.87s 370 20.75 %
B (pre-selection+feeder) 4223 14.20s 0 0 %
C (pre-selection+fast feeder) 3939 3.72s 0 0 %
D (MOTIS with additional criterion) 3196 2.34s 41 2.3 %

Table 9.5: The total number of connections found, average runtime in seconds, and the
number of failures for all variants.

132 Chapter 9: Computational Study

370 out of 1771 test cases (20.89%), whereas Algorithms B and C always found at least
one reasonable night train connection. This already shows that a specialized night train
search can offer much more to customers. Our version of Algorithm D (MOTIS with one
additional criterion) fails to find a night train connection in 41 cases (2.3%). This is due
to our heuristic version of domination rules.

9.2.2.2 Experiment 2.

Comparing the four tested variants, what is their impact on the quality of the identified
connections?

The qualitative comparison of the result sets, meaning the found connections, in a
multi-objective search space can be done in several ways. A first, but only rough, indicator
is the size of the solution set after filtering out dominated solutions. The largest set of
connections is delivered by Algorithm B (4223 solutions over all instances), followed by
Algorithm C (3939 solutions) and Algorithm D (3196 solutions). Algorithm A delivers
only 2334 solutions.

Next we studied which algorithmic variant was able to find the most attractive con-
nection. For this comparison we introduced after intensive discussions with practitioners
a quality measure which allows us to rank the solutions for each query a posteriori.

Given a connection c with travel time tt(c) in minutes, modified sleeping time mst(c)
also in minutes, and number of interchanges ic(c), we measure the cost of c by the function

q(c) := tt−mst + k · ic,

where we set the constant k := 20 and ubst = 480 minutes. The smaller the cost value,
the better we regard the quality of the corresponding connection. Our cost function can
be interpreted as follows: We have to pay for each minute of travel time. This cost can be
reduced by the sleeping time up to our upper bound ubst. An interchange is counted as
20 minutes extra travel time. We now rank the solutions as follows: A direct night train
connection has always first rank. All other connections are ranked according to increasing
cost. We have experimented with different constants in our cost function. It turned out
that the ranking of our algorithms is quite robust against changes of these constants.

With respect to this ranking of solutions, we now compared the quality of the first
rank solutions against each other. Table 9.6 shows how often the first ranked solutions
have strictly better quality, how often they match, and how often they are strictly worse.
Standard MOTIS (without explicit night train search, Algorithm A) turns out to be
clearly inferior to our new approaches. In fact, the results found by Algorithm B prove
the existence of better alternatives in 889 out of 1771 cases, i.e., in about 50%.

The enumerative approach (Algorithm B) and its heuristic version (Algorithm C)
behave quite similarly. We observe that the quality of Algorithm C is only slightly worse
than that of Algorithm B (of course, Algorithm C can never beat Algorithm B). This
confirms our intuition that the feeder parts of night train connections are usually not too
complicated, and are therefore also found by the heuristic. In roughly 70% of the test
cases, the enumerative approaches (Algorithm B or C) and the multi-criteria version of
MOTIS (Algorithm D) deliver the same quality for the best solution. In the remaining
cases, Algorithms B/C “win” about twice (2.5 and 2.1 times, respectively) as often as
Algorithm D.

9.3 Computational Studies with Advanced Dominance 133

A vs. B # cases
A wins 134
B wins 889
both match 748

B vs. C # cases
B wins 46
C wins 0
both match 1725

C vs. D # cases
C wins 385
D wins 181
both match 1205

A vs. D # cases
A wins 3
D wins 625
both match 1143

B vs. D # cases
B wins 389
D wins 155
both match 1227

Table 9.6: Pairwise comparison of the first ranked solutions.

9.2.2.3 Experiment 3.

Is there a trade-off between computational efficiency and quality of the solutions?
See Table 9.5 for the average CPU times for all variants. Standard MOTIS (with an

exceptionally long query interval of 8 hours) is the fastest variant with only 1.87 seconds,
but fails too often to find a night train connection. Algorithm B which gives the overall
best quality is about four times slower than Algorithm C. Since the quality delivered by
Algorithm C comes close to that of Algorithm B, it will usually not be worthwhile to
use the more expensive Algorithm B. Algorithm D is 37% faster than Algorithm C, but
its quality is also somewhat poorer. Thus depending on what is more important either
Algorithm D or Algorithm C should be used.

9.2.2.4 Experiment 4.

To gain more insight into the behavior of Algorithms B and C we did some operation
counting. The following numbers always represent averages.

From the set of all possible entry and exit points, 1719 have been rejected since
they are not served on the query date, from the remaining 1605 entry points 1144 have
been rejected because of our distance criterion, and 1205 pairs were removed because
of insufficient sleeping time. It is worth noting that 405 additional feeder computations
have been avoided by our caching mechanism. We had to calculate 111 feeder sections for
each query. This explains why it was crucial to speed up Algorithm B by a more efficient
feeder computation.

9.3 Computational Studies with Advanced Dominance

From now on, we will study the criteria travel time, number of interchanges, reliability
of interchanges (as introduced in Section 6.3) and ticket cost (using regular fares as
modeled in Section 6.2.2 only, no special offers) under the the concept of advanced Pareto
dominance.

The results from the preceeding two sections were based on relaxed Pareto dominance
due to the development stage of our algorithm at that time (cf. Section 5.4 on the history
of MOTIS). We have seen that both types of searches have neither issues with quality
nor with query times. The additional criteria can be modeled analogously in advanced
Pareto dominance and the incomparability of results can be exploited, as well. Basically,
advanced Pareto dominance removes unattractive solutions already during the search.

134 Chapter 9: Computational Study

Since it is faster (as we will see in the following sections), no runtime problems are to be
expected. Thus, we did not repeat all the experiments.

The preprocessing step of searching for connections obtaining a fixed price or the
certificate that no such connections exist takes about 100ms (cf. Section 9.1.3). This is
only a small part in a search lasting almost 2 seconds. However, employing advanced
Pareto dominance searches become much faster and this search would take up about
20% of the run-time. As the search respecting all criteria is much faster anyway, the
benefit of the preprocessing step diminishes. Recall that it was only used to deactivate
the search for fixed price connections. Consequently, it should be disabled in combination
with advanced Pareto dominance.

During the following computational studies we will compare these results with new
results on relaxed Pareto dominance. It will turn out that those match up quite nicely.

9.4 Computational Setup

9.4.1 Testing Environment

Hard- and Software
All experiments were run on 2 cores of an Intel Xeon 2.6 GHz with 4GB of RAM under
Ubuntu 8.04 in a Virtual Machine (VMWare ESXi 3.5.0). Our code was compiled with
gcc V.4.3 with compile option 02.

Search Graph
The search graph was already used in the previous chapter. It was constructed from
the schedule of the federal German railway company (Deutsche Bahn AG) for 2008. It
encompasses all German long distance and local trains. The key figures were presented
in Tables 8.1.

Test Set
We use 5,000 real customer queries taken from the requests to the internet portal of
Deutsche Bahn AG as available on http://www.bahn.de. Each of the queries has an
interval of 3 hours. In Figure 9.4 all the origin-destination pairs are drawn onto a map of
Germany. On the left hand side the source stations are red, while terminal stations are
blue. Stations serving both as source for one and terminal for another query are violet.
In the figure on the right hand side, the pairs are ordered by the starting minute of their
departure interval. We stacked them from 0:00 at the bottom to 23:59 at the top with a
color gradient from green for 0:00 to blue for 23:59.

9.4.2 Measures and Test Procedures

9.4.2.1 Performance Measurement

Runtimes heavily depend on the used machines and optimization of the code. Rather than
on runtime only, we want to concentrate on the number of created labels and extractions
from the priority queue, our significant operations. These are our key criteria to compare
the performance of different variants and parameterizations of our algorithm. As runtime
scales similarly to the numbers of created and extracted labels, the significant operations
are a good indicator for computational complexity and runtime. Therefore, we decided
to present the average numbers of created and extracted labels as well as the runtime
averages, whenever talking about performance.

http://www.bahn.de

9.4 Computational Setup 135

Figure 9.4: Origin-Destination Pairs for our 5,000 test queries. Origins are red, destina-
tions blue, stations that are both are violet (left) On the right the pairs are connected
and stacked from 0:00 (green, bottom) to 23:59 (blue, top).

For runtimes we took the average over 10 runs to control for variations due to back-
ground processes, IO etc. The algorithm is deterministic, so the numbers of all significant
operations do not vary between the individual runs. For our reference version (see be-
low) the runtime average of a single run was at most 1.77ms higher and at most 1.79ms
lower than the average of 412,14ms over all ten runs. This deviation of at most 0.43% in
any direction in case of runtimes is small enough to have high confidence in our runtime
statements.

9.4.2.2 Quality Measurement

Some of our speedup techniques are heuristics. Therefore, we need a measurement for
the quality of the computed sets of results. Instead of using some score based approach
for quality, we decided to measure the loss of quality in relation to other test runs (e.g.
heuristics turned on or off or different parameterizations).

When comparing the quality of two versions, say base (B) and heuristic (H), we look
at the set of calculated connections for each of the queries individually. To counteract the
effect of significantly different quality (e.g. a heuristic only determines connections domi-
nated by connections of (B)) and result sets of varying sizes (one result set is much larger
but contains many worse connections) we first take the union of the results determined by
(B) and (H). Afterwards, we apply filtering to the resulting set and remove duplicates.
As both versions may have computed results of different quality, this filtering may remove
results from the union. In most cases the applied rules for filtering are those relevant for
the reference version, unless stated otherwise. The number of surviving connections for
each version is the number of connections determined by that version remaining in the
filtered union. Note that connections determined by both versions are counted as sur-
vivors for both. The quality loss for this query of (H) is then defined as the difference
between the survivors of (H) minus the survivors of (B).

136 Chapter 9: Computational Study

Think of an example for bi-criteria search with travel time and number of interchanges
without relaxation. While (H) determined the results (100min, 3), (130min, 2), and
(145min, 1), version (B) delivers connections (100min, 3) and (125min, 1). The filtered
union of the results only contains the connections (125min, 1) and (100min, 3). Thus, (B)
has a quality loss of zero, since it found all optimal connections. Meanwhile (H) found
only one of the optimal connections (in the union). Consequently, it has a quality loss of
one. Note that the number of suboptimal connections is not important. If a version had
determined 10 connections that are not optimal (in the union) for the example above, it
would not loose 10 connections in quality. It would have a quality loss of two, as it did
not find any of the two optimal connections.

Summing up the quality loss over all queries gives us the total quality loss in connec-
tions. Normalized over the number of connections determined for all queries we get our
first quality criterion, the quality loss in connections (Qconn) in percent.

Two versions with nearly identical quality loss in connections may have totally different
distributions of the lost optima. One may have lost quality for one quarter of the queries,
whereas the other may have lost quality for each tenth query only. To cover the affected
queries we have a second quality criterion, the queries with worse quality (Qquery), i.e.
the number of queries for which (H) determined less survivors as (B), normalized over
the number of queries.

Whenever we want to compare the quality of two or more variants, we select one base
variant and determine the loss of quality in connections and queries in relation to that
variant. For ease of exposition we will talk about loosing x% of the optimal connections
or missing optimal connections for y% of the queries.

Assume we have 200 queries and found 800 connections. If variant (H) has a quality
loss in connections Qconn(H) = 10% and a Qquery(H) = 25% queries with worse quality,
it lost 80 optimal connections. These were distributed over 50 of the 200 queries.

9.4.2.3 Measurement of Speedups

Baseline Variant
A baseline implementation without speed-up techniques requires between 15 and 20 mil-
lion extractions from the priority queue and nearly 5 minutes of runtime per query. Our
10 reference runs for all 5,000 queries would take half a year to complete. We do not
deem the improvement compared to this version a fair measure of the speedup.

Reference Version
We want to measure the effect of each setting/heuristic in the whole setup. Hence, and
due to the unfair measure mentioned above, we will not take the baseline variant without
the speedup techniques and add either all techniques individually or one after another.
Instead we start with a fully optimized version without heuristics and only change the
parameters currently under investigation. So when testing lower bounds, for example, we
will disable the lower bounds for each of the four criteria separately and look in detail at
the effect of using different ways to obtain lower bounds on the number of interchanges
(from different graphs and with different options to the algorithm determining lower
bounds).

Our reference version uses the optimal setting among our parameters for lower bounds,
goal-direction and priority queue type and no heuristics at all, thus delivering optimal
quality at the best possible speed. Throughout this chapter, the base version will be
marked with a star (F) in all tables in which it appears.

9.5 Advanced Pareto Dominance 137

reli(AB)
i ai

time ai
ic ai

cost ai
sec Pareto relaxed

1 1 0 0 0 0 reltime(AB)
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0

Table 9.7: The coefficients ai
c and relaxation terms reli(A,B) in Formula 9.1 with k = 4

and r = 4 for rule sets Pareto dominance (P) and relaxed Pareto dominance (R).

9.5 Advanced Pareto Dominance

9.5.1 Pareto to Relaxed Pareto to Advanced Pareto

In this section, we will specify the applied versions of Pareto dominance, relaxed Pareto
dominance, and advanced Pareto dominance as introduced in Chapter 2.3.3. We look at
the following criteria ciA of a connection A:

• travel time (c1 = time),

• number of interchanges (c2 = ic),

• price (c3 = price), and

• reliability of interchanges (“security”i, cf. Section 6.3) (c4 = sec).

For ease of reference we restate our advanced Pareto formulation to compare two connec-
tions A and B with k criteria and r equations, 1 ≤ i ≤ r (recall that 4 stands for not
greater in all and smaller in at least one of the inequalities):

(i)
k∑

j=1

αi
cj

cjA + reli(A,B) 4
k∑

j=1

αi
cj

cjB (9.1)

Pareto Dominance (P) To formulate Pareto dominance in Formulation 9.1, we use
the parameters in Table 9.7 with k = 4 and r = 4. We have αi

cj
= 1 for i = j and αi

cj
= 0,

otherwise.

Relaxed Pareto Dominance (R) To relax the criterion travel time to have less in-
fluence between connections the larger their time difference at departure or arrival is, we
use the following function (cf. Section 2.3.1):

reltime(A,B) =
timeA

2 · timeB
·min{|dA − dB |, |aA − aB |, ω(A,B)} (9.2)

where aA, dA, aB , and dB are the arrival and departure times of connections A and B and

ω(A,B) =
{

0 if A overtakes B
100, 000 otherwise

iWe did not want to confuse the reader using rel for reliability and the relaxation functions, thus the
choice of sec for security.

138 Chapter 9: Computational Study

i ai
time ai

ic ai
cost ai

sec reli(AB)
1 1 0 0 0 reltime(AB)
2 δic 1 0 0 0
3 δcost 0 1 0 0
4 δsec 0 0 1 0

Table 9.8: The coefficients ai
c and relaxation terms reli(A,B) in Formula 9.1 with k = 4

and r = 4 for rule set advanced Pareto dominance (AW).

to void the relaxation if A overtakes B.
To obtain relaxed Pareto dominance in Formulation 9.1, we use the parameters in

Table 9.7 with k = 4 and r = 4. We have αi
cj

= 1 for i = j and αi
cj

= 0, otherwise.
Note that with the relaxation term reltime(A,B) = 0 the same parameters describe

classical Pareto dominance.

Advanced Pareto Dominance (AW) The wages W for advanced Pareto dominance
according to our standard profile are the following (see also Table 9.13):

ic one interchange is worth 30 minutes (δic = 30)

cost 4 Euros per hour (δcost = 15)

sec one additional minute per 1% reliability (δsec = −1)

Note that, as the last criterion is to be maximized, its cost is negative. Our rule set (AW)
for advanced Pareto dominance is similar to the rule set (I) in Section 2.3.3. Except
here the number of interchanges also has a wage δic associated with it (in the second
row), identical to the criteria price and reliability of interchanges. Set (AW) uses the
parameters in Table 9.8.

Final Version of Advanced Pareto Dominance (A) We want to find connections
almost achieving the hourly wages in multiple criteria, here criteria cost, number of inter-
changes, and reliability of interchanges, therfore we add a fifth (in)equality (analogously
to the discussion in Section 2.3.3). Thus, we have k = 4 and r = 5.

Additionally, the compensation for the difference in departure and arrival time might
depend on all criteria instead of just one criterion. To that end we will use the following

i ai
time ai

ic ai
cost ai

sec reli(AB)
1 1 0 0 0 0
2 0 1 0 0 0
3 δcost 0 1 0 0
4 δsec 0 0 1 0
5 1 δic δcost δsec rel5(AB)

Table 9.9: The coefficients ai
c and relaxation terms reli(A,B) in Formula 9.1 with k = 4

and r = 5 for rule set (A).

9.5 Advanced Pareto Dominance 139

relaxation function for a suitable γ > 0:

rel5(A,B) = γ ·
∑k

j=1 αi
cj

Acj∑k
j=1 αi

cj
Bcj

·min{|dA − dB |, |aA − aB |, ω(A,B)} (9.3)

This function is placed in the fifth equation and replaces the relaxation reltime(A,B)
previously in the first equation.

Our rule set (A) for advanced Pareto dominance (similar to rule set (III) in Sec-
tion 2.3.3) uses the parameters in Table 9.9.

We will use rule set (A) as our base version and fall back on rule set (AW) only for
a special consideration. Namely, when comparing different sets of wages as previewed in
Section 2.4, as we want the relaxation in the first criterion only for that purpose.

9.5.2 Tests with Dominance

In this section, we will test the influence of the different definitions of dominance. We will
look at the combination of criteria, and of some of the rows in rule set (A). Additionally,
we will examine different wage sets applying rule set (AW) for our standard customer, a
businessman or a handicapped person traveling in a wheelchair.

9.5.2.1 Pareto Vs. Relaxed Pareto Vs. Advanced Pareto

We compared the profiles Pareto (P), relaxed Pareto (R), and advanced Pareto (A) (see
Table 9.10). Relaxing the criterion travel time from (P) to (R) increases the runtime by
15% and the number of all significant operations by nearly 9% and results in 50% more
connections. As expected, advanced Pareto is much faster, it requires only one sixth or
seventh of the runtime, respectively. Besides, it determines less connections. The other
profiles calculate 4 (relaxed Pareto) or nearly 3 (Pareto) times as many optima in the
end, but filtered according to advanced Pareto dominance, advanced is (of course) the
best. The quality for (R) is only worse in 13.5% of the queries, whereas (P) is worse in
72.12%.

Since (P) disregards alternatives created by the relaxations, its poor quality was to
be excepted. The fifth equation protects connections that achieve desired wages if we
combine more than one criterion and thus creates new optima. This and the differences
between the relaxations in (R) and (A) explain the discrepancies between those two
versions.

Optima Runtime PQ extracts Labels created
Profile avg avg ratio avg ratio avg ratio

in ms in % in % in %

Pareto 22.48 2,466.08 100.00 192,178 100.00 305,426 100.00
relaxed 33.57 2,857.06 115.85 209,140 108.83 331,947 108.68

Fadvanced 8.45 412.14 16.71 57,926 30.14 90,921 29.77

Table 9.10: The influence of using profiles Pareto (P), relaxed Pareto (R), or advanced
Pareto (A) for dominance testing. Runtime, number of significant operations and the
average number of solutions.

140 Chapter 9: Computational Study

Criteria Optima Runtime PQ extracts Labels created
time price rel ic avg avg ratio avg ratio avg ratio

in ms in % in k in % in k in %

1F √ √ √ √
8.45 412.1 100.0 57.93 100.0 90.92 100.0

2
√ √ √

8.20 507.3 123.1 72.33 124.9 106.14 116.7
3

√ √ √
6.49 219.8 53.3 34.87 60.2 54.74 60.2

4
√ √

5.07 143.9 34.9 28.47 49.2 42.35 46.6
5

√ √ √
4.67 121.6 29.5 20.61 35.6 33.15 36.5

6
√ √

4.39 138.4 33.6 25.73 44.4 39.66 43.6
7

√ √
3.82 71.4 17.3 11.01 19.0 17.72 19.5

8
√

3.11 71.6 17.4 11.04 19.1 18.17 20.0

Table 9.11: The influence of toggling the criteria ticket cost (price), reliability (rel), and
number of interchanges (ic). Runtime, number of significant operations, and the average
number of solutions.

9.5.2.2 Influence of the Criteria

In this section we want to measure the share of computational complexity of each of the
criteria. To this end we either activated or deactivated the criteria price, reliability of
interchanges and number of interchanges (see Table 9.11). Of course, it is not reasonable
to deactivate criterion travel time. We observe that the number of advanced Pareto
optima decreases as we deactivate criteria.

Number of interchanges ic
Toggling the criterion ic only (odd rows and their subsequent rows), the number of optima
is less affected, than toggling any other of the criteria. The biggest difference is together
with time and price (from #3 to #4), where we get 1.42 optima less without interchanges,
in all other combinations the difference is only 0.71, 0.28, or 0.25 optima.

Interestingly, time and price is the only combination, where enabling ic increases the
runtime (by about 55%), for all other combinations the additional criterion ic speeds up
the search. This is due to the fact that travel time and reliability of interchanges are
correlated with the number of interchanges, whereas the price is not.

Additionally, ic is severely limited to a range of usually no more than 2 to 5 different
values for the optimal results to a given query. There are no queries for which one optimal
connection is a direct one and another one has 7 interchanges.

Reliability of interchanges rel and ticket cost price
The combinations time+price (#4) and time+rel (#6) have nearly identical runtime, so
price and rel appear to be equally complicated. However, disabling only rel (#3) in the
standard version speeds up the search by 46%, whereas disabling price (#5) nets us over
70% due to the correlation with ic that only rel exhibits.

There are not as many additional optima for rel (e.g. 0.85 from #7 to #5 or 1.96 from
#3 to #1) as for price (e.g. 2.67 from #7 to #3 or 3.78 from #5 to #1). However, some
of the latter originate again from the missing correlation with criterion ic, as seen above
(e.g. 1.42 additional optima from #4 to #3).

9.5 Advanced Pareto Dominance 141

9.5.2.3 Other Criteria

We introduced the search for special offers and the criterion sleeping time in night trains
in Chapter 6. Here, we want to answer the question: How does the performance in the
respective sections relate to that observed in this section? In Section 9.1 and Section 9.2,
we used relaxed Pareto dominance with three or four criteria, therefore the runtimes have
to be compared to our relaxed Pareto experiment (cf. Table 9.10 in the previous section).

Comparison to the Search for Special Offers In Section 6.2 we discussed the
search for special tariffs, discounts or fix prices. The tests were run using three real
criteria (time, number of interchanges, and price) and artificial ones (extendibility to a
connection eligible for a certain special offer). The results were presented in Section 9.1.
The approx. 170k priority queue extractions and a runtime of 1.7 seconds are about 80%
of the priority queue operations and 60% of the runtime of the relaxed Pareto reference
version with our four criteria.

Comparison to the Search for Night Trains The search for night trains introduces
a different fourth criterion in Section 6.4. The required runtime as observed in Section 9.2
was comparable, albeit slightly faster, as the criterion sleeping time is easier to handle
than the criterion reliability of interchanges. There are much less connections “protected”
during dominance due to their sleeping time, than there are differences in the reliability
score high enough to warrant considering more alternatives.

9.5.2.4 Influence of the “Rows”

In rule set (A) we have five rows (r = 5). Instead of measuring the impact of the criteria
as in the previous section, we now want to have a closer look at the influence of the
“rows” in advanced Pareto dominance. We give runtime and the numbers of significant
operations without row 5 (w/o 5), without rows 3+4 (w/o 3+4) and for rows 1 or 5 only
in Table 9.12. Note that we have to change to the relaxation term reltime instead of zero
in the first row, if row 5 with the relaxation term rel5 is disabled.

We observe that the variants w/o 5 and w/o 3+4 have a worse quality for about
half of the queries, but w/o 3+4 misses double the amount of optimal connections. Not
surprisingly after that observation, w/o 3+4 is also much faster.

Runtime PQ extracts Labels created Quality loss
Rows avg ratio avg ratio avg ratio conn query

in % in % in % in % in %

allF 413.53 100.0 57,926 100.0 90,921 100.0 - -
w/o 5 350.64 84.8 52,169 90.1 82,029 90.2 15.6 49.4
w/o 3+4 232.28 56.2 37,375 64.5 58,662 64.5 28.2 54.6
only 5 143.98 34.8 26,689 46.1 40,843 44.9 64.5 79.2
only 1 71.6 17.4 11,037 19.1 18,168 20.0 69.7 83.6

Table 9.12: The influence of the rows in advanced Pareto dominance (A). Runtime,
number of significant operations, the average number of solutions and quality loss in
connections (conn) and queries (query).

