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1. Introduction 1 

1 Introduction 

 

1.1 Motivation 

 

Due to the deregulation of electricity markets, reliability, stability and availability of power 

systems must be improved in order to increase the competitiveness of electricity markets. In 

order to improve such aspects, power systems should be operated with minimal abnormal 

conditions and those conditions must be cleared as soon as possible. Therefore, HV circuit-

breakers, designed to interrupt faulted conditions, have played an important role in power 

systems over 100 years since the first introduction of oil circuit-breakers. 

 

Although the technology of an interrupting medium used in HV circuit-breakers has not been 

considerably changed since the introduction of SF6 circuit-breakers in 1960s, the development 

and studies in other areas, such as, materials, structures, arc models, monitoring, maintenance 

techniques and asset management are still continued. At present, HV circuit-breakers are 

basically designed to fit in the networks for any applications; for instance, capacitance 

switching, line closing, shunt reactor switching, transformer switching and generator 

protection. It is believed that designing general HV circuit-breakers to fit all purposes is cost 

effective and easy to maintain. However, it is found that there are many over-designed HV 

circuit-breakers installed in the networks during the past 30 years. 

 

It is believed that the most practical and realistic method to study HV circuit-breaker 

reliability is a statistical method. Worldwide surveys of HV circuit-breakers, 63 kV and above 

had been carried out by CIGRE 13.06 in 1974-1977 for the first phase [1] and 1988-1991 for 

the second phase [2]. The first survey focused on all types of HV circuit-breakers, whereas 

the second survey focused only on single-pressure SF6 HV circuit-breakers. The comparison 

represented that single-pressure SF6 circuit breakers have less major failure rate than older-

technology circuit breakers. Nevertheless, the minor failure rate of single-pressure SF6 circuit 

breakers is higher than older-technology circuit breakers [3]. It is concluded from the second 

survey that the minor failures result from operating mechanism, SF6 tightness, electrical 

auxiliary and control circuits. Stresses of HV circuit-breakers in terms of loading current and 
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short-circuit current (123 kV, 245 kV and 420 kV) during operation in the networks of 

German utilities are also investigated and studied [4]. 

 

As the number of minor failures increase, the issues of how to conduct better maintenance are 

becoming interesting. It cannot be avoided that better maintenance comes with the higher 

maintenance costs which are not desirable for utilities. Hence, it is very challenging for 

engineers to improve the maintenance programs while keeping the maintenance costs at an 

acceptable level. This is among the most discussed issues in the asset management area, since 

maintenance costs are considered as the large part of the operation costs. 

 

There is some literature proposing the HV circuit-breaker optimal maintenance models but 

most of them present only the strategies without the references from the failure databases. It is 

still a challenge to design and investigate the reliability and maintenance models with 

reference to the failure database collected from utilities. In addition, with the combination of 

risk assessment, it is possible to design the reasonable optimal maintenance programs. 

 

Influences of HV circuit-breaker specifications to the main components are of interest, since 

they are the keys to investigate cost structure. As a result, it can lead to the optimal design of 

HV circuit-breakers. 

 

1.2 Research Objectives 

 

The maintenance programs of HV circuit-breakers have been long performed by using the 

manufacture guidelines and experiences of operators. They have hardly been proved that they 

are really effective in terms of performance and costs. With emerge of deregulation electricity 

markets, maintenance costs considered as the large part of operation costs of utilities should 

be reduced in order to keep competitiveness of utilities. 

 

To design new and optimal maintenance programs, it requires the knowledge of failure 

database analysis, failure modes and effects analysis, reliability investigation and risk 

assessment. The objectives of this work are mainly comprised of those mentioned aspects. 

The failure database collected from utilities is deeply investigated to establish the 

probabilistic models. These models can represent the probability of failures and how the 
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failures are developed during the lifetime of HV circuit-breakers. For instance, the treeing 

model of failures shows the distribution of failures from the first to the following failures in 

any subsequent years. The cascading reliability model is an extension of treeing model to 

investigate the reliability of HV circuit-breakers after consecutive failures. In addition, the 

application of the Markov model can represent how the components of HV circuit-breakers 

fail. 

 

One of the main objectives of this work is failure modes and effects analysis of HV circuit-

breakers. This is the technique used to investigate failures and consequences of HV circuit-

breakers with reference to their functions and their components. The result of the 

investigation represents the severity ranking of failures, which is important for the asset 

managers to make decisions as to which failures must be intensively taken into account. The 

consequence of this analysis results in risk assessment of HV circuit-breakers which can be 

used to design the asset management. 

 

Other objectives of this work dealing with asset management are cost structure analysis and 

maintenance optimization. Cost structure analysis is able to breakdown the costs of HV 

circuit-breakers with regard to the specifications and the components. Consequently, it 

enables manufacturers to design the optimal HV circuit-breakers based on this cost analysis. 

The “when and how” to perform maintenance tasks of HV circuit-breakers to increase the 

reliability are of interest and are included in maintenance optimization. 

 

1.3 Thesis Organization 

 

The thesis contributions can be mainly divided into three phases: failure modes and effects 

analysis, probabilistic models and maintenance optimization. The extra phase is the 

investigation of stresses of HV circuit-breakers from the simulation and the statistical method. 

The organization of this thesis can be described as followed: 

 

• Fundamentals of HV circuit-breakers composed of functions and components of HV 

circuit-breakers, types of HV circuit-breakers and switching transients are represented in 

Chapter 2. 
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• Chapter 3 represents the switching stresses of HV circuit-breakers. In this chapter, the 

stresses of HV circuit-breakers regarding different types of applications are investigated 

by simulation method. The other stresses regarding the number of faults and their 

severity are investigated by using statistical method. 

• Based on the failure database developed by the Institute of Power Systems, Darmstadt 

University of Technology, it is possible to investigate failures of HV circuit-breakers by 

using a failure modes and effects analysis method. The chapter 4 describes how to 

conduct this process and presents the result of investigation. The risk assessment is also 

considered in this chapter. 

• The fundamentals of probability and reliability are first introduced in chapter 5. Then 

developed models, a treeing model and a cascading reliability model are introduced. 

With these models, the reliability and probability of HV circuit-breakers subject to 

failures can be determined.  

• The application of Markov process used to investigate steady-state probabilities is 

introduced in chapter 6. The parallel Markov model for HV circuit-breakers is developed 

to examine the state probabilities. Different types of HV circuit-breakers with different 

driving mechanisms are taken into consideration. 

• Chapter 7 is the last part of this thesis representing cost structure analysis and 

maintenance optimization. A decision matrix approach is implemented in order to figure 

out the importance of parameters relating to costs of HV circuit-breakers. Apart from 

cost structure analysis method, maintenance optimization by using different methods is 

introduced in this chapter. 

• Finally, the conclusion is made in chapter 8 to summarize the results of this thesis and to 

propose the direction of the future development. 
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2 Fundamentals of HV Circuit-Breakers 

 

2.1 Functions and Components of HV Circuit-Breakers 

 

HV circuit-breakers are among the most important equipment in power systems. They are 

designed to use as interrupting devices both in normal operation and during faults. It is 

expected that HV circuit-breakers must be operated in any applications without problems. 

Moreover, it is expected that they must be ready to be operated at anytime, even after a long 

period of non-operating time. The main functions of HV circuit-breakers can be categorized 

into four functions: 

 

• Switching-off operating currents 

• Switching-on operating currents 

• Short-circuit current interruption 

• Secure open and closed position 

 

Apart from the main functions, they are required to fulfil the physical requirements as 

follows: 

 

• Behave as a good conductor during a closed position and as a good isolator during an 

open position. 

• Change from the closed to open position in a short period of time. 

• Do not generate overvoltages during switching. 

• Keep high reliability during operation. 

 

More details of HV circuit-breaker functions and requirements under special conditions can 

be reviewed in [5], [6] and [7]. Components of HV circuit-breakers regarding basic functions 

can be divided into five groups [8]: 

 

1. Insulation: 

The electric insulation of HV circuit-breakers is provided by a combination of gaseous, liquid 

and solid dielectric materials. The failure of insulation can lead to severe damage such as 
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flashover between phases, to ground or across the opening poles resulting in major repair or 

replacement. In order to prevent such failures, the insulation must be maintained and 

monitored. For example, the quantity of insulating medium must be continuously monitored; 

the quality of insulation has to be checked by diagnostic techniques periodically and the 

insulation distance should be monitored by using position transducers and visual inspection. 

 

2. Current carrying: 

The current carrying parts are significant components that assure the flowing of current in the 

closed position. The failure of these parts can lead to catastrophic events such as contact 

welding and severe deterioration of the insulation system. It is however found that it takes 

several years until the contact degradation process reaches the final states. Practically, the 

most contact problems can be prevented by using periodic diagnostic testing. The techniques 

of current carrying testing can be accomplished by monitoring or diagnostic testing of contact 

resistance, temperature of contacts, load current and content of gas decomposition. 

 

3. Switching: 

During operation of HV circuit-breakers, they are subject to electrical, thermal and 

mechanical stresses. It is required that they should be able to make and break large amount of 

power without causing failures. The parameters used to monitor and diagnose switching are 

composed of position of primary contacts, contact travel characteristics, operating time, pole 

discrepancy in operating times, arcing time and arcing contact wear. Contact travel 

characteristics are the most widely used parameters in periodic testing in order to investigate 

the contact movement. 

 

4. Operating mechanism: 

The operating mechanism is a part used to move contacts from open to closed position or 

inversely. The operating mechanism failures account for a large proportion of total failures of 

HV circuit-breakers. For example, leakage of oil and gas in the hydraulic and pneumatic 

systems is very common but it can be handled without system interruption. On the other hand, 

breakdown of shafts, rods and springs could lead to serious failures resulting in the 

interruption of systems. 
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5. Control and auxiliary functions: 

Control and auxiliary components are the parts controlled by 110-220 volts d.c. The signal is 

sent to the coil to move a latch or open a valve leading to energy release of a mechanical 

drive. The control and auxiliary parts, composed of electrical circuits and latches or values, 

are exposed to failures relatively frequently according to reliability surveys. Typical failures 

in these parts are failing to close or open on demand as well as delays in the operation. Coil 

current, voltages, status of auxiliary switches, circuit continuity and the environment of the 

control cabinet are the parameters relating to control and auxiliary systems which must be 

monitored. 

 

2.2 Arc Interruption 

 

The switching arc plays a significant role in the interruption process, since it is the element 

that is able to change from the conducting to non-conducting state. A burning arc is 

established between the breaker contacts surrounded by extinguishing medium such as oil, air 

or sulphur hexafluoride (SF6). At the moment the contacts are going to be apart, the 

connecting surface is very small. As a result, the high current density at that point can melt 

the contact material. After that, the melting contact is exploded thus leading to the gas 

discharge. 

 

The electrical arc is in the form of metal vapour and hot air in case of air circuit-breakers. For 

oil circuit-breakers, heat within the arc will decompose some oil, thus generating gases. 

During the contact separation, these gases and metal vapour are ionized. Then, the current can 

still flow through the arc at this moment. In principle, the arc interruption can be carried out 

by cooling the arc, increasing the length and splitting it into a number of arcs in series. The 

plasma channel of the electric arc can be represented in Fig. 2.1 and the temperature 

distribution is depicted in Fig. 2.2 

AnodeCathode Arc column

Contraction zone Contraction zone

Space charge

zone

Space charge

zone

Ie (electrons)

I+ (ions)

 

 Figure 2.1: The plasma channel of electric arc [9] 
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 Figure 2.2: The potential distribution along an arc channel [9] 

 

The voltage drop near the cathode region is normally around 10-25 volts, while the voltage 

drop near anode is around 5-10 volts. The voltage drop in the arc column depends on the 

types of gases, gas pressure, the magnitude of arc current and the length of column [10]. 

 

2.3 Circuit-Breaker Classification 

 

According to many criteria, circuit-breakers can be classified into many groups as follows: 

 

• Circuit-breaker types by voltage class: 

The classification of circuit-breakers regarding voltage class can be divided into two groups: 

low voltage circuit-breakers with rated voltages up to 1000 volts and high voltage circuit-

breakers with rated voltages of 1000 volts and above. The second group, high voltage circuit-

breakers, can be further subdivided into two groups: circuit-breakers with rated 50 kV and 

below and those with rated 123 kV and above. 

 

• Circuit-breaker types by installation: 

Circuit-breakers can be classified in terms of installation into two types: indoor and outdoor 

installations. Practically, the only differences between those two types are the packaging and 

the enclosures. 

 

• Circuit-breaker types by external design: 

Outdoor circuit-breakers can be classified with respect to structure design into two types: 
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dead and live tank types. Dead tank circuit-breakers are the circuit-breakers of which the 

enclosures and interrupters are grounded and located at ground level, as shown in Fig. 2.3. 

This type of circuit-breaker is widely used in the United States. Live tank circuit-breakers are 

circuit-breakers equipped with the interrupters above the ground level, as shown in Fig. 2.4. 

Their interrupters have the potential. 

 

 

 

 Figure 2.3: Dead tank circuit-breaker (Source: Manitoba, Canada) 

 

 

 

 Figure 2.4: Live tank circuit-breaker (Source: ABB AG, Switzerland) 

 

• Circuit-breaker types by interrupting medium: 

The interrupting mediums are the main factors in designing circuit-breakers. The technology 

of air and oil interrupting mediums for circuit-breakers was first developed 100 years ago. 
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These types of circuit-breakers are still in operation but there is no further development, since 

they cannot fulfil the higher ratings of power systems nowadays. In addition, there are issues 

as environmental problems and as to relatively low reliability. The new generation of 

interrupting mediums is focused on vacuum and sulfurhexafluoride (SF6). Vacuum circuit-

breakers are predominant in medium voltage levels, whereas SF6 circuit-breakers are widely 

used in high voltage levels. 

 

• Circuit-breaker types by operation: 

The main purpose of HV circuit-breakers is interrupting abnormal conditions. Nevertheless, 

different applications of HV circuit-breakers must be taken into account. The applications of 

HV circuit-breakers can be classified as follows: 

 

 - Capacitance switching: capacitor banks and unloaded cable switching 

 - Line closing: overhead transmission line switching 

 - Shunt reactor switching 

 - Transformer switching 

 - Generator switching 

 

2.4 Types of Circuit-Breakers 

 

Circuit-breakers can be classified according to interrupting mediums into four categories: 

 

2.4.1 Oil Circuit-Breakers 

 

Oil circuit-breakers are the most fundamental circuit-breakers which were first developed in 

1900s. The first oil circuit-breaker was developed and patented by J. N. Kelman in the United 

States. Oil has an excellent dielectric strength which enables itself not only to be used as an 

interrupting medium but also as insulation within the live parts. The interrupting technique of 

oil circuit-breakers is called “self-extinguishing”, since the oil can produce a high pressure 

gas when it is exposed to heat resulting from arc. In other words, arc can be cooled down by 

the gas produced proportional to arc energy. During the arc interruption, the oil forms a 

bubble comprising mainly hydrogen. It is found that arc burning in hydrogen gas can be 
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extinguished faster than other types of gases. However, hydrogen cannot be used as 

interrupting medium, as it is not practical to handle. Oil circuit-breakers can be divided 

according to methods of arc interruption into two types: bulk oil and minimum oil types. 

 

2.4.1.1 Bulk oil type 

 

The main contacts and live parts are immersed in oil which serves as an interrupting medium 

and insulates the live parts. Plain-break circuit-breakers are considered as bulk oil type, since 

the arc is freely interrupted in oil. This type of circuit-breaker contains a large amount of oil 

and requires a large space. It could cause environmental problems after an explosion. It is 

therefore limited to the low voltage level. An example of a bulk oil circuit-breaker and its 

components is represented in Fig. 2.5. 

 

 

 

 Figure 2.5: Bulk oil circuit-breaker (Source: Allis Chalmers Ltd.) 

   1. bushing   6. plunger guide 

   2. oil level indicator  7. arc control device 

   3. vent    8. resistor 

   4. current transformer  9. plunger bar 

   5. dashpot 
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2.4.1.2 Minimum oil type 

 

This type of oil circuit-breaker was developed in Europe, due to requirement to reduce 

utilized space and cost of oil. In comparison to the bulk oil type, for the minimum oil type the 

volume of oil is reduced and used only in an explosion chamber. The other difference from 

the bulk oil type is the insulation, which is made of porcelain or solid insulating material. 

Single-break minimum oil circuit-breakers are used in the voltage levels of 33-132 kV. When 

higher ratings are required, the multi-break type is then applied with a combination of 

resistors and capacitors. These resistors and capacitors are applied in order to provide 

uniformity to the voltage distribution. 

 

2.4.2 Air-Blast Circuit-Breakers 

 

The arc interruption of air-blast circuit-breakers is carried out by introducing the high-

pressure air flow in axial or cross directions as shown in Fig. 2.6. In axial type, the arc is 

cooled down in an axial direction until the ionisation is brought down to zero level. The 

current is then interrupted at this point. In contrast to the axial type, the cross type will 

compress the air and blow into an arc-chute compartment. 

 

 

(a) (b)
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 Figure 2.6: Air blast direction: (a) axial direction, (b) cross direction 

 

The performance of air-blast circuit-breakers depends on many factors, for example, operating 

pressure, the nozzle diameter and the interrupting current. The advantages of air-blast circuit-

breakers can be listed as follows [11]: 
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• Cheap interrupting medium 

• Chemical stability of air 

• Reduction of erosion of contacts from frequent switching operations 

• Operation at high speed 

• Short arcing time 

• Being able to be operated in fire hazard locations 

• Reduction of maintenance frequency 

• Consistent breaking time 

 

The disadvantages of air-blast circuit-breakers are the high-level noise during the operation 

and the requirement for the air to remain dried. Similar to oil circuit-breakers, resistors and 

capacitors are needed when air-blast circuit-breakers are used in very high voltage levels. The 

serious problem which could occur during small current interruption is a chopping current, 

since the velocity and pressure of air-blast circuit-breakers are independent of interrupted 

current. An example of air-blast circuit-breaker is represented in Fig. 2.7. 

 

 

 

 Figure 2.7: Air-blast circuit-breaker (Source: Strathaven substation, Lanarkshire, UK) 

 

2.4.3 Vacuum Circuit-Breakers 

 

The dielectric strength of vacuum is considerably higher than other interrupting mediums. 

Hence, a contact separation of around 1 cm is enough to withstand high voltages. 
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Consequently, the power to open and close contacts can be significantly reduced compared 

with other types of circuit-breakers. In addition, the rate of dielectric recovery of vacuum is 

much faster than that of air. The interrupting technique of vacuum circuit-breakers is different 

from other types of circuit-breakers. The arc extinguishing process is governed by a metal 

surface phenomenon during their contacts part. In other words, the arc is not extinguished by 

an interrupting medium but by the metal vapour. The vacuum arc can be only cooled down by 

using a magnetic field which can move the arc over the contact surfaces. In order to do so, the 

contacts are manufactured with spiral segments as shown in Fig. 2.8. This technique can also 

prevent contact erosion.  

 

Nowadays, vacuum circuit-breakers are predominant in medium voltage levels. They are also 

considered as maintenance-free circuit-breakers due to their simple and reliable design. 

 

 

 

 Figure 2.8: Contacts of vacuum circuit-breaker [12] 

 

2.4.4 SF6 Circuit-Breakers 

 

SF6 gas and its characteristics were discovered in 1920s but the development of SF6 gas as an 

interrupting medium applied for circuit-breakers began in 1940s. However, the SF6 circuit-

breakers first came to the market in 1960s. The properties of SF6 gas are superior to other 

interrupting mediums as follows: 

 

• High dielectric withstand characteristic. For example, SF6 gas at absolute pressure has 

twice the dielectric strength of air and at 3 bar it is comparable to oil. 
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• High thermal conductivity and short thermal time constant (1000 times shorter than air) 

resulting in better arc quenching. 

• Arc voltage characteristic is low thus resulting in reduced arc-removal energy. 

• At normal conditions, SF6 is inert, non-flammable, non-corrosive, odourless and non-

toxic. However, at the temperature over 1000°C, SF6 decomposes to gases including 

S2F10 which is highly toxic. Fortunately, the decomposition products recombine abruptly 

after arc extinction (when the temperature goes down). 

 

The problem of moisture from the decomposition products must be considered. The moisture 

can be absorbed by a mixture of soda lime (NaOH + CaO), activated alumina (dried Al2O3) or 

molecular sieves. The other problem is the condensation of SF6 at high pressures and low 

temperatures. For example, at a pressure of 14 bars, SF6 liquefies at 0°C. In the areas with low 

ambient temperature such as Canada, Scandinavian countries and Russia, gas heaters must be 

utilized. The other solution is the introduction of gas mixtures such as nitrogen (N2). Although 

the gas mixture of SF6/N2 can be used in the low ambient temperature, the dielectric withstand 

capability and arc interruption performance are reduced. For example, the short-circuit 

capacity rating of 50kA is reduced to 40kA. The development and types of SF6 circuit-

breakers can be represented as follows: 

 

2.4.4.1 Double-pressure SF6 circuit-breakers 

 

This type is developed by using principles similar to air-blast circuit-breakers. The contacts 

are located inside the compartment filled with SF6 gas. During the arc interruption, the arc is 

cooled down by compressed SF6 from a separate reservoir. After the interruption, SF6 gas is 

pumped back into the reservoir. This reservoir must be equipped with heating equipment to 

ensure that the SF6 will not liquefy. However, failures of heating equipment can result in this 

type being unable to operate as circuit-breakers. This type of SF6 circuit-breaker is rarely used 

in the market nowadays because of its high failure probability. 

 

2.4.4.2 Self-blast SF6 circuit-breakers 

 

The interrupting chamber of this type of circuit-breaker is divided into two main 

compartments with the same pressure (around 5 atm). During the arc interruption, the gas 

pressure in the arcing zone is heated resulting in high pressure. This high pressure gas from 
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the other compartment then blasts into the arcing zone and in the meantime cools the arc 

column. Finally, the arc is extinguished. This type of circuit-breaker is normally used in high 

voltage levels up to 123 kV. The interruption principle and structure are shown in Fig. 2.9. 

 

 

 Figure 2.9:  Arc interruption principle of self-blast circuit-breakers  

(Source: SIEMENS) 

1. terminal plate  5. nozzle 

2. contact carrier  6. contact cylinder 

3. main contact  7. base 

4. arcing contact  8. terminal plate 

 

 

2.4.4.3 Puffer-type SF6 circuit-breakers 

 

The principle of this type is to generate compressed gas during the opening process. The 

moving contacts move the piston and thus compressing the gas in the chamber. As a result, 

the compressed gas flows along the arc channel and thereby extinguishing the arc. The 

development of puffer-type SF6 circuit-breakers can be divided into two generations: first and 

second generations. The principle of arc interruption of both generations is similar but the 

improvements of the second generation concentrate on the better design, improvement of 

short-circuit rating, arcing contact lifetime and the material of the nozzle [13]. 
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Since the gas has to be compressed, the puffer-type SF6 circuit-breaker must have a strong 

operating mechanism. For example, when large current such as three-phase fault is 

interrupted, the opening speed of circuit-breakers is slowed down because of thermal 

pressure. The operating mechanism should have adequate energy to move the contacts apart. 

Consequently, the reliable operating mechanisms dominate the costs of circuit-breakers. 

 

At present, SF6 circuit-breakers are predominant in high voltage levels with the high short-

circuit capability up to 63 kA. They can be used as dead tank circuit-breakers, live tank 

circuit-breakers and in gas insulated substation (GIS). 

 

2.5 Switching Transients and Applications of HV Circuit-Breakers 

 

Apart from normal load current interruption, the other main purpose of HV circuit-breakers is 

interrupting short-circuit currents. In addition, different applications of HV circuit-breakers 

must be taken into account, such as small inductive current interruption, capacitive current 

interruption, short-line fault interruption and generator protection. The applications of HV 

circuit-breakers can be summarized as follows: 

 

2.5.1 Three-Phase Short-Circuit Interruption at Terminal 

 

The symmetrical three-phase to ground fault can be represented in an equivalent single-phase 

diagram as shown in Fig. 2.10. The stray capacitance of the circuit-breaker bushing is 

represented by capacitance, C. This capacitance affects the shape of the recovery voltage 

which is established across the circuit-breakers after opening.  

 

 
L

e(t) C

i(t)

u(t)

F

 

 

 Figure 2.10:  Single-phase equivalent diagram of symmetrical three-phase to ground 

short-circuit 
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There is a short-circuit current at point F and the circuit-breaker has to interrupt at current 

zero. Assume that the supply voltage is equal toe(t) = Ecosωt . The circuit voltage equation 

when the circuit-breaker is opened can be represented in the form 

 

 
di 1

L  + idt = Ecosωt
dt C∫         (2.1) 

 

By using the Laplace transformation with the natural angular frequency 0ω = 1/ LC , the 

recovery voltage can be represented as 

 

 0u(t) = E(-cosω t + cosωt)         (2.2) 

 

At the instant after short-circuit interruption, the time t is very short (t < 1 ms) and thus 

resulting incosωt = 1. The recovery voltage can be approximated in the form 

 

 0u(t) = E(1 - cosω t)          (2.3) 

 

The possible maximum recovery voltage without damping is 2E after time π / LC . 

Practically, the maximum recovery voltage is less than 2E because of resistance and system 

losses.  

 

The switching sequence depends on the neutral grounding. The example of an isolated neutral 

system with three-phase short-circuit interruption can be explained from Fig. 2.11. The arc 

interruption is first taking place at current zero of phase A, while phase B and C are still 

arcing. After 90o from the first phase to clear (phase A), the other phases (B and C) are then 

simultaneously interrupted. The equivalent diagram of three-phase short circuit in an isolated 

neutral system is represented in Fig. 2.12. The first phase is going to be interrupted, then the 

reduced equivalent diagram can be expressed as in Fig. 2.13a and 2.13b.  
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 Phase A Phase B Phase C

 

 

 Figure 2.11: Currents of the three-phase short-circuit interruption 
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 Figure 2.12: The equivalent diagram of three-phase short circuit 
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 Figure 2.13: The reduced equivalent diagrams (a) and (b) 

 

The coupling capacitance, Cg, can be represented in terms of positive and zero-sequence 

capacitance as g 1 0C = (C - C )/3. The Laplace equivalent impedance and voltage of the first-

phase-to-clear can be expressed as 

 

 2 2
1 0

3 p
Z(p) =

2C p +ω
         (2.4) 

 2 2 2 2
1 10

ˆ3 p e 1
U(p) =

2C Lp +ω p +ω
       (2.5) 
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It is assumed that 2 2
0ω  >> ω , then the voltage of the first-phase-to-clear after transformation is 

 

 [ ]0
3

ˆu(t) = e -cosω t + cosωt
2

        (2.6) 

 

It can be seen from Eq. 2.6, that the first phase to clear factor, defined as the ratio between the 

voltage across the first clearing phase and the uninterrupted phase voltage, is 1.5. The first 

phase to clear factors in case of resonant earthed and solidly neutral are less than 1.5 

depending on the ratio between positive and zero sequence impedances. When short-circuit 

occurs far from the terminal, the transient recovery voltage will have more than one frequency 

component. The frequency of source side and line side must be taken into account resulting in 

double frequency transient recovery voltage. In addition to transient recovery voltage, the rate 

of rise of recovery voltage (RRRV) must be considered. According to IEC standard 62271-

100, circuit-breakers must be able to withstand RRRV up to 2 kV/µs. In some cases, for 

example, short-line faults (section 2.5.4) of which RRRVs are higher than 2 kV/µs, the 

protective capacitance must be implemented to reduce the steepness of recovery voltage. 

