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Kurzfassung der Dissertation

“Eine prazise Momenten-Methode fiir instationire polydisperse Sprays”
von Lukas Schneider

Diese Arbeit behandelt die mathematische und numerische Beschreibung von instatio-
niren, polydispersen Sprays mit dem iibergeordneten Ziel, das Verhalten von Verbren-
nungskraftmaschinen genauer und mit geringerem Rechenaufwand zu simulieren. Die
wesentlichen Sprayphinomene in diesen Systemen sind der primére und sekundére Zer-
fall des Kraftstoffstrahls, die Kollision und Verdampfung von Tropfen sowie die Wider-
standskraft, welche von dem meist turbulenten Gas auf die Tropfen wirkt. Dem Spray
kommt dabei die Aufgabe zu, den Brennstoff im Brennraum so zu verteilen, dass am
vorgesehenen Ort und zum richtigen Zeitpunkt das Brennstoff-Gas-Gemisch ziindet. Auf-
grund der starken Kopplung der genannten Prozesse konnen sich Ungenauigkeiten bei der
Sprayberechnung ausbreiten oder sogar verstirken, was die Simulation der eigentlichen
Verbrennung erschwert.

Das komplexe Verhalten technischer Sprays kann zwar mit direkter numerischer Si-
mulation genau wiedergegeben werden, diese ist jedoch nicht praktikabel, da ein nicht
zu rechtfertigender Rechenaufwand vonnoéten ist. Stattdessen werden fiir die Tropfen-
phase so genannte Lagrange- und Euler-Methoden eingesetzt, die darauf basieren, dass
Losungen der kinetischen Spraygleichung, einer partiellen Differentialgleichung fiir die
Verteilungsfunktion von Tropfen, angendhert werden. Obwohl die Lagrange-Methode die
volle Komplexitit dieser Gleichung darstellen kann, hingt ihr Rechenaufwand von der In-
stationaritit und der Tropfenbeladung des Spraysystems ab. Bei Euler-Methoden ist dies
nicht der Fall, allerdings bediirfen diese Methoden einer Weiterentwicklung, da sie meist
von monomodalen Geschwindigkeitsverteilungen und vorgegebenen Groéfsenverteilungen
ausgehen. Diese Annahmen sind in technischen Sprays nicht haltbar, da sie zu un-
physikalischen Tropfenkonzentrationen an Kreuzungspunkten von Spraystrahlen und zu
fehlerhaften Verdampfungsraten fiihren.

In dieser Arbeit wird ein préziserer Eulerscher Ansatz vorgeschlagen, der die oben
genannten Probleme der klassischen Euler-Methode 16st. Hierzu wird die kinetische Spray-
gleichung in Momentengleichungen iiberfiihrt, die durch einen neu entwickelten Ansatz der
Verteilungsfunktion der Tropfen geschlossen werden. Dieser beriicksichtigt die zeitliche
und raumliche Anderung der Dispersion von Tropfengroken und -geschwindigkeiten. Die
in der Arbeit entwickelten numerischen Algorithmen folgen aus diesem Ansatz. Bei der
Wahl der mathematischen und numerischen Modellierung des Sprays wurde Wert darauf
gelegt, dass der Massenaustausch zwischen Tropfen und Gas genau abgebildet werden
kann, da dieser Vorgang die Verbrennung entscheidend beeinflusst. Die Uberpriifung der
neuen Methode erfolgt mittels stationdrer und instationérer, eindimensionaler und zwei-
dimensionaler Testfille, in denen ein polydisperses Spray verdampft, Widerstandskraft
erfihrt oder auf eine Wand prallt und teilweise reflektiert wird. Diese Konfigurationen
sind so gewahlt, dass sich zwei oder mehrere Spraystrahlen kreuzen und somit bi- oder mul-
timodale Geschwindigkeitsverteilungen auftreten. Der Vergleich der Ergebnisse mit hoch
aufgelosten Lagrange-Rechnungen zeigt, dass die neue Methode geeignet ist, den polydis-
persen Charakter von Sprays und das Kreuzen von Spraystrahlen genau wiederzugeben.



Summary of the thesis

“A Concise Moment Method for Unsteady Polydisperse Sprays”
by Lukas Schneider

This body of research deals with the mathematical and numerical description of unsteady
polydisperse sprays. The superior objective is to simulate the behaviour of combustion
engines with higher accuracy but lower computational costs. The main spray phenomena
in this type of processes are the primary and secondary breakup of the fuel jet, collision
and evaporation of droplets, and acceleration or deceleration of droplets due to drag
forces. The purpose of the spray is to distribute the fuel in the combustion chamber
such that the fuel/air mixture ignites at controllable locations and times. Errors in the
modelling of just one of the above spray phenomena can spread and even amplify as the
combustion simulation proceeds. This occurs due to the strong coupling between the
processes involved.

Although the behaviour of technical sprays can be captured accurately with direct
numerical simulation it is not applied as the computational workload would be extraordi-
nary. Instead, methods such as Lagrange and Euler methods are used to describe the spray
behaviour by approximating a solution to the kinetic spray equation, a partial differential
equation for the distribution function of droplets. Although the Lagrange method cap-
tures the full complexity of this equation, it is computationally very expensive to use it for
unsteady flows that have a high mass loading of droplets. The computational performance
of Euler methods is independent of the unsteadiness and mass loading. However, Euler
methods require further development as most of them assume the velocity distribution
of droplets to be mono-modal and use presumed size distributions to describe the poly-
disperse character of sprays. These assumptions are not justified for technical sprays as
they lead to spurious droplet concentrations at crossing points of fuel jets and inaccurate
evaporation rates.

In this thesis a concise Euler method is proposed that resolves the above problems
of the classical Euler methods. The kinetic spray equation is transformed into moment
equations that are closed by assuming the droplet distribution function to have a specific
form. However, it still takes into account the spatial and temporal changes of dispersion
in size and velocity space. All numerical algorithms follow from this specification. In the
choice of the mathematical and numerical model, care was taken in modelling the mass
transfer between droplets and gas. It is a key feature in combustion engines because it
determines the fuel /air mass fraction. To assess the abilities of the method it was exten-
sively tested in steady and unsteady, one- and two-dimensional configurations in which
a polydisperse spray was splashed, evaporated or effected by a Stokes drag force. The
tests were organised in such a way that crossing of two or more spray distributions was
always included and bi- or multi-modal velocity distributions were present. The compar-
ison of the results with highly resolved Lagrangian calculations demonstrates that the
polydisperse character of sprays and the crossing of spray jets can be captured accurately.
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Nomenclature

Some variables will have a double meaning because, if not otherwise stated, from sec-
tion 3.2.3 all quantities are assumed to be dimensionless. Here, the quantities are listed
with dimensions. A dash (-) at the ‘Units’ column indicates a dimensionless quantity.
Einstein’s convention of summation is used for Latin but not for Greek subscripts.

Uppercase Latin letters Unit
F total force on a droplet N
F, drag force on a droplet N
u? mean droplet velocity vector in section [, ms~!
U, velocity vector of the gas ms !

o velocity abscissa for node « in section I}, ms~!
Q breakup frequency st
R heat transfer term in the dimensionless moment equations —
Ve set of moments of the d-dimensional space in section I} —
W,’f set, of parameters of f in section [ with § nodes —
R¢ d-dimensional Euclidean vector space —
Ry set of all non-negative / non-positive real numbers —
K evaporation rate of the droplet surface m?s~!

flfnéw moment for surface, temperature and velocity in section I —
R rate of change of the droplet temperature Ks™!
D, drag term in the dimensionless moment equations -
D, diffusivity of fuel vapour in air m?2s~!
1, section with index k —
K order of moment Mfl{;”]y with respect to the surface variable —
L order of moment Mflfmjl\/[ with respect to the temperature variable —
M order of moment Mfl{;”]y with respect to the velocity variable —
N number of finite sections —
N, number of cells in direction e, —
N, number of cells in direction e, —
Schar characteristic droplet surface m?
Vihar characteristic velocity of the gas flow ms!
Xechar characteristic length scale of the gas flow m
Lowercase Latin letters Unit
My mass transfer between droplet and gas kgs!

Xiv



XV

e; unit vector in i-direction —
v velocity vector of droplets ms!
Vel relative velocity between droplet and gas ms!
X position vector m
dzo Sauter mean diameter m
f approximation of the NDF sPm 8K !
by exponential parameter for f in section I} m 2
Cp specific heat capacity Jkg 1K™!
d number of real space dimensions —
f number density function s*m 8K !
f+ number density function of incident droplets s*m~8
fr number density of splashed droplets s*m~8
g acceleration of gravity ms—?2
m mass of droplets kg
mq mass of one droplet kg
n number density of droplets m3
ny quadrature weight of node « for f in section I m3
5 droplet surface m?
Sk, Sp+1 boundaries of section Iy, m?
t time variable s
u, v, w velocity components in e, e, and e, direction ms!
v velocity component, equal to v - e; ms !
x,y, 2 components of x in the directions e, e, and e, m
Uppercase Greek letters Unit
Asy, size of section I}, m?
At time step s
Ax; size of the i-th cell in direction e, m
Ay; size of the j-th cell in direction e, m
r collision frequency s
O temperature abscissa in section I, K
Ochar characteristic droplet temperature K
Lowercase Greek letters Unit
Q. splashing parameter for v, —
Qy splashing parameter for v, —
Q. splashing parameter for v, —
I} number of quadrature nodes —
B4 splashing parameter for droplet partition —
oy velocity covariance matrix m?s~2
Mg dynamic viscosity of the gas kg (ms) !
v splashing parameter for mass losses —
pe mass density of the droplet liquid kgm~3
Pg mass density of the gas kgm 3
o4 surface tension of a droplet Nm™!
Td droplet response time S



xXvi

Ty time scale of the gas flow

Tew time scale for the evaporation
The time scale for the heat transfer
0 temperature of droplets

0, temperature of the gas

Operators and Symbols

WW(DUJUJ
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() Dirac delta function
¥ Kronecker delta
b scalar product of vectors a and b
| Euclidean norm
nabla operator

o o

S
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QT

Dimensionless Numbers

quantity in brackets is divided by [***" s%/2f(s)ds

By, coefficient of heat transfer
B,, coefficient of mass transfer
Ev evaporation number

Fr Froude number

He heat transfer number

Kny droplet Knudsen number
Nu Nusselt number

Rey droplet Reynolds number
Sh Sherwood number

St Stokes number

We Weber number
Abbreviations

CFD computational fluid dynamics

DNS direct numerical simulation

DQMoM direct quadrature method of moments
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LES large-eddy simulation
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Chapter 1

Introduction

1.1 Motivation

Industrialised societies rely heavily on fossil fuels and will do so for decades to come |3, 4].
This is due to the fact that the generation of electricity, passenger transportation, carriage
of freight, the production of synthetic goods, etc. are based on the products of petroleum,
natural gas or coal. These products have high specific and volumetric energy densities
(see Figure 1.1) and can also be transformed into chemicals that are the basis for plastics,
pharmaceutics and other synthetic products. Scientists and politicians have agreed in
recent years that there is an urgent need to reduce fossil fuel consumption, in particular,
in combustion systems [82, 117, 118|.

The transformation of carbon fuels to energy, e.g. in vehicles, aeroplanes or power
plants, causes the emission of carbon dioxide (COs), water (H20), nitrogen oxides (NO,),
carbon monoxide (CO), sulphur dioxide (SO;), soot and uncombusted hydrocarbons
(UCH). Except for the water, all these gases have negative impacts on the environment
if they are emitted in large amounts. They affect the local ecosystem directly through
acid rain, creation of ozone and the formation of carcinogen particles or they enhance the
greenhouse effect which causes global climate changes [159]. There are also socio-economic
and political arguments that are influencing the handling of fossil fuels: the expected rise
in global fuel consumption, the limited resources of petroleum [4] and the concentration
of petroleum and neutral gas resources in politically unstable regions [85].

While technologies based on renewable energy sources are pushed forward, one way
to reduce fossil fuel consumption is the optimisation of existing combustion technologies.
Since the first inventors, N.A. Otto (1832-1891), R. Diesel (1858-1913) and H.J. Pabst
von Ohain (1911-1998), combustion engines have steadily been improved to exploit fuels
more efficiently. However, due to the complexity of technical combustion processes, the
development has always been confined to expensive and time-consuming test runs that are
required to find the correlations between tuning parameters and the global characteristics
of combustion engines. The most recent advances in the research on combustion engines
are new combustion concepts like homogeneous charge compression ignition (HCCI) in
diesel engines, controlled autoignition (CAI) in spark ignition engines [111] and concepts
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Figure 1.1: Volumetric vs. specific energy densities of selected fuels [21].

such as lean direct injection (LDI), lean premixed prevaporized (LPP) and rich burn quick
quench lean burn (RQL) in aeroplane engines.! The main goals of these concepts are the
reduction of fuel consumption, NO, and UCH emissions and soot formation by operating
under lean and homogeneous combustion conditions. At the same time, the fuel-air mix-
ture formation needs to be controlled to ensure that stable ignition and combustion for
all load and speed combinations are achieved. However, these new combustion technolo-
gies are known for their unstable combustion characteristics, in particular at partial loads
[111]. These defects require further research and development.

In recent years the development of combustion technologies has been accelerated
with the use of computational fluid dynamics (CFD) and massively parallelised computer
systems [15, 185]. In general, CFD methods are based on physical, mathematical and
numerical models of the flow phenomena. The algorithms derived from these models are
transformed into program codes that allow the prediction of technical flows. These com-
putations are quantitatively and qualitatively predictive only in a limited area of validity
which has to be determined by comparisons with measurements of real physical flows. A
CFED method is characterised by its area of validity, accuracy, robustness, requirements
of computer resources and its performance on parallelised computer systems.

The numerical methods for the prediction of highly unsteady fuel sprays in combus-
tion chambers using existing CFD-tools are not mature, in particular, there is a need to
develop new models that are more accurate and have a faster and more robust behaviour

'A promising alternative to the combustion of carbon fuels in vehicles is the use of hydrogen. It
has a much larger specific energy density and can be used together with fuel cells and electric motors.
The biggest problems with using hydrogen in vehicles are the low efficiency of its extraction, the low
volumetric energy density (see Figure 1.1) and the risk of explosion.
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Figure 1.2: Fuel injection from a seven-hole nozzle in a car engine (shadow technique) [29].

on highly parallelised computers (cf. [39, 75, 83, 123, 137|). In the combustion concept
LPP, for example, combustion instabilities are more likely to occur and hence, the stan-
dard CFD-tools for multiphase flows, which are based on Reynolds-averaged Navier-Stokes
(RANS) equations, cannot capture all the relevant effects. They have to be replaced by
techniques that tackle the unsteady behaviour of spray processes. The coupling of large-
eddy simulations (LES) for the gas phase with a Lagrangian solver (to be specified) for
the droplet phase could be one of various alternatives. The challenging task of unsteady
spray flows in combustion systems will be the subject of intensive research for years to
come.

In this body of research the focus is on the modelling of unsteady and polydisperse
fuel sprays encountered in combustion systems. In these, the liquid fuel is injected into
a combustion chamber where it atomises and forms a droplet cloud that evaporates (see
Figure 1.2). The principle physical processes that must be accounted for in the droplet
clouds are:

e convection of droplets,

droplet heating and evaporation,

acceleration or deceleration of droplets due to drag forces,

collision and breakup of droplets,

particle (or droplet) trajectory crossing (PTC).
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The behaviour of the fuel droplets has a strong influence on the mixing of oxidiser and
fuel vapour, which determines the ignition and burning processes that follow. Other dom-
inant phenomena that increase the complexity of combustion processes are the unsteady
turbulent gas flow, the high pressure and temperature, the fast chemical reactions in the
flame and the complexity of the combustion chamber geometries.

The two main approaches classically used to describe multiphase flows are Euler-
Lagrange (EL) and Euler-Euler (EE) methods. The EL method is usually applied in
systems where (solid) particles, droplets or bubbles are dispersed in a gaseous or liquid
carrier phase [33]. In this approach the continuous phase is modelled by appropriate
governing equations that include additional source terms modelling the influence of the
particles, droplets or bubbles on the carrier phase. The dispersed phase is treated as
if it is composed of discrete entities which are ‘tracked’ in the computational domain.
Consequently, the computational costs of the EL. method are strongly linked to the mass
or bubble loading in the system. In addition, the coupling between dispersed and carrier
phase is done on an Eulerian level which requires the averaging of a representative sample
of dispersed entities. If the sample size is too small, i.e. the number of discrete entities
tracked in the system is not sufficient, the level of statistical noise reduces the quality
of the computational results. This situation may arise when unsteady and fine resolved
computations are conducted which require small time and spatial sampling intervals. In
this work the Lagrangian approach will not be pursued. However, a highly resolved
Lagrangian procedure will be used to verify the Euler method developed here.

The classical EE method assumes two (or more) phases to be interpenetrating con-
tinua [42]. For each continuum, balance equations for mass, momentum, moment of
momentum, energy and additional density fields (like the diameter or volume fraction)
are considered that include phase-interaction terms. The classical EE method is com-
monly applied in granular flows that arise in fluidised beds [48], slurry flows [87, 151] or
dense droplet-gas flows [36]. It is also applied to configurations in which a liquid is moving
through the pores of some solid matrix (porous materials [31]), for example, ground water
transport in soils [177] or blood circulation in bones [32].

When the phases are equally distributed in the domain of interest, i.e. the separation
between the phases is only moderate, the classical EE method is appropriate. However,
in dispersed gas-liquid flows the particles, droplets or bubbles with intermediate Stokes
numbers concentrate in regions of low gas vorticity [143]. In turbulent spray flows, for
example, vacuum zones and regions of strong mass concentration form at the centre and
rim of vortices, respectively (see Chapter 6). In addition, the continuum assumption,
which is usually enforced in the classical EE method, has to be bent considerably in order
to use classical EE methods for dispersed gas-liquid flows. If the dispersed entities are not
interacting at all (Knudsen number of the dispersed phase goes to infinity) the continuum
assumption breaks down completely and physical fields like pressure and stresses cannot
be defined in the dispersed phase. Other critical issues in the modelling of dispersed
gas-liquid systems with EE methods are:

e the choice of the turbulence model,
e the polydispersity of the dispersed phase,

e the crossing trajectory effects of droplets (see Section 2.2.4).
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On the other hand, EE methods are independent of the mass or bubble loading and
the coupling between dispersed and carrier phases does not require averaging over a
representative sample of dispersed entities. These advantages of the EE method come
into play when unstationary, turbulent, gas-liquid flows are considered and loading with
dispersed entities is high.

It is expected that for unsteady spray flows an improved EE method can outperform
the EL method in terms of accuracy and speedup on highly parallelised computers. How-
ever, the improved Euler method (presented in this work) differs considerably from the
classical Euler methods. The main differences are the drop of the continuum assumption,
the consideration of dispersion in velocity space and the rigorous consideration of poly-
dispersity. It will be shown that this method can describe polydisperse droplet clouds
that allow infinite droplet Knudsen numbers and multi-modal distributions of the droplet
velocity.

1.2 Objectives and Methods

The EL method was ascertained by Apte et al. [7], Nora Okong’o et al. [115] and Sadiki
et al. [145] to be the right method for turbulent spray flows in combustion systems which
have low mass loadings and a moderate degree of unsteadiness. For higher droplet mass
loadings and higher degrees of unsteadiness, the workload of the EL method increases
considerably and the speedup using a large number of processors does not increase linearly,
as is the case for simulation methods describing the gas flow [137].

In contrast, the computational performance of EE methods is similar to that of the so-
lution methods for the gas flow [137]. Although the number of balance equations increases,
the structure of the equations remains very similar to Navier-Stokes (NS) equations. How-
ever, the ability of the classical EE methods [42] to describe spray flows is very limited
because, as stated above, the continuum assumption breaks down if the droplets are not
interacting, the modelling of turbulence in the dispersed phase is not completely resolved
[83], the polydispersity of a spray experiencing breakup, collision and evaporation is not
settled [59] and the crossing trajectory effects are not captured by most Euler methods.
The latter effect is most critical for dilute spray flows in a turbulent environment because
it is taking place nearly everywhere in a spray system |[38].

There are several concepts that lead to a mathematical model for EE methods. Most
of them start from continuum balance equations and perform some sort of averaging, i.e.
time, volume or ensemble averaging, to obtain mass, momentum, moment of momentum,
energy, entropy, diameter and other balance equations for each phase [42]. In this work,
the objective is to develop a method that allows infinite droplet Knudsen numbers for the
dispersed phase. Therefore, the mathematical model for the droplet phase is not based on
the continuum assumption but on the kinetic spray equation introduced by Williams [179].
It is a partial differential equation (PDE) for a general function, called number density
function (NDF). The NDF can be interpreted as the probability for encountering droplets
at a point with specific properties. It depends on time, position and other variables,
denoted as internal variables that describe the state of a cloud of droplets. For sprays in
combustion systems the internal variables of droplet velocity, size? and temperature are

2The size variable can be the diameter, surface or volume of droplets. For sprays in combustion
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considered as describing the droplet phenomena of drag, gravity, evaporation, breakup,
collision and heat transfer with the surrounding gas. The kinetic spray equation can be
reduced to time and position dependent balance equations for moments of the NDF by
applying moment transforms to it. To close the unknown terms in these equations special
forms of the NDF are assumed that include various degrees of freedom to capture the
spray effects.

The objective of this work is the development, implementation and validation of a
new EE method for spray flows encountered in combustion systems. Besides the five spray
phenomena mentioned in Section 1.1, most combustion systems are dominated by

e the turbulent gas flow,

e the mixture of fuel and air,

e the fast chemical reaction in the flame,
e the influence of the wall.

As a first step in this development, the focus is on the dispersed droplet phase which
experiences the effects of:

(i) drag and gravity forces,

(ii) evaporation,

(iii) heat transfer,

(iv) particle trajectory crossing (PTC),

(v) splashing on a wall,

(vi) droplet motion in unsteady gas structures.

The breakup and collision of droplets which are of interest near the nozzle are only consid-
ered in the physical and mathematical model of the new EE method. For the numerical
model and the transfer from the developed algorithms to the program code, only issues
(i)-(vi) are considered. The modelling of the gas phase is set aside in order to concentrate
on the critical issues in the mathematical and numerical modelling of the dispersed phase.
The physical models for drag force, evaporation and heat transfer are taken from the
literature.

In the development of a mathematical model for the new Eulerian approach the
following questions are answered:

(i) Can the standard physical models for evaporation, drag force, breakup and collision
be used?

systems the consideration of the surface is the most natural choice because it allows the control of the
evaporation process.
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(ii) How can the balance equations for the moments be closed and still allow the NDF
to be polydisperse in size and multimodal in the velocity variable?

(iii) Can the mass and number of droplets be controlled by the model?

Question (iii) is central to the simulation of spray combustion, because the chemical
reaction in the flame is determined by the mass ratio between vapour fuel and oxidiser,
which is strongly related to the mass transfer from liquid to gaseous fuel.

The numerical model builds on the balance equations resulting from the mathematical
model. The numerical schemes used here

(i) allow the coexistence of droplets of the same size but with different velocities at one
location,

(ii) capture vacuum zones and strong mass concentrations in unsteady gas flow structures,

iii) are able to solve a weakly hyperbolic transport system that exhibits no pressure
(inﬁnite droplet Knudsen nurnber),

(iv) are conservative, realisable and non-oscillatory in real and size space (for convection
and evaporation),

(v) are able to consider the stiff terms of drag forces,
(vi) prevent extraordinary computational costs.

These requirements cannot be met by the well-known pressure correction algorithm [50,
83| because, among other things, no pressure is defined in the equations for the dispersed
phase. In this work, an explicit procedure is preferred that is based on the Strang split-
ting algorithm [165]. It allows the numerical modelling of the various spray phenomena
independently.

In general, CFD simulations are used for the prediction of flow phenomena because
they are considered as less expensive and less time consuming than experimental measure-
ments. However, it can only be trusted in CFD predictions, if the methods are carefully
verified by comparing to reference calculations in simple configurations and if they are
intensively validated by comparing to experimental measurements. The verification and
validation, reported for the new Eulerian approach (see Chapter 6), are based on one-
and two-dimensional test cases. They help to confirm the above properties of the new
mathematical and numerical model. Complex three-dimensional cases are left for future
research.

1.3 State of the Scientific Knowledge

As previously mentioned, the simulation methods for sprays in technical combustion sys-
tems are not mature. However, due to ecological and socio-economic relevance, the op-
timisation of combustion technologies and spray research are advancing rapidly. The
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overview of the existing simulation methods given here, is only a glimpse of a much
broader development.

The most refined but most costly simulation techniques are direct numerical sim-
ulations (DNS) of droplets and/or spray flows. They provide a detailed model for the
dynamics of the interface between the gas and liquid and the exchanges of heat and
mass. Various competitive techniques are in use: the volume of fluid method (VOF)
[35, 86, 147, 150], the level set method [76, 122, 155|, the ghost fluid method [49] and
combinations of them [40, 110|. These methods are regarded as ‘microscopic’ approaches
to the description of spray flows because every detail of the two-phase flow is captured.
The ‘mesoscopic’ approach describes the droplets as a cloud of point droplets for which
the exchanges of mass, momentum and heat are described using a statistical point of view
[106, 112, 123]. Eulerian quantities like the diameter, surface or volume of droplets and
their velocity or temperature are accounted for. The equation following from this physical
model is denoted as a kinetic spray equation® [179] and allows the modelling of all main
physical processes of sprays mentioned in Section 1.1. In the following, the dispersed
phase part of the classical ELL and the EE methods will be outlined. It has been shown
by Pai [123] that both methods can be derived from the kinetic spray equation.

Numerical Issues: Euler-Euler vs. Euler-Lagrange
The Lagrangian procedure (cf. [9, 33, 45, 113, 119, 144, 167|), also called the particle
stochastic method, treats the kinetic spray equation by solving the motion of a large
number of numerical particles (parcels) in a space equipped with the same variables as
the NDF in the kinetic spray equation. The mean spray properties, e.g. the mean droplet
velocity and mass transfer, at position x and time ¢, which are needed for the coupling
with the gas phase, are obtained by averaging over a representative sample of parcels
that cross a defined volume around x within a certain time interval including ¢. The
sample size and the number of tracked parcels determines the level of statistical noise of
the mean droplet quantities. Hence, smaller sample volumes and shorter time intervals,
which are necessary for more refined and unsteady computations, require more parcels. If,
additionally, a spray is injected in a hot gas environment and a large amount of droplets
vanishes very close to the injection nozzle, the number of parcels must further be increased
to obtain smooth mean values away from the nozzle [74]. It was further observed by Riber
et al. [137] that the speedup of the EL method by increasing the number of processors
is not perfect and it strongly depends on the type of computational grid (hexahedron-
based or tetrahedron-based). They show that the drop in performance is not due to large
communication costs but originate from the parallel load imbalance generated by the
partitioning algorithm. Riber et al. [137] used the unsteady test configuration of Borée
et al. [17] to compare their EL computations to experimental measurements for moderate
mass loadings. They report that the overall central processing unit (CPU) and memory
requirements for high-accuracy computations of the particle phase is less than the LES gas
computations, indicating that with larger mass loadings the computational costs increase.
By solving the kinetic spray equation with an Euler method, balance equations for
various moments of the NDF are solved at each position and time [42, 51, 123]. These

3This approach is similar to the description of molecules in the kinetic gas theory (cf. Boltzmann [16]
and Cercignani [24]).
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moments are related to average density fields of physical droplet quantities like the mean
mass, number, velocity or temperature of droplets. This procedure has the advantage
that, irrespective of the amount of droplets in a region, the same number of equations
always has to be solved; hence in EE computations a cost is added for the dispersed phase
which is independent of the mass loading. In addition, the solver of both phases can be
parallelised with the same strategy [137]. In consideration of these issues, it is expected
and shown by Riber et al. [137] that the speedup of the particle phase computation
behaves equally well as the speedup of the gas phase computation. With this property,
EE methods are assumed to outperform EL methods on massively parallelised computers,
particularly, for dense and unsteady spray flows. These assumptions are the motivation
for the development of the new Euler method presented in this work.

Euler Methods for Spray Flows

The classical Eulerian description of dispersed droplets has certain principle limitations.
By using a two-fluid model as described in |71, 77, 83| the cloud of droplets and the
ambient gas are modelled as two interacting continuous fluids. In this approach the
polydisperse character of the spray can only be captured in a very crude manner because
the two superposed and coupled sets of NS-like equations are not sufficient to capture
the shape of the droplet size distribution which changes when drag forces, collision and
breakup are present. For two-fluid methods, the droplet size distribution is commonly
assumed to have a particular form, for example, the Rosin-Rammler distribution |71, 100].
To capture the polydispersity of the spray, the use of a kinetic spray equation [179] appears
to be indispensable. There are several Eulerian approaches for the detailed consideration
of the polydisperse character using this equation. These are the methods of moments
[72], such as the quadrature method of moments (QMoM) [183] or the direct quadrature
method of moments (DQMoM) [107], and the class or sectional methods [175] introduced,
for example, by Gelbard et al. [63]. They will be described in more detail in Chapter
3. Other methods, like the methods of characteristics [136], the methods of weighted
residuals [132] or the method of Laplace transforms [65| can also be applied to polydisperse
sprays but so far, they are more popular for the description of crystallization in chemical
engineering.

In this work, the sectional method (SM)* developed by Domelevo [41], Dufour and
Villedieu [44], Gelbard et al. [63], Laurent and Massot [96] and Laurent et al. [97] is
employed as basic model because, as shown in Chapter 3, it is the most robust for evapo-
rating sprays. In this approach the size space is discretised into fixed intervals, in which
balance equations for lower order moments of the NDF in size and velocity are solved for
each interval. This treatment of the kinetic spray equation allows the accurate predic-
tion of evaporation, drag, breakup and collision of sprays. There are a variety of other
approaches available which are based on a fixed discretisation of the size space. For an
overview and a detailed comparison of these methods (including the SM) see Vanni [175].

Unfortunately, the SM and most other Euler methods that were developed to treat
the spray in size space cannot describe the dispersion of droplet velocities at one location
for one droplet size. However, this is necessary to capture the crossing of two dilute
sprays arising, for example, at the rim of turbulent eddies or at walls where droplets

4The SM is also called ‘Eulerian multifluid method’ by Laurent et al. [97].
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are splashed. Recently, Desjardins et al. [39] (see also [56]) proposed a quadrature-based
moment method (cf. [107] for quadrature methods) that overcomes this drawback by
solving balance equations not only for the number, mass and momentum densities but
also for the kinetic energy and other higher order velocity moments of the NDF. This
method is able to describe the crossing of sprays but does not take into account the
polydisperse character of sprays.

In this work, a combination of the SM developed by Dufour and Villedieu [44] and the
third-order quadrature-based methods of moments (QBMoM) developed by Fox [56] and
Le Lostec et al. [99] is undertaken (see Chapters 4 to 6). Both procedures are merged in a
way that allows the resulting method to describe the polydisperse nature of sprays as well
as the coexistence of two or more droplet velocities at one location. To this end, a new
and more general approximate NDF is proposed that reduces to the approximations of
Dufour and Villedieu [44] and Fox [56] or Le Lostec et al. [99] if special sets of parameters
are chosen.

1.4 Structure of the thesis

This work is organised in the following way. In Chapter 2 the physical models for sprays
in technical systems are addressed by first giving the definitions and categorisations of
the main spray phenomena (Section 2.2). Second, the principle physical approaches to
technical sprays are discussed (Section 2.3). These considerations allow the definition
of the standard physical models for the droplet-gas interaction which are the models
for droplet forces, evaporation and heat transfer between droplet and gas (Section 2.4).
The models for the droplet-droplet interaction, which include breakup and collision, are
discussed in Section 2.5. Chapter 2 ends with a new physical model for splashing processes,
in which a cloud of droplets is reflected on a wall but droplets break and loss mass and
momentum.

Chapter 3 deals with the mathematical model of the kinetic spray equation (Section
3.2). Due to the large number of independent variables of the general kinetic spray equa-
tion, it cannot be solved numerically or analytically unless some mathematical transfor-
mations and assumptions on the NDF are introduced. The Lagrange and Euler methods
for the description of the dispersed phase start from the same kinetic spray equation
but differ in the transformation of it and in the assumptions on the NDF. The Lagrange
method and the different approaches to Euler methods are discussed in more detail in
Section 3.3. It will be demonstrated why certain Euler methods, particularly DQMoM,
are applicable to evaporating sprays only under very strong assumptions. Arguments for
the inclusion of the SM of Dufour [43] and the QBMoM of Fox [56] and Le Lostec et al.
[99] are also presented. The well-known mathematical models for multicomponent gas
flows are the subject of Section 3.4, where the influence of the dispersed phase on the gas
equations is also addressed.

In Chapter 4 the kinetic spray equation is transformed into balance equations for a
chosen set of moments (Section 4.2). This system of moment equations is closed in Section
4.3 by assuming the NDF to have a form that is special to polydisperse sprays that undergo
PTC. This approximate NDF is a generalisation of those employed in the SM [43] and
the QBMoM [56, 99]. The parameters of the approximate NDF are determined by the



1.4. STRUCTURE OF THE THESIS 11

moments that are transported. The transformation between moments and parameters is
discussed in detail in Section 4.4. With these considerations the mathematical model of
the new Euler method is established. Chapter 4 is supplemented by a summary of all
relevant equations that have to be solved for the new Euler method.

The numerical model, i.e. the numerical schemes for the PDE system proposed in
Chapter 4, is addressed in Chapter 5. The PDE system is solved using the Strang splitting
procedure (Section 5.2). This allows the treatment of convection, drag force, heat transfer
and evaporation with independent numerical schemes. The convection problem is treated
with a finite volume discretisation in real space, using the kinetic approach of Bouchut
[18] (Section 5.3). The drag force problem and the heat transfer can be solved using a
stiff ODE-solver (Section 5.4). For the solution of the evaporation problem, a second-
order finite volume discretisation in size space is proposed that is based on a kinetic
approach as well (Section 5.5). The new splashing model which is introduced in Chapter
2 is specialised to the new Euler method in Section 5.6. Chapter 5 is completed by an
overview of the general algorithm of the new Euler method.

Chapter 6 is devoted to the verification, validation and application of the new Euler
method to simplified spray problems. The results are compared to a semi-analytical
solution and reference Lagrangian calculations. In Sections 6.2 and 6.3 the ‘pure’ methods,
i.e. the SM and the QBMoM are verified in one- and two-dimensional configurations. The
SM is also validated by comparing the results with the measurements of Wong and Chang
[182]. The new Euler method is assessed in three one-dimensional (Section 6.4) and
four two-dimensional (Sections 6.5 and 6.6) test configurations by comparison to highly-
resolved Lagrangian calculations. The method is tested first in a one-dimensional setting
of two crossing spray clouds that evaporate according to a d*-law. Second, the sprays
cross each other but are affected by a Stokes drag force, and third, the method is applied
to a configuration where a droplet cloud is splashed on a wall. In two dimensions the new
Euler method is tested in two crossing configurations of two perpendicular moving jets
that are affected by evaporation and drag force. The splashing test case is also conducted
in two dimensions where, in contrast to the one-dimensional splashing, a parameter for
the friction on the wall is necessary. In the last test case (Section 6.6) an evaporating and
non-evaporating droplet cloud is affected through Stokes drag force by a Taylor-Green
gas vortex [168]. This configuration allows the testing of the new method in an unsteady
configuration that is similar to turbulent gas flow structures.

Chapter 7 presents the highlights and principal conclusions of this work. Some ideas
on future work are outlined in Chapter 8.






Chapter 2

Physical Models for Sprays

2.1 Introduction

Physical models constitute the first level of abstraction in the description of physical
phenomena. The real nature of matters is far too complex to be entirely considered
in simulation models'. Therefore, only the principle effects are extracted from the vast
amount of information on the physical process. The simplifying assumptions of a physical
model only hold true for a specific region of length and time scales. Thus it is essential
to know the characteristic scales of a process before it is physically modelled.

A prominent example of a physical model is the continuum assumption for gases,
liquids and solid materials. It assumes that the mean free path between molecules, clusters
or ions is much smaller than the size of the entities and interstitial space can be neglected.
This assumption allows the definition of physical density fields of mass, momentum, etc.
at every point in the continuum body. This assumption is appropriate for most technical
flows but breaks down when the length scale of interest is only a few Angstrom.

A physical model allows the definition of physical quantities for the principle effects
of a process and variables for determining the state and motion of a body. Part of the
role of the physical model is also to find the functional dependencies between principle
effects and physical variables. These functions include dimensionless numbers that can
be used to characterise a physical system or to define the area of validity of a model. The
dimensionless Knudsen number,

Kn — r.nean free path - (2.1)
char. size of smallest entity

for example, is used to quantify the accuracy of the continuum assumption. For small Kn
the motion of a body is dominated by a large number of molecules, ions, etc. that interact
heavily with each other. For large Kn the differentiation between interstitial space and
structural elements becomes important and the continuum assumption does not apply.

'In this work, a simulation model is considered as the combination of the physical, mathematical and
numerical models of a physical process. It also includes the algorithms for implementation in a program
code and the optimisation of the program code on a computer system.

13
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The physical models for sprays are outlined in the following sections. In Section
2.2 the principle effects for spray flows are introduced and global quantities are given
that allow a crude categorisation of technical sprays. In the same section the polydisperse
nature of sprays and the particle trajectory crossing is discussed. In Section 2.3 the various
basic modelling approaches for spray flows are outlined and reasons for the physical model
chosen in this work are given. In Sections 2.4 and 2.5 standard models for droplet-gas
and droplet-droplet interactions are presented. Section 2.6 is devoted to a new model for
the splashing of sprays on walls.

2.2 Characteristics of Sprays

A spray is a moving cloud of dispersed droplets carried in a gaseous environment. The
droplets are commonly denoted as dispersed phase and the gas as carrier phase because
in most cases the droplets have a definite boundary [12].?

2.2.1 Principle Effects of Sprays

In combustion systems the spray is generated by injecting the liquid fuel through some
type of nozzle [100]. The high fuel velocity within and at the exit of nozzles, the large
moment ratio of liquid to gas phase and the surrounding gas turbulence can lead to
the implosion of cavitation bubbles, high levels of turbulence in the liquid and strong
aerodynamic forces on the droplet surface. In car engines, for example, these effects cause
an immediate primary breakup of the connected liquid phase into droplets and ligaments
which form a dense spray. The droplets are usually decelerated by the ambient gas and
collisions between droplets are likely. These collisions are either totally inelastic and the
droplets coalesce or they separate again, forming new droplets with different momenta and
sizes. In aeroplane engines, on the other hand, the liquid fuel has relative low velocities
in the nozzle but is strongly accelerated in the gas flow. Therefore, the primary breakup
is dominated by the strong aerodynamic forces acting on the liquid jet. The acceleration
leads also to a thinning of the spray which reduces the probability of collision.

In the regime of secondary breakup (see Figure 1.2) the droplets fragment into smaller
droplets. Although the velocity difference between droplets and gas is smaller than in the
primary breakup regime it is sufficient to amplify the Kelvin-Helmholtz or Rayleigh-Taylor
instabilities [103]. The type of breakup strongly depends on the Weber number, defined
by

[Veal|* d
We :— LoVl € (2.2)
0d
where p, [kgm™] is the mass density of the gas, d [m| a characteristic diameter of a
droplet, v, [ms™!| the (barycentric) velocity difference between gas and droplet and oy
[Nm™?] the surface tension of a droplet.

Far away from the nozzle (see Figure 1.2), the droplets reach the gas velocity, the

events of collision and breakup are rare and the overall surface area of droplets is large. In

2In supercritical spray flows the definition of a phase has to be loosened because there is no sharp
boundary, only a transition zone from the droplet to the gas.
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this region the evaporation of droplets is dominant and the motion of the gas determines
that of the droplets. The ability of droplets to follow the gas is high because their size is
small and it is further reducing due to evaporation.

2.2.2 Categorisation of Sprays

There are various ways to categorise sprays. The simplest way to differentiate between
various patterns of sprays is the geometric description of spray jets using quantities like
spray penetration, spray cone angle or other geometric measures. These quantities can
be gained using relatively simple measurements but cannot be used for general purposes
as they are closely related to a specific type of nozzle.