142 Chapter 9: Computational Study

Basic Business Handicapped
profile customer person

wage unit W B H
δic min / ic 30 10 120
δsec min / % -1 -0.5 -2
δcost min / e 15 2.4 15
δcost e / h 4 25 4

Table 9.13: Differing wages for our profiles standard (W), business customer (B) and
handicapped person (H) in advanced Pareto dominance (AW).

In variants only 1 and only 5 about two thirds of optimal connections are missing
and for for fifths of the queries we have worse quality. Both variants share similar scores
but found different connections. Optimizing the weighted sum in only 5 is about twice
as demanding as optimizing only the first row with travel time and the other relaxation
term.

9.5.2.5 Advanced Pareto Dominance with Different Wages

Next, we will examine different wage profiles for rule set (AW). Besides our standard
profile (W) we will look at profiles suited for a business customer (B) or a handicapped
person (H).

Profile Businessman We assume that the proposed wages W are suitable to find
attractive connections for most passengers. However, if we know more about a customer
in advance, say a businessman with a much higher priority on the travel time than on
anything else, we may raise the importance of time in our wages, for example changing
to the business customer profile B in Table 9.13. Now we will spend at most 10 minutes
to save one interchange instead of 30 minutes.

Using the advanced Pareto dominance profile (AW) with either of the two profiles and
filtering the resulting connections according to profile B, the quality of the result set is
identical. Of course, the result sets are not identical in the first place, but there is no
advanced Pareto optimal connection in one set that is not also present in the other with
respect to profile B. On the other hand, Whereas the runtime decreases significantly for
the business customer profile, as the search does not have to provide that many cheaper
or other alternatives (cf. Table 9.14). With the standard wage profile more than double
the runtime is required. A search with wage profile B is not more complicated than a two

Runtime PQ extracts Labels created
Profile avg ratio avg ratio avg ratio

in ms in % in % in %

business B 156.97 100.00 25,111 100.00 39,977 100.00
standard W 387.06 246.59 53,688 213.80 84,528 211.44

Table 9.14: Searching for connections for customer businessman using different wage
profiles and rule set (AW). Runtime and number of significant operations.

9.6 Goal-Direction and Domination by Terminal 143

Runtime PQ extracts Labels created Quality loss
Profile avg ratio avg ratio avg ratio conn query

in % in % in % in % in %

handicap H 473.62 100.00 61,346 100.00 97,141 100.00 - -
standard W 387.06 81.72 53,688 87.52 84,528 87.02 14.34 38.74

Table 9.15: Searching for connections for a handicapped customer using different wage
profiles and rule set (AW). Runtime, number of significant operations, and quality loss
in connections (conn) and queries (query).

criteria search, e.g. time+rel or time+price as seen in Section 9.5.2.2. With 4.95 optima
on average we are in a similar range as well.

Our approach does not have to be informed about the customer, it will always find the
best results for the customers. Additionally, as demonstrated, it may profit from advance
knowledge about the preferences of certain customers and disregard alternatives that are
not interesting for these anyway.

Profile Handicapped Although we are quite confident in our least common parameter
set, there might still be customers that are not optimally served with it. Think of elderly
people, a handicapped person in a wheelchair or a class of children on a school trip. These
customers might want to put greater emphasis on the number of interchanges and request
a higher reliability of interchanges in order to avoid the hassle of a missed connection. A
suitable set of parameters H is given in Table 9.13. Contrary to the business customer
whose wages (or more precisely their absolute values) were all smaller than in the standard
profile, we have increased the importance of two of the criteria. So we can no longer expect
to find all attractive alternatives for this group of costumers using our standard wages.

In Table 9.15 we see a comparison between the searches with wages W or H. The
runtime increases by about 20% for the more complicated wages. Instead of 7.7 optimal
results, there are 9.13 optimal results on average. Searching with standard wages we miss
one seventh of the optimal connections and produce worse results for nearly 40% of the
queries.

This quality drawback can be overcome by adding a special search mode to the user in-
terface. Standard wages are used for all standard queries, should a person in a wheelchair
query for a connection, the special search mode uses wage profile H. Note that a search
for a connection accommodating a person in a wheelchair might even restrict the search
to trains which are accessible in a wheelchair providing ramps or lifts at the stations.

9.6 Goal-Direction and Domination by Terminal

We have seen in Chapter 8 that a multi-criteria Dijkstra may profit from two fundamental
speedup techniques, namely goal-direction (goal) and domination by labels at the terminal.
The latter was tested either without (domTerm) or with lower bounds (domTerm LB).

In this section, we use realistic assumptions on journeys through Germany to be able
to obtain reasonable runtime and numbers of significant operations without those essential
techniques. These assumptions are:

144 Chapter 9: Computational Study

Runtime PQ extracts Created Dominated
Strategy avg ratio until 1st avg ratio avg ratio node term

in ms in % in k in k in % in k in % in k in k

none 14,532 100.0 221.4 1,160 100 1,603 100 419 -
goal 11,643 80.1 9.8 1,002 86 1,484 93 474 -
domTerm 6,720 46.2 221.4 753 65 764 48 306 82.7
domTerm LB 2,620 18.0 246.2 290 25 431 27 117 24.1
bothF 412 2.8 7.3 58 5 91 6 22 11.1

Table 9.16: The influence of the strategies goal-direction (goal) and domination by termi-
nal (domTerm). Runtime, number of significant operations, extractions from the priority
queue before the first connection was found and number of labels dominated at the node
level (node) and by terminal labels (term).

• No journey is longer than 36 hours.ii

• And no journey has more than 10 interchanges.

Additionally, once a first connection C1 with travel time time1 is found during search, we
set the maximum allowed travel time to the minimum of 2 · time1 + 100 minutes and 36
hours. Every partial connection exceeding these bounds (or guaranteed to exceed these
bounds, since its current value plus lower bound exceeds them) is dropped and no longer
regarded. Without those assumptions we reach query times of several minutes, as already
mentioned for our baseline variant in Section 9.4.2.3. Note that these assumptions are
not necessary during regular searches, we only use them to demonstrate the effects in this
section.

Toggling Goal-Direction and Domination by Terminal Enabling none or only
one of the techniques has a tremendous effect, as depicted in Table 9.16. We limited the
processing time to 60s, which was not necessary for our standard algorithm using both
strategies. But without domination by labels at the terminal the search was stopped 196
(none) and 68 (goal) times, respectively. Except in the stopped runs, where no or less
results were produced, the quality was identical.

Of the created labels 24% (both), 26% (domTerm), 27% (domTerm LB), and 32%
(none) were dominated on the node level. After about 220,000 extractions from the
priority queue on average the first solution was found without goal. With it, less than
10,000 extractions were required. Although producing the first result faster, strategy goal
only marginally improved the runtime. This improvement is based on more dominations
on the node level due to the better creation sequence of labels with goal-direction. 7%
(domTerm) or 6% (domTerm LB) of the created labels were dominated by labels at the
terminal, combined with goal even 12% were dominated, as the first results for domination
were found much earlier.

While domTerm alone improved the search speed by a factor of two, using lower
bounds for this technique (domTerm LB) results in another factor of 2.5. Together with
goal-direction, runtime decreases further to below one sixth.

These two fundamental techniques are an essential step to making multi-criteria search
possible in online-scenarios, as they speed up the search by a factor of 35, from way over
ten seconds to less than a second.

iiThe bound of 36 hours is also used for Dial’s data structure.

9.7 Lower Bounds 145

9.7 Lower Bounds

In this section, we will investigate the effectiveness of lower bounds. We will look in
detail at the different station graphs and interchange graphs to determine lower bounds
on travel time, number of interchanges, ticket cost and reliability of interchanges. These
lower bounds are used for goal-direction (cf. Section 8.3) and domination by terminal (cf.
Section 8.4), as well as for pruning the search space (cf. Section 8.5.5). We have already
seen, in the previous section, that the first two techniques are essential for multi-criteria
search. Goal-direction is impossible without lower bounds and domination by terminal
with lower bounds is much more efficient than without them.

9.7.1 Station Graphs

Lower bounds on the travel time can be determined from the different kinds of station
graphs as introduced in Section 8.5.1. The algorithm to obtain these bounds can either
be single direction or bidirectional (B) without or with (T) triangle inequalities (cf. Sec-
tion 8.5.5). A pruning step (P) using biconnected components (cf. Section 8.5.5 also) may
be used additionally. Results for the test-runs can be found in Table 9.17.

Using the different station graphs, we have nearly identical runtimes. The bigger
graphs need longer for the preprocessing but result in better lower bounds, thus reducing
the number of significant operations. Since stations are represented by more than one
node in all but the standard station graph, obtaining pruning information and lower
bounds during the search from the extended station graphs is also more costly than on
the standard graph, not only the calculation time for the lower bounds. The bidirectional
algorithm in itself only yields an average decrease of 3 or 4 operations and quite naturally
slightly more than doubles the processing time on the station graph. Thus, runtime even
increases. Combined with triangle inequalities the overall saving improves to about 3%.
The biconnected components pruning contained in the runtime of the station graphs takes
about 8.2ms on the standard graph. There, it enhances the saving to about 10%.

Pruning takes 10.7ms on the fourhours graph. We get the lowest number of signifi-
cant operations for using a bidirectional Dijkstra algorithm with triangle inequalities and

SG Prepro- Runtime PQ extracts Labels created
type options cessing avg ratio avg ratio avg ratio

in ms in ms in % in % in %

standard - 3.6 710.61 100.00 92,860 100.00 149,225 100.00
sixhours - 18.6 708.63 99.72 90,423 97.38 145,442 97.46
rushhours - 18.7 707.82 99.61 90,172 97.11 145,085 97.23
fourhours - 27.1 725.27 102.06 89,212 96.07 143,736 96.32
standard B 7.8 715.53 100.69 92,857 100.00 149,221 100.00
standard BT 7.8 690.73 97.20 90,909 97.90 144,416 96.78
standard BTP 16.0 638.32 89.83 84,742 91.26 134,479 90.12
fourhours BTP 68.6 707.74 99.60 83,000 89.38 134,005 89.80

Options: B = bidirectional Dijkstra / T = triangle inequalities / P = biconnected comp. pruning

Table 9.17: The influence of lower bounds from the station graph. Runtime, number of
significant operations, and preprocessing time on the station graph (SG).

146 Chapter 9: Computational Study

Disabled Runtime PQ extracts Labels created
lower bound avg ratio avg ratio avg ratio

in ms in % in % in %

noneF 412.14 100.00 57,926 100.00 90,921 100.00
ic reliability 416.69 101.10 59,185 102.17 92,989 102.27
ticket cost 1,627.05 394.78 199,291 344.04 307,418 338.12

Table 9.18: The influence of lower bounds on the reliability of interchanges obtained from
the interchange graph and on ticket cost obtained form the cost graph. Runtime and
number of significant operations.

biconnected components pruning on that station graph. However, this is not enough to
compensate for the 52.6ms increase in preprocessing time over the same calculation on
the standard graph.

Ticket Cost For the minimal investment of 3.6ms additional preprocessing time on
the station graph for ticket cost we determine lower bounds on ticket costs as well (see
Section 8.5.1). These bounds save nearly three quarters of the runtime, over 1.2 seconds
(see Table 9.18). This reward is so high because ticket cost depends on the travel distance
and used train classes and is not related to travel time.

However, we do not intend to apply pruning based on the ticket cost alone. Conse-
quently, we did not test any extended version of obtaining lower bounds on the ticket cost
(e.g. bidirectional search on the ticket cost graph).

9.7.2 Interchange Graph

We used the different versions of our interchange graph (presented in Section 8.5.2) to
obtain lower bounds on the number of interchanges. The preprocessing on the inter-
change graph with unified routes is nearly 50% faster than on the standard graph derived

SG ICG Prepro- Runtime PQ extracts Labels created
type options cessing avg ratio avg ratio avg ratio

in ms in ms in % in k in % in k in %

std none 638.3 100.0 84.7 100.00 134.5 100.00
std std 57.4 462.3 72.4 57.9 68.37 90.9 67.63
std uni 29.6 432.4 67.7 57.9 68.37 90.9 67.63
4hrs uni 29.6 493.6 77.3 56.5 66.70 89.3 66.37
stdF uni U 9.6 412.1 64.6 57.9 68.36 90.9 67.61
std uni BT 63.5 467.9 73.3 56.8 66.97 89.3 66.41
std uni UBT 22.8 423.1 66.3 56.7 66.97 89.3 66.41

Options: B = bidirectional Dijkstra / T = triangle inequalities / U = using pruning information

Table 9.19: The influence of lower bounds from the interchange graph. Runtime, number
of significant operations, and preprocessing time on the interchange station graph (ICG).

9.7 Lower Bounds 147

Figure 9.5: Search space without (left) and with lower bounds from the interchange graph
(right) for a search from Hebertshausen (cyan) to Büsum (red).

from train routes (interestingly the graph has only 30% less nodes and 40% less edges).
As on both graphs the same bounds are calculated, their runtime difference is exactly
the difference in the preprocessing. Combined with the better lower bounds from the
fourhours station graph the additional 50ms of preprocessing for the lower bounds on
travel time result in too small an improvement on the number of significant operations
to be worthwhile, very similar to the results in the preceeding section for the expanded
station graph.

Figure 9.5 illustrates the reduction in search space when using lower bounds obtained
from the interchange graph. We see that the search visits fewer stations and branches
less. This feature is most prominent near the conurbations Berlin and Köln.

Speeding Up Searches on the Interchange Graph Using Pruning Information
Even the unified interchange graph is about 8 times as big as our station graph, with 8.8k
nodes and 22.5k edges in the station graph compared to 75k nodes and 169k edges in
the interchange graph using unified routes, cf. Table 8.3 in Section 8.5.2. Consequently,
preprocessing is about 7 times slower (3.6ms and 29.6ms). To improve the runtimes on this
graph, we may exploit the results obtained from the preceeding lower bound computation
on the station graph. All stations that are pruned in the station graph will not be visited
during the search. Therefore, we restrict the computation on the interchange graph to the
stations that were not pruned. This technique improves the runtime from 29.6ms to 9.6ms.
For the bidirected version runtime could be improved from 63.5ms to 22.8ms. In both
cases we are about two thirds faster. The bidirectional interchange graph Dijkstra only
saves less than 2% operations, not enough to compensate for the increased preprocessing
time.

The best variant spends only 9.6ms preprocessing time on determining lower bounds
from the interchange graph and improves the runtime by one third.

Bounds on the Reliability of Interchanges The lower bound on the number of
interchanges can be used to obtain an upper bound on the reliability of interchanges.

148 Chapter 9: Computational Study

The upper bound of µic for the highest reliability factor µ of one interchange and a lower
bound on the number of interchanges to the target ic seemed not really tight (cf. the end
of Section 8.5.2). Unfortunately our suspicion was justified, we save only 2% of significant
operations and 1% runtime (see Table 9.18). We use the bound nonetheless, as we need
the number of interchanges as a lower bound anyway and get this tiny improvement for
free.

9.7.3 Summary Lower Bounds

Lower bounds on travel time are essential for the algorithm as they enable goal-direction
The best performance is the result of using a bidirectional station graph Dijkstra with
triangle inequalities and biconnected component pruning on a standard station graph for
lower bounds on travel time (in about 16ms) The easy to calculate lower bounds on ticket
cost (below 4ms) have a high impact (reducing search time by three quarters). Using the
information obtained from the station graph for travel time, lower bounds on the number
of interchanges to the target can be calculated in less than 10ms on the interchange graph
obtained from unified routes. We get the lower bounds on the interchange reliability for
free from the lower bounds on the number of interchanges to the terminal.

The influence of the lower bounds on travel time and interchanges in comparison to
the most basic version using lower bounds on the travel time from the standard station
graph without bidirectional Dijkstra and pruning in the preprocessing can be found in
the Appendix in Table B.1.

In summary, all our lower bounds can be calculated in about 30ms. The bounds for
travel time and number of interchanges to the terminal are used in goal-direction (as we
will see in Section 9.8.2) and lower bounds for all our criteria improve the technique to
dominate labels by labels at the terminal. These decrease the average search speed from
about 15 seconds (run without both of these techniques in Table 9.16) to less than 0.5
seconds.

9.8 Priority Queue

In this section we will investigate the items introduced in Section 8.8, namely different
priority queue types and variants of the “smaller”- relation. Recall the smaller relation
from Section 8.8.1:

smaller(A,B) : timeA + θ · lbtime(SA) + γ · icA < timeB + θ · lbtime(SB) + γ · icB .

Additionally, we will look at techniques reducing the number of labels in the priority
queues.

9.8.1 Priority Queue Type and “Smaller”-Relation

We have already seen the effects of foregoing goal-direction (as for θ = 0) cf. Table 9.16.
Consequently, we will test the four priority queue types with θ = 1 and γ = 20 with and
without using the FIFO principle to break ties. The results can be seen in Table 9.20.

All queues with the FIFO property have the same number of significant operations
since the order in which labels are processed is identical. The 4–heap requires a quarter
more runtime whereas the binary and pairing heaps take over a third longer.

Without FIFO property for breaking ties, for heap data structures the details of the
restructuring methods determines the evaluation order of the labels regarded as identical

9.8 Priority Queue 149

PQ FIFO Tie- Runtime PQ extracts Labels created
type breaking avg ratio avg ratio avg ratio

in ms in % in % in %

dial F √
412.14 100.00

57,926 100.00 90,921 100.00heap
binary

√
560.59 136.02

4–heap
√

526.15 127.66
pairing

√
575.06 139.53

heap
binary 487.75 118.35 55,555 95.91 88,841 97.71
4–heap 457.17 110.93 55,469 95.76 88,723 97.58
pairing 527.20 127.92 55,583 95.95 89,042 97.93
4–heap lexi 538.28 130.61 66,876 115.45 100,177 110.18

Table 9.20: The influence of different priority queue types. The heaps were tested with and
without FIFO tie-breaking. Additionally the 4–heap with lexicographic smaller relation
for comparisons. Runtime and number of significant operations.

for the smaller relation. Although this ordering saves nearly 5% of the extract operations
and over 2% of the number of created labels, it does not suffice to make the heaps
competitive. The fastest heap (4–heap) still is 10% slower than Dial’s data structure.
Interestingly, perturbing labels with the same value(·) in Dial’s data structure did not
improve the number of significant operations.

Lexicographic Lexicographic ordering seems to be a worse choice than the variants
using travel time plus weighted number of interchanges as the sorting criterion. Com-
paring lexicographic ordering for the 4–heap with the runtime for the same heap with
or without FIFO property, we observe a significant increase in the number of significant
operations, over 10% in created labels and 15% to 20% in priority queue operations. The
runtime is about 18% worse than without FIFO.

Due to this poorer performance we did not consider lexicographic ordering for Dial’s
data structure. Note that the adaption of lexicographic ordering to a value function would
require the value to be something like

value(A) = (((timeA · 11 + icA) · 101) + secA) · 201 + costA

for the reasonable upper bounds of at most 10 interchanges, 100% reliability and no
more than 200e ticket cost. So for travel times of no more than two days, a number of
2880 · 11 · 101 · 201 ≈ 640 million buckets would be required.

Without goal-direction the performance of lexicographic ordering and weighted sum
is nearly identical with a slightly lower number of significant operations and 2,588ms on
average for lexicographic compared to 2,620ms for our standard smaller relation.

9.8.2 Weight for Interchanges in Goal-Direction

For the best priority queue (Dial’s data structure) we tested different values for the weight
of the number of interchanges (γ ∈ {0, 5, 10, 20, 30, 50, 300}). We either used the number
of interchanges accumulated so far or this number plus a lower bound on the number
of interchanges to the terminal. The resulting runtime and the number of significant
operations are given in Table 9.21. First of all we can see that using goal-direction for

150 Chapter 9: Computational Study

Interchanges Runtime PQ extracts Labels created
wage goal- avg ratio avg ratio avg ratio

direction in ms in % in % in %

0 479.14 100.00 69,303 100.00 102,147 100.00

5 425.78 88.86 60,921 87.90 94,977 92.98√
422.66 88.21 59,576 85.96 93,113 91.16

10 419.15 87.48 60,723 87.62 94,893 92.90√
416.95 87.02 58,582 84.53 91,854 89.92

20 419.25 87.50 61,116 88.19 95,539 93.53√F 412.14 86.01 57,926 83.58 90,921 89.01

30 429.92 89.73 62,040 89.52 96,897 94.86√
421.12 87.89 58,202 83.98 91,211 89.29

50 439.13 91.65 64,408 92.94 100,300 98.19√
428.55 89.44 59,007 85.14 92,039 90.10

300 511.67 106.79 80,907 116.74 123,275 120.68√
459.46 95.89 63,112 91.07 96,763 94.73

Table 9.21: The influence of different weights for the number of interchanges in the smaller
relation with and without using goal-direction for interchanges as well.

the number of interchanges as well always improves the search speed. The wage of choice
seems to be γ = 20. It achieves the lowest number of labels created and extracted and
likewise the fastest search times. We save about 14% of the processing time with this
choice of γ.

If we choose the real large value γ = 300 we are essentially using the number of inter-
changes as our most important criterion in goal-direction and travel time as a secondary
criterion. However, this alone does not seem to be a good move.

9.8.3 Reordering the Priority Queue

The strategy to reorder the priority queue once the first optimal connection is found was
presented in Section 8.8.3. We start using goal-direction according to the criterion travel
time using the weight γ = 20 as determined in the previous section. As soon as the first
(and fastest) connection is found, we change the ordering in the priority queue. For the
remainder of the search we use γ = 300, making the number of interchanges the dominant
criterion and travel time the secondary one. In Table 9.22 we see the resulting runtimes
and the number of significant operations in comparison to the variants using either γ = 20
or γ = 300 throughout the whole search.

Naturally, the standard version and reorder find the first and fastest solution at the
same time. When the first solution is found, about 19,000 labels are stored in the priority
queue. These have to be reordered according to the new sorting criterion. The second
result in reorder is obtained earlier than in the standard version. Remember that these
results are not identical, reorder determines the results with the least number of inter-
changes as result number two. In comparison the version using goal-direction according
to the number of interchanges from the beginning, finds its first (and second) connection
much earlier. In spite of that the total runtime is higher. Even with the additional cost
for reordering, variant reorder achieves a runtime between the two. Unfortunately, goal-

9.8 Priority Queue 151

Weight for Runtime PQ extracts Labels created
interchanges avg ratio 1st 2nd avg ratio avg ratio

γ in ms in % in % in %

20F 412.14 100.00 7,284 9,772 57,926 100.00 90,921 100.00
20 7→ 300 448.78 108.89 7,284 8,738 61,283 105.80 94,733 104.19

300 459.46 111.48 3,081 5,070 63,112 108.95 96,763 106.43

Table 9.22: Strategy reordering the priority queue compared to the versions with the
initial and final weight for interchanges. Runtime and number of significant operations
in total and until the first and second optimal connection were found.

direction according to the number of interchanges, either completely or after reordering
does not pay off, as the number of significant operations, as well as runtime, is worse than
that of the standard version.

9.8.4 Decreasing the Number of Labels in the PQ

In this section we will study the techniques to skip departure nodes (skip) presented in
Section 8.6.2, bypass departure nodes (bypass) from Section 8.6.3 and avoid inserting min-
imum labels (avoid) introduced in Section 8.8.4. Runtime and the number of significant
operations can be found in Table 9.23.

Techniques skip and bypass Both do not enter departure nodes into the priority
queue, therefore they have nearly identical numbers of extract operations. However, the
labels are still created in skip. Even around 4% more are created as the sequence of labels
is different from the extraction sequence in the standard version. Once skip decides to
take a train, its departure event is processed immediately after the entering edge. Since
the departure has one interchange more, in the standard version another label might be
processed in between.

Bypass only saves 10% of the runtime although saving roughly 30% of the extractions
and 18.5% of the label creations. This is due to the fact, that the combined edge types
are harder to evaluate than e.g. a stay-in-train edge. It is simply always available and no
checks have to be performed and only the travel time and nothing else of the new label
has to be updated. Consequently, the average work per label creation or edge inspection
increases.