 

2.5.2 Capacitive Current Interruption 

 

Capacitive current interruption can generate overvoltages across circuit-breakers leading to 

dielectric breakdown of circuit-breakers. The reason for the overvoltages can be explained by 

the electrical charge effect at the capacitive loads such as capacitor banks, cables and 

unloaded transmission lines. The equivalent single-phase circuit diagram and waveforms of 

capacitive current interruption are depicted in Fig. 2.14. 
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 Figure 2.14: Equivalent circuit diagram of capacitive current interruption 
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Before the capacitive load is switched off, the capacitive load is fully charged equal to the 

peak supply voltage. After half a cycle, the supply voltage is reversed thus making the voltage 

across the circuit-breaker twice the peak value of the supply voltage. If the circuit-breaker 

cannot withstand this voltage, a restrike takes place across the circuit-breaker resulting in a 

high frequency current. The circuit-breaker is able to interrupt such current in a half cycle 

later. At this moment, the voltage at the capacitor reaches 3 times that of the supply voltage. If 

the circuit-breaker cannot withstand the voltage across itself, the restrike can take place again 

with the voltage at the capacitor 5 times that of the supply voltage. The details of capacitive 

current switching can be reviewed in [14]. 

 

Many applications of circuit-breaker interruption are considered as capacitive current 

interruption, for example, interruption of no-load transmission lines, interruption of no-load 

cables and switching-off capacitor banks. When the circuit-breaker is called upon to interrupt 

the capacitive current (for example, no-load transmission line interruption), the load voltage is 

higher than the supply voltage. This phenomenon is called Ferranti effect, leading to a voltage 

jump at the supply side of the circuit-breaker. 

 

2.5.2.1 Interruption of no-load transmission lines 

 

The transmission lines are first switched off at the line side resulting in no-load transmission 

lines. At this moment, only a charging current flows in the transmission lines and it charges 

the capacitance of the transmission lines. After that, the circuit-breaker at the sending end is 

called upon to switch off. The circuit-breaker is then stressed by the voltage rise at the supply 

side and the oscillation at the line side. The recovery voltage across the circuit-breaker varies 

from 2.0 to 3.0 p.u. depending on the ratio of positive-sequence to zero-sequence capacitance 

(C1/C0). The relation of C1/C0 and the recovery voltages are represented in [15]. The geometry 

of transmission lines and tower configurations affect the coupling capacitance between lines 

and earth, thus leading to different voltage stresses on circuit-breakers. 

 

2.5.2.2 Interruption of no-load cables 

 

Interruption of no-load cables is similar to interruption of no-load transmission lines which 

belongs to the case of capacitive current interruption. The difference is the interrupting 

current, which is larger than the interrupting current of no-load transmission lines but smaller 
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than the interrupting current of capacitor banks. The configurations of cables must be taken 

into account. For example, the separate conductor with its own earth screen can be treated 

similar to capacitor banks with an earthed neutral in a grounded system, since there is only an 

effect of capacitance to ground. 

 

2.5.2.3 Switching capacitor banks 

 

Capacitor banks are used in power systems to improve voltage regulation and reduce losses 

through reduction in reactive current or filter higher harmonics. Energizing a single capacitor 

bank could generate inrush current with a high frequency. It is noted that the magnitude and 

frequency of inrush current in the case of switching back-to-back capacitor banks are higher 

[16]. Furthermore, energizing capacitor banks could lead to a pre-strike of the circuit-breaker 

when the supply voltage reaches its peak before the contacts touch. The switching off three-

phase grounded capacitor banks in solidly grounded system can be treated as single phase 

circuit. The maximum voltage across the circuit-breakers is 2 p.u. In case of switching-off 

three-phase ungrounded capacitor banks, the trapped charge of the first-phase-to-clear must 

be taken into account. As a result, the maximum voltage across the circuit-breakers could 

reach 3 p.u. 

 

2.5.3 Small Inductive Current Interruption 

 

In case of a large short-circuit current interruption, the arc energy is high enough to keep the 

arc column ionized until the arc is interrupted at natural current zero. On the other hand, 

interrupting small inductive currents, such as unloaded currents of transformers and currents 

of shunt reactors, can produce overvoltages according to chopping current effects. It can be 

explained that the small inductive current is interrupted just before natural current zero, thus 

inducing the high transient voltages (L di/dt⋅ ). Consequently, these transient voltages can 

cause flashover on the insulation, such as bushings. The equivalent single-phase circuit 

diagram and waveforms of small inductive current interruption are illustrated in Fig. 2.15. 
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 Figure 2.15: Equivalent circuit diagram of small inductive current interruption 

 

The principle to calculate the voltages across circuit-breakers during current chopping is the 

energy conversion before and after arc interruption. When the circuit-breaker interrupts an arc 

current, the electromagnetic energy stored in the inductance L is transferred to electrical 

energy in the capacitance C. The balance energy equation is as follows [17]: 

 

 2 2
0 0 0

1 1
Li  + Cu = E

2 2
         (2.7) 

where L, C  Inductance, Capacitance 

 0i  Current at the time of interruption 

 0u  Voltage at the time of interruption 

 0E  Total energy 

 

After the interruption, the total energy and maximum voltage can be represented as: 

 

 2
max 0

1
Cu = E

2
          (2.8) 

 2 2
max 0 0

L
u = i  + u

C
         (2.9) 

 

It can be seen from equation 1.6 that the maximum voltage depends on the characteristic 

impedance WZ = L/C  of equipment. The examples of transient overvoltages regarding 

switching shunt reactors and unloaded transformers can be reviewed in [18] and [19]. 
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2.5.4 Short-Line Fault Interruption 

 

It is found that short-circuit current interruption far from the circuit-breakers from hundreds 

of metres to a few kilometres could result in circuit-breaker breakdown. The very high 

steepness (3 to 10 kV/µs) of recovery voltages after circuit-breaker interruption could result in 

very high stress thus leading to thermal breakdown of the arc channel. The explanation of 

short-line fault is illustrated in Fig. 2.16.  

 

 

L

e(t) C uL

F

l

Line-side voltage

Source-side voltage
e(t)

t

 

 

 Figure 2.16: Equivalent circuit diagram of short line fault interruption 

 

The transient recovery voltage after short-line fault interruption is composed of voltage 

generated by the source-side voltage and the line-side voltage.  The source-side voltage is the 

gradually rising voltage with the (1-cosine) shape, whereas the line-side voltage has the saw-

toothed voltage shape with very high frequency. The starting voltage of the recovery voltage 

and the line-side frequency can be represented as follows: 

 

 "
L W W k

di
u = Z = Z ω 2I

dt
                 (2.10) 

with "
kI  Short-circuit current 

 WZ  Characteristic impedance of the line 

 ω  Operating frequency 

 L

2 2

1
f =

2π L C
                  (2.11) 
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where L2 and C2 are the equivalent series impedance and shunt capacitance of the line from 

the circuit-breaker to the fault respectively. The saw-toothed voltage shape of the line-side is 

originated by the reflection of travelling wave at the short-circuit point. 

 

The short-line fault test is considered as the most severe short-circuit test and has been 

included in the standard. The short-line fault tests are considered with respect to the short-

circuit rating of circuit-breakers. 75% and 90% short-line faults have been applied by IEC 

standard. 

 

2.5.5 Circuit-Breakers Installed for Generator Protection 

 

Circuit-breakers for generator protection are installed between generators and step-up 

transformers. The characteristics of faults near generators can be as described below: 

 

• The recovery voltage has a very high rate of rise due to the small capacitance, C. 

• The effect of the d.c. component of short-circuit current must be taken into account. 

• The decay of the a.c. component depends on subtransient and transient time constants of 

the generator. 

• The d.c. component at the interrupting time could be higher than the peak value of the 

a.c. component depending on the generator rating. 

• The short-circuit current might not cross the zero for a period of time depending on the 

load condition before interruption. 

 

The generator circuit-breakers are designed to handle these conditions by introducing a high 

arc voltage. The high arc voltage generates an additional resistance resulting in reduction of 

the time constant of the fault. As a result, the fault can be interrupted with a reduced time 

delay. 

 

At present, this type of circuit-breaker is widely used to protect generators having ratings 

from 100-1300 MVA. The interrupting capacities of SF6 generator circuit-breakers are around 

63 kA to more than 200 kA, while air-blast circuit-breakers are applied for higher interrupting 

capacities. The standard of the generator circuit-breakers can be found in [20]. The results of 

testing and influence of cable connection was studied in [21]. 
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2.6 Summary of Reliability Surveys of HV Circuit-Breakers by CIGRE 

 

The most important and internationally reliability surveys of HV circuit-breakers had been 

carried out by CIGRE. The first enquiry had been performed during 1974-1977 from 102 

companies in 22 countries. This enquiry focused on all types of HV circuit-breakers with 

ratings of 63 kV and above. The total information of 77,892 breaker-years had been collected. 

The second enquiry, focused only on single-pressure SF6 circuit-breakers, had been done 

during 1988-1991 from 132 companies in 22 countries. The second enquiry contains 70,708 

breaker-years and also focused on circuit-breakers with ratings of 63 kV and above. The 

major and minor failures can be defined as follows: 

 

• Major failure (MF): Complete failure of a circuit-breaker which causes the lack of one or 

more of its fundamental functions. A major failure will result in immediate change in the 

system operation conditions leading to removal from service for non-scheduled 

maintenance (intervention required within 30 minutes). 

• Minor failure (mF): Failure of a circuit-breaker other than a major failure or any failure, 

even complete, of a constructional element or a subassembly which does not cause a 

major failure of the circuit-breaker. 

 

The major and minor failures at different voltage levels from both enquiries can be 

summarized in Table 2.1 [22]. The short summary of the 2nd survey can be found in [23]. 

According to Table 2.1, the ratio between minor and major failures can be calculated and 

represented in Table 2.2. 

 

It can be concluded from the 2nd enquiry compared with the 1st enquiry that: 

 

• The major failure rate of the single-pressure SF6 circuit-breakers is 60% lower than all 

types of circuit-breakers from the 1st survey. 

• The minor failure rate of the SF6 circuit-breakers is 30% higher than that of the first 

survey. It is because of more signals of the monitoring systems and because of SF6 

leakage problems 

• The operating mechanism is subject to the most failures in the failure modes of “Does 

not open or close on command” and “Locked in open or closed position”. 
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Major failure rate 
(Failures per year) 

Minor failure rate 
(Failures per year) 

Voltage (kV) 

1st Enquiry 
1974-1977 

2nd Enquiry 
1988-1991 

1st Enquiry 
1974-1977 

2nd Enquiry 
1988-1991 

All voltages 0.0158 0.0067 0.0355 0.0475 

63-99 0.0041 0.0028 0.0165 0.0223 

100-199 0.0163 0.0068 0.0417 0.0475 

200-299 0.0258 0.0081 0.0639 0.0697 

300-499 0.0455 0.0121 0.1635 0.0776 

500 and above 0.1045 0.0197 0.0493 0.0837 

 

 Table 2.1: Summary of major and minor failure rates of the 1st and 2nd enquiries 

 

Ratio between  
minor and major failures 

Voltage (kV) 

1st Enquiry 
1974-1977 

2nd Enquiry 
1988-1991 

All voltages 2.25 7.09 

63-99 4.02 7.96 

100-199 2.56 6.99 

200-299 2.48 8.60 

300-499 3.59 6.41 

500 and above 0.47 4.25 

 

 Table 2.2: The ratio between minor and major failures 
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3 Switching Stresses of HV Circuit-Breakers 

 

3.1 Switching Stress Parameters 

 

Stresses of circuit-breakers can be divided into three groups: mechanical, thermal and 

electrical stresses. Mechanical stresses are composed of effects from winds, earthquakes and 

weather conditions. In some areas subject to such mechanical stresses, circuit-breakers with 

special insulation and very strong supporting structures must be implemented. Electrical 

stresses are composed of stresses from normal switching and clearing faults. For example, 

circuit-breakers are subject to stresses when they are requested to interrupt short-circuit, 

capacitive and small inductive currents. In other words, circuit-breakers are subject to stresses 

from interruption of no-load transmission lines, no-load cables, capacitor banks and chopping 

currents of reactors. In addition, the interruption of short-line faults results in very high 

stresses or high rate of rise of recovery voltages (RRRV) across circuit-breakers. Electrical 

stresses of circuit-breakers according to operating currents and short-circuit currents have 

been thoroughly studied in [24]. It is concluded that stresses of circuit-breakers according to 

operating currents and short-circuit currents are not severe, since circuit-breaker rating had 

been oversized to cope with the increment of energy consumption in the future. 

 

In order to investigate electrical stresses of circuit-breakers according to effects of grounding 

and types of applications, interrupted currents, transient recovery voltages (TRV) across 

circuit-breakers and rate of rise of recovery voltages (RRRV) are taken into account in order 

to compare the stresses of circuit-breakers in any applications. 

 

3.1.1 Interrupted Currents  

 

Circuit-breakers are designed to be used as interrupting devices both in normal operations and 

during short-circuit circumstances.  
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The rated normal current (Ir) can be defined according to IEC standard [25] as follows: 

 

 “The rated normal current of switchgear and controlgear is the r.m.s. value of the 

current which switchgear and controlgear shall be able to carry continuously under specified 

conditions of use and behaviour” 

 

The rated short-circuit withstand current is equal to the rated short-circuit breaking current 

(Irb) in IEC standard and can be described as: 

 

 “The rated short-circuit breaking current is the highest short-circuit current which the 

circuit-breaker shall be capable of breaking under the conditions of use and behaviour 

prescribed in the standard” 

 

For example, the stresses of HV circuit-breakers from the normal and short-circuit currents 

were thoroughly investigated and can be summarized in Table 3.1 and 3.2 [26] and [27]. 

 

Voltage (kV) 95 % Percentile 
Iload/Ir 

Maximum value 
Iload,max/Ir 

123 24 % 58 % 

245 25 % 60 % 

420 38 % 84 % 

 

Table 3.1:  Stresses of HV circuit-breakers according to load current compared to 

rated current (Iload: load current) 

 

95% Percentile Maximum value Voltage (kV) 

Ik1TF/Irb Ik3TF/Irb Ik1TF/Irb Ik3TF/Irb 

123 - 91 % - 104 % 

245 66 % 81 % 86 % 94 % 

420 67 % 78 % 77 % 86 % 

 

Table 3.2:  Stresses of HV circuit-breakers according to short-circuit current 

compared to rated breaking current (Ik1TF: single-phase fault at terminal, 

Ik3TF: three-phase fault at terminal) 
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It can be seen from Table 3.1 that the stress of normal load current interruption is relatively 

low, since the 95 % percentiles of Iload/Ir are between 24-38 % and the 95 % percentiles of 

Iload,max/Ir are around 58-84 %. The stresses of normal load current interruption are increased 

with increasing voltage levels. However, this is from the study of stresses in Germany where 

the energy consumption has been growing relatively slow compared with developing 

countries. 

 

In comparison to stresses of normal load current interruption, the stresses of short-circuit 

current interruption are higher. Nevertheless, it is not a serious problem as long as the 

interrupted short-circuit current is still lower than the rated breaking current. It is shown in 

Table 3.2 that only in the case of a three-phase fault at the terminal (Ik3TF) of 123 kV system 

could the maximum short-circuit current of 104 % of rated breaking current be reached. It is 

obvious that the stresses of short-circuit current interruption are lower at the higher voltage 

levels. 

 

3.1.2 Transient Recovery Voltages and Rate of Rise of Recovery Voltages 

 

Transient recovery voltages are the voltages occurring across switching devices after the 

current interruption and their voltage waveforms are determined by power system 

configurations. It can be physically explained that this TRV oscillation results from the 

change of the energy before and after interruption and its duration is in the order of 

milliseconds. In the past, the TRV was first an unknown phenomenon and could not be 

explained until the development of the cathode-ray oscilloscope which is able to investigate 

high frequency oscillation. 

 

The large investigation of TRV was started in 1959 by using the 245 kV networks. The tests 

focused on the first phase-to-clear after clearing three-phase ungrounded faults. As a result of 

this investigation, a large number of TRV waveforms in relation to short-circuit currents in 

the networks up to 45 kV were collected [28]. The results of investigation at 245 kV systems 

were then applied by IEC standard and the extension of investigation to 420 kV system were 

performed by CIGRE Study Committee 13. It was found that the RRRV should be 2 kV/µs 

with a first-phase-to-clear-factor of 1.3 [29]. 
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According to IEC standard, the characteristics of TRV can be determined by two methods: 

two-parameter and four-parameter methods. These methods are based on the graphical 

analysis which can represent the magnitude of TRV and RRRV. The two and four-parameter 

methods are represented in Fig. 3.1 The detail of how to use these two methods to find the 

magnitude of TRV and RRRV is represented in the appendix of [7]. 

 

 

    (a)    (b) 

 Figure 3.1: (a): two-parameter method, (b): four-parameter method 

 

Normally, the two-parameter method is applied in systems with voltages less than 100 kV or 

in systems with voltages greater than 100 kV where the short-circuit currents are relatively 

small. In other cases, the four-parameter method is applied in systems with voltages 100 kV 

and above. The TRV parameters in the IEC standard are classified with respect to proportion 

of maximum short-circuit current rating, for example, 10 %, 30 %, 60 % and 100 %. The 

characteristics of each test duty can be summarized as follows: 

 

• 10% short-circuit current, IEC test duty 10: The fault current is supplied from only one 

transformer and the TRV has very high steepness of 5.5 kV/µs at 100 kV to 12.6 kV/µs 

at 765 kV. 

• 30% short-circuit current, IEC test duty T30: The fault current is supplied from 1 or 2 

transformers connected in parallel and the RRRV is 5 kV/µs for 100 kV and above. 

• 60% short-circuit current, IEC test duty T60: The fault current is supplied from 

transformers connected in parallel. The TRV has a steepness of 3 kV/µs for 100 kV and 

above. 

• 100% short-circuit current, IEC test duty T100: The RRRV is 2 kV/µs. The additional 

requirement of this test duty is ability to interrupt short-circuit current with operating 

sequence, for example, O-0.3s-CO-3min-CO. O represents opening operation and CO 
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represents closing operation followed immediately by an opening operation. The test 

duty T100 can be divided into two types: T100s (test with symmetrical short-circuit 

current) and T100a (test with asymmetrical short-circuit current). 

 

3.2 Effects of Grounding and Types of Applications to Stresses of HV 

Circuit-Breakers 

 

In order to investigate electrical stresses of circuit-breakers according to effects of grounding 

and types of applications, the 110 kV radial network model which has the short-circuit rating 

of 40 kA and 10 kA is established. This model is composed of five transmission line circuits 

and five cable circuits. The capacitor bank and the shunt reactor are also introduced in the 

network to simulate the stresses of interruption of capacitive current and chopping current 

respectively. Various types of grounding, isolated grounding, compensated grounding and 

solid grounding, at the main transformer have been applied. Interrupted currents, TRV and 

RRRV are taken into account in order to compare the stresses of circuit-breakers in any 

applications. The simulation of TRV and RRRV have been carried out by using 

PSCAD/EMTDC program, whereas short-circuit and load currents are simulated by 

ABB/NEPLAN program. 

 

3.2.1 Test System Configurations, Specifications and Modelling of Equipment 

 

The test system diagram is represented in Fig. 3.2. The ratings of 380/110 kV transformers, 

300 MVA and 1200 MVA, are selected regarding the rated short-circuit currents of 10 kA and 

40 kA respectively. The specifications and modelling of elements can be represented as 

follows: 

 

• Voltage source: The voltage source of 380 kV with the rated short-circuit capacity of  

63 kA is selected. 

• 380/110 kV power transformers: The transformer ratings of 300 MVA and 1200 MVA 

according to 10 kA and 40 kA respectively are applied. This 40 kA rating is considered 

as the maximum short-circuit rating for 110 kV circuit-breakers.  
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• Transmission lines: The length of transmission line of 25 km/circuit is modelled as 

distributed elements by using a frequency dependent model. The single conductor Al/St 

240/40 and a double circuit have been used to model the transmission line circuit.  

• 110 kV cables: The single conductor per phase of the XLPE cable with the length of  

15 km/circuit has been used. 

• 20 kV cables: The 20 kV cable with length of 80 km/circuit in the distribution network is 

modelled as lumped shunt capacitance. 

• 110/20 kV distribution transformers: The distribution transformers of 31.5 MVA are 

selected for supplying the loads of 13.5 MW/circuit. 

• Shunt reactor: The shunt reactor of 100 MVar is installed at the receiving end of the 110 

kV cable circuit to compensate the reactive power. Stray capacitance with the natural 

frequency of 2 kHz must be taken into account. 

• Capacitor banks: Grounded and ungrounded capacitor banks of 10 MVar are installed 

behind the main circuit-breaker in order to study the stresses between different 

configurations. 

• Load: In each circuit, the load of 15 MVA at 0.9 power factor is taken into consideration. 

The load model for medium voltage system is recommended in [30]. The parallel 

capacitance represents the capacitance of cable in distribution circuit. 

• System groundings: The groundings of the system are composed of three types: isolated, 

compensated and solid grounding. The compensating coil in compensated grounding is 

introduced in order to compensate the earthed fault current. 

 

3.2.2 Simulation Cases 

 

Different circuit-breaker applications have been introduced in order to simulate stresses of 

circuit-breakers. In every application, the simulation is carried out by changing types of 

grounding and interrupting currents. The three main parameters: interrupted current, TRV and 

RRRV are taken into account. The applications of circuit-breakers in this study are composed 

of: 

 

1. Switching-off no-load transmission line (Fig. 3.3a) 

2. Switching-off no-load cable (Fig. 3.3b) 

3. Interruption of single-phase 90 % short-line fault in transmission line (Fig. 3.3c) 
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 Figure 3.2: Simulation diagram of a test radial 110 kV system 

 

4. Interruption of three-phase 90 % short-line fault in transmission line (Fig. 3.3d) 

5. Interruption of single-phase 90 % short-line fault in cable (Fig. 3.3e) 

6. Interruption of three-phase 90 % short-line fault in cable (Fig. 3.3f) 

7. Switching-off ungrounded capacitor bank (Fig. 3.3g) 

8. Switching-off grounded capacitor bank (Fig. 3.3h) 

9. Switching-off shunt reactor (chopping current of 2.5 A, Fig. 3.3i) 

 

TRV waveforms of the first-phase-to-clear of HV circuit-breakers in mentioned applications 

are illustrated in Fig. 3.3  
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 Figure 3.3: Transient recovery voltages across circuit-breakers in any applications 

  (a): Switching-off no-load transmission line 

  (b): Switching-off no-load cable 
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  (c): Interruption of single-phase 90 % short-line fault in transmission line 

  (d): Interruption of three-phase 90 % short-line fault in transmission line 

  (e): Interruption of single-phase 90 % short-line fault in cable 

  (f): Interruption of three-phase 90 % short-line fault in cable 

  (g): Switching-off ungrounded capacitor bank 

  (h): Switching-off grounded capacitor bank 

  (i): Switching-off shunt reactor 

 

3.2.3 Simulation Conditions 

 

In order to simulate transients in power systems, the conditions of the simulation must be paid 

attention, for example, the simulation time step and applied models. The simulation 

conditions in this study are described as follows: 

 

• Simulation time step: The simulation time step is determined by the maximum expected 

frequency (maxf ) which is recommended in [30]. The simulation time step can be 

determined from: 

 
max

1
∆t

10×f
≤          (3.1) 

The simulation time step of 1 µs is applied for the simulation cases of short-line faults 

(cases 3-6), since the maximum expected frequency of the beginning of the recovery 

voltage is very high. The time step of 5 µs is applied for the case 9, whereas the time step 

of 50 µs is sufficient for cases 1, 2, 7 and 8. 

• Opening of circuit-breaker: Circuit-breakers are requested to open at current zero in 

cases 1-8 and at 2.5 A in case 9. The opening time after the initiation of faults is not less 

than 100 ms.  

• System grounding point: In case of isolated grounding, there are no grounding points at 

any transformers. The grounding point in cases of compensated and solid grounding is 

employed at the 380/110 kV main transformer. 

• Transmission lines and cable models: The configurations, for example, conductor 

configuration, tower configuration, sag distance and insulation configuration must be 

taken into account. 
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3.2.4 Results of Simulations 

 

The considered parameters of the simulations are composed of recovery voltage across 

circuit-breaker (TRV), rate of rise of recovery voltage (RRRV), steady-state interrupted 

current (Ib) and types of system grounding. The results are represented in Table 3.3 and 3.4. It 

must be noted that the recovery voltages in case of short-line faults are considered by the first 

peaks of the voltage waveforms. In Table 3.3, there are some cases in which the RRRVs are 

over the IEC standard of 2 kV/µs. The values of the RRRV which are over IEC standard are 

then highlighted. 

 

System grounding 
 

Isolated grounding 
 

Compensated grounding Solid grounding Simulation cases 

Ib  
(kA) 

TRV 
(p.u.) 

RRRV 
kV/µs 

Ib  
(kA) 

TRV 

(p.u.) 
RRRV 
kV/µs 

Ib  
(kA) 

TRV 

(p.u.) 
RRRV 
kV/µs 

1. Switching-off no-load 
transmission line 

0.009 1.975 0.023 0.009 1.967 0.023 0.009 1.970 0.023 

2. Switching-off no-load 
cable 

0.051 2.022 0.022 0.051 1.920 0.021 0.051 1.956 0.021 

3. Interruption of single-
phase 90% short-line fault in  
transmission line 

0.883 0.007 0.147 0.074 0.002 0.046 29.780 0.202 6.054 

4. Interruption of three-
phase 90% short-line fault in  
transmission line 

31.073 0.204 6.127 31.073 0.204 6.130 31.073 0.205 6.13 

5. Interruption of single-
phase 90% short-line fault in  
cable 

0.907 0.002 0.015 0.113 0.001 0.008 33.250 0.073 0.484 

6. Interruption of three-
phase 90% short-line fault in  
cable 

31.406 0.068 0.506 31.406 0.068 0.508 31.406 0.068 0,509 

7. Switching-off ungrounded 
capacitor bank 

0.052 2.346 0.028 0.052 2.346 0.028 0.052 2.346 0.028 

8. Switching-off grounded 
capacitor bank 

0.052 2.044 0.022 0.052 1.962 0.021 0.052 1.985 0.021 

9. Switching-off shunt 
reactor 

0.505 1.952 0.862 0.505 1.951 0.862 0.505 1.951 0.862 

 

 Table 3.3:  The results of simulations of circuit-breaker stresses with the  

short-circuit rating of 40 kA (the highlighted RRRVs are the values 

over IEC standard) 
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System grounding 
 

Isolated grounding 
 

Compensated grounding Solid grounding Simulation cases 

Ib  
(kA) 

TRV 
(p.u.) 