A more general global quantity to categorise sprays is the total mass loading

TN

g

A , (2.3)

which is the ratio of the overall mass flow rate of the droplet phase, M, [kg s7!], to that of
the gas phase, M, |kg s™'|. Another global quantity that is useful for the characterisation
of sprays is the total volume fraction of the dispersed phase in the system

Va
‘/sys 7

(2.4)

Qg =

where V; [m?] is the volume of droplets and Vj,s [m?| is the system volume. The total mass
loading and the total volume fraction are global values that are used to design combustion
chambers. They give an indication of the equivalence ratio and the denseness of the spray.
However, it is observed in Figure 1.2 that a fuel spray is far from being homogeneously
distributed in the combustion chamber. Near the nozzle the spray is considered as very
dense and far away from the nozzle it is usually regarded as dilute. Therefore, it is
advantageous to introduce local dimensionless quantities to categorise sprays.
The dimensionless droplet Knudsen number, also called the droplet spacing [33],3

Kn, — mean free-path of droplets ’ (2.5)
mean size of droplets

is used to classify sprays or regions of sprays in terms of diluteness. This quantity is
related to the collision of droplets which are more likely in dense sprays. For regions of
dilute sprays, i.e. far away from the nozzle, events of collisions are rare as the droplets are
small and widely distributed. The gas flow has an impact on the mean free path because
droplets tend to follow the non-crossing streamlines of the gas. This indicates that the
mean free path depends not only on the denseness of a spray but also on the ability of
the droplets to follow the gas.

Another categorisation of sprays, which is the most suitable for simulation modelling,
is based on the local dimensional numbers for the different spray phenomena which are
introduced in Sections 2.5 and 2.6.

3An alternative definition of the droplet Knudsen number will be given in equation (2.64).
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Figure 2.1: Number vs. diameter of droplets in a polydisperse spray;
from experiment of Wong and Chang [182].

2.2.3 The Polydisperse Nature of Sprays

A collection of droplets is called polydisperse if it can be characterised by a broad range
of shapes, sizes and masses. The atomization of liquid fuel in a technical injection de-
vice generates a spray that is polydisperse but, to be precise, the droplets also have
different velocities, temperatures and rotational speeds |73, 181]. The polydispersity of a
spray originates from the collision and breakup® of droplets in the primary and secondary
breakup region (see Figure 1.2), from the evaporation of droplets in the inhomogeneous
turbulent gas flow and from the drag forces that are affecting small droplets differently
than large ones. The latter phenomenon leads to an effect which is commonly called
droplet size segregation. It is the separation of small and large droplets.

The distribution of droplet sizes f(d) at a given position and time is usually given in
the form presented in Figure 2.1. In these type of representations the droplet diameter is
used as measure of droplet sizes assuming the droplets to be spheres. All kinds of statistics
can be applied to droplet distributions and various averages can be defined. The most
relevant quantity in the design of combustion devices is the Sauter mean diameter (SMD).
It is defined by

d32 = 721 digni
> difng
where d; [m] is the diameter and n; is the number of droplets in size-classe i (see Figure

2.1). The SMD is a ratio of quantities which are proportional to the average mass and
surface of droplets at a given point. Large SMD values are observed in regions of dense

(2.6)

4Fundamental experiments on the fragmentation of ligaments were performed by Eggers and Viller-
maux [46, 176], whereas the collision of droplets was investigated experimentally by Qian and Law [130].
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sprays where the influence of evaporation is small, and low values of SMD where broadly

dispersed droplets are observed and evaporation has a strong influence.
The Rosin-Rammler (Weibull) distribution [100, 141]

- |\ X - 9 el )

0, d<0,

is often used to fit measured droplet distribution functions, where the fitting parameters
D,,, [m] and n [-] are the mean diameter and the measure of the spread of droplet diameters,
respectively. The Rosin-Rammler distribution can also be used as presumed probability
density function (PDF) in numerical methods where D,, and n are free parameters that
have to be determined. Groll [71] fixes n and relates D,, to the SMD.

The collision, breakup, size segregation and evaporation of droplets can lead to con-
siderable changes in the droplet size distribution. Therefore, the representation of a
droplet size distribution by means of one mean value or a presumed PDF is not sufficient
for the prediction of injection processes into turbulent gases.

2.2.4 Particle Trajectory Crossing

The standard example for particle trajectory crossing (PTC) is an impinging gas flow
laden with droplets. One such configuration is the opposed jet flame setup depicted in
Figure 2.2, which is seeded with oil droplets [14, 64]. In this configuration, the droplets
are usually very small and they follow perfectly the gas flow. It is unlikely that these
droplets cross the impingement plane. Increasing their size or using heavier solid particles,
changes in the gas flow have less influence on the dispersed entities. Thus, they are
able to continue directly through the impingement plane. If the cloud of droplets is
dilute, i.e. it has a large droplet Knudsen number, droplets or particles from both sides
can cross the impingement plane without risk of collision. At the crossing points the
(ensemble-averaged) velocity distribution is locally bi- or multi-modal which is the main
characteristic of particle trajectory crossing.

It is known from real [143] and numerical experiments [105] of dispersed particles
in turbulent gas flows, that particles accumulate in regions of low fluctuating velocities.
These areas behave like local and time-dependent impingement zones, which are prone
to PTC. In polydisperse spray flows, PTC is even more likely because the size-dependent
drag force on the droplets leads to broad velocity distributions [73]. In the configura-
tion depicted in Figure 1.2, for example, large droplets ‘overtake’ smaller ones as they
experience stronger decelerations.

Another example for PTC is the splashing of dilute sprays on inclined and heated
walls [61]. Due to the formation of fuel vapour cushions between droplets and wall,
droplets can rebound from the wall. If the spray is dilute enough, the rebounding droplets
cross those who are approaching the wall [62] and again a bi-modal or multi-modal velocity
distribution arises. Sprays cannot be considered as dilute for spray-wall interaction in car
diesel engines [163]. Effects like fuel droplet deposition on the wall, formation of a film and
collision of incident and rebounding droplets are also possible. Nevertheless, only when all
incident droplets are deposited or collide with rebounding droplets, PTC is not present.
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Figure 2.2: Oil droplets (PIV-seeding) in an opposed jet flame config-
uration [14, 64].

From a statistical point of view, it is concluded that in technical spray configurations,
PTC, collision and breakup may be present simultaneously at the same location.

2.3 Principle Physical Approaches to Sprays

In multiphase flows, particularly in spray flows, different physical models are applied de-
pending on the phenomena of interest. If the investigator intends to study the droplet
deformation, temperature distribution, mass or heat losses while a droplet is evaporating,
breaking or colliding, the detailed processes at the gas-droplet interface should be consid-
ered [110, 150]. In this case, the liquid behaviour and the surrounding gas flow have to
be captured as accurate as possible using the continuum assumption. This ‘microscopic’
approach, which considers the entire complexity of the flow, allows the development and
assessment of models for drag forces, evaporation, collision, heat transfer, etc. Unfortu-
nately, due to the extraordinary computational requirements, it is feasible only for a few
droplets within a relatively short time interval.

If a dense spray is studied the details of the droplet-gas and droplet-droplet inter-
actions are not affordable, in particular when the length scales of the system are large,
long time intervals are of interest and the gas flow is turbulent. The simplest physical
model for this type of flows is a ‘macroscopic’ approach that is based on a mixture con-
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tinuum assumption [80]. For this model strong physical assumptions are introduced such
as the spray and the gas have the same mean velocity and temperature or the size of
the droplets have no influence on the flow. This approach considers only mean (mixture)
quantities, i.e. the mass of the droplet-gas mixture, the mass averaged (barycentric) ve-
locity, the averaged temperature and the concentrations of droplets, fuel vapour and other
gas components. The main advantage of this simple physical model is that only one set of
multicomponent NS-like equations has to be solved. However, it is questionable whether
this physical model is appropriate for the modelling of sprays in combustion systems. In
these systems it cannot be assumed that the droplets have the same velocity as the gas. In
addition, the evaporation process can hardly be modelled accurately because the droplet
size is unknown.

In between these two extreme physical approaches various compromises are possible.
In the case when the precise capturing of the droplet/gas interfaces is not intended the
dispersed phase and the carrier phase are treated with separate physical models. In tech-
nical spray flows the gas is turbulent and therefore direct numerical simulations (DNS),
large-eddy simulation (LES) and Reynolds averaged Navier-Stokes (RANS) simulations
are applied. All these methods are based on the physical model of the NS equations (see
Section 3.4). The droplets are usually assumed to be spherical point masses with the
properties of mass (or droplet size), momentum (or velocity), enthalpy (or temperature),
composition or other characteristic properties.

The coupling between the continuous and the dispersed phase can be done on three
different levels. In one-way coupling the gas will affect the dispersed phase properties
(mass, velocity, temperature, etc.) but the dispersed phase has no influence on the carrier
flow. This model is appropriate for dilute spray flows where the overall liquid mass
fraction is small and droplets do not concentrate in certain regions. A two-way coupling
is preferred if the influence of the spray on the gas cannot be neglected and mass and
momentum transfers between droplets and gas are important. If, in addition, the droplet-
droplet interaction is accounted for, a four-way coupling is enforced. It also takes into
account the breakup and collision of droplets. The modelling of sprays in combustion
systems requires at least a two-way coupling because the fuel vapour/air mass fraction
depends strongly on the mass transfer from the droplet to the gas phase. In this work,
a one-way coupling is considered. This assumption is enforced not because it is a good
approximation for spray flows in combustion systems, but it allows the analysis of the
solution methods for the dispersed phase without being affected by inaccuracies of the
coupling between carrier and dispersed phase.

Different physical models exist for the description of the dispersed phase flow. In dis-
crete particle simulations (DPS) [105, 115, 174] each physical droplet is taken into account
and the collision of droplets are explicitly modelled by checking for all collision events.
This approach, which requires large computational resources, is applied in fundamental
studies that aim at understanding droplet transport and droplet-droplet interactions in
turbulent carrier phases. As each physical droplet is captured and the surrounding gas
is commonly treated with DNS or LES, this approach can also be considered as ‘micro-
scopic’.

The less computational expensive and widely used EL. and EE methods are based on
a statistical approach which assumes the spray to be a cloud of spherical point droplets.
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The ensemble average over this cloud allows the definition of ‘mesoscopic’ variables, such
as droplet size, velocity, temperature or other characteristic droplet quantities at each
position in the domain. The interaction between droplets and gas are also ensemble
averaged. This approach allows the consideration of the standard spray models for drag
force, gravity, evaporation, heat transfer, breakup, collision and coalescence (see Sections
2.4 and 2.5) in terms of the ‘mesoscopic’ variables [55]. In this work, the latter approach
is pursued because it allows describing technical spray flows within sufficiently large time
intervals.

2.4 Droplet-Gas Interaction

In this section, it is intended to describe the interaction between a spray and the gaseous
phase it is suspended in. Before concluding on the global behaviour of this two phase
system, the mass, momentum and energy interactions between one droplet and the gas
are investigated, neglecting the presence of other droplets. The aerodynamic effects that
originate from the relative motion between droplet and ambient gas are pressure gradi-
ents, viscous boundary layers, separated flows and wakes on the far side of the gas flow
approaching the droplet. These gas flow effects and the internal liquid circulation, driven
by surface-shear forces on the droplet, are fluid-dynamic features that heavily influence
the motion of a droplet and the heat and mass transfer between droplet and gas. In
general, the relative motion results in an increase of heat and mass transfer rates in the
gas film surrounding a droplet [158].

In this work, the droplets are assumed to be point masses equipped with the proper-
ties of size, velocity and temperature. The drag force influencing the velocity of a point
droplet is set equal to the surface integral of all pressures acting on a real droplet with
the same surface and barycentric velocity. The same idea is followed for the evaporation
and heat transfer model. They describe the change of size and temperature of the point
droplet.

In the present work, the size of a droplet is characterised by the droplet surface,
s [m?]. As the droplets are assumed spherical, the surface of a droplet can be mapped
to its diameter or volume without loss of generality. Using the surface, nonlinearities in
the models for drag and evaporation can be avoided and the numerical methods for the
solution of the balance equations derived in Chapters 4 and 5 simplify considerably. In
this study, all physical models are written in terms of the droplet surface, s.

2.4.1 Forces on Droplets

The forces on bodies submerged in a gaseous environment is dealt with for quite some
time (cf. [121, 164]) and rather sophisticated drag models exist (cf. [33]). In this work, a
droplet is considered to be affected by a drag force, F; [N] and the gravity force, (m4ge,),
ie.

F:Fd—i—mdgeg s (28)

where F [N] is the total force on a droplet, my |kg| is the droplet mass, g = 9.81 ms 2

the acceleration of gravity, and e, the unit normal vector pointing into the direction of
gravity.
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The dependencies of the drag force are confined to the droplet surface, the relative
velocity between gas and droplet, v, := U, — v [ms™!], the gas density, p,, the dynamic
viscosity of the gas, 7, kg (ms) '] and the surface tension, o4 [Nm™!|. The unstationary
behaviour of the droplet, buoyancy effects, compressibility of the gas, rotation effects, the
fluid motion within the droplet or other more subtle forces are not considered. It can
be shown that terms originating from these phenomena are negligible for large ratios of
droplet to gas densities, droplets of small sizes (relative to a characteristic length scale of
the gas) and low droplet Mach numbers

May, = |Vrel|

<0.03, (2.9)

where ¢ [ms™!] is the speed of sound in the gas. Based on the above dependencies the
following functional relation for the drag force is postulated

F, = Fd(s,pg,ng, Ody Vrel) - (2.10)

Assuming the number of independent variables on the right-hand side of (2.10) to be
complete, a dimensional analysis [11, 80| leads to the expression

F,= pgs|vrel|}~?’d(Red,We)vrel , (2.11)

with the definitions of the dimensionless numbers:

o pg\/g Urel

droplet Reynolds number Rey := ————, (2.12)
VT g

We o PalVial V5
\/7_T0'd

If the dynamic effects of the droplet surface, which are dominated by the surface tension,
are neglected, the dependence of F; [-] on the Weber number can be set aside. The droplet
surface tension will be important for the modelling of breakup and collision (see Section
2.5).

It remains to find the functional dependence between Fd and Rey using either ana-
lytical, numerical or experimental methods to analyse the behaviour of a single droplet
in a moving gas environment (cf. [149] or [169]). In the context of experiments relation
(2.11) is commonly written as

Weber number (2.13)

1 Vrel
Fo=-Cypys|via|* — , 2.14
d 8 dpg | el| |Vrel| ( )
with the coefficient of drag, Cy [-|, depending on the droplet Reynolds number. Another

common form of expression (2.14) is
Fu= v, (2.15)
Td

where 74 [s] is called droplet response time or droplet relaxation time in the gas flow.
The droplet response time depends on Rey, |viel|, the mass density of droplet liquid, p,
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[kgm™3|, and the size of the droplet. The coefficient of drag and the response time are

related by
1 3yx 3/2
==

s
67
The dimensionless Stokes number, St, defined via the response time and a characteristic
time scale of the gas, 7, [s], i.e.

Td

Cd&s’l/2|vrel|, with  py =m, (2.16)
Pe

St = ¢, (2.17)
Tg
quantifies the ability of a droplet to follow the gas. It plays an important role in all
acceleration and deceleration processes of droplets in a gas. In the case of an opposed
jet flow (see Figure 2.2), the Stokes number determines whether the particles cross the
impingement plane or not. For small Stokes numbers (St < 1) the particles remain on
their respective side of the opposed jet configuration and have nearly the same velocity
as the gas. For larger Stokes numbers (St > 1) changes in the gas motion have less affects
on the droplets and PTC is more likely (see Section 2.2.4). For sprays suspended in a
turbulent gas flow, the turbulence modulation in the gas and the droplet dispersion is
also dominated by the Stokes number [145].

For small droplet Reynolds numbers (Re; < 1) the Stokes law [164] assumes the

functions C,; and 74 to have the simple form
24 peS

Cd,St = g and Td,st —
d

. 2.18
187, ( )

For higher droplet Reynolds numbers Schiller and Naumann [148| proposed a correction
which reads

Case (1+0.15-ReJ™7), Rey < 10,
Casn = (2.19)

0.44, Rey > 103 .

For the sake of simplicity, in Section 4.5.1, the general drag force model (2.15) is specialised
to the Stokes law.

2.4.2 Evaporation and Droplet Heating

In combustion systems, particularly in direct injection engines, the droplet evaporation
can be critical because [163]

(i) it has a direct effect on the combustion rate,
(ii) it influences the emission formation.

Poor evaporation typically causes increased soot and unburned hydrocarbon emission.
Fast evaporation (e.g. under flash boiling conditions) leads to extra NO, emission because
the rapid premixed combustion is associated with high temperatures [163].

Unfortunately, the evaporation process can be very complex under realistic combus-
tion conditions. Factors that increase the complexity of evaporation models are

(i) the multicomponent character of carbon fuels [94, 180,
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(ii) very high or sometimes supercritical pressures and temperatures in the combustion
chamber ,

(iii) the interaction between droplets in the turbulent gas environment,
(iv) the interaction between flame and un-vaporised droplets [135].

In this work, the focus is not on the development of new evaporation models (for a recent
overview see Laurent [94]). Instead, it is intended to check the new Euler method, which is
presented in Chapters 4 to 6, whether it is in agreement with the robust standard models
for the evaporation of single-component droplets.

Sirignano [158] identified six types of droplet-evaporation models. In order of increas-
ing complexity, they are called

(i) constant droplet-temperature model (d*-law), i.e.

d
d_j = K = const. , (2.20)

(ii) infinite liquid-conductivity model (uniform droplet temperature varying with time),
(iii) spherically symmetric transient droplet heating model (limited conductivity model),
(iv) effective-conductivity model,

(v) vortex model of droplet heating,

(vi) Navier-Stokes solution.

The main difference between these models is the treatment of the heating of the liquid
phase because it is the rate controlling factor in the process of droplet evaporation [158|.
In this work, the models (i) and (ii) are used where the constant K for model (i) is
obtained from model (ii) by assuming the velocity and temperature difference between
droplet and surrounding gas to be zero. In the following, the focus will be on the infinite
liquid-conductivity model introduced by Abramzon and Sirignano [1].

The model of Abramzon and Sirignano [1] assumes a spherical droplet to be supended
in a quasi-steady gas flow with negligible pressure drop. It allows variable physical prop-
erties of the droplet and variable Prandtl, Schmidt, and Lewis numbers (to be defined)
in the boundary layer around the droplet. The gas phase calculation around a droplet is
based on the one-dimensional film theory [149], which considers the change of thermal and
diffusional film thicknesses due to Stefan flow. Abramzon and Sirignano [1] assumed a
transient liquid heating inside the droplet using an ‘effective’ thermal conductivity of the
liquid fuel. In this work, the position is taken that either the heat conductivity in the lig-
uid is very fast or the droplets are very small compared to the characteristic length scales
of the gas flow. This justifies the assumption of a time-varying but uniform temperature
in the droplet and on its surface.

The evaporation and heat transfer model is based on the relations

d
d—i =K(s,v,0) (2.21)
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for the surface of a droplet and

z—f = R(s,v,0) (2.22)

for the uniform temperature of a droplet, 6 [K]. Assuming the droplets to be spherical,
the size, velocity and temperature-dependent evaporation rate K [m?s™!] is related to the
mass transfer 1mg := dmg/dt [kgs™!] via

6y .
K(s,v,0) = P ma(s,v,0) . (2.23)
The rate of change of the temperature R [Ks™'] is related to the gas/droplet heat con-
duction, Q, |[W], mass transfer and the latent heat, L(f) [Jkg '], through

Qq(s. v, 8) + 1iva(s) L(9)
cp(0) ma(s) ’

where the specific heat capacity of the droplet, ¢, [J(kg K)™']|, depends on the droplet
temperature.

Notice, that R and K are strongly coupled via the mass transfer and their dependence
on the temperature. In the following paragraphs the mass and heat transfers, as derived
by Abramzon and Sirignano [1], are outlined.”

R(s,v,0) =

(2.24)

The Mass Transfer.
Abramzon and Sirignano [1] assumed the mass transfer to have the form

14(s,v,0) = V75" pyDya(0)Sho moa (v, 0)In(1 + By () (2.25)

with the diffusivity of fuel vapour in air, D,, [m?s7!], the modified Sherwood number,
Sho moa ||, the coefficient for mass transfer, B,, [-|, and the mean temperature within the
thermal film surrounding the droplet, 6 [K].

The diffusivity depends strongly on the mean temperature and the pressure in the
thermal film. Analytical expressions for binary gas systems at low pressures are available
in Poling et al. [127]. The mean temperature in the thermal film is commonly approxi-
mated by a 1/3-law, i.e.

9:9%(@,-9), (2.26)

where 6, [K] is the absolute gas temperature far away from the droplet. The modified
Sherwood number is defined by

Shomod = 2 + i:l(OB;)Q : (2.27)
where
Sho = 1+ (1 + RegSe)® - g(Rey), g(Req) i { ! fea =1, (2.28)
Re %% otherwise |

For more details the reader is referred to Groll [71] and Ochs [116].
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is the Sherwood number, defined according to Clift et al. [28]. The function F(B,,) in
(2.27) is a correlation of numerical results for the Falkner-Skan solution. Abramzon and
Sirignano [1| proposed the following form

o-n(1+B,,)

F(B,,) =(1+B,) B

for 0<B,, <20, 1<Pr, Sc<3. (2.29)

The Prandtl and Schmidt numbers are defined by

. Cpg'ly _ g
Pr: N | Sc 5w (2.30)
with the average specific heat capacity of the gas, ¢,, [J(kg K) '], and the average thermal
conductivity, A, [W(mK)~!], in the gas mixture of the thermal film. The averaged dynamic
viscosity and density in the definition of the Schmidt number are taken from the diffusional
film.

The coefficient of mass transfer, B,,, (also called Spalding number of mass transfer)
introduced in (2.25), is defined according to

Y;at (‘9) - Yoo

B, (0) := L= Vou(0)

(2.31)

where Y, is the minimum mass fraction of fuel vapour in the gas far away from the droplet
and Y, is the saturation mass fraction. Knowing the droplet (surface) temperature and
assuming the gas phase to be saturated in the vicinity of the droplet surface the saturation
mass fraction can be evaluated using the Clausius-Clapeyron equation [71].

It should be noted that B,, is related to the droplet temperature via the saturation
mass fraction. Therefore, the mass transfer my, is nonlinearly coupled to the droplet
temperature as well.

The Heat Transfer.

In the model proposed by Abramzon and Sirignano [1], the temperature of a droplet is
influenced by the heat conduction from the hotter to the colder phase and the consumption
of energy due to the phase change of droplets. Heat radiation and other more subtle
influences, e.g. the Dufour effect, are neglected. The analysis of [1] leads to the model

¢, mgR(s,v,0) = Nuy/7s2\, (05 — 0) — g L(0) , (2.32)

where Nu is the dimensionless Nusselt number. The coefficient of heat transfer (also called
Spalding number for heat transfer)

EpF(‘gg —0)

B = uR) g + L(6)

(2.33)

is defined in order to parameterise the influence of the Stefan flow on

c,mgR(s,v,0) =my (%gh_e) - L(Q)) ) (2.34)
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with only one parameter. The quantity ¢, is the average vapour specific heat of the film
with the average temperature § (see (2.26)) in the thermal film. Relation (2.34) is the
principle expression to determine R(s, v, #). It requires the specification of By, and L(0).

Before doing so, the definition of By, in (2.33) will further be discussed. It allows the
derivation of

. A .
g U2/ s12 20 NuBy, %2 /752 p, DoyaShomedln(1 + Bu) (2.35)
CpF
which can be used to relate B, and B,,. To this end, the modified Nusselt number

Bh Nuo —2
R ,
In(1+ By) F(By)

Nug moa := N (2.36)

is introduced, where F' is the function defined in (2.29) (satisfying 0 > Bj,) and Nuy is
defined by (see (2.30); and (2.28),)

Nug := 1+ (1 4 RegPr)3g(Rey) . (2.37)

This new definition leads to

C A
fﬂ — g Nuovmodln(l + Bh) - ShO,modln(1 + Bm) ) (238)
CpF PgCpgDua

=L

which can further be modified to yield

hl(l + Bh) CpF Sho mod 1
B, = (1+B,)%" -1 == ) () — 2.39
n=(1+Bn) ’ Z In(1+ B,,) (cpg) (Nuo,mod Le ’ ( )

a direct correlation between the coefficients of mass and heat transfer.
The latent heat of evaporation is obtained from the Clausius-Clapeyron equation [71]

RO (1 1>1 psat(é)
L(0) = - — = In 2.40
( ) Mv 0 9 psat(e) ( )
using the ideal gas law and the assumption of large specific volume of the fuel vapour
compared to the liquid. The quantities Ry [J (molk)™!|, M, [kgmol™'| and pg,; [Nm™?]
are the universal gas constant, the molar mass of the fuel vapour and the saturation

pressure, respectively. The saturation pressure can be obtained from the tables found in
[173].

Algorithm to find the Heat and Mass Transfer.

The Nusselt and Sherwood numbers, Nuy and Shy, the coefficient for mass transfer, B,,,
and the modified Sherwood number, Shg .4, can be evaluated using relations (2.37),
(2.28), (2.31) and (2.27), respectively. The coefficient for the heat transfer, B, and the
modified Nusselt number, Nugmoq, can only be evaluated if R(s,v,6) is known or the
Lewis number in (2.39) is set to one. Unfortunately, the change of temperature is not
known in advance and it is not intended to specialise the model to one specific Lewis
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number. Abramzon and Sirignano [1] introduced an algorithm that allows the iterative
determination of Bj, and Nug 4 with the initial condition

Nuf” o = Nug . (2.41)

With the following iterative scheme an approximation of the modified Nusselt number
can be obtained

(n) _ @ ShO,Inod L -1 2 49

¢B c Nugjr;;()i € ) ( )

B = (14+Bn)% -1, (2.43)
Nug — 2

NUf ol — = (2.44)
F(B,7)

This scheme is deduced from equations (2.39); - and (2.36). The iteration is continued

until the condition
B(n+1)
h
w1
B,

is satisfied. Knowing Bj; or Nugmoq allows thg determination of the rate of change of
temperature R (2.34) and the heat conduction Qg (2.24).

<ex1 (2.45)

2.5 Droplet-Droplet Interaction

In this section, the focus is on the secondary breakup (Section 2.5.1) and collision (Section
2.5.2) of droplets. Although in Chapters 5 and 6 the physical models for these phenomena
are not used, breakup and collision terms are retained in the theoretical treatment of
Chapter 4. The primary breakup of the continuous liquid phase into ligaments and large
droplets is also not addressed. It requires additional sub models that are not in agreement
with the assumption of droplets being spherical point masses. For an overview of primary
breakup models see [103, 163].

For high pressure injection systems (see Figure 1.2) the fragmentation of the con-
tinuous liquid core into droplets starts very close to the nozzle orifice. This is due to
cavitation in the nozzle, liquid turbulence and high liquid to gas momentum ratio [93]

Momy := prlv I

Pyl Ugl?
at the entrance of the combustion chamber. Therefore, the assumption of droplets being
spherical point masses is already valid close to the nozzle orifice but not directly at or in
the nozzle.

The large droplets which form directly behind the nozzle are strongly effected by
the surrounding gas flow. The aerodynamic forces lead to further disintegration into
smaller droplets (secondary breakup) and to a strong deceleration (in car engines) or
accelerations (in aeroplane engines). The deceleration increases the probability of collision
of the droplets, whereas the acceleration results into a fast thinning and evaporation of
the spray.

(2.46)
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Figure 2.3: Secondary breakup regimes (after [125]).

2.5.1 Secondary Breakup of Droplets

The principle causes of secondary breakup of a droplet are the aerodynamic pressures
employed on the droplet surface and the distortion of it. If these forces are large com-
pared to the counteracting surface tension the droplet fractures into several pieces, called
daughter droplets.

Critical Weber Number.

The relative velocity between droplet and gas, v.., and the droplet surface tension, oy,
dominate the fragmentation process. Consequently, the dimensionless Weber number, de-
fined in (2.13), is the characteristic measure for the breakup behaviour of liquid droplets.
It relates the dynamic pressure to the surface tension. If the Weber number is above
the critical Weber number, We, = 12, the deformation of the droplet is too large and it
breaks. Depending on the Weber number of a droplet, several breakup regimes and mech-
anisms have been identified in experimental studies [125, 156]. They are called vibrational
breakup ((i) in Figure 2.3), bag-breakup ((ii) and (iii) in Figure 2.3), sheet-stripping ((iv)
to (vi) in Figure 2.3) and catastrophic breakup ((vii) and (viii) in Figure 2.3). In combus-
tion systems all these mechanisms may be present simultaneously. Near the nozzle, where
the relative velocity is high and the droplets are large, the catastrophic breakup is domi-
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nating, whereas the small droplets in some distance from the nozzle experience vibrational
breakup. As these mechanisms are based on different physical phenomena, the daughter
droplet distributions are different for each mechanism (see Figure 2.3). Therefore, a single
model for all breakup mechanisms is not sufficient. The famous Taylor-Analogy Breakup
(TAB) model [10, 120], which is implemented in the KIVA II code, is a model for the
vibrational breakup regime only and requires one additional variable. In the following
paragraphs the model of Dufour [43] is presented which is based on a statistical point of
view.

Frequency of Fragmentation.

Although the fragmentation of a droplet is a fast process, it does not happen instanta-
neously. The deformation of a droplet takes a certain amount of time before the droplet
breaks. One important time scale of droplet fragmentation is the characteristic time for
the Rayleigh-Taylor instabilities generated on the surface of droplets in the vibrational
breakup regime. It can be expressed as [43]

s Pe
S P 2.47
RS TG, v oy (247)

The experimental studies of Pilch and Erdman [125] use this time scale to define the time
scale of fragmentation, 7g, [s|. Their correlation reads [43] °

( 6(We—12)"0%  if 12 < We < 18,
2.45(We — 12)%%5  if 18 < We < 45,
:f‘”a ={ 14.1(We —12)7°% if 45 < We < 351, (2.48)
. 0.766(We — 12)%25 if 351 < We < 2670,
| 5.5 if 2670 < We.

If it is assumed that the time of fragmentation is small compared to a characteristic time
scale of the gas flow and the Weber number of a droplet is larger than the critical Weber
number, the probability of fragmentation within the time At is

A
Ptrag = min ( ! s 1) . (249)

Ttrac

Therefore, the frequency of fragmentation, v, [s7'], is defined by

(2.50)

0 if We < We,,
Virag - —
frog AL if We > We, .

Tfrag

Size Distribution after Fragmentation.
The distributions of daughter droplets in secondary breakup are rarely studied experi-
mentally because the fragmentation process is relatively fast and in technical applications

60ther correlations can be found in [79], [88] and [114].
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the Weber number is high. Recent investigations of these processes and an overview on
experimental studies is given by Villermaux [176].

One method to model the distribution of daughter droplets is the consideration of
mean diameters. The SMD is commonly used. It is defined by

400 dmf(d)dd ﬁ 1 eroo Sm/Qf(S)dS ﬁ
— 0 b 0
A = ( 0+0<> d"f(d)dd) B NZS (f—f-oo s"/2f(s)ds ’ (2.51)

0
with m = 3 and n = 2, which can be easily measured experimentally [178].

In various models, the daughter droplets are assumed to have the same size. There-
fore, the SMD and the conservation of mass are sufficient to deduce the number of droplets
resulting from the breakup of one droplet. This approach does not take into account the
dispersion of droplet sizes, which is observed for most breakup mechanisms (see Figure
2.3). To resolve this problem Hsiang and Faeth [79], O’'Rourke and Amsden [120] and
Pilch and Erdman [125] have proposed presumed log-normal, normal and exponential
forms of the daughter distribution adapting the parameters of these fixed functions in
order to preserve the SMD and to conserve the mass. Unfortunately, these distributions
lead to droplets of larger sizes than the original ‘mother’ droplets. Dufour [43] proposed
a presumed daughter distribution of the form

a gl if s<s°
— €X ——S 1 S S

g:(5,v, ) =4 8r P\ an ’ (2.52)
0 if s> 5%,

where v® and s® are the velocity and surface of a droplet before fragmentation. The
parameters o [m~?], v [m™!] are determined using the conservation of mass

S I <&
(8<>>3/2 _ / 83/2g3(S,V0, SO)dS _ « (7;5 )’
0 v
JF , ; , 3/ (2.53)
YV §° ~y v=s® T 5°
1 )= — ———s7) (- = f -
(.5 \/EeXp< 47r8)<4 87r)+ g (7 47r>
and the preservation of the SMD
’)/4803/2
d32 - 3/2 )
4732 ] (v, s°)
(2.54)

. _1 ,YQSQ '7250
J(%S)—Q(l—eXp(— 4W>(1+ y :

where erf(z) is the classical error function defined by

erf(z) = % /Ox exp(—t*)dt < 1. (2.55)

With some minor simplifications (cf. [43|) the parameters of the exponential function are

obtained from
3\/7_1_ /}/5803/2

= vV — ) 2.56
YT e O @I, ) (2:56)
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The SMD used in (2.56); still has to be modelled. Wert [178] proposed the following
correlation

( 41 2/3
032(W€0)_1/3 (m) if Weo 6]12, 18],
dsa /4 245V We’ — 12 — 1.9\ /°
f;gg ={ 0.32(We?)~1/3 ( (xwe:?—»12)1/4 ) if We® €]18, 45] (2.57)
12.2 2/3
\ OSQ(WQO)_l/B (m) lf Weo 6]45, +OO]

where We® is the Weber number of droplets before fragmentation. This model for the
SMD completes the model for the daughter distribution, which is defined for the whole
range of possible Weber numbers.

Velocity of Fragments.

Concerning the velocity distribution of the daughter droplets not many correlations can
be found in the literature. The most common correlation, which was proposed by Hsiang
and Faeth [79], assumes that all daughter droplets with the same size have the same
velocity. Their correlation reads

v —Uy,
+ :
; — 2/3
Py [s°
127 (/22
This relation considers the fact that the relative velocity ratio of newly created droplets

to original droplets is as small as the ratio of their sizes is large. This is in agreement with
the fact that the momentum of the fragments is smaller than that of the original droplet.

(2.58)

Virag = Ug

Operator of Secondary Breakup.

The operator of secondary breakup, Q, which models the fragmentation of droplets in
the kinetic spray equation (see Chapter 3) is now introduced. To this end, a function
H(s,v,s%° v®) is defined to represent the size and velocity distribution of the droplet
fragments. For the sake of simplicity the distribution is decoupled into two parts that

take into account the size and velocity distribution, respectively. The decoupling reads
[43]

H(s,v,s%v®)

H <& & —
(87V7S 7V ) fv H(S,V,SO,VQ)dV

/ H(87 v, SO? VO)dV = gV(S7 v, 807 Vo)gs(& Soa VO) .

(2.59)
In this representation, the function g, considers exclusively the size distribution of daugh-
ter droplets, whereas g, represents the velocity distribution (conditional PDF) for each
size. The size distribution proposed by Dufour [43] is modelled by the exponential relation
(2.52) using the parameters defined in (2.56) and (2.57). Modelling function g, with the
model of Hsiang and Faeth [79], (2.58), the function reduces to

Gv(8,V,8°, V%) = 0(V — Viag(s, 87, V%)) . (2.60)
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It is assumed that the fragments of a droplet of size s® and velocity v® have the same
velocity provided that they are of same size.
The operator of the secondary breakup consists of two parts, i.e.

Q=-9 +09". (2.61)

The first term, Q~, quantifies the loss of droplets due to breakup and a second term Q%
reflects the gain of smaller daughter droplets. The loss of large droplets is based on the
model of fragmentation frequency, (2.50), and the number distribution function f(s,v).”
It reads

Q (8,V) := —Vpag(s, V) f(s,V) . (2.62)

To obtain the gain of daughter droplets of size s and velocity v (within the general volume
ds x dv) it is sufficient to consider all the original droplets that disintegrate and that are
larger than size s. The portion of droplets that have the appropriate size and velocity
contribute to @*. These considerations yield relation

Q7 (s,v) ::/ /l/frag(SO,Vo)f(SO,VO)H(S,V,SO,VO)dSOdVO : (2.63)
5>5% Jv

where V., and H (s, v, s®, v°) are specified in (2.50) and (2.59), respectively.

2.5.2 Collision and Coalescence of Droplets

The collision of two solid particles leads to a unique result, i.e. the interchange of mo-
mentum. For droplets, on the other hand, the event of collision can lead to rebound,
coalescence or other, more subtle effects. In any case, the collision of droplets results
into changes of the droplet sizes and velocities. It is obvious that the collision of droplets
is more likely if the liquid volume fraction in a spray system is high. To quantify the
importance of collision, the average time between two collisions, 7. [s], is compared with
the average droplet response time, 7, (see (2.15)). With these time scales the droplet
Knudsen number, (2.5), can be redefined by

Kng = - . (2.64)
Td

It allows the following categorisation of sprays:

(i) If Kng > 1, the droplets have enough time to adapt to the gas phase before they
collide. The spray system is denoted as dilute.

(ii) If Kny < 1, the motion of droplets is dominated by collisions and the spray system
is regarded as dense.

(iii) If Kng is of the order of 1 the coupling between transport and collision of droplets
are important for the correct prediction of the spray.

"The number distribution function is introduced rigorously in Chapter 3.



2.5. DROPLET-DROPLET INTERACTION 33

Figure 2.4: Sketch of two colliding droplets (after [163]).

In Chapters 4 to 6 the spray is assumed to be dilute and therefore only the transport,
drag force and evaporation are considered. However, as a collision term is considered
in the mathematical model (Chapter 3) the phenomenon of colliding droplets is briefly
discussed here.

Collision and coalescence have been extensively studied. It is a subject of high interest
in meteorology [8, 22, 92|, soot formation [186] or crystallisation [30]. For sprays in
combustion systems, collision models were proposed by Achim [2|, Dufour [43], Estrade
[47], Laurent et al. [97], O'Rourke [119] or Rueger et al. [144].

Regimes of Collision.
The collision of two droplets is determined by various parameters. The dimensionless
impact parameter, b, the ratio of droplet radii, A, and the collision Weber number, We,

play important roles in the categorisation and modelling of droplet collision. They are
defined by

R, 200 R0}
<1, 0<A=0 01, Wey = P00%l (2.65)

0<b:=———
R, + R, R, o ’

where the collision velocity is specified as
Veol := | Vs — V| . (2.66)

For the definition of L, R, Ry, v and vy, see Figure 2.4. The impact parameter charac-
terises the degree of excentricity of the collision. The ratio of the droplet radii accounts
for the dissymmetry of the colliding droplets concerning their mass. The collision Weber
number quantifies the ratio of the surface energy that restores the spherical shape of the
droplet and the kinetic energy that is leading to breakup. Experimental and numerical
studies [2, 8, 47| show that the impact parameter and the collision Weber number can be
used to define five regimes of collision. These are the regimes of (see Figure 2.5)
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Figure 2.5: Impact parameter vs. collision Weber number; regimes of colliding
droplets (after [163]).

(i) bouncing of droplets that have similar sizes,

(ii) definite coalescence,

(iii) temporal coalescence followed by separation through reflection,
(iv) temporal coalescence followed by separation through stretching,
(v) creation of satellite particles (shattering).

Each of these regimes requires a special collision model. It is common practice [43] to
incorporate efficiencies for collision, coalescence and separation that reflect the probability
of the respective collision. They are denoted as Ecoy, Feoat, Erey and Eg,., respectively
and satisfy the conditions

0< Ecoll < 17 Ecoah Eref7 Estre > 0 and Ecoal + Eref + Estre =1 ) (267)
where the shattering regime is usually set asside and the mass of small satellites is ne-

glected.

Operator of Coalescence.
Similar to the operator of secondary breakup, the operator of coalescence, I'(f), which
depends on the number density function, f, is divided into two parts, i.e.

L(f)=-T"(H)+T"(f) . (2.68)
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The first term represents the droplets that collide and the second, the droplets that result
from this collision. The rate at which droplets of size s and velocity v disappear due to
collision is obtained from the consideration of all possible collision partners of size s° and
velocity v°. The resulting term has the following structure®
1 5)2
C e = [ [ a6 BB+ B Y i v
e (2.69)

assuming the separation due to stretching to not affect the size and velocity of colliding
droplets.

The term T'T(f) consists of two parts, one for the separation due to reflection and
one for the definite coalescence, i.e.