Labels Runtime PQ extracts created
Strategy not inserted avg ratio avg ratio avg ratio

avg in % in ms in % in % in %

noneF - 0.00 412.14 100.00 57,926 100.00 90,921 100.00
skip 21,052 36.34 434.37 105.39 40,304 69.58 94,633 104.08
bypass - 0.00 370.71 89.95 40,624 70.13 74,057 81.45
avoid 8,952 15.45 410.14 99.52 49,054 84.68 91,106 100.20

Table 9.23: The influence of techniques: skip departure nodes, bypass departure nodes
and avoid inserting minimum labels. Runtime, number of significant operations, and the
number of labels that were not inserted into the priority queue.

152 Chapter 9: Computational Study

Technique avoid Avoiding about 15% of the operations on the priority queue does
not result in reduced computation time. This is due to the additional comparisons and
the fact that using a FIFO queue for the labels that are equal or better than the current
minimum in the queue is not much different from (and thus not faster than) determining
and using the right FIFO queue in an array of FIFO queues in Dial’s data structure.

9.9 Reliability of Interchanges

The required effort to search for more reliable connections has been investigated together
with toggling the criteria number of interchanges and ticket cost in Section 9.5.2.2. In
this section we will look at the influence of different numbers of equivalence classes for the
criterion (as introduced in Section 6.3.3) and of setting the maximal effective reliability
for a single interchange to values between 90% and 99%.

9.9.1 Number of Equivalence Classes

We discretized the float for reliability of interchanges to differing numbers of equivalence
classes (10, 25, 50, 100, 500, and 1000), see Table 9.24 for results. The quality was
compared to the version with 1,000 equivalence classes. For reference we also inserted a
version without reliability as an advanced Pareto criterion (cf. Section 9.5.2.2).

Enabling quality (with 10 classes) gives as the biggest improvement in quality as well
as the highest runtime increase. More classes lead to a higher number of significant
operations and longer runtime. Quality also increases monotonically. Note that the
decrease in the number of significant operations is all but exactly the same for priority
queue extractions and label creations.

We loose optimal connections in additional 10% of the queries when changing from 100
to 50 to 25 to 10 classes. However, setting the number of classes to 500 or even 1,000 is
costly but does hardly pay off in quality. On the one hand, the runtime improvement from
100 to 50 classes is small and quality drops significantly. Increasing above 100 classes,
on the other hand, is not worthwhile at all, quality improves only slightly, yet runtime
increases by over 20ms. Thus, we decided eventually to go with the natural choice of 100
equivalence classes for the criterion,

Equivalence Runtime PQ extracts Labels created Quality loss
classes avg ratio avg ratio avg ratio conn query

in ms in % in % in % in % in %

1,000 433.10 100.00 59,272 100.00 93,071 100.00 - -
500 432.84 99.94 59,173 99.83 92,914 99.83 0.04 0.26
100F 412.14 95.16 57,926 97.73 90,937 97.71 0.33 1.86
50 408.37 94.29 57,003 96.17 89,565 96.23 1.78 9.16
25 400.32 92.43 55,439 93.53 87,300 93.80 4.09 18.18
10 353.25 81.56 50,632 85.42 80,035 85.99 8.13 28.46

- 219.83 50.76 34,873 58.84 54,744 58.82 28.93 60.04

Table 9.24: The number of equivalence classes for the criterion reliability of interchanges.
Runtime, number of significant operations, the average number of solutions and quality
loss in connections (conn) and queries (query).

9.10 Heuristics 153

Maximal Runtime PQ extracts Labels created
reliability avg ratio avg ratio avg ratio

µ̂ in % in ms in % in % in %

90 334.90 81.26 48,756 84.17 76,415 84.05
91 343.65 83.38 50,054 86.41 78,542 86.38
92 359.40 87.20 51,183 88.36 80,340 88.36
93 370.63 89.93 52,894 91.31 83,014 91.30
94 383.34 93.01 54,192 93.55 85,036 93.53
95 395.21 95.89 55,648 96.07 87,369 96.09
96F 412.14 100.00 57,926 100.00 90,921 100.00
97 449.61 109.09 60,763 104.90 95,577 105.12
98 483.28 117.26 64,014 110.51 100,840 110.91
99 556.01 134.91 69,501 119.98 110,100 121.09

Table 9.25: Varying the maximal effective reliability µ̂ for an interchange. Runtime and
number of significant operations compared to the standard version with µ̂ = 96%.

9.9.2 Maximal Effective Reliability

Recall the definition of the maximal effective reliability µ̂ and the truncated reliability
function sec′(·) in Section 6.3.3.2. We tested the values µ̂ ∈ [90%, 99%] and compared to
µ̂ = 96% as the reference version (see Table 9.25). As the quality measurement depends
on the definition of reliability of interchanges, it does not make sense to compare the
quality of test runs based on differing definitions, therefore we restrict this comparison to
runtime and the number of significant operations.

For the step size of 1% of µ̂ we observe the following increases in the number of
significant operations and runtime. The increase in the number of significant operations
for µ̂ ∈ [90%, 95%] is between 2% and 3% runtime increases between 2% and 4%. From
µ̂ = 95% to µ̂ = 96% the number of significant operations and runtime increase by 4%,
between µ̂ = 96% and µ̂ = 98% the number of significant operations increases by ca.
5% and runtime by 9%. The final step towards µ̂ = 99% costs nearly 10% significant
operations and 17% more runtime.

The higher increase in both significant operations and runtime for the later steps is due
to the increasing differences between θ(µ̂+1%)−θ(µ̂) for bigger µ̂. As already mentioned
when introducing µ̂, this increase is 1 to 2 minutes from 90% to to 96% and as much as
3,6, or even 15 minutes in the following steps. In the test, whether label a is dominated
by label b, we always use the maximal effective reliability for the last interchange of a.
Selecting higher µ̂ more connections are “protected” from dominance due to a still possible
improvement in their reliability rating. As the aforementioned differences in θ(µ̂) grow,
so do the number of protected alternatives and, thus, the increases in runtime and the
number of significant operations.

9.10 Heuristics

In this section we will evaluate the following heuristics: bitonic search, mass transporta-
tion, routes blocking, important stations, the insertion of shortcuts into the graph, and
various combinations. Each of these techniques may fail to find all optimal connections,
therefore we will present the quality loss in all remaining tables.

154 Chapter 9: Computational Study

9.10.1 Bitonic Search

The results for the heuristic bitonic search (introduced in Section 8.10) are shown in
Table 9.26. Of more than 40,000 connections found in the standard version, only 2% are
not bitonic, e.g. use the products ICE, IC, RE, IC or ICE, IC, ICE in that order. Exactly
the same number of optimal connections are lost. Interestingly they are distrubuted over
nearly 400 queries, therefore the quality loss in queries is 7.8%. The bitonic heuristic
actually finds alternatives for the forbidden non-bitonic connections, but these are worse
than the bitonic connections. The search for these alternatives even results in a tiny bit
more operations (around 0.2%) and, together with the (albeit quick) bookkeeping and
testing for the bitonic property, this heuristic is 0.5% slower.

The positive result is that most optimal connections are indeed bitonic and missing
the non-bitonic ones might be acceptable. So instead of a speed-up we gained a structural
insight that may prove useful for the future. Should bidirectional search for multi-criteria-
optimization become a feasible option, bitonic search might improve the approach.

9.10.2 Mass Transportation

The heuristic prohibiting leaving means of mass transportation at a station under certain
conditions (cf. Section 8.9.1) produces the results in Table 9.26. The variants based on
the number of interchanges in mass transportation to this station (ic) is by far the fastest
as it rejects the most exits of all variants. Unfortunately its quality is really bad. If the
decision is based on the travel time (time) we still save nearly one third of the runtime
but we still loose quality for more than a third of the queries.

Using advanced Pareto dominance (advP) is by far the best variant of this heuristic,
although still lacking optimal connections for one seventh of the queries. The additional
test for advanced Pareto dominance, for which label lists at the stations have to be
maintained, is quite costly. Despite saving about 30% of label creations and 20% of the
operations on the priority queue, the runtime improvement stays below 10%.
Experienced quality loss. For example, in a connection ICE, mass transportation, IC the
alternatives using different subways in the half hour available for traveling from the arrival
station of the ICE to the departure station of the IC, usually do not create interesting
alternatives. Provided the alternatives of using mass transportation do not differ in
travel time (for time) or the number of interchanges (for ic) between two stations, the
first possibility to arrive at a station using mass transportation will always dominate all

Heuristic Runtime PQ extracts Labels created Quality loss
type variant avg ratio avg ratio avg ratio conn query

in ms in % in % in % in % in %

noneF - 412.1 100.0 57,926 100.0 90,921 100.0 - -
bitonic - 414.1 100.5 58,050 100.2 91,059 100.2 2.1 7.8
mass ic 190.8 46.3 26,436 45.6 36,261 39.9 40.1 63.8
mass time 278.4 67.5 38,610 66.7 54,434 59.9 14.0 35.0
mass advP 378.6 91.9 45,479 78.5 65,122 71.6 3.5 14.2

Table 9.26: Heuristics bitonic search (bitonic) and mass transportation (mass) in its
variants. Runtime, number of significant operations, and quality loss in connections
(conn) and queries (query).

9.10 Heuristics 155

later arrivals with mass transportation from the same previous non mass transportation
edge/label except in advP. But only as long as interchange reliability is not an issue,
this is correct. However, if we consider interchange reliability, taking a later subway may
result in less buffer time at the departure station of the second train therefore a balanced
distribution of buffer times maximizes the interchange reliability in the example from
above. The reliability of interchanges is only covered by variant advP, hence that variant
attains the best quality.

9.10.3 Routes Blocking

Table 9.27 shows the data for the heuristic disallowing the use of trains that belong
to routes already used. The variants maintain lists of allowed routes for the individual
stations (station), for each of the train edges arriving at a station (edge), or for distinct
arrival labels at a station (label) as introduced in Section 8.9.2.

Variant station misses optimal connections for twice as many queries as edge. The
station variant looses half of the optimal connections, edge only one sixth. The only
variant with acceptable quality is label with less than 1% lost optimal connections and
only 3.5% negatively affected queries. The variants station and edge save ca. 70% or
30% of runtime and the number of significant operations, respectively. Although label
decreases the number of significant operations by over 15%, its speed-up is less than 4%.

Intended only as a reference model, the poor quality of station is not surprising at
all. It is totally unaware of the way used to a station and allows each leaving route to be
used only once. Both the interval instead of a single starting point and the multi-criteria
approach do not harmonize with the simple idea behind this heuristic in its basic version.

Variant edge disregards the exact characteristics of reaching a station and only dis-
tinguishes the different last trains to it. We overcome all these problems with version
label. Now each partial connection reaching a station may continue its travel and is not
impeded by the fact that another partial connection has already reached the station (as
in station) or that another partial connection ending with the same train (as in edge) has
reached the station.

Eliminating alternatives using a later train serving the same route only minimally
reduces the quality. Taking the later train increases the reliability of interchanges score
at that station. However, only if the later train still permits a reasonable connection,
an optimum is lost. Remember the number of minutes θ after which the maximal pos-
sible reliability rating is achieved for an interchange. We could improve the heuristic
by allowing all trains of a route upto and including the first train departing at least θ

Heuristic Runtime PQ extracts Labels created Quality loss
variant avg ratio avg ratio avg ratio conn query

in ms in % in % in % in % in %

offF 412.14 100.00 57,926 100.00 90,921 100.00 - -
station 123.20 29.89 19,391 33.48 25,370 27.90 51.38 70.92
edge 302.10 73.30 42,866 74.00 63,524 69.87 17.39 34.42
label 398.09 96.59 48,865 84.36 75,390 82.92 0.76 3.52

Table 9.27: Different variants of the routes blocking heuristic. Runtime, number of
significant operations, and quality loss in connections (conn) and queries (query).

156 Chapter 9: Computational Study

Heuristic Runtime PQ extracts Labels created Quality loss
mass routes avg ratio avg ratio avg ratio conn query

in ms in % in % in % in % in %

offF off 412.14 100.00 57,926 100.00 90,921 100.00 - -
time edge 227.29 55.15 30,498 52.65 41,429 45.57 24.61 46.92
time label 290.31 70.44 33,013 56.99 45,737 50.30 14.33 35.74
advP edge 292.60 71.00 35,261 60.87 48,209 53.02 18.63 37.70
advP label 365.17 88.60 39,410 68.04 55,546 61.09 4.07 15.88

Table 9.28: Combination of different variants of the mass transportation and routes block-
ing heuristics. Runtime, number of significant operations, and quality loss in connections
(conn) and queries (query).

minutes after the arrival at that station. Thus, taking an even later train belonging to
that route would not increase interchange reliability. Unfortunately, the bookkeeping
already requires enough additional calculation time to nearly void the positive effect on
the runtime that we do not expect a remaining runtime improvement after modifying the
heuristic and yet increasing the effort involved.

Combining Mass Transportation and Routes Blocking

We combined the mass transportation (versions time (MT) and advanced Pareto (MP),
introduced in Section 8.9.1) and routes (versions edge (RE) and label (RL), introduced
in Section 8.9.2). The results are presented in Table 9.28.

Not surprisingly, the worst quality is obtained when combining (MT) and (RE), the
weaker versions. The quality is decided by these weaker version, as we observe for the
combinations (MT, RL) and (MA, RE) nearly identical quality as for (MT) or (RE)
alone. Both combinations result in similar numbers of significant operations, runtime,
and quality. They are faster than (RE) alone, but slower than (MT). See Table 9.26 for
results of the mass transportation heuristic alone and Table 9.27 for the routes heuristic.

Using the best versions (MA) and (RE) in tandem, we get nearly the same quality
as for (MA), (worse for an additional 1.6% of the queries). So we conclude that some of
the optimal connections that (MA) looses are also lost by (RL). For example after using
one means of mass transportation from station S to station S′, entering a later one of
the same line at S prime is prohibited by the routes heuristic whereas leaving that one
at S′ is prohibited by the mass transportation heuristic. With (MA) and (RE), we are
only minimally faster than (MA) alone (less than 15ms). Although the runtime is 33ms
faster than for (RL) alone, this improvement is not worth loosing quality for over 5 times
as many queries.

9.10.4 Important Stations

We tested both variants of the important stations heuristic (cf. Section 8.7). For the
routes version we require a station to be served by at least 5,10, or 15 routes (Rx) to be
considered important. The neighbors version was evaluated for 3,4, or 5 neighbors as the
threshold for qualifying as important (Nx). In Table 9.29 we present the results.

For both heuristics the number of significant operations and runtime drop when in-
creasing the thresholds, thus decreasing the number of important stations. When we

9.10 Heuristics 157

Runtime PQ extracts Labels created Quality loss
ISH Skip avg ratio avg ratio avg ratio conn query

in ms in % in % in % in % in %

F- - 412.1 100.0 57,926 100.0 90,921 100.0 - -
R5 405.7 98.4 55,247 95.4 84,945 93.4 0.51 1.64
R5

√
411.6 99.9 52,204 90.1 84,845 93.3 0.62 1.94

R10 383.9 93.1 48,188 83.2 75,272 82.8 2.73 6.82
R10

√
378.8 91.9 40,699 70.3 74,993 82.5 2.93 7.62

R15 332.4 80.6 41,767 72.1 63,682 70.0 5.72 13.26
R15

√
323.0 78.4 31,653 54.6 63,360 69.7 5.79 13.50

N3 317.8 77.1 44,911 77.5 64,237 70.7 0.76 2.12
N3

√
317.9 77.1 35,560 61.4 64,371 70.8 0.68 2.02

N4 267.5 64.9 38,971 67.3 53,475 58.8 2.16 5.80
N4

√
263.3 63.9 26,259 45.3 53,429 58.8 2.33 6.32

N5 242.5 58.8 34,209 59.1 46,934 51.6 4.80 12.04
N5

√
235.2 57.1 20,243 34.9 46,651 51.3 5.11 12.74

Table 9.29: The influence of the important stations heuristic (ISH) using the neighbors
(N) or routes (R) variant with or without skipping nodes at unimportant stations (skip).
Runtime, number of significant operations, and quality loss in connections (conn) and
queries (query).

enable skip, i.e. not inserting the labels at unimportant stations into the priority queue,
this decreases the number of extractions from the priority queue.

However, as this technique only slightly affects the number of created labels it is not
able to improve runtimes by more than 10ms. If only few operations on the PQ are saved,
this version is actually slower.

When selecting important stations, version routes achieves much worse results: To
obtain an improvement of 20% for (R15) in runtime, we have to accept a quality loss for
13% of the queries. If we are willing to sacrifice that much quality we can easily decrease
the runtime by over 40% with (N5). Alternatively, to speedup the search as much as with
(R15) we may use (N3) and get worse result sets for only 2% of the queries.

When introducing the heuristic we saw in Table 8.5 that for (N5) we have about half
as many important stations as for (R15), explaining the much faster processing for (N5).
However, the clever selection is also important, as for (N3) we categorized nearly 30% of
the stations as important and for (R15) only 21.3%, still we achieve similar numbers of
significant operations and runtimes.

The quality loss for the routes version and for requiring more than 3 neighbors is
due to the heuristic nature. However, without regarding the reliability of interchanges,
changing only at stations where two routes meet for the first time or separate, is optimality
preserving. The few lost connections for (N3) occur due to the criterion reliability of
interchanges. If changing between two trains t1 and t2 is possible at a number of stations,
allowing interchanges only at the important ones may violate optimality. Because at
unimportant stations there are typically fewer tracks, therefore the required time for
changing trains is smaller. Assume the differences between the arrival of t1 and the
departure of t2 is always the same, then these shorter interchange times increase the buffer
times at unimportant stations and consequently higher reliability ratings can be achieved.

158 Chapter 9: Computational Study

We experimented with constraining the use of the important station heuristic only
to the middle part of the journey to improve quality. Next to the source or terminal
station we wanted to explore all alternatives and allow changing at any station, to reach
important stations from the source or the target from important stations in its vicinity
as “good” as possible. Only at a certain distance from source and terminal, the heuristic
should be used. We implemented different versions based on a radius around source and
terminal or on a hierarchy of classes, but none was as successful as the one we will present
in combination with shortcuts next, so we omit details here.

9.10.5 Shortcuts

Next we analyze the technique of shortcuts in the graph introduced in Section 8.7.2. The
shortcuts can either connect each departures to the final stop of the train (F), the next
(scnext N) or all subsequent (scall A) important stations. For the selection of important
stations we used the important station heuristic investigated in the previous section in the
routes or neighbors variant. A station needs to be served by at least 5 or 10 routes (Rx) or
have at no less than 3 or four neighbors (Nx). Due to the bad quality of higher thresholds
in the preceeding investigation, we limited ourselves to this values. The results can be
found in Table 9.30. Some of the findings are easier observed in Table B.2 in the appendix,
where we summarize the relation between important station heuristic and shortcuts with
various parameters.
Shortcuts to the last stop. Adding the shortcuts to the last stops of trains generates many
long edges and the created partial connections cover large distances quickly. However,
without using the blocking technique for shortcuts (X), these are only explored as addi-
tional edges and increase the number of significant operations and runtime. If the blocking
technique is used (B), the runtime is reduced drastically, but quality suffers unacceptably.
This technique only suits as a reference model.
Blocking technique to improve the quality. Measuring the quality of the shortcuts to
the next important station, we observed a better quality than for the important station
heuristic alone. The best possible way to improved the quality of the important station
heuristic (better than distance or hierarchy based approaches) comes naturally with the
technique shortcuts. The optimal reason to allow changing even at unimportant stations
seems to be that a shortcut bypassing the terminal or a station from which the terminal
is reachable via a foot path exists at that station. If however, the important station
heuristic is activated together with shortcuts, changing close to the terminal is still only
possible at important stations. Additionally, potentially existing footpaths to the terminal
station are never used at unimportant stations, since leaving the train is only allowed at
important stations. Consequently, the quality is nearly identical to that of the important
station heuristic, albeit the search runs faster (cf. Appendix B.2).
Shortcuts to the next important station. With the improvement over the important station
heuristic from above, scnext scores excellent quality results, especially with (R5) and
(N3). The number of significant operations for shortcuts according to neighbors are
around half that of the reference version. Unfortunately if the shortcuts are based on
routes, the runtime is actually higher than for the plain important station heuristic (cf.
Appendix B.2).

The quality is better than for the plain important station heuristic for about 1.5%
to 2.5% of all the queries. Comparing versions (N3) and (N4), we might not want to
accept the 10 times as high loss in quality for saving another 15% runtime. Version

9.10 Heuristics 159

Runtime PQ extracts Labels created Quality loss
ISH SC P avg ratio avg ratio avg ratio conn query

in ms in % in % in % in % in %

F- - 412.1 100.0 57,926 100.0 90,921 100.0 - -
- F B 84.8 20.6 7,923 13.7 10,965 12.1 67.71 77.92
- F X 583.0 141.5 59,861 103.3 107,684 118.4 2.29 9.56

N3 N 275.6 66.9 33,411 57.7 53,250 58.6 0.11 0.38
N4 N 210.9 51.2 25,054 43.3 40,136 44.1 1.74 4.56
R5 N 424.4 103.0 55,296 95.5 86,873 95.5 0.04 0.20
R10 N 391.6 95.0 48,483 83.7 76,540 84.2 0.73 2.22
N3 A 596.2 144.7 37,851 65.3 86,024 94.6 1.37 4.90
N4 A 394.9 95.8 27,609 47.7 58,625 64.5 3.48 9.88
R5 A 1401.6 340.1 67,763 117.0 194,022 213.4 1.14 4.10
R10 A 1105.2 268.2 58,784 101.5 157,732 173.5 2.07 6.72

Parameters P : B/X = with/without blocking according to shortcuts

Table 9.30: The influence of the shortcuts heuristic using the neighbors (N) or routes
(R) variant of the important station heuristic (ISH) to determine the shortcuts (SC) to
the final station (F), or the next (N), or all (A) important stations. Runtime, number of
significant operations, and quality loss in connections (conn) and queries (query).

(N4) achieves the lowest number of significant operations and runtime, another 15% drop
compared to (N3).

Shortcuts to all subsequent important stations. For version scall we added between 3.1
(N5) and 8.7 (R5) shortcuts per node (observed in Section 8.7 in Table 8.5). As expected,
the huge number of additional edges tremendously increases the runtime, mainly due
to the large number of additionally created labels. Only for version R5 we have more
priority queue extractions than without shortcuts. If the shortcuts are based on routes,
the number of created labels double.

For version (N3) we actually created nearly the same number of labels and save one
third of priority queue operations. The complicated additional testing still results in
nearly 50% higher runtime. Remember that e.g. stay-in-train edges are only feasible if
the reached departure node has any leaving shortcut edge bypassing a terminal station.
Without this test the number of significant operations and runtime increase even more
(figures omitted).

For all definitions of important stations, scall is much slower and delivers worse quality
than scnext. The only variant that is at all faster (only 4%) than the reference setup
without shortcuts is (N4), simultaneously delivering the worst quality. In summary, scall
is not a practicable technique at all.

Best version. The undisputed winner of all variants with and without shortcuts and
the important station heuristic is (N3) with shortcuts to the next important station. Its
number of significant operations are over 40% lower than for the reference version and
the runtime improvement is about one third. This version has nearly no quality deficit;
it missed an optimal connection in less than 20 of our 5000 queries.

