
Automated Design of Efficient Fail-Safe Fault

Tolerance

Vom Fachbereich Informatik der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades eines Doctor rerum naturalium

(Dr.rer.nat) vorgelegt von

Arshad Jhumka

aus Rose-Hill, Mauritius

Referenten:

Prof. Dr. Neeraj Suri

Prof. Dr. Mario Dal Cin

Datum der Einreichung: 10.09.2003

Datum der mündlichen Prüfung: 10.11.2003

Darmstädter Dissertationen D17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/11679832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Erklärung

Hiermit erkläre ich, die vorgelegte Arbeit zur Erlangung des akademischen

Grades “Dr.rer.nat” mit dem Titel “Automated Design of Efficient Fail-

safe Fault Tolerance” selbständig und ausschliesslich unter Verwendung der

angegebenen Hilfsmittel erstellt zu haben. Ich habe bisher noch keinen Pro-

motionsversuch unternommen.

Darmstadt, February 11, 2004 Arshad Jhumka

Abstract

Both the scale and the reach of computer systems and embedded devices

have been constantly increasing over the last decade. As such computer sys-

tems become pervasive, our reliance on such systems increases, resulting in

our expectation for such systems to continuously deliver services, even in the

presence of faults, that is we expect the computer systems to be dependable.

One way to ensure the continuous delivery of dependable services is repli-

cation, which however, is expensive, so we focus on the cheaper alternative,

that of software-based fault tolerance.

There are different levels of fault tolerancethat can be provided, for ex-

ample masking fault tolerance, fail-safe fault tolerance etc. In this thesis,

we focus on providing fail-safe fault tolerance. Intuitively, a fail-safe fault-

tolerant program is one where it is acceptable for such a program to “halt”

when faults occur, as long as it always remains in a “safe” state. Moreover,

we endeavor to synthesize efficient fail-safe fault tolerance. We used two

commonly-used criteria to assess the efficiency of a fail-safe fault-tolerant

program, namely (i) error detection latency – or latency for short –, i.e., how

fast can a fail-safe fault-tolerant program detect an erroneous state, and (ii)

error detection coverage – or coverage for short, i.e., the ratio of “harmful”

errors the program can detect.

In this thesis, we present a formal framework for the design of efficient

fail-safe fault-tolerant program. The framework is based on a refined theory

of detectors, which introduces novel insights into their working principles.

We introduce the concept of a perfect detector, which allows a fail-safe fault-

tolerant program to have perfect detection. This means that a program,

composed with perfect detectors, have optimal detection coverage. Optimal

in the sense that the detectors detect all of the “harmful” errors, and make no

mistakes. Then, we present the concept of fast detection, and show how a fail-

safe fault-tolerant program can have both perfect, and fast error detection. In

fact, the detection latency is shown to be minimal, i.e., the error is detected

i

in 0-step. Based on these two basic notions, we present algorithms that

automatically add fail-safe fault tolerance with perfect detection only, and

fail-safe fault tolerance with perfect detection, and minimal detection latency.

We further develop a theory for the design of multitolerance, which is the

ability of a program to tolerate multiple classes of faults. In the thesis, we

explain that interference can occur between different program components

when designing multitolerance, and we present a set of non-interference con-

ditions that needs to be verified. We then present two different approaches

for the design of multitolerance, and for each approach, we present two differ-

ent algorithms that add fail-safe fault tolerance to several fault classes with

different efficiency properties.

The algorithms presented in this thesis are particularly suitable for a class

of programs termed as bounded programs. The property of bounded programs

is that they do not have any kind of unbounded looping structure.

Keywords: Distributed Systems, Embedded Systems, Formal Methods,

Fault Tolerance, Fail-Safe, Detectors, Efficiency, Multitolerance.

ii

Kurzfassung

In den letzten Jahren durchdringen immer kleinere, eingebettete Computer-

systeme verstärkt unsere Lebensumwelt. Mit der Allgegenwärtigkeit solcher

Systeme werden wir aber auch immer abhängiger von ihnen. Mit der

Abhängigkeit steigen unsere Erwartungen an die Zuverlässigkeit der Systeme

bis zu dem Punkt, an dem wir uns wünschen, dass das System auch dann

noch funktioniert, wenn ein bestimmtes Maß an Fehlverhalten innerhalb der

Systemkomponenten auftritt. Derartige Systeme werden als fehlertolerant

(fault-tolerant) oder verläßlich (dependable) bezeichnet. Eine Möglichkeit,

verlässliche Computersysteme zu bauen, besteht darin, das System mehrfach

vorzuhalten, um im Fehlerfall auf ein funktionsfähiges System umschalten zu

können. Eine weitere und in der Praxis häufig günstigere Alternative ist die

sogenannte software-basierte Fehlertoleranz, um die es in dieser Arbeit geht.