TH(f) =T7, () + Toalf) - (2.70)

The first term quantifies the production of droplets having size s and velocity v and
originating from the separation of droplets that originally had the size s° and velocity
v°. The size of droplets can be assumed to remain the same before and after collision.
However, the velocity of the produced droplets can change. It is modelled by the elastic

collision law

063/2
V;:VS_W{(VS_Vb)'n}na SISZSS )
, 282/2 / (2.71)
Vb:Vb+W{(Vs—Vb)'n}nv Sp = Sb 5

where the conservation of mass and momentum, and the unit normal vector between the
centres of the droplets, n, have been used. The operator for the reflecting droplets reads

e = [ [ revse ) {EEfW#b} b ds° dv°

(2.72)
In the case when two droplets definitely coalesce, the new droplet exhibits the fol-
lowing size and velocity

5= (si’/2 + 33/2)2/3,

3/2 3/2 (2.73)
5 Vg + % Vyp
82/2 + 82/2 82/2 + 82/2

VvV =

With these relations, the coalescence of a droplet with velocity v* and size s* < s, and a
droplet of velocity v® and size s® can be expressed as

1 > *\2
L hu(f)(s,v) = %/v //0 f(so,vo)f(s*,V*)J{EcouEmle} dbds* dv* |

(2.74)

8In the kinetic theory of gases the term, dS = E.o(Ecoal + Ere f)wbdb, is called the infinites-
imal cross section of collision [172].
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where the change of variables (see (2.73))

3/2<, _ o#3/2 %
(SO7V<>) _ ((83/2 . 8*3/2)3/2, $¥2v — s v ) (275)

g03/2

was performed and the Jacobian J = ;}—55 was used. It should be noted, that the factor
1/2 in (2.74) takes into account the fact that in the integration over s* every collision is
counted two times.

2.6 Droplet-Wall Interaction

When droplets hit a wall, break, evaporate, get absorbed, deposit, or rebound with a
certain velocity and size, they are said to splash on that wall. In this section a new
statistical model for splashing is derived that is able to account for elastic and non-elastic
droplet-wall interactions, droplet-wall friction, breakup of droplets and mass deposition
on the wall.
Lets consider a droplet that is rebound from a flat wall, facing towards —e,, with
the velocities
U=-a,U, V=qV and W=aW [ms] (2.76)

in the directions —e,, e, and e, with diameter
D = 34D’ [m] (2.77)

and mass

M= (1—~)M |kg| . (2.78)

The symbols with a prime represent the respective quantities of the droplet before splash-
ing and the parameters a,, o, o, B4 and v are related to the coefficient of restitution,
friction between droplet and wall, partition of the droplet and loss of fluid mass on the
wall, respectively. It is obvious from the interpretation of the parameters, that they are
not constant. They should rather depend on the conditions on or in the vicinity of the
wall. In the case of a dry wall, at least the wall temperature and the wall roughness are
of relevance [138, 142|. The wall temperature is necessary to predict the sudden evapora-
tion of droplets on the wall and the formation of the air cushions between droplets and
wall [61, 62]. If a liquid film forms on the surface of a wall, which is usually changing
in thickness, the splashing mechanism will be completely changed [140]. In this case the
splashing parameters must also depend on the thickness of the film. One can also think
of porous walls on which some part of the mass is absorbed or deposited during splashing
[134]. For a recent review on splashing processes the reader is referred to Yarin [184]. It
has to be remarked that splashing parameters describe the behaviour of the droplets close
to the wall. The heavy interaction between incident and splashed droplets some distance
away from the wall [89] can be captured independent of the splashing model by employing
separate collision, coalescence and breakup models. In this work the parameters are as-
sumed to be constant because the splashing test case is merely used to verify the method
introduced in Chapters 4 and 5. However, more complex models can be incorporated.
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Extending model (2.76)-(2.78) to a set of equally sized droplets of size d’ before and
d after splashing yields

/! / /
U= —0U, U=, w = W ,

(2.79)
d = 8;d, m=(1—-~)m,

where all droplets in this set have the same properties «/, v/, w’, d’, m’ before and u, v,
w, d, m after splashing. If these droplets are assumed to be spherical, their mass, m |kg],
and their number, n |-], are related by

4 (Y’
m = g pem (5) n. (2.80)

Relation (2.79)45 and (2.80) are used to obtain the splashing condition,

1_771/
[CH A

a relation between the number of droplets before and after splashing. Consequently,
droplets of diameter d’ (or surface s'), mass m’ and velocity v/ = (u/,v’,w’)" are splashed
into (1 —~)/B33 droplets of diameter 3;d" (or surface 32s'), mass m, and velocities v =
(—azu, v’y a,w')T.

Denoting the number of incident droplets of surface between s’ and s’ + ds’ and
velocities between v and v/ + dv’' by f1(v/,s')dv'ds’ and those that are reflected by

(v, s)dvds, relation (2.81) can be transformed into the splashing condition

n =

(2.81)

_37f+(v', s)dv'ds'
Bi (2.82)

u=—auu, v=au, w=aw, s=ps".

1
fr(v,s)dvds =

In the subsequent chapter the function f which is closely related to f” and f* will be
rigorously defined and denoted the number density function. For the introduction of the
splashing condition the above motivation of f" and f* is sufficient. Using (2.82)2345 in
equation (2.82); yields the final form of the splashing condition

. B I—v .4 vow s

fM(u,v,w, s)dvds = g, 65lf ( o oy’ az’QZ)dVdS' (2.83)
So far, it has not been possible to capture the phenomenon of splashing with Euler
methods because they assume that, locally, only one droplet velocity is defined for a
particular size and position. This assumption does not hold for splashing sprays since, near
the wall, ensemble averaged velocity distributions may be bi- or multi-modal. In Chapters
4 to 6 a method will be presented that does not rely on the assumption of mono-modal

velocity distributions and therefore allows the accurate description of splashing sprays.






Chapter 3

A Mathematical Model for Spray Flows

3.1 Introduction

A model that uses mathematical language to transform the essential aspects of a physical
model into a form that can be used to describe the behaviour of a physical system is called
a mathematical model. In this transformation pieces of information on the physical system
are lost because additional assumptions are enforced first, to define benign mathematical
variables and second, allow the derivation of solutions to the mathematical model. For
solid, liquid or gaseous materials, the mathematical model usually consists of partial
differential equations (PDE) that relate variables, like mass density, deformation, velocity,
temperature, etc., to position and time. These PDEs, together with initial and boundary
conditions, are said to be well-posed if a unique solution exists. This property cannot
be proven for all models. For engineers and physicists, the solutions of the mathematical
models are acceptable if certain realisability conditions are satisfied. They require, for
example, that:

(i) the mass density and number of droplets are positive and finite,

(ii) the absolute temperature and entropy production [5| are always positive for given
systems,

(iii) a system can only consume a limited amount of energy,

(iv) a body of finite size cannot shrink to one point.

There are other, more heuristic rules which allow an engineer to approve the solution of a
mathematical model. Therefore, the existence and uniqueness of solutions to the proposed

mathematical model are not addressed in this work. The results in Chapter 6 demonstrate

that no spurious solutions are introduced by the mathematical model proposed in Chapter
4.

39
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The mathematical models for single-phase fluids are generally based on the continuum

assumption. It allows the postulation of balance laws that have the form [80]

o

E+vx-(¢u)=—vx-(q>)+n+r, (3.1)
where ¥ (x,t) is a general physical variable, u(x,t) the velocity and ®(x,t), II(x,¢) and
['(x,t) the corresponding flux, production and supply terms. Similar equations can be
postulated for each phase in a multi-phase flow assuming all phases to be present at each
position (see Section 3.3.2). In the present study, models based on these postulates are
called classical Euler-Euler methods.

However, for spray flows with high droplet Knudsen number the continuum assump-
tion is not valid for the dispersed phase. Instead, a kinetic approach [16, 24, 26] is used
that is based on an ensemble average over a cloud of droplets. The kinetic equation that
follows from these considerations is a PDE for a distribution function. In the theory of
rarefied gases the velocity distribution of gas molecules is considered. In the case of spray
flows, the velocity, size, temperature, composition or other characteristic properties of the
spray can be used.

In Section 3.2 the definition of a distribution function for spray flows, called number
density function (NDF), is given and the kinetic spray equation that constitutes a PDE
for the NDF is introduced. Section 3.3 is devoted to the different mathematical ways
to solve the kinetic spray equation. The Lagrange, classical Euler and various moment
methods are outlined briefly and their applicability to spray flows is discussed. In addition,
reasons are given for why the sectional method (SM) of Dufour and Villedieu [44] and the
quadrature-based third-order method of moments (QBMoM) of Fox [56] and Le Lostec
et al. [99] are used in Chapters 4 to 6. Section 3.4 deals with the mathematical models
for single-phase flows and the influence of droplets on the mathematical model of the gas
phase.

3.2 The Kinetic Spray Equation

Sprays in combustion chambers exhibit a high degree of randomness because the number
of droplets is very large, the gas flow is turbulent and many processes, such as breakup,
collision, evaporation, chemical reactions, etc., are present simultaneously. The tools to
describe these types of stochastic processes are taken from statistical mathematics. The
concepts of kinetic equations, presented by Fox [55], Minier and Peirano [112|, Pai [123],
Pope [128] and Reeks [133], were found to be the right mathematical basis for dispersed
multiphase systems. The models developed in subsequent Chapters are based on the
kinetic spray equation, which constitutes a specialisation of the general kinetic concepts.
The detailed definitions of the quantities involved and an exact mathematical derivation
of the kinetic equations are treated in references [55], [123] or [133].

Following Fox [55], a less mathematical motivation of the kinetic concept for dispersed
multiphase systems is given in Section 3.2.1. It is then specialised to spray flows in Section

IThe operator Vy, called nabla operator, represents a vector of derivatives with respect to the com-
ponents of position, i.e. Vyx = (8/0x1,0/0z2,0/0x3)". Consequently, Vx(a) and Vy - a represent the
gradient and divergence of vector a, respectively.
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3.2.2 and the resulting equation, called the kinetic spray equation, is disposed of its units
in Section 3.2.3.

3.2.1 Fundamentals of Kinetic Equations

The properties of the dispersed phase are generally characterised by quantities called
internal or external variables. External variables are the position and time of the dispersed
phase and momentum (or velocity), enthalpy (or temperature), mass (or size for spherical
droplets) and composition are denoted as internal variables.

The number density function (NDF) is used to describe the distribution of internal
properties for a given control volume. In a system of dispersed entities, x = (1, 2, z3) is
designated as the physical position of a control volume of size

dx = dzrydxodxs | (3.2)

u = (uy, us, u3)? is the velocity vector and € = (£1,&,, ..., &y) is the vector which consists
of all internal variables except the velocity. The NDF, f(x,t;u,€),? is defined by the
expected number of entities in the physical volume dx and in the internal-variable space
(phase space) volume du x d€:

f dxdud§ . (3.3)

The NDF is not a random quantity. Instead it can be considered as the ensemble average
of an infinite number of realisations of the dispersed phase ‘motion’. It can be shown to
be a smooth and differential function with respect to time, position and internal-variable
space [55]. The integration of f over all possible internal variables yields

n(x,t) = /g / F(%, 1w, €)dude | (3.4)

which is the total particle-number concentration at position x and time ¢. In reference
[55] this motivation of the NDF is put on a sound mathematical footing by relating it
to the multi-particle joint PDF. This quantity contains all information on the dispersed
entities in the system. It is also possible to include the ambient gas flow into the statistical
considerations. For a treatise on these issues the reader is referred to [55], [112] and [123].

The general kinetic equation is a PDE for the NDF. It can be derived from the
general balance equation for the multi-particle joint PDF [55]. In the present study, the
general kinetic equation

Ve ) + V- (AS) + Ve (&) = b)) (3.5)

is regarded as postulate. It accounts for the accumulation (first term), the convection in
physical (second term) and in internal variable space (third and fourth term). These are

2From this point on, external and internal variables in the argument list of the NDF will be separated
by a semicolon. The explicit dependence of the NDF on these variables is mentioned only when required
for clarity.
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continuous changes of the NDF. The term on the right-hand side represents discontinuous
jumps in the internal variable space which is due to discrete events in the dispersed phase.
In the next section a physical meaning will be given to these terms.

The convection in physical space, modelled by V, - (uf) in equation (3.5), requires
different approaches depending upon the type of flow. In laminar, dispersed, multiphase
flows, the gas velocity can be described by one definite value at one point and time.
However, the dispersed phase in this laminar gas flow can exhibit velocity dispersion
because first, the drag force is size-dependent and second, particle trajectory crossing,
which leads to multi-modal velocity distributions, is possible. Another effect which can
lead to velocity dispersion is the Brownian motion in the gas phase which acts on the
dispersed entities. This effect must be accounted for, when the size of the entities is of
the order of the mean free path in the gas. In this work, the Brownian motion is not
considered.

For turbulent dispersed multiphase flows all flow quantities fluctuate in an unpre-
dictable manner around their mean values. To obtain an equation for the mean fields of
the flow, a Reynolds average [123, 128, 133] or LES filter [53, 84, 146] operation is usually
applied to the kinetic equation (3.5). Following the approach adapted by Fox [55], a one-
point joint PDF [51] of u and f, denoted as py ¢, is used to define the Reynolds-averaged

velocity
//upuf fHydu*df” | (3.6)

/ / £ g, f*)dutdy (3.7)

The fluctuations around these fields are obtained from

and the Reynolds-averaged NDF

u :=u-— (u) (3.8)
and
fr=r=Af- (3.9)
The Reynolds-average of the general kinetic equation (3.5) reads
0 .
W) Ve () 4 V- (AN + Ve (ED) = (). (310)

For simplicity, A and & are assumed to depend only on u and & This assumption
allows the Reynolds average to commuted with the derivatives of time, space and internal
variables. The definitions in (3.8) and (3.9) allow the decomposition of the higher-order
term arising in the Reynolds-averaged kinetic equation, i.e.

(uf) = (W) (f) + {W'f’) . (3.11)

Applying a gradient-diffusion model to the turbulent flux, which reads
(W'f) = =DV (f) , (3.12)
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equation (3.10) is closed (except for the term on the right-hand side). The turbulent diffu-
sivity, Dy, can be modelled by solving separate equations for the turbulent kinetic energy
and the turbulent energy dissipation of the dispersed phase. With these considerations
equation (3.10) reduces to

(/) :

) Vs () = DV + V- (AU + Ve (B0)) = () - (319
The closure of the term (h(f)) is strongly dependent on the application. However, it
is usually a quadratic function of f. This is confirmed by the models of breakup and

collision presented in Chapter 2.

3.2.2 Specialisation to Sprays

The general kinetic equation (3.5) is now specialised to spray flows, where the internal
variables are chosen to be the droplet velocity, v, the surface of a spherical droplet, s, and
the droplet temperature, #. The temporal changes of these variables are set equal to the
acceleration F /m,, evaporation, K, and heating, R, of a droplet, respectively. The models
for these effects were introduced in Chapter 2. The term A which represents discontinuous
effects between dispersed entities is specialised to the breakup, O, and collision, I", of
droplets (see also Chapter 2). With these considerations, the kinetic equation for a spray
flow can be written as

of F(v,s)
E—i—vx-(vf)—kvv- (md(s) f>

+ 9 (K(v,s,0)f) + 0

s 55 R(v,5,0)f) = Q()(v.8) +T(f)(v,9) . (3.14)

It was coined the kinetic spray equation by Williams [179]. The dependencies of the NDF
are

f=Fxtv,s.0). (3.15)

To lay open the relation of the droplet force to the gas velocity the general force model,
introduced in (2.8) and (2.15), is substituted into equation (3.14), i.e.

%+vx-(vf)+vv-{(w+geg) f}

LK, 5.00f) + o (R, 5.0)) = QU)(v.9) + T(/)(v.5) . (316)

The Reynolds-averaging of equation (3.16) does not lead to the form as given in
equation (3.13) because the droplet force depends on the gas velocity and therefore, the
Reynolds-average and the velocity derivatives do not commute. However, in this work,
the position is taken that V- (D;V(f)) in (3.13) represents those turbulent interactions
between gas and droplets that were not taken into account by the drag force. In the case
when a turbulent gas flow is solved by a DNS or analytical solutions of the gas flow are
accounted for (assumed here), the instantaneous gas velocity at one position and time
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is available. Hence, the gas velocity in the drag model contains all the information on
the gas flow and the averaging or filtering is not necessary. If the turbulent gas flow is
described by RANS or LES, only a filtered gas velocity is known at a position and time.
Using this velocity for the drag force, the small-scale fluctuations of the gas are neglected.
Indeed, the influence of small-scale gas fluctuations on droplets with large Stokes numbers
can be neglected because of their large inertia. If the Stokes number of a droplet is of
order one or smaller, it is shown by Février et al. [51] that the drag force model with the
filtered gas velocity leads to poor predictions of the droplet velocities. This defect asks
for a dispersion model, which describes the small-scale gas fluctuations on the droplets.

Février et al. [51] and Kaufmann et al. [84] outlined how an averaged PDF can
be defined for the dispersed phase that allows the commutation of velocity derivatives
and average operation. This approach leads to balance equations for averaged mass,
momentum and other moments of this PDF which include unclosed turbulent fluxes.
However, in this work the statistical approach of Fox [55] is followed that requires further
investigations to be coupled with LES and RANS models of the gas flow.

3.2.3 Dimensionless Kinetic Spray Equation

The reasons to dispose the kinetic spray equation (3.16) and all the including quantities
of their units are that:

(i) with dimensional analysis [11, 162| the number of governing parameters characterising
a physical phenomenon can be reduced to a linear independent set of dimensionless®
numbers,

(ii) the comparison and classification of configurations exhibiting, for example, different
size and time scales but the same physical phenomena, are facilitated,

iii) with the choice of a distinguished system within the International System of Units
g
(SI) the quantities can also be normalised,

(iv) the dimensionless terms in a PDE can easily be compared.

The kinetic spray equation (3.16) is scaled with the dimensional constants X,
[m], Vipar [ms™Y], Opar [K] and Sear [m?], which represent characteristic length, velocity,
temperature and surface scales of the gas and spray flow, respectively. The choice of these
parameters cannot be determined rationally. It depends on the spray configuration that
is in focus and on the objectives of the investigator. Here, X, is identified with the size
of the computational domain, V., and O, equal the velocity and temperature in the
far field gas flow and Sq,., represents the size of the initially largest droplet. With these
parameters the dimensionless variables

t= 7-gt>k , X = XcharX* , V= ‘/charV* , S§= ScharS* 5 0= @chare* 5 (317)

3In this section, the dimension of a quantity refers to its characteristic scale and unit (in the Inter-
national System of Units (SI)). It shall not be confused with the dimension of a vector space or the
fractional dimension [71].
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and the dimensionless function for the gas velocity
Uy (x,1) = Venar Uy (X7, ) (3.18)

are defined, where 7, = Xchar/Venar [3] is the characteristic time scale for the gas flow. The
dimensionless form of the NDF is derived from the assumption that the number of droplets
in the infinitesimal volume [x, x+dx]x [v, v+dv]|x [s, s+ds]x [0, O+ df] is the same as
in the corresponding dimensionless volume [x*, x* 4 dx*|x [v*, v* +dv*]x [s*, s* + ds*|x
(6%, 0* + d6*]. The dimensionless NDF, following from the change of variables in (3.17),
is defined by

fr(x v, 85, 0%) = f(x,t;v,8,0) X3,V SeharOchar - (3.19)

char ¥ char

With these definitions at hand, the kinetic spray equation (3.16) is written as*

a ' “f U-Z _ V* ng *
6t*(f)+v"*'(vf)+vv*'{< Ta/ Ty JrVchweg f
0 TgK N 0 TgR D
- Js* (Scharf > - 00* (@charf ) - TQP + TgQ y (320)

which was already multiplied by (7, X3, V3., SeharOchar)- From equation (3.20) the defi-

char ¥ char
nitions of the dimensionless numbers are obtained as

7-al(‘s'charf’})ka ‘/charV*)

Tg
T T
E * * 9* = 9 = —7 3.22
V(S AR ) _Schar/K(ScharS*a ‘/;harV*a @char9*> TeU(S*’ V*’ 9*) ’ ( )
T T,
H * * 0* = 9 = — 5 . 323
e(s A ) @char/R(ScharS*a ‘/::harV*a @char‘g*) The(s*’ V*’ ‘9*) ( )

They are called Stokes number, evaporation number and heat transfer number, respec-
tively. Analogous to the response time for the drag force, 74, evaporation and heat transfer
time scales, 7., and 7., are introduced. The evaporation number and the corresponding
time scale are defined positive if the droplets evaporate. A negative evaporation number
and evaporation time scale refer to the condensation of vapour on the droplet surface.
The sign of the heat transfer number, He, and the heat time scale, 7y, is positive if heat
is transferred to a droplet. The definitions are chosen such that 7., and 73, are predomi-

nantly positive in combustion systems. The Froude number for a spray system is defined
by

Fi o Lohar (3.24)
9Tg
The breakup and collision terms are written as
Q*(S*a V*) = TgQ(ScharS*a ‘/charV*)a F*(S*a V*) = 7-g]:\(ScharS*7 ‘/charV*) . (325)

4The arguments of the dependent quantities are suppressed.
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Substituting all definitions in (3.17)-(3.19) and (3.21)-(3.25) into (3.20) yields

0 U,—-v 1
0 0
— 55 BV + 55 (Hef) =T(f) + Q(f) . (3.26)

In this equation and the remainder of this work the asterisks, (-)*, of the dimension-

less variables and functions are suppressed for reasons of readability and simplicity. If
dimensional quantities are introduced in the sequel, they will be marked explicitly.

The linear independent set of the four dimensionless numbers {St, Ev, He, Fr} and
the dimensionless collision and breakup terms, I'(f) and Q(f), fully characterise a spray
configuration in which the physical phenomena of transport, drag force, evaporation,
droplet heating, gravity, collision and breakup of droplets are present. Note that the
dimensionless numbers defined in (3.21)-(3.25) are constant for a spray configuration only
if a special type of flow is considered or more restrictive assumptions are introduced to
simplify the form of the physical models. Consequently they can be used to characterise
different regions of a spray flow.

3.3 Approaches to Solve the Kinetic Spray Equation

Apart from its dependencies on x and ¢, the NDF in equation (3.26) has five degrees of
freedom, i.e. the velocity components, v; with 7 € [1,2, 3], the surface variable, s and the
temperature variable, . Assuming that the PDE (3.26) is supplemented by appropriate
initial and boundary conditions and all physical models are explicitly specified, then there
is no way to find an analytical expression for f(x,t;v,s,0). This is only possible when
very restrictive assumptions are enforced (see Appendix A). In addition, it is not possible
to find an approximation of f(x,t;v,s,#) with the numerical algorithms commonly used
in CFD because those methods are based on the assumption that all quantities depend
on position and time variables only. In this section an overview is given over the methods
that are used to reduce PDE (3.26) to a system of PDE’s which can be tackled with the
known numerical methods. With these methods the NDF or moments of it can only be
approximated.

3.3.1 The Lagrangian Particle Tracking Method

The Lagrangian particle tracking method® is used in EL methods to describe the dispersed
droplet phase (for references see Section 1.3). This approach is based on the tracking of
numerical entities, called parcels, that represent several droplets. The k' parcel is char-
acterised by its position xi, velocity vy, surface area s, and temperature 6,. Each parcel
is assumed to undergo the physical processes of transport, evaporation, gravitational ac-

°In the literature this approach is also called Lagrangian Monte-Carlo approach [45] or Direct Simu-
lation Monte-Carlo method (DSMC) [13].
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celeration and drag force, which are captured by solving the equations

ka . duk . Ug(Xk,t) — Vi 1
o W BT Stiseve) R (3:27)
dSk dek;

= —EV(Vk,Sk,ek), = R(Vk,sk,ek), (328)

dt dt
for each of the N, parcels (k =1,..., N;). The breakup and collision can either be con-
sidered by monitoring the collision between parcels [6] or by using a stochastic treatment
of collision and breakup [144|. To model the influence of the dispersed phase on the gas
phase, the respective quantities, i.e. the droplet forces, mass transfer, etc., are ensemble,
time or volume averaged over a representative sample of parcels.

The Lagrangian particle tracking method can also be used to solve the kinetic spray
equation (3.26). It is then called particle discretisation (PD) method. For this method
the NDF is approximated by a sum of Dirac delta functions,

fep(x,t;v,s,0) = Zwk(t)é(x — Xk (1)0(v — vi(t))d(s — sp(t))0(0 — Ok(t)) ,  (3.29)

where wy, is the weight of the k" parcel. The substitution of the approximate NDF into
the kinetic spray equation (3.26) yields — after some algebra — the evolution equations in
(3.27) plus one equation for the weight. This reads

dwk

T (U'(fep) + Q(feD)) |k - (3.30)

Thus, the weight is only changing when collision, breakup or droplet-wall interaction is
considered.

In this work, a PD method was provided by Nechtan Le Lostec and Philippe Villedieu
(ONERA/DMAE, Toulouse), that is used in Chapter 6 to compare with the new Euler
method introduced in Chapters 4 and 5. It is regarded as accurate ‘reference’ solution
method because a large number of parcels and small sample volumes and sample times
are used.

3.3.2 The Classical Eulerian Approach

The method that is denoted here as classical Eulerian approach or classical Euler method
was first proposed by Truesdell [170] in 1957 and put on a sound mathematical footing
by Bowen [20], Drew and Passman [42] and Passman et al. [124]. This method is based
on the following suppositions®

(i) Each spatial point of the mixture is simultaneously occupied by material of all phases.

(ii) ‘All properties of the mizture must be mathematical consequences of properties of the
constituents’ [171].

6Truesdell [171] coined these assumptions ‘metaphysical principals’.
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(iii) ‘So as to describe the motion of a constituent, we may in imagination isolate it
from the rest of the mizture, provided we allow properly for the actions of the other
components upon it [171].

(iv) ‘The motion of the mizture is governed by the same equations as is a single body’

171].

Obviously, this ‘mixture continuum hypothesis’ is physically not correct, but it is made
whenever mathematical formulae are laid down to describe the physical processes that
take place within a multiphase system, be it miscible or immiscible. However, the atom-
istic structure of matter makes this assumption always dubious at sufficiently small scales.
In fact, the mixture continuum hypothesis should always be viewed as a certain homogeni-
sation process [42].

Supposition (ii) can be restated as: ‘The whole is no more than the sum of its parts’
[171] and the fourth can be expressed by the words: ‘In its motion as a whole a body
does not know whether it is a mizture or not’ [171]. The third supposition allows for
the application of the balance laws (e.g. balance laws of mass, momentum, moment of
momentum, energy and entropy) for every phase, but in contrast to the balance laws
for single-material bodies, these equations are no longer conservative. This means that
interaction (production) terms may be non-zero and then express the effect of all other
phases upon one particular phase and vice versa. One can also think of the third suppo-
sition as cutting free a constituent and introducing the correct reaction quantities which
counteract the cutting operation.

Based on this classical theory, models have been proposed for spray flows (cf. |71, 77]),
that assume the gas and droplet phase to be two fluids that are described with two coupled
sets of NS-like equations. In these two-fluid models stress tensors are introduced that rely
on the definition of a pressure in the dispersed phase. Kaufmann [83| has shown that this
pressure leads to an unstable behaviour of the well-known pressure correction procedure
[50] because the resulting system is not necessarily hyperbolic. In addition, these Euler
methods rely on the strong assumption that at one point only one velocity of each phase
is possible. This assumption contradicts the PTC because bi- or multi-modal velocity
distribution at crossing points cannot be described.

3.3.3 Eulerian Approaches based on Rarefied Gas Theory

To prevent the difficulties mentioned in Section 3.3.2 and to take into account turbulent
effects, Février et al. [51] and Kaufmann et al. [84] used balance equations for higher-order
velocity moments that are based on the conditional particle velocity PDF introduced by
Reeks [133]. These type of Euler methods solve transport equations for the mean velocity
Ul-d = fv v; fydv and the central velocity moments

1 1 1
R;; = - / vév}fvdv, Sijk = - / vév;v,'gfvdv, Qijki := - / vév}v,’cvl’f\,dv, (3.31)
where v/ = (v —U?) is the velocity fluctuation and n the number density of droplets. The
different models are categorised as first, second or higher-order models, depending on the
order of moments that are considered. In the frame of kinetic spray equation (3.26),
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first-order models assume the NDF to have the form
farst (X, v, 8,0) = n(x,1)6(v — Ut(x,1))d(s — 5(x,1))6(0 — 0(x, 1)) , (3.32)

where 5 and @ are the average surface area and temperature of droplets at a position and
time. The substitution of this approximate NDF into the kinetic spray equation (3.26),
the multiplication with 1, s%/2, s3/2v and %20, respectively and the integration of the
resulting equations in the complete internal-variable space yields

on

o7 T Vx (Un) = =0 (U%5,0) + G (U, 5)
om 3
E + Vi ( ) - _¢m( ) + Cn, ( )
d (3.33)
an;? + V- (mUT@ UY = —D(U? 5) — s (U2 5,0) + Cy (U, 5)
oh j

a0+ Vx ~(Uh) = —H (U, 5,0) — 0, (U, 5,0) + C,,, (U4 5) .

In these equations, m represents the dimensionless mass density and h the dimensionless
enthalpy of droplets. D, v, H and C are the source terms for droplet forces, evaporation,
heating, collision and breakup for each averaged droplet field, respectively. Note that
only one average velocity is defined at a position. Thus, similar to the classical Eulerian
approach, all droplets at the same location have the same velocity which is equal to the
mean of all the particles arriving at that location (‘sticky-particle’ model). On the other
hand, the transport equations (3.33) do not include pressure terms (pressure-less gas
dynamics), and an equation for the number of droplets does not have to be postulated,
as is the case for the classical Euler method. This model will be used in Chapter 6 to
compare with the new Eulerian approach derived in Chapters 4 and 5.

Second and higher-order models (in velocity space) rely on transport equations for
n, U?, the second-order central moment R;j(x,t) and higher-order moments if desired. To
close the collision terms in the moment equations the velocity distribution is assumed to be
close to an equilibrium distribution corresponding to the local exponential (Maxwellian)
distribution. The unknown higher-order moments appearing in the transport equations
are closed by using a gradient-diffusion model. The second-order model of Simonin [157],
for example, uses the closure

0 0 0
Sijk = _KipaTRjk - ij@TRM - KkpaTRij ) (3.34)
p p p

where K, = (3/74+ 1/7.) ' R,e. This model can describe flows that deviate only slightly
from the equilibrium velocity distribution. Therefore, bi- or multi-modal velocity distri-
butions, which would be necessary to tackle PTC, cannot be captured with these kind of
methods.
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3.3.4 Moment Methods

In this work, the focus is on moment methods because they lead to numerical algorithms
that are able to describe the unsteady behaviour of polydisperse sprays. Moment methods
do not aim to solve for the NDF explicitly or approximations of it but only for some chosen
moments. The moments of the NDF with respect to the surface, temperature and velocity
variables are generally defined by

Mg;CL’M(X,t) ::/ / / s 0 vvjunf(x,t; v, 5,0)ds df dv (3.35)
R3 JR, JRy

where K, L and M are the orders of the moment with respect to the surface, temperature
and velocity variable, respectively. M agrees also with the number of velocity indices. The
moments are averaged quantities of the NDF but can also be interpreted as mean physical
fields in the droplet cloud. The moments related to [K, L, M] = [0,0,0] and [K, L, M| =
[3/2,0,0], for example, are proportional to the (average) number and (average) mass of
droplets at one point in space and time (see Section 4.3.2). Moment methods are based
on equations, called moment transport equations, that follow from the integration of the
kinetic spray equation (3.26) with respect to the internal variables.” These integro-PDE
are unclosed because first, the physical models arising in the integrated kinetic spray equa-
tion are non-linear functions of the internal variables and the integrals of these functions
cannot be expressed in terms of any of the moments arising in the moment transport equa-
tions. Second, the transport equation of the highest order moment in velocity contains a
moment that exceeds the order of the highest moment by one. This moment is unknown
because no transport equation is formulated for it.® The various moment methods (for an
overview see Grosch et al. [72|, Marchisio et al. [108] or Ramkrishna [132]) differ in the
way these unclosed integrals and the unknown velocity moment are approximated. In the
remainder of this work, the focus is on quadrature and sectional methods because they
are moment methods that allow the closure of the kinetic spray equation without limiting
the generality of the physical spray models.

Quadrature methods are moment methods that, in case of the kinetic spray equation
(3.26), are based on the following approximation of the NDF

B
fou(x,t;v,s,0) = Zwa(x, )0 [v —Uy(x,1)] 6 (s — sa(x,1)) 5 (0 — 0,(x,1))
o (3.36)

"For a detailed derivation of the moment transport equations see Section 4.2.

8If, by some means, the moment transport equations could be solved for a finite set of moments,
the NDF could only be reconstructed, if at all, for some special forms of the NDF. For a Gaussian
distribution, for example, the first three moments M*, (K = 0, 1, 2) would be sufficient. As outlined
in Section 2.2.3 and shown in Chapter 6 the size distribution of sprays can change considerably when
breakup, collision, drag forces or droplet-wall interaction are present. Therefore, the reconstruction of the
NDF with analytical expressions like the Rosin-Rammler distribution (cf. [71, 100]) can be misleading.
Instead, it is much more natural to interpret the numerical results and its comparison with experiments
on the level of moments.
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Here, § is the number of nodes, d the dimension of the velocity space, w,(x,t) the
weight of node «, which is required to be non-negative. U,, s, and 6, are the internal
variables at node «, also called abscissas. With this approximation every integral in the
integrated kinetic spray equation and the unknown velocity moment are transformed into
a summation of the weighted integrands evaluated at the nodes. This obviously closes the
moment equations if the weights and abscissas are known. The variants of the quadrature
method differ in the way the weights and abscissas are computed. However, all of them
rely on relations of the form®

B
MM = " wash 05 UniUajUai (3.37)
a=1

where all quantities in (3.37) depend on x and ¢ only. In this sum relation the moment is
generally known from a previous time step, an initial or boundary condition. The purpose
of the quadrature algorithms is to find the weights and abscissas using equation (3.37) and
the known moments. The number of moments must at least equal (3 4+ d)3, which is the
number of unknown weights and abscissas in (3.36). The choice of moments is not unique
and depends on the quadrature method and the objectives of the investigator. Poor
choices can lead to non-unique abscissas and negative weights, i.e. unphysical situations
[57]. Tt should be noted, that closure (3.36) does not limit the choice of physical models,
i.e. the non-linearities of the models for Ev(v,s,#), He(v,s,0), I'(fqu) or Q(fqu) (see
Chapter 2) do not prevent the closure of the moment transport equations.

The quadrature method of moments (QMoM) was first formulated in 1997 by McGraw
[109] for an aerosol system undergoing the physical processes of condensation, evapora-
tion, coalescence and breakup. In its original version QMoM was applied to kinetic spray
equations with one internal variable. McGraw [109] chose the droplet radius and trans-
ported the moments, M* of order k = 0,...,28 —1 (3 = 3,4 or 5). The main part of
QMoM is the computation of the weights and abscissas from the 23 moments, i.e. the so-
lution of the 23 nonlinear equations of form (3.37). This problem is poorly conditioned if
it is solved directly. The product-difference (PD) algorithm (cf. [67, 129]) is used in every
numerical time step to transform the 2(-dimensional equation system into a well condi-
tioned eigenvalue problem which can then be solved accurately. The resulting weights
and abscissas can then — in the next time step — be used to calculate the source and sink
terms in the moment transport equations.

The idea of McGraw was extended independently by many authors (for an overview
see [56, 72, 106]). However, the method is limited to one (mono-variate) or maximal two
(bi-variate) internal variables (cf. [183]), which prevents its application to polydisperse,
non-isothermal sprays that experience PTC. Although QMoM is not able to describe the
full complexity of the kinetic spray equation (3.26), it is nevertheless an excellent tool to
model, for example, the evaporation of multi-component droplets [94] or the aggregation
and breakage of chemical agents in crystallisation processes [108|.

9This relation justifies the name ‘quadrature methods’ because the numerical integration, called
quadrature, relies on the approximation [ f(z)dz = Zgzl wWaof(zq). The quantities w, and z,, which
are called weights and abscissas, are determined by the Gauss quadrature, for example.
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The direct quadrature method of moments (DQMoM), developed by Marchisio and
Fox [53, 107], is a quadrature method that can, in principle, consider as many internal
variables as is desired (cf. [54]). Instead of solving transport equations for the moments
and applying the PD algorithm at every time step, DQMoM solves transport equations
‘directly’ for the weights and abscissas of every node . Only the initial weights and ab-
scissas have to be computed using the PD algorithm for one or some expensive nonlinear
solver (cf. [57]) for multiple internal variables. In the context of sprays, the transport
equations for weights and abscissas can easily be transformed into a form that is equiva-
lent to the transport equation of the droplet volume fraction, size, enthalpy and droplet
momentum of 3 droplet phases. The source and sink terms for the drag force, collision,
coalescence and breakup of the latter transport equations are calculated from a linear
equation system of size 23, which requires the abscissas to be non-zero and distinct. This
leads to substantial difficulties, in particular, when droplets disappear. In the case of
evaporation, droplets that approach the size s = 0 have to be erased from the system.
This implies that the transport equation for the zeroth-order moment M%%%(x,¢), which
represents the number of droplets, must include a sink term, representing the number of
disappearing droplets.

To illustrate how DQMoM deals with the loss of droplets at s = 0, let us consider the
simple situation where a homogeneous and isothermal spray in a box is evaporating and
finally disappearing according to some chosen evaporation model Ev(s).'% In this case,
the kinetic spray equation (3.26) is expressed as

) 0
5, (J(t55)) = - (Ev(s)f(t:5) - (3:38)

To obtain the moment transport equations, (3.38) is multiplied by s and the resulting
equation is integrated over all possible droplet surfaces. These operations yield

0 0
—(M¥) = E_ (Evf)d .
i) = [ g s (3.39)
which can be further transformed into
%(MK(X, t)) = [s"Ev(s) f(x,t; s)]zzgo - K s Ev(s) f(x, t; 8)ds (3.40)
Ry

With the assumption, that the sizes of the droplets are not larger than some finite value,
equation (3.40) turns into

%(MK(X, t)) = —0koEv(0) f(x,t;0) — K A sE T Ev(s) f(x, t; 8)ds (3.41)

where the term dx( represents the Kronecker delta

1 if K =0,
0o = (3.42)
0 otherwise .

10This situation is purely theoretical. Evaporation always leads to heat exchange between gas- and
liquid phase. The resulting temperature difference contradicts the assumption of isothermal conditions.
However, for clarity reasons the temperature variable is abandoned in this gedankenexperiment.
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As expected, the first term on the right-hand side of (3.41) is non-zero only for the trans-
port equation of moment M. It should also be noted that the quantity Ev(0)f(x,t;0) is a
pointwise quantity in surface space. Within the frame of DQMoM the information about
the droplet distribution at point s = 0 is not accessible because, as mentioned above, the
abscissas are not allowed to approach zero. Consequently, the sink term Ev(0)f(x,¢;0) in
the transport equation of the zeroth-order moment is not closed using DQMoM. Extend-
ing the complexity of the spray to dynamic, non-isothermal and inhomogeneous conditions
does not resolve this difficulty.

Fox et al. [59] regard the quantity ¢ (x,t) := Ev(0) f(x,¢;0) as additional unknown,
besides the weights and abscissas, and introduce additional assumption, called ratio con-
straints, to solve for the source and sink terms of the weights and abscissas. For smooth ini-
tial distribution functions in size space they can show, by comparison to Lagrangian calcu-
lations, that the ratio constraints yield acceptable results for a stationary one-dimensional
configuration. They also show that the unknown (x,t) can be set to zero, if the initial
distribution function is composed of Dirac peaks only (see also Friedrich and Weigand
[60]). However, Fox et al. [59] admit that for more complicated initial distribution func-
tions the specification of the evaporation flux with DQMoM is problematic.

Besides the work of Fox et al. [59], Madsen [104] and Friedrich and Weigand [60]
apply DQMoM to sprays in complex nozzle configurations. They regard the diameter of
the droplets as internal variable and couple their mono-variate version of DQMoM to a
commercial CFD solver. This software is used to transport the weights and abscissas in
space and time. Friedrich and Weigand [60] consider evaporation but set the unknown
(%, 1) to zero, whereas Madsen [104] is not investigating evaporation.

The general concept of DQMoM allows the consideration of velocity distributions
which are not mono-modal. However, Desjardins et al. [39, 38| and Fox [56] refrain from
using DQMoM for describing PTC. They mention (without proving it explicitly) that the
discontinuous change of the weights and abscissas at PTC-points can lead to difficulties.

The above defects of DQMoM shall not hide the fact, that it is most suitable for ap-
plications where coalescence, accumulation, coagulation, sintering and breakup processes
of particles, droplets or other dispersed agents are present (for an overview see Grosch
et al. [72]). In the field of turbulent combustion, for example, Zucca et al. [186] used
DQMoM to describe the nucleation, growth, aggregation and oxidation of nano-particles
(soot) in a turbulent non-premixed ethylene-air flame. Even for the treatment of the LES-
filtered reactive scalar PDF transport equation DQMoM is applied [131]. In Chapter 2
evaporation and PTC were identified to be crucial in spray systems. As DQMoM can
capture these effects only in a very crude manner (if at all) it is not further investigated
in this work.