RRRV 
kV/µs 

Ib  
(kA) 

TRV 

(p.u.) 
RRRV 
kV/µs 

Ib  
(kA) 

TRV 

(p.u.) 
RRRV 
kV/µs 

1. Switching-off no-load 
transmission line 

0.009 1.956 0.022 0.009 1.949 0.022 0.009 1.949 0.022 

2. Switching-off no-load 
cable 

0.050 2.002 0.021 0.050 1.902 0.021 0.050 1.937 0.021 

3. Interruption of single-
phase 90% short-line fault in  
transmission lines 

0.956 0.017 0.113 0.090 0.004 0.029 8.251 0.210 1.568 

4. Interruption of three-
phase 90% short-line fault in  
transmission lines 

8.8 0.218 1.631 8.8 0.218 1.63 8.8 0.218 1.631 

5. Interruption of single-
phase 90% short-line fault in  
cables 

1.0 0.005 0.01 0.132 0.001 0.002 9.321 0.074 0.164 

6. Interruption of three-
phase 90% short-line fault in  
cables 

9.09 0.074 0.164 9.09 0.074 0.164 9.09 0.074 0.164 

7. Switching-off ungrounded 
capacitor bank 

0.052 2.319 0.028 0.052 2.319 0.028 0.052 2.319 0.028 

8. Switching-off grounded 
capacitor bank 

0.052 2.025 0.022 0.052 1.944 0.021 0.052 1.965 0.021 

9. Switching-off shunt 
reactor 

0.479 1.860 0.808 0.479 1.860 0.808 0.479 1.860 0.808 

 

 Table 3.4:  The results of simulations of circuit-breaker stresses with the  

short-circuit rating of 10 kA 

 

3.2.4.1 Transient recovery voltages (TRV) across circuit-breakers and rate of rise of recovery 

voltages (RRRV)  

 

The stresses of circuit-breakers in the mentioned applications as a function of the TRV and 

the RRRV can be represented in Fig. 3.4a-c for the case of 40kA short-circuit capacity. It can 

be concluded from Table 3.3 and 3.4 that: 

 

• In case of switching-off no-load transmission lines (case 1), the recovery voltages are 

between 1.949-1.975 p.u. and the RRRVs are around 0.023 kV/µs depending on the 

types of system grounding. It is obvious that the stress of TRV is relatively high, whereas 

the stress of RRRV is not the problem. 
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• The TRVs and the RRRVs in case of switching-off no-load cables (case 2) are 1.902-

2.002 p.u. and 0.022 kV/µs respectively. In comparison to switching-off transmission 

lines, the stress of the TRV is slightly higher in the case of isolated system grounding, 

but the stress of the RRRV is fairly similar. 

• The results from the short-line fault in transmission lines show that the RRRVs relate to 

the interrupted currents and characteristic impedances. It can be seen that the RRRVs in 

the case of single-phase short-line fault (case 3) with isolating grounding and 

compensated grounding are relatively low compared with the case of solid grounding and 

3-phase short-line fault (case 4). 

• The stresses of the RRRVs in case of short-line fault in cables are not so severe as in the 

case of the short-line fault in transmission lines because of the lower characteristic 

impedances of the cables. The RRRVs of single-phase and 3-phase short-line faults are 

not higher than 0.51 kV/µs.  

• Switching-off ungrounded capacitor banks results in the highest TRVs (~2.3-2.35 p.u.) 

regardless of the types of system grounding. The stresses of RRRVs can be neglected due 

to very low RRRVs. 

• The TRVs in the case of switching-off grounded capacitor banks lie between 1.94 p.u. 

and 2.04 p.u. corresponding to the system grounding and rating. It is shown that the 

TRVs are slightly higher when the ratings of the systems are higher. The stresses of the 

RRRVs play no important roles in this case. 

• The stresses of switching-off the shunt reactor from the TRVs and RRRVs are 

moderately high. The TRVs are around 1.86-1.95 p.u. and the RRRVs are around 0.808-

0.862 kV/µs.  
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Figure. 3.4:  Transient recovery voltages (TRVs) and rate of rise of recovery 

voltages (RRRVs) of different applications 

 (a): Isolated grounding system 

 (b): Compensated grounding system 

 (c): Solidly grounded system 

 

3.2.4.2 Interrupted currents and rate of rise of recovery voltages (RRRVs) 

 

The relationship between interrupted currents and the RRRVs can be depicted in Fig. 3.5a and 

b. It can be concluded that: 
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Figure 3.5:  The stresses of circuit-breakers with respect to interrupted currents and 

rate of rise of recovery voltages (RRRVs) 

 (a): Short-circuit current of 40 kA 

 (b): Short-circuit current of 10 kA 

 

• The RRRVs subject to the short-line faults in transmission lines are relatively high when 

the high short-circuit currents are interrupted. It can be seen from Fig. 3.5a that the 

RRRVs of such cases are around 6 kV/µs. However, the RRRVs of those cases are lower 

than 2 kV/µs, IEC standard value, when the interrupted currents are lower than 10 kA 

(Fig. 3.5b). 

• In case of short-line faults in cables, the RRRVs are not so high as in transmission lines. 

The maximum value of the RRRV is less than 0.5 kV/µs when the interrupted currents 

are lower than 40 kA. 
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• Stresses of circuit-breakers in terms of the RRRVs in other cases are not so severe 

because they are lower than standard value of 2 kV/µs 

 

3.2.5 Conclusions 

 

Stresses of circuit-breakers in terms of the TRVs, the RRRVs and interrupted currents can be 

concluded from the simulations: 

 

• Types of system grounding result in different TRVs, RRRVs and interrupted currents. 

For example, the interrupted currents of single-phase short-line faults are relatively low 

in case of isolated grounding and compensated grounding compared with solid 

grounding. However, types of grounding play no important role in case of 3-phase short-

line faults and switching-off ungrounded capacitor banks. 

• In the case of capacitive switching (except switching ungrounded capacitor banks), the 

TRVs in an isolated system are higher than those in a solidly grounded system and a 

compensated system respectively. These TRVs are dependent of the ratio of positive-

sequence to zero-sequence capacitance (C1/C0). 

• The interrupted currents of single-phase short line faults in a solidly grounded system are 

relatively high since the faults occur near the supply. In real distribution system, they 

would not be so high because of the impedances from the power plant to the faulted 

position are taken into account. Nevertheless, single-phase short line faults must be 

considered when the circuit-breakers are installed near power plants. 

• It is obvious that 3-phase short-line faults result in very high RRRVs thus leading to the 

breakdown of circuit-breakers. In order to reduce the very high RRRVs, the resistance or 

capacitance will be applied in parallel with contact break. 

• It could be concluded from the simulation that the circuit-breakers designed for 

interrupting capacitor banks can be also used for interrupting no-load transmission lines 

and no-load cables. 

• It is evident that the RRRVs in case of short-line faults are related to the interrupted 

currents.  

• The configuration of the whole system plays an important role in the TRVs and the 

RRRVs. For example, the zero-sequence capacitances of cable circuits affect the 



3. Switching Stresses of HV Circuit-Breakers 44 

transient recovery voltages. Without these cable circuits, transient recovery voltages are 

supposed to be higher. 

• In comparison to IEC standard, the values of the RRRV in most cases are lower than the 

standard value (2 kV/µs) except in some cases of interruption due to a short-line fault in a 

cable and/or transmission line. 

 

3.3 Stresses of HV Circuit-Breakers by Combined Statistical Method 

 

The electrical stresses of circuit-breakers are mainly determined by operating currents, short-

circuit currents and switching operation. In addition, the number of faults on overhead lines 

which circuit-breakers have to be interrupted is taken into account but considered separately 

from the electrical stresses. The aim of this study is to combine and investigate electrical 

stresses of circuit-breakers as a function of fault frequency and fault severity. The 

combination of fault density and fault severity of circuit-breakers are carried out by statistical 

method. Number of faults, short-circuit currents and length of transmission lines in 123 kV, 

245 kV and 420 kV were collected from the utility during 10-year operation. 

 

3.3.1 Concepts of Combined Statistical Method 

 

The approach of combined statistical method is introduced by [31] and is mentioned as 

Chessboard method. This method can combine stresses of circuit-breakers as a function of 

fault density and fault severity. The result of the investigation indicates which areas are 

subject to the highest stress and which area the faults most frequently take place. 

 

3.3.2 Investigation of HV Circuit-breaker Database 

 

The population of circuit-breakers is taken from a utility in Germany. Only this utility is taken 

into account, since the utility provides the required information, such as number of faults, 

short-circuit currents and the length of transmission lines. Such information is necessary for 

the combined statistical method. Due to lack of complete information, other databases from 

other utilities cannot be applied in this study. The total population of circuit-breakers on 

different voltage levels is represented in Table 3.5. 
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 123 kV 245 kV 420 kV 

no. of circuit-breakers 656 74 55 

 

 Table 3.5: The total population of HV circuit-breakers 

 

Transmission lines in 123 kV, 245 kV and 420 kV are taken into consideration. However, not 

every transmission is subject to the faults. Table 3.6 represents the total number of 

transmission lines and the total lengths. It can be calculated from Table 3.6 that the 

proportions of faults in terms of the line length are 28.84 %, 66.33 % and 84.94 % in 123 kV, 

245 kV and 420 kV respectively. In comparison with the proportions of faults (in terms of 

number of faulted lines), the proportions of faults are 22.40 %, 45.24 % and 48.39 % in  

123 kV, 245 kV and 420 kV respectively. In conclusion, the faulted areas in higher voltage 

levels are larger than in lower voltage levels. 

 

 123 kV 245 kV 420 kV 

no. of lines 299 42 31 

the length of lines (km) 3320 1417 963 

no. of faulted lines 67 19 15 

the length of faulted lines 951 940 818 

 

 Table 3.6: The population of transmission lines and the lengths of transmission lines 

 

The maximum expected short-circuit currents in the substations had been recorded and 

divided by the rated short-circuit breaking currents (Irb). Regardless of fault types, faults of 

each phase on faulted transmission lines were investigated. The numbers of faults per phase 

on different voltage levels are represented in Table 3.7 

 

 123 kV 245 kV 420 kV 

no. of faults per phase 352 307 260 

 

 Table 3.7: Investigated faults on transmission lines 

 

In connection with Table 3.6, the average number of faults per phase per line on different 

voltage levels can be calculated. It is represented that the average number of faults per phase 



3. Switching Stresses of HV Circuit-Breakers 46 

per line are 5.25, 16.16 and 17.33 in 123 kV, 245 kV and 245 kV respectively. It is obvious 

that the higher the voltage level, the higher the numbers of faults per phase per line. 

 

3.3.3 Data Evaluation and Analysis 

 

In order to apply the combined statistical method, the necessary information is collected and 

then investigated. The data evaluation steps are represented in Fig.3.6 

 

 Transmission line length and maximum expected Isc are 
taken into account

Every fault per phase on transmission lines is normalized 
on 100 km basis

Percentile of fault per phase per 100 km is calculated

Percentile of Isc/Irb is calculated

Combined statistical method is applied
 

 

 Figure 3.6: Steps of evaluation 

 

The density of fault or frequency of fault can be calculated by using transmission line length 

and numbers of faults. After that the values are normalized on a 100 km basis. Every fault in 

every transmission line is separately considered. In other words, “faults per phase per 100 

km” of each fault can be calculated by the following equation. 

 

Faults per phase per 100 km = (1/line length) x 100     (3.2) 

 

The examples of fault determination from the database are given in Table 3.8. After faults per 

phase per 100 km are calculated, the percentile of them are then determined. Fault severity or 
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the proportion of maximum expected short-circuit current to rated breaking current (Isc/Irb) 

can be obtained from the database. Afterwards, the percentile of it is determined 

 

fault ID Line length (km) Faults/phase/100 km Isc/Irb 

1 4.5 22.22 0.71 

2 4.5 22.22 0.71 

3 10.4 9.62 0.53 

4 10.4 9.62 0.53 

5 10.4 9.62 0.53 

6 10.4 9.62 0.53 

7 17.5 5.72 0.23 

8 17.5 5.72 0.23 

9 17.5 5.72 0.23 

10 23.02 4.34 0.31 

 

 Table 3.8: The examples of fault determination 

 

3.3.4 Implementation of Combined Statistical Method 

 

The percentiles of faults per phase per 100 km and percentiles of Isc/Irb in 123 kV, 245 kV and 

420 kV are carried out. Table 3.9 represents the percentiles of faults per phase per 100 km and 

percentiles of Isc/Irb. In 245 kV and 420 kV, there are only 19 and 15 faulted transmission 

lines respectively, thus resulting in repetitive “faults per phase per 100 km” values. As a 

result, the percentiles in 245 kV and 420 kV are not well distributed. 

 

The percentiles of faults per phase per 100 km and percentiles of Isc/Irb can be represented in 

terms of graphs as shown in Fig. 3.7 and 3.8 
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Figure 3.7: The Percentiles of faults per 
phase per 100 km 
(a): 123 kV  
(b): 245kV 
(c): 420 kV 
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Figure 3.8: The percentiles of Isc/Irb 

(a): 123 kV  
(b): 245kV 

  (c): 420 kV 
 

 

The percentiles of faults per phase per 100 km (Fig. 3.7) are calculated from the individual 

faults on different line lengths at different voltage levels. Therefore, it cannot be concluded 

that the number of faults are dependent on the voltage level. It is ascertained by CIGRE WG 

13.08 that the number of faults is independent from the voltage level. It is shown in Fig. 3.8 

that the 100% percentile of Isc/Irb in 123 kV system is higher than in 245 kV and 420 kV 

systems. In other words, circuit-breakers in 123 kV system have more stress from short 

circuit-current than those in 245 kV and 420 kV. 
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Percentiles 123 kV 245 kV 420 kV 

 
faults/ 
phase/ 
100 km 

 
Isc/Irb 

faults/ 
phase/  
100 km 

 
Isc/Irb 

faults/ 
phase/ 
100 km 

 
Isc/Irb 

10% 3.154 0.198 0.840 0.149 0.988 0.226 

20% 4.437 0.280 0.917 0.205 0.988 0.258 

30% 4.669 0.307 0.917 0.338 1.428 0.325 

40% 5.121 0.343 0.956 0.342 1.476 0.340 

50% 5.716 0.389 1.1364 0.369 1.492 0.368 

60% 7.703 0.503 1.1364 0.431 1.909 0.488 

70% 9.507 0.571 1.1364 0.599 2.194 0.571 

80% 11.342 0.661 1.637 0.732 2.194 0.612 

90% 18.975 0.756 2.841 0.756 2.794 0.714 

100% 47.551 0.950 25.873 0.826 4.495 0.746 

 

 Table 3.9: Percentiles of faults per phase per 100 km and percentiles of Isc/Irb 

3.3.5 Results of Combined Statistical Method 

 

Parameters of faults, faults per phase per 100 km and Isc/Irb, in 123 kV, 245 kV and 420kV are 

compared with the percentile values in Table 3.9 by using a counting program developed in 

MATLAB and then placed into the 10 x 10 squared boxes. Every square-box represents 

percentiles of faults per phase per 100 km and percentiles of Isc/Irb in a range of 10 %. The 

squared boxes of faults in 123 kV system are represented in Fig. 3.9a and the size of squared 

boxes can be reduced into 5 x 5 squared boxes as shown in Fig. 3.9b. 
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 Figure 3.9: Results of combined statistical method in 123 kV system 

   (a): Population distribution in % (10 x 10 squared boxes) 

   (b): Population distribution in % (5 x 5 squared boxes) 

 

It is obvious that the highest density of faults (7.67%) lies between 0-20 % percentile of Isc/Irb 

and 60-80 % percentile of faults per phase per 100 km. In other words, at the highest density 

of faults, circuit-breakers are subject to 7.7-11.3 faults per phase per 100 km with the 

proportion of Isc/Irb up to 0.280. The second highest density (6.82 %) lies between 60-80 % 

percentile of Isc/Irb and 40-60 % percentile of faults per phase per 100 km. Circuit-breakers in 

this area are exposed to 5.1-7.7 faults per phase per 100 km with the proportion of Isc/Irb 

between 0.50-0.66. 

 

The results of combined statistical method in 245 kV and 420 kV systems are distributed as 

shown in Fig. 3.10 and 3.11 respectively. 
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 Figure 3.10: Results of combined statistical method in 245 kV system 
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 Figure 3.11: Results of combined statistical method in 420 kV system 

 

In 245 kV system, the highest density of faults (12.70 %) is placed between 20-40 % 

percentile of Isc/Irb and 60-80 % percentile of faults per phase per 100 km. In other words, 

circuit-breakers are mostly subject to 1.1-1.6 faults per phase per 100 km with the proportion 

of Isc/Irb between 0.20-0.34. 

 

In 420 kV system, the highest density of faults (15.77 %) lies between 20-40 % percentile of 

Isc/Irb and 0-20 % percentile of faults per phase per 100 km. This value corresponds to circuit-

breakers subject to 0.99 faults per phase per 100 km and the proportion of Isc/Irb between 0.26-

0.34. 

 

When the 90 % percentile of faults per phase per 100 km and 90 % percentile of Isc/Irb are 

considered, the population in the area from 90 % to 100 % has to be aggregated. For example, 

the population of circuit-breakers in 123 kV system between 90 % to 100 % percentile of 

faults per phase per 100 km and Isc/Irb represents 19.88 % as shown in shaded area of  

Fig. 3.9a. This 90 % area in 245 kV and 420 kV systems represents 15.96 % and 15.77 % 

respectively. The highest density of faults at different voltage levels can be concluded in 

Table 3.10. 
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Voltage 
(kV) 

Percentile of faults  
per phase per 100 km 

Percentile of Isc/Irb 

123 60 – 80 % 0 – 20 % 

245 60 – 80 % 20 – 40 % 

420 0 – 20 % 20 – 40 % 

 

 Table 3.10: The highest density of faults at different voltage levels 

 

It is concluded that the combined statistical approach is a useful tool to investigate the stresses 

of circuit-breakers in terms of fault density and fault severity. The result of the investigation 

can highlight the areas subject to the highest stress and the areas the faults most frequently 

occur. 

 

In order to have more reliable results, a large number of samples must be taken into account. 

It is recommended that utilities should provide the information related to the numbers of 

faults, faulted transmission line length and short circuit-current or maximum expected short-

circuit current. 
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4 Failure Modes and Effects Analysis 

 

4.1 Concepts and Definitions 

 

The main principles of designing optimal diagnosis and maintenance programs depend on the 

basis of: which types and how often the failures occur, how severe the consequences are and 

which maintenance strategies are suitable to prevent such failures. Failure Modes and Effects 

Analysis (FMEA) is the systematic approach to investigate failures by identifying functions, 

failure modes and consequences of failures. In addition, the failure database such as the 

probability of failures must be integrated into the FMEA approach in order to assess the 

severity of failures.  

 

FMEA can be considered as an important part of Reliability-Centred Maintenance (RCM) 

which is the method for achieving cost-effective programs. RCM was first applied in the civil 

aircraft industry in 1960s for the Boeing 747 series, which are more complicated than 

previous types. Concepts and fundamental principles of RCM can be defined in [32], [33] and 

[34]. It can be concluded from the first definition of RCM [33] that the aims of RCM method 

are: preservation of system functions, identification of failure modes, prioritizing of functions 

and selection of effective maintenance programs. The other definition and process of RCM 

method are based on seven questions [34]: 

 

• What are the functions and associated performance standards? 

• In what ways can the functions fail? 

• What are the causes of each functional failure? 

• What are the effects of each failure? 

• What are the consequences of each failure? 

• How to predict or prevent each failure? 

• What can be done if there is no suitable preventive task? 
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The steps of an RCM analysis can be summarized as followed [35]: 

 

• Study preparation  

• System selection and definition 

• Functional failure analysis  

• Critical item selection 

• Data collection and analysis 

• Failure modes and effects analysis 

• Selection of maintenance tasks 

• Determination of maintenance intervals 

• Preventive maintenance comparison analysis 

• Treatment of non-critical items 

 

The application of RCM to power systems was first introduced by EPRI in the area of the 

nuclear power industry. In the area of substation and HV circuit-breakers, the RCM methods 

and techniques can be reviewed in [36], [37] and [38]. The more detail and complete process 

of RCM applied to distribution systems is shown in [39]. In that study, the cable systems were 

selected from the RCM process to perform maintenance evaluation.  

 

In the following evaluation, the application of FMEA to HV circuit-breakers had been studied 

and implemented in two aspects: 

 

• Which components affect the functional failures of circuit-breakers 

• How high are the risks to components in circuit-breakers 

 

In order to conduct a FMEA process for HV circuit-breakers, the functions of circuit-breakers 

must be first defined. Afterwards, the types of damages from the functional failures are listed. 

The consequences of failures are then investigated by considering four main categories of 

consequences: personnel safety, environmental impact, operation availability and costs of 

repair. With the integration of the HV circuit-breaker database of Darmstadt University of 

Technology, it is possible to evaluate the severity of failures of each component of circuit-

breakers resulting in risk assessment.  
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4.2 Patterns of Failures 

 

The patterns of failures or failure characteristics represent the development of failures over 

time. The failures can occur suddenly or over a long period of time. The patterns of failures 

depend mainly on physical, on chemical mechanism and on types of equipment. The main 

patterns of failures as a function of failure rate can be represented in Fig. 4.1 
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 Figure 4.1: The patterns of failures 

 

According to Fig. 4.1, the meanings of patterns of failures can be explained as followed: 

 

• (a) Bathtub curve: This is the typical failure characteristic of power system equipment 

such as transformers and circuit-breakers. The failure rate is relatively high at the 

commissioning period and then reduced to the constant level during useful life. The 

failure rate is increased when the equipment starts to deteriorate. 

• (b) Infant mortality: This type of failure characteristic is considered right after 

commissioning. The failure rate is relative high and then gradually reduced to the 

constant rate. The causes of high failure rate at the beginning result from manufacturing 

defects, defective parts, poor quality control, contamination and poor workmanship. 
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• (c) Wear-out: This pattern of failure is recognized during the deterioration process 

resulting from corrosion, aging and friction. The failure rate is gradually increased with 

increasing ages of equipment. 

• (d) Constant failure rate: This failure characteristic is mentioned as “Acts of God” or 

random error, since the failure rate remains constant for a period of time. It is the pattern 

of failure during useful life. 

• (e) Gradually increasing failure rate: This is the aging pattern without identifiable wear-

out age. 

• (f) Rapid increase to a relatively constant level: This pattern of failure represents very 

low failure rate at the beginning because of new status of the equipment. The failure rate 

is then increased until it is constant. 

 

The failures related to the operating time, as shown on the left-side of Fig. 4.1, can be 

prevented by using preventive maintenance programs such as scheduled maintenance, 

inspection and overhaul. In this circumstance, the specific period to perform preventive 

maintenance is defined to keep failure probability within the acceptable level. This 

maintenance program is carried out without consideration of equipment status. 

 

The other type of failure, which is not relevant to the operating time, as shown on the right-

side of Fig. 4.1, can be prevented by using predictive maintenance or condition-based 

maintenance. The maintenance programs of HV circuit-breakers can be categorized as 

follows: 

 

• Corrective maintenance: This maintenance program is mentioned as a replacement 

program when the components fail. It is usually applied for components of which failures 

have small consequences to the operation or when the failures rarely occur. 

• Condition-based maintenance: This maintenance program is applied on the basis of status 

of components by using diagnosis methods. However, the technical and economical 

aspects must be taken into account. 

• Time-based maintenance: It can be referred to scheduled maintenance which is carried 

out according to specific interval. This type of maintenance is still the most widely used 

maintenance program nowadays. 

• Reliability-centered maintenance: This is a systematic maintenance program which is 

based on the status and failure consequences of equipment to the whole system. 
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4.3 Steps of Failure Modes and Effects Analysis for HV Circuit-Breakers 

 

The reference FMEA table and its example can be represented in Table 4.1 and steps of 

FMEA of HV circuit-breakers can be explained in order as follows: 

 

Failure cause Failure 

mode level 1 level 2 level 3 

Prob. 

of 

failure 

Consequences 

of failures 

Failure 

detection  

Criticality Ranking Maintenance 

1. Does 

not close 

on 

command 

1. 

Operating 

mecha-

nism fails 

1.1 

Drive 

fails 

1.1.1 

Motor 

fails 

0.0058 O- / C- Easy 12.63 42 Condition-

based 

   1.1.2 N2 

Storage 

fails 

0.037 O / C- Easy 90.79 20 Condition-

based 

 

 Table 4.1: The reference of FMEA table and its example 

4.3.1 Failure Database and Investigation 

 

The failure database must be provided before the FMEA process begins. The failure database, 

collected from utilities from 1960s to 2003, has been divided into five main components: 

operating mechanism, HV insulation, life-parts, control/auxiliary and others. Each main 

component can be further subdivided into many subcomponents. The detailed treeing diagram 

of every component can be found in Appendix D of [40]. The subcomponents with the 

number of failures can be found by using the web-based failure database developed by the 

Institute of Power Systems, Darmstadt University of Technology. As a result, a complete 

treeing diagram of HV circuit-breakers composed of subcomponents and number of failures is 

achieved. The subcomponents with the failure statistics play a very important role for failure 

modes and effects analysis, since the functional failures are directly related to those 

subcomponents. 

 

In this study, only SF6 circuit-breakers are of interest because they are predominant in the 

high voltage levels. The number of 4275 failures from 4357 SF6 circuit-breakers has been 

arranged regarding the subcomponents. It must be noted that the distinction between minor 

and major failures is not defined in this database. 
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4.3.2 Functions of HV Circuit-Breakers 

 

This is the first step to start the FMEA of HV circuit-breakers. The functions of HV circuit-

breakers can be defined as follows: 

 

• Switching-off operating current 

• Switching-on operating current 

• Short-circuit current interruption 

• Secure open and closed position 

 

The next step is to consider the failures where HV circuit-breakers cannot fulfil the functional 

requirements. 

 

4.3.3 Functional Failure Modes of HV Circuit-Breakers 

 

When HV circuit-breakers cannot fulfil the functional requirements as stated in section 4.3.2, 

the types of functional failure modes must be defined. Normally, the failures can be divided 

into two types of failures: major and minor failures. The minor failures can be prevented by 

using scheduled maintenance. In order to do such maintenance, two questions must be 

answered: 

 

• What are the causes of failures? • Which events generate the failures? 