Man unterscheidet verschiedene Arten von Fehlertoleranz, beispielsweise

die bekannte maskierende Fehlertoleranz (masking fault tolerance). In dieser

Arbeit geht es um die sogenannte fail-safe Fehlertoleranz (fail-safe fault

tolerance). Bei fail-safe Fehlertoleranz ist es akzeptabel, wenn das Sys-

tem im Fehlerfall “anhält” anstatt weiterhin seinen Dienst zu erbringen.

Wichtig ist lediglich, dass das System immer in einem “sicheren” Zustand

verweilt. In dieser Arbeit werden Verfahren vorgeschlagen, um effiziente

fail-safe-fehlertolerante Systeme aus fehler-intolerante Originalsystemen zu

synthetisieren. Wir verwenden zwei bekannte Kriterien, um die Effizienz

der fehlertoleranten Systeme zu messen: (1) Fehlererkennungszeit (error de-

tection latency), also die “Zeit”, die benötigt wird, um einen aufgetretenen

Fehler zu entdecken, und (2) Fehlererkennungsabdeckung (error detection cov-

erage), also die Rate von relevanten Fehlern, die das Programm entdecken

kann.

Diese Arbeit legt die formalen Grundlagen für den Entwurf von effizien-

ten fail-safe-fehlertoleranten Systemen. Grundlage ist eine verfeinerte The-

orie sogenannter Detektoren (detectors). Wir definieren eine neue Klasse

von Detektoren, perfekte Detektoren (perfect detectors), die es erlauben,

fail-safe-fehlertolerante Systeme mit perfekter Fehlerekennung (perfect detec-

tion) und damit vollständiger Fehlererkennungsabdeckung zu synthetisieren.

iii

Anschliessend definieren wir das Konzept der schnellen Fehlererkennung

(fast detection), welches eine optimale Fehlererkennungszeit erlaubt. Wir

stellen ein Verfahren vor, wie man ein fail-safe-fehlertolerantes System

sowohl mit perfekter Fehlererkennung als auch mit schneller Fehlererken-

nung synthetisieren kann. Darüberhinaus ist die Fehlererkennungszeit der

synthetisierten Programme ist optimal.

Die Arbeit beschäftigt sich abschließend mit dem Konzept der Mul-

titoleranz (multitolerance), also der Fähigkeit eines Programmes, ver-

schiedene Fehlerklassen gleichzeitig zu tolerieren. Bei Multitoleranz kann

es zu einer wechselseitigen Beeinflussung (interference) der Detektoren für

verschiedene Fehlerklassen kommen. Wir stellen eine Reihe von Nicht-

Beeinflussungskriterien (non-interference conditions) vor, die überprüft wer-

den müssen, um Multitoleranz zu gewährleisten. Wir stellen zwei Ansätze für

den Entwurf multitoleranter Programme vor. Für jeden Ansatz geben wir

zwei verschiedene Algorithmen an, die fail-safe-fehlertolerante Programme

bezüglich verschiedener Fehlerklassen und mit unterschiedlicher Effizienz syn-

thetisieren.

The Algorithmen dieser Arbeit eignen sich insbesondere für sogenannte

beschränkte Programme (bounded programs). Beschränkte Programme sind

Programme ohne unbeschränkte Schleifenstrukturen.

iv

v

vi

Acknowledgements

I would probably not have made this far without the help, guidance and

support of many people.

I wish to thank Prof. Dr. Neeraj Suri, my adivsor, for first accepting me

in his DEEDS group, and then guiding me to where I am now.

My gratitude to my friend, and colleague Martin Hiller is enormous. Ever

since we started our collaboration a few years back, Martin has been a con-

stant source of inspiration, and help.

My thanks also go to Vilgot Claesson, Örjan Askerdal, Robert Lindström,

Andréas Johansson, and Adina Sarbu, who are all part of the DEEDS group.

They have all contributed to create a great working atmosphere. Discus-

sions with Andreas and Robert on various computing topics have been very

interesting, as have been our numerous discussions on football.

I cannot thank Birgit Neuthe of the DEEDS group enough for all the

help she afforded me with the everyday stuff. From helping me with German

translation to setting up appointments, she’s been of tremendous help.

Outside of the DEEDS group, I have to thank Felix Gärtner for all the

interesting, and challenging discussions we’ve had over the times. I also have

to thank Christof fetzer for all the interesting discussions we have had. My

thanks also go to Sandeep Kulkarni, for taking time to clarify and explain

part of the theory he developed.

I have ti thank Prof. Dr. Mario Dal Cin for kindly accepting to be a

reviewer of my thesis, as well as Prof. Dr. Alex Buchmann, Prof. Dr. Mira

Mezini, and Prof. Dr. Claudia Eckert for kindly taking time to read my thesis,

and accepting to be on my committee.

My sincere, heartfelt thanks go to my parents, who have spared no effort

in trying to get me to where I am now. Their constant moral support has

vii

been very welcoming. I also thank my brother and sister for their constant

support, as well as my in-laws.