160 Chapter 9: Computational Study

Heuristic Runtime PQ extracts Labels cr. Quality loss
ISH SC R M avg ratio avg ratio avg ratio conn query

in ms in % in k in % in k in % in % in %

F- - - - 412.1 100.0 57.9 100.0 90.9 100.0 0.0 0.0
N3 317.8 77.1 44.9 77.5 64.2 70.7 0.8 2.1
N3

√
279.4 67.8 36.8 63.5 49.2 54.1 4.4 15.9

N3
√

294.9 71.5 38.3 66.1 54.2 59.7 1.7 6.0
N3

√ √
256.1 62.1 31.3 54.1 41.6 45.8 4.9 17.4

N3
√

275.6 66.9 33.4 57.7 53.3 58.6 0.1 0.4
N3

√ √
241.4 58.6 26.4 45.6 39.0 42.9 3.7 14.4

N3
√ √

261.6 63.5 28.9 49.8 45.3 49.8 0.9 4.0
N3

√ √ √
229.2 55.6 23.2 40.1 33.8 37.1 4.2 16.1

N4 267.5 64.9 39.0 67.3 53.5 58.8 2.2 5.8
N4

√
233.4 56.6 32.6 56.3 42.4 46.6 6.0 19.0

N4
√

248.7 60.3 33.1 57.2 45.2 49.8 3.4 10.3
N4

√ √
217.6 52.8 27.4 47.3 35.6 39.1 6.4 20.3

N4
√

210.9 51.2 25.1 43.3 40.1 44.1 1.7 4.6
N4

√ √
184.3 44.7 19.9 34.4 29.9 32.9 5.5 17.9

N4
√ √

208.9 50.7 22.0 37.9 34.7 38.1 3.0 9.2
N4

√ √ √
177.1 43.0 17.8 30.6 26.2 28.8 6.0 19.4

Table 9.31: Combination of the most prominent important station heuristic (ISH) vari-
ants based on the number of neighbors (N3 and N4) with or without shortcuts (SC)
and the routes (R) heuristic (version labels) and the mass transportation (M) heuristic
(version advancedPareto). Runtime, number of significant operations, and quality loss in
connections (conn) and queries (query).

9.10.6 Combination of the Four Heuristics: Important Station,
Shortcuts, Mass Transportation, and Routes

In this section we combined the important station heuristic with and without shortcuts
with the mass transportation and routes heuristics. According to the outcome, when
combining the heuristics mass transportation and routes in Section 9.10.3, we tested the
best versions of the last two heuristics only, namely advanced Pareto for mass transporta-
tion and labels for the routes heuristic. To determine the important stations we set the
threshold to 3 or 4 for the neighbors version of the important station heuristic. Shortcuts
were inserted to the next important station only.

The mass transportation heuristic (M) is dominant in case of quality, all combinations
with it loose optimal connections for additional 14% of the queries, the same number as
for this heuristic alone. Activating the routes heuristic (R) we experience a quality loss for
an additional 4% of the queries for either definition of important station with or without
shortcuts. This is identical to the loss for routes alone. If the mass transportation heuristic
is already activated, we loose optimal connections for an additional 1.5% of the queries
(identical to the combination of (R+M)). Heuristic (M) yielded a higher improvement
in runtime than (M) without combinations, this can be observed in combination with
the important station heuristic with or without shortcuts, too. The combination of all
heuristics is always the fastest version. For the neighbors version N4 with shortcuts we

9.11 Detailed Figures for the Reference Version 161

receive the fastest version, but it also achieves the worst quality.
From these results we can see that both (R) and (M) achieve their speedup due

to pruning other partial connections than the important station heuristic Therefore the
runtime improvement is still recognizable in combinations. Sadly, the quality loss also
adds up, as different connections are missing from the results.

Unfortunately, neither of the combinations creates better variants. All combinations
with N3 are slower than N4 (with shortcuts) alone without improving quality. The fastest
versions of all looses 6% of optimal connections distributed over nearly 20% of the queries.
This is too much. So we should stay with shortcuts N3 and its near optimal quality. If we
needed to decrease search speed for whatever reason, we would have to select shortcuts
with N4 with the best tradeoff in speedup for quality.

9.11 Detailed Figures for the Reference Version

9.11.1 Configuration

Our reference version, as mentioned in Section 9.4.2.3 and used throughout this chapter,
has the following configuration. Each value was determined to be the best setting and
discussed in the respective section.

It employed parameter set (A) for advanced Pareto dominance with our four criteria
travel time, number of interchanges, ticket cost, and reliability of interchanges. We had
100 equivalence classes and set the maximal effective reliability to µ̂ = 96% for the last
criterion.

Lower bounds were computed for all criteria. On the standard station graph a bidirec-
tional Dijkstra with triangle inequalities and biconnected component pruning delivered
lower bounds for travel time. These results were exploited to speed up the calculation on
the unified interchange graph in order to obtain bounds on the number of interchanges and
the reliability of transfers. Lower bounds on ticket cost were delivered by a single-directed
Dijkstra on the appropriate station graph. All the bounds were used for domination by
terminal.

The priority queue was Dial’s data structure. Goal-direction was active with the
criterion travel time plus γ = 20 times the number of interchanges (goal-directed on both
criteria with criterion plus lower bound on that criterion).

9.11.2 Detailed Number Of Significant Operations

During the search process on average 90,921 labels are created. About 20% at arrival
nodes and 40% each at departure and change nodes.

Of these labels 32,924 are dominated either at the node level (66%) or by terminal
labels (34%). Interestingly over half of these (53%) are at the change level and only 6% at
arrival nodes. As labels at arrivals are only created if the corresponding departure was not
dominated, the number of labels at arrival nodes is very small. 57,967 labels are inserted
in to the priority queue and later removed. This is also the average of the maximum
number of labels in use during a search. About one fourth are at arrival nodes, the rest
are evenly distributed between departure and change nodes. We create 196 start labels
and get 27 terminal labels per query. In the final filtering step nearly 19 of the candidates
are removed to obtain the set of optimal results. Before the last edge partial connections
may still be incomparable and the real prices are only computed at the terminal. Thus,
the number of optima is considerably smaller than the number of terminal labels.

162 Chapter 9: Computational Study

Figure 9.6: Runtime distribution (left): the y-axis gives the percentage of queries that
require at least the runtime found on the x-axis. Frequency of the number of Pareto,
relaxed Pareto and advanced Pareto optima (right).

Runtimes In Figure 9.6 we see the runtimes for the standard version (standard) and
the best heuristic, using shortcuts to the next important station determined with the
neighbors threshold three (SC N3). On the x-axis we give the runtime in milliseconds.
On the y-axis the percentage of queries that require at least this much runtime can be
found. For the average of 412ms for (standard) we can see that only 29.1% of all queries
are slower. Only 20.4% are slower using (SC N3). 95% of all queries are answered within
about 1.5 seconds (standard) (1560ms) or 1 second (1045ms) for (SC N3).

Space Requirements The graph sizes were already given in Table 8.1. We have 2.1
million nodes and 2.9 million edges. On average there are 58k labels in use at the same
time during a search. Note that all labels that have been removed from the priority
queue are still needed, as they may be part of one or more connections and be required
to reconstruct these connections. For some of the longer queries we needed as much as
500k labels, but managed to stay below 1GB of memory consumption.

9.11.3 Number of Optima

Pareto Vs. Relaxed Vs. Advanced The distribution of the number of optima using
either Pareto dominance (P), relaxed Pareto dominance (R), or advanced Pareto dom-
inance (A) is shown in Figure 9.6 (right). The average number of optima is 22.48 (P),
33.57 (R), and 8.45 (A), respectively (as already stated in Table 9.10). For all versions
of dominance we see peaks for 3 optima, but much less pronounced for (P) and (R).

The large number of Pareto Optima in (P) is especially notable for longer and more
complicated journeys. As the number of interchanges increases, the distribution of buffer
times creates more alternatives. Additionally, first or last parts of a journey may utilize
local trains like RB or S-Bahn, resulting in different travel times, and a larger set of
stations where interchanges can take place. Furthermore, various options to take either
ICE or IC/EC trains in the middle part result in differing prices and travel times.

The relaxation in (R) makes more connections incomparable, and consequently the
number of optima increases by about half. Really large numbers of alternatives appear
with higher frequency in this version (outside of the graphic).

9.12 Significant Operations 163

Undesired optima are removed by (A). Recall from the motivation in Chapter 2 some
connections that are only 10 Cents cheaper but take an hour longer. With the trade-offs
for ticket cost and reliability of interchanges in advanced Pareto dominance, we determine
3 to 6 optima for many queries (41.4%). For two thirds of the queries we obtained 2 to 9
optima.

9.12 Significant Operations

In Section 9.4.2, we introduced the number of created labels and extractions from the
priority queue as significant operations and indicators for the runtime of the algorithm.

Runtimes and number of significant operations behaved similarly for many test-cases.
An increase or decrease in one could be found in the other, as well. Different ratios for
the increase in runtime were mirrored in the number of significant operations. (e.g. a
decrease to 34% or 17% in runtime and a decrease to ca. 44% or 20% in the number of
significant operations in Table 9.11).

From the differences in the characteristics when changing priority queue types, we
could observe that the heaps have more overhead per operation on the queue than Dial’s
data structure (cf. Section 9.8.1). The techniques avoid inserting minimum labels and
skip departure nodes decreasing the number of operations on the priority queue did not
improve runtimes (cf. Section 9.8.4). Only for technique bypass departure nodes that also
reduced the number of created labels we observed a speed-up effect. We can conclude,
that the operations on Dial’s data structure do not dominate the runtime.

A discrepancy in the proportion of runtimes and number of extract operations from
the priority queue could also be detected for the shortcuts heuristic. For variant (N4)
runtimes were much higher for scall than for scnext even for a nearly identical number of
priority queue operations (cf. Table 9.30). The version using shortcuts to all subsequent
stations (scall) created much more labels, which explained the higher runtimes.

The more involved heuristics have some overhead in evaluating edges and labels. Some
of them require extensive bookkeeping and the maintenence of additional data structures.
Due to these facts the average effort per operation increases. Consequently, for many of
these techniques the differences in the numbers of created/extracted labels differs sig-
nificantly from the effect on the runtime. This was especially noticeable for the more
complex meta data structures for the heuristics routes blocking and mass transportation
(cf. Section 9.10.2 and Section 9.10.3). The observed differences can be interpreted as
an indicator to measure the overhead involved. This was also done for the evaluation of
different priority queue types (see above).

9.13 Analysis of Heavy-Weight Searches

All queries that still take long to compute exhibit one of the following properties:

• They are queries with destination on an island off shore,

• Or they start and end in regions with dense mass transportation networks

Reaching Islands The ferry connection is problematic with searches toward islands.
If ferries to that island operate on a regular basis (in intervals between 15 minutes and
3 hours), there is no problem. When the ferries have really low frequencies, searches

164 Chapter 9: Computational Study

tend to visit larger parts of Germany than necessary. Say the earliest partial connection
reaches the ferry port just a few minutes after the ferry left, but the next will leave in
five hours. During these five hours, alternatives explore long detours through Germany,
although no other way to the terminal than this ferry exists. Until the next ferry is finally
reached, partial connections that have amassed up to five hours additional travel time
through Germany have been created. Starting at those islands on the other hand is easy.
While waiting some hours for the next ferry, not many partial connections are created
because of the limited public transportation networks on these small islands.

To overcome this problems we will investigate using bidirectional search. In contrast
to standard searches for which an arrival interval is either too hard to obtain or too large
for bidirectional search, we get the suitable points in time (not even intervals anymore)
from the ferry schedule. If we encounter a search for which the only possible route uses
a ferry, we enter a ferry search mode. Note that obtaining this information is easily
realizable within our biconnected pruning approach (cf. Section 8.5.5) as both ferry ports
are articulation points in this case. Within our ferry search mode, we search from the
arrival events of the ferry to our destination and backwards from the departure events to
our source station. By using bounds irrelevant arrivals may be discarded early, e.g. if the
lower bound on the travel time to the ferry port is too high to reach the departure from
within the departure interval at the source station.

Mass Transportation Problem For all queries we have on average less than 200 start
labels. Queries starting in regions with dense mass transportation networks need more
than 1,000 start labels. For example in Berlin, we have source-/target equivalences that
allow us to start at all the major hub stations within the city and many departures of
trains and of even more means of mass transportation in the departure intervals. Differing
routes through these mass transportation networks are considered and many labels with
relatively little travel time are created. Within the first few steps of algorithm execution
there is no possibility to dominate these labels. Next to terminal stations in centers of
mass transportation alternatives are explored that leave high speed trains one or two
stations earlier than the fastest connection. They use means of mass transportation for
the rest of the journey, achieving better prices. Thus, they cannot be dominated as well.

These insights motivated our mass transportation (cf. Section 8.9.1) and routes heuris-
tics (cf. Section 8.9.2). However, as the computational results in Section 9.10.6 revealed,
shortcuts to the next important station based on the number of neighbors (see Sections 8.7
and Sections 8.7.2) performed better. Stations that are served only by one or more lines
of mass transportation (e.g. S-Bahn stops) are automatically bypassed in shortcuts. No
additional alternatives are created by changing between means of mass transportation.
Superior to the routes heuristic, even changing to different routes at unimportant stations
is impossible.

9.14 Example Connections

To illustrate that advanced Pareto optimal alternatives actually take different routes
through Germany we look at an example query from Lübeck (cyan) to Aschaffenburg
(red) with a departure interval between 10:00 and 12:00. The paths and characteristics of
the calculated connections can be found in Figure 9.7. Note that the green blue and cyan
paths start identically. A somewhat direct path (green) results in the least expensive
connections (cheap) with 3 interchanges. The fastest connections (fast) take a detour

9.15 Conclusion 165

Depar- Criteria
Name ture time ic sec cost Color

in h in % in e

fast 10:07 5:28 2 57 114 blue
fast’ 11:07 5:28 2 57 114 blue
cheap 11:38 5:30 3 33 101 green
cheap’ 11:07 5:31 3 41 101 green
comb 10:07 5:52 2 84 113 cyan
direct 10:43 7:04 0 100 107 red

Figure 9.7: Fast, convenient, and cheap connections for a query from Lübeck (cyan) to
Aschaffenburg (red). The traveled routes (left) and characteristics of the connections
(right).

over Würzburg (blue). They save 2 minutes, are more reliable and 13e more expensive.
Besides, there is a direct IC connection via Köln (red) that is rather slow. An additional
alternative (comb) takes the shortest path (cyan) and increases the reliability over the
fastest connection by almost 30%. Only the direct connection is without ICE but has the
longest detour. The cheaper connections use RE or RB for a part of the journey and thus
save money.

9.15 Conclusion

In this chapter we have evaluated the search for special offers and night trains and later
presented an in-depth analysis of our algorithm.

Special Offers The focus of our approach to search for special offers was to demonstrate
how a large variety of different tariff classes can be incorporated into a multi-objective
shortest path framework for travel information. We successively integrated a combined
search for regular tariffs and contingent-based tariffs into MOTIS. In our computational
experiments we observed that a multi-objective search with a mixture of tariff rules can
be done almost as fast as just with one regular tariff. Sometimes the contingent-restricted
versions run even faster, because the special offers apply to fast connections. In that case,
less effort has to be put into searching cheap connections.

We also observed that our simple model to represent regular fares within Germany is
not as accurate as desired. Hence, future work should concentrate on improved approxi-
mations of regular fares. A tighter approximation would allow stricter dominance rules.
We do expect considerable savings of computational time from stricter dominance rules.

166 Chapter 9: Computational Study

Night Trains Our computational study shows that a specialized night train search
delivers many more attractive connections than an ordinary search. We have observed a
trade-off between quality of the solution sets and computation time. Our implementation
of a multi-criteria search with one additional criterion fails to find a good night train
connection in a few cases, but it is the most efficient one. The pre-selection approach
with a fast feeder computation never failed and delivers almost optimal quality. Both
variants are fast enough to be applied in on-line information systems. With additional
tuning the runtime can probably be reduced further, while maintaining high quality.

We see two promising perspectives for applying our algorithms in practice. The first
is the scenario for which this section was written: the user explicitly asks for a night
train connection. Then we would recommend using the pre-selection approach with fast
feeder computation (Algorithm C), which delivers excellent quality. The second scenario
is an ordinary query with a start interval in the evening. Here, it would be an option to
run MOTIS with an additional criterion (Algorithm D) but without spending too much
additional computation time. If this search finds attractive night train connections, these
can be offered as alternatives to those computed for the query interval.

Overall We have thoroughly analyzed the speed-up techniques and heuristics intro-
duced in Chapter 8. The impact of several of these techniques on the search space is
visualized for an exemplary search in Section B.3 on page 201 in the appendix.

We have seen that the techniques goal-direction and domination by labels at the ter-
minal are essential for online capabilities. We are able to efficiently determine lower
bounds for goal-direction and domination by terminal for all of our criteria and prune the
search space accordingly, in less than 30ms. Selecting the right priority queue type and
tuning the weights and criteria used in goal-direction further improved processing times.
Contrary to single-criterion search the time spent on the priority queue is not among the
dominant factors.

The reference version using optimal settings without heuristics achieves an average
runtime of 412ms and answers 95% of the queries within 1.5 seconds.

Respecting the additional criterion reliability of interchanges produced additional re-
sults. The computational cost for adding the criterion is lower than for ticket cost. This
is mainly to the correlation with the number of interchanges which the latter does not
exhibit.

Of all heuristics the one with best quality for performance tradeoff is shortcuts with
the important station heuristic based on the neighbors threshold. We may use threshold
N4 to speed up searches to about a fifth of a second (210ms) on average at only little
quality loss. The best choice is threshold N3 with nearly indiscernible quality loss and
one third runtime improvement over our reference version.

Our baseline version without any speed-up techniques required several minutes per
query. With our best setup and shortcuts N3 we reach an average runtime of 275ms and
answered 95% of the queries in at most 1 second.

Chapter 10

A Time-Dependent Timetable
Information System

Our fully realistic multi-criteria prototype MOTIS is based on a time-expanded graph
because it appears to be easier to model all side constraints arising in practice in this
framework. However, the major drawback of time-expanded graphs, in comparison to
time-dependent models, is the higher space consumption, in particular if highly periodical
regional mass transit has to be included. In addition, the time-dependent graph model
seems easier to adapt in case of dynamic graph changes due to train delays. These reasons
motivate our investigation of the time-dependent graph model in this chapter. It is based
on the publication [DMS08].

Related Work and Our Contribution

To the best of our knowledge, no complete, realistic system has been built for exact
multi-criteria search of all Pareto optimal solutions in the time-dependent graph model.
In [PSWZ08], Pyrga et al. consider constant transfer times and traffic days, but other
aspects of real timetables, like footpaths and special transfer rules, are not considered. In
this chapter, we describe a first prototype for multi-criteria search of all Pareto optima
within a fully featured, real timetable. Its search results are guaranteed to be optimal.
We provide an extensive computational study showing the impact of several speed-up
techniques. Even though the number of possible speed-up techniques is severely restricted,
in order to guarantee the optimality of all search results, the performance of our prototype
is already comparable to time-expanded systems, but consumes much less space.

Most previous research (in particular [PSWZ08]) has concentrated on the earliest
arrival problem from a given point in time. But here we focus on a many-source shortest
path version, because in a pre-trip search for train connections, a user usually wants to
specify a time interval in which the journey should start. This implies that we have to
perform a simultaneous search from multiple starting times. In a time-expanded graph
model, this can be handled very easily: One simply adds a “super-source” and edges
of length zero to all start events, thereby reducing the search to a single-source search.
In time-dependent graphs, however, solving the many-source shortest path problem is
more subtle if travel time is used as an optimization criterion. Consider two sub-paths
from the source to some intermediate node. Then, path p1 with start time s1 and travel
time t1 dominates another path p2 with start time s2 and travel time t2, with respect

167

168 Chapter 10: A Time-Dependent Timetable Information System

to travel time, only if t1 < t2 and s1 ≥ s2. Otherwise, both paths are incomparable.
This leads to weaker dominance during search than for the earliest arrival problem, and
consequently to more non-dominated solutions which can be offered to customers. It is
therefore remarkable that we still achieve a reasonable performance.

Our approach can easily be extended to further criteria. In order to exemplify this,
the “reliability of transfers” is investigated as an additional criterion. The reliability of
transfers is a property of a connection that captures the probability of catching all trains
within the connection (cf. Chapter 6.3). Since possible train delays cannot be ignored,
such a criterion is of great practical importance.

Overview The remainder of this chapter is organized as follows. In Section 10.1, we
introduce the time-dependent graph model and describe the adaptations needed in order
to make it suited for fully realistic timetables. A modification of Dijkstra’s algorithm that
makes it capable of minimizing multiple criteria is introduced in Section 10.2. Several
speed-up techniques that do not violate the optimality of the search results are proposed.
The results of the experimental analysis of our time-dependent search system are pre-
sented in Section 10.3. We analyze the impact of the proposed speed-up techniques on
performance. The prototype is then compared to our search on a time-expanded graph
using MOTIS. The final aspect of our discussion covers the relationship between perfor-
mance and the number of search criteria. Finally, Section 10.4 summarizes our results
and gives an outlook on future work.

10.1 Realistic Time-Dependent Graph Model

In this section we will describe a time-dependent graph model as introduced in [PSWZ08,
BJ04, PSWZ04a]. Although a basic version for constant interchange times has already
been presented in Chapter 4, here we will start off with a very basic time-dependent
model and extend it in the following to a fully realistic model.

We assume the timetable to consist of a set T of trains, a set S of stations, and a set E of
elementary connections. An elementary connection e ∈ E describes a connection between
two adjacent train stations without intermediate stops. Such a connection contains a
departure station from(e) ∈ S, an arrival station to(e) ∈ S, a departure time d(e), and an
arrival time a(e). In addition to that, each elementary connection has several properties
like train class, traffic days and train number. Each train tr ∈ T is an ordered list of
elements of E . A train connection is composed of an ordered list of elementary connections
which must be consistent with the sequence of departure and arrival stations.

10.1.1 Basic Time-Dependent Model

For each station S ∈ S in the timetable there is a node v(S) ∈ V in the basic time-
dependent graph G = (V,E). We call these nodes station nodes. There is an edge
eAB = (v(A) , v(B)) ∈ E if the set EAB := {e ∈ E|from(e) = A ∧ to(e) = B} is non-
empty. The characteristics of all elementary connections in EAB are attributed to this
single edge eAB . Each edge has multiple length functions, one for each optimization
criterion. These length functions are time-dependent: Depending on the time t at which
the edge is to be used, different connections in EAB may be favorable. In general, this is
implemented with an iterator which computes edge lengths “on-the-fly” and returns all
necessary variants with different characteristics.

10.1 Realistic Time-Dependent Graph Model 169

Figure 10.1: Extension of a simple time-dependent graph (left) to support transfers. The
timetable has three routes r1, r2, r3 so that the extended station (right) has three route
nodes.

If we only consider travel time and make the assumption that a connection e1 ∈ EAB

may not overtake another connection e2 ∈ EAB in the sense that d(e1) ≥ d(e2) and
a(e1) < a(e2), then the connection with the earliest departure after time t is the one
chosen from EAB . Its travel time length is precisely a(rel(EAB , t))−t, where rel(EAB , t) :=
arg mine∈EAB ,d(e)≥t d(e) is the relevant connection in EAB at time t.

10.1.2 Transfers

In the basic model, transfers between different trains are not modeled differently than
two consecutive elementary connections with the same train. In order to allow for our
search to count the number of transfers and in order to assign a duration to transfers,
the model has to be extended as follows. We assume here for simplicity that a constant
transfer time is provided for each station.

In order to still be able to take advantage of the fact that multiple elementary con-
nections are modeled by a single edge, it is necessary to group train connections into
routes. The set of routes forms a partition of T such that two connections are in the
same route if and only if they share equal stations and properties. The departure and
arrival times of two connections in the same route may differ as well as their traffic days.
Using this partition, each station is represented by several route nodes in addition to its
station node. The station node is used only to connect the route nodes and has no edges
to nodes from other stations. The expanded model is depicted in Figure 10.1.

One route node is required for each route that arrives or departs at the station. For all
connections in the same route, the corresponding route node plays the role of the station
node in the basic model. The assumption that connections may not overtake each other
can now be restricted to connections within a route. If we have overtaking elementary
connections within a route, the route can simply be split up in order to separate the two
elementary connections (and so we can get rid off this assumption). If the route has a
connection that arrives at the station, an edge connecting the route node to the station
node is introduced; if the route has a connection that departs from the station, an edge
connecting the station node to the route node is introduced. One of these two edges
needs to carry the transfer costs at the station and is called transfer-edge, the other has a

170 Chapter 10: A Time-Dependent Timetable Information System

Figure 10.2: (a) Illustration of a station with two foot-edges in the time-dependent model.
(b) Modifications to the graph for a station with a special transfer from train t1 to train t2.

transfer cost of 0. In the following we choose the edges from route nodes to station nodes
as transfer-edges. This is called exiting transfers as opposed to entering transfers. We
will see, that our choice is preferable due to performance advantages of the multi-criteria
search.

10.1.3 Fully Realistic Model

We propose the following extensions to make the model fully realistic.