 

The possible functional failure modes of HV circuit-breakers according to CIGRE surveys 

can be listed as followed: 

 

• Does not close on command • Breakdown to earth 

• Does not open on command • Breakdown between poles 

• Closes without command • Breakdown across open pole (Internal) 

• Opens without command • Breakdown across open pole (External) 

• Does not make the current • Locking in open or closed position 

• Does not break the current • Others 

• Fails to carry the current 
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These functional failure modes are listed in the “failure mode” column of FMEA Table as 

represented in Table 4.1. 

 

4.3.4 Causes of Failures 

 

This is the process after the functional failures are set up (section 4.3.3). The causes of 

functional failures regarding components are considered and categorized. Furthermore, the 

detail of the component failures must be investigated with the knowledge from experts and 

guidance of IEEE [41]. For example, the failure of an operating mechanism results in the 

functional failure modes “Does not close on command”, “Does not open on command”, 

“Close without command”, “Open without command” and “Does not break the current”. The 

possible causes of failures of an operating mechanism must be figured out. They are then 

compared with the failure database; thereby the number of failures can be arranged regarding 

components. It must be noted that the failure database is based on the failures of components 

without the records of failure modes. Therefore, the proportion of failures from CIGRE, Table 

4.2, which occurred in any failure modes, must be applied.  

 

For example, the causes of hydraulic operating mechanism failure in the functional failure 

mode “Does not close on command” are composed of: 20 failures of motors, 160 failures of 

N2 Storage, 230 failures of connection, 33 failures of values and others. The failure causes in 

FMEA Table are subdivided in 3 levels as represented in Table 4.1. 

 

4.3.5 Consequences of Failures 

 

After the causes of failures are classified, the next step of the FMEA is to evaluate the 

consequences of failures. The evaluation of the consequences of failures is significant to 

figure out the importance of failures. In this study, the consequences of failures are 

categorized into four groups: 

 

• Personnel safety 

• Environmental impact 

• Operation availability/Duration of repair 

• Costs of repair 
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Characteristic Proportion of failures 
2nd Enquiry 

Does not close on command 24.6 % 

Does not open on command 8.3 % 

Closes without command 1.1 % 

Opens without command 7.0 % 

Does not make the current 1.7 % 

Does not break the current 3.0 % 

Fails to carry the current 1.5 % 

Breakdown to earth 3.2 % 

Breakdown between poles 1.5 % 

Breakdown across open pole (Internal) 3.6 % 

Breakdown across open pole (External) 1.5 % 

Locking in open or closed position 28.5 % 

Others 14.6 % 

 

 Table 4.2: The proportions of functional failure modes from the CIGRE’s 2nd enquiry 

 

Moreover, these four main groups are subdivided into 10 levels of consequences with the 

application of a score system as shown in Table. 4.3 The total consequences of failures can be 

represented as: 

 

 Consequences of failures =  Personnel safety + Environmental impact  

+ Duration of repair + Costs of repair  (4.1) 

 

The consequences of failures of FMEA Table (Table 4.1) are represented in the column of 

“Consequences of failures”. 
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Consequence Description of consequences Score 

P:  Personnel safety Injury or death of personnel 10 

E+:  Environmental impact Release of SF6 and oil insulating medium 9 

E:  Environmental impact Occurrence of fire 8 

E-:  Environmental impact No release of SF6 and oil insulating medium 7 

O+:  Duration of repair > 5 days 6 

O:  Duration of repair 2-5 days 5 

O-:  Duration of repair 2 days 4 

C+:  Costs of repair > 10000 Euro 3 

C:  Costs of repair 1000-10000 Euro 2 

C-:  Costs of repair < 1000 Euro 1 

 

 Table 4.3: Consequences of failures and their descriptions 

 

4.3.6 Failure Detection 

 

In order to evaluate the consequences of failures in section 4.3.5 conservatively, the criterion 

of “Failure detection” must be considered. In other words, it is very important to determine if 

the failures can be detected by the diagnosis or observation methods. For instance, the 

consequence of SF6 leakage is severe, but it is easy to detect this circumstance by a 

monitoring technique, thus reducing the probability of occurrence. The process of failure 

detection analysis is carried out by introduction of a score system as represented in Table 4.4 

 

Failure detection Score 

Impossible to detect 3 

Difficult to detect 2 

Easy to detect 1 

 

 Table 4.4: Failure detection  
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The descriptions of different levels of failure detection can be explained as followed: 

 

• Impossible to detect: The failure cannot be discovered by the maintenance method. 

• Difficult to detect: The failure is not be able to be diagnosed or the additional diagnose 

must be required. 

• Easy to detect: The failure can be detected by the maintenance method. 

 

4.4 Failure Modes and Effects Analysis Evaluation Process 

 

The process of the FMEA, after assembling the required information in section 4.3, can be 

represented in Fig. 4.2 

 

 
Record the functional failure modes

Record the causes of failures for every 
functional failure mode

Evaluation of failures regarding 
consequences

Evaluation of failure regarding failure 
detection

Risk assessment of failures

Probability of failure from the failure 
database

Ranking risks and evaluation of 
maintenance programs  

 

 Figure 4.2: The flowchart of FMEA evaluation process 

 

It can be seen from Fig. 4.2 that the risk assessment of failures are comprised of the product 

of three parameters: consequences, failure detection and probability of failure. The product of 

first two parameters, consequences and failure detection, are mentioned as the entire 

consequences. The consequence damage with the highest score represents the highest risk of 

the considered component. Therefore, the appropriate maintenance program must be applied 

to reduce this high risk. Due to the application of the score system for different parameters, 

the results of the evaluation are largely dependent on the range of the score scales. In order to 
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reduce this effect, the decision matrix approach as shown in Fig. 4.3 must be implemented 

[42]. With this method, every 2 parameters are compared with each other, in this case 

providing an indication of the risk. 

 

Criteria 

A
: C

on
se

qu
en

ce
 

of
 fa

ilu
re

 
B

: F
ai

lu
re

 
de

te
ct

io
n 

C
: P

ro
ba

bi
lit

y 
of

 
fa

ilu
re

 

ΣΣΣΣ WF/% 

A: Consequence of failure 0 1 1 2 16.7 

B: Failure detection 3 0 3 6 50.0 

C: Probability of failure 3 1 0 4 33.3 

    12 100.0 

 

 Figure 4.3: The decision matrix 

 

The weighting factors with respect to the decision criteria can be defined as follows: 

(example) 

 

• The effect of parameter A is smaller than B: 1 

• The effect of parameter A is similar to B:  2 

• The effect of parameter A is larger than B: 3 

 

The summation of each parameter on the horizontal axis is compared with the total 

summation on the vertical axis, resulting in the proportion of each parameter to the total 

effect. The evaluation with this method represents the maximum weighting factors that should 

be applied for each parameter. The maximum weighting factors for each parameter can be 

concluded as followed: 

 

• Consequence of failure  16.7% 

• Failure detection   50.0% 

• Probability of failure  33.3% 
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The weighting factors of the three parameters show that the effect of failure detection plays a 

higher significant role for risk assessment than the other two parameters. The equation of risk 

assessment composed of three mentioned parameters can be expressed as: 

 

 Risk = Consequence of failure x Failure detection x Probability of failure  (4.2) 

 

It must be noted that the maximum values of the mentioned parameters from section 4.3.1, 

4.3.5 and 4.3.6 must be transformed to match with the maximum weighting factors from the 

decision matrix. The transformation method and the related equations are represented in 

Appendix A. 

 

4.5 Results of Failure Modes and Effects Analysis 

 

With the FMEA evaluation process, the risk of failure of every component can be 

investigated. The damage of one component can lead to many functional failures. For 

example, the failure of a motor could result in the functional failures “Does not close on 

command” and “Does not open on command”. The priority of risk in relation to functional 

failures and damage of components from the FMEA process in section 4.3 is shown in Table 

4.5. It is obvious from Table 4.5 which functional failures, from which components, must be 

carefully taken into account. The full analysis of FMEA is found in Appendix B1. 

 

In addition, it is very useful to assess the risk with respect to only components, since the 

typical maintenance program is designed to maintain the components. The evaluation of risk 

based only on components can be represented in Table 4.6. The details of the evaluation can 

be found in Appendix B2. 
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Priority Score Functional failure Damaged component  

1 4011 Does not break the current Controlled capacitor 

2 3482 Does not close on command Linkage 

3 1530 Does not open on command Linkage 

4 1455 Breakdown to earth Porcelain 

5 1216 Does not make the current Switching contacts 

6 1196 Breakdown to earth Arcing chamber housing 

7 1140 Does not close on command SF6 heating equipment 

8 1124 Fails to carry current Switching contacts 

9 928 Breakdown along open pole (external) Porcelain 

10 830 Does not break the current Linkage 

11 806 Breakdown across open pole (external) Arcing chamber housing 

12 451 Does not open on command SF6 heating equipment 

13 187 Does not close on command SF6 leakage/Sealing 

14 182 Does not close on command Damping equipment 

15 155 Opens without command Trip latch 

 

 Table 4.5:  The priority of risk in relation to functional failures and damage of 

components 

 

Priority Score Damaged component Maintenance strategy 

1 3659 Linkage Corrective 

2 2999 Controlled capacitor Time-based 

3 1421 Porcelain Time-based 

4 1414 Switching contacts Time-based 

5 1134 Arcing chamber housing Time-based 

6 1120 SF6 heating equipment Condition-based 

7 222 SF6 leakage/Sealing Condition-based 

8 165 Damping equipment Time-based 

9 132 Trip latch Corrective 

10 111 Sensors Corrective 

 

 Table 4.6: The priority of risk with respect to damaged components 
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4.6 Risk Assessment of HV Circuit-Breakers 

 

The risk assessment in this section is carried out by using the a diagram with the different 

classes of risk. In Fig. 4.4, the risk diagram is represented by 2 parameters: total consequence 

and probability of failure. The total consequence of failure, in this case, is the product of 

consequence of failure (Table 4.3) and failure detection (Table 4.4). In addition, the decision 

matrix approach as explained in Section 4.4 must be taken into account. It is found that failure 

detection plays a more significant role than the consequence of failure in the ratio of 75:25. 
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Figure 4.4:  The risk diagram of SF6 circuit-breakers (The numbers on the diagram 

are related to the priority of risk in Table 4.6) 

 

In order to evaluate the levels of risk, the classification of risk with respect to probability and 

total consequence must be defined as followed: 

The probability of failure: 

 

• 0.00 – 0.02: Low • 0.02 – 0.04: Medium • 0.04 – 0.08: High 

 

The total consequence: 

 

• 0 – 30%:Low • 30 – 60%: Medium • 60 – 100%: High 
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From these criteria, the iso-risk curves can be calculated and plotted as shown in Fig. 4.4. 

These iso-risk curves illustrate the identical degrees of risk along the iso-risk curve lines. It 

can be concluded from Fig. 4.4 that: 

 

• The components 1 and 2 corresponding “linkage” and “controlled capacitor” are in the 

region of “Medium” level of risk. In order to reduce the degree of risk, an improved 

maintenance program is recommended. For example, the typical corrective maintenance 

of linkage and time-based maintenance of controlled capacitor could be changed to 

online condition-based maintenance. 

• The components 3, 4 and 5 regarding “porcelain”, “switching contacts” and “arcing 

chamber” housing are on the low-medium iso-risk curve. In this case, it is possible to 

reduce the risk by introducing the more effective maintenance program. However, it is 

not necessary to change the maintenance technique, since the probabilities of failures are 

relatively low. 

• The component 6, “SF6 heating equipment”, is close to the low-medium boundary. In 

order to reduce the risk to the secure position (low region), the condition-based 

maintenance should be more frequently carried out. The more frequent condition-based 

maintenance can be also applied to component 7, “SF6 sealing”, to reduce the probability 

of failure. However, those components are already in the low risk region. It might not be 

cost-effective to improve the maintenance program. 

• The probabilities of failures from components 8 and 9, “damping equipment” and “trip 

latch”, are considerably low. Therefore, it is not necessary to change the maintenance 

programs.  

• The component 10, “sensors”, has the highest probability of failures but very small 

consequence of failure. It is possible to improve or change the maintenance method from 

corrective to time-based or condition-based method. However, it is unreasonable to use 

the additional monitoring methods for the monitoring devices such as sensors. 

 

It can be concluded in this chapter that the Failure Modes and Effects Analysis (FMEA) 

method is very useful method to evaluate the risk of components of HV circuit-breakers. 

Consequently, the improved maintenance programs for determined components can be 

introduced. 
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5 Probability and Reliability Models 

 

5.1 Probability Distributions in Reliability Evaluation 

 

Probability distributions are considered as the main parameters in order to evaluate the 

reliability of components and systems. These probability distributions correspond to the  

time-to-failure of components which are variable due to different types, structures, 

manufactures and operating conditions. Practically, the time-to-failure cannot be obtained 

directly from the components or systems but must be determined from the sample testing or 

from the data collection. 

 

The main types of distributions are divided into two groups: discrete and continuous 

distributions. Discrete distributions represent random variables as discrete values which are 

normally nonnegative integer values, whereas continuous distributions represent random 

variables as real numbers. The two most important discrete distributions are binomial and 

Poisson distributions. The frequently-used continuous distributions comprise normal, 

exponential, Weibull, gamma and Rayleigh distributions.  

 

The four main probability functions: the reliability function, the cumulative distribution 

function, the probability density function and the hazard rate function are introduced in this 

chapter. In addition, mean time to failure and mean time to repair are taken into account. The 

fundamentals of reliability engineering can be reviewed in [43] and [44]. The focus of 

reliability engineering on power systems can be found in [45]. 

 

5.1.1 The Reliability Function 

 

The cumulative distribution function, designated by Q(t), is the distribution function 

increasing from zero to unity. At time t = 0, the component is just in operation, then Q(t = 0) 

is equal to zero. In other words, there is no failure at the beginning of the operation. When the 

time reaches infinity (t → ∞), the probability of failure is likely to be unity, since the 

component will fail when the time is long enough. In the area of reliability, it is often to 
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mention the cumulative distribution function in terms of the reliability function, R(t), which is 

the complementary value of the cumulative distribution function as represented in Eq. 5.1. 

 

 R(t) = 1 - Q(t)         (5.1) 

 

In case of a continuous random variable, the probability density function (PDF) can be 

obtained by the derivative of the cumulative distribution function. The probability density 

function can be mentioned as a failure density function, f(t) . 

 

 
dQ(t) dR(t)

f(t) = =
dt dt

−         (5.2) 

or 
t

0

Q(t) = f(t) dt∫          (5.3) 

and 
t

0 t

R(t) = 1 - f(t) dt = f(t) dt
∞

∫ ∫        (5.4) 

 

For the discrete random variable, the integrals in Eq. 5.3 and 5.4 are replaced by summations. 

The shapes of cumulative distribution function, reliability function and probability density 

function are depicted in Fig. 5.1 

 

5.1.2 Failure Rate Function 

 

The failure rate or hazard rate function, λ(t), is one of the most important functions in 

reliability analysis. It is described as a transition rate of failure over a period of time. This 

function is dependent on the number of failures in a specified period of time and the number 

of components subject to failure. 

 

 
number of failure per unit time

λ(t) =
number of components exposed to failure

     (5.5) 

 

The general reliability functions can be represented and explained by simple equations as 

follows: 
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 Figure 5.1:  (a) The cumulative distribution function, Q(t)  

(b) The reliability function, R(t) 

   (c) The probability density function, f(t) 

 

Assume that a number of identical components N0 are under test. 

 

 sN (t)  = number of components surviving at time t 

 fN (t)  = number of components failed at time t 

 0 s fN = N (t) + N (t)  

 

The reliability function, R(t), at any time t, is represented as 

 s

0

N (t)
R(t) =

N
          (5.6) 
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         = 0 f

0

N - N (t)

N
  = f

0

N (t)
1 - 

N
      (5.7) 

 

Likewise, the cumulative distribution function Q(t) is  

 

 f

0

N (t)
Q(t) =

N
          (5.8) 

 

From Eq. 5.2, the probability density function can be calculated as 

 

 
dQ(t) -dR(t)

f(t) = =
dt dt

 

 f

0

1 dN (t)
f(t) =

N dt
⋅ , when dt → 0       (5.9) 

 

Comparing the equations 5.5 and 5.9, the failure rate and the probability density function are 

identical at time t = 0. The general equation of failure rate at time t can be expressed as 

 

 f

s

1 dN (t)
λ(t) =

N (t) dt
⋅   0 f

0 s

N 1 dN (t)
=

N N (t) dt
⋅ ⋅  

        0 f

s 0

N 1 dN (t)
=

N (t) N dt
⋅ ⋅  

1
= f(t)

R(t)
⋅                (5.10) 

or        
-1 dR(t)

=
R(t) dt

⋅                   (5.11) 

 

The reliability function R(t) can be derived from failure rate function as follows: 

 

 
-1 dR(t)

λ(t) =
R(t) dt

⋅   
-dR(t)

λ(t)dt =
R(t)

 

 

Integrating, 

 

 
R(t)t

0 1

1
-λ(t)dt = dR(t)

R(t)
⋅∫ ∫   

t

0

-λ(t)dt = lnR(t)∫  
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t

0

R(t) = exp - λ(t)dt
 
 
 
∫                   (5.12) 

 

5.1.3 Mean Time to Failure 

 

The mean time to failure (MTTF) or expected value can be defined as 

 

 
0

MTTF = E(T) = t f(t)dt
∞

⋅∫ : continuous distribution             (5.13) 

or x
x=0

MTTF = E(X) = x P
∞

⋅∑ : discrete distribution              (5.14) 

 

Substituting the Eq. 5.2 into Eq. 5.13 results in 

  

 
0

dR(t)
MTTF = - tdt

dt

∞

⋅∫  

 
0

0

MTTF = -t R(t) + R(t)dt
∞

∞
⋅ ∫   

0

MTTF = R(t)dt
∞

∫              (5.15) 

 

The mean time to failure is one of several measures to represent the central tendency of the 

failure distribution. The other important parameters are the median time to failure, tmed, and 

the mode, tmode. The median time to failure divides the failure distribution into two halves 

(50:50), while the mode represents the maximum value of the failure distribution. 

 

 medR(t ) = 0.5                   (5.16) 

 mode
0 t<

f(t ) = max f(t)
≤ ∞

                  (5.17) 

 

The example of MTTF, the median and the mode are shown in Fig. 5.2 
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t

f(t)

tmode tmed MTTF  

 

 Figure 5.2: The example of MTTF, the median and the mode 

 

It is obvious from Fig. 5.2 that only the MTTF cannot represent the shape of failure 

distribution. The other measure which can be used to describe the shape of failure distribution 

is variance, σ2, expressed by 

 

 2 2

0

σ = (t - MTTF) f(t)dt
∞

⋅∫  

 2 2 2

0

σ = t f(t) dt - (MTTF)
∞

⋅ ⋅∫                  (5.18) 

 

5.1.4 The Exponential Distribution 

 

The exponential distribution is one of the most important distributions in a reliability 

evaluation. It has a constant failure rate (λ) which is the characteristic of the components in 

the useful life region of bathtub curve. The meaning behind the constant failure rate is that the 

failures occur randomly. In other words, the time-to-failure of a component is independent to 

the period of time that a component has been operated. For example, the probability of failure 

of a component in the next 10 years is the same as the probability in the first few years. This 

characteristic of the exponential distribution is mentioned as memoryless property. 

 

According to Eq. 5.12, the reliability function R(t) with the constant failure rate, λ(t) = λ , 

can be represented as 
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t

-λt

0

R(t) = exp - λdt = e
 
 
 
∫                  (5.19) 

and -λtQ(t) = 1-e  

 

Therefore, the probability density function, mean time to failure and variance are represented 

as 

 -λtdR(t)
f(t) = - = λe

dt
                  (5.20) 

 -λt

0 0

MTTF = R(t)dt = e dt
∞ ∞

∫ ∫   
-λt

0

e 1
MTTF = =

-λ λ

∞

             (5.21) 

 
2

2 -λt
2

0

1 1
σ = 1 - λe dt =

λ λ

∞ 
 
 
∫                 (5.22) 

 

In order to prove the memoryless property of the exponential distribution, the conditional 

probability and Fig. 5.3 are applied. 

 

 

 f(t)

tT0 T0+t  

  

 Figure 5.3: The memoryless property of exponential distribution 

 

 0
0 0

o

R(T + t)
R(T + t|T ) =

R(T )
   

[ ]
[ ]

0

0

exp -λ(T + t)
=

exp -λT
 

         0

0

exp(-λT ) exp(-λt)
=

exp(-λT )

⋅
  -λt= exp(-λt) = e = R(t)           (5.23) 

 

[ ]0 0R(T +t) = exp -λ(T +t)  

[ ]0 0R(T +t/T ) = exp -λt  
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5.1.5 The Weibull Distribution 

 

The Weibull distribution is the most important distribution to analyse and predict failures of 

components. According to the bathtub curve, Fig. 5.4, it can identify the distributions of 

infant mortality (region 1), constant failure (region 2) and wear-out (region 3). The Weibull 

distribution was found by Waloddi Weibull (1887-1979) who defined the model of a product 

life as a function of 

 

 
β-1 β

β t t
f(t) = exp -

α α α

    
        

                 (5.24) 

 

 hf

t

Region 1 Region 2 Region 3

 

 Figure 5.4: Bathtub curve 

 

The relevant equations of Weibull distribution are 

 

 
t

R(t) = f(t)dt
∞

∫  

 
β

t
R(t) = exp -

α

  
  
   

                  (5.25) 

 
β-1

β t
λ(t) =

α α

 
 
 

                  (5.26) 

 

The β is referred to the shape parameter of the distribution. The different values of β represent 

the different shapes of distribution as follows: 

 

• β < 1: the Weibull distribution has a hyperbolic shape and f(0) = ∞. The distribution 
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  represents the infant mortality or debugging period. 

• β = 1: the failure rate is constant (λ = 1/α ) and the distribution is similar to 

the exponential distribution representing the useful life period. 

• β > 1: the distribution is skewed from left to right. It corresponds to the wear out 

  period. 

 

The illustration of the Weibull distribution with different shape parameters can be represented 

in Fig. 5.5a – 5.5d. The α is referred to the scale parameter which influences the mean and the 

spread of the distribution. It is also mentioned as the characteristic life. 

 

 
(a)

 

 

 
(b)
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(c)

 

 

 
(d)

 

 

 Figure 5.5: The Weibull distribution with different shape parameters, β 

   (a): The probability density function, f(t) 

   (b): The cumulative distribution function, Q(t) 

   (c): The reliability function, R(t) 

   (d): The failure rate, λ 

 

5.2 Treeing Model 

 

The treeing Model of HV circuit-breakers is the reliability model which is composed of the 

distribution of consecutive failures. The aim of this model is to investigate when the failures 
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occur and what probabilities are during the lifetime. The conditional probability method is 

applied to investigate the probabilities of failures from a new status to the first and second 

failure in subsequent years. As a result, the critical years of which the failures frequently 

occur can be figured out. 

 

5.2.1 Concepts and Diagram 

 

The failures of HV circuit-breakers up to their second failures are taken into account. The 

failures of each circuit-breaker can be represented with respect to time, for example, as shown 

in Fig. 5.6. 

 

 

t (year)

new status 1st failure 2nd failure next failures

0 5 10 15

 

 

 Figure 5.6: The occurrence of failures with respect to time 

 

It can be concluded from Fig. 5.6 that the first failure occurs at the fourth year and the second 

failure on the tenth year. Such information is taken for every HV circuit-breaker. The steps of 

establishing the treeing diagram can be explained as follows: 

 

1. The failure-free durations of HV circuit-breakers are extracted from the database. For 

instance, the failure-free durations of the circuit-breaker in Fig. 5.6 are 4 years from the 

new status to the first failure and 6 years from the first to the second failure. 

2. The numbers of failures with respect to the failure-free durations are arranged. Therefore, 

the numbers of failures in any years are made available. 

3. The counting program developed in MATLAB is applied to count the number of circuit-

breakers under specified time conditions. For example, there are 11 HV circuit-breakers 

having the first failure in the first year and the second failure in the third year. 

4. With the conditional probability method, the treeing diagram of failures is established.  

5. The two-dimensional diagram of HV circuit-breakers in relation to the number of failures 

is applied. 
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The formula of conditional probability is 

 

 
P(A B)

P(A|B) =
P(B)

∩
                  (5.27) 

 

where P(A|B) is the probability of A given B. The treeing diagram of all types of HV circuit-

breakers is represented in Fig 5.7. In this figure, the number of circuit-breakers subject to 

failures and their conditional probabilities in any years are written. For example, there are 190 

from the total of 9305 circuit-breakers exposed to the first failure in the first year. From those 

190 circuit-breakers, there are 36 subject to the second failure within the next 6 months. This 

treeing diagram can be illustrated as a two-dimensional diagram in Fig. 5.8. It shows how 

many circuit-breakers exposed to the second failures and at which years. For example, it can 

be read from Fig. 5.8 that the highest number of circuit-breakers subject to the second failures 

is 36. Those 36 circuit-breakers had the first failures in the first year and the second failures in 

the next 6 months. More detail as to the number of circuit-breakers subject to the second 

failures can be read from Table 5.1. 