Saving the best for last: Najaat, thank you so much for everything, your

support, your love, your patience, everything.

viii

ix

x

Contents

1 Introduction 1

1.1 Dependability: Basic Concepts 2

1.1.1 Faults, Errors, and Failures: 2

1.1.2 Ways of Achieving Dependability 3

1.1.3 Attributes of Dependability 3

1.1.4 Design of Fault Tolerance 4

1.1.5 Verification and Validation of Fault Tolerance 5

1.2 Motivation and Research Questions 6

1.2.1 Problem Statements 8

1.3 Research Contributions . 10

1.4 Thesis Structure . 12

2 Related Work 13

2.1 Design of Fault-Tolerant Programs 14

2.2 Automated Procedures . 17

3 Formal Preliminaries 19

3.1 Concurrent Systems . 19

3.2 Programs . 20

3.3 Communication . 22

3.4 Specifications . 23

3.5 Temporal Logic . 25

3.6 Refinement . 25

3.7 Fault Models and Fault Tolerance 26

xi

4 Perfect Detectors: Basis for Perfect Detection 29

4.1 Introduction . 31

4.2 An Overview of Detectors . 33

4.2.1 Role of Detectors in Fail-Safe Fault Tolerance 34

4.3 The Transformation Problem 38

4.4 A Theory of Perfect Detectors 39

4.4.1 Transition Consistency in the Context of Safety Spec-

ifications . 40

4.4.2 Perfect Detectors . 46

4.4.3 Constructing Perfect Detectors 53

4.5 An Algorithm for Perfect Detectors 54

4.6 Three Case Studies . 57

4.6.1 A Simple Example . 57

4.6.2 A Majority Voter System 58

4.6.3 Token Ring . 60

4.7 Chapter Summary . 61

5 Fast Detectors: A Basis for Fast Error Detection 63

5.1 Introduction . 64

5.2 Fast Error Detection . 66

5.3 The Transformation Problem for Fast and Perfect Detection . 71

5.4 Adding Efficient Fail-Safe Fault Tolerance 72

5.5 Two Case Studies . 75

5.5.1 A Simple Example . 75

5.5.2 A Majority Voter System 76

5.6 Discussion . 78

5.7 Chapter Summary . 80

6 Design of Efficient Multitolerance 81

6.1 Introduction . 83

6.2 Issues in Multitolerance Design 86

6.3 One-at-a-time Design of Multitolerance 89

6.3.1 Multitolerant Programs With Perfect Detection 89

6.3.2 A Simple Example . 97

xii

6.3.3 Token Ring . 98

6.3.4 Multitolerant Programs With Perfect Detection and

Minimal Detection Latency 102

6.3.5 A Simple Example . 110

6.4 All-at-a-time Design of Multitolerance 113

6.4.1 Multitolerance with Perfect Detection 113

6.4.2 A Simple Example . 116

6.4.3 Multitolerance with Perfect Detection and minimal de-

tection latency . 117

6.4.4 A Simple Example . 119

6.5 Chapter Summary . 120

7 Conclusion and Future Work 123

7.1 Discussion . 124

7.2 Summary of Research Contributions 129

7.2.1 Perfect Detection . 129

7.2.2 Fast Detection . 130

7.2.3 Design of One-at-a-time Multitolerance 130

7.2.4 Design of All-at-a-time Multitolerance 132

7.3 Impact . 132

7.4 Future Work . 133

xiii

xiv

List of Figures

4.1 Reachable states/transitions 37

4.2 An example to illustrate the concept of inconsistent transition 40

4.3 Program to illustrate the concept of SS-inconsistent transitions. 41

4.4 Program containing two concurrent processes with a transition

that is both SS -inconsistent and not SS -inconsistent w.r.t. two

different computations. 43

4.5 Algorithm to synthesize fail-safe fault-tolerant program with

perfect detection. 55

4.6 Example program p in the presence of faults 57

4.7 Fail-safe fault-tolerant program p′ obtained by removing ss . . 58

5.1 Algorithm to add efficient fail-safe fault-tolerance. 73

5.2 An example to illustrate how algorithm add-efficient-fail-safe

works . 75

5.3 Fail-safe fault-tolerant program resulting from applying algo-

rithm add-efficient-fail-safe 77

6.1 The first step in the design of multitolerant programs with

perfect detection. 91

6.2 The second step in the design of multitolerant programs with

perfect detection. 92

6.3 The kth step in the design of multitolerant programs with per-

fect detection. 94

6.4 The algorithm adds fail-safe fault tolerance to n fault classes,

with perfect detection to every fault class 96

xv

6.5 Fault-intolerant program in the presence of F1 – first iteration

of the algorithm . 97

6.6 Resulting fail-safe fault-tolerant program p1 to F1 98

6.7 Resulting fail-safe fault-tolerant program p1 in presence of F2 . 98

6.8 Resulting fail-safe multitolerant program p2 to F1 and F2 with

perfect detection to both fault classes. 99

6.9 The first step in the design of multitolerant programs with

perfect detection and minimal latency. 103

6.10 The second step in the design of multitolerant programs with

perfect detection and minimal latency 105

6.11 Algorithm add-efficient-fail-safe-multitolerance adds fail-safe

fault tolerance to n fault classes, with perfect detection, and

minimal detection latency to every fault class 110

6.12 Resulting fail-safe fault-tolerant program with perfect detec-

tion, and minimal detection latency to F1 111

6.13 Program p1 in presence of F2 111

6.14 Resulting fail-safe fault-tolerant program p2 in presence of F2 . 112

6.15 Algorithm add-perfect-fail-safe-multitolerance-all adds fail-

safe fault tolerance to n fault classes, with perfect detection