The quadrature-based method of moments (QBMoM) was developed recently by Des-
jardins et al. [38, 39] and later refined by Fox [56] and Le Lostec et al. [99]. It was
formulated to treat PTC in monodispersed isothermal particle flows. Therefore, the in-
ternal variables in equation (3.26) are the velocity components only. In contrast to QMoM
and DQMoM, the weights and abscissas, defined in (3.36), are obtained from the trans-
ported moments through algebraic expressions. The QBMoM algorithm uses first, the set
of velocity moments {M? M} MZ% M?3.} in each direction, e;, (i = 1,...,d), to compute

i) 118
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the uncoupled weights and abscissas of a two node approximation in each direction e;
[166]. Second, the nodes are coupled by enforcing the weights and abscissas to reproduce
the second-order cross moments M2 [56, 99]."" With two nodes in each direction, e;, a
bi-modal velocity distribution can be described. Conceptually, the method is not limited
to two nodes. By using the PD algorithm to compute the weights and abscissas for each
real space direction it was shown by Fox [58] that more than two nodes are possible.
In this case, the crossing of droplets with multiple velocities can be captured. This, of
course, comes at the expense of transporting more moments.

In this thesis, a variant of QBMoM is considered that combines the approaches of
Fox [56] and Le Lostec et al. [99]. Tt controls the second-order cross moments, M7;. In
Chapter 4 the method of Fox [56] is explained in more detail (as it was implemented into
the program code by the Author), whereas for the approach of Le Lostec et al. [99] the
reader is referred to original paper.

The sectional method (SM) allows the description of polydisperse, non-isothermal
sprays that undergo evaporation, collision and break-up but no PTC [34, 43|. It was
originally suggested by Greenberg, Tambour and co-workers [68, 69|, rigorously defined
on a kinetic level by Laurent, Massot and Villedieu [96, 97| and extended to second-
order in size space by Dufour and Villedieu [44] and Laurent [95]. In this work, the
approach of Dufour and Villedieu [44] is pursued. The main ideas of this method are first,
the discretisation of the surface space [0, o) into N + 1 fixed intervals I, = [sg, Ski1)
(k= 1,...,Ny), In.41 = [Sn.41, 00) (with sy,41 = 1), called sections. Second, the
approximation of the NDF according to

Ns+1
fsee(X,t: 5, V) Z Tyycsesy @k (X, 1)8 (v — Ug(x, 1)) 5 (0 — (%, 1)) gr(x, £; 5)
(3.43)

; B 1 if s <5< spiq,
$kS5<Sk+1 — ) () otherwise

and third the transport of the moments M} 1\/[3/2 00 Mi/Z’l’O and Mi{f’o’l defined by !2

Sk+1
MkKlfmle. / / / sf 0 v f(x,t; v, 8,0)ds df dv (3.44)
R3 JR

in every section I [44]. The function gi(x,t;s) in approximation (3.43) represents a
presumed shape of the surface distribution function in Section I;. Dufour and Villedieu
[44] assume the form

ge(x,t;8) =exp (=brs), k=1,...,Ng+1 with by, >0. (3.45)

They proved that this approximation leads to a finite-volume discretisation in surface
space that is second-order accurate. In addition, it was shown that the resulting transport

1 The approach of Desjardins et al. [38, 39] does not control the cross moments of second-order.
12The relation between the moments in (3.44) and (3.35) follows directly from the additivity of integrals,
K,L,M _ <~N+1,K,L,M
Le. Mlmn - k=1 Mklmn '



3.3. APPROACHES TO SOLVE THE KINETIC SPRAY EQUATION 55

schemes guarantee stability and positivity criteria on the number, mass and velocity of
droplets. Consequently, the mass and number of droplets which are proportional to Mg,o,o

and Mz/ 200 are always non-negative [43]. Dufour [43] and Laurent [95] discuss other
higher-order SM’s, i.e. higher-order polynomials of the surface variable s. They conclude
that relation (3.45) delivers the most accurate results. Another argument that supports
approximation (3.45) is the experiment of Laurent et al. [98]. There, the tail of the droplet
distribution is shown to be exponentially decreasing as a function of the droplet surface.
This justifies the assumption of by, 1 > 0.

The key task of the SM — similar to other moment methods — is the determination

of parameters ay, by, Uy,; and 6 in (3.43) from the moments Mg,o,o, Miﬂ’o’o, Mi;/f’o’l and
Mi/m’o (t=1,...,d). To this end, the following relations are used
Skt1 Skl
MY = qy, / exp(—bys)ds , M/ = a6 / % exp(—bs)ds ,
Sk8k+1 Sksk+1 (346)
Mi/z,o,o = ay / s%/% exp(—bys)ds MZ{;’OJ = Uy / s*% exp(—bys)ds |
Sk Sk

for each section I, k =1,..., N+ 1. However, the detailed derivation of the appropriate
algorithm will be given in Chapter 4. Here, the main assumptions that are tacitly made
when approximation (3.43) is enforced remain to be discussed. There are four principle
assumptions [34]:

(i) For a given droplet size, at a given point (x, t) there are only one characteristic average

velocity
vf(x,t;v,s,0)d0dv
V(Xa t7 3) = fRS f]R-‘r ( . ) (347)
Jrs Jn, FO 8 v,5,60) df dv
and one characteristic average temperature
7] 0f(x,t;v,s,0)dodv
U 1 5) = Jre S O ) -

Jro S, FOctv,5,0)dOdv

(ii) The velocity and temperature dispersion around the average velocity v(x,t;s) and
the average temperature 0(x,t; s) are zero in all directions, regardless of the point
(x,t,s). This implies that all droplets in one section have the same velocity and the
same temperature, i.e.

V(x,t;8) = Vi(x,t) and 0(x,t;s) = Op(x,t) for s, <5< spy - (3.49)

(iii) The number density of droplets defined by
n(x,t;s) ::/ f(x,t;v,s,0)dodv (3.50)
R3 J R

decreases exponentially with the surface variable going to infinity.

It follows from the first two assumptions that the SM cannot be applied to PTC. The
last assumption is significant for sprays that coalesce because then droplets of size larger
than s = 1 are generated.
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3.3.5 Comparison of the Methods

The above discussion (Sections 3.3.2 to 3.3.4) has shown, that none of the Euler methods
can solve the kinetic spray equation in its full complexity. The Lagrange method (Section
3.3.1), on the other hand, is able to consider all spray effects. However, the computational
cost to solve for the trajectory of each parcel increases with the mass loading and the
unsteadiness of the dispersed flow (see discussion in Chapter 1).

The postulates of the classical Euler method (Section 3.3.2) rely on the definition
of a spurious pressure for the dispersed phase and the exclusion of velocity dispersion.
These assumptions constrain the application to spray flows in which the droplet Knudsen
number is very small and no PTC is present. Those Euler methods which are based on the
ideas of the rarefied gas theory do not rely on the definition of a dispersed phase pressure.
They allow the dispersion in velocity space and they were extended to turbulent flows
[51, 84]. Nevertheless, the dispersion of the velocity is restricted to distributions which
are close to kinetic equilibrium, i.e. it is difficult to describe spray systems that exhibit
large droplet Knudsen numbers and PTC-effects with these kind of methods [99]. Con-
sequently, the concentration of droplets at the rim of vortices tends to be overpredicted.
Both Euler methods, mentioned above, have not been rigorously extended to polydisperse
spray flows. In contrast, the quadrature methods, QMoM and DQMoM, were developed
exclusively for polydisperse droplet, particle or bubble flows. Breakup, coalescence, drag
forces, nucleation and growth of dispersed entities are phenomena that can be described
accurately. Unfortunately, evaporation can only be considered if strong assumptions on
the evaporation model and the droplet size distribution are introduced.

The QBMoM was exclusively developed to describe non-equilibrium velocity effects
in dispersed flows. It allows the consideration of collision effects but assumes the particles
to be isothermal, monodisperse and not changing in size. Evaporation and coalescence,
which are important effects in technical spray flows, have not been accounted for within the
frame of this method. The SM, on the other hand, addresses the polydisperse character
of sprays. It can describe evaporation, breakup and coalescence effects. However, the
dispersion in velocity space is not considered. The QBMoM and the SM are methods
that apply to very special features of the spray flow. It is shown in Chapters 4 to 6 that
their combination results in a robust method that can describe both, the polydisperse
character of sprays and non-equilibrium velocity distributions.

3.4 Mathematical Models for Gas Flows

In this work, the focus is on the description of the dispersed phase. Obviously, the gas
phase plays a major role in technical spray flows. A large variety of gas flow solvers
are available that can, in principle, be incorporated. However, for the testing of the
new method, developed in Chapters 4 to 6, analytical solutions are used to prevent the
introduction of errors stemming from the gas flow solver or the coupling with it.

In this section the standard mathematical model for single-phase, multicomponent
gas flows is introduced (Section 3.4.1) which is commonly used for describing the gas
in combustion systems. In addition, the coupling between the gas and droplet phase is
addressed (Section 3.4.2). For detailed treatises on the mathematical description of gas
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flows the reader is referred to Giovangigli [66], Lamb [90] and Landau and Lifschitz [91].

3.4.1 Single-Phase, Multicomponent Gas Flows

The mathematical models for multicomponent single-phase gas flows are based on the
balance laws for mass, momentum, energy and species concentration.'® They are obtained
from equation (3.1) by specialising the general physical variable to the mass density
py kgm™3|, specific momentum p,U, [kgs~'m~2)|, specific enthalpy h [Jkg™'| and the
species concentration (mass fraction) Y, [-] in the gas. With these specifications, the
single-phase balance equations for a multicomponent gas mixture can be expressed as

0
mass: % + Vi (p,U,) = 0, (3.51)
: 9pyUy _
momentum: o + Vi (pU,@U,) = Vi -T+p,ge,, (3.52)
dpgh oU,;  Op
energy: 8?% + Vi - (pghUy) = T c%vg- + e + U, - Vyp
j
—Veq (3.53)
0pyYa
concentration: 'Ogt + Vi - (pgYaUy) = —Vy-Jo.+11,,
a=1,...,n. (3.54)

In these equations T [Nm™2|, ge, [ms™?], ﬂj%iii INm™2s7'|, p [Nm™?], q [Wm™?|, ¢
[Wkg™'], J, [kgm2s7!] and II, [kgm?s™!| represent the stress tensor, gravitational
acceleration, viscous dissipation rate, pressure, heat flux vector, radiation, diffusion flux
vector of component « in the gas mixture and a source/sink term for chemical reactions,
respectively. From the definition of the concentration, Y, := p,/p,, the sum relation 1 =
>, Yo is obtained which reduces the number of concentration equations. The remaining
4 + n equations have to be supplemented by physical models, called material laws, and
initial and boundary conditions to close the equation system. For general fluids, the stress
tensor is split into an isotropic pressure part, p, and an extra stress tensor, T® [N m™2],
describing the friction in the fluid, i.e.'

T=—pl+T". (3.55)
Assuming the fluid to be Newtonian, the extra stress tensor can be written as
T = (,Vx- U, 1+ 2n,E , (3.56)

where ¢ |kg (m s)7!] is the volume viscosity and 7, [kg (m s)~'| the dynamic viscosity of
the gas. The tensor E [s7!] is the deviatoric part of the rate of deformation tensor

D - % (VaU, + (VU,)") . 5] - (3.57)

130ther scalar equations are usually introduced to describe the progress of the chemical reaction in the
flame [126].

14The balance equation for the moment of momentum, which is skipped in the above list of balance
equations, leads to the symmetry of the stress tensor, i.e. T =TT,
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With these definitions, the material law for the stress tensor is written as

T = —pl + ¢4(Vx - Ug)I + 21, E

1 (3.58)
= =L+ G(Vx - Ug) L+ 21, (D - g(vx : Ug)I> :

The substitution of equation (3.58) into the balance law (3.52) yields the transport equa-
tion for momentum used in the compressible Navier-Stokes equations. To investigate the
order of magnitude of the various terms in the momentum equation, it is disposed of its
dimensions. The typical dimensions are a characteristic velocity [v], viscosity [n], pressure
[p], gravity [g] and density [p]. From these quantities the typical viscous-diffusion length
[z] :== [n] ([p][v])~" and the corresponding time scale [t] := [z] [v]~! can be defined. The
order of magnitude of the sound velocity ¢ [ms™'] is then [c]? := [p][p]~'. With these
definitions the following dimensionless numbers can be defined:

eynolds number: g 1= lollz][v]
Reynold ber: Re, : o (3.59)
Mach number: Ma, = %] : (3.60)
Froude number: Fr, := Uy . (3.61)
7 [l

Disposing every quantity ¢, in (3.52) of its dimension and defining ¢ = ¢/[¢] — after some
algebra — the following two variants of equation (3.52) are obtained

op,U N, 5 1 A
Ma (% + Vx - (,agUg ® Ug) — Vi -TF - ﬁgﬁeg> =-Vip, (3.62)
g
ou NN 1 A 1
o Vs (Ug) U, = —Vap+ Vs T~ —e, . (3.63)
g g

The first of these equations is usually used to justify the assumption of isobaric flows,
which is appropriate for low Mach numbers. In this case the splitting p(t,x) = po(t) +
p(t,x) is allowed and the pressure py drops out in all balance equations (not in the equation
of state) if it is assumed to be independent of time.

The second equation helps to differentiate between laminar and turbulent flows. For
small Reynolds numbers the friction tensor TE, is dominant and the convective term
(second term on the left-hand side of (3.63)) is damped. If the Reynolds number is large
the non-linearities in the convective term are not reduced by the friction and a chaotic
behaviour is observed. In this case the flow is said to be turbulent, i.e. the motion of the
flow is random in the sense that a large variety of length and time scales are necessary
to characterise the flow. There are various sophisticated simulation models to capture
turbulent flows. They are called direct numerical simulation (DNS), large-eddy simulation
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(LES), and Reynolds-averaged Navier-Stokes (RANS) methods (for an overview on these
methods see Pope [128]).

The other unknown fluxes in equations (3.53) and (3.54) are commonly approximated by
gradient-diffusion models, which read (Fourier law of heat transfer)

q=—XVx0, (3.64)

and (Fick’s law of diffusion)
Jo = pyDaVsYa (3.65)

where )\, [W (mK)~!] is the thermal conductivity and D, [m?s™!| the diffusion coefficient
of the component « in the gas. With these models more subtle influences on the heat
and diffusion flux vectors (e.g. the Soret and Dufour effects) are neglected. For more
sophisticated models see Giovangigli [66].

The equations are completed by equations of state for the enthalpy and the thermo-
dynamic pressure. For ideal gases, the equation of state for the enthalpy reads

99
h=> Yohe, with he(y) = hao+ / Cpa(0°)d6° (3.66)

040

where h, [Jkg™!| is the enthalpy of component «, hao [Jkg™!| and 6,9 [K] the referential
enthalpy and temperature and c,, |J (kg K)™!] the specific heat capacity of component «.
The heat capacity of the gas mixture is obtained from ¢, = Y Y,cp,. The equation of
state for a ideal gas reads

pM

= 3.67

pg Reg ’ ( )

where the universal gas constant, R = 8.314 J(K mol)™!, and the molar mass, M

[kg mol ™| of the gas mixture

_ 1

M=———— 3.68

Za YQ/MCV ( )

have been used. M, [kgmol~!] is the molar mass of component a.

In technical gas flows, some or all of the following assumptions are made:

(i) Stokes assumption: ¢, =0,

(ii) incompressible fluid: p, # f(p),

(iii) small Mach number approximation: p =po+p = pg = f(04,p0,Y1,...,Yn),
(iv) density-preserving fluid: p = const. = V,-U, =0.

If the fluid is compressible, i.e. none of the assumptions (i)-(iv) is enforced, p is a ther-
modynamic pressure which is related to the mass density, concentration and temperature
of the fluid via equation (3.67) or some other equation of state. If the fluid is assumed
incompressible but the change of temperature and composition is large, the density can,
in general, not be assumed constant. This is only the case when the fluid is assumed
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density-preserving. In the latter case p is a quantity that has to be determined together
with the other ‘free’ variables p,, U, h (or 6,) and Y,. The Stokes assumption and the
small Mach number approximation is usually enforced in the description of combustion
systems.

3.4.2 Influence of the Spray on the Gas Phase

The spray is influencing the gas phase in various ways. First, the relative motion between
droplet and ambient gas and the finite size of a droplet lead to the formation of viscous
boundary layers, separated flows and wakes that change the velocity field of the gas flow.
Second, the evaporation of droplets results into a mass and heat transfer between droplets
and gas. The third interaction is the heat conduction which, in a combustion chamber,
leads to the cooling of the gas. For the accurate prediction of combustion processes the
heat and mass transfer are important processes because they determine the behaviour of
the chemical reaction in the flame.

To obtain the balance equations for the gas flow in the gas-droplet mixture, the
suppositions in Section 3.3.2 are enforced. This allows the derivation of the equations for

8pg

mass: g + Vx - (psUy) = T, (3.69)
momentum: % + Vi (p,U,@U,) = —V,(p)+ Vi T
+ ﬁggeg + 7TFU 9 (370)
Opgh ~ _ oU, Op
energy: % + Vi - (PghyUy) = Tyj—o— Dz + En + Uy - Vip — Vxq
+ pgt —I— Th (3.71)
Sy ) )
concentration: 3pagt 2+ Vi (p,YaUy) = —Vx-Jo+1a+7ylaa, (3.72)

where 7,,, 7,, 7, and Ty d, e are partial interaction production rate densities for the
mass, momentum, energy and concentration, respectively. They follow from the interac-
tion with the droplet phase. The evaporation of droplets results only in the change of
the fuel vapour concentration, explaining the Kronecker delta 0, g in (3. 72) The bars
in the representations for the production rates and in py, P, TF, q, J, and II, reflect the
partial character of these quantities. They are not defined With respect to the volume of
the gas phase but with respect to the volume of the entire mixture, including the volume
of the dispersed phase. The partial and true densities of a general gas quantity, ¢, are
related by

=1, (3.73)

where v, is the volume fraction of the gas phase. The gas volume fraction is an additional
field that requires an additional balance equation. In most combustion applications the
gas volume fraction is set equal to one because some distance away from the nozzle the
volume fraction of the droplets is assumed to be small (< 1.0.e—4). Using this assumption,
equations (3.69) to (3.72) turn into equations (3.51) to (3.54) with additional production
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terms for the mass, momentum, energy and concentration. Models for these terms depend
on the method that is used for the dispersed phase. It should be noted that the coupling
between droplet and gas phase is done on an Eulerian level. Consequently, the EL. method
requires an averaging procedure that delivers the production terms for equations (3.69) to
(3.72). The concept of EE does not require this kind of averaging because the production
terms in the balance equations for the gas are the negative production terms in the
equations for the dispersed phase. Hence, the coupling of the two phases does not require
any additional coupling procedure.






Chapter 4

A New Moment Method for
Polydisperse Sprays

4.1 Introduction

The objective of this work is to derive, verify, validate and apply a new moment method.
This method is based on the numerical solution of moment transport equations deduced
from the kinetic spray equation (3.26). In Chapter 3 the latter equation was ascertained
to be the right choice for modelling spray combustion. It was also observed that currently
there is no Euler method available that can solve the kinetic spray equation (3.26) in its
full complexity. A new moment method is presented here that combines the advantages
of the quadrature-based method of moments (QBMoM) [39, 56, 58, 99| with those of the
sectional method (SM) [41, 44, 63, 96, 97]. The resulting Eulerian moment method is
able to describe the polydisperse nature of sprays (evaporation, drag, splashing) and the
coexistence of two or more droplet velocities at one location. The new method, dubbed the
quadrature-based sectional method (QBSM), agrees with the moment methods presented
in Chapter 3 in that it is based on moment transport equations and that these equations
have to be closed. Here, a new and more general approximate NDF is proposed that
reduces to the approximations of Dufour and Villedieu [44] and Fox [56] or Le Lostec
et al. [99] when special sets of parameters are chosen.

The starting point of the derivations is the dimensionless kinetic spray equation (see
(3.26))

U

G+ Ve twn + 9 {(

- e ) T g (B4 (o) =T+ 0,

St Fr 0s 00
(4.1)

in which the physical models for the drag force, evaporation, heat transfer, collision and
breakup are assumed to be given. In other words, the functions St(v, s), Ev(v, s, 0),
He(v, s, 0), I'(v, s) and Q(v, s) are considered as known. On this level of complexity
the NDF is a function of the independent variables (x, t, v, s, #). Only in some highly

63
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restrictive configurations (see Appendix A) can equation (4.1) be solved analytically. The
main difficulties that prevent the analytical treatment of equation (4.1) are:

(i) the large number of independent variables,

(ii) the highly nonlinear physical models (see Chapter 2).

Numerical treatment of equation (4.1) is not straight forward either but allows negotiation
of difficulties in (i) and (ii) given certain limiting transformations and assumptions on the
NDF.

In Section 4.2, equation (4.1) is transformed into a system of moment transport equa-
tions in which the moments of the NDF depend on position and time only. The price
for the reduction of independent variables is the loss of information on the physical pro-
cesses contained in the kinetic spray equation. Nevertheless, it will be shown in Chapter
6 that the more moments of the NDF are transported and controlled, the more physical
spray phenomena can be described. Unfortunately, the number of transported moments
is limited by the available computer resources. The desired accuracy of the spray de-
scription and the complexity of the application determines the number of transported
moments and, with them, the computational effort that needs to be spend. In this work
the intention is not to solve for a large number of moments or even to reconstruct the
NDF from the moments. It is instead assumed that knowledge of a limited amount of
moments is sufficient to draw conclusions for engineering applications or to compare with
other simulations or experiments. It was shown in Section 3.4.2 that the coupling between
the gas and the liquid phase is accomplished on an Eulerian level, i.e. in a frame which
couples selected lower-order moments of the NDF with gas phase quantities. In Section
4.3 the transport equations for a general moment are closed by approximating the NDF
in a way that is special to sprays. An explicit set of transported moments is chosen. The
formulae to determine the unknown parameters of the new approximate NDF from the
chosen moments are the subject of Section 4.4. The calculation of these parameters is
structured in sectional and quadrature parts. The algorithm for the sectional part is simi-
lar to that of Dufour and Villedieu [44]. The quadrature part (Section 4.4.2) of the QBSM
is explained for one and two dimensions in real space. The approaches of Desjardins et al.
[39], Fox [56, 58] and Le Lostec et al. [99] agree with one another in one dimension. In
two dimensions they differ in the way the weights and abscissas are approximated. As the
new method can be based on either of these methods, a combination of the approaches
from Fox [56] and Le Lostec et al. [99] is employed. The approach of Fox [56] is illustrated
in detail below. As the method from Le Lostec et al. [99] was provided by the authors
of reference [99] it is not explained here. The reader is referred to the original paper.
In Section 4.5 the general kinetic spray equation (3.26) and the corresponding moment
transport equations are explictly specified, by choosing expressions for the physical spray
models. Finally, the closed moment transport equations will be summarised.

4.2 Moment Transport Equations

The transformation of the kinetic spray equation into moment transport equations can
be split into the commutative moment transformations with respect to the velocity, tem-
perature and surface variables. In general, this transformation, called moment transform,



4.2. MOMENT TRANSPORT EQUATIONS 65

consists of two mathematical operations that are applied consecutively to a PDE. First,
the PDE is multiplied by the desired powers of the independent variables and then, the
emerging equations are integrated over restricted or unrestricted domains in which the
variables are defined. The integration is an irreversible operation, but allows the reduction
of the independent variables.!

4.2.1 Moment Transform in Velocity and Temperature Space

The general moment for the velocity and temperature variables is defined by
Mﬁ;ﬁf(x,t; s) = / / QLvlvmvnf(X,t;V, s,0)dvdo | (4.2)
Ry JRA

where L and M represent the order of the moment for the temperature and velocity
variables, respectively. In addition, M agrees with the number of velocity indices. The
moment transform of the kinetic spray equation (4.1) for the temperature and velocity
variable yields the following expression

0 0
9 oy + L

0 U,;—v 1
oL _ —9 'y e e, dvdb
+ /R+ /]Rd Ulvmvn(%i { ( St(v,s) - Freg el) f} M

—/ / g (EV(V,S,G)GLme'Unf) dvdb
Ry JRA aS

(4.3)

—i—/ / OLQ (He(v, s, ) vw,v, f) dvdd = / / 0= v, (T + Q) dvdd .
Ry R4 89 R4+ R4

Notice that

(i) the system of moment transport equations following from (4.3) is unclosed because an
expression for the moment Mﬁ;féﬂ in the equation for the highest velocity moment
is missing,

(ii) the integrals in equation (4.3) cannot be evaluated because of the nonlinearities in
the physical models (see Chapter 2) and the generality of f(x,t;v,s,0),

(iii) the nonlinearities in the physical models also prevent a formulation of the integrals
as explicit functions of the transported moments,

(iv) if it were somehow possible to close the above system and evaluate the integrals
one would still be confronted with balance equations that exhibit five degrees of
freedom. This problem could not be treated with the numerical methods known for
CFD. For these methods all fields have to be functions of position and time only.

!'The moment transform can also be regarded as an averaging or filtering process of a PDE.
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v) In this work, the gas velocity, U,(x,t), is assumed to be supplied by some analytical
g Y, Vg y y
or numerical solution of the gas flow.

The last integral on the left-hand side of equation (4.3) is written as

/ / QLQ (He(v, s, 0)vu,v, f) dvdd
Ry R4 60

:/ [HLHe(V, s,@)vlvmvnf];ri:dv—L/ / 0 'He(v, s, 0)vwpv, fdvdd . (4.4)
R4 R, JRd

Assuming that no droplet has temperatures § = 0 and § = +o0, the first integral on the
right-hand side of (4.4) can be discarded and equation (4.3) turns into

0 0
9ttty + oL e

U —; 1
oL 9 ' e e dvdo
/m /R Frtmn A{(suv ST > / } v

— / g (EV(V, s, Q)QLvlvmvnf) dvdf
Ry JR4 0s

(4.5)

- L/ / 0¥ He(v, s, 0)vupv, fdvdd = / / 0 vvmu, (T + Q) dvde .
R, JR4 R4

Similar arguments will be applied to the third and fourth term on the left-hand side of
equation (4.5), but only later when the set of transported moments has been specified
(Section 4.5).

4.2.2 Moment Transform in Size Space

To transform equation (4.5) into a form that exhibits the independent variables, position
and time only, another moment transform for the surface variable, s, has to be performed.
In contrast to the moment transforms in the previous section, a more subtle transform is
chosen which maintains the information on the polydisperse character of the spray. To
this end, and similar to Dufour and Villedieu [44], Laurent and Massot [96] and Laurent
et al. [97], the surface space [0, +00) is split into (Ng + 1) fixed intervals, I, = [sk, Skt1)
(k=1,...,Ny) and In, 41 = [Sn.11, +00) with sy, 7 = 1, called sections. The infinite
section Iy, 1 is necessary when droplets are created that exceed the size of the largest
initial droplet (here s = 1), due to coalescence. With this discretisation of the surface
space, the moment transform can be performed for each section independently. In doing

so, every section I, (k=1,..., Ny + 1) is equipped with moments of the form?
Sk41
MM 1) = / / / B0, f(x, 1 v, 8, 0)dvdd ds (4.6)
’ Ry J R4

2The semicolon in the lower index of the moment (4.6) should not be confused with the short notation
of derivatives which is commonly used in continuum mechanics (cf. [151]). Here, the semicolon separates
subscript k of the section I} from subscripts [, m,n of the velocity components v;, vy, and v,.
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where K is the order of the moment for the surface variable and k is the section index.
Notice that the overall number of moments is increased by a factor of (N, + 1) when
introducing sections in surface space.?

Equation (4.5) is then multiplied by s® and integrated from sy, to s;; for all sections
I (k=1,...,Ng+ 1), which yields

a (MK,L,M a (MK,L,M+1)

E k;lmn )+ O k;lmni
Vi o ((U 1
KoLy, v, ——d (22— Y% L~ .6 dvdod
+//]R/R oo avz-{(St(v,@ Ftere ) pdvads
Sk
Sk+1 a
— sK— (Ev(v, s, 0)0*vvmuv, f) dvdlds
//m /Rd s (BV(V: 8, 0)6%wmvn ) (4.7)
Sk
Sk41
—L// /SKOL1He(v,s,0)vlvmvnfdvd9ds
R; JRI
Sk

Sk+1
= / s%0 v, (T + Q) dvdids .
R; JR4

Sk

With equation (4.7) the kinetic spray equation (4.1) is now reduced to a form in which
all functions and integrals depend on position and time only. Hence, (iv) in Section 4.2.2
has been resolved, but not (i) to (iii). They are the subject of the following section.

4.3 Moment Closure

So far, only a general moment Mfl{;”]y and the corresponding unclosed moment transport

equation (4.7) have been considered. The specification of the moments is strongly linked to
the approximation of the NDF and vice versa. Therefore, in this section, the approximate
NDF is introduced together with the set of transported moments. These two choices close
the moment transport equations and all algorithms that are necessary for the QBSM
unfold (see Section 4.4 and Chapter 5).

3In Chapter 6 it is shown that a reasonable N, is between 5 and 10.
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4.3.1 Approximation of the Number Density Function
In the remainder of this work the NDF is approximated by

f(X’t;V’S’Q) ~ f(X7t;V7 87 0)

Ns+1 g
=) Lycaca, exp (=bi(x,1)8) 8 (0 — O(x, 1) > ni(x,£)8[v — Ug(x,1)], (4.8)

with the requirement
by.41(x,t) >0 (4.9)

and the definition
dlv — Ug(x,1)] H5 —Upi(x,1)). (4.10)

In the above formulae d € [1, 2, 3] denotes the number of real space dimensions, whereas
[ is the number of quadrature nodes in velocity space. Here, each velocity space direction
will be represented by two nodes, so 3 = 2¢.* Now, let

WP = [b, O, (n$,UY)],  with k=1,...,N,+1 and a=1,....,8  (4.11)

denoting the set of (2+ (1+d)5)(Ns+ 1) currently unknown parameters, where (ng, U¢)
are called the quadrature parameters of node « in section [, with weight ng and velocity
abscissa Uf. Oy, represents the temperature abscissa in section I;, and by, is the parameter
that defines the shape of the exponential function in section I;. These unknowns are
related to the set of transported moments (see Section 4.3.2).

The method following from (4.8) is regarded as a generalisation of the SM introduced
by Domelevo [41], Gelbard et al. [63], Laurent and Massot [96], Laurent et al. [97] — more
precisely, its variant proposed by Dufour and Villedieu [44] — and the QBMoM recently
introduced by Fox [56] and Le Lostec et al. [99]. In the case of Ny = 0, 5 > 1, disregarding
surface and temperature variables and the identification of n{(x,t) with w®(x,t), the
quadrature approximation (3.36) is recovered from approximation (4.8). Conversely, for
the case of Ny > 0, § =1 the approximate NDF turns into that proposed by Dufour and
Villedieu [44] (see relation (3.43)).

The quadrature part of approximation (4.8) allows the description of locally bi-modal
(or multi-modal) velocity distributions, i.e. with (4.8) the collision-less crossing of two
(or more) droplet distributions of different velocity scale and direction but same droplet
size can be captured. In Chapter 2 various situations were illustrated in which crossing
of spray distributions, here called particle trajectory crossing (PTC), is relevant. In all of
these situations the NDF cannot be described with an equilibrium (also called Maxwellian)
distribution

0,0,0 P2
k _ k _ v —Ujl
(V) = ot )i exp ( 207 ) ; (4.12)

“Fox [58] showed very recently that the nodes in each velocity space direction can be increased to
values larger than two. In this case the distribution in velocity space can be captured more accurately,
i.e. bi-modal and tri- or multi-modal velocity distribution functions can be described. Distributions of
this kind are present when the droplet Knudsen number is near one and the droplets collide, coalesce or
break [58].
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with mean U} and variance o7, known from kinetic gas theory (cf. [24, 26, 172]). This
type of velocity distribution function is observed in flows where the droplet Knudsen
number is very small, i.e. collision of droplets is ubiquitous. In this work, however, the
dilute spray is not dominated by collisions (Kn, is large) so the rare events of collision
do not shape the velocity distribution function according to fq. Hence, it would be
misleading to approximate the velocity part of the NDF with the equilibrium distribution
(4.12). From this point of view, approximation (4.8) is regarded as a non-equilibrium
distribution function.

Another issue that is central to the simulation of spray combustion is the accurate
description of the mass transfer from the liquid to the gaseous fuel. The chemical reaction
in the flame is determined by the mass ratio between vapour fuel and oxidiser which is
strongly related to the evaporation process of the dispersed droplets. In Chapter 3 it
was demonstrated that the kinetic spray equation is a reasonable mathematical model
for spray combustion. If, in addition, an accurate evaporation model is chosen, then
the local mass of droplets must not be distorted by strong artificial assumptions in the
moment transform and the closure of the moment transport equations. By introducing an
exponential function in s (see (4.8)) for each section [, additional degrees of freedom, by
(k=1,..., Ng+1), are available that allow the control of the droplet mass. The unknown
parameter by will later be related to the moment ratio Mz/ 200 / Mg’o’o, which is proportional
to the ratio of mass and number of droplets in section I,. The exponential function
guarantees that the number and mass of droplets are always positive, irrespective of the
sign of b,.> Besides the convincing mathematical arguments for this choice, experiments
[98] confirm the exponential shape in the tail of the droplet distribution.

Assuming the parameters in the approximate NDF (4.8) to be known, then the
substitution of f(x,t;v,s,#) into the integrals of the moment transport equation (4.7)
and into the spatial flux Mflﬁl% *1 of that equation yields a relation that contains no
unknown terms, i.e. equation (4.7) is closed. The exact expressions for the moment
equations are given in Section 4.5.2.

4.3.2 Choice of Moments

For the selection of an appropriate set of moments, it is advantageous to relate some
of the moments, MkKlfmjlw defined in (4.6), to real physical fields. The number density
of droplets, n(x,t) [m™3| in section I is, by definition of the NDF, proportional to the
zeroth-order moment M}™" [-]. The mass density of droplets, Mj(x,t) [kgm~?], is defined
by the relation

Sk+1

M (x,t) == Mehar / /]R /IRd Y2 f(x,t;v, 5, 0)dvdf ds = McharMi/Q’O’O(x, t), (4.13)
+
Sk

where the moment Mi/ 200 [-] represents the dimensionless volume of droplets in section

I and Mgy, [kgm™3| is the mass density of droplets with surface Sq.., [m?] in the gas

This proposition follows from the non-negative character of the integrands [s¥ exp(—bgs)f(---)],
(K =3/2,0) in the definition of the moments Mg,o,o and Mz/2’0’0 in (4.6).
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flow with characteristic length scale X ., [m], i.e.

Sc ar 3/2
Mchar = M (414)

6\/7_1-(Xchar)3 .
The mass density of the droplet liquid, p,, is assumed to be constant. The volume specific
enthalpy Hj [Jm™3] in section I} is defined by

Sk+1

Hk(xa t) P Mchar Cd

P

/ 53/29f(x, t;v,s,0)dvdlds+ Hy
o R+ JRE (4.15)

3/2,1,0
- char Cng/ (Xa t) + HO ;

with the reference enthalpy Hy [Jm ™3] and the specific heat capacity of a droplet cz

[Jkg 'K~!|. The enthalpy is defined as a volumetric quantity because Mi/z’l’o and not

M2,1,0 is chosen below to be an element of the set of transported moments. In this definition
the specific heat capacity is assumed to be independent of the droplet temperature, 6.
Finally, the momentum, Im;, [kgm2s!|, of the droplets in section I} is introduced by

Sk+1

Imy(x,t) : = Mepar Venar // / 53/2vf(x, t;v,s,0)dvdlds
o IRy R (4.16)

- char‘/::harMi/ZO’l (X, t) .

The above quantities of number, mass, enthalpy and momentum of droplets are mentioned
for reasons of clarity. However, in the remainder of this work all equations, algorithms,
results, etc. will be expressed in terms of dimensionless quantities.

In order to determine the (2+ (14 d)5)(/Ns+ 1) parameters in the approximate NDF
(4.8), at least (24 (1 + d)5)(/Ns + 1) moments have to be chosen from the infinite set of
possible moments. This choice should prevent non-unique abscissas, negative weights [57]
and should allow the unique determination of by. Obviously, the lower-order moments
M0, Mz/z,o,O, Mz/Zl,O and Mz;/f’o’l must be elements of the set of chosen moments.
Otherwise the number, mass, enthalpy and momentum in a section are not controlled (see
equations (4.13) to (4.16)), i.e. it cannot be guaranteed that these moments agree with
those moments of the exact NDF, within some assessable error. For the velocity dispersion,
all velocity moments up to the third-order are considered as well. This ensures that all
directions in velocity space are treated equally and that the different velocity directions
are coupled. With these considerations in mind, the chosen set of independent moments
is specified as

yi . {Mo,o,o V200 \[3/210 )\ [3/20.1 ) r3/2.02 M3/2,0,3}
k koo » Vi, Vs )

) Y kilme 0 T klmn

(4.17)
with [mn=1,...,d, [ <m<n and k=1,...,N,+1,
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which are 6 independent moments for one real space dimension (d = 1), 12 moments for
two dimensions (d = 2) and 22 moments for three dimensions (d = 3) in each of the
N + 1 sections. In the case of one dimension and two nodes (5 = 2), the number of
moments is equal to the number of parameters. However, for two and three dimensions
the number of parameters exceeds that of the moments if 5 = 2¢ is chosen. One way
to resolve this discrepancy is the extension of the set of velocity moments to the fourth
order. Fox [56, 57| showed that an optimal set of moments, including the fourth and fifth-
order moments, can be found for the computation of the weights and velocity abscissas
in W,f but, as mentioned in [56], this introduces the following additional issues: First,
the weights and abscissas have to be found numerically by solving a nonlinear system of
equations and second, the optimal set of moments also includes moments of order five. Fox
[56] has implemented a nonlinear solver that is able to evaluate the weights and velocity
abscissas in set W,’f using an optimal set of moments. He reports that the nonlinear
solver converged but not in all cases. The transport of these additional moments and the
nonlinear solver increase the computational costs drastically. Having these considerations
in mind, it is preferable, in the manner of Fox [56] and Le Lostec et al. [99], to reduce
the number of independent quadrature parameters in (4.8) such that all moments in V,
except the third-order cross moments, are controlled. In Section 4.4.2 this issue will be
discussed in more detail.

The general assumptions that are tacitly made when considering approximation (4.8)
and the set of moments (4.17) are:

(i) For a given droplet surface, at a given point (x,t) there is only one characteristic
average temperature

5 S fR+ 0f(x,t;v,s,0)d0dv
t;s) =
(. 55) ng fR+ f(x,t;v,s,60)d0dv

(4.18)

The temperature dispersion around the average temperature (x,¢; s) is zero in all
directions, regardless of the point (x,t,s). This implies that all droplets in one
section have the same temperature, i.e.

0(x,t;5) = O(x,t) for s < s < sk - (4.19)

(ii) For a given droplet surface, at a given point (x,t) , all velocity moments up to the
third-order, i.e. (see (4.2))

M?T%(XJSS)I/ /Uzvm’vnf(X,t;v,s,G)dvd@,
o e (4.20)

with Imn=1,...,d, [ <m<n and M=1,2,3,

fully characterise the spray behaviour in velocity space.

6Desjardins et al. [39] reduce the set of quadrature parameters as well, but in addition to the third-
order cross moments, the second-order cross moments are not, controlled either.
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(iii) The number density of droplets for a given droplet surface at a given point (x,t),
defined as

n(x, t;s) ::/ f(x,t;v,s,0)d0dv , (4.21)
Rs JR,

decreases exponentially with the surface variable going to infinity. This assumption
is justified by the experiments of Laurent et al. [98] and permits the assumption
bn,+1 > 0 (see (4.9)).

4.4 Computation of the Exponential and Quadrature
Parameters

The key component of the combined moment method is the algorithm that computes the
unknown parameters in set W, (4.11) from the set V¥ (4.17) of known moments. To this
end, the relation

S
[3 k+1

MEEM (x, 8) = OF (x,1) S nf (x, £) (U3 (Un)3 (Ua)3] (%, £) / s exp (—bi(x,t)s) ds

k;lmn
a=1
Sk
(4.22)
is used, which follows from the substitution of the approximate NDF (4.8) into the defi-

nition of the general moment M2 (4.6). The right-hand side of relation (4.22) is, in

k;lmn
general, nonlinear and therefore it is not obvious that the unknown parameters of fin
W,f can be uniquely determined from the moments in set VI which are known from a
previous time step, an initial or boundary condition.