 

Using Fig. 5.7 and Table 5.1, the critical paths of the development of failures can be figured 

out. When only the first failures are considered, it is obvious that the failures most frequently 

occur in the sixth year (252 out of 9305 CBs). The second highest failure amount takes place 

in the first year (190 out of 9305 CBs). After that, the second failures are taken into 

consideration. It is seen that the most critical path represents the first failure in the first year 

and the second failure in the same year (36 out of 9305 CBs). The second most critical path 

shows the first failure in the sixth year and the second failure in the same year (28 out of 9305 

CBs). In order to make this information easy to be compared with information from other 

types of circuit-breakers, the years of the second failures must be transformed with respect to 

the starting point. The first five critical paths are listed in Table 5.2. 
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New 
status

 < 6 
months

1st year

2nd year

3 rd year

4 th year

5 th year

6 th year

7 th year

 < 6 
months

1st year

2nd year

The first failure The second failure

80/9305

190 /9305

165 /9305

112 /9305

181 /9305

252 /9305
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36/190

21/190
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 < 6 
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1st year

2nd year
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No failure

8 th year
132 /9305

 < 6 
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1st year

2nd year
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2nd year
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 < 6 
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10/80
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 < 6 
months
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2nd year

18/112

8/112

5/112
 < 6 

months

1st year

2nd year

16/98

9/98

9/98

 < 6 
months

1st year

2nd year

19/132

10/132

6/132

 

 

 Figure 5.7: Treeing diagram of all types of HV circuit-breakers 

 

Figure 5.8:  Two-dimensional diagram representing the number of failures with 

respect to time 
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The first failure/ The year of which the first failure occurs year 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

0 14 36 23 18 16 23 28 24 19 14 18 16 14 18 15 19 18 9 16 
1 10 21 20 8 9 9 11 11 10 8 8 12 5 6 10 3 3 5 7 
2 5 11 13 5 9 11 16 6 6 8 5 1 2 6 3 2 5 4 3 
3 2 5 10 5 8 12 15 6 3 8 13 3 5 4 6 3 4 2 1 
4 4 7 5 3 10 4 8 4 2 3 4 2 5 5 4 3 3 0 2 
5 3 4 7 6 7 5 5 5 3 3 0 2 4 5 3 4 3 1 1 
6 1 11 5 5 1 1 1 2 2 4 4 1 3 0 6 4 0 1 3 
7 1 9 6 4 2 2 7 2 1 0 3 2 1 2 0 3 0 4 0 
8 1 9 3 5 2 0 7 7 3 4 2 1 2 5 2 2 1 0 0 
9 1 1 3 1 0 1 2 2 2 2 0 3 2 1 2 1 1 0 1 
10 1 3 2 2 1 4 4 1 0 3 0 1 0 1 1 2 1 0 0 
11 1 2 1 0 0 1 2 1 4 0 1 2 2 0 0 0 2 0 2 
12 1 0 3 0 1 0 2 2 0 0 2 0 0 1 1 1 0 0 0 
13 1 0 3 3 1 1 2 0 1 1 1 2 0 1 0 0 0 0 0 
14 1 3 2 1 0 2 1 1 2 0 0 0 0 0 0 0 1 0 1 
15 0 3 3 1 0 4 0 0 2 1 1 0 0 1 1 0 0 1 0 
16 0 0 0 2 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 
17 0 1 0 0 2 0 0 3 0 0 2 0 1 0 0 0 0 0 0 T
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18 0 0 0 2 1 0 0 1 2 2 0 0 0 0 0 0 0 0 0 

 

 Table 5.1:  The table representing the number of failures under specified time 

   conditions 

 

The probabilities shown in Table 5.2 are the absolute probabilities with respect to the total 

number of circuit-breakers (9305 CBs). For example, the probability of the circuit-breakers 

having the first failure in the first year and the second failure in the same year is 0.0038 

(36/9305). In connection with the treeing diagram, Fig. 5.7 and the conditional probability 

method, it is possible to consider the probabilities step by step. For instance, the probability of 

the circuit-breakers having the first failure in the first year is 0.02 (190/9305). The conditional 

probability of those 190 circuit-breakers having the second failure in the same year is 0.19 

(36/190). 
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Critical path The first failure/ 
year of which the fist 

failure occurs 

The second failure/ 
year of which the second 

failure occurs 

Probability under 
specified 

conditions 

1 1st year 1st year 0.0038 (36/9305) 

2 6th year 6th year 0.0030 (28/9305) 

3 7th year 7th year 0.0026 (24/9305) 

4 2nd year 2nd year 0.0025 (23/9305) 

5 5th year 5th year 0.0025 (23/9305) 

 

 Table 5.2: The critical paths of the failures 

 

5.2.2 Results of Treeing Diagram 

 

In addition to the investigation of all types of HV circuit-breakers, the treeing models of four 

specified types of HV circuit-breakers, SF6 with hydraulic drive, SF6 with mechanical drive, 

minimum oil with hydraulic drive and with mechanical drive, are established and 

investigated. The first five critical paths of different types of HV circuit-breakers are listed in 

Table 5.3. The two-dimensional diagrams of these types of circuit-breakers are represented in 

Appendix C. 

 

SF6 with hydraulic 
drive (3168 CBs) 

SF6 with mechanical 
drive (1220 CBs) 

Min. oil with hydraulic 
drive (1076 CBs) 

Min. oil with 
mechanical drive  

(1674 CBs) 

C
ri

tic
al

 p
at

h
 

1st 
failure 
(year) 

2nd 
failure 
(year) 

Prob. 1st 
failure 
(year) 

2nd 
failure 
(year) 

Prob. 1st 
failure 
(year) 

2nd 
failure 
(year) 

Prob. 1st 
failure 
(year) 

2nd 
failure 
(year) 

Prob. 

1 1st 1st 0.010 16th 16th 0.007 26th 26th 0.006 23rd 23rd 0.003 

2 6th 6th 0.009 10th 10th 0.002 6th 14th 0.006 27th 27th 0.003 

3 7th 7th 0.007 1st 1st 0.002 14th 20th 0.005 29th 29th 0.003 

4 2nd 2nd 0.006 2nd 4th 0.002 19th 19th 0.005 5th 8th 0.002 

5 2nd 3rd 0.006 10th 13th 0.002 22nd 22nd 0.005 17th 24th 0.002 

 

 Table 5.3: The comparison of critical paths of different types of circuit-breakers 

 

It must be noted that the probabilities in Table. 5.3 are the absolute probabilities related to the 

total population of each respective type. It can be concluded from the treeing models that: 
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• The second failures which occur in the same year as the first failures are probably 

considered as the failures from human error or imperfect repair.  

• It is obvious that the probabilities of failures of SF6 circuit-breakers with hydraulic drives 

are higher than other types of circuit-breakers. 

• It is likely that, the first failures occurring in the first 2-3 years are failures in infant 

mortality or in the debugging period. 

• When failures in the debugging period are neglected, the failures of SF6 circuit-breakers 

with hydraulic drives most frequently occur at the sixth year, whereas those for SF6 

circuit-breakers with mechanical drives take place at the sixteenth year. It is obvious that 

the reliability of circuit-breakers with mechanical drives is higher than ones with 

hydraulic drives. 

• Most of the failures of minimum oil circuit-breakers frequently occur after the 20th year. 

It is because of the aging phenomena. However, there are some failures found in the first 

ten years. 

• The probabilities of failures of SF6 circuit-breakers over 20 years are lower than the first 

20 years due to the fact that a great number of SF6 circuit-breakers have not reached the 

aging period. It might be very interesting to further collect the failure database in the next 

20 years and use this treeing diagram to investigate the critical paths again. 

 

The advantages of treeing diagram can be concluded as followed: 

 

• With the conditional probability method, it is possible to determine the probability of 

failures at any specified time condition.  

• The treeing model can be used to establish the adaptive maintenance programs or at least 

to provide valuable information for asset managers and maintenance personnel as to 

when “the following failures” are likely to occur. The adaptive maintenance program can 

be explained by using the example of SF6 circuit-breakers with hydraulic drives. It is 

clear that the first failures frequently occur in the 6th-7th year. The maintenance program 

should be introduced before this time to reduce the probability of failures. Afterwards, it 

can be found in the treeing diagram that the second failures frequently occur within 1-3 

year after the first failures. This is the information for the asset managers and 

maintenance personnel to be aware of the following failures coming in the near future. 

• The treeing diagram can be expanded to study the third and fourth failures but it requires 

required a more complicated filter and counting program.  
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5.3 Cascading Reliability Model 

 

A cascading reliability model can be considered as the extension of treeing model. The main 

difference is the reliability point of view. The cascading reliability model determines the 

reliability of consecutive failures in terms of the mean time to failure (MTTF), state and 

transition probabilities. In this model, the failure database of different types of HV circuit-

breakers from the 1960s is applied in order to investigate reliability. With the cascading 

reliability model, the durations between failures or mean time to failure (MTTF) between 

consecutive failures are investigated. Consequently, the failure development trend from the 

first to the second and the third failure can be determined. The exponential reliability 

distributions of the first, second, and third failures are introduced in terms of the cascading 

reliability model. As a result, the probabilities and availabilities of HV circuit-breakers 

subject to consecutive failures can be investigated. For example, with this cascading 

reliability model, the probability that circuit-breakers are subject to the first failure within 10 

years, the second failure within the next 5 years and the third failure within the next 3 years 

can be discovered. 

 

Other probabilistic models applied to HV circuit-breakers can be found in [46] and [47]. The 

aging probability with an effect of maintenance on reliability and costs is discussed in [48].  

 

5.3.1 Investigation of Failure Database 

 

In this section, the preparation of failure data and investigation of reliability parameters are 

described. It must be noted that five different groups (all types, SF6 with hydraulic drive, SF6 

with mechanical drive, minimum oil with hydraulic drive and with mechanical drive) had 

been studied. According to small samples of air blast circuit-breakers, they were not 

separately considered. 

 

5.3.1.1 Investigation of failure-free time of HV circuit-breakers 

 

Since the 1960s, every failure regardless of major and minor failures had been recorded in the 

database. Accordingly, failures are considered without the distinction between major and 

minor failures. The structure of the failure database can be reviewed from [49] and [50]. The 



5. Probability and Reliability Models 86 

durations between failures of HV circuit-breakers are extracted from the database, thus 

forming the failure-free times. As a result, the distribution between numbers of failures and 

failure-free times can be established. For example, the HV circuit-breaker has 3 failures in the 

10th, 17th, and 24th year. It can be seen that the first failure occurs in the 10th year, the second 

failure in the next 7 years and the third failure in the following 7 years. From the whole 

population, the failure-free times of the first failures are then collected and the distribution is 

formed. The second and the third failure-free times can be carried out in the same way. 

Finally, the distributions of the first, second, and third failures are connected in series, thus 

forming the cascading reliability model. The average failure-free time can be represented as 

follows. 

 

 
n

i i
i=1

E(x)= X P⋅∑                   (5.28) 

 

where Xi: the failure-free time i (year) 

 Pi: the probability of failures at failure-free time i 

 

5.3.1.2 Reliability parameters 

 

This average failure-free time can be represented as the mean time to failure (MTTF). For 

example, the MTTF1, MTTF2, and MTTF3 represent the average failure-free times from no 

failure to the first failure, the first to the second failure, and the second to the third failure 

respectively. These MTTFs and their distributions are then connected in series to form the 

cascading reliability model. When the distribution of failures can be represented by an 

exponential distribution, the failure rate (λ) is then calculated by inverse of MTTF. In 

conclusion, the exponential reliability distributions, MTTFs and failure rates of different types 

of HV circuit-breakers are investigated and the failure developments are then compared. 

  

5.3.1.3 Precautions of evaluation of reliability parameters 

 

Precautions in the evaluation of reliability parameters must be taken into account in order to 

reduce inaccuracy of reliability parameters; for example: 

 



5. Probability and Reliability Models 87 

• Due to lack of commissioning date information, the manufacturing date is then applied as 

the starting time. For the first failures, ones occurring in the first 3 years can be considered 

as the failures in the burn-in period. MTTFs with and without consideration of this period 

are compared. 

• For the second failures, ones occurring on the same day or in the next few months after 

the first failures are considered as repetitive failures resulting from human error and 

incomplete repair/inspection. Consequently, the expected values or MTTFs are reduced. 

The third and following failures can be treated by the same assumption. 

 

5.3.2 Principle of Cascading Reliability Model 

 

The cascading reliability model of HV circuit-breakers can be described as the connection of 

reliability distributions of the first, second and following failures in series. The probabilities 

of each state, between states and the reliability distributions can be investigated. The 

cascading reliability model of HV circuit-breakers can be represented in Fig. 5.9. 

 

 
No failure

P0
1st failure

P1
2nd failure

P2
3rd failure

P3

P01

MTTF1

P12

MTTF2

P23

MTTF3  

 

 Figure 5.9: The cascading reliability model of HV circuit-breakers 

 

The probabilities P0, P1, P2 and P3 represent the state probabilities, whereas the probabilities 

P01, P12, P23 show the transition probabilities between states. The state probabilities are the 

probabilities of residing in any states. For example, the state probability P0 is the probability 

of circuit-breakers staying in failure-free state. The transition probabilities are the 

probabilities between states. For example, the transition probability P12 is the probability of 

failure development from the first to the second failure. MTTFs and their exponential 

reliability distributions represent the development of failures between states. In other words, 

the durations between failures and their probabilities can be investigated by using this 

cascading reliability model. It must be noted that, MTTFs are investigated from the database 

in which the general maintenance programs are already included. It means that, the influence 

of general maintenance programs to MTTFs is already included. 

 



5. Probability and Reliability Models 88 

5.3.2.1 Reliability and availability of cascading reliability model 

 

The reliability and availability of the cascading reliability model can be classified into two 

categories: the real case and the approximated case by using an exponential distribution. The 

real reliability can be investigated from the real distribution of failures, whereas the 

approximate reliability can be derived from the exponential reliability distribution. The 

exponential reliability distribution and its related equations are represented in Section 5.1.4. 

 

The survivor function, R(t), for the HV circuit-breakers having many failures can be 

examined by connecting the exponential functions of every failure in series leading to the 

cascading reliability model. In this study, HV circuit-breakers having up to 3 failures are 

considered. The survivor function, R(t), of HV circuit-breakers subject to 3 failures can be 

represented as 

  

 3 3 21 1 2 2 1 -λ (t -t )-λ t -λ (t -t )R(t) = e e e⋅ ⋅                  (5.29) 

 3 21 2 1 -(t -t )/MTTF3-t /MTTF1 -(t -t )/MTTF2R(t) = e e e⋅ ⋅                (5.30) 

λ1, λ2, λ3:  failure rate of the first, second, and third failure 

t1,t2,t3:   The time of the first, second, and third failure 

MTTF1, 2, and 3: Mean time to failure of the first, second, and third failure 

 

For example, the survivor function, R(t), of HV circuit-breakers having the first failure within 

10 years, the second failure within the next 5 years, and the third failure within the next 3 

years can be calculated as 31 2 -λ (3)-λ (10) -λ (5)R(t) = e e e⋅ ⋅ . 

 

5.3.3 Results of Investigation 

 

The results of investigation can be divided into two parts. The first part represents the failure 

development from the beginning to the last failures. Due to small numbers of HV circuit-

breakers having more than 3 failures, only the cascading model up to 3 failures is illustrated. 

The state probabilities and transition probabilities can be examined from the model. The 

second part represents the exponential reliability distributions of the cascading reliability 

model. 
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5.3.3.1 State and transition probabilities of cascading reliability model 

 

The state and transition probabilities of the cascading reliability model with respect to Fig. 5.9 

can be summarized in Table 5.4. This table shows the different types of circuit-breakers 

subject to failures and how those failures transit from state to state. For example, SF6 circuit-

breakers with mechanical drive stay in the failure-free state, P0, 83 % and the transition 

probability from the failure-free to the first failure state, P01, is 17%. The MTTFs with and 

without the consideration of burn-in period and repetitive failures (according to the section 

5.3.1.3) are represented in Table 5.5. These MTTFs represent how fast the failures occur from 

state to state. For instance, SF6 circuit-breakers with mechanical drive stay 10.74 years 

(MTTF1) until the first failures occur. After that, the second failures occur 2.09 years 

(MTTF2) later.  

 

State probability Transition probability Type of CB 
P0 P1 P2 P3 P01 P12 P23 

All types 0.66 0.18 0.07 0.03 0.34 0.47 0.56 

SF6 with hydraulic drive 0.47 0.25 0.12 0.06 0.53 0.53 0.59 

SF6 with mechanical drive 0.83 0.13 0.03 0.01 0.17 0.23 0.28 

Min. oil with hydraulic drive 0.45 0.27 0.12 0.07 0.55 0.51 0.59 

Min. oil with mechanical 
drive 

0.83 0.10 0.03 0.01 0.17 0.42 0.51 

 

 Table 5.4  State and transition probabilities of different types of HV   

   circuit-breakers 

 
with burn-in period and 

repetitive failures 
without burn-in period and 

repetitive failures 
Type of CB 

MTTF1 
(year) 

MTTF2 
(year) 

MTTF3 
(year) 

MTTF1 
(year) 

MTTF2 
(year) 

MTTF3 
(year) 

All types 12.35 3.43 2.25 14.62 5.11 4.09 

SF6 with hydraulic drive 7.79 3.30 2.35 10.10 4.84 4.00 

SF6 with mechanical drive 10.74 2.09 2.85 14.06 3.5 4.63 

Min. oil with hydraulic drive 16.96 4.68 2.30 17.68 6.44 4.44 

Min. oil with mechanical 
drive 

18.99 3.14 2.45 19.23 5.69 5.25 

 

 Table 5.5 Mean time to failures of different types of HV circuit-breakers 
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It can be seen from Table 5.5 that MTTF3s are shorter than MTTF2s and MTTF1s 

respectively. In other words, the following failures occur faster than the previous ones. The 

state probabilities and MTTFs can be illustrated in Fig. 5.10 and 5.11 respectively. The 

summation of state probabilities of each type of circuit-breaker is equal to unity, but only the 

summation to state P3 is represented in Fig. 5.10. It is apparent that more than 90 % of HV 

circuit-breakers are not exposed to more than 3 failures. It can be seen that more than 80 % of 

HV circuit-breakers with mechanical drives stay in failure-free state, P0. It could be 

concluded that HV circuit-breakers with mechanical drives have higher reliability than HV 

circuit-breakers with hydraulic drives. 
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 Figure 5.10: State probabilities of different types of HV circuit-breakers 
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 Figure 5.11: Mean time to failures of different types of circuit-breakers 

   (a): with consideration of burn-in period and repetitive failures 

   (b): without consideration of burn-in period and repetitive failures 
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The failure development in terms of MTTFs can be explained from Fig. 5.11. It is obvious 

that without the consideration of burn-in period and repetitive failures, the cascading MTTF 

(MTTF1, MTTF2, and MTTF3) is extended up to around 6 years. The effect of human error 

and incomplete repair/inspection can be derived from Table 5.5 and Fig. 5.11. For example, in 

case of all types of HV circuit-breakers, MTTF2 can be extended up to 49 % without the 

consideration of repetitive failures. In other words, a perfect repair/inspection is able to extend 

MTTF2 up to 1.68 years or 49% in case of all types of HV circuit-breakers. 

 

5.3.3.2 The exponential reliability distributions of the cascading reliability model 

 

The exponential reliability distributions of the cascading reliability model are composed of 

three distributions of failures connected in series. Examples of the exponential reliability 

distributions of SF6 circuit-breakers with hydraulic drives are depicted in Fig. 5.12. It is 

obvious that the failure development of the third failure is faster than the second and the first 

failure respectively. The cumulative distribution function or probability of failure, Q(t), and 

the survivor function, R(t), can be calculated by using Eq. (5.1), (5.29) and (5.30). 

 

For instance, the survivor function, R(t), of the SF6 circuit-breakers with hydraulic drives 

having the first failure within 10 years, the second failure within the next 5 years, and the 

third failure within the next 3 years, can be calculated by using MTTFs from Table 5.5 as 

follows: 

 

 -10/MTTF1 -(15-10)/MTTF2 -(18-15)/MTTF3R(t) = e e e⋅ ⋅  

 -10/10.1 -5/4.84 -3/4.0R(t) = e e e = 0.0625⋅ ⋅  

 Q(t) = 1-R(t) = 1-0.0625 = 0.9375 

 

The interpretation of the calculation must be carefully paid attention. For the above example, 

it can be concluded that SF6 circuit-breakers with hydraulic drives having exactly 3 failures 

will have the survivor function of 6.25 % when the above time conditions are taken into 

account. In other words, the probability of failure of SF6 circuit-breakers in these conditions is  

93.75 %. However, the population of the SF6 circuit-breakers with hydraulic drives having 

exactly 3 failures, state P3, represents only 6 % of the total population of this type. 
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 Fig. 5.12:  The exponential reliability distributions of SF6 circuit-breakers with  

   hydraulic drives (without consideration of burn-in period and repetitive 

   failures) 

   (a): The first failure   (b): The second failure   (c): The third failure 

 

When the survivor function up to the second failure (the first failure within 10 years and the 

second failure within the next 5 years) is considered, the calculation is then carried out as 

follows: 

 

(a) 

(b) 

(c) 
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 -10/MTTF1 -(15-10)/MTTF2R(t) = e e⋅  

 -10/10.1 -5/4.84R(t) = e e = 0.1323⋅  

 Q(t) = 1-R(t) = 1-0.0625 = 0.8677 

 

It can be concluded in the same way that SF6 circuit-breakers with hydraulic drives having 

exactly 2 failures will have the survivor function of 13.23 % when the above time conditions 

are given. The probability of failure in this case is 86.77 %. The population of this type of 

circuit-breakers having exactly 2 failures, state P2, corresponds to 12 % of the total 

population. The survivor function of SF6 circuit-breakers with hydraulic drives having only 

one failure within 10 years is 0.37 %. The population of this type of circuit-breaker having 

only one failure, state P1, is 25 % of the total population. 

 

In order to compare the survivor functions of different types of HV circuit-breakers, the 

identical time conditions must be taken into account. On the other hand, the time conditions 

can be compared when a similar survivor function is considered. For example, the time 

conditions of HV circuit-breakers having exactly 3 failures (the first failure within 10 years, 

the second failure within the next 5 years, and the third failure within the next 3 years) are set, 

and the survivor functions of different types of HV circuit-breakers are then compared. 

 

• SF6 with hydraulic drives:   R(t) = 0.0625 

• SF6 with mechanical drives:   R(t) = 0.0616 

• Minimum oil with hydraulic drives: R(t) = 0.133 

• Minimum oil with mechanical drives: R(t) = 0.139 

 

It is obvious in the comparison that minimum oil circuit-breakers have approximately 2 times 

higher survivor function than SF6 circuit-breakers under a similar condition. Furthermore, the 

state probability P3 must be taken into consideration to compare the percentage of the 

population at this state. It can be seen from Table 5.4 that the population of HV circuit-

breakers with mechanical drives (SF6 and minimum oil circuit-breakers) at state P3 represents 

only 1 % of the total population of its type, whereas the circuit-breakers with hydraulic drives 

show 6-7 %. It is then concluded that the HV circuit-breakers with mechanical drives have 

higher reliability than HV circuit-breakers with hydraulic drives. 
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5.3.4 Conclusions 

 

The following can be concluded from the investigation of the cascading reliability model of 

HV circuit-breakers: 

 

• The cascading reliability model of HV circuit-breakers is composed of state probabilities, 

transition probabilities, and reliability distributions. This model is very useful to study the 

probability of failures and availability of circuit-breakers in any states. It is also beneficial 

for maintenance personnel to be aware of the first and following failures. 

• State probabilities represent the probabilities of circuit-breakers residing in any states. For 

instance, state P0 shows the probability of HV circuit-breakers having no failure and state 

P1 represents the probability of HV circuit-breakers having only one failure. 

• Transition probabilities show probabilities between states. As a result, the development of 

failures from state to state can be investigated. 

• The probability of failure, Q(t), and survivor function, R(t), can be examined by using the 

exponential reliability distributions. These Q(t) and R(t) can be considered separately 

regarding only interested failure or many failures in combination. For example, it is 

possible to calculate the survivor function of HV circuit-breakers having exactly 3 failures 

under specified time conditions or calculate only the survivor function of the second 

failure. 

• It can be seen from the investigation that HV circuit-breakers with mechanical drives are 

subject to failures less than ones with hydraulic drives. 

• It is obvious that minimum oil circuit-breakers have longer MTTFs than SF6 circuit-

breakers. This result is ascertained by circuit-breaker international surveys that SF6 

circuit-breakers are prone to gas leakage. 

• It can be concluded that the repetitive failures resulting from human error and incomplete 

repair/inspection reduce the MTTFs (MTTF1, MTTF2, and MTTF3) of HV circuit-

breakers up to 6 years. 

• MTTF3 is shorter than MTTF2 and MTTF1 respectively. It is implied that the upcoming 

failures occur in shorter periods of time than the previous ones. In other words, it is likely 

that HV circuit-breakers subject to many failures are prone to the upcoming failures faster 

than ones with only few failures. 
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6 The Application of Markov Model 

 

In this study, the Markov model with the combination of a failure database is applied to HV-

circuit-breakers. In the Markov model, the HV circuit-breaker is composed of five 

components in parallel: drive, HV insulation, life-parts, control/auxiliary, and others. The 

different types of HV circuit-breakers, i.e. all types, SF6 with hydraulic drive, SF6 with 

mechanical drive, minimum oil with hydraulic drive and minimum oil with mechanical drive, 

are taken into account in order to compare the reliability. The mean time to failure (MTTF) of 

mentioned components are investigated by using the failure database, whereas the mean time 

to repair (MTTR) is obtained from the manufacture. 

 

6.1 Principles of Markov Model 

 

The Markov model is used to describe the process of the system, i.e. how the system changes 

from state to state. It can be described as a state-space model which is composed of state 

probabilities and transition probabilities between states. The system states represent the 

conditions of their states, for example, working states, down states and repair states. The 

examples of illustrations of state-space models can be given in Fig. 6.1a and 6.1b.  

 

 a up
b up

a up
b down

a down
b up

a down
b down

x up
y ready

x up
y down

x down
y up

x down
y down

(a) (b)  

 

 Figure 6.1: The examples of state space models  

   (a): the system with two independent components 

   (b): the system with a main unit (x) and a standby unit (y) 
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The state-space model is very applicable for reliability evaluation of repairable systems. It can 

be applied to HV circuit-breakers in order to determine the steady-state probability, the mean 

time to failure and the interval of residing in each state. It must be noted that the Markov 

model can be implemented only when the system states do not depend on the earlier states. In 

other words, the Markov model can be applied to the exponential distribution corresponding 

constant failure rate. In some cases when the systems do not represent the exponential 

distribution, the Markov model is still applicable for studying the long term circumstances 

[51]. The general principle and arrangement can be explained from Fig. 6.2 representing a 

single component with repair. 

 

 
1 2

µ

λ

 

 

 Figure 6.2: A diagram of a single component with repair 

 

The system has a constant failure rate, λ, and a constant repair rate, µ. It is assumed that the 

system will be in one of two states: in operation (state 1) or under repair (state 2). With the 

application of Markov process, the following equations are: 

 

 1
1 2

dP (t)
 = -λP (t) + µP (t)

dt
        (6.1) 

 1 2P (t) + P (t) = 1         (6.2) 

 

The state space equations can be generally expressed in terms of matrix as follows: 
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where 
dP

dt
 is the changing of state P represented in column matrix consisting of 

1 2 ndP dP dP
, , ....,

dt dt dt
and a is the transition matrix.  

P is the column matrix representing the state probabilities of P1, P2, …Pn. It can be concluded 

from Eq. (6.1) and (6.3) that the changing of P1 is equal to the minus of the number of 

transitions to other states and the plus of the number of transitions from other states. In order 

to form the transition matrix (a), the following rules must be taken into account. 

 

• The primary diagonal elements are negative, whereas the other elements are positive. 

• The primary diagonal elements are the negative summation of the transition rates from 

state i to state j. 

• The secondary elements are equal to the transition rates from state j to the state i. 

• The secondary elements are: ij jia a≠  

• The summation of the elements in the same column is zero. 

 

At steady state condition, ndP

dt
is zero and then the Eq. (6.3) can be represented as 
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       (6.4) 

 

Likewise the Eq. (6.2), the summation of every state must be unity. 

 

 1 2 n1 = P  + P  + ...P         (6.5) 

 

Since the Eq. (6.4) is linear, any row can be substituted by Eq. (6.5) as shown. 
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The state probabilities, P1, P2, … Pn can be calculated from Eq. (6.6) by multiplying the 

inverse of the transition matrix at both sides. The frequency that the equipment changes from 

state to state can be calculated by the product of the state probability and the sum of transition 

rates of this state to other states. 