to every fault class by considering all fault classes at the same

time. 114

6.16 Fault-intolerant program in presence of F1 116

6.17 Fault-intolerant program in presence of F2 116

6.18 Resulting fail-safe multitolerant program p2 to F1 and F2 with

perfect detection to both fault classes. 117

6.19 Algorithm add-efficient-fail-safe-multitolerance-all adds fail-

safe fault tolerance to n fault classes, with perfect detection,

and minimal detection latency to every fault class by consid-

ering all fault classes at the same time. 118

6.20 Fault-intolerant program in presence of F1 119

6.21 Fault-intolerant program in presence of F2 119

xvi

6.22 Resulting fail-safe multitolerant program p2 to F1 and F2 with

perfect detection and minimal detection latency to both fault

classes when considering all fault classes at the same time. . . 120

xvii

xviii

Chapter 1

Introduction

The design of reliable computers has been a challenge ever since computers

first appeared in the middle of the 20th century. In those days, computers

were built out of unreliable components, such as vacuum tubes, relays, and so

on. Later generations of computers were more reliable as they were built from

more reliable components, such as semiconductor components, and other

components from more advanced technology. Computers were expensive,

and were used mainly for computation-extensive tasks, research, and defense.

Nowadays, with the ever-increasing circuit density, computers are no longer

expensive commodities. In fact, they are becoming more and more pervasive.

They are being used in every walks of life, from safety-critical systems, such as

nuclear plants control, airplanes etc, to consumer-oriented products, such as

automobiles, refrigerators etc. As these computer systems pervade our lives,

our expectation on their delivery of services, in spite of faults, increases. We

need these computer systems to be dependable.

In this chapter, first, we will first briefly survey the fundamentals of de-

pendability (Section 1.1), where we provide an overview of the main steps

involved in the design of fault-tolerant systems. We then explain the moti-

vations behind the work presented in this thesis (Section 1.2). We will then

present the problem statements, and pertinent research questions that arise

and explain our research contributions.

1

1.1 Dependability: Basic Concepts

In this section, we explain how dependable (fault-tolerant) programs are

designed in general. First, we explain the fault/error/failure classification,

and then we explain how dependability can be achieved. Given our focus

on fault tolerance, we then briefly survey the main steps in achieving fault

tolerance. Lastly, we explain how the resulting system can be validated.

The term dependability is defined as “the trustworthiness of a system such

that reliance can justifiably be placed on the service it provides” [Lap92].

This means that the services provided by such a system are always correct,

according to the system’s specification, whether the environment in which it

is deployed is ideal, or less than ideal (faulty).

1.1.1 Faults, Errors, and Failures:

During the construction or operation of a computer system, events may occur

that can threaten the computer system’s ability to deliver correct services.

For example, developers of the system may have inadvertedly introduced de-

fects (or bugs) during the construction phase. Another factor that can affect

a computer system’s ability to deliver correct services is the ageing of com-

ponents, though its relevance may be less in software. Another example of

an event that can jeopardize the computer system’s operations is its deploy-

ment in noisy environments that generate unexpected events. Factors that

can affect the proper functioning of a computer system, such as noise, bugs

etc, are commonly referred to as faults.

An error is said to exist in a computer system when a corresponding

fault is activated. Specifically, a fault in itself may not threaten the proper

functioning of the system, for example, if a fault occurs in an area of memory

that is not accessed, then the fault has no ability to influence any computa-

tion. However, when a fault is activated, for example a computation reaches

the fault-affected area in memory, and the faulty value used during the com-

putation, if no corrective action is taken, there is the risk of the computer

system to violate its specification, i.e., do not deliver the required service.

When a faulty value is used in some computation, error is said to propagate,

2

i.e., there is error propagation. When the error propagates to the “output”

of the computer system, a failure is said to happen, i.e., the behaviour of the

system has deviated from what is prescribed by its specification.

Thus, to be able to develop a fault-tolerant system, one needs to un-

derstand the faults that can potentially affect the system, i.e., one needs to

develop a fault model.