In Section 4.3 the moments were chosen such that the parameter b, can be calculated
prior to the rest of the unknown parameters. The unique determination of by, is the subject
of Section 4.4.1. The weights and abscissas for the temperature and velocity variable are
dealt with in Section 4.4.2.

4.4.1 The Exponential Parameters

As previously mentioned the evolution of the surface of droplets is captured by discretising
the surface space [0, +00) into (N, + 1) fixed sections, I, = [sk, sk+1) (K = 1,..., N)
and Iy, 1 = [sn,41, +00) with sy, 11 = 1 and approximating the surface distribution of
droplets by a piecewise exponential function of the form

Not1
f(x,t;v,@, s) = Z Lo <scsyan(x,t,v,0) exp(—bys), Sp <8< Sy - (4.23)
k=1

In its pure form (ay is no function of v and ) this approach was developed by Dufour and
Villedieu [44]. The propositions and proofs that are outlined in this section are similar to
those of Dufour [43]. The determination of b is based on the following proposition:

Proposition 1. Let I), be an interval (finite or not) in surface space [0, +00) and f(x,t;
v,0,s) a positive function on this interval with moments MZ’O’O and Mi/ZO,O defined in
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(4.6). Then, in this interval there exists a unique value by, € R such that the function f,
as defined in (4.23), has the same moment ratio

q1, (bk) flk f]R+ f]Rd 33/2ded9ds
flk f]R+ f]Rd ded9d3 -
flk fm Jia 8%/ exp(—bys)dvdfds ‘ Mi/z,o,o
f]k f]R+ f]Rd exp(—bys)dvdlds o Mg,o,o

as function f. In the infinite interval the parameter by is strictly positive. Therefore, it
s possible to define a bijective function, Vy, such that

3/2,0,0
M/

For the proof of this proposition see Appendix B. In the proof the following properties
are shown:

(i) The function g, (by) is strictly decreasing and invertible on the interval Ij.

(ii) It exhibits the limits

lim gy, (b)) = (sk+1)3/2 and lim gg, (by) = (k)3/2. (4.26)

by ——o0 by — 400

(iii) In the infinite section Iy 1, where by, 11 is strictly positive, the relation

lim gy, (bx) = (sn,11)*? (4.27)

b —0t
holds true.

The strictly monotonic decay of g, (b;) allows the unique solution of
_ 1 3/2 3/2 _—byAs 3 —bpAs
91(bx) = T otias \ Sk~ Sk + Q_bk(\/s_ — /Skt1€ )

3e~bksk  [VEk+1 M3/200
+2 / —’“"d>'M7 (4.28)

0,00 °
N k

where Mi/ 200 and Mg,o,o are known from a previous time-step, an initial or boundary con-
dition. Due to the non-linear character of this equation, b, cannot be found analytically.
In this work, the root finder DFZERO of the SLATEC Common Mathematical Library [52]
is used, which is based on the combination of the bisection method with the secant rule.

The limits of g;, for infinitely large and infinitely small values of b, allows an flexible
limitation of b;. This is necessary because for very large (or very small) values of by~ gy,
is close to (sx)%? (or (sp41)*?) — the (complex) error function on the left-hand side of
equation (4.28) is difficult to evaluate with double precision accuracy. This situation is
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observed when the NDF is discontinuous in surface space or a very small mass is present in
a section. To prevent a large numerical error and the crash of the algorithm, a minimal and
a maximal threshold, b,,;,, and b,,,., is introduced which can be translated into thresholds
for the function gy, (by), i.e

' .
(sk)%2 + e < 91,(bk) < (sp40)* — g™ (4.29)
with
en =g, (bmaz) — (Sk)3/2 and EZ”" = (Sk+1)3/2 - glk(bmin) . (4.30)

In case g7, is not within the interval [(s;)%? + 7% (s341)%? — "] but still within
[(5%)3/2, (s341)%2], by, is set to the minimal or maximal value and the moment M:/**? in

one section is artificially modified, such that

M3/200 glk(bmax)MOOO or M3/200 glk(bmzn)MOOO (431)

main max

is satisfied. The computation of the thresholds £]"" and £;'** can be conducted in a
preprocessing step.

It is observed that by is obtained from M} and M%O’O independently of the other
moments in the set V. The weights, n, velomty abscissas U and the temperature Oy
do not arise in these equations. Therefore, b, can be uniquely determined prior to the

temperature abscissas and quadrature parameters.

3/2,0,0

4.4.2 The Quadrature Parameters

The determination of the weights and abscissas in each section Iy, (k=1,..., Ny + 1) is
now based on the set of moments

+ 3/2,0,0 3/2,1,0 3/2,0,1 3/2,0,2 3/2,0,3
Vd - {Mk ’ Mk; ) Mk;l ’ Mk;;lm ) M )

k;lmn

(4.32)
with [,m,n=1,...,d, [<m<n,

where, in comparison with V{ in (4.17), V] has been reduced by the zeroth-order moment
M%O’O. The information contained in this moment was previously used and passed into
the exponential parameter by.

The unknown weights and abscissas are computed from relation (4.22) using the
moments in V; and the now known parameter by. Taking into account the fact that
;1 s™ exp (—bi(x,t)s) ds] is always positive for 0 < s < sg1 and K > 0, then the

S
modlﬁed moment

- M (%,1)
ME;ﬁ{:y(x) t) - = Sk+1 7
[ s exp (—bp(x,t)s)ds
s (4.33)

8
= 010, 6) Y ni(x, 1) (V) (U7 (Un)F] (%, 1)
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is introduced. Notice that this moment does not include the parameter b;; hence, for each
section I, (k=1,..., Ny + 1) the quadrature parameters

Wi =10, (ng,UY)], with a=1,....8, k=1,...,N,+1 (4.34)
can be computed from the set of known modified moments

o+ 13/2,0,0 +r3/2,1,0 1r3/2,0,1 +73/2,0,2 +r3/2,0,3
Vi = {Mk ’ Mk ’ Mk;l ’ Mk;lm ’ Mk;lmn ’

(4.35)
with Imn=1...,d, [ <m<n, k=1,...,Ns+1.

In Section 4.3 it was assumed that in one section all droplets exhibit the same mean
temperature and no dispersion around this mean is present. With this assumption the
temperature abscissa is set equal to the mean temperature

M3/2,1,0
Op=—F . (4.36)
3/2,0,0
MY
The weights and velocity abscissas
Wi =[(ng,Ug)],  with a=1,...,8 and k=1,...,N,+1 (4.37)

still need to be determined from the set of modified moments

Pt — {Mz/zo,o,l\—/[z;/lz,o,l N/2:0:2 1\—/[3/2,0,3}’

) kslme k;lmn

(4.38)
with [m,n=1,....d, [<m<n and k=1,...,Ng+1.

Although the number of nodes in each real space direction is the same (here, it is two),
the extension from one to two and three dimensions is not trivial. In the sequel, the
procedures for one [39] and two [56] real space dimensions are explained. Fox [56] extended
this procedure to three dimensions in real space and to higher velocity moments [58] but
these extensions where not implemented and not studied in this work.

In one dimension in real space, the relations between the moments in T}I and the
parameters in W) are determined by (see relation (4.33))

MO0 = g+, MO = npU + iU, L)
S R G O T

From these relations it is not obvious that the parameters subsumed in )/\/2T can be uniquely
determined by the moments in V because the right-hand sides of (4.39) are nonlinear.
The uniqueness and the explicit formulation of the mapping leT — W;r is the subject of
the following proposition:

Proposition 2. Let )_/I be the set of moments defined as

Y ?

W _ 1\712/2’0’0,1\7[2/2’0’1 1\7[2/2’0’2 1\7[2/2’0’3 (4.40)
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such that )
(i) MZ/200 S 0 (i) NI/2OON202 > (MZ/Q’OJ) . (4.41)

Then, up to a permutation between superscripts 1 and 2, there exists only one set W;r of
parameters that satisfies the relations in (4.39). This solution is given by

ny = 1+ xk)Mz/zo,o ’ n? = (- xk)MZ/Q’O’O ’
n? 1/2 nl 1/2
Ul —pr— [ 2k p U2 — [P ng »
k (ni) O » k T nz Ok » (4.42)
P/2
T = a/

((a)? +4()®)"*

The quantities U}, o}, and q; are defined by

N/20! 1\7[2/270’01\7[2/27072 _ <MZ/270,1>2 1/2
Upr =k aIk’ _ ;
k —r3/2,0,0 7 )
M 3/2,0,0
' <M’f ) (4.43)
1 cr3/2,0,3  153/2,0,0 ~3/2.0,0
q = NE/200 <Ml<:/ — M) - 3ny (UZ)zU,ff) :
k

Equations (4.42) and (4.43) constitute the mapping l_/f — W;r )

The proof to this proposition can be found in Appendix C. Note that U} can be interpreted
as mean velocity of droplets in one section and (o%)? as the velocity variance of the
NDEF. Note also that Propositions 1 and 2 are the key components of the QBSM because
they prove the relation between the moments and the parameters to be unique and they
even give explicit formulations of the parameters in terms of the known moments. The
procedures for higher real space dimension rely on the same propositions.

For two dimension in real space an exact relation between the 12 parameters of the
four node quadrature in”

Wi =[(n®*, U], with a=1,...,4 (4.44)
and the moments up to the third-order is not possible because the number of moments in

¥ VCRVURY LRV CERV ARV ARV IRV RN AR Y C.

Vg == [M ) MCE) My’ Mzz? Myy, sz, M:ECE:E? Myyy, My:l?:l?’ Myyz] (445)
is less than those of the parameters in Wl. However, in the following the quadrature
parameters in W] will be reduced to allow its determination from the set of moments

Vi. Originally, this third-order moment method was proposed by Desjardins et al. [39)],

"In the rest of this section, the order of the moments for the surface and the temperature variables
(K =3/2, L = 0) as well as the index for the section k are suppressed for simplicity. The procedure,
outlined here, is the same for each sections, I.
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but it did not control the second- and third-order cross moments. The methods of Fox
[56] and Le Lostec et al. [99] can control the second-order cross moment, extending the
approach of Desjardins et al. [39] to two (and three [56]) dimensions. They use the original
version of Desjardins et al. [39] for the computation of the quadrature nodes in each
direction (see one-dimensional explanations above) and couple the unidirectional nodes
such that the second-order cross moment is controlled. The approaches of Desjardins
et al. [39] and Le Lostec et al. [99] are not built on the requirement that all weights
have to be positive. They introduce artificial thresholds and approximations that prevent
this unphysical situation. In contrast, Fox [56] developed a more general procedure that
guarantees the realisability of the weights and abscissas. It can be easily extended to
three real space dimensions and the number of nodes in each direction can be increased
using the product difference algorithm [58]. The price one has to pay for the realisability
and the increased number of nodes is the transport of more moments. In the case of
a four-node quadrature in two real space dimensions, for example, Le Lostec et al. [99]
transport eight moments in each section, whereas Fox [56] has to transport all moments
up the third-order (10 moments). In this work, the more general approach of Fox [56] is
followed. It is supplemented with the more robust method of Le Lostec et al. [99], where
numerical instabilities arise.

The quadrature-based moment method of Fox [56] commences with definitions of the

mean droplet velocity vector o
ML /MO
U?r .= | _ o] (4.46)
M, /M
and the velocity covariance matrix
ou = [0y
Sk41

= Lo / 33/2/ / (v—-U")® (v—U")f(x,t;v,s,0)dvdsdd
M o R+ R2 (447)

) [M/M - (Uz) N2,/ - U2y
MZ,/M° —UPUZ M2 /MO — (UF)?

The main idea of Fox [56] is then to replace the velocity variable v by a new variable,

Xy
X = =AY (v-UP), (4.48)
Xy
with
v=AX+U". (4.49)

The linear transformation matrix A is chosen such that the covariance matrix o x has no
off-diagonal elements. Fox [56] uses the Cholesky decomposition of the covariance matrix
gy, i.e.

_1/2 . ,_1/2
Ozx ny/axx
oy =LTL, with L= s , (4.50)

0 Oyy
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and identifies the linear transformation A with the lower triangular matrix L. The
Cholesky decomposition can only be applied to symmetric and positive definite matrices.
As oy can become singular (det(o) = 0), e.g. for dispersed flows that have no velocity
dispersion, the method of Le Lostec et al. [99] is used in these cases.

In the case o is non-singular, the covariance matrix of the variable X reduces to ®

B 10 A
O'X_[O 1]. (4.51)

The new variable X is rotated and normalised in the sense that its second-order cross
moments are zero and its unidirectional second-order moments are one. Therefore, the
computation of the quadrature parameters corresponding to the variable X, i.e.

W =[(nS,X,)], with a=1,....4 (4.52)

is facilitated because the moments of variable X

Sk+1
1
o = 1o / 372 / XX, XS (x, £ X, 5, 0)dX dsdf,
R, JR?2

k

(4.53)

with M € (0,1,2,3) ,
reduce to

m’=1, m =0, m}=1 mj,=0,

ST (4.54)
mfjk = hyi(A,UP, M2 /1\40,1\4§yy/1\4(),1\43 /MO,Mzw/MO) .

TTT YrT

The function h;j; depends, in general, on all velocity moments up to the third-order. The
function hyjj, is derived and explained in detail in Appendix D. Although the structure of
the new variable X is more convenient, the 10 elements of set

V; = (mO’ ﬁl%, ﬁl%, m?la m?Qv m%% ﬁlz1)’11a mgmv ﬁl?ma Ifl?22) (455)
are still not enough for the 12 quadrature parameters in WW;. To circumvent this prob-
lem, the eight unidirectional quadrature parameters (n‘(’i)l, X)) and (n‘(’i)Q, X(i)2) for each
direction e;, (i = 1,2) of the new variable X are introduced. These parameters are used
to define the two-dimensional four-node NDF approximation

fo(X,s,0) =5(0 — O) exp(—bgs)
[nié(Xl — X(l)l)é(Xz — X(g)l) —+ n§5(X1 — X(l)l)(s(XQ — X(g)g) (456)

+n§5(X1 — X(l)g)é(Xz — X(2)1> + nZ(S(Xl — X(1)2)5(X2 — X(Q)Q)} .

8Using the definition of oy in (4.47) and multiplying the tensors A~! from the left and A~" from
the right, [A‘lo'UA_T] turns into the unity matrix. With the identity

AN v-U")e(v-UHA T=[A"(v-TU")|® [A(v-TUP)]

the integral in definition (4.47) turns into ox.
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In the definition of the velocity abscissas, (X¢, X&), o = 1,...,4, the tensor-product of
the unidirectional abscissas was used, i.e.

[(XllaXZI) (X12aX22)] _ [X(l)l

X3 X3) (X4 X4 X (4.57)
(X7, X3) (XY, X3) (1)2

®

X(2)1]
Xee|

With approximation (4.56) the unidirectional moments can be written as

n’ = +n2+n3+n4,

B

= (n] +n3) X1 + (ng +ng) X2,
= (ny +n3) X + (03 + ng) X2,
my; = (n] +n5)X (11 2+ (g + n4)X(1)2 ’ (4.58)
m3, = (nf +n5) X )12 + (ng + nZ)X(2)22,
myy, = (1] + nz)X(1)13 + (n3 + ”Z)X(l)QB’
My = (n} + ng)X(?)l3 + (ng + nZ)X(2)23
Introducing the unidirectional weights as

Ny = ny + ng, Ny = N3 + Ny,
(1) (1) (4.59)

o __ .0 o o __ o o
N(g)1 = Ny + N3, N(g)2 = Ty + Ty,

the relations in (4.58) can be split in two one-dimensional parts

m’ = n(()1)1 + n((D1)27 i

B

n?2)1 + n(2)27

I’YI% = n?l)lX(l)l + n?mX(m, ﬂlé n02) X(2)1 + n(z)QX(g)g,
~ o o — o o 460
my; = ndy, Xan® 4+ nfypXape, M3y = Ny X291 + 1y X (227, (4.60)

m?n = n?l)lX(l)lg + n?l)QX(1)237 ﬁlgm (2)1X(2)13 + n(()2)2X(2)23

Knowing the moments on the left-hand side of these two sets of equations, the two-
node quadrature formulae in (4.42) and (4 43) are used to determine the unidirectional
quadrature parameters (n(;,, X()1) and (nf,,, X()2) for each direction e;, (i = 1,2). With
the identities in (4.54), the quadrature formulae (4.42) and (4.43) turn into

. 1—29\"”
Ny = % + i, X(i)l = - ( ) )
1+ 2
i/ (4.61)
no _ l o ) X ) o 1 + 271
M2 — 32~ Vi @2 =\7_ 2, ,
with )
N = zzz/ ) (462)

[(m5;)? + 4]1/2
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Due to the fact that —2 < ; < 1 for all values of m};, the weights ngy, and ngy, will
always be positive for all directions e;, (i = 1,2).
Notice that (4.59) is a linear equation system for the two-dimensional weights ng,

a=1,...,4, but only with rank three. The linearly independent set of equations
Ny — Mgz =NY — Ny, Npye = Ng + N5, Ny = Ny + Ny, (4.63)

which is easily derived from (4.59), requires an additional equation to determine all two-
dimensional weights no. The solution to this problem is the second-order cross moment
m?, which, in the frame of the variable X, is identically zero. The substitution of the
approximate NDF (4.56) into the definition of m?, (4.53) yields

X(l)lX(g)ln(f —+ X(l)lX(g)Qng -+ X(1)2X(2)1n§ —+ X(l)QX(Q)an =0 y (464)
which is obviously independent of the relations in (4.63). Recall that the abscissas X ;o

are known; hence equations (4.63) together with (4.64) are a full-rank linear equation
system for the weights no. The solution of these equations is finally

ng =nlyinin = (371G +12), 15 =nlyinie = (5 +71)G — %),

(4.65)
g =n{nenion = (3 =15 +72), 14 =n{yniy, = (3 =715 — %)
As the weights n(;, are non-negative, ng, G =1,...,4, are non-negative as well. Taking

into account the relations (4.61)9 4, (4.62) and (4.65), the mapping from the set of eight

moments

O. (~0 ~1 ~1 -2 -2 -2 _3 _3
Vy = (m 7m1am2am11’m127m227m111’m222) (4-66)

to eight independent quadrature parameters of set
)/\74D = [(”cf, X(1)1, X(2)1), (”37 X(1)1, X(2)2), (”?«;7 X(1)2, X(2)1), (nZ, X(1)2, X(2)2)} (4-67)

is possible. Notice that the two third-order cross moments m3,; and m3,, are not included
in set V3. Clearly, the information on these moments is lost but the remaining third-order
moments are linear combinations of all third-order moments in the frame of v. However,
because the third-order cross moments in the X-frame are not controlled an error is
introduced in this procedure.” The parameters in WY are easily transformed into those
of set W] by using equations (4.49) and n, = M2, (o= 1,...,4). Notice that although
Wl has 12 elements, only eight of them are independent. However, using a relation
similar to (4.22) the quadrature parameters in Wl can easily be projected onto the set of
moments VzA , a subset of V5. The different transformations introduced in this section are
summarised as

V;r<—>V§—>V2D<—>WE<—>W1<—>V2ACV;. (4.68)

The error that is introduced in the transformation V;r — VQA can be assessed by comparing
the elements of the two sets.

9The procedures of Desjardins et al. [39] and Le Lostec et al. [99] do not control the third-order cross
moments in the frame of v.
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4.5 Reduction of the Spray Model

In this section, the physical models are explicitly specified and the general moment trans-
port equations in (4.7) are elaborated for the set of chosen moments V7 (4.17). The
transport equations are closed by considering the approximate NDF supplemented with
the algorithms in Section 4.4.

4.5.1 Choice of Physical Spray Models

In Chapter 2 physical spray models were introduced that allow the specification of the
terms St(v,s), Ev(v,s,0), He(v,s,0), I'(v,s) and Q(v, s) in equation (4.1) or (4.7). In
this work, the focus is not on the question of whether the accuracy of QSBM is good or
bad in comparison with experiments. The investigations are instead concerned with the
issue of whether the QBSM is able to describe drag force, evaporation and heat transfer
in crossing spray configurations. Therefore, the most simple and intuitive physical models
are chosen. More refined models for drag, evaporation and heat transfer and the behaviour
of the method concerning turbulence models of the dispersed phase, collision and breakup
were not tested in this work. However, models for these spray effects exist (see Chapter
2) and, as long as they are in the frame of the kinetic spray equation (3.26), there is no
theoretical reason why the QBSM should fail to describe these effects.

In Chapter 3 the force F [kgms 2] on a droplet of mass my [kg| was reduced to the

dimensionless form ¥ - U .
char g~V
— | = — 4.69
(‘/char)2 (md) St(V, S) + FI‘eg ’ ( )
where buoyancy, unsteady and other more subtle forces have been neglected [33|. The
drag force model is further reduced to the Stokes law, which rejects the dependency of St

on the velocity variable v and therefore is limited to droplet Reynolds numbers satisfying
Rey < 1. Using relation (2.18)5 , the Stokes number is written as

o Pe ‘/char S char

St(s) =
(S> 1877-77g)(char

= St(1)s . (4.70)
Notice that St(s) is proportional to the variable s, where the factor St(1) is the Stokes

number of droplets with surface Sga,.

The evaporation law

0s
— =—FK 4.71
= Bv(v,5.6) (1.71)

is used for the evaporation of droplets, where Ev(v, s, 0) is derived from the mass transfer
g = Omg/0t [kgs™'| and the assumption of spherical droplets. With these considerations
the evaporation number can be written as

6 \/7_TX char

Ev(v,s,0) = — m
( ) p@‘/char(Schatr)g/2 ¢

(v,s,0)s7 1/ (4.72)

If the mass transfer 1, [kgs™!] is modelled by

1m4(v,5,0) = /T (Sehar) > 52 prDuaSho moa (v, 0) In(1 + B, (0)) , (4.73)
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(which is chosen according the approach of Abramzon and Sirignano [1]) Ev can be as-
sumed to be independent of s. In Section 2.4.2 the definitions of parameters in (4.73) are
given. If the velocity and temperature differences between gas and droplets are assumed
to be negligible and the vapour concentration and the temperature in the gas are as-
sumed to be constant, the evaporation number is constant. In some of the computations
conducted in Chapter 6 the latter assumptions are enforced to study the QBSM.

As discussed in Section 2.4.2; the change of the droplet temperature is due to two
physical effects. First, the temperature difference between droplet and gas leads to a heat
conduction, Q, [W], crossing the droplet surface. Drawing on the model of [1] the heat
flux can be modelled as (see (2.34))

CpFMy

By,

le(V, S, ‘9) = (eg - 0)@char~ (474)

Second, the phase change of droplets into vapour is a process that consumes heat. The
measure for this heat sink is the specific latent heat L(6,) [Jkg™'| which depends on the
temperature at the droplet surface ;. For the infinite conductivity model enforced in
this work the surface temperature can be identified with the droplet temperature (O q,a,0)
[K]. Heat conduction and latent heat can be combined to obtain a representation for the
temperature change (see (2.34))

He(v,s,0) =

Xchar md(S, v, 9) EpF@char

Voo Oam clma(s) ( B, (0, —0) + L(QS)) : (4.75)
As stated in Section 2.4.2, the heat transfer number, B, can be computed by an iterative
procedure proposed by Abramzon and Sirignano [1]. The exact values of the specific heat
capacities ¢! [Jkg™'K™!| for the droplet and ¢,p [Jkg™'K™!| for the gas (see equation
(2.33)) in the thermal boundary layer are found in tables [173| or are obtained from
correlations [127]. Here, the heat capacities are assumed to be unaffected by temperature
changes.

The collision and breakup terms are set to zero in the remainder of this work. With
this strong simplification, dense sprays with droplet Knudsen numbers of the order of one
cannot be described. The consideration of secondary droplet breakup near an atomization
nozzle is out of reach with these assumptions. The extension of the QBSM to collision and
breakup has to be postponed to future research. Dufour [43] and Laurent et al. [97] have
shown that the sectional method can capture these effects and Fox [56] and Le Lostec
et al. [99] introduced collision into their third-order quadrature method. Therefore, the
considerations of these effects should, in principle, be possible with the combined method,
QBSM. By neglecting any interaction between the droplets, the droplet Knudsen number
is considered to be infinite.

The disregard of collision effects facilitates the sectional part of QBSM as no droplet
larger than s = 1 (which corresponds to the largest initial droplet Sg.. [m?]) is ever
present. Consequently, the surface space can be reduced to [0, 1] and the infinite section
Iy, is of no use. In the remainder of this work, only the first N, sections I}, = [sg, Ski1)
(k=1,...,Ny) are considered where s; = 0 and sy, = 1.
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4.5.2 Collection of the closed Moment Transport Equations

The introduction of the physical spray models into the unclosed moment transport equa-
tions in (4.7) yields the following system of equations for each section Iy, k =1,..., N,

d

dt(MOOO) EOOO(k, k’)—f-EOOO(k} kf—f—l)

E(M3/2,0,0) _ (E3/2’0’0(]€, k’) + 53/2,0,0(1{:)) + E3/2’0’0(k’, k + 1) ’

k

d
_(M3/2,1,0> _ (EB/Q’LO(]{], ]i]) + 83/2,1,0(k)) + E3/2’1’0(]€, k 4 1) + Rk ,

d
S OMEEON) = — (B2 (k) + €201 (k) 4+ B> (k. e+ 1)
1
ey elM:s/zoo + DL, (4.76)
d 372002 3/2,0,2 3/2,0,2 3/2,0,2
E(Mk;/ij )= — (Eij/ (k k) + gij/ (k)) + E“/ (k,k+1)
1 3/2,0,1 3/2,0,1
+ﬁ(eg~eil\/[k;/j + eg e]M/ >+D,“J ,
d 37203 3/2,0,3 3/2,0,3 3/2,0,3
1 3/2,0,2 3/2,0,2 3/2,0,2
+ n (eg : ele;/mn +éeg- eka;/ln +éeg- ean;/lm ) + D}t
where the material time derivative d(-)/dt is defined as |70]
d . xrum O K.LM O N KLMi1
E( k:nm ) = E(Mk;lnm )_'_ axz (Mk; lnszr ) ) (477)

and the heat source term in the equation for 1\/[2/2’1’0 is introduced as

Sk+1

Ry = // / s**He(v, s,0) fdvdfds . (4.78)
R+ JRA

The first terms on the right-hand sides of equations (4.76), defined as

El[fme (k,7) :/]R /Rd STKEV(V, Sr, Do, f (X, 8 v, 8., 0)
+

Sk (4.79)
En (k) = K / sETEV(v, 0, 8)vv,v,0" fdvdsdl
Ry JRI
Sk
are related to evaporation. EffnﬁM(k: r) can be interpreted as flux of the respective

moment over an interface of section [;,. The term Sllfnﬁ M (k) is a sink term of the respective
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moment which captures the transfer of mass, momentum, heat, etc. from the droplet to
the gas phase. Notice that the equation for the zeroth-order moment does only include
evaporation flux terms. Hence, no droplet is erased within a section but only at the right
interface of section I, i.e. the evaporation flux E®%(1,1) leads to a loss of droplets. This
structure of equation (4.76); agrees very well with the phenomenon of evaporation because
droplets fade away only when they have reached zero surface. In the next chapter the
evaporation fluxes and sink terms will be rewritten to yield a conservative, finite volume-
like scheme in surface space.
In equations (4.76),5¢ the drag force is represented by the terms

D,%mn = / / / vlvmvn {(Ugi _ Ui) f} dvdfds, M =1,2,3. (4.80)
’ R, JRd j St(1)

In the first three equations of (4.76) the drag related terms do not arise, because

Sk+1
0 Uy — v;
) KL gi i
kslmn / /]R+/]Rd8 0 70 {( St(1)s ) f}dvd@ds
d Sk+ - +oo
<3| o ()
=1 )

vanishes if f goes to zero faster than any polynomial of velocity components |v;| can grow
to oo. For real configurations this assumption is always satisfied because no droplet with

infinite velocity can exist. Using the latter argument, the drag term in (4.80) can be
rewritten as

(4.81)

—00

Sk41
Dy, = / St(1 / / Uy — ) fdvdids,
R+ JR4
Sk+1
D/%;lm = / / / gz — 6215]m + 5lm5]1)fdvd0ds
St IR+ Rd
Sk+1

D]?g’;lmn = / St / / UsUt gr — Ur>(5Tl5sn5tm + 5rm5sl5tn + 5rn5sm5tl>ded9d3-
R4
(4.82)
The approximate NDF (4.8) remains to be substituted into the moment transport equa-

tions in (4.76). The structure of (4. 76) is not changed by this substitution, only the terms
Ri, ENEM (B ry, 5DME) DM in (4.78), (4.79), (4.82) and the unknown moments

lmn Imn kilmn
MSEMH 4y (4.77) will finally by expressed in terms of the known parameters in W/
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(4.11). The closed expressions read

Sk4+1

&
Ry = / s%/% exp(—bys) Zn‘gHe(Ug,s, Ok)ds ,

P a=1

Epi ™ (k1) = 5, exp(=bis, )EV(UR, 57, ©1) (UR)i(UR) (U )

Imn

B Sk41
Epan M (k) = K> 0 (UR)1(UR), (UF),0," / s" " exp(—bys)Ev(U§, Oy, s)ds
a=1 Sk
1 Sk+1 81/2 [3
Diy = St exp(—bgs)ds 2 ny [Ug — (U],
Sk -
e 1/2 B
2 S « « «@
Diim = St exp(—bgs)ds Y i (UR); [Ugi = (UR):] (5ujm + Gimi),
P a=1
Sk41

§1/2
Dli;lmn: / St(l) exp(—bks)ds

Sk

g
X Z ng(Ug>s(Ug)t [Ugr - (U%)r] (5rl53n5tm + 5rm53l5tn + 5rn5sm5tl>7

a=1
Sk41 ﬁ
MEE T = [ exp(bis)ds S n(UR(UR) (U (V)

a=1
Sk

(4.83)

The integrals in (4.83) are either known analytically or they are computed with appro-
priate quadrature rules.

It is observed that the system of moment transport equations (4.76) supplemented by
the relations in (4.83) is a highly nonlinear system due to the complicated relation between
the parameters of the approximate NDF and the chosen moments. It is the objective of
the next chapter to find appropriate numerical methods for the approximation of solutions
to these equations.






Chapter 5

Numerical Model

5.1 Introduction

Equations (4.76) and (4.83), supplemented by appropriate initial and boundary conditions
(see Chapter 6), can be considered as a mathematical model for the motion of a dilute
spray, with infinite droplet Knudsen number, experiencing drag, heating or cooling, and
evaporation. All terms in these equations depend on position x, and time ¢. They exhibit
the structure of balance equations [70] with the following properties:

(i) For each section I, a set of balance equations has to be solved.

(ii) The sets are coupled through evaporation, drag and heat transfer terms.!
(iii) Pressure and deviatoric stress terms are absent.

(iv) The convective terms are functions of the parameters in the set W (4.11).

These properties rule out the well-known pressure correction procedure [50] because a
pressure cannot be defined within a droplet flow that is collision-less. In addition, a
numerical procedure is required that is not based on the incompressibility assumption.
Instead, the numerical schemes that are derived in this chapter must be able to first,
capture sharp jumps of all moments at crossing points and secondly, describe vacuum
zones and regions of strong mass concentration, for example, at the center and rim of
vortices, respectively. Another challenge is the lack of physical diffusion. In general, any
type of diffusion contributes to the stability of the numerical schemes that are used for
the discretisation of convective fluxes.

The numerical methods must also ensure that the mass transfer from the droplet to
the gas phase, which is the key quantity in spray combustion, is not artificially changed
by numerical errors. This requires the use of conservative schemes in surface space which
prevent the unphysical creation or disappearance of droplets and droplet mass. In this

! The interaction between the different sections via the drag and heat transfer terms is only present
when the balance laws for the gas and the droplets are solved simultaneously and a two-way coupling is
considered. In this case, a weak interaction between the sections is possible.

87
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work, the above requirements are met by using a fractional-step method in time. This
approach allows the independent treatment of convection, droplet forces, heat transfer and
evaporation with numerical methods that are exclusively designed for the approximation
of the respective physical effects.

In Section 5.2 the Strang splitting is outlined. It is an accuracy-preserving variant
of the fractional-step method. It is applied to the reduced kinetic spray equation (5.1)
to obtain the sub problems, dealing exclusively with convection, droplet forces, heat
transfer and evaporation. The application of the moment transforms and the moment
closure, introduced in Chapter 4, to these sub problems leads to three systems of moment
equations. These systems could also be derived from the moment transport equations
in (4.76) but the approach followed here allows the derivation of numerical methods for
convection and evaporation that are based on the finite volume schemes.

The subsystem of convection, which is a pressureless gas dynamic system [18], is
treated in Section 5.3 by using the first- and second-order kinetic approximations of
Bouchut et al. [19]. This explicit approach can capture the strong concentration of
droplets, called delta-shocks, and it does not require a gradient-diffusion model to close
the spatial fluxes of moments. It is in agreement with the approximate NDF, i.e. the
parameters in W (4.11) are used to compute the fluxes.

In Section 5.4 the influence of the forces on the droplets is considered. For Stokes
drag and gravity, the equation system that advances the moments in time can be solved
semi-analytically. Therefore, only a small numerical error is introduced in the fractional
step for the droplet forces. The sub problem of heat transfer is regarded as a first-order
nonlinear ODE. It is solved numerically by taking the moments MZ’O’O, Mi/ 200 and Mi/ 210
from a previous fractional step. In this work, the sub problem of droplet forces and heat
transfer are treated in the same fractional step.

The change of moments due to evaporation is treated separately with a conservative,
finite volume-like scheme in surface space (see Section 5.5). The fluxes over the interfaces
of the sections, i.e. the interaction terms between the different sets of balance laws and
the mass transfer to the gas are obtained naturally from the finite volume discretisation.
Hence, no additional assumptions need to be imposed on the system of equations due to
the coupling between sections and the interaction between droplets and gas.

In Section 5.6, the splashing model which was introduced in Chapter 2 is adapted to
QBSM. Although it is only a crude model used for the validation of QBSM, it can easily
be extended to more complex situations, e.g. sudden evaporation on the wall, creation of
a liquid film with varying thickness, roughness effects of the wall, etc.

Chapter 5 is concluded by a section on the overall algorithm of the QBSM. This
algorithm is applied to various test-cases in Chapter 6.

5.2 Fractional Step Method

The system of equations (4.76) is a spray model which exhibits various time scales and
requires different numerical methods for each physical effect. The application of a frac-
tional step method (cf. [102]), also called the operator splitting method (cf. [37] and
references therein), allows the partitioning of the equation system (4.76) into decoupled
systems for convection, droplet forces, heat transfer and evaporation which can be solved
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with numerical methods that are optimised for the respective physical effect. In each
fractional step a different aspect of the general problem is treated. In the convection step,
for example, the information on the flow is exchanged between the cells in real space and
the evaporation step leads to a coupling between the sections. The combination of these
specialised methods is organised such that it delivers the solution to the global problem
without introducing additional errors.

In addition, the fractional step method allows the solution of two- and three- di-
mensional convection problems by splitting it into two or three one-dimensional convec-
tion problems and using a one-dimensional convection scheme for each piece (cf. [101]).
Fractional-step methods also facilitate the decoupling of small from larger time scales,
which is necessary to capture, for example, the drag force on droplets having small Stokes
numbers. The splitting error that is introduced by this procedure will also be discussed.
In the derivation pursued here, Strang’s splitting method is first applied to the kinetic
spray equation (5.1) (see Section 5.2.1) then, in Section 5.2.2, the moment transforms
and closure relation from Chapter 4 are used to obtain the sub problems for the chosen
moments. Performing a Strang splitting directly on the equation system (4.76), (4.83)
yields the same sub problems but the derivation followed here allows the deduction of
kinetic-based, finite volume schemes for convection and evaporation.

5.2.1 Strang Splitting of the Kinetic Spray Equation

With the assumptions imposed on the spray model in Section 4.5, the kinetic spray equa-
tion (4.1) reduces to

0 U,-v 1 0 0 -
a(f)+vx-(vf)+vv-{<8t<1)8 +ﬁeg) f}—Eva (f)—f-@(Hef)—O, )

with t>t,, x€LCRY veRY 0<s<l1, 6eR,,

where £ denotes the computational domain in real space. The general initial and boundary
conditions for this problem are expressed as

f(x,tn;v,s,0) = fu(x;v,s,0) in £xRYx(0,1] xRy, (5.2)

f(x,t;v,s,0) = fp(x,t;v,s,0) in 0L X [tn,t] x R* x (0,1] x Ry, (5.3)

aﬂ&g;”ﬁ) =0 in £ [te,{] x R? x R, (5.4)
s=0

where 0L is the boundary of the computational domain £. The fractional step method is
applied to the reduced kinetic spray equation in (5.1) by splitting the equation into three
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sub problems that can be treated independently. These problems are

convection: %(f) + V- (vf) =0, in £ X [t,,1], (5.5)
f(x,t) = fne(x) in L, (5.6)
f(x,t) = fe(x,1) in 0L X [t,, 1], (5.7)

droplet forces, Q(f) LV, { (Ug —v. ieg) f} + 9 (He(v,s,0)f) =0

heat transfer: ot St(1)s  Fr 00
in [t,,t] x R x Ry, (5.8)
f(tn;v,0) = fur(v,0) in RY x Ry, (5.9)

: 0 0 .
evaporation: —(f) = Ev(v,0)— (f)=0 in [t,,t] x [0,1], (5.10)
ot Os
f(tn; $) = fre(s) in [0, 1], (5.11)
o tv.s6) in [t,,1]. (5.12)
Os 0

In the convection sub problem the velocity, surface and temperature variables are fixed.
In the evaporation step the position, velocity and temperature are not varying and, for
the sub problem in which droplet forces and heat transfer are acting, the position and
surface variables are unchanged.

The idea of the fractional step method is to alternate the solution of the problems
(5.5)-(5.12) in such a way that at least the accuracy of the numerical scheme with the
lowest order is preserved. Indeed, the Strang splitting in time [165]|, which is applied
in this work, guarantees this property. It simply requires that in one fractional step
only those physical effects are considered that have similar time scales [37]|. Satisfying
this requirement, the second-order accuracy of the overall method is achieved by using
second-order schemes in all variables for each sub problem.

The procedure of Strang demands the following solution sequence for each time step
At =thi1 — Ly

(i)  At/2 convection,

(i)  At/2 droplet forces and heat transfer,
(iii) At evaporation,

(iv) At/2 droplet forces and heat transfer,
(v)  At/2 convection.

For each of the above steps the solution of the previous one is used as the ‘initial condition’
but for the first fractional step the solution of the previous time-step or the initial condition
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of the overall problem is taken into account. Note that the sequence of fractional steps may
be changed, but Descombes and Massot [37] recommend putting the sub problem with
the smallest time scale at the beginning and end of the Strang procedure. It may seem
that using a Strang splitting advances the solution by 3At. However, in each fractional
step only parts of the kinetic spray equation (5.1) are considered and each sub problem
is advanced by At only.

5.2.2 Strang Splitting of the Moment Transport Equations

The system of moment transport equations defined in (4.76) and (4.83) is now split into
three subsystems which are solved in the Strang sequence (see Section 5.2.1). To this end,
the moment transforms and moment closure, as introduced in Chapter 4, are applied to
each sub problem in (5.5)-(5.12) independently.

For each section Iy, (k =1,..., N,), the convection problem defined in (5.5)-(5.7) is
transformed into

0 0 0, 3/2,00 0 3/2,0,1

o (M) 4+ o= (M) =0, o, AL 4+ o= P =0,

a 3/2,1,0 a 3/2,1,1 a 3/2,0,1 a 3/2,0,2

E(M,J ) + %(Mk{i )=0, E(Mk{l )+ 5 M) =0, (5.13)
a 3/2,0,2 a 3/2,0,3 a 3/2,0,3 a 3/2,0,4

with appropriate initial and boundary condition (see Chapter 6). This system of equations
is considered as closed because the moment Mi{ﬁn’oﬁ in (5.13)¢ can be written in terms
of the parameters W} (4.11) using relation (4.83);. In Section 5.3 this system will again
be untangled to obtain a first- and second-order convection scheme that uses the set of
parameters W for the spatial fluxes in each equation of (5.13).