 

 n n nnH  = -P a  

 

The mean duration of residing in each state can be expressed as: 

 

 n
nn

1
T  = -

a
          (6.7) 

 

6.2 Reliability Parameters 

 

The average failure-free time can be represented as the mean time to failure (MTTF). When 

the distribution of failures is represented by an exponential distribution, the failure rate (λ) is 

then calculated by the inverse of the MTTF. The failure rates (λ) of five main components of 

different types of HV circuit-breakers can be obtained from the database (shown in section 

6.5). Afterwards, MTTFs and failure rates of five main components of different types of HV 

circuit-breakers are investigated and then compared. Moreover, the mean time to repair 

(MTTR) of each component, obtained from the manufacture, must be taken into account. It is 

assumed that the MTTR as shown in Table 6.1 has the exponential distribution corresponding 

the constant repair rate (µ). 

 

Component MTTR 
(day) 

Repair rate, 
µ (1/a) 

1. Drive 3 121.67 

2. HV Insulation 4 91.25 

3. Life-Parts 10 36.5 

4. Control/Auxiliary 2 182.5 

5. Others 2 182.5 

 

 Table 6.1: MTTRs and repair rates of components of HV circuit-breakers 
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The failure-free time must be carefully considered since there are many failures recorded on 

the same day or in the next few months. It can be explained that these failures resulted from 

human error and incomplete repair/inspection. Consequently, the expected value or MTTF is 

reduced. The effects of human error and incomplete repair/inspection on MTTF will be 

discussed in the upcoming section. 

 

6.3 Parallel Markov Model for HV Circuit-Breakers 

 

The possible states of HV circuit-breakers having 5 components in parallel are 32 states. 

However, it is assumed from the physical characteristics of an HV circuit-breaker that only a 

failure from one component results in the interruption of operation. Afterwards, the action 

must be called upon to repair or replace such a component. Consequently, the numbers of 

states are reduced to 6 states. The parallel Markov model of HV circuit-breakers can be 

represented in Fig. 6.3. It can be explained from Fig. 6.3 that at state Z0 every component of 

HV circuit-breakers is in operation. When there is a failure in a component (state Z1-Z5), the 

repair or replace program must be taken into action. After that, HV circuit-breakers return to 

the normal operation (state Z0). 
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 Figure 6.3: Parallel Markov model of HV circuit-breakers 

 

In Fig. 6.3, the + sign represents that there is no failure on the component, whereas the - sign 

represents the failure on the component. The assigned numbers of the components (1-5) 

correspond to the different components as represented in Table 6.1. 
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6.4 Matrix Approach 

 

The transition rates of the multi-component systems can be easily expressed in the form of a 

transition matrix. The primary diagonal elements (i = j) of the matrix are the negative of the 

summation of outgoing transition rates of state i. For the secondary diagonal elements, the 

element i, j is the transition rate into state i from state j where i ≠  j. The transition matrix of 

the parallel Markov model (Fig. 6.3) can be represented as: 
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   (6.8) 

 

 0 1 2 3 4 5P  + P  + P  + P  + P  + P  = 1       (6.9) 

 

The Eq. (6.9) will be replaced in the Eq. (6.8), thus resulting in the transition matrix, a. 

 

 

0

1

2

3

4

5

P0 -(λ1 + λ2 + λ3 + λ4 + λ5) µ1 µ2 µ3 µ4 µ5

P0 λ1 -µ1 0 0 0 0

P0 λ2 0 -µ2 0 0 0
 = 

Pλ3 0 0 -µ3 0 00

Pλ4 0 0 0 -µ4 00

P1 1 1 1 1 11

    
    
    
    
⋅     
    
    
    

    

              (6.10) 

 

The probabilities P0 to P5 of states Z0 to Z5 can be calculated by using Cramer’s rule. The 

steady-state availability of HV circuit-breakers is considered as the probability of state Z0. In 

addition, the duration of residing in each state can be calculated as follows: 
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 0

1
T  = 

λ1 + λ2 + λ3 + λ4 + λ5
                  (6.11) 

 1 2 3 4 5

1 1 1 1 1
T  = ,  T  = ,  T  = ,  T  = ,  T  = 

µ1 µ2 µ3 µ4 µ5
               (6.12) 

 

The residing duration of T0 represents the most important parameter. It represents the duration 

of HV circuit-breakers being in operation without any failures. 

 

6.5 Results of Markov Model 

 

As mentioned earlier, the expected value of failure-free time or mean time to failure (MTTF) 

of different components on different types of HV circuit-breakers must be first investigated. 

The investigation of MTTFs of different components and types of HV circuit-breakers is 

shown in Table 6.2 and 6.3. MTTF1, MTTF2, …, MTTF5 correspond to the components 1-5 

stated in Table 6.1 

 

 All Types SF6 with 
hydraulic drive 

SF6 with 
mechanical 

drive 

Min. oil with 
hydraulic drive 

Min. oil with 
mechanical 

drive 

No. of faulted CB 3153 1678 203 589 280 

No. of total CB 9305 3168 1220 1076 1674 

No. of failures 6858 3994 265 1263 658 

MTTF1(yrs)/λ1 9.015 / 0.111 6.172 / 0.162 4.577 / 0.218 11.427 / 0.087 16.787 /0.060 

MTTF2(yrs)/λ2 11.763 / 0.085 7.804 / 0.128 6.181 / 0.162 14.364 / 0.070 16.510 / 0.061 

MTTF3(yrs)/λ3 10.068 / 0.099 9.302 / 0.108 13.691 / 0.073 17.542 / 0.057 5.479 / 0.183 

MTTF4(yrs)/λ4 8.821 / 0.113 7.079 / 0.141 6.730 / 0.149 12.707 / 0.079 17.025 / 0.059 

MTTF5(yrs)/λ5 10.23 / 0.098 7.434 / 0.135 7.962 / 0.126 18.494 / 0.054 14.194 / 0.070 

 

 Table 6.2:  MTTFs and failure rates of different components and types of circuit- 

breakers (every failure is taken into account) 
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 All Type SF6 with 
hydraulic drive 

SF6 with 
mechanical 

drive 

Min. oil with 
hydraulic drive 

Min. oil with 
mechanical 

drive 

No. of failures 5207 2968 207 1021 439 

MTTF1(yrs)/λ1 12.046 / 0.083 8.773 / 0.114 7.176 / 0.139 14.203 / 0.070 19.823 /0.050 

MTTF2(yrs)/λ2 15.084 / 0.066 11.076 / 0.090 12.5 / 0.080 17.006 / 0.059 18.250 / 0.055 

MTTF3(yrs)/λ3 14.930 / 0.067 12.051 / 0.083 15.880 / 0.063 23.830 / 0.042 12.275 / 0.081 

MTTF4(yrs)/λ4 10.582 / 0.094 8.569 / 0.117 8.926 / 0.112 15.281 / 0.065 18.427 / 0.054 

MTTF5(yrs)/λ5 13.664 / 0.073 10.197 / 0.098 9.545 / 0.105 22.75 / 0.044 18.590 / 0.054 

 

 Table 6.3: MTTFs and failure rates of different components and types of circuit- 

breakers (failures occurring within the first year are not taken into 

account) 

 

It can be concluded from Table 6.2 and 6.3 that the human error and incomplete 

repair/inspection occurring within the first year reduce the MTTFs, thus leading to reduced 

availability of HV circuit-breakers. In case of all types of circuit-breakers, the comparison of 

failure density functions of components is represented in Fig. 6.4 
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 Figure 6.4: Comparison of failure density functions of components of all types of 

   HV circuit-breakers 
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It can be seen from Fig. 6.4 that the functions are not perfectly exponentially distributed. 

However, the error between the real failure function and exponential function is relatively 

small and will not be discussed in this study. The exponential function can be represented as 

follows: 

 

 -λtf(t) = λ e⋅  

 

The investigation of availability of HV circuit-breakers has been carried out by replacing the 

values from Table 6.2 and 6.3 into the Eq. 6.10-6.12. As a result, the probability and duration 

of residing at every state can be found. The results of the investigation are represented in 

Table 6.4 and 6.5. 

 

 All Types SF6 with 
hydraulic 

drive 

SF6 with 
mechanical 

drive 

Min. oil with 
hydraulic 

drive 

Min. oil with 
mechanical 

drive 

P0 0.9943 0.9928 0.9930 0.9962 0.9932 

P1 0.0009 0.0013 0.0018 0.0007 0.0005 

P2 0.0009 0.0014 0.0018 0.0008 0.0007 

P3 0.0027 0.0029 0.0020 0.0016 0.0050 

P4 0.0006 0.0008 0.0008 0.0004 0.0003 

P5 0.0005 0.0007 0.0007 0.0003 0.0004 

T0 (year) 1.9763 1.4837 1.3736 2.8818 2.3095 

T1 (year) 0.0082 0.0082 0.0082 0.0082 0.0082 

T2 (year) 0.0110 0.0110 0.0110 0.0110 0.0110 

T3 (year) 0.0274 0.0274 0.0274 0.0274 0.0274 

T4 (year) 0.0055 0.0055 0.0055 0.0055 0.0055 

T5 (year) 0.0055 0.0055 0.0055 0.0055 0.0055 

 

 Table 6.4: Probabilities and durations of residing in each state of different types of 

HV circuit-breakers (every failure is taken into account) 
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 All Types SF6 with 
hydraulic 

drive 

SF6 with 
mechanical 

drive 

Min. oil with 
hydraulic 

drive 

Min. oil with 
mechanical 

drive 

P0 0.9959 0.9947 0.9951 0.9970 0.9962 

P1 0.0007 0.0009 0.0011 0.0006 0.0004 

P2 0.0007 0.0010 0.0009 0.0006 0.0006 

P3 0.0018 0.0023 0.0017 0.0011 0.0022 

P4 0.0005 0.0006 0.0006 0.0004 0.0003 

P5 0.0004 0.0005 0.0006 0.0002 0.0003 

T0 (year) 2.611 1.992 2.004 3.571 3.401 

T1 (year) 0.0082 0.0082 0.0082 0.0082 0.0082 

T2 (year) 0.0110 0.0110 0.0110 0.0110 0.0110 

T3 (year) 0.0274 0.0274 0.0274 0.0274 0.0274 

T4 (year) 0.0055 0.0055 0.0055 0.0055 0.0055 

T5 (year) 0.0055 0.0055 0.0055 0.0055 0.0055 

 

 Table 6.5: Probabilities and durations of residing in each state of different types of 

HV circuit-breakers (failures occurring within the first year are not 

taken into account) 

 

The duration of residing in state Z0 or the duration that HV circuit-breakers are in operation 

without failures can be plotted as bar graph as shown in Fig. 6.5. 

 

It is obvious in Fig. 6.5 that without the consideration of the first-year failures (T02), HV 

circuit-breakers stay in operation 32%, 24%, 45%, 24%, and 47% longer in all types, SF6 

with hydraulic drive, SF6 with mechanical drive, minimum oil with hydraulic drive and 

minimum oil with mechanical drive respectively. It could be implied that the duration of 

operation can be prolonged when the effects of human error and incomplete repair/inspection 

are reduced. It is obvious from the proportion of increasing duration that HV circuit-breakers 

with mechanical drives are subject to human error and incomplete repair/inspection more than 

ones with hydraulic drives. 
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 Figure 6.5: The durations of residing in state Z0  

   T01: every failure is considered  

   T02: failures in the first year are not considered 

 

The steady-state availabilities of different types of HV circuit-breakers are all over 0.99 since 

the repair times of components are considerably shorter than their MTTFs. It could be 

concluded that as long as the action to repair is as short as mentioned, the availability of HV 

circuit-breakers remains high. 

 

As mentioned earlier that there is no distinction between minor and major failures in the 

database, state Z0, represented the duration without failures, appears to be shorter than 

expectation. Practically, it is beneficial to consider the state Z0 with only the effects of major 

failures. Therefore, the relationship between minor and major failures [2] is applied. The 

average ratio of minor and major failure is 7.3 mf/MF. This factor is then applied in Eq. 

(6.11) to find the durations of residing in state Z0. The durations of residing in state Z0 

calculated from only major failures can be represented in Table 6.6 and Fig. 6.6. 
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 All Types SF6 with 
hydraulic 

drive 

SF6 with 
mechanical 

drive 

Min. oil with 
hydraulic 

drive 

Min. oil with 
mechanical 

drive 

T01 (year) 14.427 10.831 10.027 21.037 16.860 

T02 (year) 19.060 14.542 14.630 26.068 24.827 

 

 Table 6.6: The durations of residing in state Z0 calculated from only major 

failures  

T01: every failure is considered 

T02: failures in the first year are not considered 
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Figure 6.6: The durations of residing in state Z0 calculated from only major failures 

T01: every failure is considered  

 T02: failures in the first year are not considered 

 

It can be seen from Fig. 6.6 that the durations of uninterrupted state Z0 are around 14 years 

for the SF6 circuit-breakers and 24-26 years for minimum oil circuit-breakers.  

 

6.6 Conclusions 

 

It can be concluded from the MTTF investigation and availability of HV circuit-breakers by 

the Markov model: 
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• The investigation of all types of HV circuit-breakers, representing the largest studied 

population, shows that HV insulation has the longest MTTF, whereas the 

control/auxiliary component has the shortest MTTF. 

• The populations of SF6 circuit-breakers with hydraulic drives and SF6 circuit-breakers 

with mechanical drives are very different. Therefore, it is difficult to make conclusions as 

to the MTTF. However, it is obvious from Table 6.2 that the proportion of faulted circuit-

breakers to total circuit-breakers in the same category represents the overall reliability. 

More than half of the population of SF6 circuit-breakers with hydraulic drives had been 

exposed to failures, whereas only 16 % of the population of SF6 circuit-breakers with 

mechanical drives had experienced failures. 

• The mechanical drive has longer MTTF than the hydraulic drive which is in accordance 

with practical experience. 

• The control/auxiliary components of minimum oil circuit-breakers have longer MTTF 

than control/auxiliary components of SF6 circuit-breakers due to less complicated 

control/auxiliary in minimum oil circuit-breakers.  

• It can be seen from Table 6.2 and 6.3 that without the consideration of failures in the first 

year, the MTTFs of components can be increased up to 47 %. It is recommended that 

repair/inspection must be carefully carried out in order to prevent the following failures 

occurring in the same year. 

• Components of minimum oil circuit-breakers have longer MTTFs than components of 

SF6 circuit-breakers. However, it must be paid attention that the database of minimum oil 

circuit-breakers is longer than SF6 circuit-breakers. The record time of minimum oil 

circuit-breakers is around 50 years, whereas the record time of SF6 circuit-breakers is 

only 30 years. 

• The failure density functions of components are roughly exponentially distributed. In 

other words, this exponential distribution corresponds to random failures. Hence, the 

preventive or time-based maintenance cannot extend MTTF or reduce the failure rate. In 

order to extend MTTF, the predictive or condition-based maintenance must be 

introduced. 
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7 Cost Structure and Maintenance Optimization 

 

The first part of this chapter is to investigate the influence of circuit-breaker specifications on 

the costs of circuit-breakers. By using the decision matrix approach, it is possible to figure out 

the cost structure of the main components related to the specifications. The second part of this 

chapter deals with the maintenance optimization. The optimal maintenance frequency during 

useful life is carried out by using the optimal maintenance frequency model [52] in order to 

minimize the downtime. The last part represents how to improve the reliability of HV circuit-

breakers during the wear-out period. The reliability during the wear-out period can be 

investigated by the use of probability distribution and improved by using the preventive 

maintenance. The Weibull distribution model is therefore applied to design the improved 

preventive maintenance model. 

 

7.1 Cost Structure Determination 

 

The specifications of HV circuit-breakers according to IEC 62271-100 and additional 

specifications are determined in order to study the influence of each specification on the cost 

of the circuit-breaker. The steps of cost determination are described as followed: 

 

1. The table is composed of considered specifications and five main components:  

• quenching unit 

• insulation 

• supporting structure  

• drive 

• control system 

2. The influence of every specification to each component is discussed with the 

manufacture and the results are then fulfilled into the table (Table 7.1) 

3. The specifications having the same properties are grouped and the reduced table is 

formed (Table 7.2). For example, “rated lightning” and “switching impulse” withstand 

voltage has the same influences on quenching unit, insulation and supporting structure. 
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4. The cost proportion of main components is taken into consideration by using a decision 

matrix approach (Fig. 7.1). In other words, the relationship of five main components to 

the costs of an HV circuit-breaker can be explored. 

5. The specifications in each related main component are investigated by using the decision 

matrix approach to find the significance of each specification (Appendix D). 

6. Finally, the influence of each specification to HV circuit-breakers can be determined. 

 

It can be seen from Table 7.1 and 7.2 that the specifications play no important role on the cost 

of control systems. 

 

Component 
Specification 

Quenching 
Unit 

Insulation  Supporting 
structure 

Drive Control system  

1. Rated voltage X X X X  

2. Rated lightning impulse 
withstand voltage 

X X X   

3. Rated switching impulse 
withstand voltage 

X X X   

4. Rated operating current X X X X  

5. Power factor X   X  

6. Rated duration of short 
circuit (1 s) 

X     

7. Rated short circuit 
breaking current 

X X X X  

8. DC component of the rated 
short-circuit breaking current 
(20 %) 

X X X X  

9. First pole-to-clear factor X   X  

10. Rated out-of-phase 
breaking current (optional) 

X     

11. Rated line-charging 
breaking current 

X  X X  

12. Rated cable-charging 
breaking current 

X  X X  

13. Rated single capacitor 
bank-breaking current 

X  X X  

14. Rated back-to-back 
capacitor bank-breaking 
current 

X     

15. Rated capacitor bank 
inrush making current 

X     

16. Rated back-to-back 
capacitor bank inrush making 
current (optional) 

X     

17. Rated operating sequence X   X  

18. Temperature class X   X  

19. Classification: number of 
operation 

X   X  
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Component 
Specification 

Quenching 
Unit 

Insulation  Supporting 
structure 

Drive Control system  

20. Earthquake level  X X X  

21. Bending strength  X X   

22. Pollution level  X    

23. Overvoltage across CB X X    

24. Rate of Rise of Recovery 
Voltage (RRRV) 

X   X  

25. Short-line faults X     

 

 Table 7.1: The influence of specifications to the components 

 

Component 
Specification 

Quenching 
Unit 

Insulation  Supporting 
structure 

Drive Control system 

1. Rated voltage X X X X  

2. Rated lightning and 
switching impulse withstand 
voltage 

X X X   

3. Rated operating current X X X X  

4. Rated duration of short 
circuit (1 s) 

X     

5. Rated short circuit 
breaking current and DC 
component 

X X X X  

6. First pole-to-clear factor  X   X  

7. Rated out-of-phase 
breaking current (optional) 

X     

8. Rated line-charging 
breaking current 

X  X X  

9. Rated capacitor bank 
inrush making current 

X     

10. Rated operating sequence X   X  

11. Temperature class X   X  

12. Classification: number of 
operation 

X   X  

13. Earthquake level  X X X  

14. Bending strength  X X   

15. Pollution level  X    

16. Rate of Rise of Recovery 
Voltage (RRRV) 

X   X  

 

 Table 7.2: The influence of specifications to the components (reduced version) 
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Nr. Criteria 1 2 3 4 5 Sum WF/%
1 Quenching unit 0 4 5 2 5 16 26.7
2 Insulation 2 0 5 3 5 15 25.0
3 Supporting structure 1 1 0 1 4 7 11.7
4 Drive 4 3 5 0 5 17 28.3
5 Control System 1 1 2 1 0 5 8.3

60 100.0  

 

 Figure 7.1: The decision matrix of five main components 

   Influence evaluation:  1: very small 4: strong 

      2: small  5: very strong 

      3: similar 

 

By using this decision matrix approach, Fig. 7.1, every parameter is compared with each other 

with different degrees of significance. For example, the quenching unit compared with the 

insulation has stronger influence on the costs. Therefore, the number 4 is placed in the first 

row and the second column. On the other hand, the quenching unit compared with drive has 

smaller influence on the costs. The number 2 is then placed in the first row and the fourth 

column. The upper triangle of the matrix (above the primary diagonal axis) must be 

considered. The lower triangle of the matrix (below the primary diagonal axis) is justified by 

reversion of the investigation of the above triangle. For example, the insulation compared 

with the quenching unit has smaller influence on the costs. The number 2 is then placed in the 

second row and the first column. After the whole decision matrix is completed, the proportion 

of every main component can be found. The proportion distribution of main components to 

the costs of HV circuit-breakers is represented in Fig. 7.2 

Insulation
25%

Supporting 
structure

12%

Drive
28%

Quenching unit
27%

Control system
8%

 

 Figure 7.2:  The proportion distribution of five main components to the cost of  

HV circuit-breakers 
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It is seen from Fig. 7.2 that the drive or the operating mechanism plays the most important 

role on the total cost followed by the quenching unit, the insulation and the supporting 

structure. 

 

The specifications of each component represented in Table 7.2 are considered one by one by 

using the decision matrix in order to find the proportions of specifications (Appendix D). The 

proportions of specifications with respect to each component can be represented as web 

diagrams in Fig. 7.3.  
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Figure 7.3:  Web diagrams of the circuit-breaker specifications with respect to each  

component (The numbers at the perimeter of the circle correspond to  

specifications represented in Table. 7.2) 
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For instance, the proportion of rated voltage (no. 1) to the cost of the quenching unit is 10%, 

while the proportion of rated line charging (no. 8) to the cost of the quenching unit is only 

3.3%. In case of the insulation, rated lightning and switching impulse withstand voltage (no. 

2) accounts for the highest proportion (20 %). 

 

Component 
 

Specification 

Quenching 
Unit  

Insulation 
 

Supporting 
structure  

Drive 
 

Total 

1. Rated voltage 2.7 % 4.0 % 2.3 % 4.1 % 13.1 % 

2. Rated lightning and 
switching impulse withstand 
voltage 

2.1 % 5.0 % 2.6 %  9.7 % 

3. Rated operating current 2.5 % 2.0 % 0.8 % 1.6 % 6.9 % 

4. Rated duration of short 
circuit (1 s) 1.4 %    1.4 % 

5. Rated short circuit 
breaking current and DC 
component 

3.1 % 3.6 % 2.2 % 3.9 % 12.8 % 

6. First pole-to-clear factor  1.9 %   2.2 % 4.1 % 

7. Rated out-of-phase 
breaking current (optional) 1.6 %    1.6 % 

8. Rated line-charging , 
cable-charging and capacitor 
bank breaking current 

0.9 %  0.7 % 1.2 % 2.8 % 

9. Rated capacitor bank 
inrush making current 1.8 %    1.8 % 

10. Rated operating sequence 2.3 %   3.7 % 6.0 % 

11. Temperature class 2.5 %   3.9 % 6.4 % 

12. Classification: number of 
operation 2.1 %   3.0 % 5.1 % 

13. Earthquake level  3.2 % 1.7 % 2.0 % 6.9 % 

14. Bending strength  3.6 % 1.7 %  5.3 % 

15. Pollution level  3.6 %   3.6 % 

16. Rate of Rise of Recovery 
Voltage (RRRV) 2.1 %   2.4 % 4.5 % 

Total 27 % 25 % 12 % 28 % 92 % 
 

 Table 7.3: The proportions of specifications to the main components 

   (without control system) 

 

The proportions of specifications related to the circuit-breaker are shown in Table 7.3. The 

whole table of which the control system (8 %) is not included represents 92 %. It can be 

expressed in terms of pie chart in Fig. 7.4. The influence of specifications on the cost of the 
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circuit-breaker is as shown in Fig. 7.4 is valuable for the circuit-breaker designers to design 

the optimal and cost-effective HV circuit-breakers. 
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 Figure 7.4: The proportions of specifications to the cost of HV circuit-breaker 

 

The most and least important specifications to the cost of circuit-breakers can be summarized 

in Table 7.4 

 

 The most important 
specifications 

% The least important 
specifications 

% 

1. Rated voltage 13.1 
Rated duration of short-
circuit 

1.4 

2. 
Rated short-circuit breaking 
current 

12.8 
Rated out-of-phase 
breaking current 

1.6 

3. 
Rated lightning and 
switching impulse withstand 
voltage 

9.7 
Rated capacitor bank 
inrush making current 

1.8 

 

 Table 7.4 The most and least important influences on the cost of circuit-breakers 

 

7.2 Maintenance Optimization 

 

In the first part of this section, the optimal maintenance frequency during the useful lifetime is 

calculated by using the optimal maintenance frequency model and failure statistics during 

1991-2000 [37]. The optimal maintenance frequency of different types of HV circuit-breakers 
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at different voltage levels had been investigated. The second part of this section concerns with 

the improvement of maintenance strategy during the wear-out period. The wear-out behaviour 

of HV circuit-breakers is simulated by a Weibull distribution. The integration of different 

preventive maintenance models represents the improvement of reliability of HV circuit-

breakers.  

 

7.2.1 Optimal Maintenance Frequency 

 

The equipment of HV circuit-breakers breaks down from time to time. In order to reduce the 

breakdowns, periodic maintenance must be implemented. However, the maintenance might 

result in the system downtime. More frequent maintenance could reduce the downtime due to 

system failures but increase the downtime due to maintenance. The principle of optimal 

maintenance frequency in order to minimize the downtime can be expressed in Fig. 7.5.  
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 Figure 7.5: Optimal maintenance frequency: Minimization of downtime 

 

It is obvious from Fig. 7.5 that the total downtime, D(n), is the summation of downtime due to 

maintenance (DM) and downtime due to system failures. The downtime due to system failures 

can be mentioned as downtime due to repairs (DR). 

 

 D(n) = DR + DM = 
λ(n) n

 + 
µ i

        (7.1) 
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where: 

 

Parameter Equation Remark 

λ(n) 1/mean time to failure (MTTF) 
Failure rate or number of 
repairs per unit time 

µ 1/mean time to repair (MTTR) Repair rate 

n  
Number of periodic 
maintenance per unit time 

i 1/mean time to maintenance (MTTM) Maintenance rate 

DR λ(n)/µ Downtime due to repair 

DM n/i 
Downtime due to 
maintenance 

 

In order to find the optimal maintenance frequency, the derivative of downtime is applied as 

followed. 

 

 
'dD(n) λ (n) 1

 =  +  = 0
dn µ i

        (7.2) 

 

It is assumed that the failure rate varies inversely with the number of periodical maintenance. 

k is the arrival rate of failure per unit time when one periodical maintenance is made per unit 

time. 

 

 
k

λ(n) = 
n

  '
2

k
λ (n) = -

n
       (7.3) 

 

From Eq. (7.2) and (7.3), the optimal maintenance frequency, n, can be found. The value n is 

the number of optimal maintenance frequency per year. 