1.1.2 Ways of Achieving Dependability

Once a fault model has been developed, there are various ways of dealing with

it, i.e., there are different ways of achieving dependability, when designing a

dependable system, namely:

• Fault Prevention: As the name suggests, this approach tries to pre-

vent faults from occurring in the first place. Examples of fault preven-

tion approaches are use of sound development methodologies or use of

radiation-hardened hardware.

• Fault Tolerance: This is the ability of a system to deliver desired

level of functionality in the presence of faults, i.e., instead of preventing

faults from occurring, one tries to tolerate their effects. To achieve this,

the system should be able to detect and/or correct errors in the system.

• Fault Removal: This process deals with removal of faults, and is

commonly referred to as debugging (for software).

• Fault Forecasting: This process helps in evaluating the consequences

of faults when they occur.

1.1.3 Attributes of Dependability

Once a dependable system has been designed, one needs to measure its “de-

pendability”. There are different attributes that characterize dependability,

for example:

• Reliability – This attribute defines the probability of a system to pro-

vide correct service over a finite period of time.

3

• Availability – This attribute defines the probability of a system to be

correct at any given time.

• Safety – This attribute captures the extent to which a service provided

by a system is safe.

Other attributes such as confidentiality and integrity are also attributes of

dependability, but are more related to security issues, and we do not discuss

them any further.

1.1.4 Design of Fault Tolerance

As we explained earlier (Section 1.1.2), there are various ways of achieving

dependability. In this thesis, we focus mainly on fault tolerance. Fault tol-

erance is the ability of a system to provide a desired level of functionality

in presence of faults. Fault tolerance is closely coupled to the fault model

assumed, i.e., a fault-tolerant system may be able to tolerate one class of

faults, and still not able to tolerate another types of faults.

For a system (program) to be fault-tolerant, it needs to be able to perform

some important steps whenever errors (effects of faults) appear. In general,

provision of fault tolerance can be divided into four stages [LA90]:

1. Error Detection: This step is concerned with the ability of the system

to detect that some erroneous state has been reached, and that the

system is in some “unsafe” state. Error detection is important, since

the system is then prevented from performing unsafe actions.

2. Damage Assessment: After an error has been detected, one needs to

determine the extent to which damage has been caused to the system.

In particular, one needs to determine the extent to which error has

propagated through the system.

3. Error Processing: Once damage assessment is done, error processing

is initiated that tries to revert the system back to a non-erroneous state,

i.e., a safe state. The combined actions of damage assessment, and error

processing is commonly known as error recovery.

4

4. Fault Treatment: This step is concerned with preventing the same

faults from getting activated again, and is generally performed offline.

Overall, a fault-tolerant program should be able to first detect errors, and

then to recover from them. To design fault tolerance, Arora and Kulkarni

observed in [AK98c, AK98a, AK95, Kul99] that two components, which they

termed as detectors, and correctors, underpin the design of fault tolerance.

A detector is a program component that is added to a program to detect

errors in the program. Examples of detectors are executable assertions [Sai78,

MAM84, Hil00], error detecting codes, snapshot procedures, comparators

and so on. A corrector, on the other hand, is a program component that is

added to recover from errors. Arora and Kulkarni have shown that, by using

either detectors, correctors or both of them, different classes of fault-tolerant

programs can be obtained, namely fail-safe fault-tolerant programs, non-

masking fault-tolerant programs, and masking fault-tolerant programs. Each

class of fault-tolerant programs provides a specified level of fault tolerance.

In this thesis, we focus on the design of fail-safe fault-tolerant programs.

It was shown in [AK98c] that, to make a program fail-safe fault-tolerant, it

is both necessary and sufficient to add detectors to that program. In this

thesis, the approach we will present allows a program to have both perfect

error detection and minimal detection latency. This in turn has the effect of

constraining error propagation, hence limiting the amount of damage done

in the system. Thus, by design, the damage done in presence of faults is

minimal. The implication of this is that the error processing phase needs not

be very complicated (sophisticated).

1.1.5 Verification and Validation of Fault Tolerance

In the design of fault-tolerant systems, one needs to verify the correctness

of the system. To do this, formal methods [CW96] has often been used.

The first step is to specify the properties that the system should have. The

specification is usually done in some logical formalism, usually temporal logic,

which can assert how the behavior of the system evolves over time. The

second step is to construct a formal model for the system. In order to be

5

suitable for verification, the model should capture those properties that must

be considered to establish correctness. During the verification process, the

properties that establish correctness are verified. In the dependability area,

formal methods have been used to verify correctness of distributed and/or

real-time protocols [KRS99, SS99b]. It has also been observed that a proper

decomposition of a fault-tolerant program into its components helps in in its

mechanical verification [KRS99].

Once the system has been implemented and fault tolerance mechanisms,

such as detectors and correctors, have been added, the resulting “fault-

tolerant” system needs to be validated. Two commonly used methods for

validation are testing, and fault injection. In testing, the system is subjected

to a number of test cases to ascertain that there are no bugs (faults) in the

system. Bugs are suspected present when the system deviates from its spec-

ified behavior under any test case. The problem is usually to find suitable

test cases which can uncover those bugs. In [SS99b], the authors adopt a

formal-based approach whereby verification information is reused to drive

test-case generation.