10.1.3.1 Foot-Paths

In a real environment it is possible to walk from one station to another if the two stations
lie in geographic proximity. Realistic models therefore contain foot-paths to model this.
Foot-paths are tuples (A,B, c) that represent a possibility to walk between stations A
and B within c minutes. We assume, that c already contains all transfer costs at both A
and B, so that no additional cost for switching trains arise. Foot-paths are special in that
their length is constant in time. Figure 10.2 (a) shows the modifications that are needed
in order to model a foot-path (A,B, c). It is not sufficient to simply add an edge from the
station node of A to the station node of B with length c. This is because no additional
transfer costs have to be paid when using a foot-path. Reducing c by the transfer cost at
A, does not correctly model the costs when the journey starts at A. To circumvent these
problems, an additional foot-node is added to the stations subgraph.

10.1.3.2 Special Transfer Rules

Another feature of realistic timetables are special transfer rules, that change the transfer
time between two specific trains. The general transfer time of a station may be increased
or decreased that way, depending on the real-world situation at the station. Two trains
that use the same platform may for instance have a reduced transfer time. For each
transfer rule several changes to the graph have to be made. Consider a special transfer
time to get from train t1 to train t2 at station A. Let X denote the route node of A for
t1 and Y the route node of A for t2. The station node for A is denoted by S. We assume
that all special transfers are reasonable, i.e. it is not possible to reach a train departing
before t2 at Y if we arrived with t1. However, there are cases in which it is explicitly

10.2 Multi-Criteria Dijkstra and Speed-Up Techniques 171

made impossible to reach t2 by setting the time of the special transfer higher than the
usual transfer time. Figure 10.2 (b) shows the changes that have to be applied to the
model when a special transfer rule is introduced. A new edge leads from X to Y carrying
the special transfer cost. This edge may only be used after using t1. The existing edges
from S to Y and from Y to S have to be restricted so that they may not be used if t1
is the last used train. This way Y cannot be reached from X without using the special
transfer and the special transfer may not be used as shortcut to get to another route.

10.2 Multi-Criteria Dijkstra and Speed-Up Techniques

10.2.1 Algorithm

We use a multi-criteria version of Dijkstra’s algorithm on our time-dependent graph. It
is very similar to the one presented in Chapter 5 on Page 49). The differences in the
implementation mainly concern the details discussed in that chapter, the pseudocode
version remains unchanged.

10.2.2 Speed-Up Techniques

Some of the speed-up techniques from our time-expanded version (cf. Chapter 8) are
applicable in a time-dependent version as well. We will now briefly mention some of these
and introduce two new and rather technical optimizations that have some impact on the
search within the time-dependent graph.

Lower Bounds The techniques domination by labels at the terminal (cf. Sections 8.4
and 8.5.3) and goal-direction (cf. Sections 8.3 and 8.5.4), producing the labels for domi-
nation earlier in the search process, harmonize well with time-dependent search. These
techniques utilize lower bounds for the distance of some node to the target node. These
bounds can be available for some or all criteria. A general way of obtaining bounds is to
simplify the graph enough to make it possible to search quickly. In a simplified auxiliary
graph, a single-criterion backward search is performed in order to obtain lower bounds
for all nodes and one criterion. In order to be able to perform a backward search, any
time-dependency must be eliminated.

We have implemented two different versions of simplified graphs with different prop-
erties. The more efficient one uses the graph of the basic time-dependent model in which
only travel time can be optimized and transfers are costless. Time-dependency is removed
by replacing variable edge costs with their minimal cost over time. This graph is suited
for obtaining lower bounds for travel time only. Another simplification procedure keeps
the complete graph and only substitutes time-dependent edges with constant ones as in
the first approach. The resulting graph is more complicated but yields tighter bounds
and can also be used for transfers.

Avoid Hopping and Label Forwarding Two phenomena that often arise when
searching the time-dependent graph can be eliminated in order to improve performance.
The first one is that labels propagate back to the node which they originated from. In
this case the labels are immediately dominated. The search can easily be adapted to
forbid “hopping”, i.e. the back-propagation of labels. The other phenomenon is due to
the fact that all edges between station and route nodes in our graph have a cost of zero
for all criteria. Because of this, newly created labels often have the same values for the

172 Chapter 10: A Time-Dependent Timetable Information System

single criteria as the label they originated from. Therefore, they are lexicographically
minimal in the priority queue from the moment on they are inserted. We can thus avoid
inserting them and simply hold them back until the current label has been processed
completely. Before extracting further labels from the queue, the labels that are held back
can be processed. This is similar to the technique avoid inserting minimum labels from
Section 8.8.4 and happens rather often as a result of the aforementioned fact.

10.3 Computational Study

In the following, we analyze the performance of our multi-criteria search algorithm. We
apply the aforementioned speed-up techniques and compare our prototype to a time-
expanded approach. For the main part of our experiments we selected two relatively
unrelated criteria, namely travel time and the number of transfers. Later we also show
the influence on performance when adding an additional criterion to the search.

10.3.1 Train Network and Test Cases

The train network used in this study is derived from the train schedule of all trains within
Germany of 2007 (56,994 trains, 8916 stations). The time-dependent graph has about
240,000 nodes and 670,000 edges while the corresponding time-expanded graph uses about
3,479,000 nodes and 5,633,000 edges. Three different sets of test cases were used. Each
test case contains a source and a target station for the search, a date and a start time
interval on that date. The first set of test cases is a synthetic one. It contains 1,000
randomly created tests that allow for arbitrary start time intervals (referred to as random
cases). In this test set intervals of several hours are possible, it is intended as a stress
test. The second set also contains 1,000 randomly created tests which however have more
realistic start time intervals of exactly one hour (realistic cases). The third set contains
about 14,000 tests that were obtained from a snapshot of real connection queries provided
by Deutsche Bahn AG (real cases).

10.3.2 Computational Environment

All computations were executed on an AMD Athlon(tm) 64 X2 dual core processor 4600+
with 2.4 GHz and 4 GB main memory running under Suse Linux 10.2. Our C++ code
has been compiled with g++ 4.1.2 and compile option -O3.

10.3.3 Experiments

We first analyze the impact of single speed-up techniques. As a main indicator for perfor-
mance we use several operation counts on representative operations, most importantly on
the number of created labels, as well as on the number of labels which pass the domina-
tion tests and are inserted into the priority queue. We also provide CPU times, however,
since our system is just a prototype to demonstrate feasibility of the approach, no serious
effort was spent on fine-tuning the code in order to improve runtime directly.

10.3.3.1 Impact of Exact Speed-Up Techniques

We start with a base-line variant which is the generalized Dijkstra algorithm on the fully
realistic graph model without using any optimization techniques and choosing exiting
transfers (cf. Section 10.1.2). Our first investigation compares this base-line variant with

10.3 Computational Study 173

Algorithmic Labels Runtime
variant created inserted average

base-line variant 1,236,744 636,393 4.730s
optimized version 207,976 47,967 1.050s

Table 10.1: Comparison of the base-line variant with an optimized version (realistic cases).

an optimized version which includes domination by early results as well as goal direction.
The lower bounds are obtained from the basic time-independent graph (cf. Section 10.2.2).
In addition to that, avoidance of hopping and label forwarding are used. Table 10.1 shows
the combined impact of these techniques on performance. We observe an improvement of
a factor of about six with respect to the number of created labels and a factor of 13 with
respect to the number of insertions into the priority queue. A more careful analysis reveals
the individual impact of the low level optimizations of avoiding the hopping of labels and
their forwarding along costless edges (cf. Section 10.2.2). This can be seen in Table 10.2.

We can also observe that the choice between entering and exiting transfers (cf. Sec-
tion 10.1.2) makes a notable difference in performance. Together a factor of nearly two
is achieved in the number of created labels and a factor of over three is achieved in the
number of inserted labels. Note that the runtimes of the different sets of queries cannot
be compared. The real cases use start time intervals of three hours while the realistic
cases use one hour. This leads to an average number of about six non-dominated solutions
for the real cases, but only an average of about two for the realistic cases. Therefore,
different runtimes are to be expected. Although the average number of created labels is
similar for both sets of instances, the actual distribution of the number of created labels
has a significantly larger variance for the real cases.

As explained in Section 10.2.2, there are several ways of obtaining lower bounds. The
last results used the basic time-dependent graph. However, by using the more complex

Cases Strategy Labels Runtime
created inserted average

enter 1,232,592 545,416 7.049s
1,000 exit 1,072,187 552,012 5.990s

random avoid 682,925 552,014 5.453s
+forw 682,897 146,766 4.690s
enter 385,982 160,200 1.606s

1,000 exit 315,565 160,516 1.311s
realistic avoid 207,984 160,514 1.183s

+forw 207,976 47,967 1.050s
enter 386,764 176,540 2.360s

14,076 exit 343,248 177,193 2.098s
real avoid 212,503 177,192 1.932s

+forw 212,516 45,114 1.570s

Table 10.2: Performance improvement when entering or exiting carries the transfer cost
(enter and exit) and for the techniques avoid hopping (avoid) or avoid hoping and for-
warding labels (+forw).

174 Chapter 10: A Time-Dependent Timetable Information System

Heuristic for Lower Bounds Labels Runtime
time transfers created inserted average
none none 420,803 92,305 1.839s

simple none 207,976 47,967 1.050s
complex none 205,260 45,886 1.003s
simple complex 207,813 47,939 1.106s

complex complex 205,101 45,866 1.159s

Table 10.3: Performance when using several combinations of the simple and the complex
graph in order to obtain lower bounds (realistic cases).

approach, lower bounds can be obtained for other criteria as well, like the number of
transfers. Unfortunately, the lower bounds on the number of transfers do not improve
the search sufficiently to overcome the effort of determining the bounds in the first place,
as can be seen in Table 10.3.

An improvement can still be achieved with tighter bounds on the travel time. Com-
pared to not using any heuristic, we obtain an improvement of factor about two. The
most efficient variant of these bounds — the complex graph with travel time bounds only
— will from here on be used as our standard variant for further comparisons.

10.3.3.2 Further Speed-Up by Realistic Assumptions

One of the strengths of our approach is the guaranteed optimality of the search results.
We are not willing to sacrifice this advantage by using speed-up techniques that violate
optimality. The only exception are optimizations that use realistic assumptions in order
to limit the search to certain reasonable ranges for the criteria. The results of applying
some of these techniques are shown in the following.

There are two ways of restricting the allowed travel time. Firstly it can be restricted
by a fixed upper limit like 24 hours. This helps a lot for long connections but does
not help at all for short ones. A more adaptive restriction is to limit the allowed travel
time to γ times the time of the fastest connection, where γ is a variable parameter of our
algorithm. This improves the search a lot for short queries. Our results are summarized in
Table 10.4. To limit the number of transfers did not show a notable effect on performance
in our tests. A maximum of five allowed transfers did not yield a better performance,
even though it makes some Pareto optimal connections impossible. Hence we dropped the

Algorithmic Labels Runtime
variant created inserted average

standard 205,260 45,886 1.003
max. travel time = 24h 180,910 30,893 0.845s
max. travel time = 15h 141,602 16,175 0.631s
max. travel time = 10h 83,162 6,999 0.406s

γ = 5 182,535 32,030 0.865s
γ = 3 144,678 17,015 0.653s
γ = 2 84,125 6,890 0.415s

Table 10.4: Limiting the maximum travel time to a constant (24h, 15h, 10h) or a multiple
of the travel time of the fastest connection (γ ∈ {2, 3, 5}) (realistic cases).

10.3 Computational Study 175

Algorithmic Labels Runtime
variant created inserted average

standard 205,260 45,886 1.003
max. waiting time = 5h 167,914 19,751 0.777
max. waiting time = 3h 151,680 15,441 0.637

Table 10.5: Limiting the maximum waiting time (realistic cases).

limit on the number of transfers completely. A reasonable limitation can be put on the
maximum waiting time at a station since long waiting periods are very unattractive for
most passengers. This especially improves the search for connections running over night.
The improvement can be seen in Table 10.5. Finally, the single limits can be applied
together in different ways. We applied conservative limits of 24 hours for maximum
travel time, five hours for maximum waiting time and γ = 5 and tight limits of ten
hours for maximum travel time, three hours for maximum waiting time and γ = 2. The
improvements can be found in Table 10.6.

In summary, together with the exact speed-up techniques, a speed-up factor of about
20 over the base-line version has been achieved with respect to the number of created
labels and a factor of 138 with respect to the number of insertions.

10.3.3.3 Comparison with a Time-Expanded Approach

In general, we expect a better performance of the time-dependent approach than of the
time-expanded one. It is unclear however, whether this can be achieved in a multi-
criteria setting. In order to answer this question, we compare the performance of our
time-dependent approach with the time-expanded search incorporated in MOTIS. As the
time-dependent system was developed as a proof of concept only, it makes not much sense
to compare runtimes. We restrict our analysis to the comparison of the number of labels
inserted into the priority queue. Note that the version of MOTIS we compare to employed
the concept of relaxed Pareto optimality and not yet the advanced Pareto approach (cf.
Chapter 2 for theory and Section 9.5.2.1 for the computational results). This version
comes closest to the concept of dominance used in our time-dependent system.

As can be seen in Table 10.7, the time-dependent approach creates much fewer labels.
When using realistic assumptions, the time-dependent system adds 5.4 times less labels
into the priority queue. However, it should be noted, that the time-dependent approach
requires additional effort to compute actual edge lengths on-the-fly. Thus, we expect (and
empirically observe) similar runtimes for both approaches. As expected, the memory con-
sumption of the time-expanded graph is a lot higher than that of the time-dependent one.
In our tests, MOTIS needed nearly 1GB while the time-dependent graph used only 281MB.

Algorithmic Labels Runtime
variant created inserted average

standard 205,260 45,886 1.003s
conservative limits 156,515 17,827 0.685s

tight limits 63,261 4,605 0.335s

Table 10.6: Performance improvement when combining limits (realistic cases).

176 Chapter 10: A Time-Dependent Timetable Information System

Algorithm Version Limits Labels inserted
time-expanded optimized conserv. 92,538
time-expanded optimized tight 64,782
time-dependent optimal none 44,133
time-dependent real. assump. tight 11,913

Table 10.7: The number of labels inserted into the priority queue on average for both the
time-dependent and the time-expanded search (real cases).

10.3.3.4 Adding an Additional Criterion: Reliability of Transfers

The preceeding experiments were performed using travel time and the number of transfers
as only search criteria. An interesting question is how the performance worsens when
further criteria are introduced. This was explored by adding the “reliability of transfers”
as a further criterion (cf. Section 6.3).

The reliability of a single transfer is a function of the buffer time which is the available
time exceeding the minimum transfer time at the station. This means that a passenger
will catch the connecting train unless the incoming train is delayed by more than the
buffer time. There are many plausible ways to map a buffer time t into a reliability
measure. In this chapter, we use

reliability : t 7→ µ− e(log(µ−η)− 1
α x)

with parameters η = 0.6, α = 8, µ = 0.99 so that the maximal reliability of a single
transfer is 99% and a buffer time of 0 minutes leads to 60% reliability. The reliability
of connections with several transfers is defined as the product of the reliabilities of each
single transfer.

This yields a continuous reliability measure which we further transformed into a dis-
crete one by subdividing the interval of [0,1] into 50, 20, and 10 equivalence classes of
equal width. Table 10.8 summarizes the performance of the search when using different
numbers of criteria. The addition of the number of transfers as second criterion leads to
a slow-down of factor two, the addition of reliability of transfers as third criterion leads
to a slow-down of another factor four if we use 10 equivalence classes.

As we can see (similar to the results in Section 9.9), increasing the number of equiva-
lence classes increases computational time, as more connections have to be followed in-
stead of being dominated by another connection formerly in the same equivalence class.

Labels Runtime Optima
Criteria created inserted avg avg

time 99,284 19,401 0.454s 1.28
time, transfers 205,260 45,886 1.003s 2.34
time, transfers, reliability[50] 990,664 160,254 5.726s 6.76
time, transfers, reliability[20] 853,742 149,366 4.727s 5.67
time, transfers, reliability[10] 772,822 142,615 4.138s 4.66

Table 10.8: Relationship between the number of criteria and performance on 1000 realistic
test cases. Different numbers of discretization steps are used for reliability of interchanges.

10.4 Conclusions and Future Work 177

10.4 Conclusions and Future Work

In this chapter, we have presented our prototype for a time-dependent, multi-criteria
search system that works in a fully realistic scenario. We have shown how to introduce the
most important features of real timetables and how to improve performance significantly.
We have provided the results of our experimental analysis that show that a speed-up factor
of 20 with respect to the number of label creations and 138 with respect to the number of
label insertions can be achieved under realistic assumptions. A comparison to the time-
expanded approach was done, indicating that the new approach clearly is competitive.
Finally, we discussed the impact on performance when adding further criteria to the
search.

In order to make the time-dependent approach able to replace current online search
systems, its performance needs to be improved further. If possible, optimality should be
maintained. It remains a challenge to design better speed-up techniques for multi-criteria
search. Another goal is to extend our prototype to a dynamic scenario with train delays
(as introduced for MOTIS in Chapter 7).

178 Chapter 10: A Time-Dependent Timetable Information System

Chapter 11

Developed Software Tools

In this chapter, we will present various user interfaces to demonstrate that MOTIS re-
ally is a full-fledged time table information system and not just a prototype showcasing
theoretical results.

First, we will present two graphical user interfaces. The first supports searching for
connections (MOTIS Search GUI) with nearly the same interface as customers are used
to. The second one is our Connection Controller and Alternatives System (CoCoAS)
for proactive route guidance, as already mentioned in Chapter 7. Afterwards, we will
briefly mention other visualization tools. We will close with a look at the “big picture”,
containing all the components introduced in this thesis.

11.1 GUI Architecture

11.1.1 MOTIS Backbone

All GUIs are connected to one or more MOTIS servers. These servers may optionally
have access to delay information as introduced in Chapter 7. Communication is handled
via HTTP-Interfaces transmitting queries and results in XML. Administrative commands
and affirmations are handled analogously.

11.1.2 GUIs

The Search and CoCoAS GUIs are accessible as web sites with any current browser on
a laptop or smart-phone. We decided to use the framework “Ruby on Rails”. The
applications run in apache with passenger extension. For CoCoAS an additional MySQL
database forms the persistence layer.

11.2 Search GUI

The MOTIS Search GUI provides all the possibilities every electronic timetable infor-
mation system offers, and more. The user has to enter at least source and destination
stations and the desired time τ of departure or arrival. As most users are accustomed to
specifying a single point in time, we create an interval [τ − 15min, τ +105min] from this.
Additional query options include the following:

179

180 Chapter 11: Developed Software Tools

Figure 11.1: Details of a connection from Wirges to Darmstadt main station (Hbf)

• only direct connections,

• some prominent attribute combinations
(bike transportation possible, with restaurant/bistro, handicapped accessible),

• train class restrictions (none, no high-speed trains, only regional trains), and

• search for additional alternatives, with. . .

– higher interchange reliability (toggling criterion reliability of interchanges cf.
Section 6.3)

– increased sleeping comfort (toggling search for night trains cf. Section 6.4).

The GUI presents an overview of the search results (cf. Figures 11.2 and 5.3) and
details for a selected connection (in Figure 11.1 for a query from my home town to my
university).

Furthermore, we have a multi-server display for the comparison of the results delivered
by various servers. These individual types of servers may be different search algorithms
(MOTIS or our time-dependent prototype), with or without access to delay information,
differently parameterized versions of the same server (e.g. diverse optimization-criteria),
servers with access to delay information and varying internal states (say one at 9:00 the
other already at 9:05), or interpret queries as on-trip or pre-trip. The comparison display
is helpful to developers for single case analysis of differences as well as for motivating the
need for the multi-criteria approach and our new criteria, e.g. reliability of interchanges.

11.3 Connection Controller and Alternatives System 181

In the single- and multi-server view the current and scheduled times are available for
servers with access to delay information (e.g. delayed ICE 721 in Figure 11.1). Addi-
tionally, the connection status is verified in such a server and displayed in the bottom
line.

For the connection in Figure 11.1 we see the departure and arrival times according to
the schedule and, for the delayed ICE 721, the updated event times. Without the delay,
an earlier connecting train would have been reached at Frankfurt main station.

In Figure 11.2 we see the comparison display for an on-trip search. Assume a passenger
is at station Hamburg at 5:00 in the morning (maybe he missed a connecting train). He
queries MOTIS for a connection to Würzburg. The two selected servers are MOTIS with
(blue #1) and without delay information (yellow #2). Connections are marked according
to the server that found them. The first and second were found by server #1 and #2,
respectively. The last two were found by both servers. Note that server #1 added delay
information to the results one, three, and four. The connection that reaches Würzburg
first was determined by server #1. It arrives 25 minutes earlier than the connection from
server #2. The last two connections have less interchanges, the last is cheaper. Therefore,
these alternatives are shown. Note that the travel time is counted starting at 5:00. The
first and best connection has an initial waiting time of 20 minutes before it departs at
5:20 (bottom figure). The interchange in Kassel-Wilhelmshöhe is only possible due to
the delay of the connecting ICE 531. A server without delay information would not have
been able to find this connection.

When introducing reliability of interchanges in Section 6.3, we saw a multi-server
display in Figure 6.1, comparing two servers with and without reliability of interchanges
as an optimization criterion. The scores for reliability of a single interchange or the
whole connection are symbolized by intuitively understandable graphics, here clocks for
interchanges (cf. Figures 6.2 and 11.1) and stars in Figure 6.1, (the more the better).

11.3 Connection Controller and Alternatives System

We implemented a proactive route guidance system, that constantly checks the status of
travel plans, offering information about status changes and supporting the search for al-
ternatives, called Connection Controller and Alternatives System (CoCoAS). This system
offers a new service to the public and demonstrates the benefits provided by a system
with delay information as introduced in Chapter 7.

The system basically works as follows: A user can register a planned trip obtained
from any timetable information system for controlling. Starting some time before the
actual departure of the connection, the connection is continuously checked for status
changes. Recall from Chapter 7 the potential states of a connection:

• Journeys can either be still valid (i.e., they can be executed as planned),

• they can be affected such that the arrival at the destination is delayed, or

• they may no longer be possible.

Whenever a status change occurs (or some predetermined change within a certain status,
e.g. a significant increase or decrease of the delay time in the second case), or only when
the status changes to “broken” and an action is required, the system informs the customer
about it via SMS or e-mail.

182 Chapter 11: Developed Software Tools

Figure 11.2: An on-trip query from Hamburg main station (Hbf) to Würzburg main
station (Hbf). The comparison display (top) shows connections determined by on-trip
search with (blue) and without (yellow) delay information. Details for the fastest con-
nection (bottom).

Now the customer may log on to our web site (per notebook or smart-phone) and
inspect his connection, the current delay, and how endangered the interchanges are. If
the interchange takes place one hour in the future and we have 1 minute less than the
required interchange time, we may still have hope. On the other hand, a forecast arrival
after the departure of the connecting train should most certainly trigger the search for
an alternative.

In case alternatives are requested, the system determines the current position of the
customer, either in a train or waiting at a station. More precisely the current position
should actually mean the position at the time the passenger is ready to travel. Customers
may specify the time needed before being able to change trains. More preparation time
might be required when traveling with luggage or children, than when only carrying a
newspaper. In case a train change is planned at the station anyway or the passenger is
already standing at a platform, this time is zero.

With this position the corresponding type of on-trip query is executed. The on-

11.3 Connection Controller and Alternatives System 183

trip queries guarantee to only deliver valid alternatives. Instead of querying a system
at a station after already missing the connecting train, this type of system allows the
alternatives to be determined while there are still many more possibilities. The following
types of alternatives may be presented:

• Different change. Change at a station originally planned for changing trains but to
another train.

• Earlier change. Change trains before arriving at a station originally planned for
changing trains.

• Later change. Stay longer in the train and change at a station after one originally
planned for changing trains.

• Different start. Sometimes problems with a connection are known before the pas-
senger has boarded the first train. In such cases, alternatives that require taking
a different first train, maybe even some minutes earlier to reach the destination in
time, can be produced by our system. Our system requires the earliest time a user
could arrive at the station and the time needed from notification to reaching the
station to provide such alternatives as well.

Note that the planned interchange mentioned above does not need to be the broken in-
terchange, it may be any interchange not after the broken one. The calculated alternative
is then merged with the original connection up to the starting point of the alternative,

Figure 11.3: CoCoAS example: Connection status at 10:50 - broken. 6 minutes are
missing to complete the interchange in Düsseldorf.