The sub problem (5.8), (5.9) for the droplet forces and heat transfer leads to the
moment equations

0 0 1 3/2,00

5 M%) =0, 5 M) =0,

d .\ 3/2.10 0 1 32,01 1 3/2,0,0

E(Mk/ ) =Rk E(Mk/z ) = ﬁeg ) ele/ + D/i;l )

(5.14)

a 3/2,0,2 1 3/2,0,1 3/2,0,1
E(Mk/lm ) = "‘ﬁ <eg : ele;/m teg- eka;/z ) + D/%;lm ;

a 3/2,0,3 1 3/2,0,2 3/2,0,2 3/2,0,2
&(Mk,/lmn ) = +ﬁ <eg ’ ele;/mn + Cg - eTan;/ln + Cg - e"Mk;/lm ) + Dz;lmn ’

with the heat transfer and drag terms defined in (4.83); and (4.83)456. Note that in
subsystem (5.14), the number and mass of droplets, i.e. Mg,o,o and MZ/Q’O’O, remain con-
stant. Consequently, the exponential parameter b, computed from the ratio Mi/Q’O’O/MZ’O’O
remains unchanged as well. Note also that during this sub problem neither a coupling
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between the sections nor an interaction between the cells in real space is necessary. In-
stead it is regarded as coupling between the velocity abscissas. It is further observed that
equation (5.14)3 can be solved independently from the other equations in (5.14), allowing
a numerical procedure which is optimised for the heat transfer (see Section 5.4).

Applying the moment transform and moment closure to the evaporation problem
(5.10)-(5.12) yields the system

;(MOOO) EOOO(k k)—i—EOOO(]C k'—'— )
%(Mi/ZO,O) _ (EB/Q’O’O(I{?, k’) + 53/2,0,0(1{:)) + E3/2’0’0(k3, k + 1) ’
;(M3/210) (E3/2’1’0(k',]€) +53/2’1’0(k)) + E3/2’1’0(k3,k3 + 1) ’
(5.15)
8( 2/201 < 3/201/€k +83/201 ) 3/201kk—|—1)
ot ‘
0 3/202 [3/202 3/202 3/202
SO = = (B> (k) + & )+ (b k+1),
a 3/2,0,3 3/2,0,3 3/2,0,3 3/2,0,3
at( k/lmn < lén k k glrr/m lr{m k k+ 1) ’

which also follows from (4.76) by setting the terms of convection, droplet forces and heat
transfer to zero. The terms E,oX™(k r) and 55 (k) are defined in (4.83)y5. The
above equations couple the sets of moment transport equations of neighbouring sections
through the flux term ES5M (k. r). £52M (k) can be considered as an interaction term
with the gas phase. The system of equations in (5.15) is closed and can, in principle, be
solved but it is not guaranteed that the number and mass of droplets will be conserved.
In Section 5.5 the analytical solution of (5.10)-(5.12) will be used to derive a conservative

finite volume-like scheme in surface space.

This section is concluded by addressing the advantages of applying the Strang split-
ting to the moment transport equations in (4.76) and (4.83). First of all, splitting into
subsystems allows the application of standardised numerical schemes and even analytical
techniques (see Section 5.4) without reducing the order of accuracy. Secondly, in the case
when time scales of the different spray effects are known in advance, the efficiency and
accuracy of the global scheme can be increased by performing a splitting which subsumes
those physical effects that have comparable time scales [37]. Another issue, that is spe-
cial to QBSM, is the possibility of computing the parameters in W} (4.11) after every
fractional step. The multiple alignment between moments in VZ (4.17) and parameters in
Wi within one time step has a stabilising effect on the overall scheme.
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5.3 Discretisation of the Convective Part

In this section the starting point is the two-dimensional system (5.13) which is written as

ow®  oHP  oHP
+ +

= 1
ot Ox oy 0, (5.16)
with

w® - (Mooo M3/200 NB/2L0 V3201 ) [B/20.1 3/202 )\ 13/2.0.2 ) 3/2,02

k iy 3 ) ksy » ks 0 T kyyy 0 T Tky )

NP/203 \[3/2.0.3 ) [3/2.03 M3/2’°’3>T . (5.17)

kyxxzx 0 kyyyy kixyy 0 T kixxy

The flux terms in (5.16) are defined as

Sk+1
/ / / v k(vy, vy, 5,0) exp(—bgs)d(0 — O) anJV—UO‘]deQdV
R2 JR4 a=1
4
k a «a o
= /]R I:(s/)zK(k)(Um'Uy) an5("1x — (UR)z)0(vy — (UR)y)dveduy (5.18)
a=1
Sk+1
Hék) = / / /’Uy Uy, Uy, S, 0) exp(—bgs)0(0 — Oy) Zn‘gév—Ua]dsdedv
R? JR a=1
= /]R2 1(31;2 (v, v,) Zn‘gé U%).)d(v, — (UL)y)dvdu, | (5.19)

with
. 3/2 o320 3/2 0 3/2 . 2.3/2 . 2.3/2 3/2
k(vy, vy, s,0) := (1,5/,03/,%5/,%3/,% s/,vy s/,vxvys/,
T
3.3/2 . 3.3/2 2.3/2 2.3/2
vs/ ys/,vyvxs/,vxvys/) (5.20)
and

1K) (Vg, vy) = = 1%

T
k) 2 2 3 ,..3 2 2
3/ 3/2< /13/2,1,@k,vx,vy,vx L Vy”, VgUy, U, Uy, Uy U™, Uy, . (5.21)

The integrals in (5.21) are defined as

1) — Kk
K= s exp(—bgs)ds . (5.22)
Sk



94 CHAPTER 5. NUMERICAL MODEL

The numerical solution of equation system (5.16) is not obvious because after defining

the quantities my, := Miﬂ’o’o and myuF 1= Mi{f’o’l, it follows from the second, fourth and
fifth equation of (5.16), i.e.

0 0 &

— ) =0

5 Tk) + o (myv;7) =0,

5 5 o (5.23)

—k koky
&(mkvi)+ a—xj(mkvi Uj) —58—% ) e — 0,

that the system of moment equations in (5.16) is related to a ‘pressureless gas dynamic
system’ (cf. [18, 19, 27]). This type of system is considered as weakly hyperbolic because
with £ = 0 equations (5.23) cannot be considered as (strongly) hyperbolic. Pressureless
gas dynamic systems are known for the appearance of strong mass concentrations or vac-
uum states.? Nevertheless, these type of systems are extensively studied and established
numerical schemes do exist [19]. In this work such a scheme is extended to equation
system (5.16).

Before doing so, the Strang splitting will be applied to the convection as well. To this
end, the two-dimensional convection problem (5.16) will be split into the one-dimensional
convection parts (dimensional splitting [102]):

oW ®  oH k)
t. . _d. t. : — 0 5.24
convection in x-direction o + o7 , ( )
ow®  oH k)
tion in y-direction: Y —=0. 5.25
convection in y-direction BT + oy ( )

With these fractional steps the new Strang sequence reads

(i)

(ii)
(iii)
(iv)

At/2 convection in z-direction,
At /2 convection in y-direction,
At/2 droplet forces and heat transfer,

At evaporation, etc.

Note that the dimensional splitting is not the only possible way to treat the convection
system (5.16). Dufour and Villedieu [44] developed a second-order scheme for two- and
three-dimensional convection without using a splitting method or imposing any restriction
on the type of grid.

5.3.1 Kinetic Schemes of Bouchut, Jin and Li

Numerical schemes for the one-dimensional convection systems (5.24) or (5.25) can either
be derived with the method of Roe [139] (see also [43]) or the kinetic approximation of

2If (5.23); is multiplied by ¥ and the resulting equation is subtracted from the one-dimensional version
of (5.23)s, the well-known Burgers equation is obtained. This equation has no solution after finite time
if the initial value v% () is decreasing.
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Bouchut [18]. In this work, the approach of Bouchut [18] is followed for the first- and
second-order finite volume discretisation of convection problems (5.24) and (5.25).

The kinetic sub problem of convection in z-direction defined in (5.5) and (5.6) is
written as®

0 0 .
a(f) _f-%%(f) =0 in [t,,t] X L, , (5.26)
Frea() = a(,t0) > n®(,,)0(ve — Ug (2, t,))  in L, (5.27)

where the initial condition is equal to the approximate NDF introduced in (4.8). Assuming
that the time-interval [t,,t] is small enough and the position of interest is sufficiently far
away from the boundary, the boundary condition in (5.7) does not have an effect on the
solution of the linear hyperbolic problem (5.26)-(5.27), which is

f(@,t) = frea(z — (t = ta)vs) - (5.28)

If the boundary conditions at * = x4, and z = z,,,, which may be of Dirichlet-,
Neumann- or Robin-type are considered, the solution (5.28) has to be modified. However,
for simplicity’s sake, no boundary conditions are considered.

Thanks to the relation between W* and V? outlined in Section 4.4, (5.28) is an
exact solution of (5.26)-(5.27) but in general f will not be of the form (4.8) when ¢ >
t,. However, this exact solution allows the derivation of an entropy inequality, which
ensures that the number and mass of droplets is always positive (realisability). It also
guarantees the maximum principle on the averaged velocity. The proof is not given here;
the interested reader is referred to Bouchut [18].

To obtain the final convection scheme, the equidistant discretisation z; € L,, (i =
1,...,N,) is introduced with x; = Zi4, TN, = Tugs and Ax; = z; — 2;41. Integration
of the moment equations (5.13) in the cell |z;_1 /9, Z;y1/2[ and the time-interval |¢,, ;1]
yields

Tiy1/2 Tiy1/2
Alxi / Ml[f,;ﬁ’M(x,th)dx - Alxi / Mff,;ﬁ’M(x,tn)dx
Ti—1/2 Ti—1/2
At gom K,L,M
+ Ar. <¢lr,;n’ (Tiv1/2, tns1) = Oy’ ($i—1/2,tn+1)> =0, (5.29)

with the flux term

K,L,M
¢lmn (l’, t) =

Sk+1

1
(t ¢ ) / / / / SKQLUmUlUmUnfncx(l' - (t - tn)Ux)dS df dvm dvy dt . (530)
n ]tn,t[ R Ry b

3In the remainder of this section the index k for section I}, is suppressed. The convection schemes are
the same for all sections.
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In this flux term the exact solution (5.28) was considered. It is advantageous to partition
the velocity integral in (5.30) into two parts that consider the positive and the negative
fluxes over an interface separately, i.e.

¢{:ﬁﬁ’M(xa tni1) =

1 tn1 Skl
il / / / / / ™0 0,000 frea (T — (t — t,)v,)ds dO dv,, dv, dt
At J Jedw Je,

tnt1 Sk+1
+ / / / / / SKeLvmvlvmvnfncx(x - (t — tn)Um)dS do dvm dvy dt . (531)
; RJR- JR4

Let

Tiy1/2

1
MR = 5 [ MY (et (5:32

Ti-1/2

be the space-averaged moment in one cell. Then (5.29) can be written in the conservative,
finite volume form

K,L,M n+1 K,L,M n
Mlmn ‘z - Mlmn ‘z

_|_

At
N < b (@i125tag1) — ffriﬁ’M(l’z‘fl/z»tn+1)) =0. (5.33)

5.3.2 First-Order Finite Volume Scheme

K,L,M

To get a first-order upwind scheme, it is assumed that the chosen moments M ;" are
piecewise constant and the CFL condition
At|v,| < Ax;, forall i (5.34)

is satisfied. With these assumptions, the substitution of the initial condition (5.27) and a
change in variables, the fluxes in z-direction for the chosen moments in cell (7, j) can be
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written in the vectorial form (see notation in (5.17) and (5.21))

4

1 (0% (6%
WS — W = “ A [+ /}R (Ve + [0 )32K (vg, ) Y n*8[v —U dv,du, |,

a=1

4
+/ %(vm — |va )32 K (vs, vy) Zno‘é[v — Uo‘]dvxdvy}iﬂj
]R2

a=1
4
- /1;2 %('Ux + ‘Uy|)13/2K(/Uxa Uy) Znaé[v - Ua]dvzdvy’iflj
a=1
4
— /]R2 %(vx — |UJ:|)13/2K(UI’ Uy) Znaé[v - Ua]dvmdvy’ij] .
a=1

(5.35)

The first two integrals in (5.35) represent the flux over the eastern interface (EI) of a cell
in two-dimensional real space. Evaluating these integrals yields

4
Gpi|,, =+ nmax(Ug,0)ly K (U, Uy

i

a=1
A (5.36)
+ Z n“min(Uy, 0)I3,K(U;, Uy) }iJrlj
a=1
= GETIL’U + G‘;/uf i+1j °

For the flux through the western interface (W 1) of the same cell the following expression
is obtained from integral three and four of equation (5.35)

4
G, =+ Y n"min(Uy,0)3,K(US, Uay)|

a=1
4 (5.37)
+ ) nmax(UY,0)Is ,K(US, Ug) i,
a=1
- G;Vuf}ij - GJIE?}Z‘—U '
From these expressions we obtain the first-order scheme
wir - w4 2 [q G =0 5.38
i = |z’j+A—xi El’ij— WI’z'j =0, (5.38)
which can also be written as
Wi — Wi — 2L (g Gy Gy GLY 5.39
ij ‘ij - A—l'z EI’Z']' + WI’jJrlj - WI’Z']' — MEI i—1j| ( : )
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An expression similar to (5.38) or (5.39) can be found for convection in y-direction.
It reads

At
n+1 n o __
W|ij+ - W|ij - _A—yj [JNI}ij B JSI}”}
" (5.40)
T Ay [Jﬁﬂw * Jg})}ijJrl - Jg})’ij — I ij*l} ’
with
4
JNI}Z']' S ZnamaX(U;, 0)L5,,K(Uy, U;)’ij
a=1
) (5.41)
+ Z n“min(U,", 0)I3,K(UZ, U) }ijJrl
a=1
= JEQHZ] + Jg}) ij+1
and
4
JSI’Z-]- S Z n“min(U,", 0)13, K (U, Uay)’z'j
a=1
(5.42)

4
+>  nmax(Ug, 0);.K(US, U]
a=1

ij—1
T u +u
- ']WI’Z']' + ']EI i—15 "

It is concluded that the convection of the chosen moments can be described with the
first-order finite volume schemes (5.39) in x-direction and (5.40) in y-direction. Notice
that the flux terms can be evaluated with the parameters W* from a previous time step,
previous fractional step or the initial condition of the global problem. This resolves issue
(iv) in Section 5.1.

5.3.3 Second-Order Finite Volume Scheme

The starting point of the derivation for the second-order finite volume scheme is the
representation for the fluxes (5.30) of the chosen moments. In vectorial form these fluxes
read

tny1 Sk+1

1
¢($i+1/2,tn+1)=—/// /vxk(vx,vy,s,(‘))
At ; R2 IR+

n Sk

X exp(—=bp(Tiz1/2 — (t = 15)V2)5)0(0 — Op(wip1/2 — (T — 1n)vs))

4
X Z N (Tip172 — (t = 1n)vg)0[v — UM (24412 — (t — tn)vg)|dsdOdvyduydt . (5.43)
a=1
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It is transformed into

tn+1

¢(xl+1/2a n+1 At Z / /IR? v, K Ua:avy m (1714-1/2 - (t —1 )Ux)
tn

x O[v — UM (zi41/2 — (t = tn)vy)|dvgdvydt  (5.44)
by evaluating the surface and temperature integrals and using the definition

m®(x) := I3jo(x)n"(z) . (5.45)

The change of variables © = x;11/2 — (t — t,)v, yields

z+1/2
O(Tiv1/2,tni1) Z/ / K(vg, v,)m®(z)é[v — U%(x)|dzdv,dv,
Tiy1/2— vz AL :
= @ (Tiv1/2: tns1) + & (Tiy1y2,tng)
with
& (Tiy1/2,th1) =
Tiy1/2— vz AL
Z/ / / K(vg, vy)m®(z)é[v — U%(z)|dzdv,dv, (5.47)
z+1/2
and
O (Tiv1/2, tay1) =
Tit+1/2
A Z/ / / K(vg, vy)m®(z)é[v — U%(x)|dzdv,dv, . (5.48)
e Tiy1/2— vz At
The latter two integrals can be written as
1 Tit3/2
- 1 03 (0% 03
¢ (Ti12 b)) = — 5 > / K(U2(2), U Ym™(2)Losa,,, p-ve@ards . (5.49)
- Tit+1/2
4 Tit1/2
+ _ 1 KU~ fo! a d
d) (:L‘i—i—l/Za tn-‘,—l) = E Z (Ux (ZL‘)’ Uy )m (:L‘)ﬂa:>wi+1/2—U§‘(x)At &£ . (550)
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If (Iy/I5/2)(x) in K, m®(x) and Ug(x) are reconstructed by constant functions the above
first-order scheme is recovered. For a second-order approximation these terms are assumed
to be linear in . They read

() :=(Io/I3/2) () = fii + Dpi(x — wiy1/2), (5.51)
m<(x) = mg 4+ Dm(x — i11/2), (5.52)
Uz () = Uzli + DUZ i@ — @izay2)- (5.53)

The substitution of these relations into the fluxes (5.49) and (5.50) yields

4

- 1 “+1/2 « « «
¢ (i1 b)) = =52 D / K(U; (), Uy ym® (x)dz, (5.54)
a=1Y%ir1/2
7,+1/2
d) (xz+1/27 n+1 At Z/ Ua Ua) a( )d , (555)
= x1+1/2
with the definitions
min(U* . 0)
aR . _ i+1/27
Tiv1y2 = Tiy1/2 — At NS (5.56)
Uz+1/2 = U;?‘iﬂ + (i1 — $i+3/2)DUf\i+1 ) (5.57)
max (U5 ., 0)
alL . _ +1/2’
U+1/2 = U2)i + (2 — @i41/2) DU 141 - (5.59)

With these definitions, the fluxes ¢~ (i11/2,tn41) and ot (#i41/2,tn41) are obtained by
evaluating integrals (5.54) and (5.55). The mean quantities &, U%|; and the gradients
Dypiy Dm and DUZ|; remain to be defined. To satisfy the conservation of momentum
and number of droplets the mean quantities are chosen according to

4
_ Dy Dms
a=1 ?
- DmgDUS);
Uza|l :Uza|l — MA.%’E (561)
12mg

To satisfy the maximum principle on the velocities the slope-limiter
DUZ|; = 5 (sen(Uy |iv1 — Ugli) +sen(Ug|; — Uy li1))

) abs(USiy1 — UZ1,) abs(U%|; — U%];_1) 1
X min { (1 — Az; Dm2 /(6m;))Az;’ (1 — Az;Dm¢/(6m;))Axz;” At (5.62)
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is used. The same structure is used for the slope-limiter of Dy;. For the gradient Dm{* the
minmod-limiter is used which satisfies the property of total variation diminishing solutions
(cf. [102]).

Bouchut [18] showed that the type of scheme defined in (5.33) and (5.54)-(5.62) is of
second-order accuracy in space and time if the CFL condition

At max [Ug| < min(Az;, Ay;),
h v (5.63)
i=1,....N;, j=1,...,N,, k=1,...,N,

is satisfied. The second-order accuracy in time stems from the very special property of
the pressureless gas dynamics system [18].

5.4 Numerics for Droplet Forces and Heat Transfer

The objective of this section is the solution of moment equations (see (5.14))

0 0 .\ 13/2,00

5, M) =0, M) =0,

a 3/2,1,0 a 3/2,0,1 1 3/2,0,0

E(Mk/ )=TRs, &(Mk/z )= [ ele/ + Dy

) 1 (5.64)
3/2,0,2 3/2,0,1 3/2,0,1

SO = 4 (e e +eg - €M) + DYy

0 3/2,0,3 1 3/2,0,2 3/2,0,2 3/2,0,2
E(Mk{lmn ) = +ﬁ <eg ’ ele;/mn + eg : eka;/ln + eg ’ ean;/lm > + D/?c’;lmn ’

with the definitions of the heat transfer and drag force terms (see also (4.83); and
(4.83)456)

Ski1 .
Ry = / 53/2exp(—bks)2n‘,jHe(U‘,j,s, O)ds ,

Sk a=1

Sk41

51/2 4 . N
Dhi= | G esp(hes)ds Yong U — (U]

Sk

1/2
D = / St(l )eXp( bys) dsznk (UR); Wi — (Uil (Budjm + imbji) (5.65)
Sk41

, 51/
Dk;lmn: / St(l) eXp(_bks)d‘s

Sk

X Z ng(Ug)s(Ug)t [Ugr - (Uz)r] (5r155n5tm + 5rm5515tn + 6rn58m5tl) .

a=1
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Notice that Mg,o,o and Mz/ 209 remain constant in this fractional step. Therefore, the
exponential parameters b, (k = 1,...,N;) are not directly influenced by the droplet
forces or heat transfer. Notice also that equation (5.64)3 can be computed independently
of the other equations in (5.64), i.e. the heat transfer and the droplet forces are uncoupled.
Therefore, in the following two sections the two physical phenomena are treated separately
with different numerical methods.

5.4.1 Droplet Forces

The drag force model of Stokes allows a semi-analytical solution of equations (5.64)45 6,
(5.65)2,34. Thanks to the structure of the approximate NDF the equations (5.65)q34 can
be transformed into*

Sk+1

51/2 _ _
Dy, = / SiD) exp(—bgs)ds (MU, — M)
Sk
) Sk+1 81/2 - .
Dk;lm = / St(l) exp(—bks)ds (Mk;jUgi - Mk;z’j) (5il5jm + 5im5jl) s
Sk
Sk41 (172 ) )
Dl?;;lmn = St(l) eXp(_ka)dS (Mz;stUgr - Mz;str) (5rl65n5tm + 6rm65l6tn + 6rn65m6tl) ’
Sk
(5.66)
where the modified moments, My, . are defined as (see also (4.33))
_ MY
M%mn = Sk+1 3/2 k,lmn . (5-67)
S 832 exp(—by.s)ds
The time derivatives on the left-hand sides of (5.64) can be transformed into
0 M
&(M%mn) = /Sk s%/% exp(—bys)ds (’97’5 (5.68)

because the exponential parameter b, remains constant in this fractional step. With these
modifications, the equations (5.64),5¢ and (5.66) turn into

0 - 1 _ _

&(M}C,l) = ﬁeg ’ elMg + Dli;l )

a \ [2 1 \ 11 \ 1 2 5 69
&(Mk;lm) ~ I (eg e My, +eg- eka;l) + Dicim (5.69)
0 <3

E(Mk;lmn) = ﬁ (eg ’ ele;mn + €g - eml\_/[z;ln + €g - ean;lm) + D/?c’;lmn )

. . 3/2,0,M . .
4For this subsection the moment Mk_/lmn is written as M,]ylmn.
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with
_ 1 _ _
Dl};;l - g—% (Mngl - Mllc;l) 5
_ 1 _
Dl?;;lm = g—ﬁc (Mll:;jUgi k; Zj) (5115]”1 + 5”715]1) ’ (570)
_ 1 _ _
Dl:z;lmn = S_—tk (Mz;stUgr - Mz;str) (5rl5sn5tm + 5rm5sl5tn + 5rn5sm5tl> )
where .
1 1 fs:“ 512 exp(—bys)ds (5.71)

Sty . St(1) fss:“ $3/2 exp(—bys)ds

is denoted as the modified Stokes number of section I. Equations (5.69) supplemented
by (5.70) and (5.71) constitute a system of equations for the modified moments. It can be
solved exactly using cumbersome analytical solution techniques. The minor assumptions,
that will be enforced in the sequel, facilitates the solution considerably.

Equation (5.69); can be solved analytically because MY is not changing in this frac-
tional step. The solution in the time-interval [t,,t] reads

_ _ —t
NI (t) = MLy (t) exp (—

n _ St t—t,
_ > + My (Ug + e e) [1 — exp ( St )] . (5.72)

The analytical solution of equation (5.69)s 3 is not easily accessible because the nonlinear
functions My, (t) and M7, (¢) arise. For these equations a numerical approach could be
followed that assumes the right-hand sides of (5.69)s3 to be evaluated at time ¢,.

However, in this work, it is preferred to solve for the velocities (UY); := Ug,; directly
using only the first equation in (5.69). To this end, the moments Mj,, and M}, are written
in terms of the parameters W4, i.e.

t—t,
an WUra(t) an Ui (t )exp(— S_t>

St t—t,
+an (Ug + €4 - elF)[l—eXp( = )] (5.73)

By assuming the weights nf to be constant, equation (5.73) can be split into d x 3 (d = 2)
equations for the velocity abscissas, i.e.
t—t,

St t—t,
Upy(t) = Uiy (tn) exp (— S ) + (U + € - elﬁ) ll — exp ( S >] : (5.74)

The assumption of constant weights in the fractional step of droplet forces is weak. This
follows from study of the exact solution of equation system (5.69) (not shown here).?

5An alternative to the semi-analytical approach outlined above is the numerical treatment of all equa-
tions in (5.69). In this approach the right-hand sides of (5.69) and (5.70) could be evaluated at a previous
fractional step and the resulting integration could be performed by an ODE-solver. Unfortunately, equa-
tion system (5.69) can be very stiff for small Stokes numbers, which introduces difficulties to the accurate
computation of the changes due to drag and gravity forces [97]. However, the numerical approach allows
the use of more complex drag models (see Section 2.4.1).
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5.4.2 Heat Transfer

The solution of equation (5.64)3 is not accessible to an analytical or semi-analytical ap-
proach because He in (5.65); is, in general, a non-linear function of ©,. Therefore, a
numerical method has to be applied that assumes the right-hand side of (5.64)3 to be
known from a previous fractional step. The emerging ODE is solved using the ODE-
solver DLSODA of the mathematically library ODEPACK |[78]. DLSODA switches automat-
ically between non-stiff and stiff solvers. The twelfth-order implicit Adams method was
used for the non-stiff case and the fifth-order backward differentiation formulas (BDF)
for the stiff case. The high order of accuracy is the standard for these routines. It can
easily be reduced to accelerate the calculations. To prevent large numerical errors from
the time-integration, the high-order methods are used.

5.5 Discretisation of the Evaporation Part

The derivation of the numerical scheme for the evaporation commences with the analytical
solution of the linear hyperbolic PDE (see (5.10)-(5.12))

0 0 .

() = Ev(v.0)5- (/) =0 in [t,, 1] x [0,1], (5.75)
f(tn; 8) = fue(s) in [0,1], (5.76)
0f(x, gsv’ 5,0) =0 in [t,,t]. (5.77)

The variables v and 6 are fixed in the fractional step of evaporation and therefore the
solution reads f(t;s) = fre(s+Ev(v,8)(t—t,)) for all (¢,;0) < (¢;s). This solution is used
to derive a finite volume-like scheme for the moment equations in (5.15). The derivation
of the scheme is similar to the kinetic approach pursued in Section 5.3.

The starting point of these derivations is the substitution of the above solution of
equation (5.75)- (5.77) into the definition of a general moment at time ¢,.; = ¢, + At (see

(4.6))

Sk+1

Mﬁi#%(x, tpi1) = / / / R0 VU fre(s + Ev(v, 0)At; x, v, 0)dsdvdf . (5.78)
R JR?
Sk

After the change of variables u = s + Ev(v,0)At and a rearrangement, the integral in
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(5.78) is transformed into®

Sk+1+EVAt
MESEM (¢ t0) :/ / / w0 000 fre(u; X, v, 0)du dv df
’ Ry JR2
spt+EVAL
()
Sk+1+EVAt
+ / / / ((u — EvAD)F — uK) OF 00 fre(u; X, v, 0)dudv dd . (5.79)
R JRZ sp+EvVAL

(IT)

Integral (I) can be written as

Sk+1+EVAt
(1) = M@fn’fy(x, tn) +/ /2 / u™ 0 000 fre(u; %, v, 0)du dv df
R+ JR
i Sk+1
spt+EVAL

—/ / / u™ 0" 000 fre(u; %, v, 0)du dv df, (5.80)
R, JR2

where the integrals in (5.80) are regarded as flux terms through the interfaces of section
I.. Consequently, integral (II) represents the sink or source term for evaporation. To
facilitate the evaluation of integral (IT), it is decomposed into

Sk+1

(I) = / / / ((u — EVAt)K — uK) QLvivjkane(u; x, v, 0)dudv df
R, JR2
sp+EvVAL
Sp+1+EVAL
+ / / / ((u — EvAt)K — uK) QLvivjkane(u; x,v,0)dudvdd . (5.81)
R, JR2
Sk+1

As Ev is dependent on v and 6, the desired interchange of the integrals in (5.80) and
(5.81) is not feasible. To circumvented this difficulty the above integrals are written as

Sk
(I) :M@{;{y(x, tn) + / uK/ / GLvivjkane(u;x,v,9)]1u§sk+1+EVAtdvd9du
2 R, JRd
Skl
— / uK/ / GLvivjkane(u;x,v,@)]luSSHEVAtdvdeu (5.82)
R, JR4

Sk

5For simplicity the dependencies of Ev are suppressed in the sequel.
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and

Skl

(IT) = / ((u — EvAp)F — uK) GLvivjkane(u; X, V,0)Ly>s, +mvardv df du
J IR R

k2

+ / / /d ((u — EvAp)F — uK) HLvivjkane(u; X, V,0)Ly<s,, +Bvardvdddu . (5.83)

R, JR
Ska1

Next, the initial distribution f,. is set equal to the approximate NDF at time ¢,. This
allows the evaluation of the velocity and temperature integrals in (5.82) and (5.83). The
resulting fluxes from section I, to [ are defined as (cf. (4.79);)

4
Ellr(n’TILl’M(k k_'_ - Z Uk—l—ll( )Uk:a—i—l;m(tn)U/?-l—l;n(tn)

Sk+1+EV(@k+1,Ug+1)At

« / U exp(— byt (b)u)du , (5.84)

Sk+1

where Asy, := spy11 — Sg. The sink terms are specified as (cf. (4.79),)

SkKlfmjzw n _@LGk Ukl Ukm( )Ul?n(tn)

« / ((u— EvADS — o) exp(—by(tn)u)du  (5.85)

Sk-f—EV(@k,Ug)At

and

&2 kKhLm]zw tn) _@LGkJrl Uk+1l( )Ul?Jrl;m(tn)UI?Jrl;n(tn)

Sk+1+EV(®k+1 Uk+1)At
X / ((u — EvAD)X —u) exp(—=bjr1 (tn)u)du . (5.86)

Sk+1

With the above considerations equation (5.79) can be written as

At
M (%, ts1) = Mg (x, t,) — As, [Ef;ﬁ’M(k — L k) = B (kb + 1)]

+ E1EM Gy gof LMy (5.87)

k;lmn ki;lmn
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In the case when K = 0 and M = 0 no sink terms arise, which is very physical because
evaporation does not lead to the reduction of droplets in s €]0, 1]. Only at s = 0 are the
droplets taken from the system. Note that At has to satisfy the restriction

EvAL < (Sk+1 — Sk), (588)

otherwise the integrals in this section are not defined clearly, i.e. certain sections will not
be considered.

Dufour [43] showed that an evaporation scheme, similar to (5.87), is second-order
accurate in surface space.

5.6 Numerics for the Splashing Condition

In this section the splashing condition (2.83) is translated into a relation between the

moments before splashing Mk le M)F and those after splashing Ml(f;lL Mr - The substitution

of relation (2.83) into the definition of M;f;lL M vields

Sk+1

M/(ﬁ;zan) = //]R /132 s 0 v, 1 (x, 15 v, 5, 0)dvdods
+

Sk+1

= sE0F v, T (— Lo ,Q)dvdeds . (5.89)
amayﬁd //]R+ /IR2 Qg Oy ﬁ2

The right-hand side of (5.89) has to be related to the moments and parameters of the
approximate NDF before splashing. To this end, the following substitutions are made
s Uy Uy

a - = 5.90

t=

This change of variables yields

M " = (1= 7)) () (80

5
X // /tKHLuPUQf+(u,U,t,G)dudvdet, (5.91)
J Jry Jr2

where P and @) are the order of moment M,(leL M £or the velocities v, and vy, respectively.

The sum of P and Q must give M. The integral on the right-hand side of (5.91) is known
from the moments and parameters of the incident droplets. Note that the boundaries of
this integral do not necessarily agree with the boundaries of the sections. Therefore, an
explicit evaluation of the integral in (5.91) is required using the parameters of the incident
droplets.

The algorithm for the splashing boundary condition on a wall that is orientated, for
example, towards e, must permit the following properties:
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(K,L,M)+

(i) The moments of the incident droplets, My » must be erased and the moments
of the splashed droplets, Mgi’lf?;M)r, must be created at the wall according relation

(5.91).

(ii) In the case when droplet velocity v on the wall is changed, an accumulation or
thinning of the droplet distribution in real space is present.

To guarantee these properties, a layer of ghost cells is introduced ‘behind’ the wall of
splashing. The boundary condition on the left interface of the first layer of cells in the
computational domain (the actual position of the wall) is a zero-gradient boundary con-
dition for the moments of incident droplets. Hence, only the moments of incident droplets
reach the ghost cells. In these cells the moments of the splashed droplets, Mlﬁ’li;M)r, are
computed using relation (5.91). The moments of incident droplets are erased using the
zero-gradient boundary condition on the left interface of each ghost cell. The accumula-
tion or thinning of droplets is modelled by introducing a new moment field that ‘lives’ in
the ghost cells only. The influx to this field are the moments of splashed droplets with
the convection velocity of the incident droplets. The efflux from the field is calculated
with the new moment field but with convection velocities of the splashed droplets. The
eflux from the intermediate moment field is equal to the flux through the left interface
of the first layer of cells in the computational domain. For the calculation of the fluxes
into and out of the intermediate field, the parameters in W} (4.11) (k = 1,..., Ny) are
computed from the respective moments. The introduction of the intermediate moment
field allows the description of accumulation and thinning of droplets on the wall. The
splashing boundary condition must be applied in every fractional step of convection.

If more complex models are used for the splashing parameters (see Section 2.5), the
above algorithm remains valid but relation (5.91) has to be modified. In the case when
the wall of splashing is facing a direction other than e,, the algorithm needs to be adapted
but relation (5.91) remains unchanged.

5.7 The Global Algorithm

The global algorithm of the QBSM which is used in Chapter 6 is given in this section. It
is coupled to the gas phase only through the gas velocity (one-way coupling). All schemes
in the Strang splitting can be chosen to be of second-order accuracy in all variables, so
it is possible to obtain an overall algorithm that is of second order as well. The sequence
of operations proposed here may not be the only one possible but, as will be observed in
Chapter 6, it gives convincing results compared with Lagrangian calculations. The global
algorithm reads:

BEGIN

1. Initialisation of
physical and numerical constants,

boundary conditions and
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initial NDF.
2. Calculation of
initial moments (V?) and
parameters (W}) for each section I, (k =1,..., N,).
3. Time-loop:
Calculation of the time-step
Strang splitting:
At/2  Convection in z-direction, Part I
At/2  Convection in y-direction, Part I
At/2 Droplet forces and heat transfer, Part I
At Evaporation
At/2 Droplet forces and heat transfer, Part II
At/2 Convection in y-direction, Part IT
At/2  Convection in z-direction, Part 1T
Storage of Data

4. Postprocessing

END

The parameters W (4.11) are computed from the moments in set V? (4.17) for each sec-
tion [, after every fractional step of the Strang splitting (see formulae in Chapter 4). This
algorithm can easily be extended to three dimensions in real space and to collision and
breakup. Note that the fractional steps for convection, droplet forces and heat transfer
can be solved for each section [, independently. Hence, for these physical phenomena
the computation for one section I can be conducted on processors that do not need to
‘communicate’ with the processors of other sections. The fractional step of evaporation
(as well as collision and breakup) couples the sections but can be solved for each cell inde-
pendently. These considerations demonstrate that, besides the domain decomposition in
real space [137], a domain decomposition in surface space is conceivable and the compu-
tational time can be further reduced using adapted parallelisation strategies. In Chapter
6 the above algorithm is verified, validated and applied to various spray configurations.






Chapter 6

Verification, Validation and Application

6.1 Introduction

In this chapter the verification of QBSM is outlined and validation tests are reported. The
method is also applied to a polydisperse spray affected by a Taylor-Green vortex gas flow
[168]. This test case is used to demonstrate the ability of QBSM to describe unstationary
turbulent spray flows. Unfortunately, the coupling between QBSM and a gas solver was
not conducted. Therefore, tests in more complex configurations cannot be presented. The
tests outlined here rely on analytical solutions of gas flows.

In this chapter the QBSM, or parts of it, are compared with semi-analytical solu-
tions, Lagrangian calculations and experimental measurements in various one- and two-
dimensional configurations. In these tests the behaviour of QBSM given different physical
and numerical parameters is studied. To this end, the discretisation in real and surface
space as well as the maximum Stokes number, the evaporation number and the splashing
parameters are varied. For the monodisperse test configurations, the results of QBSM are
also compared with those of the first-order Euler method outlined in Section 3.3.3.

In Section 6.2 the one-dimensional tests of the sectional part of QBSM are outlined
and compared with, first, the semi-analytical solution derived in Appendix A, and second,
with the spray experiment of Wong and Chang [182|. These configurations include the
physical effects of drag force, gravity and evaporation. For the comparison with the
experiment of Wong and Chang [182] the uniform temperature model of Abramzon and
Sirignano 1] was considered. With these verification and validation tests and other results
from the literature [44, 97|, the area of validity for the sectional part of QBSM can be
specified (see Section 6.2.3). The verification of the quadrature-based part of QBSM
[56, 99] is reported in Section 6.3 where it is compared with Lagrangian calculations and
with the first-order Euler method. The two-dimensional verification tests are the crossing
of perpendicular moving spray jets with and without drag force and the instationary
acceleration of a monodisperse spray in a Taylor-Green vortex. Further validation tests of
the method can be found in Fox [56] and Le Lostec et al. [99]. The quadrature-based part
of the QBSM is not tested in a one-dimensional setting because the number of quadrature
parameters in W7 (4.11) and moments in V} (4.17) is the same (k = 1,..., N,). Therefore,

111
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the method is controlling all velocity moments up to the third-order and no additional
errors are introduced by the transfer between moments and quadrature parameters.

To assess the ability of the full QBSM in a one-dimensional setting, it is applied
to three simplified spray problems that change the spray distribution in surface space
through splashing, evaporation and the Stokes drag force (see Section 6.4). All three test
cases are organised in such a way that crossing of two spray distributions is included.
Solutions to the same test cases were also computed using a Lagrange method.! They are
regarded as accurate reference solutions.

In two dimensions the QBSM was applied to validation tests in which first, two
perpendicular moving spray jets are crossing and second, a spray jet is splashed on a wall
(see Section 6.5). For the crossing jets, the Stokes drag force and the d?-evaporation law
were considered. For the splashing test case, the splashing model (2.83) was taken into
account. Again, the results are compared with reference Lagrangian computations. The
two test cases can be extended to more complex models, i.e. the uniform temperature
model for evaporation [1| can be applied and the splashing parameters in (2.83) can be
assumed to be velocity-, size- and temperature-dependent (see Chapter 2).

In Section 6.6 the QBSM is applied to a two-dimensional configuration in which
an evaporating polydisperse spray is influenced through drag force by a Taylor-Green
vortex gas flow [168|. The solution of the QBSM is compared with Lagrangian results.
This Taylor-Green test case can be considered as a first validation in a turbulent setting
because unsteady and size-dependent acceleration droplets and crossing of sprays at local
impingement planes are present. These are crucial effects in unstationary turbulent spray
flows.

The results are presented in terms of the total zeroth-order moment, M%%Y and the
zeroth-order moment in a section, Mg,o,o (k=1,...,Ny). Here, these quantities are called
number density and number density distribution of droplets, respectively. Other moments
could also be presented but for the sake of readability they are only mentioned when it is
necessary.

6.2 Verification and Validation of the Sectional Part

The sectional part of QBSM? (in this section it is simply called sectional method (SM))
relies on the sectional method of Dufour and Villedieu [44] but implementation in the
program code was performed by the author. In a verification step, calculations with
the SM are compared with a semi-analytical solution of a stationary and one-dimensional
spray problem that takes into account evaporation, Stokes drag and gravity (see Appendix
A). The objective is to analyse the global error of the sectional method and to study its
dependence on the number of sections. In a validation step, the method is compared
qualitatively with the experiment of Wong and Chang [182] in order to assess the ability
of the method to deal with the uniform temperature model [1] for evaporation and heat
transfer.

!The program code to the Lagrange method was mainly written by Nechtan Le Lostec and Philippe
Villedieu (ONERA /DMAE Toulouse). It relies on the particle discretisation method explained in Section
3.3.1.

Parts of the results presented here were published in Schneider et al. [152].
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0 0.4 0.
surface [-]

Figure 6.1: Prescribed number distribution function vs. surface variable;
truncated Gaussian distribution (6.5) with mean p = 0.5, standard deviation
o = 0.1/1/2, truncation value s. = 0.9.