To validate the fault tolerance mechanisms, fault injection [AAA+90,

IT96] is often used. In fault injection experiments, faults are artificially

injected in the system to create conditions that will activate those fault tol-

erance mechanisms. Fault injection suffers from the same problem as testing

for having to find suitable test cases, as well as determining which types of

faults to inject.

1.2 Motivation and Research Questions

On this background, in this section, we will discuss the motivations that

underpin the work presented in this thesis. Our overall goal is to develop

a framework that allows systematic development of efficient fail-safe fault-

tolerant programs.

The motivation behind the work presented in this thesis is multifold.

First, it is well-known that the design of fault-tolerant systems is inherently

complex. Thus, there is a need for well-defined and sound development

6

methodologies that can guide the software designer in the design of efficient

and complex dependable systems.

Also, it is often the case that addition of fault tolerance mechanisms (i.e.,

detectors and correctors) interfere with the performance of the system. For

example, some error detection mechanisms may be added that trigger a lot of

false alarms in the system. This has the effect of affecting the performance of

the system. More importantly, it has also been noted that design of efficient

fault tolerance mechanisms is very often reliant on the experience of the

programmers. This again points to a need for sound methodologies that can

guide the programmers in the design of efficient fault tolerance mechanisms.

Further, in the start phase of the design, the software designer may not

be fully aware of all the fault classes that the system will be subjected to.

As the system evolves, and the system designer becomes more aware of more

fault classes, additional fault tolerance mechanisms may need to be added

to handle these faults. However, each time fault tolerance mechanisms are

added, a complete verification of the new program is needed, which is expen-

sive. Also, non-interference across the different fault tolerance mechanisms

need to be ascertained. Thus, the ability to “add” new tolerance mechanisms

without having to perform a complete verification of the program is crucial.

Overall, we endeavor to develop a framework that (i) enables the design

of efficient fault tolerance mechanisms (more specifically, detectors), and (ii)

enables compositional design of fault tolerance. Combined together, we pro-

vide a framework that enables systematic (compositional) design of efficient

fault-tolerant programs.

Focus: In this thesis, we focus on the design of a particular class of

fault tolerance, namely fail-safe fault tolerance. Informally, a program is fail-

safe fault-tolerant if it always remains in a safe state, even in the presence of

faults (We will formally define the term fail-safe fault tolerance in Chapter 3).

The reason for focusing on fail-safe fault tolerance is multifold. First, fail-

safe fault tolerance is often needed in critical applications, such as nuclear

plants, train control systems and so on. Very often, detection is the only

objective, and once an error is detected, a mechanical backup system takes

over. Second, it was shown by Arora and Kulkarni in [AK98b] that to design

7

masking fault tolerance (which is the ideal fault tolerance), one can first

design a program to be fail-safe fault-tolerant and then later extended with

correctors to make the program masking fault-tolerant. Thus, our approach

tackles one step in the design of masking fault tolerance.

Given our focus on the design of fail-safe fault tolerance, it was shown by

Arora and Kulkarni [AK98c] that it is both necessary and sufficient to com-

pose a program with detectors to make it fail-safe fault-tolerant. Therefore,

when designing such fail-safe fault-tolerant programs, we also focus on the

design of detectors, i.e., program components that detect errors.

On this background, we formulate the problem statements that have

driven the research presented in this thesis.

1.2.1 Problem Statements

The main goal of the work presented in this thesis has been to develop a

framework that can help in the design of efficient fail-safe fault-tolerant pro-

grams.

While addressing the above problem, we tackled some of the following

research questions:

Research Question: How can one assess the efficiency of a fail-safe

fault-tolerant program? What are the common metrics for such an assess-

ment?

When designing fault-tolerant programs, error detection is crucial. Very

often, to validate the detectors, fault injection experiments are performed to

assess the efficiency of the detectors, and common factors used for such as-

sessment are (i) detection coverage, and (ii) detection latency. In this thesis,

we thus focus on those two properties of fail-safe fault-tolerant programs,

namely coverage, and detection latency.

Research Question: What are the main properties of a detector that

allow characterization of its efficiency? Can such properties be formalized?

In Chapter 4, we develop a theory of detectors, and identify completeness

and accuracy as two important properties of a detector that characterize

its efficiency. We then formalize these properties and identify an important

class of efficient detectors, namely perfect detectors. We explain that such

8

a detector allows for perfect error detection, and we further explain its role

in fail-safe fault tolerance. Thus, perfect detectors can be shown to have

“perfect” coverage.

Research Question: Upon the occurrence of faults, how can error prop-

agation be limited?. How can the detection latency of a program be mini-

mized?. Is it possible to design a fail-safe fault-tolerant program such that its

detection latency is minimal?. Do the detectors included have any impact on

the underlying program?.