184 Chapter 11: Developed Software Tools

Figure 11.4: CoCoAS example: Overview of the alternatives for the broken connection

resulting in an alternative from source to destination. Even in the case of different change
the system can produce better connections than any system without delay information.
The other cases are not supported by any commercial system right now.

After selection of the best alternative, this becomes the connection currently super-
vised and the customer receives status message for this connection from now on.

Incidentally, our system may not only reduce the delay at the final station, it may
also allow passengers to arrive earlier, in case an interchange arises due to a delayed
connecting train. If a train is delayed by 10 minutes, changing to this train may become
feasible. So instead of taking the next train of that route scheduled to leave 50 minutes
later (a periodicity of one hour assumed), changing to the delayed train greatly reduces
waiting time at that station. Thus, the passenger arrives 50 minutes earlier.

Example To outline the whole process let us give a real example. Assume a customer
wanted to travel from Kaiserslautern to Mönchengladbach and selected a connection with
two interchanges, an interchange in Koblenz and one in Düsseldorf.

- The first change went well but at 10:45, he receives a message that his train change
in Düsseldorf may fail.

- He logs on to our CoCoAS site and sees that 6 minutes are missing (at 10:50) to
successfully complete the interchange (see Figure 11.3).

Figure 11.5: CoCoAS example: Details of the first alternative at 10:50.

11.4 Others 185

- He requests alternative connections (see Figure 11.4).
The first connection has him change in Köln at 11:15 (delayed) before the problem-
atic interchange in Düsseldorf, resulting in an arrival less than 10 minutes delayed.
With the other connection he would change in Düsseldorf to a later train, arriving
30 minutes later than planned.

- He prefers the alternative changing earlier in Köln (see Figure 11.5).

- The customer prepares to change in Köln at 11:15 and rechecks the status at 11:11.
In the meantime, the IC was further delayed, now ten minutes are missing to catch
the connecting train in Düsseldorf. The customer sees no chance to make up the
delay until his connecting train leaves in Düsseldorf. He selects the first alternative
and changes in Köln.

- CoCoAS supervises the remainder of the journey without triggering any action.
The final train increased its delay by one minute. In the end the customer arrives
delayed at 12:26 with the help of our system instead of 12:16 as originally planned.
Changing differently in Düsseldorf he would have arrived 20 minutes later, at 12:46.

Without our system, determining to change to the delayed RE 4711 in Köln would
have been difficult, especially since the arrival at Köln was at 11:25 in the end. Had the
customer queried any online timetable information system for a train leaving after 11:25,
he would not have seen RE 4711 at all, since according to schedule it would have already
left. Alternatives determined without delay information from Köln arrived no earlier
than 13:20, resulting in a worse alternative than changing trains in Düsseldorf. Should
the change at Köln have become impossible, the customer would have been informed
about that, since the new connection was under supervision once it was selected.

11.4 Others

MOTIS Visualization We have already seen some figures from our MOTIS visualiza-
tion tool, which is basically a version of MOTIS with QT drawing abilities. It is capable of
visualizing the search process in real-time, coloring inspected edges and visited or pruned
nodes. We also use it for drawing maps of visited or pruned stations according to all
implemented heuristics and to visualize the search results (e.g. different routes taken
by the connections). The visualization aided in the development (and improvement) of
search and speedup techniques. It was used to create the Figures 6.3, 8.2 (left), 8.5, 9.3,
9.4, 9.5, and 9.7 (left).

RailViz: Visualization of delay information Our student Christian Weber has
built a simulation and visualization tool for delayed trains “RailViz” in his on-going
Bachelor thesis. In Figure 11.6 we see a screen-shot of the system. The current simulation
time is 7:01. On the left hand side all ICE trains in Germany are drawn. The smaller
map around Hannover main station (Hbf) on the right shows all kinds of trains. Trains
are either arrows pointing in their travel direction or squares if they are standing in
stations. The trains arriving or departing within the last and next 5 minutes are shown
in the station window for Hannover on the right. The delays are color coded from dark
green for on time to light green, yellow, orange, and red for significantly delayed. The
simulation advances time in adjustable steps. Steps may either be executed one by one
or continuously via a timer.

186 Chapter 11: Developed Software Tools

Figure 11.6: A screen-shot of RailViz: Visualization of delay information. The tool shows
high-speed trains in Germany (left map) and all trains around Hannover (right map and
text area). Delays are color coded (green: on time, red: significantly delayed

The tool is fed by delay information processed in our real-time information server
(as introduced in Chapter 7). This visualization with moving trains and changing color
codes produces intuitively understandable impressions of the current situation and the
developments throughout Germany and at specific stations.

11.5 System Architecture: The Big Picture

In Figure 11.7, we see all the components of the MOTIS system. The topmost layer
consists of the applications which interact with the user. All requests from the interaction
layer are routed by the load balancer to the appropriate server in the computational layer.
This layer is composed of the search servers and the real-time information server.

A customer contacts the system through one of our GUIs. Depending on the requested
service, he either consults the timetable information system via the MOTIS Search GUI
(from Section 11.2) or CoCoAS (see below). The GUIs can be accessed from any web-
enabled device, e.g. PC, laptop, smart-phone, and other mobile devices.

The GUIs communicate with our load balancer in XML via HTTP. Behind the load
balancer are the timetable information servers: several MOTIS instances (see Chapter 5),
our time-dependent prototype (introduced in Chapter 10), and, maybe, a third party
system. We actually connected third party servers which, of course, do neither offer

11.5 System Architecture: The Big Picture 187

Figure 11.7: The system architecture of MOTIS.

188 Chapter 11: Developed Software Tools

all features of our system, nor do they support all search forms. Within our servers the
schedule is represented either as a time-expanded or time-dependent graph (cf. Chapter 4).

The load balancer selects appropriate and available servers to answer a query. For
example, a status decision test cannot be processed by a server without delay information.
On the other hand, a timetable request for next week should not be answered by such a
server.

The multi-server architecture for delay information (as introduced in Chapter 7) is
visible in the lower part. The real-time information server continuously receives status
messages about trains. These are processed in the dependency graph and prepared for
transmission. On request, the server updates one of our search servers. The update
cycles can be scheduled to guarantee the availability of service. Recall that a search
server spends only 0.1% of the time on updating and maintenance.

The CoCoAS system (introduced in Section 11.3) regularly checks the status of reg-
istered connections. Connections may be registered via the MOTIS Search GUI. They
may attain a delay or, in the worst case, break. The latter happens in case of can-
celed connecting trains or if the delay of a train is too high to change to the connecting
train. Once our system determines that a connection will break, it informs the customer
via e-mail or SMS. The customer logs on to the CoCoAS interface and obtains optimal
recommendations for the remainder of his journey.

Chapter 12

Conclusion and Outlook

Conclusion

In this thesis, we have presented MOTIS (Multi Objective Traffic Information System),
our fully realistic, multi-criteria timetable information system, and the concepts and
innovations it is based on.

Multi-Criteria To improve the capability and efficiency of multi-criteria searches we
have developed an enhanced approach to multi-criteria optimization: advanced Pareto
optimality. It delivers more interesting alternatives that classical approaches fail to de-
termine. At the same time, it not only removes unattractive solutions from the result sets
but increases search speed by not exploring paths towards those undesired alternatives.
Our universal formulation of advanced Pareto optimality allows the modeling of other
multi-criteria approaches like weighted sum, classical Pareto dominance, and our earlier
concept of relaxed Pareto dominance. Thus, it is a universal model for multi-criteria
optimization.

Additional Criteria We investigated the search for cheaper connections respecting
different regular tariff systems and even special offers. We have seen that searching for
special offers and regular fares simultaneously is not much more expensive (in terms of
runtime) than the search for regular fares alone. For high availability of contingents, the
existence of special offers for many connections even reduces runtimes. Little extra search
effort has to be spent on cheaper alternatives, once the faster connections have a fixed or
reduced price.

The newly introduced concept of reliability of transfers is a complex measurement
and required non-trivial engineering to be used as an additional criterion. However,
especially when dealing with delays, its importance even surpasses ticket costs, as the
ticket is already paid. We observed that the criterion reliability of transfers is even easier
to optimize than ticket costs, mainly due to its correlation with the least complicated
criterion: number of interchanges.

We presented two approaches to the search for night trains and see two possibilities to
apply them. If a customer explicitly asks for night train connections, the specially tailored
enumerative night train search (with faster feeder computation) delivers excellent quality.
In case the departure interval for a regular query lies in the evening, our second approach

189

190 Chapter 12: Conclusion and Outlook

with its additional criterion may automatically be activated without spending too much
extra computation time. Should attractive night train connections be found, they can be
offered as alternatives to the results produced for the regular query.

Graph and Algorithm The time-expanded graph model has been extended to become
a fully realistic model of the true schedule. We have evolved a generalization of Dijkstra’s
algorithm to efficiently determine all optimal solutions with respect to advanced Pareto
optimality. We presented an extensive study of speed-up techniques that are feasible in
our complex scenario and harmonize well with dynamic changes to the graph as results
of delays. Our methodology and speed-up techniques enable us to answer queries in a
quarter of a second on average, a tremendous speed-up compared to several minutes for
a naive implementation. 95% of all queries can be processed in less than one second. In
comparison to other approaches, our algorithm delivers superior accuracy at competitive
runtimes.

Incorporating Delays We developed a model to efficiently compute and update the
delays in our system. With the introduced dependency graph we can calculate secondary
delays and propagate delays due to connecting trains waiting for their feeders. Restruc-
turing the graph requires lots of local changes. By means of a careful case distinctions we
were able to achieve an average update time of 17µs per required node shift. The efficient
computations on the dependency graph and update achieve simulation times of less than
2 minutes for a whole day with over 6.3 million update messages.

The issues arising with traffic days have been addressed. We proposed changing the
graph model to only incur an increase in memory usage for the event nodes while keeping
the size of the change level small.

We have built a multi-server architecture with dedicated search servers and one (or
more) update servers that inform the others upon request about delay information. Each
individual search server spends only the tiniest amount of time on updating the graph
and changing the schedule between days. Every single one is available for searching 99.9%
of the day. Load balancing guarantees availability of the service at all times.

Time-Dependent Prototype Our investigation of the time-dependent model has
yielded a prototype implementation with competitive runtime for the concept of relaxed
Pareto optimality. This prototype is also fully realistic. We are currently working on
reducing the size of the graph and improving the functionality in conjunction with delays
of that system.

MOTIS System Apart from the core algorithm and graph model, we have intro-
duced front-ends and visualization tools. The MOTIS Search GUI and visualization tools
aid in the development and presentation of results and improvements. Our Connection
Controller and Alternatives System (CoCoAS) provides the new service of proactive route
guidance. It constantly updates the status of registered connections and informs the pas-
senger of foreseen problems (e.g. missed connecting trains). It provides more and better
alternatives than any other system can currently do.

191

Outlook

Further attention should be devoted to the following topics.

Further Speed-Up Potential

Recall that many trains do not operate every day. A lot of space may be saved if every
slave in a cluster within our multi-server architecture is only responsible for a certain set
of traffic days. For example, if we consider only three subsequent weekdays instead of
the complete period of one year, the number of arcs is reduced to roughly one third of
its original size. A train company may easily collect statistical data about how many
days/weeks in advance a traffic connection is typically inquired, and therefore balance
the load of the cluster.

The analysis of heavy-weight searches (Section 9.13) exposed two kinds of demanding
queries. The issues with ferries to islands can easily be overcome by backward searches
from the reachable ferry departures, as explained therein.

For the search starting or ending near “centers of mass transportation” we see another
solution technique, based on a similar principle. It might be beneficial not to search from
all possible starting points within the given departure intervals. Instead, we could deter-
mine the reasonable departures of long-distance trains and search towards those events.
Consider a train route that is operated every hour. Many different paths through the
mass transportation network towards the departure station do not constitute attractive
alternatives. Instead, we could summarize the means of mass transportation on some-
thing like “transportation edges” that are like footpaths, but model mass transportation.
Similar to the treatment of departures after footpaths, we could create departures at the
train stations eliminating the need for such a large number of start labels. See below for
an approach to model busses and subways, that could also be applied, for example, to
the inner-city stops of an S-Bahn.

The success of the shortcuts technique based on the definition of important stations
encourages studying longer and more complex shortcuts, even those that also model
changing trains. The unidirectional combination of arc-flags and contraction appears to
be promising. Berger et al. experimented on the time-dependent graph model [BDGM09]
and realized reasonable preprocessing times. Unfortunately, arc-flags are true for nearly
half of the bits, so a tremendous speed-up is not to be expected. Their construction
method resulted in bypassing nearly 60% of the stations, while our important station
heuristic allowed over 70% of the stations to be bypassed. Note that different definitions
of bypassing a station are used here.i We plan on doing similar experiments for our
time-expanded graph.

Prices

We want to extend our understanding of fare models, e.g. to honeycomb structures for
urban mass transportation. A systematic analysis of the possibilities to reproduce tariff
models and efficiently search for cheap connections with different models seems worth-
while. An overall improvement of the estimates for ticket cost could increase the appli-
cation field and decrease the runtime of our algorithm.

iand, additionally, stations on region borders could not be bypassed by Berger et el.

192 Chapter 12: Conclusion and Outlook

Incorporating Urban Mass Transportation

Urban mass transportation is not yet fully included. We would like to extend our model to
include the schedules of busses, subways, and streetcars. These means of transportation
operate at high frequencies, e.g. the subways in Berlin have departures every 2 to 5
minutes during rush-hour. Simply modeling each of the subway rides as one individual
train in the time-expanded model is clearly not possible.

We envision a hybrid model: A separate layer of mass transportation could be mod-
eled similarly to footpaths. These mass-transportation edges are always available and
their length depends on the current time (much like time-dependent edges). Changes
between means of mass transportation could be hidden behind the mass-transportation
edges. Thus, only stations where it is possible to change from or to the layer of mass
transportation need to be regarded during the search. Stations only relevant for mass-
transportation are only represented as possible source or target stations.

Multi-Modal Traffic

Routing from door to door is becoming increasingly popular. The point of view is no
longer concentrated on transporting a passenger from station A to station B. Railway
traffic wants to be part of some attractive way of getting from origin to destination. Here,
origin and destination can be home, office, place of a business meeting, vacation resort,
etc. Multi-modal traffic is not limited to public transportation. A typical trip basically
consists of three parts: First, a feeding section towards some railway station. This may
either be traveled on foot, by bike, or in a car or taxi. The middle part is within the
public transportation system (bus, train, etc.). Finally, a part towards the destination,
similar to the start again on foot, by bike, in a car or taxi. One or two of these parts
might be missing. Legal combinations are not restricted to using a car or bike on just
one end (near the home of the passenger, for example). Wherever services like rental cars
or bikes are available, they provide the opportunity of obtaining and using cars or bikes.
Alternatively, a connection with one’s own bike on the first and third part is possible with
bike transportation on the train(s) in between.

Two approaches to multi-modal routing are: a preselection approach and an integrated
model. Within the preselection approach, hand-over points are selected first. Then,
routing is done for foot, bike, or car from source to the corresponding hand-over points
near the source and from the hand-over points near the destination to the destination.
Next, timetable information is used between the hand-over points. This requires many-to-
many routing, which is quite complicated. For example, lower bounds cannot be applied
straightforwardly for goal-direction and domination by labels at the terminal. Finally,
complete journeys are constructed from the individual parts.

Within a fully integrated model, every type of transportation is regarded simultane-
ously. The individual part by car may only appear at the start and/or end of a journey.
Thus, switching from road to rail and back results in a naturally bitonic hierarchy. To
determine the car (or bike) parts from one (either source or destination) to all stations
within a reasonable distance would require solving a one-to-many shortest path problem
on road networks. However, most speed-up techniques for road-networks heavily exploit
the one-to-one structure of the traditional routing problem.

Together with the issues still present on the railway (and urban mass transportation)
part we consider multi-modal traffic a really exciting research topic for the future.

Appendix A:
Transitivity

A.1 The Time Difference Formula

In this section we will show that the relaxation function for travel time as introduced in
Section 2.3.1 is indeed transitive. Let dX , aX , and tX denote the departure time, arrival
time, and travel time of a connection X, respectively. We can now restate Inequality 2.1:

tA +
tA

2 · tB
·min{|dA − dB |, |aA − aB |, ω(A,B)} < tB , (A.1)

with

ω(A,B) =
{

0 if A overtakes B
100, 000 otherwise

to void the relaxation if A overtakes B.
We will use the notation ψXY = min{|dX−dY |, |aX−aY |, ω(X, Y)} for two connections

X and Y .
To prove transitivity we assume A <r B and B <r C, thus we have

tA +
tA

2 · tB
· ψAB < tB and tB +

tB
2 · tc

· ψBC < tC (A.2)

Insight 1. As ψXY ≥ 0 and tX , tY ≥ 0 for all X, Y , from the equations in (A.2) immedi-
ately follows

tA < tB < tC .

Insight 2. Again from the equations in (A.2) we have:

tC > tA +
tA

2 · tB
· ψAB +

tB
2 · tC

· ψBC

> tA +
tA

2 · tB
· ψAB +

tA
2 · tC

· ψBC as tA < tB

> tA +
tA

2 · tB
· tB
tC

· ψAB +
tA

2 · tC
· ψBC as

tB
tC

< 1

= tA +
tA

2 · tC
· ψAB +

tA
2 · tC

· ψBC

= tA +
tA

2 · tC
· (ψAB + ψBC)

193

194 Appendix A: Transitivity

Case Departure times ψAB ψBC ψAC

1 dA ≤ dB ≤ dC dB − dA dC − dB dC − dA

2 dA ≤ dC ≤ dB dB − dA aB − aC or 0 dC − dA

3 dB ≤ dA ≤ dC aA − aB or 0 dC − dB dC − dA

4 dB ≤ dC ≤ dA aA − aB or 0 dC − dB aA − aC or 0
5 dC ≤ dA ≤ dB dB − dA aB − aC or 0 aA − aC or 0
6 dC ≤ dB ≤ dA aA − aB or 0 aB − aC or 0 aA − aC or 0

Table A.1: Case distinction according to the ordering of the departure times of three
connection A, B, and C. For two connections X and Y the possible values for ψXY are
given according to Insights 3 and 4.

If we manage to show that ψAB + ψBC ≥ ψAC holds, we have proven transitivity.

Insight 3. Let dX ≤ dY and tX < tY . Then, aX = dX + tX < dY + tY = aY . Since

aY − aX︸ ︷︷ ︸
>0

= (dY + tY)− (dX + tX) = dY − dX︸ ︷︷ ︸
≥0

+ tY − tX︸ ︷︷ ︸
>0

> dY − dX︸ ︷︷ ︸
≥0

,

and no overtaking takes place (ω(X, Y) = 100, 000 in ψXY), we get ψXY = dY − dX in
that case.

Insight 4. Let dX ≥ dY and tX < tY .
4a) Since for aX ≥ aY :

aX − aY︸ ︷︷ ︸
≥0

= (dX + tX)− (dY + tY) = dX − dY︸ ︷︷ ︸
≥0

+ tX − tY︸ ︷︷ ︸
<0

< dX − dY︸ ︷︷ ︸
≥0

and no overtaking takes place (ω(X, Y) = 100, 000 in ψXY), we get ψXY = aX − aY .

4b) For aX < aY , connection X overtakes connection Y and we have ω(X, Y) = 0,
thus ψXY = 0.

Case Distinction We will now start a case distinction according to the ordering of the
departure times, as listed in Table A.1, inserting the possible terms for ψXY as seen in
Insights 3 and 4:

Case 1. dA ≤ dB ≤ dC

ψAB + ψBC = dB − dA + dC − dB = dC − dA = ψAC

Case 2. dA ≤ dC ≤ dB i) aB ≥ aC and ψBC = aB − aC (Insight 4a), then

ψAB + ψBC = dB − dA + aB − aC︸ ︷︷ ︸
≥0

≥ dB − dA ≥︸︷︷︸
dB≥dC

dC − dA = ψAC .

ii) aB < aC , and ψBC = 0 (Insight 4b), then

ψAB + ψBC = dB − dA + 0 ≥︸︷︷︸
dB≥dC

dC − dA = ψAC .

A.1 The Time Difference Formula 195

Case 3. dB ≤ dA ≤ dC

i) aA ≥ aB and ψAB = aA − aB (Insight 4a), then

ψAB + ψBC = aA − aB︸ ︷︷ ︸
≥0

+dC − dB ≥︸︷︷︸
−dB≥−dA

dC − dA = ψAC .

ii) aA < aB , and ψBC = 0 (Insight 4b), then

ψAB + ψBC = dC − dB + 0 ≥︸︷︷︸
−dB≥−dA

dC − dA = ψAC .

Case 4. dB ≤ dC ≤ dA

As tC > tB , aC ≥ aB always holds.

i) aB ≤ aC ≤ aA and ψAB = aA − aB (Insight 4a) and ψAC = aA − aC (Insight 4a)

ψAB + ψBC = aA − aB + dC − dB︸ ︷︷ ︸
≥0

≥ aA − aB ≥︸︷︷︸
−aB≥−aC

aA − aC = ψAC

ii) aB ≤ aA ≤ aC and ψAB = aA − aB (Insight 4a) and ψAC = 0 (Insight 4b)

ψAB + ψBC = aA − aB︸ ︷︷ ︸
≥0

+ dC − dB︸ ︷︷ ︸
≥0

≥ 0 = ψAC

iii) aA ≤ aB ≤ aC and ψAB = 0 (Insight 4b) and ψAC = 0 (Insight 4b)

ψAB + ψBC = 0 + dC − dB︸ ︷︷ ︸
≥0

≥ 0 = ψAC

Case 5. dC ≤ dA ≤ dB

As tB > tA, aB ≥ aA always holds.

i) aC ≤ aA ≤ aB and ψBC = aB − aC (Insight 4a) and ψAC = aA − aC (Insight 4a)

ψAB + ψBC = dB − dA︸ ︷︷ ︸
≥0

+aB − aC ≥ aB − aC ≥︸︷︷︸
aB≥aA

aA − aC = ψAC

ii) aA ≤ aC ≤ aB and ψBC = aB − aC (Insight 4a) and ψAC = 0 (Insight 4b)

ψAB + ψBC = dB − dA︸ ︷︷ ︸
≥0

+ aB − aC︸ ︷︷ ︸
≥0

≥ 0 = ψAC

iii) aA ≤ aB ≤ aC and ψBC = 0 (Insight 4b) and ψAC = 0 (Insight 4b)

ψAB + ψBC = dB − dA︸ ︷︷ ︸
≥0

+0 ≥ 0 = ψAC

196 Appendix A: Transitivity

Case Arrival times ψAB ψBC ψAC

6 i) aC ≤ aB ≤ aA aA − aB aB − aC aA − aC

6 ii) aC ≤ aA ≤ aB 0 aB − aC aA − aC

6 iii) aB ≤ aC ≤ aA aA − aB 0 aA − aC

6 iv) aB ≤ aA ≤ aC aA − aB 0 0
6 v) aA ≤ aC ≤ aB 0 aB − aC 0
6 vi) aA ≤ aB ≤ aC 0 0 0

Table A.2: Case distinction according to the ordering of the arrival times for case 6 of
the preceeding table.

Case 6. dC ≤ dB ≤ dA

As we have six possible sequences for the arrivals of A, B, and C, we summarized the
resulting values for ψXY in Table A.2.

6i) aC ≤ aB ≤ aA

ψAB + ψBC = aA − aB + aB − aC = aA − aC = ψAC

6ii) aC ≤ aA ≤ aB

ψAB + ψBC = 0 + aB − aC ≥︸︷︷︸
aB≥aA

aA − aC = ψAC

6iii) aB ≤ aC ≤ aA

ψAB + ψBC = aA − aB + 0 ≥︸︷︷︸
−aB≥−aC

aA − aC = ψAC

6iv) aB ≤ aA ≤ aC

ψAB + ψBC = aA − aB︸ ︷︷ ︸
≥0

+0 ≥ 0 = ψAC

6v) aA ≤ aC ≤ aB

ψAB + ψBC = 0 + aB − aC︸ ︷︷ ︸
≥0

≥ 0 = ψAC

6vi) aA ≤ aB ≤ aC

ψAB + ψBC = 0 + 0 = 0 = ψAC

This concludes the case distinction for case, Case 6.
Thus, all cases from Table A.1 have been considered.

Finally, we have shown that

A <r B and A <r C ⇒ A <r C.