6.2.1 Comparison to a Semi-Analytical Solution

In this section the numerical error of the sectional method is studied by comparing it
with the semi-analytical solution of a reduced kinetic spray equation which is derived in
Appendix A. There, the equation

S ins) + o (B 1) feins)| - B mes) =0 o)

is solved for the dimensionless Sauter mean diameter (SMD)

fR+ Jr s f(z; v, s)dvds
T Jn s (o, s)dvds

the dimensionless total mass of droplets

m(x):/lR+/leB/2f($;v,s)dvds (6.3)

d32 (l’)

(6.2)

and the dimensionless total number of droplets

n(z) = /R + /R f(@:v, s)dvds . (6.4)

The stationary kinetic spray equation in (6.1) is one-dimensional in real and velocity space,
the evaporation number is assumed to be constant (Ev = 0.94) and the Stokes drag law
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Figure 6.2: Sauter mean diameter (normalised by initial value) vs. position
using a semi-analytical method (SAM) and the sectional method (SM); N, =
150.

(Stenar = 0.03) is applied. This equation is complemented by the inflow condition

) 2 2
exp <70.57(5;’2*) ) —exp (70.57(30(:2“) )

f(0;0,8) =: fo(v,s) = Mo in s.<s<l-—sc, (6.5)

0 otherwise,

which is a truncated Gaussian distribution with mean g = 0.5, standard deviation o =
0.1/v/2, truncation value s, = 0.9 and normalisation factor which guarantees that 1 =
[ [ fodsdv (see Figure 6.1). With boundary condition (6.5) it is assumed that at the
inflow (but only there) all droplets have the same velocity.

In Figure 6.2, the semi-analytical solution is plotted versus the numerical solution
for four different numbers of sections N, = {5, 10, 20,30} and 150 cells. Using only five
sections, it is observed that the numerical error accumulates with the distance from the
inlet and is largest at the outlet. With increasing number of sections the analytical solu-
tion is very well represented and only tiny numerical errors remain for the case Ny = 20
or Ny = 30. Although very simple models for evaporation and drag were used, the obser-
vations indicate that the numerical error decreases with increasing numbers of sections,
a necessary condition to apply the sectional method to more complex spray problems. In
Figure 6.3 the semi-analytical and numerical results for total mass and total number of
droplets are depicted where in the numerical calculations 5 and 10 sections and 150 cells
were used. The results for more sections than 10 show no observable difference between
semi-analytical and numerical calculations and are not shown here. From this comparison
it can be concluded that no mass or droplets are artificially taken from or added to the
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;SAM, n(x)

0.9r --- SAM, m(x) 1
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0.8f x SM, Ns=5 |

0.7f 1

Figure 6.3: Total mass and number of droplets (normalised by initial value)
vs. position using a semi-analytical method (SAM) and the sectional method
(SM); N, = 150.

system. Comparing the results in Figure 6.2 with those of Figure 6.3 it is observed that in
the region where the solutions for ds, are deviating from the semi-analytical solution only
a small amount of mass remains. Consequently, the errors in dz, have no strong impact
on the overall dispersed phase calculation.

6.2.2 Comparison to the Experiment of Wong and Chang

To assess the use of the uniform temperature model [1] in the frame of the sectional method
it is compared with the axis-symmetric evaporation experiment of Wong and Chang [182].
They considered an evaporating Tetralin (C;oH;o) spray that exhibits acceleration, heating
and evaporation in a slowly moving Ny gas stream which moves through a cylindrical tube.
This tube is facing in the direction of gravity. The measurements are conducted with the
phase Doppler particle analyzer (PDPA) at the end of the tube. The length of the tube
is varied from 2 to 65 cm. The tube has a diameter of 2 cm and is insulated in order
to simulate an adiabatic evaporation environment and to avoid fuel condensation on the
tube wall. It is preheated to 75° C. At the entrance of the tube the polydisperse spray
has a mean velocity of approx. 0.9 ms™!, a mean temperature of approx. 308.0 K and an
SMD of approx. 30.0 um. The distribution of droplet sizes ranges from 7.0 to 60.0 pm.
The measured initial size distribution is depicted in Figure 6.4. The gas that surrounds
the droplets has initially a velocity of approx. 1.0 ms~!, a mean temperature of approx.
348.0 K and an approximated mass fraction of Tetralin vapour, Y, = 5.0e—04. This
experiment was conducted under atmospheric pressure conditions. All measurements
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Figure 6.4: Number vs. diameter of droplets in a polydisperse spray; from
experiment of Wong and Chang [182].

were made on the axis of symmetry, whereas the radial variation of the characteristic
quantities, i.e. droplet size and velocity, were assessed and shown to not vary strongly in
the middle of the tube.

In this work, the experiment of Wong and Chang [182] is modelled with the one-
dimensional sectional method by using the following assumptions:

(i) The uniform temperature model of Abramzon and Sirignano [1] is considered for the
evaporation.

(ii) A one-way coupling between gas and droplets is taken into account.

(iii) The properties of the surrounding gas, i.e. the velocity, temperature and the vapour
mass fraction, are constant along the longitudinal axis.

(iv) The initial number density function depicted in Figure 6.4 is approximated by the
distribution in (6.5) with mean p = 0.5, standard deviation ¢ = 0.1/4/2 and trun-
cation value s. = 0.9 (see Figure 6.1).

(v) The characteristic values are X g, = 65.0 cm, Vipor = 1.0 ms™, Og,ar = 348.0 K and
Schar = 60.0 um. The resulting dimensionless numbers at the inflow are St,,,, = 0.07
and Ev ., = 0.04 using the mass density of Tetralin pc,,u,, = 0.969 gem ™2 and the
dynamic viscosity of of the gas-Tetralin mixture ny, = 1.85e—04 g (cm s)~'.

These rather strong assumptions reduce the simulation effort significantly but at the same

time they introduce strong errors into the physical model. This is particularly the case
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when a spray configuration is considered where saturation of the gas with Tetralin vapour
is reached in the tube and the evaporation number reduces to zero.

For the discretisation of the surface space 20 sections are used. The computational
domain is discretised by 150 cells and the second-order finite volume scheme is used for
the convection. This large number of sections and cells is used to avoid numerical errors.

The results for the droplet velocity and temperature and for the evaporation number
are depicted in Figures 6.5 - 6.7. The acceleration of droplets at the entrance, observed
in Figure 6.5, is due to drag and gravity forces that are directed towards the end of the
tube. Due to gravity, the droplets reach a velocity which is larger then that of the gas.
The initial acceleration of large droplets is smaller than that of small ones, but the larger
droplets reach higher velocities. This effect is due to the interaction between drag and
gravity forces which point in opposite directions if v > U,. The evaporation of droplets
leads to a loss of large droplets in favour of smaller ones. If no large droplets are left the
fields are set to zero.

The size-dependent increase of temperature, observed in Figure 6.6, is due to the
heat transfer between gas and droplets. The consumption of heat due to the evaporation
of droplets is not observed in the results as the droplet temperature remains equal to the
constant gas temperature after the initial heat transfer (x > 0.2). For this configuration
one can conclude that the time scale for the heat conduction is smaller than that of the
evaporation process (see Figures 6.6 and 6.8).

In Figure 6.7 the evaporation number is plotted versus the position and surface space.
It is confirmed that the evaporation depends directly on the velocity and the temperature
variable and only indirectly on the size of droplets. The gravity force which results in
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larger velocities of larger droplets also results in higher evaporation rates for the droplets
of large sizes. Without the gravity force, the evaporation number would be the same for
all droplet sizes but only when they have reached the temperature of the gas. The steep
initial increase of the evaporation number is due to the rising temperature of droplets.
This reflects the fact that a liquid is usually more volatile if it has a higher temperature.

In Figure 6.8 the remaining volume fraction of droplets at the middle axis is plotted
versus the average time a droplet remains in the tube (this quantity is proportional to the
position). In the case when all droplets are considered in the computation (solid line), the
remaining volume fraction of the measured and the computed results differ drastically.
There may be several reasons for this deviation. First, the strong assumptions that were
made for the physical model. Second, the weakness of the PDPA to capture all droplets,
particularly small ones or third, the large Reynolds number (=~ 1.0e5) of the Ny-Tetralin
gas mixture. The latter issue does not allow the assumption of a laminar flow and therefore
it is possible that particularly small Tetralin droplets reach the wall and stick there.

Omitting all droplets with size d < 20um in the computations (dashed line) a much
better agreement between measurements and sectional method is obtained. It is not
intended to draw any strong conclusion from these results. This would only hide the fact
that assumptions (i)-(iv) should be softened to achieve acceptable predictions of realistic
spray flows. The modified numerical result (dashed line) only indicates that small droplets
may not be considered in the measurements.
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Figure 6.9: Schematic sketch of the two test cases: crossing of perpendicular spray jets (left); Taylor-
Green gas flow (right) (after [99]).

6.2.3 Discussion of Results

The first conclusion that can be drawn is that the sectional method can describe the
effects of drag and gravity forces, evaporation and heat transfer of a polydisperse spray
without introducing large numerical errors, e.g. at singular points like s = 0 or at the
interfaces between sections. The schemes for the evaporation are shown to be conservative
in the sense that no droplets or droplet mass is artificially erased or added by rounding
errors (see Figure 6.3). Comparing the SMD obtained from a semi-analytical solution
with the sectional method for different numbers of sections it is observed that as long as
the droplet mass at a point is above some threshold, the SMD is nicely represented by 5
to 10 sections. Consequently, the results in Section 6.2.1 show that the numerical error of
the sectional method can be controlled in surface (evaporation) and velocity space (drag
and gravity forces).

The conclusions from the study of the uniform temperature model are limited be-
cause, first, strong assumptions (see issues (i)-(iv) at the beginning of this section) were
made for the simulation model which are only justified in very dilute flows. Second, the
PDPA measurements of Wong and Chang [182] must be disputed as it seems that some
portion of small droplets are not captured. Nevertheless, it can be concluded from the
comparison to the experiment of Wong and Chang [182] that the sectional method is
suitable for evaporating flows with realistic physical parameters and the uniform temper-
ature model gives reasonable results for the fields of droplet velocity, temperature and
evaporation number (see Figures 6.5 to 6.7).

6.3 Verification of the Quadrature-Based Part

The 2 two-dimensional configurations considered for the verification of the quadrature-
based part of the QBSM (in this section it is simply called QBMoM) are depicted schemat-
ically in Figure 6.9. The crossing of two perpendicular moving spray jets (Section 6.3.1)
is tested for monodisperse sprays that are first, freely transported and second, affected
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Figure 6.10: Number density of droplets (M%%0) at t=0.7 without drag force; Lagrange method (top
left); QBMoM (top right); first-order Euler method (bottom).

by Stokes drag force resulting from the velocity difference between droplets and gas. The
gas is at rest.

In the Taylor-Green configuration (Section 6.3.2), an initially homogeneous dis-
tributed monodisperse spray is accelerated by four counter-rotating gas vortices, where
periodic boundary conditions are applied.

6.3.1 Crossing of Monodisperse Spray Jets

In a two-dimensional domain of size 1 x 1, two monodisperse sprays of width e = 0.1 and
initial velocity vo = 1 enter the domain continuously from the bottom and the left (see
Figure 6.9;). The two sprays are expected to cross in the middle of the domain, irrespective
of a drag force that may or may not act on them. The reason for this behaviour is the
assumption of collisionless droplet clouds (infinite droplet Knudsen number). The top and
right walls have zero-gradient boundary conditions, i.e. the spray jets are disappearing at
these walls. A first-order convection scheme is used for QBMoM.

In the case where no drag force is acting on the droplets, QBMoM and Lagrangian
results for M®?0 are identical in the region where the jets cross (see Figures 6.1015). The
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Figure 6.11: Number density of droplets (M%?:?) at t=1.5 with Stokes drag force (St = 1.0); Lagrange
method (left); QBMoM (right).

only difference between these results is the numerical diffusion at the head of the spray jets
which is observed in the QBMoM solution. Notice that in the crossing region the number
density of droplets is the sum of the number densities of the incident spray jets. This
behaviour cannot be predicted with the first-order Euler method which was presented in
Section 3.3.3 (see Figure 6.103). For the latter method, all droplets that reach a crossing
point change their velocity to the mean velocity at that point (‘sticky-particle’ model).

If a drag force is added, the spray jets adapt to the gas flow. As the gas flow is
assumed to be at rest, the droplet clouds decelerate until they come to a standstill. The
Stokes number is chosen to be St = 1.0. Again, the results for the Lagrange method
and the QBMoM are qualitatively and quantitatively very similar (see Figure 6.11). Only
at the boundaries and at the diagonal of the crossing region some minor defects are
introduced. The results of the first-order Euler method are not depicted because, as has
been shown already (see Figure 6.103), it is not able to capture the crossing behaviour of
spray jets having infinite droplet Knudsen numbers.

6.3.2 A Monodisperse Spray in a Taylor-Green Vortex Gas Flow

The vortex configuration of Taylor & Green [168] consists of four (or more) eddies of the
same size but different rotating directions (see Figure 6.9;). In each of the square cells
the gas velocity components are defined by

Uye = sin(mx) cos(my) , Uy = —sin(my) cos(mz) . (6.6)

Periodic boundary conditions are prescribed at the boundaries of the computational do-
main. The velocity field of the gas flow is depicted in Figure 6.124.

Initially, the dispersed phase is distributed homogeneously in the whole computa-
tional domain. The drag force that is acting on the dispersed phase leads to an ejection of
particles from the centres of the vortices. If the Stokes number is above the critical value
St = 7/8 [34], particles leave the vortex cells and PTC is observed. In the configuration
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tested here, the Stokes number is set equal to St = 1.0 and again a first-order convection
scheme is used for QBMoM.

Although this configuration is very regular, it allows the mimicking of turbulent two-
phase particle flows. Just like in turbulent flows [84], vacuum zones and regions of strong
mass concentrations form at the centre and rim of the vortices, respectively. The PTC,
which is expected at the boundaries of vortex cells, is also a main feature in turbulent
two-phase flows.

In Figure 6.12; 93 the qualitative results for the Lagrange method, QBMoM and
the first-order Euler method are shown. All methods conserve the mass of particles in
the system (not shown here). As the Lagrangian calculation is conducted with a large
number of droplets (4.0e6) and averaging cells (N, x N, = 100x100), it can be regarded
as reference solution. The flow of the particles has the following features:

(i) initially unsteady behaviour of all structures (not shown here),

(ii) strong concentration at the rim of a vortex,

(iii) vacuum zones in the centre of a vortex,

(iv) particle transfer between vortex cells,

(v) multi-modal velocity distributions on various points in the domain.

Although the structures observed in the Lagrangian calculations, are not exactly repro-
duced by the QBMoM the issues in (ii) to (iv) are clearly demonstrated in Figure 6.12,.
The deviations between Lagrange method and QBMoM result mainly from the multi-
modal (and not solely bi-modal) velocity distributions which are observed, for example,
in the centre, corners and midpoints of edges (quad-modal points). However, the bi-modal
PTCs at the boundaries between two vortex cells are well captured.

The first-order Euler method is not able to predict the ejection of particles from one
vortex cell (see Figure 6.123). The reason is that bi-modal — not to mention multi-modal
— velocity distributions cannot be described with this method.

6.3.3 Discussion of Results

QBMoM is shown to capture the crossing of perpendicular moving spray jets that may
or may not be affected by a Stokes drag force. The first-order Euler method, on the
other hand, fails to describe bi-modal velocity distributions in the region of crossing jets.
With Stokes drag force, small interactions between the crossing jets is also observed using
QBMoM. It is assumed that these interactions result from numerical diffusion. It smoothes
the sharp jump in the higher velocity moments and the defective moments, particularly
the cross moments, result into small deflexions of the jets. This numerical defect may be
reduced by using higher-order convection schemes or finer real space discretisations.

The calculations in the Taylor-Green configuration (Section 6.3.2) demonstrate that
QBMoM is far more accurate for unsteady gas-particle flows than the first-order Eu-
ler method. The main reason is that QBMoM captures bi-modal velocity distributions,
whereas the ‘sticky-particle’ model assumes velocity distributions to be mono-modal (see
Section 3.3.3). The velocity distributions are usually multi-modal in turbulent gas-particle
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flows. In this case even the QBMoM is not able to capture all structures obtained with
the Lagrange method. Therefore, the mass concentrations at the rims of vortices are
stronger with QBMoM than they are for the reference Lagrange method. The extension
to more than two quadrature nodes would further improve the accuracy of the QBMoM
[58]. This, of course, would come at the expense of transporting more moments.

The computations outlined in this section deal only with monodisperse particle clouds
where every particle has the same Stokes number. For polydisperse sprays, the Stokes
number changes with the size of droplets, which leads to size-dependent accelerations or
decelerations of droplets in the gas flow. This issue will be addressed in the following
sections.

6.4 The New Moment Method in One Dimension

The QBSM is tested in three one-dimensional spray configurations that change the spray
distribution in surface space, first, through evaporation (Section 6.4.1), second, through
Stokes drag force (Section 6.4.2), and third, through splashing® (Section 6.4.3).% All test
cases were organised in such a way that crossing of two spray distributions was included.
The surrounding gas is at rest. Solutions to the same test cases were also computed using
a Lagrange method (see Section 3.3.1). They are regarded as accurate reference solutions.
The models for evaporation (d*-law), splashing (see Sections 2.6 and 5.6) and drag (Stokes
drag force) were incorporated into the Lagrangian code without any cut back.

The QBSM is studied by changing the numbers of sections, cells, the dimension-
less numbers Ev and St, and the splashing parameters «, 3; and . The test cases for
evaporation and splashing are considered to be stationary, whereas the drag test case is
unstationary because the stopping of small droplets leads to their continuous accumula-
tion.

6.4.1 Crossing Polydisperse Sprays with Evaporation

It was shown in Section 6.2 and also confirmed by Dufour and Villedieu [44], Laurent and
Massot [96], Laurent et al. [97] that the sectional method can capture evaporation very
accurately with general evaporation models. However, for a configuration where two or
more evaporating spray distributions are crossing each other, the sectional method as well
as all other first-order Euler methods fail to predict even qualitatively the correct solution
of the kinetic spray equation.

Here, the QBSM is tested in a one-dimensional configuration in which two truncated
Gaussian number density functions (1 = 0.5, ¢ = 0.2/v/2, s, = 1.0 in equation (6.5))
with different initial velocities (v, = 1, Uy = —2/3) at © = 0 and x = 1 are moving
towards each other. The two initial spray distributions evaporate according to the d-law
(Ev = 0.52), i.e. they are shifted towards s = 0 (see (5.75)-(5.77)). In this model, the
droplet drag force as well as heating of droplets arising in (5.1) are assumed to be absent.

3This is most likely the first time splashing of a polydisperse spray has been captured by an Eulerian
procedure. Desjardins et al. [39] were able to describe splashing for a monodisperse spray.
4These one-dimensional results are published in [153, 154].
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With these assumptions the spray equation (5.1) reduces to

0 0 0
5 (f(tiv,8)) + o (vf(tiv, 8)) — Evo- (f(tv,5) =0, 67)

with ¢t>t,, x€[0,1], veR, 0<s<1,

with the boundary conditions introduced in (5.76) and (5.77).

In Figure 6.13 the number density distribution of droplets in surface space, M%O’O,
is shown for steady calculations of QBSM with N, = {5,10,20} sections and N, =
{50, 100,200} cells at positions x = 0.5, x = 0.7 and = = 0.9. In addition, the inlet dis-
tribution (dashed lines) and the reference Lagrangian solutions (solid lines) are depicted.

In the plot for z = 0.5 and x = 0.7 (upper and middle graphs in Figure 6.13) the
two spray jets have evaporated and overlap, i.e. the distributions are shifted towards
s = 0 and the droplet number of the two distributions sum up to nearly twice of the inlet
distribution. This behaviour indicates that the distributions are crossing each other. If
the method could not predict the crossing behaviour, a strong mass concentration, called
delta shock, would have formed at the point where the distributions first cross (z = 0.6).
This shock would have moved according to the relation between the momenta of droplets
in each section. All droplets that arrive at the delta shock would have concentrated there
and, as the velocity of the left distribution is larger, no droplet coming from the right of
the computational domain could have reached x = 0.5. Indeed, the lower plot in Figure
6.13 confirms the proposition that the two jets cross each other. The left peak represents
the droplets coming from the left of the computational domain, whereas the right peak
originates from the right and has evaporated only slightly. As droplets coming from the
left are existing at position x = 0.9, they must have crossed the spray distribution coming
from the right.

Calculations with 5 sections are very crude but can still capture the evaporation
and crossing effect of the spray. Using a larger number of sections improves the results
considerably but still, as shown in the lower plot of Figure 6.13, there is a discrepancy
between the Lagrangian and QBSM calculations. This defect of QBSM may originate
from small numerical interactions between the two distributions crossing each other. More
elaborated analysis have shown that the introduction of only one exponential parameter
by in the approximate NDF in (4.8) may be responsible for these artificial interactions.
The introduction of exponential parameters for each quadrature node could presumably
resolve this defect, but this would require a much more sophisticated algorithm for the
determination of the exponential parameters and the transport of more moments.

The parameter study of the discretisation in real space gives the expected results.
With smaller cell sizes the differences between QBSM and Lagrangian calculations reduce.
By changing the values for Ev the sensitivity of the numerical method was tested. The
number densities of droplets at positions x = 0.5, x = 0.7 and = = 0.9 are depicted in
Figure 6.14. Beside the fact that the number densities are moving faster (slower) towards
s = 0 when Ev is increased (decreased), the stability and accuracy of QBSM is not
reduced. These results indicate that the QBSM does not restrict the choice of Ev.
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Figure 6.13: Number density of droplets (Mz,o,o) at z = 0.5 (upper), z = 0.7 (middle) and z = 0.9
(lower); evaporation and crossing of spray jets with Ev = 0.52; parameter study of the number of sections

and cells.
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6.4.2 Crossing Polydisperse Sprays with Drag force

It was shown in Section 6.2 and in [44, 96, 97| that the sectional method can accurately
predict the behaviour of spray droplets which are affected by drag and gravity forces.
In a polydisperse spray which is accelerated or decelerated by the surrounding gas, the
forces on the droplets, and consequently their velocities, are correlated, among other
things®, with the droplet sizes. For the SM, droplets collected in one section exhibit the
same velocities. Therefore, it is expected that the more sections come into play for the
discretisation of the size space, the more accurate the correlation between velocity and
size variables is predicted. It is shown in this test case that the combination of the SM
with the QBMoM does not change the ability of the combined method to capture the
phenomenon of drag affecting a spray.

In this test configuration the truncated Gaussian number density functions (p = 0.5,
o = 0.2/v/2, s. = 1.0 in equation (6.5)) are moving towards each other, starting at
the ends of the computational domain, x € [0, 1]. During the crossing process they are
affected by a Stokes drag force which results from the velocity difference between the spray
and a non-moving gas. This drag test case can never reach a steady state because those
droplets that are stopped by the gas before leaving the computational domain accumulate
at a particular position until the computation stops. Smaller droplets decelerate faster
and stop closer to where they came from. This phenomenon is commonly called the size
segregation of droplets.

In Figure 6.15 the QBSM results of the drag test case (St = 2.43) at time ¢t =
5 are depicted and compared with calculations using the reference Lagrange method.
The number of sections and cells are varied according to Ny, = {5,10,20} and N, =
{50,100,200} and the upper, middle and lower plots refer to the results at positions
x=0.5, x = 0.7 and x = 0.9. For all results shown in Figure 6.15, the number densities
of droplets are much higher than the initial distribution. The reason for this behaviour is,
first, the deceleration of droplets which leads to an accumulation and second, the overlap
of the crossing distributions.

Note also that all number density distributions in Figure 6.15 exhibit an asymmetry
which is due to the drag force. Small droplets on the left sides of the graphs experience
a strong deceleration and stop before they leave the computational domain. The steep
gradient, observed in all graphs, marks the border between stopped (left side of the steep
gradient) and moving droplets (right of the steep gradient). In the plot for x = 0.9, on
the left side of the steep gradient there are droplets which have not stopped and which
agree very well with the number density distribution at the inlet. Those droplets belong
to the distribution coming from the right.

The parameter study of QBSM for the number of sections and cells shows the ex-
pected results. Increasing the discretisation in size and real space decreases the difference
between the Lagrangian and QBSM predictions. In the plot for x = 0.9 the improve-
ment due to the increase from 50 to 200 cells is very pronounced. This behaviour can
be explained by the fact that the increase of maximum number density between x = 0.5
and x = 0.7 is much smaller than between z = 0.7 and = = 0.9. This strong gradient

5In general, the acceleration and deceleration of a droplet is determined by its size, mass density,
shape and dynamic behaviour. In the Stokes drag force model (2.18) only differences in size and mass
density are considered.
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of the number density in real space requires a finer z-discretisation in order to obtain a
more accurate solution. For the variation of the number of sections there is only a small
difference between solutions using 10 and 20 sections. With 5 sections, the behaviour of
the drag effect can be captured only qualitatively.

The Stokes number of the largest droplets, Steua., is varied according to Step., =
{1.22,2.43,3.64} to test the sensitivity of the method. In Figure 6.16 the QBSM solutions
with 20 sections and 200 cells are compared with the Lagrangian results at positions
r = 0.5,z = 0.7 and x = 0.9. For the smallest St.,,. the concentration of droplets is
very pronounced for both the distributions moving to the left (left peak in Figure 6.165)
and the distribution moving to the right (right peak in Figure 6.165). In the upper and
middle plot of Figure 6.16 the gradients in size and real space are the steepest for the
smallest Stokes number. In the plot for x = 0.9 the droplets coming from the left of the
computational domain are not present. This behaviour is due to the strong deceleration
and stopping of the droplets before reaching x = 0.9. In Figure 6.165 the QBSM results
can predict the left peak very well but the right peak is not captured correctly. Small
numerical errors in the computation quadrature parameters may be the reason for this
behaviour. With larger Stokes numbers the gradients are less steep, the deceleration due
to the drag force is smaller and the numerical error of QBSM is only minor.

6.4.3 Splashing of a Polydisperse Spray Jet on a Wall

In Section 2.6 the physical model for the splashing of droplets on a wall were intro-
duced and translated to QBSM in Section 5.6. Here the results are reported for the
one-dimensional and stationary splashing case, where droplets are continuously flowing
into the computational domain x € [0, 1] from the left. The spray is transported through
it without being affected by the gas. On the right end of the domain the spray is splashed
according to the splashing condition (2.82) and the droplets that rebound cross the in-
cident droplets. When the spray jet reaches the left inlet it is erased by using a zero
gradient boundary condition. This test case is stationary and the only changes in the
number density distribution in surface space take place at the right boundary. Therefore,
the number density distributions are the same everywhere in the computational domain
and the discretisation in real space is of secondary interest.

Figure 6.17 depicts the steady state solution of the number density distribution of
droplets obtained for Ny = {5, 10,20} sections. They are compared with the Lagrangian
calculations for the parameter set (o, Gq,7) = (0.9,0.7,0.1). The number of cells is not
varied because the spray is freely transported in the computational domain. Only at the
boundary is the spray distribution changed. The high peak on the left side represents the
splashed spray and is moving away from the wall (see averaged velocity distribution in
Figure 6.18), whereas the smaller peak on the right, agreeing with the inlet distribution
(dashed line), is moving towards the wall. For this test case the Lagrangian and QBSM
solutions for 10 and 20 sections are very close to each other. Reduction in the number of
sections to 5 results in some discrepancies, but the qualitative behaviour of the moment
method persists.

The sensitivity of the method was also studied for the change of the splashing pa-
rameters. In Figures 6.18 to 6.20 the number density distributions are plotted versus the
droplet surface at position x = 0.9 for the sets of parameters (o, 34,7) = {(0.5,0.7,0.1),
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(lower), t = 5; crossing sprays affected by Stokes drag; various Stokes numbers; Ny = 20 and N, = 200.



6.4. THE NEW MOMENT METHOD IN ONE DIMENSION 133

450 T
—Lagrange
400F --- Inlet ,
v QBSM, Ns=20
350- * QBSM, Ns=10 |
x QBSM, Ns=5

0 e e
v VRV HT

0.4 0.6 0.8 1
surface [-]

Figure 6.17: Number density of droplets (M%O’O) at « = 0.9; splashing at a wall with parameters
a=0.9, B3 = 0.7 and v = 0.1; parameter study of the number of sections.

4500
— Lagrange, 0=0.5, $=0.7, y=0.1
---Lagrange, 0=0.9, 3=0.7, y=0.1+
--- Inlet

¢ QBSM, 0=0.5, =0.7, y=0.1
v QBSM, 0=0.9, p=0.7, y=0.1

4000r
3500r
3000r

= 2500}

ber:

nu

15001

1000

500r

1 PR A AR AR A AR AR AL AR AR 4
0.8 b
0.6- b

v
¢ v QBSM, 0=0.9, p=0.7, y=0.1
¢ QBSM, 0=0.5, $=0.7, 7=0.1

> —0.4

v. velocity of particles [-]

a!
> T
<>
<>
<o
<>
<>

0.6 i
-0.8

0 0.2 0.4 0.6 0.8 1
surface [-]

Figure 6.18: Number density of droplets (upper), distribution of averaged droplet velocities (lower) at
x = 0.9; splashing parameters: («, 84,7) = {(0.5,0.7,0.1), (0.9,0.7,0.1)}; Ny = 20 and N, = 100.



134 CHAPTER 6. VERIFICATION, VALIDATION AND APPLICATION

12000

— Lagrange, 0=0.9, $=0.5, y=0.1
‘‘‘‘‘‘ Lagrange, 0=0.9, $=0.7, v=0.1

--- Inlet 1
* QBSM, 0=0.9, $=0.5, y=0.1
v QBSM, 0:=0.9, f=0.7, y=0.1

10000

8000

6000

number [-]

4000

2000

. 0.
surface [-]

Figure 6.19: Number density of droplets (Mz’o’o) at x = 0.9; splashing at a wall with parameters (c,
Ba, v) = (0.9, 0.5, 0.1) and (e, 8,7) = (0.9,0.7,0.1); Ny = 20 and N, = 100.

2500 \ \
,"'\‘ —Lagrange, 0=0.9, 3=0.7, y=0.5
é [ Lagrange, 0:=0.9, B=0.7, y=0.1
2000l i --- Inlet |
P x QBSM, 0:=0.9, B=0.7, y=0.5
! v QBSM, 0=0.9, p=0.7, y=0.1

1500 ; H

number [-]

=

o

o

o
T

500r

0.4 0.6
surface [-]

Figure 6.20: Number density of droplets (M%O’O) at « = 0.9; splashing at a wall with parameters
(v, Bayy) = (0.9,0.7,0.5) and («, B4,7y) = (0.9,0.7,0.1); N5 = 20 and N, = 100.



6.4. THE NEW MOMENT METHOD IN ONE DIMENSION 135

(0.9,0.5,0.1), (0.9,0.7,0.5)}. Each result is compared with a Lagrangian solution and
with the result shown in Figure 6.17. In the lower plot of Figure 6.18 the distribution of
averaged droplet velocities, Mz/ 0% / Mz/ 2’0’0, is also shown.

Figure 6.18 illustrates what happens when droplets are reflected inelastically on a
wall. The reduction of the absolute velocity value (lower part of Figure 6.18) on the wall
leads to an increase in the number density of splashed droplets (upper part of Figure 6.18),
an obvious consequence of the mass conservation. The comparison between Lagrangian
and QBSM calculations shows good agreement for this deceleration effect and also the
average velocities agree with those expected from the model in the splashing condition
(2.82).

The breakage of the droplets is determined by the parameter ;. Smaller values of
this quantity result in more but smaller daughter droplets after splashing. This behaviour
is shown in Figure 6.19 for the Lagrangian and the QBSM calculations.

The model in (2.82) also included a parameter « that allows the consideration of mass
deposition on the wall or sudden liquid evaporation due to a hot wall. For large values
of v a large number of droplets is taken from the system. In Figure 6.20 Lagrangian and
QBSM calculations are compared for two different values of . The QBSM results recover
the reference Lagrangian solutions nicely.

6.4.4 Discussion of Results

For the evaporation test case in Section 6.4.1, the discretisation of the size space with
a small number of sections leads to qualitative correct results but unfortunately some
discrepancies between QBSM and Lagrangian calculations remain. This defect does not
originate from the sectional part of QBSM because it was tested and found to be appro-
priate for non-crossing spray flows. The source of error may be some small interactions
between the two distributions which could result from the consideration of only one in-
stead of § (number of quadrature nodes) exponential parameters [ for a section (4.8).
Using an exponential parameter for each quadrature node would further increase the num-
ber of moments that have to be transported. To keep the computational costs limited
parameters beyond those in (4.11) were not introduced.

The drag test case reveals a convincing agreement of QBSM with the Lagrangian
reference calculations (Section 6.4.2). Minor problems arise when the maximum Stokes
number decreases and the gradients between moving and non-moving droplets get steeper.
In this case the system of moment transport equations gets stiff, numerical errors cannot
be prevented. Nevertheless, the qualitative behaviour of QBSM for small Stokes numbers
is correct.

In the test cases for splashing (Section 6.4.3), close agreement between QBSM and
Lagrangian calculations is observed. The choice of splashing parameters is not limited by
QBSM. It was explained in Section 2.6 how this simple model can be extended to more
realistic splashing configurations by introducing dependencies of the splashing parameters
on the droplet velocity, size and temperatures before splashing and on the properties in the
vicinity of the wall. The splashing test case outlined above is used here, not to compare
with experimental results but to assess the behaviour of QBSM when the number density
function is changing in size and velocity space and a crossing of droplets is present.
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The one-dimensional test cases outlined in this section have shown that QBSM is
capable of describing evaporation, drag forces and splashing in configurations where PTC
is present. These test cases also indicate that 5 to 10 sections are sufficient to capture the
qualitative behaviour of the phenomena in surface space. As the configuration is limited
to one real space dimension, the convection of the number density distribution is not
assessed in more detail. This issue will be the subject of the following sections.

6.5 The New Moment Method in Two Dimensions

This section extends the above one-dimensional test cases (Section 6.4) to two dimen-
sions in real space. The crossing of perpendicular moving spray jets, which was already
considered for the verification of the QBMoM (Section 6.3), is used for two perpendicular
moving polydisperse spray jets that experience drag or evaporation. The Stokes drag
model and d2-evaporation law are applied. In addition to the crossing jets, QBSM is
tested in a splashing configuration, which is the extension of the configuration outlined
in Section 6.4.3. In two dimensions the splashing can also have an impact on the droplet
velocity component that is parallel to the wall.

It was shown in Sections 6.2 and 6.4 that QBSM delivers satisfying results with 10
sections in surface space. Here, the behaviour of QBSM is not tested further with respect
to the number of sections. It is fixed to N, = 10. In addition, the inlet distribution
in surface space is taken to be the truncated Gaussian density function (6.5) with mean
p = 0.5, standard deviation o = 0.1/4/2 and truncation value s. = 1.0 (see Figure 6.1).
The transport in real space is treated with the first-order convection scheme introduced
in Section 5.3.2.

The same test cases were also computed with the reference Lagrangian method and
compared with the QBSM calculations. The results of the two methods, depicted in
Figures 6.21 to 6.23, differ by a large scaling factor. As the injection number density of
droplets is normalised to one in the QBSM and to a power of 10 in the Lagrange calcula-
tions, the grey scales in the plots are of the same order of magnitude. This representation
is kept to demonstrate that the Lagrange calculations were performed with a large number
of parcels.

6.5.1 Crossing of Polydisperse Spray Jets

The configuration depicted in Figure 6.9; with e = 0.1 and injection droplet velocity
vo = 1.0 is used to test the behaviour of QBSM when two polydisperse spray jets cross
each other. Besides the test in which the spray is affected by a drag force, QBSM is also
studied in a configuration in which the spray evaporates.

The drag force is modelled by the Stokes law (see equation (2.18)), where the Stokes
number ranges from zero to St = 2.0 for the largest droplet. Drag forces the spray flow
to adapt to the motion of the gas. As the gas is assumed to be at rest, the droplets
decelerate, accumulate and stop. Droplets with small Stokes numbers experience a faster
deceleration than those with large Stokes numbers. The drag force is also acting in the
crossing region. Therefore, accumulation and stopping of droplets is also present there. In
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Figure 6.21 the number density of droplets (M®%%) for the reference Lagrange calculation
(left column) and QBSM (right column) are shown for different times ¢t = {0.4,1.0,2.0}.
The last row represents the structure of the calculations which remains for all times larger
than ¢ = 2.0. However, it is not the steady state solution because all droplets that are
supplied to the system remain inside it.

The Lagrangian results (Figures 6.21; 35) demonstrate clearly that the droplets ac-
cumulate and that most of the droplets stop approx. at (x,y) = (0.5,0.65) and (z,y) =
(0.65,0.5), respectively. These are the droplets which are approx. of size s = 0.5. Smaller
droplets stop before these points (not shown here) and the largest droplets can reach
the end of the domain (see Figure 6.215). This phenomenon is commonly called size
segregation of droplets. It reflects the size dependence of the drag force and is strongly
linked to the initial size distribution. When all droplets have the same size (see Figure
6.11), they stop at one point. Here, the droplets are initially distributed according to a
truncated Gaussian distribution and therefore the stopping positions are distributed in
the computational domain.

The solution of the QBSM is qualitatively very similar to the reference solution. It
should be pointed out that

e before crossing the Lagrangian and QBSM solutions agree with each other (see Figures
6.21; and 6.215),

e the stopping positions of droplets having sizes around s = 0.5 are well reproduced by
QBSM,

e the behaviour of droplets with large Stokes number is well predicted,

e no collision between the spray jets occurs.

However, some differences between Lagrange and QBSM results are observed. These are
e inconsistencies at the diagonal of the crossing region,

e small interactions of the jets at the points where the spray jets first cross,

e small influences of the crossing region on the spray jets downstream the crossing region.

The small ‘bumps’ at the diagonal of the crossing region result from the switch from the
QBMoM of Fox [56] to that of Le Lostec et al. [99]. They are already observed in Figure
6.11. The reason for this switch is that the determinate of the covariance tensor oy
(4.47) is zero at this diagonal. This behaviour can only be prevented when the situation
det(oy) = 0 is also treated with the method of Fox [56] (for detailed explanations see
Section 4.4.2). This task has to be postponed to future research.

It is assumed that the small interactions between spray jets at the first crossing points
result from numerical diffusion. It smoothes the sharp jump in the higher-order moments
and the defective moments, particularly the cross moments, result into a small deflexion of
the jets. This numerical defect may be reduced by using higher-order convection schemes
or finer real space discretisations. The small influences of the spray jet upstream the
crossing region are assumed to also originate from the numerical smoothen of the jumps
in the velocity moments.
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Figure 6.21: Number density of droplets (M%0:%) at ¢ = 0.4 (top), t = 1.0 (middle) and ¢ = 2.0 (bottom)
with drag force (Stmax = 2.0); Lagrange method (left column); QBSM (right column), N, = 150,
N, = 150, N, = 10.
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It should be pointed out that QBSM calculations with only one section cannot pre-
dict the distribution of stopping positions because all droplets are assumed to have only
one (average) Stokes number. For two sections, two distinct stopping positions are ob-
served, etc. Consequently, the accurate prediction of segregation effects requires a fine
discretisation of the droplet size distribution. From the results in Figures 6.2154 it is
observed that 10 sections are sufficient to discretise a truncated Gaussian distribution.

The evaporation of droplets is modelled by a d?-evaporation law that assumes the
evaporation number to be constant for all droplet sizes, i.e. Ev = 0.8. As no drag force is
acting on the droplets, they keep their initial velocities. In Figure 6.22 the number density
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Figure 6.22: Number density of droplets (M%%9) at ¢t = 0.4 (top), t = 1.0 (bottom) with evaporation
(Ev = 0.8); Lagrange method (left column); QBSM (right column), N, = 150, N, = 150, N, = 10.

of droplets (M%) for the reference Lagrange calculation (left column) and QBSM (right
column) are shown for different times ¢ = {0.4,1.0}. The results for time ¢ = 1.0 are the
steady state solutions because droplets that enter the domain are also erased from it.

In Figures 6.22; 3 the Lagrangian results are depicted. It is observed that in the first
0.4 time units only a small number of droplets are completely evaporated. However, the
number density of droplets reduces considerably when the large number of droplets with
sizes around s = 0.5 start to disappear. Again, some sort of ‘size segregation’ effect is
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observed which depends on the size distribution of droplets injected into the system. The
segregation follows from the fact that large droplets take longer time to evaporate than
smaller ones. Therefore their residence time in the computation domain is longer and
they are convected deeper into the computation domain.

The results of the QBSM (see Figures 6.22, 4) recover the Lagrangian predictions very
well. The only defects of these calculations are small interactions at the crossing lines
between the jets and a slightly shorter penetration distance of the large droplets. This
behaviour was already observed in the one-dimensional calculations (see Figure 6.13).
In Section 6.4.1 this issue was discussed in more detail. There, it is concluded that
the interaction between the jets and the reduction of the penetration distance can be
prevented by using either more sections or introducing an exponential parameter b, for
each quadrature node. This, of course, would come at the expense of transporting more
moments.