To tackle this question, in Chapter 5, we develop a theory of fast detec-

tors, and explain how fail-safe fault-tolerant programs with minimal detec-

tion latency be designed. In fact, the approach we propose allows a fail-safe

fault-tolerant program to have both perfect detection, and minimal detection

latency.

Research Question: Can efficient detectors be designed for several fault

classes? How can their non-interference be guaranteed? Is there any method-

ology that can be used such that verification needs not be performed from

scratch each time new detectors for new fault classes are added?.

The motivation behind this research issue is that, during periods of per-

turbation, a system is subjected to faults from various sources, such as net-

work overloads, message losses, transients, crashes and so on. It is very

difficult to design a (fail-safe) fault-tolerant program to these fault classes.

So, the idea is to consider one fault class at a time, and design the fault

tolerance mechanisms to the fault class considered. The obvious problem

is whether the fault tolerance mechanisms for different fault classes can be

composed, i.e., one needs to ascertain that fault tolerance mechanisms (de-

tectors) to a given fault class do not interfere with those of another fault

class. Further, the problem is also to develop efficient fault tolerance mecha-

nisms to several fault classes. Specifically, it would be detrimental if efficient

fault tolerance mechanisms are designed to tolerate one fault class, but the

tolerance mechanisms for another fault class is not efficient, resulting in an

inefficient multitolerant system/program. Thus, our theory not only shows

non-interference across different detectors (in terms of their behavior) for

different fault classes, but our theory also shows that “composing” differ-

9

ent perfect detectors for different fault classes preserve the efficiency of the

resulting program.

Thus, in Chapter 6, we develop a theory for the design of efficient multi-

tolerant programs. Building upon the theory of perfect detectors (Chapter 4)

and the theory of fast detectors (Chapter 5, we develop a theory for the de-

sign of efficient multitolerant programs, and develop the requisite steps to

show ascertain non-interference across different detectors.

Research Question: Can the design of efficient fail-safe fault-tolerant

programs be automated?

To tackle this question, we have developed algorithms of polynomial-time

complexity that automatically synthesizes a fail-safe fault-tolerant program,

starting from a corresponding fault-intolerant program. We have developed

examples showing how these algorithms can be used for such automatic syn-

thesis.

Research Question: Can we reuse the fault-intolerant program to syn-

thesize the fault-tolerant program?

There are two possible ways of synthesizing a fail-safe fault-tolerant pro-

gram. First, one can start with a specification of the program, and then

use refinement steps to first synthesize a fault-intolerant program, and then

perform a fault tolerance transformation to obtain a fail-safe fault-tolerant

program. The second option is to start directly with the fault-intolerant pro-

gram and then transform it into a fail-safe fault-tolerant program by compos-

ing it with fault tolerance mechanisms. In this thesis, we adopt the second

methodology, and, starting from a fault-intolerant program, we transform it

into a fail-safe fault-tolerant program by composing it with fault tolerance

components (more specifically, with detectors).

1.3 Research Contributions

Towards addressing all these research issues, we have developed a theory of

detectors, and identified and formalized some important properties of these

program components. We have identified a class of detectors called per-

fect detectors that allows design of efficient fail-safe fault-tolerant program.

10

Specifically, we will show how to design fail-safe fault-tolerant programs with

perfect error detection, and minimal error detection latency. Based on the

theory, we also develop polynomial-time algorithms that permit automatic

synthesis of efficient fail-safe fault-tolerant programs.

Further, we develop a theory that underpins the design of multitoler-

ant programs. We show that the class of perfect detectors allows for “non-

interfering composition”, i.e., perfect detectors for each fault class do not

interfere with each other. Specifically, perfect detectors for different fault

classes do not interfere with each other’s “behavior”, and they do not inter-

fere with the efficiency of the program.

Overall, in this thesis, we make the following research contributions:

1. We first present a novel theory of detectors, formalize some important

properties of detectors, and identify an important class of detectors,

namely perfect detectors, that underpins design of efficient fail-safe

fault-tolerant programs. We further explain their role in the design of

fail-safe fault tolerance. We also provide an algorithm that automati-

cally yields fail-safe fault-tolerant programs, with perfect detection.

2. Next, we present a novel theory of fast error detection, and building

upon the theory of perfect detection, we develop an algorithm that gen-

erates fail-safe fault-tolerant programs with both perfect error detection

and with minimal error detection latency.

3. We explain that, in the context of multitolerance design, some non-

interference conditions need to be verified. We further explain that

non-interference across detectors with respect to their behavior is not

sufficient when designing efficient multitolerant programs. We there-

fore present a set of non-interference conditions that encompass both

behavioral and performance aspects. As such, we develop a suite of

algorithms that systematically adds “efficient” fail-safe multitolerance

to a program. Overall, this contribution allows compositional design

of efficient fail-safe fault-tolerant programs, i.e., efficient fail-safe fault-

tolerant can be systematically designed.