A.2 The Hourly Wage Tightening 197

A.2 The Hourly Wage Tightening

Connection time cost
A 180 min 30e
B 120 min 26e
C 100 min 27e

X Y diff(X, Y) diff(X, Y) · δcost

A B 60 5e
B C 0 0e
A C 0 0e

Table A.3: Three example connections (left) and the resulting tightening terms in In-
equality (A.3) for δcost = 5e (right).

We will use the connections in Table A.3 (left) to show that transitivity does not hold
if we use tightened dominance on ticket cost as introduced in Section 2.3.2 as the only
criterion. Let us restate Inequality 2.2 for ease of reference:

costA −
max{timeA − timeB , 0}

60
· δcost < costB . (A.3)

Connection A with cost costA and travel time timeA dominates connection B with costB
and timeB only if the inequality holds. The values for

diff(A,B) =
max{timeA − timeB , 0}

60

and diff(A,B) · δcost for δcost = 5 are given in Table A.3 (right). We have A <t B, since

costA − diff(A,B) · δcost = 30− 5 = 25 < 26 = costB

and B <t C since

costB − diff(B,C) · δcost = 26− 0 < 27 = costC .

However, due to costA − diff(A,C) · δcost = 30 − 0 6< 27 = costC and A 6<t C, hence
transitivity does not hold.

198 Appendix A: Transitivity

Appendix B:
Speed-Up Techniques

B.1 Lower Bounds

In Table B.1 the influence of the lower bounds on travel time and interchanges and
different ways to obtain them can be found. All numbers are in comparison to the most
basic version with lower bounds on the travel time from the standard station graph using
a uni-directional algorithm without pruning in the preprocessing (from the computational
study in Section 9.7).

SG ICG Runtime PQ extracts Labels created
options options avg ratio avg ratio avg ratio

in ms in % in % in %

standard - - - 710.6 100.00 92,860 100.00 149,225 100.00
sixhours - - - 708.6 99.72 90,423 97.38 145,442 97.46
rushhours - - - 707.8 99.61 90,172 97.11 145,085 97.23
fourhours - - - 725.3 102.06 89,212 96.07 143,736 96.32
standard B - - 723.5 101.82 92,857 100.00 149,221 100.00
standard BT - - 690.7 97.20 90,909 97.90 144,416 96.78
standard BTP - - 638.3 89.83 84,742 91.26 134,479 90.12
fourhours BTP - - 707.7 99.60 83,000 89.38 134,005 89.80
standard BTP std - 462.3 65.06 57,941 62.40 90,942 60.94
standard BTP uni - 432.4 60.85 57,941 62.40 90,942 60.94
fourhours BTP uni - 493.6 69.47 56,521 60.87 89,253 59.81
standardF BTP uni U 412.1 58.00 57,926 62.38 90,921 60.93
standard BTP uni BT 467.9 65.85 56,754 61.12 89,311 59.85
standard BTP uni UBT 423.1 59.54 56,749 61.11 89,301 59.84

Options: B = bidirectional Dijkstra / T = triangle inequalities /

P = biconnected component pruning / U = using pruning information from SG in ICG

Table B.1: The influence of lower bounds from the station graph (SG) and interchange
graph (ICG). Runtime, number of significant operations, and preprocessing times on both
auxiliary graphs.

199

200 Appendix B: Speed-Up Techniques

Runtime PQ extracts Labels created Quality loss
ISH SC P avg ratio avg ratio avg ratio conn query

in % in % in % in % in %

F- - - 412.1 100.0 57,926 100.0 90,921 100.0 - -
N2 - 430.6 104.5 57,937 100.0 90,920 100.0 0.00 0.00
N3 - 317.8 77.1 44,911 77.5 64,237 70.7 0.76 2.12
N3 - S 317.9 77.1 35,560 61.4 64,371 70.8 0.68 2.02
N3 N I 269.0 65.3 32,656 56.4 52,186 57.4 0.76 2.12
N3 N 275.6 66.9 33,411 57.7 53,250 58.6 0.11 0.38
N3 A I 580.3 140.8 36,982 63.8 84,007 92.4 2.13 6.72
N3 A 596.2 144.7 37,851 65.3 86,024 94.6 1.37 4.90
N4 - 267.5 64.9 38,971 67.3 53,475 58.8 2.16 5.80
N4 - S 263.3 63.9 26,259 45.3 53,429 58.8 2.33 6.32
N4 N I 201.8 49.0 23,876 41.2 38,278 42.1 2.68 6.94
N4 N 210.9 51.2 25,054 43.3 40,136 44.1 1.74 4.56
N4 A I 385.4 93.5 26,286 45.4 55,645 61.2 4.70 12.73
N4 A 394.9 95.8 27,609 47.7 58,625 64.5 3.48 9.88
N5 - 242.5 58.8 34,209 59.1 46,934 51.6 4.80 12.04
N5 - S 235.2 57.1 20,243 34.9 46,651 51.3 5.11 12.74
R5 - 405.7 98.4 55,247 95.4 84,945 93.4 0.51 1.64
R5 - S 411.6 99.9 52,204 90.1 84,845 93.3 0.62 1.94
R5 N I 406.8 98.7 53,680 92.7 83,343 91.7 0.56 1.82
R5 N 424.4 103.0 55,296 95.5 86,873 95.5 0.04 0.20
R5 A I 1337.9 324.6 64,721 111.7 183,274 201.6 1.76 5.96
R5 A 1401.6 340.1 67,763 117.0 194,022 213.4 1.14 4.10
R10 - 383.9 93.1 48,188 83.2 75,272 82.8 2.73 6.82
R10 - S 378.8 91.9 40,699 70.3 74,993 82.5 2.93 7.62
R10 N I 375.9 91.2 43,425 75.0 70,171 77.2 3.02 7.44
R10 N 391.6 95.0 48,483 83.7 76,540 84.2 0.73 2.22
R10 A I 985.4 239.1 50,440 87.1 137,066 150.8 4.79 12.80
R10 A 1105.2 268.2 58,784 101.5 157,732 173.5 2.07 6.72
R15 332.4 80.6 41,767 72.1 63,682 70.0 5.72 13.26
R15 S 323.0 78.4 31,653 54.6 63,360 69.7 5.79 13.50

- F B 84.8 20.6 7,923 13.7 10,965 12.1 67.71 77.92
- F N 583.0 141.5 59,861 103.3 107,684 118.4 2.29 9.56

Parameters P : S = skip labels at unimportant stations
I = use important station heuristic together with shortcuts

B/N = with/without blocking according to shortcuts

Table B.2: Results for the important stations heuristic (ISH) using the neighbors (N) or
routes (R) variant and optionally shortcuts (SC) to the final station (F), or the next (N),
or all (A) important stations. Runtime, number of significant operations, and quality loss
in connections (conn) and queries (query).

B.2 Important Station and Shortcuts Heuristics 201

B.2 Important Station and Shortcuts Heuristics

In Table B.2 we summarized all combinations of parameters for the important station
heuristic and the various definitions of shortcuts. Especially the following points are
easier to observe in this table than in the separate Tables 9.29 and 9.30.

• Using shortcuts together with the important station heuristic (lines with I), the
search runs faster than using only shortcuts and delivers results of the same quality
as for the important station heuristic.

• When foregoing the important station heuristic in combination with shortcuts, the
quality increases for 1.5% to 2.5% of the queries for (N3,N4,R5) and even 5%
for (R10).

• Version scnext with shortcuts based on routes is actually slower than the plain
important station heuristic.

B.3 Search Space

We have seen the impact of toggling the lower bounds from the interchange graph in
Figure 9.5 on page 147. In Figure B.1 we visualize the impact of various speed-up tech-
niques on the stations that are visited during an exemplary search. The search was from
Löffingen (blue) to Bodenfelde (red). Visited stations and train lines are shown in pink,
those untouched are grey. In the final picture, the paths taken by the determined optimal
connections are colored in green. We start with the plain search without any speed-up
technique (top left). It already uses the best priority queue and smaller relation. We
successively added the following speed-up techniques:

• first goal-direction (cf. Section 8.3) and domination by labels at the terminal (cf.
Section 8.4) using simple lower bounds for travel time only (top right),

• then lower bounds for all criteria and the techniques limiting the search horizon
(bidirectional Dijkstra and pruning of biconnected components, cf. Section 8.5.5)
(bottom left),

• and finally the heuristics important station (cf. Section 8.7) and shortcuts (cf. Sec-
tion 8.7.2) (bottom right).

The significant reductions in each step are easy to observe. Together with the tremen-
dous decrease of touched nodes at each visited stations, this reduction enables the im-
provement in runtime from several minutes to about a quarter of a second.

202 Appendix B: Speed-Up Techniques

Plain version Goal-direction and domination
by labels at the terminal

All lower bounds incl. pruning Heuristics: shortcuts
and important station

Figure B.1: Reduction of the search space when activating various speed-up techniques.

Curriculum Vitae

Persönliche Daten

Name

Geburtsdatum

Geburtsort

Familienstand

Mathias Schnee

14. Juli 1979

Dernbach (WW)

ledig

Anstellungen

seit 2004

2001 – 2004

1998 – 2001

1998 – 1999

Wissenschaftlicher Mitarbeiter
Fachbereich Informatik, Technische Universität Darmstadt

Wissenschaftliche Hilfskraft

freiberuflicher Java-Entwickler

Grundwehrdienst beim Heeresführungskommando
(G6 Informationsverarbeitung)

Akademische Abschlüsse und Schulbidung

2004 – 2009

1999 – 2004

1989 – 1998

1985 – 1989

Promotionsstudium in Informatik am Fachbereich Algorithmik
an der Technische Universität Darmstadt

Diplomstudium in Informatik mit Nebenfach Operations Research
an der Rheinischen Friedrich-Wilhelms-Universität Bonn

Mons-Tabor-Gymnasium Montabaur

Theodor-Heuss-Grundschule Wirges

Erklärung
Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst, keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt und alle Stellen, die dem
Wortlaut oder Sinne nach anderen Werken entnommen sind, durch Angabe der
Quellen als Entlehnungen kenntlich gemacht habe.

Darmstadt, den 08.09.2009

(Mathias Schnee)

List of Algorithms

1 Textbook version of Dijkstra’s algorithm. 22
2 Dijkstra’s algorithm using a priority queue. 24
3 Dijkstra’s algorithm using a priority queue without decreaseKey. 29
4 Procedure updateNodeList(...) for Algorithm 5. 32
5 Generalization of Dijkstra’s algorithm for the multi-criteria case. 33
6 Floyd-Warshall algorithm. 43
7 Pseudocode for the MOTIS algorithm. 49
8 Pseudocode for the MOTIS algorithm with speed-up techniques. 122

205

206 List of Algorithms

List of Tables

2.1 Examples for Pareto dominance and extensions 12
2.2 Examples for advanced Pareto dominance 17
2.3 Coefficients and relaxation terms for rule set (III) 19

6.1 Parameters and sample values for the reliability function 61
6.2 Maximal attainable reliability in dominance testing 62

7.1 Sizes of the search graph for two days using different models 85
7.2 Properties of the search graph and dependency graph for one day 87
7.3 Number of transfer edges depending on waiting policy and parameters . . 88
7.4 Simulation a whole day with different policies and parameters 89
7.5 Runtime and operation counts for split server architecture 91

8.1 Number of trains, stations, edges, and nodes for our schedule. 102
8.2 Sizes of different station graphs . 107
8.3 Sizes of different interchange station graphs 109
8.4 Number of edges and nodes saved using the “bypass” heuristic 113
8.5 Number of important stations and shortcuts 114

9.1 Size of the time-expanded graph. 126
9.2 Simultaneous search for several tariff types 127
9.3 Results for the fast search for fixed price connections 129
9.4 Key parameters of the schedule and the corresponding graph. 131
9.5 Number of connections found, failures, and runtime for all night train

search variants . 131
9.6 Pairwise comparison of the first ranked solutions. 133
9.7 Coefficients and relaxation terms for Pareto dominance (P) and relaxed

Pareto dominance (R) . 137
9.8 Coefficients and relaxation terms for advanced Pareto dominance (AW) . 138
9.9 Coefficients and relaxation terms for advanced Pareto dominance (A) . . . 138
9.10 Influence of Pareto, relaxed Pareto, or advanced Pareto 139
9.11 Influence of criteria: toggling ticket cost, reliability, and number of inter-

changes . 140
9.12 Influence of the rows in advanced Pareto dominance (A). 141
9.13 Differing wages for our profiles standard (W), business customer (B) and

handicapped person (H) in advanced Pareto dominance (AW). 142
9.14 Searching with different wage profiles for business customers 142

207

208 List of Tables

9.15 Searching with different wage profiles for handicapped customers 143
9.16 Influence of strategies goal-direction and domination by terminal labels . 144
9.17 Influence of lower bounds: station graph 145
9.18 Influence of lower bounds: ticket cost and reliability of interchanges . . . 146
9.19 Influence of lower bounds: interchange graph 146
9.20 Influence of different priority queue types 149
9.21 Influence of different weights for the number of interchanges in the smaller

relation . 150
9.22 Strategy reordering the priority queue . 151
9.23 Influence of techniques: skip departures, bypass departures, and avoid in-

serting minimum labels . 151
9.24 Number of equivalence classes for criterion reliability of interchanges . . . 152
9.25 Varying the maximal effective reliability µ̂ for an interchange 153
9.26 Heuristics bitonic search and mass transportation 154
9.27 Heuristic routes blocking . 155
9.28 Combining heuristics mass transportation and routes blocking 156
9.29 Important station heuristic . 157
9.30 Shortcuts heuristic . 159
9.31 Combining heuristics important station with and without shortcuts, mass

transportation and routes blocking . 160

10.1 Comparison of the base-line variant with an optimized version 173
10.2 Performance: Different models of transfer costs and the techniques avoid

hopping and forwarding of labels . 173
10.3 Performance: combinations of the simple and complex graphs to obtain

lower bounds . 174
10.4 Performance: Limiting the maximum travel time 174
10.5 Performance: Limiting the maximum waiting time 175
10.6 Performance: Combining limits . 175
10.7 Priority queue insertions for time-dependent and time-expanded search . . 176
10.8 Performance: Number of criteria and discretizing the reliability of inter-

changes . 176

A.1 Case distinction according to the ordering of the departure times 194
A.2 Case distinction according to the ordering of the arrival times for case 6 . 196
A.3 Transitivity and tightening: hourly wage example 197

B.1 Influence of lower bounds: station graph and interchange graph 199
B.2 Important stations and shortcuts . 200

List of Figures

3.1 Example for exponentially many Pareto optimal paths. 31

4.1 Simple time-expanded and time-dependent graph examples 36
4.2 Time-expanded graph with change nodes 38
4.3 Time-dependent graph using train routes 39

5.1 Time-expanded graph in MOTIS . 42
5.2 The edge class hierarchy in MOTIS . 47
5.3 MOTIS Search GUI: Connections from Darmstadt to Halle 50

6.1 MOTIS Search GUI: Comparison display – reliability of transfers 64
6.2 MOTIS Search GUI: Connections with differing reliability of transfers . . 65
6.3 Alternative night train connections from Stuttgart to Hamburg. 67
6.4 Selection of pairs of entry and exit points 70

7.1 Sketch of the system architecture. 78
7.2 Illustration of the dependency graph model. 80
7.3 Exemplary changes to the change level . 83
7.4 CoCoAS: Alternatives for a broken connection – overview 92

8.1 Visualization for speed-up techniques early termination, goal-direction, and
bidirectional search . 97

8.2 A graph partitioning for arc flags and a multi-level overlay graph 99
8.3 Example for contraction in the interchange station graph 108
8.4 Pruning results using the station graph 110
8.5 Pruning based on biconnected components 111
8.6 Different ways of chaining nodes on the change level 112
8.7 Bypass departure nodes example. 113
8.8 Shortcuts to the important stations of a train 115

9.1 Distribution of the extract operations for a mixture of fare types 128
9.2 Distribution of the number of Pareto and relaxed Pareto optima 128
9.3 Night train routes in the railway network of Germany 130
9.4 Origin-Destination-Pairs for our test queries. 135
9.5 Search space reduction with lower bounds from the interchange graph . . 147
9.6 Runtime and number of optima for our reference version 162
9.7 Alternative Connections for a Query . 165

209

210 List of Figures

10.1 Extension of a simple time-dependent graph to support transfers 169
10.2 Modeling foot-edges and special transfer rules 170

11.1 MOTIS Search GUI: Details of a connection 180
11.2 MOTIS Search GUI: Comparison display – on-trip search 182
11.3 CoCoAS: Status check result . 183
11.4 CoCoAS: Alternatives overview . 184
11.5 CoCoAS: Details of an alternative . 184
11.6 RailViz: Visualization of delay information 186
11.7 System architecture: The big picture . 187

B.1 Reduction of the search space when activating various speed-up techniques 202

Bibliography

[AMO93] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows, chapter 4. Prentice-
Hall, 1993.
(Cited on pages 26 and 29.)

[AMOT90] R. K. Ahuja, K. Mehlhorn, J. Orlin, and R. E. Tarjan. Faster algorithms for
the shortest path problem. Journal of the ACM, 37(2):213–223, 1990.
(Cited on page 29.)

[APW02] L. Anderegg, P. Penna, and P. Widmayer. Online train disposition: to wait
or not to wait? ATMOS’02, ICALP 2002 Satellite Workshop on Algorith-
mic Methods and Models for Optimization of Railways, Electronic Notes in
Theoretical Computer Science, 66(6), 2002.
(Cited on page 75.)

[BD09] R. Bauer and D. Delling. SHARC: Fast and robust unidirectional routing.
ACM Journal of Experimental Algorithmics, 14:2.4–2.29, 2009.
(Cited on page 101.)

[BDD09] E. Berrettini, G. D’Angelo, and D. Delling. Arc-flags in dynamic graphs. In
ATMOS 2009 - 9th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems, to appear, 2009.
(Cited on page 101.)

[BDGM09] A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hanneman. Accelerating
time-dependent multi-criteria timetable information is harder than expected.
In ATMOS 2009 - 9th Workshop on Algorithmic Approaches for Transporta-
tion Modeling, Optimization, and Systems, to appear, 2009.
(Cited on pages 101, 114, 124, and 191.)

[BDS+08] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wag-
ner. Combining hierarchical and goal-directed speed-up techniques for Dijk-
stras algorithm. In Experimental Algorithms, volume 5038 of Lecture Notes
in Computer Science, pages 303–318. Springer, 2008.
(Cited on page 100.)

[BDSV09] G. V. Batz, D. Delling, P. Sanders, and C. Vetter. Time-dependent contrac-
tion hierarchies. In I. Finocchi and J. Hershberger, editors, ALENEX, pages
97–105. SIAM, 2009.
(Cited on page 101.)

211

212 Bibliography

[BFSS07] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road networks
using transit nodes. Science, 316(5824):566, April 2007.
(Cited on page 100.)

[BJ04] G. S. Brodal and R. Jacob. Time-dependent networks as models to achieve
fast exact time-table queries. In Proceedings of the 3rd Workshop on Algo-
rithmic Methods and Models for Optimization of Railways (ATMOS 2003),
volume 92 of Electronic Notes in Theoretical Computer Science, pages 3–15.
Elsevier, 2004.
(Cited on pages 35, 36, and 168.)

[BSS89] J. Brumbaugh-Smith and D. Shier. An empirical investigation of some bicri-
terion shortest path algorithms. European Journal of Operational Research,
43:216–224, 1989.
(Cited on pages 32 and 101.)

[CH66] K. L. Cooke and E. Halsey. The shortest route through a network with time-
dependent internodal transit times. Journal of Mathematical Analysis and
Applications, 14:493–498, 1966.
(Cited on pages 35 and 101.)

[Del08a] D. Delling. Engineering and Augmenting Route Planning Algorithms. PhD
thesis, Universität Karlsruhe (TH), Department of Computer Science, 2008.
(Cited on page 101.)

[Del08b] D. Delling. Time-dependent SHARC-routing. In D. Halperin and
K. Mehlhorn, editors, ESA, volume 5193 of Lecture Notes in Computer Sci-
ence, pages 332–343. Springer, 2008.
(Cited on pages 101 and 124.)

[Deu09] Deutsche Bahn AG / DB Mobility Logistics AG. Deutsche Bahn DB Mobility
Logistics Daten & Fakten 2008, 2009.
(Cited on pages iii and 1.)

[DGKK79] R. Dial, F. Glover, D. Karney, and D. Klingman. A computational analysis
of alternative algorithms and labeling techniques for finding shortest path
trees. In Networks, volume 9, pages 215–248, 1979.
(Cited on page 29.)

[DGWZ08] D. Delling, K. Giannakopoulou, D. Wagner, and C. Zaroliagis. Timetable
information updating in case of delays: Modeling issues. Technical report,
ARRIVAL, January 2008.
(Cited on pages 74, 75, and 101.)

[DH90] J. Divoky and M. Hung. Performance of shortest path algorithms in network
flow problems. Management Science, 36:661–673, 1990.
(Cited on page 29.)

[DI04] C. Demetrescu and G. F. Italiano. Engineering shortest path algorithms. In
C. C. Ribeiro and S. L. Martins, editors, WEA, volume 3059 of Lecture Notes
in Computer Science, pages 191–198. Springer, 2004.
(Cited on page 101.)

Bibliography 213

[DI06] C. Demetrescu and G. F. Italiano. Experimental analysis of dynamic all pairs
shortest path algorithms. ACM Transactions on Algorithms, 2(4):578–601,
2006.
(Cited on page 101.)

[Dia69] R. Dial. Algorithm 360: Shortest path forest with topological ordering. In
Communications of ACM, volume 12, pages 632–633, 1969.
(Cited on pages 27, 29, and 117.)

[Dij59] E. Dijkstra. A note an two problems in connexion with graphs. In Numerische
Mathematik 1, pages 269–271, 1959.
(Cited on pages 22 and 29.)

[Dis07] Y. Disser. Multi-criteria search for optimal train connections using the time-
dependent graph model. Diploma thesis, Technical University of Darmstadt,
Department of Computer Science, Nov 2007.
(Cited on pages 5 and 48.)

[DMS08] Y. Disser, M. Müller-Hannemann, and M. Schnee. Multi-criteria shortest
paths in time-dependent train networks. In WEA 2008 7th International
Workshop on Experimental Algorithms, Provincetown, MA, USA, volume
5038 of Lecture Notes in Computer Science, pages 347–361. Springer Verlag,
2008.
(Cited on pages 5, 48, and 167.)

[DPW08] D. Delling, T. Pajor, and D. Wagner. Engineering time-expanded graphs
for faster timetable information. In M. Fischetti and P. Widmayer, editors,
ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transporta-
tion Modeling, Optimization, and Systems, Dagstuhl, Germany, 2008. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.
(Cited on pages 101, 112, 113, and 119.)

[DSSW09] D. Delling, P. Sander, D. Schultes, and D. Wagner. Engineering route plan-
ning algorithms. In Algorithmics of Large and Complex Networks, volume
5515 of LNCS, pages 117–139. Springer, 2009.
(Cited on page 101.)

[DW07] D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. In
C. Demetrescu, editor, WEA, volume 4525 of Lecture Notes in Computer
Science, pages 52–65. Springer, 2007.
(Cited on page 101.)

[DW09a] D. Delling and D. Wagner. Pareto paths with SHARC. In J. Vahrenhold,
editor, SEA, volume 5526 of Lecture Notes in Computer Science, pages 125–
136. Springer, 2009.
(Cited on pages 101 and 124.)

[DW09b] D. Delling and D. Wagner. Time-dependent route planning. In R. K. Ahuja,
R. Möhring, and C. Zaroliagis, editors, Robust and Online Large-Scale Opti-
mization, volume 5868 of LNCS, pages 249 – 272. Springer, to appear, 2009.
(Cited on page 101.)

214 Bibliography

[EG00] M. Ehrgott and X. Gandibleux. An annotated biliography of multiobjective
combinatorial optimization. OR Spektrum, 22:425–460, 2000.
(Cited on page 31.)

[EKZ76] P. Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an
efficient priority queue. Theory of Computing Systems, 10(1):99–127, 1976.
(Cited on page 29.)

[FMS08] L. Frede, M. Müller-Hannemann, and M. Schnee. Efficient on-trip timetable
information in the presence of delays. In M. Fischetti and P. Widmayer,
editors, ATMOS, volume 08002 of Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2008.
(Cited on pages 5, 48, 73, and 75.)