6.5.2 Splashing of a Polydisperse Spray Jet on a Wall

The splashing condition for QBSM, developed in Sections 2.6 and 5.6, is tested in a
two-dimensional configuration. A spray jet is entering the domain and moves towards
the wall with an impact angle of 45°. It is not affected by drag or evaporation. At
the wall the droplets break, reduce their velocity and deposit on the wall according the
parameters (o, ay, B4,7) = (0.9,0.9,0.7,0.1). In comparison with the one-dimensional
test case outlined in Section 6.4.3 an additional splashing parameters, «, is introduced
that is able to model the friction between droplets and wall. Here, the velocity parameters
are set equal in order that impact angle and reflection angle are the same. In Figure 6.23
the number densities (M%%?) resulting from the Lagrangian (left) and QBSM (right)
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Figure 6.23: Number density of droplets (M%) at t+ = 1.3; splashing on a wall with parameters
a, = 0.9, ay = 0.9, B4 = 0.7, v = 0.1; Lagrange method (left); QBSM (right), result rotated by 180°,
N, = 200, N, = 200, N, = 10,

calculations at ¢ = 1.3 are depicted. The number density distribution in size space
obtained from the two methods are compared in Figure 6.24 where three representative
positions are chosen. Figure 6.24; depicts the number density distribution at a position
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in the incident spray jet, Figure 6.245 are the distributions taken from the crossing region
and Figure 6.243 is obtained from the spray jet leaving the wall. To compare the results
from QBSM with those from the Lagrangian calculations, the QBSM results in a section
are multiplied by the overall number density of Lagrange droplets at the postion in the
incident jet. The same number is also used to scale the QBSM results in the crossing
region and the splashed jet.

The Lagrangian results (Figure 6.23;) demonstrate that the impact angle and the
reflection angle are indeed the same and the splashing with the chosen set of parameters
leads to an overall increase of droplets. The counteracting phenomena are the deposition
of droplets on the wall, which leads to an reduction of droplets, and the fragmentation and
accumulation of droplets which results into an increase of droplets. A triangular region
forms at the wall, in which incident and splashed droplets cross their trajectories. It
should be noted that no size segregation effect is observed although a polydisperse spray
is considered. This would only be the case, when the splashing parameters depend on the
size of the incident droplets.

The number density of droplets resulting from QBSM (Figure 6.23,) show that the
impact angle and reflection angle are the same, a crossing region is forming at the wall
and the overall number density in the jet of splashed droplets is larger than the density in
the incident jet. In addition, the head of the splashed jet has reached approximately the
same position as that in the Lagrange calculations. However, a large numerical diffusion
is observed which seems to be stronger than in the other test cases. This is not true. The
other test cases were merely organised in such a way that droplets are only moving in one
coordinate direction. If the jet has velocity components in both coordinate directions the
numerical diffusion of both directions is present.

Figure 6.24 proves that the number densities of the incident and splashed jets are
indeed crossing each other in the near wall region. The left and right peak in Figure
6.24, agree in size and scale with the distributions depicted in Figures 6.243 and 6.244,
respectively. However, the sharp peak of the splashed droplets is underpredicted by
QBSM. Tt is assumed that this effect results from the large numerical diffusion observed
in Figure 6.235,. The number density distribution shown in Figure 6.24, agrees very well
with those in Figure 6.17 (see Section 6.4). Therefore, the conclusion from the parameter
study in the one-dimensional test cases do also apply to two-dimensional splashing. The
splashing parameter o, is not varied here as it is shown that impact and reflection angle
agree with each other. This indicates that the change of the droplet velocity components
in wall-direction are captured accurately.

6.5.3 Discussion of Results

The results in Section 6.5 demonstrate that the QBSM developed in Chapters 4 and 5
can be extended to two dimensions in real space, taking into account the effects of drag
force, evaporation, splashing and collisionless crossing of polydisperse sprays.

The results for the crossing of perpendicular moving spray jets (see Section 6.5.1)
demonstrate that QBSM can capture bi-modal velocity distributions while drag forces or
evaporation are acting on the droplets. The size segregation, which is due to the polydis-
perse character of the spray, is well predicted by QBSM. However, small jet interactions at
the boundaries of the crossing region are observed. The origin of these defects is assumed
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to be the numerical smoothen of the jumps in higher-order velocity moments. There are
other inconsistencies, arising in the drag test case. They follow from the inability of the
QBMoM of Fox [56] to describe situations where det(oy) = 0. The more robust QBMoM
of Le Lostec et al. [99] supports this situation, however it introduces other small errors.
As the methods of Fox [56] and Le Lostec et al. [99] were introduced only recently, it is ex-
pected that other, more robust numerical procedures will be available in future, building
on these methods.

The splashing test case, which is a boundary condition for the transported moments,
can only be described with methods that take into account the polydisperse character
of sprays and that consider (at least) bi-modal velocity distributions close to the wall.
Therefore, the QBSM is particularly suitable for describing splashing jets (see Section
6.5.2). Of course, in real splashing cases the incident and splashed droplets interact heavily
in the crossing region and the splashing parameters depend on the droplets reaching the
wall. However, it was explained in Sections 2.6 and 5.6 how this simple model can be
extended to more realistic situations.

The main problem in two-dimensional configurations is the numerical diffusion in
real space. It can lead to large errors (see Figure 6.23,) that distort the physical content
of the solution. It is desirable to implement and test the second-order scheme developed
in Section 5.3.3. The other action to prevent numerical diffusion could be the increase of
cells in the computational domain. This, of course, would come at the expense of higher
computational costs.

6.6 Polydisperse Spray Jets in a Taylor-Green Vortex

Sprays in combustion systems are usually carried by turbulent gas flows. Therefore,
it is necessary to extend the rather theoretical test cases in the previous sections to
configurations in which the gas flow in inhomogeneous. In this section two polydisperse
spray jets are injected into a counter-clockwise rotating Traylor-Green vortex gas flow
(see Section 6.3.2 and Figure 6.124). In the first configuration only a drag force is acting
from the gas on the droplets (St = 2.0). In a second configuration the spray exhibits
drag forces (St = 2.0) and evaporation (Ev = 0.4). Similar to the test cases in Section
6.5.1 the two spray jets are crossing each other but before doing so they are deflected by
the Taylor-Green vortex. Again, the first-order convection scheme (see Section 5.3.2) is
used, the inlet distribution in surface space is taken to be the truncated Gaussian density
function (6.5) with mean u = 0.5, standard deviation o = 0.1/4/2 and truncation value
s. = 1.0 (see Figure 6.1) and the number of sections is Ny = 10.

6.6.1 Results for a Polydisperse Spray

In Figure 6.25 results of the QBSM (right) and Lagrangian (left) calculations are depicted
for the times ¢t = 0.6 (top), t = 1.1 (middle) and ¢ = 2.0 (bottom), where beyond ¢t = 1.9
the solution is not changing anymore. After injection the spray jets are first decelerated
by the gas flow. At the same time they are deflected from the centre of the vortex and
size segregation of droplets is observed. As the gas has a stronger influence on small
droplets they tend to follow the vortex much faster. The diffusion-like widening in the
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Figure 6.25: Number density of droplets (M%%0) at t = 0.6 (top), t = 1.1 (middle) and t = 2.0
(bottom); polydisperse droplets accelerated in Taylor-Green vortex (Stimax = 2.0); Lagrange method (left
column); QBSM (right column), N, = 150, N, = 150, N, = 10.
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Lagrangian calculations (see Figures 6.25;35) is exclusively due to the size segregation
effect. The shape of the widening is determined by the initial distribution, which in this
case is a truncated Gaussian distribution. In the crossing region the spray jet, coming
from the left, has already separated into fibres with large droplets (upper part of the jet)
and fibres with small droplets (lower part of the jet). In the results for the QBSM (see
Figures 6.25 4¢) it is observed that, despite the numerical diffusion, the size segregation
of droplets and the deflection by the gas flow is well represented. However, in the fibres for
the small droplets interactions between the two jets are observed in the crossing region.

These results demonstrate again that the crossing of droplets with relatively large
Stokes numbers can be well predicted by QBSM, whereas droplets with small Stokes
numbers lead to numerical difficulties. The investigation of this defect has to be postponed
to future research.

6.6.2 Results for an Evaporating Polydisperse Spray

In Figure 6.26 the results for QBSM (right) and the Lagrange method (left) are presented
for the case where evaporation is active (Ev = 0.4). It is observed that in contrast to
the results in Figure 6.25, no droplet is leaving the computational domain through the
boundaries but all of them evaporate within the domain. The steady state is reached after
1.7 time units. The comparison with the results in Section 6.6.1 demonstrates that the
evaporating droplets tend to follow the gas flow much better than the non-evaporating
droplets. This is obviously due to the reduction of the Stokes number which is proportional
to the surface of a droplet (for the Stokes law). The behaviour of the spray jets before
crossing is very similar to the non-evaporating test case.

The results of the QBSM in Figures 6.265 4 reveal that the method can accurately
describe evaporation effects. The unsteady behaviour of the spray jets, penetration dis-
tance into the domain and reduction of the Stokes number is well described. The only
discrepancies, which were already observed in Section 6.6.1, are the numerical diffusion
and the interaction of small droplets in the crossing region.

6.6.3 Discussion of Results

The test cases discussed in this section demonstrate that QBSM can deal with sprays
suspended in inhomogeneous gas flows and still allow the simultaneous consideration
of drag forces, evaporation and PTC. It is a first step in the extension to more applied
configurations in which the gas flow is turbulent. The Taylor-Green configuration allows a
rigorous assessment of the size segregation in polydisperse sprays, the unsteady behaviour
of sprays, the evaporation-convection interaction and the crossing of sprays. QBSM is
shown to reproduce qualitatively and quantitatively the behaviour of all these effects. The
only drawbacks observed in these tests are the numerical diffusion and the interaction of
small droplets in the crossing region. As mentioned above, the numerical diffusion can
be reduced by using higher-order convection schemes or finer real space discretisations of
the computational domain. There are various possible sources for the interaction of the
small droplets. First, the assumption of constant weights in the semi-analytical solution
of the drag force sub problem may lead to errors in the higher-order moments if the
droplets have small Stokes numbers. Second, the mapping of moments into the frame of
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Figure 6.26: Number density of droplets (M%%9) at t = 0.6 (top), t = 1.1 (middle) and ¢ = 2.0 (bottom);
polydisperse droplets accelerated in Taylor-Green vortex (Stmax = 2.0) with evaporation (Ev = 0.4);
Lagrange method (left column); QBSM (right column), N, = 150, N, = 150, N, = 10.
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X (see Section 4.4.2) may be poorly conditioned if the droplets are small or third, the
number of exponential parameters by, in the approximate NDF (see Section 4.3) may not
be sufficient. The study of these issues has to be postponed to future research as changes
to the algorithms would be considerable. In realistic turbulent spray flows the crossing of
droplets with small Stokes numbers is less pronounced because their ability to follow the
gas flow is good. As the gas flow does not undergo crossing, it is less likely that droplets
of small Stokes numbers exhibit multi-modal velocity distributions. Therefore, the error
that is introduced by QBSM for small droplets will not amplify in realistic spray flow
configurations.






Chapter 7

Conclusions

In this work a new Euler method, called the quadrature-based sectional method (QBSM),
was developed, implemented and tested. It allows the description of the main spray effects
in the fuel injection of combustion systems. The focus was on the polydispersity of fuel
droplet clouds and the particle trajectory crossing (PTC). They are crucial issues in the
application of Euler methods to spray flows in combustion systems. The derivation of the
mathematical model of the QBSM included the following issues:

(i) Choice of Eulerian approach:

The alternatives to the sectional method (SM) of Dufour and Villedieu [44] (the
quadrature method of moments (QMoM) [109], the direct QMoM (DQMoM) [107]
and the SM of Laurent et al. [97]) were theoretically assessed and found to be either
not suitable or less accurate for describing of evaporating droplet clouds. QMoM
and DQMoM encounter a singularity when surface abscissas reach zero values. This
defect introduces considerable mathematical complications; its treatment is only
feasible with strong assumptions on the evaporation model and the shape of the
number density function (NDF) in size space [59]. The SM of Laurent et al. [97]
is not built on the conservation of the number of droplets and therefore a larger
numerical error is expected in the computation of the mass transfer between fuel
droplets and gas [43]. All four methods allow the consideration of droplet breakup
and coalescence and, in principle, they can be combined with the quadrature-based
method of moments (QBMoM) of Fox [56] and Le Lostec et al. [99]. The SM
of Dufour and Villedieu [44], which was used in this work, guarantees the non-
negativity of the number and mass of droplets (realisability) and is second order
accurate in surface space.

(ii) Closure of the moment equations derived from the kinetic spray equation:

The moment transform of the kinetic spray equation with respect to the velocity,
surface and temperature variables yields an unclosed system of moment equations for
each section in surface space. The unknown terms in these equations are closed by
assuming the NDF, which is a joint size-velocity-temperature distribution function,
to have a form that allows the consideration of evaporation, drag force, heating,
breakup, collision, PTC and splashing on a wall. This approximate NDF goes
together with the choice of moments that have to be transported. Here, moments are
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chosen that are proportional to the mean number, mass, momentum and enthalpy
of droplets in a section. For the consideration of PTC all velocity moments up to the
third order are considered. The method that follows from these choices reduces to
the SM of Dufour and Villedieu [44] and the QBMoM of Fox et al. [59] or Le Lostec
et al. [99], respectively, if special sets of parameters are chosen. It is shown that
this mathematical model does not restrict the use of standard physical models for
drag, evaporation and splashing, as long as they are in accordance with the kinetic
spray equation. In the new mathematical model the surface, mean number and
mass of droplets are controlled which is crucial for describing evaporation processes
in combustion systems.

(iii) The mapping from the transported moments to the parameters of the approximate

NDF:

The uniqueness of the mapping between the transported moments and the param-
eters of the approximate NDF is shown and an explicit algorithm is proposed. It
combines the specialised algorithms of the SM [44] and the QBMoM [59, 99].

The mathematical model results in highly coupled equations that include source terms
for evaporation, droplet forces and heat transfer. Neither pressures nor deviatoric stresses
arise. Therefore, standard numerical models cannot be used only numerical schemes that
are based on the kinetic origin of the moment transport equations. The following methods
and schemes were applied:

(i) The fractional step method to tackle the multi-physics character of the problem:

The system of moment transport equations includes processes of very different time
scales. Heat transfer and drag force, for example, are generally much faster then
evaporation processes. Therefore, the Strang splitting [165] is applied which allows
the independent numerical treatment of different spray effects without reducing the
accuracy of the numerical model.

(ii) The numerical treatment of sub problems for convection, evaporation, drag forces

and heat transfer:

For convection, the kinetic approximation of Bouchut [18|, which was developed for
pressure-less gas equations, is extended to the chosen set of transported moments.
It is not based on a gradient-diffusion model but considers the parameters of the
approximate NDF which are known in terms of the transported moments. First-
and second-order finite volume schemes are proposed. Similar to the convection, a
conservative finite volume-like scheme for evaporation is proposed in surface space.
The interaction terms between neighbouring sections and the mass transfer between
droplets and gas follow naturally from this scheme. Limitations on the physical
model or assumptions on the NDF do not have to be introduced. The sub problems
for the droplet forces and heat transfer are captured by a semi-analytical solution
and the stiff ODE-solver DLSODA [78], respectively.

(iii) The algorithm of QBSM:

A two-dimensional version of a QBSM-algorithm is proposed that can be extended
to three real space dimensions. Its structure is dominated by the Strang splitting.
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The alignment between transported moments and the parameters of the approx-
imate NDF after every fractional step has a stabilising effect on the numerical
method. Although not demonstrated in this work, it is argued that, besides the
domain decomposition in real space [137], a domain decomposition in surface space
is conceivable.

The implementation of the algorithms proposed in the mathematical and numerical model
was performed. Due to the structural difference to existing open-source CFD codes, the
algorithms were written into a new separate program. Sophisticated numerical methods
for the root finding and solution of ODEs were taken from the mathematical libraries
SLATEC [52] and ODEPACK [78]. The implemented modules which constitute the QBSM
method are:

(i) the Strang splitting procedure [165],

(ii) the SM of Dufour and Villedieu [44],

(iii) the QBMoM of Fox [56],

(iv) the coupling of the SM [44] and the QBMoM [56, 99|,

(v) the first- and second-order schemes for convection and evaporation,

(vi) the uniform temperature model of Abramzon and Sirignano [1] for evaporation and
heat transfer,

(vii) the numerical treatment of droplet forces and heat transfer using a semi-analytical
solution and the ODE-solver DLSODA [78], respectively.

The modules are embedded into a FORTRAN 95 framework. For pre- and post processing
MATLAB and GNUPLOT were used. The QBMoM variant of Le Lostec et al. [99] and
the Lagrange solvers were, for the most part, developed and implemented by Nechtan Le
Lostec and Philippe Villedieu (ONERA /DMAE, Toulouse).

The verification and validation procedure included comparison with a semi-analytical
solution, the experiment of Wong and Chang [182] and Lagrangian calculations. The test
cases were organised such that the complexity increases. The following conclusions were
drawn from these tests:

(i) Verification and Validation of the SM and the QBMoM:

By comparing the results of the implemented SM [44] to a semi-analytical solution of
a one-dimensional, stationary evaporation-drag-gravity problem (see Appendix A)
the method is shown as very accurate for numbers of sections above 10. It is further
observed that the evolution of the total droplet mass, which is a principle quantity
for the spray evaporation in combustion systems, can be reproduced by 5 sections
committing only a small numerical error. Comparison of the computational results
with the measurements of Wong and Chang [182] concludes that the SM works
stably for realistic physical parameters and the uniform temperature model returns
reasonable results.
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(ii)
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The comparison of results from the QBMoM with those of the reference Lagrange
method in a crossing configuration of two spray jets reveals a good quantitative
agreement. In the unsteady Taylor-Green configuration, quad-modal velocity points
are present which cannot be described with QBMoM. Nevertheless, the mass transfer
between the vortex cells can be captured. The first-order Euler method, which
in these tests is equivalent to the classical Euler method, is not able to predict
the crossing of sprays because it assumes the velocity distribution to be mono-
modal. For the Taylor-Green configuration, this flaw of the first-order Euler method
results in a concentration of all droplets at the boundaries of the vortex cells. This
behaviour is not correct because the spray in the Taylor-Green configuration is
assumed to be collisionless.

Verification and Validation of QBSM in one real space dimension:

QBSM was tested in three one-dimensional test cases that included the effects of
convection, evaporation, drag force, splashing and PTC. All these spray effects
were captured by QBSM. For sufficiently large numbers of sections and cells the
quantitative comparisons with the reference Lagrangian calculations are convincing
for evaporation, splashing and PTC. For the effect of the drag force, large Stokes
numbers are required to yield good results. For small Stokes numbers, the gradients
in real and surface space are very steep and a fine discretisation in real and surface
space is necessary to capture the drag effect also quantitatively.

(iii) Verification and Validation of QBSM in two real space dimensions:

QBSM was tested in three two-dimensional configurations where evaporation, drag
force and splashing affect two crossing spray jets. The crossing of two spray jets
that are affected by Stokes drag force can be reproduced qualitatively. The minor
interactions in the crossing region are most likely due to numerical diffusion at the
crossing points. In the case where evaporation is affecting the crossing sprays, the
results from QBSM and the reference Lagrange method are in good agreement. In
the splashing test case QBSM is shown to capture the fragmentation of droplets,
loss of droplet mass on the wall, inelastic rebound of droplets and the frictional
behaviour of droplets on the wall. The comparison with the Lagrange method
demonstrates that higher-order convection schemes have to be used in QBSM to
avoid the numerical diffusion in real space.

These tests demonstrate that the concepts derived in the mathematical and numerical
models are indeed appropriate, i.e. the crossing of droplet trajectories and the polydisperse
character of sprays can simultaneously be captured.

The application of QBSM to the unsteady motion of evaporating droplet clouds has

been tested in a Taylor-Green vortex gas flow [168]. This configuration can be considered
as a preliminary study to more advanced validation tests, for example, in homogenous
turbulence and more technical turbulent spray configurations [160, 161|. The following
critical issues of Euler methods in turbulent spray flows are studied in this Taylor-Green
configuration:

(i) Size segregation of droplets due to drag forces and evaporation:



153

The most obvious characteristic of polydispersity in spray flows is the segregation
of droplets according to their size which can be very pronounced in turbulent spray
flows. This effect cannot be described with methods that assume all droplets to
have the same mean velocity. QBSM, on the other hand, is shown to accurately
reproduce the size segregation of droplets using only 10 sections.

(ii) Accumulation and thinning effects of the droplet density:

In unsteady turbulent spray flows accumulation and thinning of droplets due to drag
forces and evaporation are dominant processes (see Figure 1.2). They have a strong
influence on the formation of the fuel/oxidiser gas mixture. It is shown that QBSM
can capture these effects in an inhomogeneous gas environment.

(iii) Particle trajectory crossing at local impingement planes:

It is shown that QBSM is able to predict the crossing of spray jets, while inhomoge-
neous drag forces and evaporation is acting on the droplets. The comparison with
highly-resolved Lagrangian computations reveals a convincing agreement.

In all two-dimensional configurations a considerable numerical diffusion in real space is
observed. It can be reduced by describing the convection with second-order finite volume
schemes or by using a finer space discretisation.

Despite the minor numerical defects observed in this work, QBSM was clearly demon-
strated to capture the polydisperse nature of sprays as well as the coexistence of two
droplet velocities at one location and size. If extended to more complex configurations,
this method can become a good alternative to existing CFD models in describing unsteady,
polydisperse sprays.






Chapter 8

Future work

The work presented here is the starting point for the development of a more precise
and robust Euler-Euler method that, some day, may compete with the Euler-Lagrange
method. There are various tasks to be tackled before the QBSM is ready for the simulation
of technical spray flows. The next steps in this development should be:

(i) implementation of the second-order convection scheme proposed in Section 5.3.3,

(ii) introduction of breakup and collision models to describe spray flows with smaller
droplet Knudsen numbers (dense spray flows) near the nozzle,

(iii) extension to three dimensions in real space,
(iv) one- and two-way coupling with a gas solver,
(v) extension to tri- and quad-modal velocity distributions,

(vi) refinement of physical models.

With these extensions, the QBSM would be ready to describe dense spray systems in
simple spray configurations with low gas Reynolds numbers. It would also be appropriate
for turbulent flows in which a gas solver is used that resolves all length and time scales of
the gas motion. To describe unsteady polydisperse sprays in a turbulent gas environment
within complex configurations, the following adjustments need to be performed:

(vii) The program code must be rewritten to run on massively parallelised computers.
(viii) A turbulence model must be introduced for the dispersed phase.

(ix) The method must support unstructured grids.

Every one of these steps requires extensive verification and validation to make sure that
no flaw is introduced and realistic flow configurations can be described. The Lagrange
method, which has been refined for decades now, is most suitable for comparison purposes.
It already includes all the above features and very accurate solutions are obtained when
large numbers of parcels and highly resolved grids are used. The comparison of the QBSM
with the Lagrange method also allows assessment of the computational performance.
Validation of QBSM with the help of complex spray experiments [160, 161] is achievable
when issues (i) to (ix) have been addressed and satisfying solutions have been found.
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Appendix A

Semi-Analytical Solution to the Kinetic
Spray Equation

The objective of this appendix is the derivation and semi-analytical solution to a reduced
problem of the type (3.26). It is used in Chapter 6 to verify the moment method proposed
in Chapters 4 and 5. The following treatment partly follows Dufour [43].

A.1 Reduced Kinetic Spray Equation

The model (3.26) does not allow any analytical treatment, unless the physical models are
specified and the number of variables is truncated in such a way that an analytical solution
is accessible. In the first step, the number of variables of f is reduced by considering a
one-dimensional, stationary and isothermal spray configuration, i.e. ¢ and 6 are dropped
from the argument list of f and the position and velocity vectors turn into the scalar
variables x and v, respectively. It is then assumed that the discontinuous interactions
between the droplets are not significant, the Stokes drag force model is justified and the
droplets evaporate according to the law that allows Ev to be a constant. The introduction
of these assumptions into equation (3.26) yields

v 1

The Stokes number St(s) is written as (see equation (2.18))

St(S) = SStchar with Stchar = St(Schar) = %%ﬂ?};‘: s (AQ)
to lay open the linear dependency of St(s) on the surface variable s. It is not expected
that the crude evaporation model used here is appropriate for values of s close to zero.
Therefore, the region s < e,, with 0 < 4 < 1 is removed from the domain of definition.
This procedure also prevents any singular behaviour of the final boundary value problem
(BVP) (see (A.3)-(A.5)) at s = 0. With these considerations, (A.1) reduces to

0 0 U, — 1 0
oS 9)+ o | (el b ) o] - Bvg (e =0,

(A.3)
in z€(0,1, veR and sé€ g, +00),
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supplemented by the boundary conditions

f(0;v,8) = folv,s) in veR and sé€ [g, +0) . (A.4)
W =€ in xe€ (0,1 and veR (A.5)
s=0

A.2 The Method of Characteristics

In order to apply the method of characteristics [81] to the BVP (A.3)-(A.5), it is written
in the quasilinear form®

of Uy—v s\ Of of 1
I R A W B
(Stchar - Fr) 90 95 ~ Stom

f, (A.6)

where equation (A.6) has been multiplied by s. It is observed that all functions in front
of the derivatives of f are of class C! which justifies the application of the characteristic
method and guarantees that the solution f(z,v,s) is unique.

The method of characteristics commences with the parameterisation of z, s, v and
f in terms of a scalar quantity ¢, which allows formulation of the coupled system of
differential equations

dx
i v(t)s(t)

dv  Ug—o(t)  s(t)

E a Stehar * Fr ’ U(t = O) = o , (A 7)
ds )
Fri —s(t)Ev , s(t=10)=sg,

df 1 o

T Stcharf(t) ; f(t=0)= fo(vo, s0) -

This system defines the characteristic curve t — (x(t),v(t), s(t), f(t)) = x(t) C R* that
includes the point (g, vg, So, fo(vo, S0)). To solve equation system (A.7), equation (A.7),
is divided by (A.7)3 and equations (A.7)3 and (A.7)s by (A.7);. This gives the relations

@:_ﬁUg—v(s)_ 1

ds s FrEv’

ds Ev

¢ B (A8)
dv Uy —wv(o) 1

dz ~ s(2)v(2)Stenar  v(ax)Fr’

which are solved together with the ‘initial conditions’ v(s = sg) = v and s(x = 0) = s.
The fixed parameter (3 is defined as

1 Tew

0= (A.9)

Ev Stchar B 7-_d .

IThe boundary conditions and the domain of defintion is suppressed for simplicity.
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The first order ODE (A.8); can easily be solved using standard solution methods (homo-
geneous plus particular solution). The velocity v, as a function of the variable s, reads

v(s, v, 50) = Uy — (Uy — 19) (%>6+ EjFr 1(;(_5%13 for B € (0, +oo)\ {1}

(A.10)

and

7—6 v

v(s, v, s0) = Uy — (Uy — vo)i S R (i) for p=—=1. (A.11)

Td

In the remainder of Appendix A the much simpler but very special case of § =1 is set
aside. With result (A.10), the solution of ODE (A.8), is obtained by a separation of
variables. Using the definitions

So 1

dy=v9—U; — ————— d dy==——F+—— A2
L= % T gy Fr(g—1) an T EvE(B—1) ( )
the variable s follows from the solution of the algebraic equation
dy s (6 +1) sg(B+1)
(B+1) 4 2220\ T 7)) 2 20V T
s + 5 a, + U, & s
B 5
1 d d 1
— 780@ +1) (Ugso g ! séﬁH) + —23?)) = —Eviso(ﬁ i )x . (A.13)
d so(B+1) 2 dy

Choosing (3 to be some special integer number, an analytical solution to (A.13) can be
derived ‘by hand’ or by using computer algebra systems. As [ can take any value within
(0, +00) \ {1} the solution of (A.13) has to be approximated using, for example, the root
finding algorithm fzero of MATLAB.

The differential equation (A.7), remains to be solved. In terms of the parameter ¢,
it is an easy task to find the solution

f(t)zfoeXp( t > (A.14)

S char

but here the objective is to find the NDF as a function of z, v and s. Having this in mind,
the solution of (A.7)3,

(s, 50) = ———In (i) (A.15)

Ev So

is substituted into (A.14) to obtain

f (5,00, 50) = fo(vo, 50) (f) _ﬂ. (A.16)



160 APPENDIX A. SEMI-ANALYTICAL SOLUTION

One may think that (A.16) is the solution of BVP (A.3)-(A.5) but, as « and v do not
appear explicitly in (A.16), it can only be an intermediate result. The situation is even
worse because the relations between s and x, and s and v are highly complex. Therefore,
an explicit expression for f(z;v,s) is not achievable.

A.3 Semi-Analytical Solution to the Moments of the
NDF

As mentioned above, the purpose of this semi-analytical derivation is the comparison with
the numerical calculations in Chapter 6. There, the moment method does not solve for
the NDF explicitly, but for moments of the type

S9 V9
n*M(z, vy, v, 51, 52) ::/ / sB oM f(z;v, 5)dvds . (A.17)

Therefore, it is sufficient to find the solutions for certain moments of the reduced NDF.
As will be demonstrated in the following, a semi-analytical form of n®™(x,s;, 55, v1, vs)
can indeed be found. To this end, the variables in the integral of (A.17) are changed
according to

s =Fu1(vo,s80) and v =F,o(vg,s0), with xo=0, (A.18)
and the new domain of integration in (A.17) is
D= F;l ([81, 82] X [’Ul, U2]) = ([801, 802] X [U()l, UOQ]) . (Alg)

With these modifications, the integral in (A.17) turns into
n*M(z, 51, 89,01, 05) = / FE (50, v0)F2 (50, v0) fo(s0, v0)J (0, S0, vo)dsoduvy , (A.20)
D

where J is the Jacobian of the mapping F, = {F,1,F.o}. It can be evaluated via the
relation

dJ({L‘, 50, UO)
dz

dF,; dF..\ "
J s, " 5 . A.21
R

This equation is a specialisation of a general result from tensor algebra (cf. Chadwick
[25]). By using (A.8)25 and applying the chain rule of differentiation, equation (A.21)
can be written as

1
dJ(z, sg, vo) 3w so.00) U, N |
dx $U2Stepar V2 Fr (A.22)
with  J(z, so,vo)}x:O =1.
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The following expression for J(z, so, vg) is then obtained from ODE (A.22) via separation
of variables;

xT

U 1
J = —_ 9 d /
(%, 50,0) = exp /(S(ﬁ',soavo)v2($',80,vo)Stchar+U2($’,80,UO)FT> ’
0

(A.23)
The integral on the right-hand side of (A.23) remains to be evaluated. Relations (A.8),
and (A.10) allow the transformation of variables from 2’ to u via the identification u = s.
The final expression of J(z, sg, vg) is then obtained through the evaluation of the integral

in
J(z, 80,v0) = exp | — / (ﬁUg—i— ! ) L du| (A.24)

u Ev Fr ) v(u, sg, vo)

s(w,50,v0)

where v(u, sg,v9) is the velocity given in (A.10). Knowing s(z, sg,vo), J(x, S0, vo), the
mapping F, (see (A.10) and (A.13)) and specifying the boundary condition fy(so,vo),
M (x, 51, 89,01, v9) can be evaluated using (A.20).

An algorithm thus allows the determination of n®(z, s, s9,v1, v2):

(i) The boundary condition fy(so, vo) and with it the domain of definition for sy and vy
is specified.

(ii) The variables s(x, v, so) and v(s, vg, S9) are determined for all possible values of z,
so and xg by solving relation (A.13) and using equation (A.10). When applying a
numerical root finder, s(z, sg, vo) is known at discrete points only. With computer
algebra systems an analytical expression can be derived for s(x, so, vp).

(iii) Using the result from item (ii), the Jacobian J(x, sg, vp) is evaluated from relation
(A.24).

(iv) The Jacobian, J, together with the boundary condition, fy, allow the determination
of nfM(z, 51, 89, v1,v9). As s(x, s0,v0) and J(x, s, v0) are known at discrete points
only, quadrature rules have to be applied to approximate the integral in (A.17).

The results of this semi-analytical algorithm are depicted in Figures 6.2 and 6.3 (Section
6.2).






Appendix B

Uniqueness of the Sectional Method

The proof of Proposition 1 (Section 4.4) is outlined here, as it is a mathematical necessity
to demonstrate the plausibility of the proposition and, because it also helps to understand
the numerical algorithm that is used to compute b, from the ratio 1\/[2/2’0’0/1\/[2’0’0 (k =
1,..., Ng). The proof is mainly following that of Dufour [43].

5 .

Proof of Proposition 1. The positive character of the strictly increasing function s%2 f(x, t;
v,0,s) in the domain [sg, s;y1] justifies the relation

(se)2f _ (s)32f _ (sk1)2f

0,0,0 0,0,0 0,0,0
M My My

, with sy < s < sp41 (B.1)

which by integration of each term over [sy, sk, 1) yields

3/2,0,0
M/

(8k>3/2 < 1\/1;07070 < (3k+1>3/2 . (BQ)
k

This property of the moment ratio is true for every positive function f(x,t;v,6,s) and
therefore g;, (defined in (4.24)) must necessarily satisfy this relation. In Lemma 3 it is
shown that this is indeed the case and g, which exclusively depends on b, € R, is a
bijective function from R to [(s;)%2, (si11)*/?]. These properties allow the inversion of
g1, and so the parameter by is the unique solution of the algebraic equation

3/2,0,0
VEA

glk(bk‘): NIE%O’O . (B3)

. : 3/2,0,0 0, \13/2,0,0 /7770,0, ; ; ;
This solution ensures that Mk/ JMOO0 = Mk/ /MY*Y. For the infinite section Iy,
the same conclusions can be drawn, as sy, 2 is equal to +o0. O

Lemma 3. Let I}, be a finite interval in Ry, then the function g (by) defined in (4.24)
is strictly decreasing in R and exhibits the limits

lim gy, (b) = (s40)”? and - lim gr, (by) = (s1)*2 . (B.4)
E—— 00O

bk 4?+OO

In the infinite section, gy, (by) is strictly decreasing on Ry as well, with the limit

Jim g, () = (sn.00)"? (B5)
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Proof. The function g;(b), defined in (4.24), can be transformed into

1 VR e
g1(b) = =y (5?2 — splfeTth 2—6(\/5_ — /Sre ")

3¢ bs /m

2b N

ebTer> , (B.6)

where b # 0 and As = s, 1 — S. The limits for b — 400 are obtained easily from relation
(B.6).

That g7(b) is an injective and invertible function remains to be proven. The derivative
of gr(b) with respect to b reads

S _ S — S — S —
_f k1 bstf k41 85/26 bsds—i_fs:ﬂ 53/26 bsdsj;kkJrl se bsds

g1 (b) = — 2 ;
(forrevods)

To determine the sign of g;’(b) the value of b is fixed and the numerator of (B.7) is written

w B B B Ié]
hi(3) = —/ €bsd8/ S5/2€bsds+/ 83/2€bsd8/ se %ds . (B.8)
Sk Sk Sk Sk

Differentiating this function for ( yields

(B.7)

B
hll(/B) _ ebﬂ/ (_85/2 _ 55/2 —1—53/23 +ﬁs3/2) e~ b ds ’ (B.9)

Sk
which reduces to 5
hi'(B) = ebﬁ/ (832 — %) (s — B) e P*ds . (B.10)
Sk
Notice that h;'(3) < 0 if 8 > s; and hy(s;) = 0. So, h;(3) is a strictly negative function
of 3 which allows the conclusion that g;/(b) < 0, irrespective of the sign and value of b.

Therefore, the function g;(b) is strictly decreasing on R and therefore it is injective and
invertible. O



Appendix C

Mapping from Moments to Weights
and Abscissas

The proof of Proposition 2 (Section 4.4) is necessary because it is the heart of QBSM.
Even for higher real space dimensions the one-dimensional mapping from the moments
in one real space direction to the respective weights and abscissas is of relevance. The
considerations in this appendix are based on the explanations of Desjardins et al. [39].

Proof of Proposition 2. In one real space dimension the relations between moments in set
VI (4.38) and quadrature parameters in set W} (4.37) are

MO0 = nl 42, MY = nlUl + nfUZ, o
MY20% — pl(UN2 4+ n2(UR)?, M08 = nl(UD)? + n2(U2)? .

Together with the conditions (i) and (ii) in (4.41), which ensure that o}, is real and non-
negative, it can be checked that relations (C.1) are equivalent to

3/2,0,0 2 /1 —r3/2,0,0
k ) ny = (3 — xk>Mk

nllg = (% + xk)M 2

(3 +2)0U + (3 — 1)U =0,
(3 + 2)OUL)? + (5 — ) (0UR)? = (a})?,

(3 +2)(0U)* + (5 — 2) OUR)* = qf

(C.2)

where U = U — Uy, is the deviation from the mean U} and z still has to be determined.
Solving equations (C.2)34 for 6U} and dU? yields

1 1/2 1 1/2
1- 1y
SUL = —¢ (2 “’”’“) of, U2 =¢ (f “’”’“) of | (C.3)

1
§—|—$k §—xk

with € = £1. Substitution of relations (C.3) into (C.2)5 allows the specification of xj.
With (C.3), equation (C.2)5 turns into

~(G —m)* (o))’ + G+ (eof)’ = (- 3) ol (C4)
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which can easily be reduced to

1/2
2(eoh)’ay, = (3 — 27) / q - (C.5)
This relation is equivalent to
(4(e07)® + (q)%) 2 = 3(a})* (C.6)
which finally yields
P
x), = sign(e) KL : (C.7)

2 (4(ea}) + (¢0)2)"?

Condition (ii) in Proposition 2 ensures that z; is well defined and lies in (-3, +3) for all
¢r- The two choices of € yield two solutions, which are the same up to a permutation of
(ng, U}) and (n2, UZ). This can be checked with relations (C.2); 25 and (C.3). O



Appendix D

Linear Transformation and Translation
of Moments

The mapping (cf. (4.48))

¢ =L(¢—p) (D.1)
of the vector ¢ = (41, ¢2)T into the vector ¢* = (4%, ¢5)T can be split into a translation
¢ =¢—p (D.2)

followed by a linear transformation
¢ = Lo". (D.3)

Let m*(k), m*(k) and m(k) denote the moments of ¢*, ¢ and ¢, respectively, which
are defined as

m(k) := 2 01" P2 f(p)dep, with k= (ki, ks) . (D.4)
R
Then, the moment of the translated variable ¢ can be written as

+

m* (k) = / (1) (67 fH(d")dg™ = / (61— 1) (62 — 1) f()do
2 R2

kzkz(t)( D) it [ ototies
- ZZ (’j) (’j) () ()l 1)

G- =3 (}) e (D.6)
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(Z> - (aiz) = bn(%b)' (D.7)

The linear transformation from the variable ¢ to the variable ¢*, using the tensor

Lll L12
L= , (D.8)
L21 L22

has been used, where

is the binomial coefficient.

leads to a transformation of the respective moments as well, i.e.

m ) = [ (606" (67)dg
) (D.9)
= / (L11¢f + L1293 )5 (Lordy + Loy )2 [T (@ )dp™
R2

If, again, the multinomial expansion (D.6) is used, the moment m*(k*) can be written as

Z Z ( ) ( )Lllk; N[990 Lgy 2792 [y 72

J1=072=0
/ (@ )BT (o) [ (1) . (D.10)
R2
Introducing the Kronecker delta
1 itk=y,
Ok, = . | (D.11)
else
equation (D.10) turns into

kT 2
m* (k1 k3) ZZ( )( >L11 T L0t Ly ¥2 792 L%

Jj1=0j2=0
A
Okt ki +h5—j1—io Okt ntgn 0 (K1 K3) - (D.12)

Letting m* and m denote the column vectors

m*(0,0) m(0,0)
m*(1,0) m(1,0)

m* = [m*(0,1)| m= |m(0,1) (D.13)
m*(1,1) m(1,1)
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of length L, then the transformations in (D.5) and (D.12) subsumed in the tensors M;
and M, respectively, can be written as

It is observed that the tensors in (D.14) have the following properties

(i) M; and M, are of size L x L.

(ii)) M, is a lower triangle tensor, i.e. the expression for a moment of ¢* of order ~
includes only one moment of ¢ of the same order and other, lower order moments.

(iii) Mj is block diagonal where each square block relates the moments of the same order.
The size of a block equals the number of moments of order ~.

(iv) The square sub-blocks of My are diagonal if and only if L in (D.8) is diagonal.
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