 

 
i k MTTR k

n =  = 
µ MTTM

⋅ ⋅
        (7.4) 

 

From the database, it is estimated that the periodical minor and major maintenance of HV 

circuit-breakers are carried out every 4 and 7 years respectively. It is assumed that the minor 

maintenance is related to the minor failures and the major maintenance is related to major 
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failures. Accordingly, the failure rates in the Table 7.5 represent the major failure rates when 

major maintenance tasks are carried out. Likewise, Table 7.5 represents the minor failure rates 

when minor maintenance programs are introduced. With these assumptions, the two optimal 

maintenance models are then introduced: 

 

• the optimal major maintenance of HV circuit-breakers in relation to major failures 

• the optimal minor maintenance of HV circuit-breakers in relation to minor failures 
 

According to the statistics [37], the major failure rates of HV circuit-breakers in Germany at 

different voltage levels are represented in Table 7.5. The minor failure rates are calculated by 

using the relationship between the major and minor failure rates according to CIGRE. They 

are represented in Table 7.6.  

 

Type 123kV 245kV 420kV 

minimum oil 0.0021 0.0104 0.0203 

air-blast 0.0039 0.0114 0.0319 

SF6 0.0024 0.0144 0.0260 

 

Table 7.5: Failure rates of major failures, λMF  

 

Type 123kV 245kV 420kV 

minimum oil 0.0147 0.08944 0.12992 

air-blast 0.0273 0.09804 0.20416 

SF6 0.0168 0.12384 0.1664 

 

 Table 7.6: Failure rates of minor failures, λmf 

 

7.2.1.1 The optimal major maintenance of HV circuit-breakers in relation to major failures 
 

The assumptions in this case can be concluded as follows: 

 

• It is estimated that the actual major maintenance had been carried out every 7 years 

• Number of failures per year, k, when 1 major maintenance is made per year = λMF / 7 

• Mean time to repair (MTTR) = 3 days 
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• Mean time to major maintenance (MTTM) =  1 day 

 

The optimal major maintenance, MFi k MTTR k MTTR λ
n =  =  = 

µ MTTM MTTM 7

⋅ ⋅ ⋅

⋅
  (7.5) 

 

Substitute the values from Table 7.5 into the Eq. (7.5) thus resulting in the optimal major 

maintenance per year, n. The inversion of n corresponds to the optimal major maintenance 

interval which can be represented in Table 7.7 

 

Type 123kV 245kV 420kV 

minimum oil 33.3 15.0 10.7 

air-blast 24.5 14.3 8.6 

SF6 31.2 12.7 9.5 

 

Table 7.7: Optimal major maintenance interval (years) 

 

In order to study the influence and deviation of the actual major maintenance to the optimal 

major maintenance interval, the relationship between them must be investigated as followed: 

 

• The actual maintenance interval is varied from 6 to 12 years while keeping the major 

failure rate, λMF, constant. 

• The actual maintenance interval is varied while the major failure rate, λMF, is changed 

proportionally. The longer the actual maintenance interval, the higher the failure rates. 

As a result, the optimal major maintenance interval is constant. 

 

The example of SF6 circuit-breakers is represented in Fig. 7.6. It shows the varied optimal 

major maintenance interval when the actual major maintenance interval is changed. The 

shaded area is the deviation between the constant optimal maintenance interval and the 

variable one. For instance, in case of 123 kV, the optimal major maintenance interval is 

increased from 31 to 41 years when the actual major maintenance interval is changed from 7 

to 12 years. The deviation of 245 and 420 kV cases is relatively small when the actual major 

maintenance is varied. 
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 Figure 7.6:  The deviation of optimal major maintenance interval with respect to 

   major maintenance interval (SF6 circuit-breakers) 

 

7.2.1.2 The optimal minor maintenance of HV circuit-breakers in relation to minor failures 

 

The assumptions in this case can be summarized as follows: 

 

• It is estimated that the actual minor maintenance is carried out every 4 years 

• Number of failures per year, k, when 1 minor maintenance is made per year = λmf / 4 

• Mean time to repair (MTTR) = 1 day 

• Mean time to minor maintenance (MTTm) = 0.5 day 

 

The optimal minor maintenance, mfi k MTTR k MTTR λ
n =  =  = 

µ MTTm MTTm 4

⋅ ⋅ ⋅

⋅
  (7.6) 

 

Substitute the values from Table 7.6 into the Eq. (7.6) thus resulting in the optimal minor 

maintenance per year, n. The inversion of n corresponds to the optimal minor maintenance 

interval which can be represented in Table 7.8 
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Type 123kV 245kV 420kV 

minimum oil 11.7 4.7 3.9 

air-blast 8.6 4.5 3.1 

SF6 10.9 4.0 3.5 

 

 Table 7.8: Optimal minor maintenance interval (years) 

 

The influence and deviation of actual minor maintenance interval to the optimal minor 

maintenance interval can be performed in the same way as major maintenance. The actual 

minor maintenance interval is varied from 3 to 9 years. 

 

Fig. 7.7 represents the example of SF6 circuit-breakers. The deviation between the constant 

optimal maintenance interval and the variable one is shown in the shaded area. In case of 123 

kV, it can be seen that the optimal minor maintenance interval is varied from around 11 to 16 

years when the actual minor maintenance is changed from 4 to 9 years. The deviation in case 

of 245 and 420 kV is smaller than 123 kV. 
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 Figure 7.7: The deviation of optimal minor maintenance interval with respect to 

   minor maintenance interval (SF6 circuit-breakers) 

 

The optimal minor and major maintenance of different types of HV circuit-breakers at 

different voltage levels can be concluded in Table 7.9. 
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123 kV 245 kV 420 kV  

minor  
maintenance 

(years) 

major 
maintenance 

(years) 

minor  
maintenance 

(years) 

major 
maintenance 

(years) 

minor  
maintenance 

(years) 

major 
maintenance 

(years) 

minimum oil 11.7 33.3 4.7 15.0 3.9 10.7 

air-blast 8.6 24.5 4.5 14.3 3.1 8.6 

SF6 10.9 31.2 4.0 12.7 3.5 9.5 

 

 Table 7.9: The optimal minor and major maintenance intervals of HV circuit-breakers  

 

It can be concluded from Table 7.9 that: 

 

• Since 123 kV-HV circuit-breakers had been subject to relatively small failures, the actual 

minor and major maintenance intervals of 4 and 7 years respectively are too frequent. 

The optimal minor maintenance interval should be around 8 – 12 years depending on 

types of circuit-breakers. The optimal major maintenance programs of 123kV-HV 

circuit-breakers should be performed every 24 – 33 years. 

• The minor failure rates of 245 kV-HV circuit-breakers are relatively high. The optimal 

minor maintenance intervals in this case are around 4-5 years. The optimal major 

maintenance interval should be extended from 7 years to 14 years in this voltage level. 

• In case of 420 kV-HV circuit-breakers, the optimal minor maintenance interval should be 

performed every 3-4 years, whereas the optimal major maintenance programs should be 

carried out every 8-10 years. 

• It can be seen from the calculation that with the optimal minor and major maintenance 

programs, the numbers of maintenance are reduced and the systems operate at the 

minimum downtime. 

 

7.3 Reliability under Preventive Maintenance 

 

7.3.1 Concepts of Preventive Maintenance 

 

The preventive maintenance programs can reduce the effect of aging or wear-out resulting in 

the extending of lifetime of HV circuit-breakers. It is assumed that after preventive 



7. Cost Structure and Maintenance Optimization 123 

maintenance, the reliability of HV circuit-breakers is restored to the original condition. The 

reliability of HV circuit-breakers with preventive maintenance is represented as 

 

 mR (t) = R(t)     for 0 t < T≤    (7.7) 

 mR (t) = R(T) R(t - T)⋅    for T t < 2T≤    (7.8) 

 

Rm(t) in Eq. (7.7) is the reliability without maintenance and T is the interval to perform 

preventive maintenance. It is seen in Eq. (7.8) that the preventive maintenance is performed at 

time T, where R(T) is the survivor function until the first preventive maintenance and R(t - T) 

is the survivor function at additional time (t - T). HV circuit-breakers are restored to their 

original state at time T. The Eq. (7.8) can be generally expressed as: 

 

 n
mR (t) = R(T) R(t - nT)⋅         (7.9) 

where nT t < (n+1)T≤ , n = 1, 2, 3, … 

 

R(T)n is the survivor function of surviving n maintenance intervals and R(t - nT) is the 

survivor function of additional time (t - nT) after the last preventive maintenance. It is noted 

that the preventive maintenance cannot be applied during the useful life having exponential 

distribution. In other words, the preventive maintenance is not applicable under constant 

failure rate condition as represented below.  

 

 -λtR(t) = e   

 n
mR (t) = R(T) R(t - nT)⋅  

 -λT n -λ(t - nT)
mR (t) = (e ) (e )⋅  

 -λnT -λt λnT -λt
mR (t) = e e e  = e⋅ ⋅  

 

It can be seen that the preventive maintenance cannot increase the reliability under constant 

failure rate condition. 
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7.3.2 Application of Preventive Maintenance to HV Circuit-Breakers 

 

It must be noted that the preventive maintenance is effective in the wear-out period in order to 

increase their reliabilities. After preventive maintenance is performed, the reliability of HV 

circuit-breakers is restored to the original condition. The equation of reliability of HV circuit-

breakers with preventive maintenance is represented as followed: 

 

 
β β

m

T t - nT
R (t) = exp -n exp -

α α

      
⋅      

         
  nT t (n+1)T≤ <            (7.10) 

 

where n:  the number of preventive maintenance before the considered period of time 

 T:  interval of time between preventive maintenance 

 

The case of all types of HV circuit-breakers had been used to show the application of 

preventive maintenance. The failure rate distribution extracted from the failure database of all 

types of HV circuit-breakers is depicted in Fig. 7.8. The failure distribution represents the 

relative failure rate of the first failures of circuit-breakers. As a result, the trend of failure 

development during the lifetime can be investigated. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Year

F
ai

lu
re

 r
at

e

 

 

 Figure 7.8: The relative failure rate distribution of all types of circuit-breakers 
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It can be seen from Fig. 7.8 that the failure rate is relatively constant until the 20th year. From 

the 20th year, the failure rate is increased and it is assumed that this is the Weibull distribution. 

From the 30th year, the distribution is fluctuated and not precise because of small numbers of 

samples. Therefore, the parameters of Weibull distribution are determined by using the failure 

distribution during the 20th - 30th year. 

 

From the failure database, it is found that the maintenance and overhaul are carried out every 

7 and 12 years respectively. As discussed earlier, the preventive maintenance cannot increase 

the reliability when the failure rate is constant (the first 20 years). The investigation then starts 

at the 20th year and it is assumed that the reliability of circuit-breakers starts at unity in this 

year in order to simplify the explanation of reliability under preventive maintenance. By using 

the MATLAB curve-fitting program, it is possible to find the Weibull parameters α and β 

which are equal to 10 and 4 respectively. The reliability with the preventive maintenance can 

be represented as: 

 

 
4 4

m

T t - nT
R (t) = exp -n exp -

10 10

      
⋅      

         
               (7.11) 

 

With the Eq. (7.11), the maintenance interval T is varied in order to study the effects of 

preventive maintenance to the reliability of HV circuit-breakers. The example of maintenance 

interval of 7 years is illustrated in Fig. 7.9. The effects of different preventive maintenance in 

terms of the maintenance frequency to the reliability are represented in Fig. 7.10.  

 

It is obvious from Fig. 7.9 that the preventive maintenance has the same distribution as the 

original reliability distribution but it will be restored to the original condition at the specified 

maintenance period. When the preventive maintenance is implemented into the original 

reliability distribution, the decreasing reliability over time can be slowed down. As a result, 

the lifetime of the HV circuit-breaker can be extended. 

 

The more frequent preventive maintenance results in the more effective extension of the 

lifetime. However, the cost of frequent maintenance during the wear-out period might be 

more expensive than the cost of replacing with the new circuit-breakers. Therefore, the 

optimal maintenance during wear-out period must be calculated. 
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 Figure 7.9: The reliability distribution with 7-year interval of maintenance 
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 Figure 7.10: The comparison of preventive maintenance at different intervals 



7. Cost Structure and Maintenance Optimization 127 

7.3.3 Preventive Maintenance during Wear-out Period 

 

The optimal preventive maintenance during wear-out period is carried out after section 7.3.2. 

The maintenance costs of different maintenance programs are calculated. Afterwards, the 

maintenance costs are compared with the costs of new circuit-breakers. The results of the 

calculation represent when the circuit-breakers should be maintained and when those should 

be replaces by the new ones. Nevertheless, the results of optimal maintenance are different 

depending on the required reliability of circuit-breakers. The steps of optimal preventive 

maintenance can be listed as follows: 

 

• The maximum lifetimes of circuit-breakers are set to around 40-50 years 

• The different preventive maintenance programs from the 20th year (during wear-out 

period) are calculated. In this study, the maintenance interval of 3, 5 and 7 years are 

taken into account. 

• The required reliabilities are determined. Therefore, the year in which the circuit-

breakers having reliability below specified levels can be investigated. This year is 

referred to as the year-to-replace the circuit-breakers with the new ones. In addition, the 

year-to-replace is dependent on the maintenance programs. The more frequent 

maintenance programs are able to extend the year to replace. However, the addition 

maintenance costs are increased along with the more frequent maintenance programs. 

• The preventive maintenance programs can be changed from one to another program in 

order to fulfill the reliability requirement.  

 

The examples of different reliabilities can be explained from Fig. 7.11. The requirements of 

reliabilities of circuit-breakers after 20 years in service are set to 0.9, 0.7 and 0.5. 
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 Figure 7.11: The requirements of reliabilities and the different maintenance programs 

 

It can be concluded from the Fig. 7.11: 

 

• When the reliability of circuit-breakers of 0.9 is desired, the 7-year interval maintenance 

cannot prolong the time to replace, since the time to replace (at the 26th year) takes place 

before the implementation of preventive maintenance. The time to replace can be 

prolonged to 29 years when the 5-year interval maintenance is applied. The time to 

replace can be even extended to 60 years, when the 3-year interval maintenance is 

implemented. However, the maximum lifetime is limited to 50 years and the 3-year 

maintenance might not be cost-effective. 

• When the reliability of circuit-breakers of 0.7 is required, the original distribution shows 

the time to replace of 28 years. With the 7-year interval maintenance, the time to replace 

can be extended to 33 years. The time to replace can be prolonged to 49 years with the 5-

year interval maintenance. The 3-year maintenance program is not considered, since the 

lifetimes of circuit-breakers are however limited to 50 years. 

• When the reliability of 0.5 is acceptable, the original distribution represents the time to 

replace of 29 years. With the 7-year interval maintenance, the time to replace can be 

extended to 41 years. The 3 and 5-year interval maintenance programs are not taken into 

account, since the time to replace is beyond the maximum lifetime. 
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The time to replace due to the different maintenance programs and required reliabilities can 

be concluded in Table 7.10. 

 

Replacing time due to maintenance programs Reliability 

Original 
maintenance 

3-year 
maintenance 

5-year 
maintenance 

7-year 
maintenance 

0.9 26 > 50 29 26 

0.7 28 > 50 49 33 

0.5 29 > 50 > 50 41 

 

 Table 7.10:  The time to replace due to the different maintenance programs and 

required reliabilities 

 

7.3.4 Consideration of Optimal Preventive Maintenance during Wear-out Period 

 

The optimal preventive maintenance during wear-out period can be carried out by 

consideration of repair costs, maintenance costs and investment costs. The assumptions can be 

made as follows: 

 

• The original reliability distribution in Fig. 7.8-7.10 is investigated from the first failures 

of circuit-breakers. Therefore, this reliability curve is a relative reliability distribution 

considering only the circuit-breakers subject to their first failures. 

• The original reliability distribution represents the curve of circuit-breakers of which 

normal overhaul programs are included. From the database, the overhaul of circuit-

breakers had been carried out every 12 years. 

• The different additional preventive maintenance programs are introduced into the 

original reliability distribution. The costs of maintenance per year are calculated 

• The cost of investment of a new circuit-breaker is calculated based of the economic 

lifetime of 30 years with the interest rate of 6.5%. The interest rate of 6.5% is also 

applied for the maintenance costs. 

• The inflation rate is not taken into account. 

• The outage costs for non-delivered energy are taken into account by using the outage 

costs of 5 € / kWh.  
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• The repair costs of old circuit-breakers are 25 % of the costs of new circuit-breakers, 

whereas the repair costs of new circuit-breakers are only 12.5 % of the costs of new 

circuit-breakers. 

 

The failure rate to replace the old circuit-breakers with the new ones can be calculated from 

Eq. 7.12. This equation represents the costs of old and new circuit-breakers per year. The 

optimal reliability to replace circuit-breakers can be found when the costs of old circuit-

breakers are equal to the costs of new ones. The example of 123 kV of circuit-breakers with 

the optimal reliabilities corresponding to the different maintenance programs are depicted in 

Fig. 7.12 

 

1 R1 O M1 2 R2 O M2 iλ (C  + C ) + C  = λ (C  + C ) + C  + C               (7.12) 

 

where: λ1: failure rate of old circuit-breakers 

 λ2: failure rate of new circuit-breakers 

 CR1: Costs of repair of old circuit-breakers  

 CR2: Costs of repair of new circuit-breakers 

 CO: Outage costs (5 € / kWh) 

 CM1: Maintenance costs per year of 3, 4, 5 and 7-year maintenance interval period 

 CM2: Overhaul costs per year of 12-year interval period 

 Ci: Investment costs per year 

 

From Eq. 7.12, the failure rate of old circuit-breakers, λ1, is an unknown value and must be 

calculated. After that, the failure rate λ1 is converted to investigate the time and reliability of 

the original distribution. The optimal reliabilities to replace circuit-breakers are then 

calculated from the λ1 by using Eq. 7.12, 5.26 and 5.27. The additional details of the 

calculation of parameters can be explained: 

 

• λ2 is represented by the failure rates of SF6 circuit-breakers (Table 7.5), since it is 

assumed that all the old circuit-breakers will be replaced with SF6 circuit-breakers. 

• The calculation with and without the influence of outage costs (CO) is considered. 

• The average outage time per year of Germany is 20 minutes. 

• It is assumed that a circuit-breaker carries a load current of 500 A. 
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• In the case with the outage costs, it is assumed that the outage powers per circuit-breaker 

for 123, 245 and 420 kV are 106, 212 and 364 MW respectively. 

• The maintenance and overhaul cost (CM1 and CM2) per year are calculated by present 

value calculation and annuity method. The period of calculation is 30 years. 

• Investment cost is calculated from the annuity method with the period of 30 years. 

 

The mentioned parameters of HV circuit-breakers in different voltage levels can be concluded 

in Table 7.11 

 

Parameter 123 kV 245 kV 420 kV 

Interest rate 6.5% 6.5% 6.5% 

Cost of new CB 25000 € 75000 € 220000 € 

CR1 6250 € 18750 € 55000 € 

CR2 3125 € 9375 € 27500 € 

CM1:  
3-year program 
4-year program 
5-year program 
7-year program 

 
1563 € 
1107 € 
878 € 
573 € 

 
3126 € 
2215 € 
1756 € 
1145 € 

 
6252 € 
4430 € 
3512 € 
2291 € 

CM2:  
12-year program 

264 € 528 € 1057 € 

CO 176666€ 353333€ 606666€ 

Ci 1914 € 5743 € 16874 € 

λ2 0.002 0.0144 0.026 

 

 Table 7.11: The values of parameters represented in Eq. 7.12 

 

Without the influence of outage costs (CO = 0), the different maintenance programs result in 

the significantly different failure rates of old circuit-breakers. The optimal reliabilities from 

different maintenance programs are marked on the reliability axis in Fig. 7.12. The horizontal 

lines are drawn parallel to X axis and then cross the different reliability curves. The vertical 

lines are then drawn from the intersection points to the X axis. The optimal time to replace the 

old circuit-breakers with the new ones can be read from Fig. 7.12 and can be concluded in 

Table 7.12 
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 Figure 7.12:  The optimal reliabilities and years to replace the old 123 kV  

circuit-breakers 

 

The results from Table 7.12 must be carefully interpreted. It is obvious from the Fig. 7.12 and 

Table 7.12 that the 5-year and 7-year maintenance are the optimal maintenance programs 

which can prolong the time to replace up to 54 and 39 years while keeping the reliability of 

0.66 and 0.58 respectively. Although the 3-year and 4-year maintenance can prolong the times 

to replace up to more than 65 years, they cannot be considered as the optimal maintenance, 

since the optimal years to replace are beyond the expected lifetime of circuit-breakers. 

 

123 kV Optimal reliability Optimal time to 
replace (years) 

3-year maintenance 0.86 > 65 

4-year maintenance 0.73 > 65 

5-year maintenance 0.66 54 

7-year maintenance 0.58 39 

 

 Table 7.12:  The optimal years to replace of 123 kV circuit-breakers regarding  

   the different maintenance programs 
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The optimal years to replace of 245 kV and 420 kV circuit-breakers can be carried out in the 

same way by changing the costs of maintenance, repair costs and investment costs. The 

optimal times to replace and reliabilities of 245 kV and 420 kV circuit-breakers can be 

represented in Table 7.13. 

 

245 kV 420 kV  

Optimal 
reliability 

Optimal time to 
replace (years) 

Optimal 
reliability 

Optimal time to 
replace (years) 

3-year maintenance 0.74 > 65 0.67 > 65 

4-year maintenance 0.66 > 65 0.62 > 65 

5-year maintenance 0.61 59 0.59 64 

7-year maintenance 0.56 39 0.55 40 

 

 Table 7.13:  The optimal years to replace of 245 and 420 kV circuit-breakers 

   regarding the different maintenance programs 

 

In case of 245 kV circuit-breakers, it is recommended to introduce the 7-year maintenance 

program in order to prolong the time to replace to 39 years while keeping the reliability of 

0.56. The 7-year maintenance program can also be implemented for 420 kV circuit-breakers 

to prolong the time to replace up to 40 years at the reliability of 0.55. 

 

When the outage costs (CO) are taken into account, all the values in Table 7.11 are substituted 

into Eq. 7.12. Therefore, the failures rates of old circuit-breakers (λ1) from different 

maintenance programs are determined. It is found that the failure rates of old circuit-breakers 

from different maintenance programs are not significantly different due to the high influence 

of outage costs. The small difference between the old failure rates and the new failure rates 

implies that the circuit-breakers must be replaced at the early ages (20-25 years), as only a 

small change of failure rate occurs. This circumstance leads to the fact that the different 

maintenance programs cannot prolong the time to replace, since the time to replace occurs 

before the first maintenance is carried out. The optimal reliabilities and the optimal times to 

place in the case of considering the outage costs are summarized in Table 7.13. 
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123 kV 245 kV 420 kV  
Optimal 

reliability 
Optimal time 

to replace 
(years) 

Optimal 
reliability 

Optimal time 
to replace 

(years) 

Optimal 
reliability 

Optimal time 
to replace 

(years) 

3-year 
maintenance 

0.99 22 0.99 23 0.99 23 

4-year 
maintenance 

0.99 22 0.99 23 0.98 24 

5-year 
maintenance 

0.99 23 0.99 23 0.98 24 

7-year 
maintenance 

0.99 23 0.99 23 0.98 24 

 

 Table 7.13:  The optimal reliabilities and years to place in the case of taking the 

   outage costs into consideration 

 

It can be seen from Table 7.13 that the optimal times to replace occur before the first 

maintenance programs are performed. In this case, the different preventive maintenance 

programs play no important role in order to prolong the times to replace. 

 

Without consideration of outage costs, it is concluded from the optimal maintenance that 

different preventive maintenance programs can prolong the lifetimes of circuit-breakers. 

However, the life-cycle cost must be taken into consideration in order to find the optimal 

times to replace of circuit-breakers. This optimal calculation depends mainly on many 

parameters as shown in Eq. 7.12. Consequently, the results of the calculation could be varied 

when the parameters are changed. 

 

It is obvious from the life-cycle cost calculation (Eq. 7.12) that the outage costs have the 

highest influence. When the high outage costs are taken into account, the difference between 

the old failure rates and the new failure rates is significantly small. Consequently, the old 

circuit-breakers should be replaced at the early ages (20-25 years). In this situation, the 

different maintenance programs have no influence on the time to replace. 
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8 Conclusions 

 

The main objectives of this thesis were to analyze the risks of HV circuit-breakers, develop 

the probabilistic models, breakdown the cost structure and establish the improved 

maintenance strategies. Owing to deregulation of electricity markets, the competitiveness of 

markets is significantly concerned. This issue is related with the reliability, availability of 

systems and costs of maintenance. HV circuit-breakers which are one of the most important 

equipment in power systems have been served as interrupting equipment for operating and 

short-circuit currents for more than a century. Many technologies in terms of interrupting 

medium had been developed from oil, air-blast, vacuum to SF6. At present, a number of HV 

circuit-breakers are reaching the aging period and they are required to be effectively handled. 

Some can be prolonged by using the effective maintenance, whereas some must be replaced 

before the major failures occur.  

 

Normally, HV circuit-breakers have been maintained by using manufacturers’ guidelines and 

experiences of operators. It is not well proved that such maintenance programs are effective 

regarding costs and performance. Although there are many literatures introducing the optimal 

maintenance for HV circuit-breakers, most of them propose only the ideas and mathematical 

models without the reference from the failure database. In this context it was challenging to 

design and investigate reliability and maintenance strategies in connection with the failure 

database. 

 

This thesis was constructed of three main parts to handle such problems. In the first part, the 

failure modes and effects analysis method was applied to determine the risks of components 

of HV circuit-breakers. The second part was to develop the probabilistic models to investigate 

the reliability of HV circuit-breakers and failure development. In the last part the cost 

structure of HV circuit-breakers was determined. In addition, the optimal maintenance 

strategies during useful and wear-out period were established. The failure database of HV 

circuit-breakers collected by the Institute of Power Systems, Darmstadt University of 

Technology had been implemented in all parts. 

 

In order to conduct the failure modes and effects analysis method, the functions of HV circuit-

breakers and their functional failure modes were first defined. Next, the causes of failure 
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related to the function and components were investigated and the numbers of failures were 

taken from the database. The consequences of each failure including personnel safety, 

environmental impact, operation availability and costs of repair were evaluated by using a 

score system. The criteria of failure detection must be considered to evaluate the severity of 

failures. Consequently, the risks of HV circuit-breaker components composed of the 

consequence of failure, the failure detection and the probability of failure could be calculated 

and the ranking of risk is then represented. The weighing factors for such three parameters 

were determined by using the decision matrix approach. It was discovered from the risk 

diagram that the components of HV circuit-breakers are in the low and medium risk region. 

The improved maintenance strategies should be applied to the components which are in the 

medium risk region to assure that those components will not reach the high risk region. The 

disadvantage of the risk diagram is that it is a time-independent diagram. Consequently, the 

diagram cannot predict which component should be replaced at which year. 