[FR01] J. Fakcharoemphol and S. Rao. Planar graphs, negative weight edges, short-
est paths, and near linear time. In Proceedings of the 42nd IEEE Annual
Symposium on Foundations of Computer Science (FOCS’01), pages 232–
241, 2001.
(Cited on page 101.)

[Fre08] L. Frede. A prototype of a dynamic timetabel information system. Diploma
thesis, Technical University of Darmstadt, Department of Computer Science,
Sep 2008.
(Cited on pages 5, 48, and 73.)

[FSST86] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing
heap: A new form of self-adjusting heap. Algorithmica, 1:111–129, 1986.
(Cited on page 117.)

[FT84] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. In Proceedings of the 25th Annual IEEE
Symposium on Foundations of Computer Science, pages 338–326, 1984. Full
paper in Journal of ACM 34 (1987), 596-615.
(Cited on page 29.)

[GGJ+04] M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer. Railway delay
management: Exploring its algorithmic complexity. In Algorithm Theory —
SWAT 2004, volume 3111 of Lecture Notes in Computer Science, pages 199–
211. Springer, 2004.
(Cited on page 75.)

[GH05] A. V. Goldberg and C. Harrelson. Computing the shortest path: A∗ search
meets graph theory. In 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’05), pages 156–165. 2005.
(Cited on pages 96 and 102.)

[GJPS05] M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The computational complex-
ity of delay management. In Proceedings of the 31st International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 05), volume 3787
of Lecture Notes in Computer Science, pages 227–238. Springer, 2005.
(Cited on page 75.)

Bibliography 215

[GKW06] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A∗: Efficient point-
to-point shortest path algorithms. In Workshop on Algorithm Engineering
& Experiments (ALENEX), pages 129–143, 2006.
(Cited on page 101.)

[GKW07] A. V. Goldberg, H. Kaplan, and R. F. F. Werneck. Better landmarks within
reach. In C. Demetrescu, editor, WEA, volume 4525 of Lecture Notes in
Computer Science, pages 38–51. Springer, 2007.
(Cited on page 97.)

[GMS07] T. Gunkel, M. Müller-Hannemann, and M. Schnee. Improved search for
night train connections. In C. Liebchen, R. K. Ahuja, and J. A. Mesa,
editors, ATMOS, volume 07001 of Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.
(Cited on pages 5, 48, and 66.)

[GMS09] T. Gunkel, M. Müller-Hannemann, and M. Schnee. Improved search for night
train connections. In Networks, to appear, 2009.
(Cited on pages 5, 48, and 66.)

[Gra04] M. Graue. Timetable information systems: A new approach improving qual-
ity and efficiency. Diploma thesis, Technical University of Darmstadt, De-
partment of Mathematics, Nov 2004.
(Cited on pages 5, 35, and 48.)

[GS07] A. Ginkel and A. Schöbel. The bicriteria delay management problem. Trans-
portation Science, 41(4):pp. 527–538, May 2007.
(Cited on page 75.)

[GSSD08] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hier-
archies: Faster and simpler hierarchical routing in road networks. In C. C.
McGeoch, editor, WEA, volume 5038 of Lecture Notes in Computer Science,
pages 319–333. Springer, 2008.
(Cited on page 100.)

[Gun07] T. Gunkel. Search algorithms for night train connections under multiple
search criteria. Diploma thesis, Technical University of Darmstadt, Depart-
ment of Computer Science, Feb 2007.
(Cited on pages 5, 48, and 67.)

[Gut04] R. Gutman. Reach-based routing: A new approach to shortest path algo-
rithms optimized for road networks. In Proceedings 6th Workshop on Al-
gorithm Engineering and Experiments (ALENEX), pages 100–111. SIAM,
2004.
(Cited on page 97.)

[Haf09] HaCon website. http://www.hacon.de/hafas e/index.shtml, retrieved
September, 8th, 2009.
(Cited on pages iii and 1.)

http://www.hacon.de/hafas_e/index.shtml

216 Bibliography

[Han79] P. Hansen. Bicriteria path problems. In G. Fandel and T. Gal, editors, Multi-
ple Criteria Decision Making Theory and Applications, volume 177 of Lecture
Notes in Economics and Mathematical Systems, pages 109–127. Springer Ver-
lag, Berlin, 1979.
(Cited on pages 31 and 101.)

[HD88] M. Hung and J. Divoky. A computational study of efficient shortest path
algorithms. Computers and Operations Research, 15:567–576, 1988.
(Cited on page 29.)

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths in graphs. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.
(Cited on page 102.)

[Hol08] M. Holzer. Engineering Planar-Separator and Shortest-Path Algorithms.
PhD thesis, Universität Karlsruhe (TH), Department of Computer Science,
2008.
(Cited on page 100.)

[HRT06] H. W. Hamacher, S. Ruzika, and S. A. Tjandra. Algorithms for
time-dependent bicriteria shortest path problems. Discrete Optimization,
3(3):238–254, 2006.
(Cited on page 101.)

[HSW08] M. Holzer, F. Schulz, and D. Wagner. Engineering multilevel overlay graphs
for shortest-path queries. ACM Journal of Experimental Algorithmics, 13,
2008.
(Cited on page 100.)

[HSWW05] M. Holzer, F. Schulz, D. Wagner, and T. Willhalm. Combining speed-up
techniques for shortest-path computations. ACM Journal of Experimental
Algorithmics, 10, 2005.
(Cited on page 100.)

[JMS00] O. Jahn, R. Möhring, and A. Schulz. Optimal routing of traffic flows with
length restrictions. In K. I. et al., editor, Operations Research Proceedings
1999, pages 437–442. Springer, 2000.
(Cited on page 30.)

[Joh77] D. Johnson. Efficient algorithms for shortest paths in sparse networks. In
Journal of the ACM, volume 24, pages 1–13, 1977.
(Cited on page 29.)

[Jun06] P. Jung. Speed-up techniques for multi-criteria shortest path search in
timetable information systems. Diploma thesis, Technical University of
Darmstadt, Department of Computer Science, Apr 2006.
(Cited on pages 5, 48, and 102.)

[Key09] M. H. Keyhani. Verspätungsbehandlung in Bahnfahrplanauskunftssystemen.
Bachelor’s thesis, Technical University of Darmstadt, Department of Com-
puter Science, Mar 2009.
(Cited on pages 5, 48, and 73.)

Bibliography 217

[KMS07] E. Köhler, R. H. Möhring, and H. Schilling. Fast point-to-point shortest path
computations with arc-flags. In C. Demetrescu, A. V. Goldberg, and D. S.
Johnson, editors, Shortest Paths: Ninth DIMACS Implementation Challenge.
American Mathematical Society, 2007.
(Cited on page 99.)

[KV00] B. Korte and J. Vygen. Combinatorial Optimization: Theory and algorithms.
Springer, 2000.
(Cited on page 22.)

[KW93] M. M. Kostreva and M. M. Wiecek. Time dependency in multiple objective
dynamic programming. Journal of Mathematical Analysis and Applications,
173:289–307, 1993.
(Cited on pages 35 and 101.)

[Lau04] U. Lauther. An extremely fast, exact algorithm for finding shortest paths
in static networks with geographical background. In Geoinformation und
Mobilität - von der Forschung zur praktischen Anwendung, volume 22, pages
219–230. IfGI prints, Institut für Geoinformatik, Münster, 2004.
(Cited on page 99.)

[Mar84] E. Q. V. Martins. On a multicriteria shortest path problem. European
Journal of Operations Research, 16:236–245, 1984.
(Cited on pages 31 and 101.)

[Mäu09] D. Mäurer. Advanced speed-up techniques for multi-criteria shortest path
search in timetable information systems. Diploma thesis, Technical Univer-
sity of Darmstadt, Department of Computer Science, Jul 2009.
(Cited on pages 5, 48, and 102.)

[Meh07] K. Mehringskötter. Effiziente Fahrplanauskunft unter Optimierung der Um-
stiegssicherheit. Bachelor’s thesis, Technical University of Darmstadt, De-
partment of Computer Science, Jul 2007.
(Cited on pages 5, 48, 59, and 61.)

[MM07] L. E. Meester and S. Muns. Stochastic delay propagation in railway networks
and phase-type distributions. Transportation Research Part B, 41:218–230,
2007.
(Cited on page 75.)

[MMO91] J. Mote, I. Murthy, and D. L. Olson. A parametric approach to solving bi-
criterion shortest path problems. European Journal of Operational Research,
53:81–92, 1991.
(Cited on pages 31 and 32.)

[Möh99] R. H. Möhring. Verteilte Verbindungssuche im öffentlichen Personenverkehr:
Graphentheoretische Modelle und Algorithmen. In Angewandte Mathematik
- insbesondere Informatik, pages 192–220. Vieweg, 1999.
(Cited on page 50.)

218 Bibliography

[MS01] K. Mehlhorn and G. Schäfer. A heuristic for Dijkstra’s algorithm with many
targets and its use in weighted matching algorithms. In Proceedings of 9th
Annual European Symposium on Algorithms (ESA’2001), volume 2161 of
Lecture Notes in Computer Science, pages 242–253. Springer, 2001.
(Cited on page 105.)

[MS06] M. Müller-Hannemann and M. Schnee. Paying less for train connections
with MOTIS. In L. G. Kroon and R. H. Möhring, editors, 5th Workshop
on Algorithmic Methods and Models for Optimization of Railways. Interna-
tionales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, 2006.
(Cited on pages 5, 48, and 52.)

[MS07] M. Müller-Hannemann and M. Schnee. Finding all attractive train connec-
tions by multi-criteria Pareto search. In F. Geraets, L. G. Kroon, A. Schöbel,
D. Wagner, and C. D. Zaroliagis, editors, 4th Workshop on Algorithmic Meth-
ods for Optimization of Railways Workshop, volume 4359 of Lecture Notes
in Computer Science, pages 246–263. Springer Verlag, 2007.
(Cited on pages 5, 13, 35, 48, 52, and 127.)

[MS09] M. Müller-Hannemann and M. Schnee. Efficient timetable information in the
presence of delays. In R. K. Ahuja, R. Möhring, and C. Zaroliagis, editors,
Robust and Online Large-Scale Optimization, volume 5868 of LNCS, pages
249 – 272. Springer, to appear, 2009.
(Cited on pages 5, 48, and 73.)

[MSM06] J. Maue, P. Sanders, and D. Matijevic. Goal directed shortest path queries
using precomputed cluster distances. In C. Àlvarez and M. J. Serna, editors,
WEA, volume 4007 of Lecture Notes in Computer Science, pages 316–327.
Springer, 2006.
(Cited on page 97.)

[MSS+05] R. H. Möhring, H. Schilling, B. Schutz, D. Wagner, and T. Willhalm. Parti-
tioning graphs to speed up Dijkstras algorithm. In S. E. Nikoletseas, editor,
Proceedings of the 4th International Workshop on Experimental and Effi-
cient Algorithms (WEA), volume 3503 of Lecture Notes in Computer Sci-
ence, pages 189–202. Springer, 2005.
(Cited on page 99.)

[MSW02] M. Müller-Hannemann, M. Schnee, and K. Weihe. Getting train timetables
into the main storage. In Proceedings 3rd Workshop on Algorithmic Meth-
ods and Models for Optimization of Railways (ATMOS 2002), volume 66 of
Electronic Notes in Theoretical Computer Science. Elsevier, 2002.
(Cited on pages 5, 40, 47, 48, and 111.)

[MSWZ07] M. Müller-Hannemann, F. Schulz, D. Wagner, and C. Zaroliagis. Timetable
information: Models and algorithms. In Algorithmic Methods for Railway
Optimization, volume 4395 of Lecture Notes in Computer Science, pages 67–
89. Springer Verlag, 2007.
(Cited on page 11.)

Bibliography 219

[MW01] M. Müller-Hannemann and K. Weihe. Pareto shortest paths is often feasible
in practice. In Algorithm Engineering – WAE 2001, volume 2141 of LNCS,
pages 185–198. Springer, 2001.
(Cited on pages 31, 32, 35, 69, 72, 101, 105, and 120.)

[MW06] M. Müller-Hannemann and K. Weihe. On the cardinality of the Pareto set in
bicriteria shortest path problems. Annals of Operations Research, 147:269–
286, 2006.
(Cited on pages 32, 69, 72, 101, 105, and 120.)

[MZ00] K. Mehlhorn and M. Ziegelmann. Resource constrained shortest paths. In
Proceedings of 8th Annual European Symposium on Algorithms (ESA’2000),
volume 1879 of Lecture Notes in Computer Science, pages 326–337. Springer,
2000.
(Cited on pages 30 and 31.)

[MZ01] K. Mehlhorn and M. Ziegelmann. CNOP — a package for constrained net-
work optimization. In 3rd Workshop on Algorithm Engineering and Exper-
iments (ALENEX’01), volume 2153 of Lecture Notes in Computer Science,
pages 17–31. Springer, 2001.
(Cited on page 30.)

[Nac95] K. Nachtigal. Time depending shortest-path problems with applications to
railway networks. European Journal of Operational Research, 83:154–166,
1995.
(Cited on page 35.)

[OR90] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in net-
works with time-dependent edge-length. Journal of the ACM, 37:607–625,
1990.
(Cited on page 35.)

[OR91] A. Orda and R. Rom. Minimum weight paths in time-dependent networks.
Networks, 21:295–319, 1991.
(Cited on page 35.)

[PS98] S. Pallottino and M. G. Scutellà. Shortest path algorithms in transporta-
tion models: Classical and innovative aspects. In Equilibrium and Advanced
Transportation Modelling, chapter 11. Kluwer Academic Publishers, 1998.
(Cited on page 35.)

[PSWZ04a] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Towards realistic mod-
eling of time-table information through the time-dependent approach. In
Proceedings of the 3rd Workshop on Algorithmic Methods and Models for
Optimization of Railways (ATMOS 2003), volume 92 of Electronic Notes in
Theoretical Computer Science, pages 85–103. Elsevier, 2004.
(Cited on pages 37, 38, 40, and 168.)

[PSWZ04b] E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. Experimental com-
parison of shortest path approaches for timetable information. In L. Arge,
G. F. Italiano, and R. Sedgewick, editors, ALENEX/ANALC, pages 88–99.
SIAM, 2004.
(Cited on pages 35 and 40.)

220 Bibliography

[PSWZ08] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient models for
timetable information in public transportation systems. ACM Journal of
Experimental Algorithmics, 12:2.4, 2008.
(Cited on pages 35, 167, and 168.)

[SA00] A. Skriver and K. Andersen. A label correcting approach for solving bicri-
terion shortest path problems. Computers and Operations Research, 27:507–
524, 2000.
(Cited on page 31.)

[Sch03] A. Schrijver. Cominatorial Optimization: Polyhedra and Efficiency, chap-
ter 7. Springer, 2003.
(Cited on page 29.)

[Sch04] M. Schnee. High quality search for Pareto-optimal train connections.
Diploma thesis, University of Bonn, Department of Computer Science, Feb
2004.
(Cited on pages 35 and 48.)

[Sch05] F. Schulz. Timetable Information and Shortest Paths. PhD thesis, Univer-
sität Karlsruhe (TH), Department of Computer Science, 2005.
(Cited on page 35.)

[Sch07] A. Schöbel. Integer programming approaches for solving the delay manage-
ment problem. In Algorithmic Methods for Railway Optimization, volume
4359 of Lecture Notes in Computer Science, pages 145–170. Springer, 2007.
(Cited on page 75.)

[Sch08] D. Schultes. Route Planning in Road Networks. PhD thesis, Universität
Karlsruhe (TH), Department of Computer Science, 2008.
(Cited on page 100.)

[SS06] P. Sanders and D. Schultes. Engineering highway hierarchies. In 14th Eu-
ropean Symposium on Algorithms (ESA), volume 4168 of Lecture Notes in
Computer Science, pages 804–816. Springer, 2006.
(Cited on page 100.)

[SS07a] P. Sanders and D. Schultes. Engineering fast route planning algorithms. In
C. Demetrescu, editor, WEA, volume 4525 of Lecture Notes in Computer
Science, pages 23–36. Springer, 2007.
(Cited on page 95.)

[SS07b] P. Sanders and D. Schultes. Dynamic highway-node routing. In C. Deme-
trescu, editor, WEA, volume 4525 of Lecture Notes in Computer Science,
pages 66–79. Springer, 2007.
(Cited on pages 100 and 101.)

[SWW00] F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s algorithm on-line: An empir-
ical case study from public railroad transport. ACM Journal of Experimental
Algorithmics, 5:12, 2000.
(Cited on pages 35, 99, 100, and 106.)

Bibliography 221

[SWZ02] F. Schulz, D. Wagner, and C. Zaroliagis. Using multi-level graphs for
timetable information in railway systems. In Proceedings 4th Workshop on
Algorithm Engineering and Experiments (ALENEX), volume 2409 of LNCS,
pages 43–59. Springer, 2002.
(Cited on page 100.)

[The95] D. Theune. Robuste und effiziente Methoden zur Lösung von Wegproblemen.
Teubner Verlag, Stuttgart, 1995.
(Cited on pages 31 and 50.)

[TZ06] G. Tsaggouris and C. D. Zaroliagis. Multiobjective optimization: Improved
FPTAS for shortest paths and non-linear objectives with applications. In
T. Asano, editor, ISAAC, volume 4288 of Lecture Notes in Computer Science,
pages 389–398. Springer, 2006.
(Cited on page 31.)

[War87] A. Warburton. Approximation of pareto optima in multiple-objective short-
est path problems. Operations Research, 35:70–79, 1987.
(Cited on page 31.)

[Wil64] J. Williams. Algorithm 232 heapsort. In Communications of the ACM,
volume 7, pages 347–348, 1964.
(Cited on page 29.)

[Wil05] T. Willhalm. Engineering Shortest Paths and Layout Algorithms for Large
Graphs. PhD thesis, Universität Karlsruhe (TH), Department of Computer
Science, 2005.
(Cited on page 99.)

	Titlepage
	DissColoredLinks
	Abstract
	German Abstract
	Introduction
	Setting
	Terminology
	Queries
	Specification of Queries
	Connections Matching a Query

	Pre-Trip / On-Trip Searches
	Fully Realistic Model

	Multi-Criteria Optimization
	Criteria
	Pareto Optimality
	Advanced Pareto Optimality
	Relaxed Pareto Dominance
	Tightened Dominance
	Advanced Pareto Dominance

	Applying Advanced Pareto Dominance

	Search Algorithms
	Introduction
	Dijkstra's Algorithm
	Data Structures Speeding Up Dijkstra's Algorithm
	k-heap Implementation
	Binary Heap Implementation
	Fibonacci Heap Implementation
	Implementation Using Dial's Data Structure
	Priority Queues without decreaseKey-Operation
	Remarks on Data Structures and Shortest Path Search

	The Multi-Criteria Version
	Problem Definition
	Number of Pareto Optimal Solutions (worst-case)
	Tractability and State of the Art
	A Generalization of Dijkstra's Algorithm
	Modifications

	Graph Models
	The Basic Time-Expanded Model
	The Basic Time-Dependent Model
	Non-Negligible Interchange Times
	Extending the Time-Expanded Graph
	Extending the Time-Dependent Graph

	Discussion: Time-Expanded Vs. Time-Dependent Models

	The MOTIS Algorithm
	The Graph Model of MOTIS
	Realistic Interchange Rules
	Traffic Days
	Footpaths
	Edge Lengths for the Criteria
	Attributes NotIn/NotOut

	Algorithm Refinements
	Realization of On-trip/Pre-trip Searches
	Meta Stations and Source-/Target-Equivalents
	Attribute Requirements and Class Restrictions

	Implementation Details
	Edge Hierarchy
	Encoding Train Information
	Lazy Initialization and Reset

	History of the MOTIS Algorithm
	The Algorithm
	MOTIS Search GUI

	Additional Criteria and Special Search Forms
	Seat Reservation
	Search for Special Offers
	Introduction
	Modeling Regular Fares and Special Offers
	Details on the Search Algorithm

	Reliability of Transfers
	Reliability Measure
	Good Measure = Good Additional Criterion?
	Refinements
	Example Result Set

	Sleeping Time in Night Trains
	Introduction and Motivation
	Attractive Night Train Connections
	Approaches for Night Train Search

	Delays
	Introduction and Motivation
	Up-To-Date Status Information
	Primary Delay Information
	Secondary Delays

	System Architecture
	Dependency Graph
	Graph Model
	Computation on the Dependency Graph

	Updating the Search Graph
	Traffic Days
	Memory Consumption Issues
	Moving from One Day to the Next

	Evaluation of the Prototype
	Overall Performance and Waiting Profiles
	Multi-Server Performance

	Conclusions and Future Work

	Speed-Up Techniques for Multi-Criteria Search
	Speeding up Dijkstra's Algorithm
	Early Termination
	Goal-Direction / Lower Bounding
	Priority Queues
	Reach Based
	Bidirectional Search
	Arc Flags and Geometric Containers
	Hierarchical Techniques
	Combinations
	Steps Towards Our Scenario

	Multi-Criteria Approach
	Goal-Directed Search
	Domination by Labels at the Terminal
	Lower bounds
	The Station Graph for Lower Bounds
	Interchange Graph
	Domination by Labels at the Terminal
	Usage in Goal-Directed Search
	Limiting the Search Horizon

	Skipping Nodes in the Graph or Search
	Chaining Change-Arrival / Change-Departure Nodes
	Skipping Departure Nodes
	Bypassing Departure Nodes

	Important Station Heuristics
	Skipping Nodes at Unimportant Stations
	Shortcuts in the Graph

	The Priority Queue
	Smaller Relation for Priority Queues
	Different Priority Queue Types
	Reordering the PQ
	Avoid Inserting Minimum Labels

	Edge-Blocking
	Mass Transportation Heuristic
	Route Blocking
	Shortcut Blocking

	Bitonic Search
	Speed-Up Techniques and Graph Updates
	MOTIS Algorithm with Speed-Up Techniques
	Changes to the Graph
	Changes to the Algorithm

	Further Thoughts on Speed-Up Techniques
	Ideas for Bidirectional Search
	Adapting Multi-Criteria SHARC

	Computational Study
	Computational Study on Special Offers
	Computational Setup
	Searching for Multiple Tariffs
	Fast Search for Fixed Price Connections

	Computational Study on Night Train Search
	Computational Setup
	Experiments

	Computational Studies with Advanced Dominance
	Computational Setup
	Testing Environment
	Measures and Test Procedures

	Advanced Pareto Dominance
	Pareto to Relaxed Pareto to Advanced Pareto
	Tests with Dominance

	Goal-Direction and Domination by Terminal
	Lower Bounds
	Station Graphs
	Interchange Graph
	Summary Lower Bounds

	Priority Queue
	Priority Queue Type and ``Smaller''-Relation
	Weight for Interchanges in Goal-Direction
	Reordering the Priority Queue
	Decreasing the Number of Labels in the PQ

	Reliability of Interchanges
	Number of Equivalence Classes
	Maximal Effective Reliability

	Heuristics
	Bitonic Search
	Mass Transportation
	Routes Blocking
	Important Stations
	Shortcuts
	Combination of the Four Heuristics: Important Station, Shortcuts, Mass Transportation, and Routes

	Detailed Figures for the Reference Version
	Configuration
	Detailed Number Of Significant Operations
	Number of Optima

	Significant Operations
	Analysis of Heavy-Weight Searches
	Example Connections
	Conclusion

	A Time-Dependent Timetable Information System
	Realistic Time-Dependent Graph Model
	Basic Time-Dependent Model
	Transfers
	Fully Realistic Model

	Multi-Criteria Dijkstra and Speed-Up Techniques
	Algorithm
	Speed-Up Techniques

	Computational Study
	Train Network and Test Cases
	Computational Environment
	Experiments

	Conclusions and Future Work

	Developed Software Tools
	GUI Architecture
	MOTIS Backbone
	GUIs

	Search GUI
	Connection Controller and Alternatives System
	Others
	System Architecture: The Big Picture

	Conclusion and Outlook
	Appendix A: Transitivity
	The Time Difference Formula
	The Hourly Wage Tightening

	Appendix B: Speed-Up Techniques
	Lower Bounds
	Important Station and Shortcuts Heuristics
	Search Space

	Appendix C: Curriculum Vitae
	List of Algorithms
	List of Tables
	List of Figures
	Bibliography