 

The probabilistic models were developed to investigate the reliability of HV circuit-breakers 

and how the failures develop from year to year. The first model, treeing diagram, is the model 

representing the probability of failures occurring in any subsequent years. The development 

of failures from the failure-free state to the first and second failures was investigated by using 

the conditional probability method and represented as a treeing diagram. The critical 

pathways of failure development could be investigated with this model. The second model, 

the cascading reliability model, was the extension of the treeing diagram. The development of 

failures from failure-free state to the first, second and third failures was represented in terms 

of mean time to failure, transition and state probabilities. With this model, it is possible to 

discover when the failures could occur and at which probability. It is beneficial for the asset 

managers and maintenance personnel to be aware of the following failures. The last 

probabilistic model is the reliability model obtained by using the application of Markov 

process. In this model, HV circuit-breakers are composed of five main components. The 

reliability parameters such as mean time to failure and mean time to repair of each component 

were examined from the database. By using the Markov process method, the failure-free 

durations and availability of different types of HV circuit-breakers can be investigated. It was 

concluded from this Markov model that the availability of HV circuit-breakers is over 99%. 

The influence of repetitive failures resulting from human error or incomplete repair was taken 

into consideration. 
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In the first part of the last section, the cost structure of HV circuit-breakers related to 

specifications was broken down by using the decision matrix approach. This decision matrix 

was also applied to each main component resulting in the detailed cost structure. It was found 

from the cost breakdown that “rated voltage” has the highest influence on the total costs 

followed by “rated short circuit breaking current” and “rated lighting and switching impulse 

withstand voltage”. The cost structure provides the valuable information for the designers to 

design the cost-effective HV circuit-breakers for different applications. 

 

Maintenance optimization was the last issue in this thesis. It can be divided into two periods: 

useful life and wear-out period. These periods were handled with the different maintenance 

models. The optimal maintenance frequency during useful life period was established from 

the principle that more frequent maintenance could result in more system downtime; on the 

other hand, less maintenance could result in downtime due to failures. The mathematical 

model and the failure rates of HV circuit-breakers were applied. The different types of HV 

circuit-breakers at different voltage levels were taken into consideration. It was found that the 

minor and major maintenance for 123 kV HV circuit-breakers should be performed every 8-

10 and 24-33 years respectively. For 245 kV, the 4-year interval minor and 14-year interval 

major maintenance are suggested to be implemented. For the voltage level of 420 kV, it is 

suggested to introduce the minor and major maintenance every 3-4 and 8-10 years 

respectively. 

 

During the wear-out period, the failure rate of HV circuit-breakers represents the Weibull 

distribution. With the preventive maintenance, it is possible to increase the reliability during 

this period. Nevertheless, the more frequent maintenance results in the more costs of 

maintenance. Therefore, the optimal maintenance was considered by taking the costs of 

repair, costs of undelivered energy, costs of maintenance and costs of investment into 

account. The different preventive maintenance programs show the different results regarding 

the reliability of HV circuit-breakers and optimal time to replace the old circuit-breakers with 

the new ones. It must be noted that this optimal maintenance model considerably relates to 

mentioned costs. The results could be changed when one or more costs are changed. 

 

The optimal maintenance programs during useful life and wear-out period are very useful for 

asset managers to make a decision when and what kind of maintenance should be performed. 
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It is recommended that this optimal maintenance could be investigated in more detail in terms 

of the sensitivity of the different cost parameters. 
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List of Symbols and Abbreviations 

 

Symbols 
 

Al2O3   Aluminium oxide 

CaO   Calcium oxide 

f(t)    Probability density function 

Ik1TF   Single-phase short circuit-current at terminal 

Ik3TF   Three-phase short circuit-current at terminal 

Iload   Load current 

Ir   Rated normal current 

Irb   Rated short-circuit breaking current 

Isc   Short-circuit current 

MTTF   Mean time to failure 

MTTR   Mean time to repair 

NaOH   Sodium hydroxide 

N2   Nitrogen 

fN (t)    Number of component failed at time t 

sN (t)    Number of components surviving at time t 

Q(t)   Cumulative distribution function 

R(t)   Survivor function 

SF6   Sulphur hexafluoride 

Zw   Characteristic impedance 

λ(t)   Failure rate 

2δ    Variance 

β    Shape parameter of Weibull distribution 

α    Scale parameter of Weibull distribution 

ω   Operating frequency 
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Abbreviations 
 

EPRI   Electric Power Research Institute 

FMEA   Failure Modes and Effects Analysis 

HV   High Voltage 

IEEE   Institute of Electrical and Electronics Engineers 

RCM   Reliability-Centred Maintenance 

RRRV   Rate of Rise of Recovery Voltage 

TRV   Transient Recovery Voltage 

XLPE   Cross-linked polyethylene 
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Appendix A The Transformation Method Used for  

Decision Matrix Approach 
 

 
Y 

XCo1 Co2

Cn1

Cn2

 

 

 Figure A1: The transformation method 

 

The transformation of the actual values from section 4.3 into the values with embedded 

weighting factors as described in section 4.4 can be explained by using Fig. A1. This method 

is suitable for the data that is linearly distributed. The variables on Fig. A1 are composed of: 

 

 Co1:  the real minimum value Co2:  the real maximum value 

 Cn1:  the new minimum value Cn2:  the new maximum value 

 

The related equations are expressed as follows: 

 

y = a + b x

Cn2 - Cn1
a = Cn1 - Co1

Co2 - Co1
Cn2 - Cn1

b = 
Co2 - Co1

⋅

⋅         (A.1) 

 

The real minimum values of the parameters can be obtained after FMEA Table (Appendix B) 

is formed and completed. For example, the Table A1 resulting in Table 4.5 and 4.6 shows the 

real values from FMEA table and the values after performing the decision matrix approach as 

explained in section 4.4. The priority scores of Table 4.5 can be calculated by the product of 
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transformation of parameters 1,2 and 3, while the scores of Table 4.6 are calculated from 

parameter 1,2 and 4. 

 

Real values Transformed values Parameter 

minimum maximum minimum maximum 

1.Consequence of failure 1 28 1 17 

2.Failure detection 1 3 1 50 

3.Probability of failure 
by functional failure 

7.7e-05 0.055 1 33 

4.Probability of failure 
by component 

7.0e-04 0.073 1 33 

 

 Table A1: The real values and transformed values. 

 

By using the equation A.1, the transformed equation can be obtained as stated: 

 

1. Consequence of failure:   y = 0.4074 + 0.5926x   (A.2) 

2. Failure detection    y = -23.5 + 24.5x    (A.3) 

3. Probability of failure by functional failure y = 0.996 + 0.1363x    (A.4) 

4. Probability of failure by component  y = 0.69 + 0.103x    (A.5) 

 

The parameters for calculating the total consequences of section 4.6, risk diagram, are 

composed of only the consequence of failure and the failure detection. The decision matrix 

between these 2 parameters had been applied. It is found that the weighting ration between the 

failure detection and the consequence of failure is 75:25. By using the equation A.1, the 

transformed equations can be obtained. 

 

1. Consequence of failure   y = 0.111 + 0.888x    (A.6) 

2. Failure detection    y = -36 + 37x     (A.7) 
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Appendix B The FMEA Evaluation of SF6 Circuit-Breakers 
 

B1: The FMEA evaluation based on the functional failures: SF6 circuit-breakers 
 

Information Reference Consequence evaluation Score Failure dectection 
No. of 
failure 

Rank
ing 

Failure mode Failure cause P E+ E E- O+ O O- C+ C C-  
Impos- 
sible Easy 

Diffi-
cult   

1. Does not close on command 1.Operating mechanism fails 
1.1 Mechanical drive 
fails 1. Motor fails       X   X 5  X  4.49 47 

   2. Spring fails      X    X 6  X  2.17 48 

   3. inadequate lubrication       X   X    X   

   4. Energy transfer fails                 

       4.1 Damping fails       X   X 5   X 0.72 19 

       4.2 Hydraulic pump fails       X   X 5  X  0.72 52 

   5. Others                 

  1.2 Hydraulic drive fails  1. Motor fails       X   X 5  X  20.19 42 

   2. N2 Storage fails      X    X 6  X  160.76 20 

   3. inadequate lubrication       X   X    X   

   4. Energy transfer fails                 

      4.1 Damping fails       X   X 5   X 8.22 14 

      4.2 Linkage fails    X  X   X  14 X   51.39 2 

      4.3 Hydraulic pump fails       X   X 5  X  71.78 30 

      4.4 Hydraulic cylinder fails       X  X  6  X  77.02 27 

      4.5 Conduit/Connection fails       X   X 5  X  229.55 18 

      4.6 Collective tank fails  X     X  X  15  X  33.65 26 

      4.7 Valves fail      X   X  7  X  119.40 24 

      4.8 Others                 

   5. Others                 

 2. Control and auxiliary system fails   1. No supply voltage       X   X   X    

   2. Sensor fails        X   X 5  X  234.78 17 

   3. Relay fails       X   X 5  X  184.20 22 

   4. Connection cable fails       X   X 5  X  50.10 37 

   5. Heater fails        X  X  6   X 75.52 7 
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Information Reference 

 
 

Consequence evaluation Score Failure dectection 
No. of 
failure 

Rank
ing 

Failure mode Failure cause 
 
P E+ E E- O+ O O- C+ C C-  

Impos- 
sible Easy 

Diffi-
cult   

   6. Others                 

 3. Current carrying parts fail  3.1 Arcing chamber fails  1. Low SF6 density    X   X  X  13  X  161.92 13 

   2. Low temperature                 

2. Does not open on command 1.Operating mechanism fails  
1.1 Mechanical drive 
fails  1. Motor fails       X   X 5  X  1.51 50 

   2. Spring fails      X    X 6  X  0.76 49 

   3. inadequate lubrication       X   X    X   

   4. Energy transfer fails                 

      4.1 Damping fails       X   X 5   X 0.24 21 

      4.2 Hydraulic pump fails       X   X 5  X  0.24 54 

   5. Others                 

  1.2 Hydraulic drive fails  1. Motor fails       X   X 5  X  6.81 46 

   2. N2 Storage fails      X    X 6  X  54.24 32 

   3. inadequate lubrication       X   X    X   

   4. Energy transfer fails                 

      4.1 Damping fails       X   X 5   X 2.78 16 

      4.2 Linkage fails    X  X   X  14 X   18.50 3 

      4.3 Hydraulic pump fails       X   X 5  X  24.22 41 

      4.4 Hydraulic cylinder fails       X  X  6  X  25.98 40 

      4.5 Conduit/Connection fail       X   X 5  X  77.45 29 

      4.6 Collective tank fails  X     X  X  15  X  11.35 39 

      4.7 Valves fail      X   X  7  X  40.29 35 

      4.8 Others                 

   5. Others                 

 2. Control and auxiliary system fails   1. No supply voltage       X   X   X    

   2. Sensor fails       X   X 5  X  79.22 28 

   3. Relay fails       X   X 5  X  62.15 33 

   4. Connection cable fails       X   X 5  X  16.90 43 

   5. Heater fails        X  X  6   X 25.48 12 

   6. Others                 

 3. Current carrying parts fail  3.1 Arcing chamber fails  1. Low SF6 density    X   X  X  13  X  54.63 25 

   2. Low temperature                 

3. Closes without command 1.Operating mechanism fails  
1.1 Mechanical drive 
fails  1. Energy transfer fails                 

      1.1 Damping fails       X   X 5   X 0.03 23 
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Information Reference 

 
 

Consequence evaluation Score Failure dectection 
No. of 
failure 

Rank
ing 

Failure mode Failure cause 
 
P E+ E E- O+ O O- C+ C C-  

Impos- 
sible Easy 

Diffi-
cult   

      1.2 Spring fails      X    X 6  X  0.10 51 

      1.3 Linkage fails       X   X 5  X  0.27 53 

      1.4 Hydraulic pump fails       X   X 5  X  0.03 55 

  1.2 Hydraulic drive fails  1. Valves fail      X   X  7  X  5.34 44 

 2. Control and auxiliary system fails   
1. Current flows in the close 
coil                 

   2.Relay fails       X   X 5  X  8.24 45 

 3. Other reasons  1. Vibration of circuit-breaker                 

4. Opens without command 1.Operating mechanism fails  
1.1 Mechanical drive 
fails 1. Trip latch not secure       X  X  6   X 4.00 15 

  1.2 Hydraulic drive fails  1. Valves fail      X   X  7  X  33.98 38 

 2. Control and auxiliary system fails   1. EMC fails      X    X       

   2.Relay fails       X   X 5  X  52.41 36 

 3. Other reasons  1. Vibration of circuit-breaker                 

5. Does not make the current 1. Current carrying parts fail  1.1 Arcing chamber fails 1. Contact fails X X   X   X   28   X 13.28 5 

 2. Other reasons  1. Human failure                 

6. Does not break the current 1.Operating mechanism fails  
1.1 Mechanical drive 
fails 

1. Mechanism does not travel 
complete distance  X    X  X    X     

   2. low velocity                 

  1.2 Hydraulic drive fails  
1. Mechanism does not travel 
complete distance  X    X  X         

   2. low velocity                 

   3. Linkage breakdowns    X  X   X  14 X   6.69 10 

 2.Current carrying parts fail  2.1 Arcing chamber fails  1. Insufficient contact opening X X   X   X      X   

   2. Low SF6 density    X   X  X  13  X  19.75 34 

   

3.Overvoltage stress from 
switching exceeds CB 
capability X X   X   X    X     

   4. Lightning  X    X   X   X     

  
2.2 Controlled capacitor 
fails    X   X   X  15 X   56.00 1 

7. Fails to carry the current 1. Current carrying parts fail  1.1 Arcing chamber fails  1. Contact fails X X   X   X   28   X 11.72 8 

8. Breakdown to earth 1. Insulation fails   
1.1 Insulating material 
fails  

1. Damaged interrupter from 
external impacts X X     X  X    X    
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Information Reference 

 
 

Consequence evaluation Score Failure dectection 
No. of 
failure 

Rank
ing 

Failure mode Failure cause 
 
P E+ E E- O+ O O- C+ C C-  

Impos- 
sible Easy 

Diffi-
cult   

   2. Contact from animals                 

   3. Lightning   X    X   X   X     

   4. insulation aging  X    X   X   X     

   5. Water infiltration  X    X   X   X     

   6.Flashover by transient effect       X X    X     

   7. Porcelain fails    X    X X   15 X   15.66 4 

   8. Arcing Chamber Housing   X    X X   15 X   11.57 6 

   9.Pollution   X   X  X      X   

9. Breakdown between poles 1. Insulation fails  
1.1 Insulating material 
fails 1. Contact from animals                 

   2.Flashover by transient effect       X X    X     

   3.Pollution   X   X  X      X   

10. Breakdown across open 
pole (internal) 1. Current carrying parts fail  1.1 Arcing chamber fails  1. Leak of SF6    X   X  X  13  X  23.70 31 

   2. Low temperature                 

   3.Flashover by transient effect       X X    X     

11. Breakdown across open 
pole (external) 1. Insulation fails  

1.1 Insulating material 
fails 

1. Damaged interrupter from 
external impacts X X     X  X    X    

   2. Contact from animals                 

   3. Lightning   X    X   X   X     

   4. insulation aging  X    X   X   X     

   5. Water infiltration  X    X   X   X     

   6.Flashover by transient effect       X X    X     

   7. Porcelain fails   X    X X   15 X   7.34 9 

   8. Arcing Chamber Housing   X    X X   15 X   5.43 11 

   9.Pollution   X   X  X      X   

12. Others                    

 
Remark: There is no information from the database for some causes of failures. However, the consequence evaluation had been carried out for all possibilities of 

failures. 
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B2: The FMEA evaluation based on component failures: SF6 circuit-breakers 
 

Consequence evaluation Failure detection 
No. of 
failure 

Conse- 
quence 

Fault 
detec-
tion Ranking 

 
 

failure cause 

 
 

failure characteristic 
 

P 
 

E+ 
 

E 
 

E- 
 

O+ 
 

O 
 

O- 
 

C+ 
 

C 
 

C- 
Impos- 
sible 

 
Easy 

Diffi 
cult     

1.Operating mechanism fails 1.1 Mechanical drive fails 1. Motor fails       X   X  X  6 5 1 20 
  2. Spring fails      X    X  X  3 6 1 21 
  3. inadequate lubrication       X   X   X     
  4. Energy transfer fails                  
  4.3 Trip latch not secure (closing latch)       X  X    X 6 6 2 9 
  5. Mechanism does not travel complete distance  X    X  X   X       
 1.2 Hydraulic drive fails  1. Motor fails       X   X  X  27 5 1 19 
  2. N2 Storage fails      X    X  X  215 6 1 14 
  3. inadequate lubrication       X   X   X     
  4. Energy transfer fails                  
  4.1 Damping fails       X   X   X 12 5 2 8 
  4.2 Linkage fails    X  X   X  X   75 14 3 1 
  4.3 Hydraulic pump fails       X   X  X  96 5 1 17 
  4.4 Hydraulic cylinder fails       X  X   X  103 6 1 16 
  4.5 Conduit/Connection fails       X   X  X  307 5 1 11 
  4.6 Collective tank fails  X     X  X   X  45 15 1 15 
  4.7 Valves fail      X   X   X  199 7 1 13 
  5. Mechanism does not travel complete distance  X    X  X   X       
2. Control and au1iliary system fails   1. No supply voltage       X   X  X      
  2. Sensor fails        X   X  X  314 5 1 10 
  3. Relay fails       X   X  X  307 5 1 11 
  4. Connection cable fails       X   X  X  67 5 1 18 
  5. Heater fails        X  X    X 101 6 2 6 
  6. EMC fails      X    X X    6 3  
3. Current carrying parts fail  3.1 Arcing chamber fails  1. Low SF6 density    X   X  X   X  260 13 1 7 
  2. Contact fails X X   X   X     X 25 28 2 4 
  3. Insufficient contact opening X X   X   X     X     
  4.Overvoltage stress from switching  

exceeds CB capability X X   X   X   X   
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Consequence evaluation Failure detection 
No. of 
failure 

Conse- 
quence 

Fault 
detec-
tion Ranking 

 
 

failure cause 

 
 

failure characteristic 
 

P 
 

E+ 
 

E 
 

E- 
 

O+ 
 

O 
 

O- 
 

C+ 
 

C 
 

C- 
Impos- 
sible 

 
Easy 

Diffi 
cult     

 3.2 Controlled capacitor 
fails 

 
  X   X   X  X   

56 15 3 2 
4. Insulation fails   4.1 Insulating material fails  1. Damaged interrupter from external impacts X X     X  X   X      
  2. Lightning   X    X   X  X       
  3. insulation aging  X    X   X  X       
  4. Water infiltration  X    X   X  X       
  5.Flashover by transient effect       X X   X       
  6. Porcelain fails   X    X X   X   23 15 3 3 
  7. Arcing Chamber fails   X    X X   X   17 15 3 5 
  8. Pollution   X   X  X     X     
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Appendix C Two-dimensional Diagrams of Treeing Model 

C.1 SF6 circuit-breakers with hydraulic drives 

 

 

 Figure C.1: Two-dimensional diagram representing the number of failures with 

respect to time (SF6 circuit-breakers with hydraulic drives) 

 
C.2 SF6 circuit-breakers with mechanical drives 

 

 

 Figure C.2: Two-dimensional diagram representing the number of failures with 

respect to time (SF6 circuit-breakers with mechanical drives) 
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C.3 Oil circuit-breakers with hydraulic drives 

 

 

 Figure C.3: Two-dimensional diagram representing the number of failures with 

respect to time (oil circuit-breakers with hydraulic drives) 

 

C.4 Oil circuit-breakers with mechanical drives 

 

 

 Figure C.4: Two-dimensional diagram representing the number of failures with 

respect to time (oil circuit-breakers with mechanical drives) 
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Appendix D The Decision Matrix of HV Circuit-Breake r’s Main Components 
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Nr. Kriterium 1 2 3 4 5 6 7 8 9 10 11 12 13 Σ WF/% 
1 Rated voltage 0 4 3 5 2 4 5 5 3 4 3 4 4 46 9.829 
2 Rated lightning impulse withstand voltage 2 0 2 4 1 3 3 5 4 4 2 3 3 36 7.692 
3 Rated operating current 3 4 0 4 2 4 4 5 4 4 3 3 4 44 9.402 
4 Rated duration of short circuit (1 s) 1 2 2 0 1 3 3 4 2 2 1 2 2 25 5.342 
5 Rated short circuit breaking current 4 5 4 5 0 5 5 5 5 4 4 4 4 54 11.54 
6 First pole-to-clear factor  2 3 2 3 1 0 4 4 3 2 3 3 3 33 7.051 
7 Rated out-of-phase breaking current (optional) 1 3 2 3 1 2 0 4 3 2 2 2 3 28 5.983 
8 Rated line-charging breaking current 1 1 1 2 1 2 2 0 1 1 1 1 1 15 3.205 
9 Rated capacitor bank inrush making current 3 2 2 4 1 3 3 5 0 2 2 2 2 31 6.624 
10 Rated operating sequence 2 2 2 4 2 4 4 5 4 0 3 4 3 39 8.333 
11 Temperature class 3 4 3 5 2 3 4 5 4 3 0 4 4 44 9.402 
12 Classification: number of operation 2 3 3 4 2 3 4 5 4 2 2 0 2 36 7.692 
13 Rate of Rise of Recovery Voltage (RRRV) 2 3 2 4 2 3 3 5 4 3 2 4 0 37 7.906 
               468 100 

Table D.1: The decision matrix of quenching unit 
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Nr. Kriterium 1 2 3 4 5 6 7 Σ WF/% 
1 Rated voltage 0 1 5 4 4 3 3 20 15.87 
2 Rated lightning impulse withstand voltage 5 0 5 4 4 4 4 26 20.63 
3 Rated operating current 1 1 0 2 2 2 2 10 7.937 
4 Rated short circuit breaking current 2 2 4 0 4 3 3 18 14.29 
5 Earthquake level 2 2 4 2 0 3 3 16 12.7 
6 Bending strength 3 2 4 3 3 0 3 18 14.29 
7 Pollution level 3 2 4 3 3 3 0 18 14.29 

         126 100 
 

Table D.2: The decision matrix of HV Insulation 
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Nr. Kriterium 1 2 3 4 5 6 7 Σ WF/% 
1 Rated voltage 0 3 5 3 5 4 4 24 19.05 
2 Rated lightning impulse withstand voltage 3 0 5 4 5 5 5 27 21.43 
3 Rated operating current 1 1 0 1 3 1 1 8 6.349 
4 Rated short circuit breaking current 3 2 5 0 5 4 4 23 18.25 
5 Rated line-charging breaking current 1 1 3 1 0 1 1 8 6.349 
6 Earthquake level 2 1 5 2 5 0 3 18 14.29 
7 Bending strength 2 1 5 2 5 3 0 18 14.29 

         126 100 
 

Table D.3: The decision matrix of supporting structure 
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Nr. Kriterium 1 2 3 4 5 6 7 8 9 10 Σ WF/% 
1 Rated voltage 0 5 4 4 5 4 3 5 5 5 40 14.81 
2 Rated operating current 1 0 1 2 3 1 1 1 3 2 15 5.556 
3 Rated short circuit breaking current 2 5 0 5 5 4 3 4 5 5 38 14.07 
4 First pole-to-clear factor  2 4 1 0 4 1 1 2 3 3 21 7.778 

5 
Rated line-charging breaking 
current 1 3 1 2 0 1 1 1 1 1 12 4.444 

6 Rated operating sequence 2 5 2 5 5 0 3 4 5 5 36 13.33 
7 Temperature class 3 5 3 5 5 3 0 4 5 5 38 14.07 
8 Classification: number of operation 1 5 2 4 5 2 2 0 4 4 29 10.74 
9 Earthquake level 1 3 1 3 5 1 1 2 0 2 19 7.037 
10 Rate of Rise of Recovery Voltage 1 4 1 3 5 1 1 2 4 0 22 8.148 
            270 100 
 

Table D.4: The decision matrix of drive 
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Appendix E Zusammenfassung in Deutsch 
 

Die Hauptziele der Arbeit sind Risiko Analyse der Leistungsschalter, Entwicklung der 

Wahrscheinlichkeitsmodelle, Aufstellung der Kostenstruktur und Aufbau optimierter 

Instandhaltungsmaßnahmen. Normalerweise werden die Instandhaltungsmaßnahmen an 

Leistungsschalter nach Hersteller-Richtlinien und Erfahrungen des Betreibers durchgeführt. 

Dieses Verfahren ist noch nicht überprüft worden, ob es leistungsfähig und kosteneffizient ist. 

Obwohl es viel Literatur über optimierte Instandhaltungsmaßnahmen gibt, stellen die meisten 

Beiträge nur Ideen und mathematische Modelle ohne Zusammenhang mit einer Datenbank 

vor. Es ist daher eine Herausforderung, die Zuverlässigkeit und Instandhaltungs-Strategie im 

Zusammenhang mit einer Datenbank zu untersuchen. 

 

Diese Dissertation ist aus drei Hauptteilen zusammengesetzt. Im ersten Teil wird „Failure 

Modes and Effects Analysis (FMEA)“ vorgestellt, damit das Risiko der Komponenten 

festgelegt werden können. Der zweite Teil behandelt die Wahrscheinlichkeitsmodelle, um die 

Zuverlässigkeit und Entwicklung der Fehler zu erforschen. Im letzten Teil wird die 

Kostenstruktur aufgestellt. Außerdem werden optimierte Instandhaltungsmaßnahmen während 

der Betriebszeit und Alterungszeit vorgestellt. Auf Grundlage der umfangreichen 

Betriebsmittel-Datenbank des Instituts für Elektrische Energieversorgung der TU Darmstadt 

ist es möglich, alle Teile durchzuführen. 

 

Das Ergebnis der FMEA-Methode repräsentiert, dass alle Komponenten im niedrigen und 

mittleren Risiko-Bereich liegen. Um das Risiko der Komponenten im mittleren Bereich zu 

reduzieren, sollten verbesserte Instandhaltungsmaßnahmen zum Einsatz gebracht werden. Mit 

Hilfe des „Treeing-und-Cascading-Reliability-Model“-Diagramm ist es möglich 

herauszufinden, wann die folgenden Fehler auftreten und mit welcher Wahrscheinlichkeit. 

Das Markov-Modell ist ein Wahrscheinlichkeitsmodell, um die Zuverlässigkeit einzelner 

Komponenten zu finden. Die Kostenstruktur ist nützlich für Designer, um optimale 

Leistungsschalter für verschiedene Anwendungen zu planen. Die Instandhaltung während der 

Betriebzeit wird mit Hilfe der Fehlerrate und der optimalen Instandhaltungsfrequenz 

durchgeführt. Während der Alterungszeit wird die optimale Instandhaltung mit Hilfe der 

Weibull-Verteilung und eines zeitorientierten Instandhaltungsmodells vorgestellt. Schließlich 

kann die optimale Zeit zum Austausch eines Leistungsschalters berechnet werden.  
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