11

Our contributions are in the area of fault tolerance, specifically in the

field of error detection. We have shown how to design efficient detectors such

that the fail-safe fault-tolerant programs have perfect error detection and

minimal detection latency for different fault classes.

To summarize, our main contribution is an approach that transforms a

fault-intolerant program into a fail-safe fault-tolerant program with perfect

error detection, and minimal detection latency, i.e., efficient fail-safe fault-

tolerant program.

1.4 Thesis Structure

The thesis is structured as follows:

Chapter 2 surveys results in the areas design of fault tolerance, auto-

mated design, program transformation, and multitolerance. We also try to

put our contributions into context.

Chapter 3 introduces the formal foundations for our work and presents

the terminologies used in this thesis. We also present the system model and

fault model used.

Chapter 4 introduces a theory of perfect detectors, and develops a sound

and complete algorithm that yields fail-safe fault-tolerant programs with per-

fect detection.

Chapter 5 introduces a theory of fast detectors, and develops a sound

and complete algorithm that yields fail-safe fault-tolerant programs with per-

fect detection, and minimal detection latency.

Chapter 6 explains the concept of multitolerance. It develops a se-

ries of non-interference conditions that need to be satisfied when designing

multitolerance. Several algorithms are developed that yield fail-safe multi-

tolerant programs with varied optimal properties, as well as guaranteeing

non-interference.

Chapter 7 summarizes the contributions of this thesis, and assesses their

impact. We conclude by providing some pointers regarding future work.

12

Chapter 2

Related Work

In this chapter, we present a survey of previous work and results that are

closely related to the problems addressed in this thesis. Specifically, the

areas of most closely related are design of fault-tolerant programs, design

of effective detectors, automated procedures, error propagation analysis, and

software implemented fault tolerance.

13

2.1 Design of Fault-Tolerant Programs

One common way to implement fault-tolerant programs is to use N-Version

programing [Avi85], which is however an expensive approach. Another ap-

proach has been to use Recovery Blocks [Ran75]. But the effectiveness of

recovery blocks is heavily reliant on the effectiveness of the acceptance tests

included. Unfortunately, little work has been done that can guide a software

designer towards designing effective acceptance tests (detectors).

Leveson et.al presented the results of a large scale experiment to deter-

mine the effectiveness of software checks and voting in software in [LCKS90].

They explained that the effectiveness of detectors depends very much on the

individual ability of the programmers to design effective detectors. Again,

as in the case of Recovery Blocks, little work has been done to guide the

programmers in designing effective detectors. However, to ease the use of

executable assertions (which is an instance of a detector), Saib extended the

FORTRAN and PASCAL languages with a software construct (called Assert)

that helps in the implementation of executable assertions [Sai78]. Another

approach for facilitating the use of assertions is the use of the Annotation

PreProcessor tool of Rosenblum [Ros95]. A similar approach is described

by Yin and Bieman [YB94]. The problem with these approaches is they do

not provide guidelines pertaining to the design of effecive detectors, which is

difficult, since very often, these assertions tend to be application-specific. In

this work, we provide algorithms that can automatically generate perfect de-

tectors, hence the problem of designing application-specific detectors can be

effectively taken away from programmers, once the fault-intolerant program

is available.

To conquer the design complexity, Arora and Kulkarni proposed a trans-

formational approach whereby a fault-intolerant program (a program which

satisfies its specification in the absence of faults), and that satisfies at least

its safety specification in presence of faults) is transformed into a fault-

14

tolerant program (either fail-safe, non-masking or masking) through the ad-

dition of detectors and/or correctors. Using this approach, they have pre-

sented fault-tolerant solutions for several problems such as distributed re-

set [KA98], mutual exclusion [AK98b], network management [KA97a], data

transfer [AK98b], and Byzantine agreement [KA97b].

The premise is that a fault-tolerant program is a composition of a fault-

intolerant program with fault tolerance components, such as detectors and

correctors. The authors argue that such an approach allows for separation

of concerns. Specifically, it is possible for a software designer to first focus

on designing the fault-intolerant program, and then focus on adding fault

tolerance to it.

In [AK98a], Arora and Kulkarni presented an stepwise approach for addi-

tion of multitolerance, i.e., the ability of being fault-tolerant to multiple

classes of faults. They also argued that non-interference between differ-

ent program components needs to be verified, and presented a set of non-

interference conditions for that matter. In this present work, we extend the

current set to include non-interference with other program properties (apart

from fault tolerance) , such as perfect detection, and minimal detection la-

tency.

Another transformational appraoch has been proposed by Joseph and

Liu [Liu91, LJ92, LJ93, LJ94, LJ95]. They show how a program constructed

for a fault-free system can be transformed into a fault-tolerant program for

execution in faulty environments. Specifically, the addition of fault tolerance

to a program is modeled by a fault-tolerant transformation that adds the

necessary redundancy to the program so that the faults can be tolerated.

A fault-tolerant program can be further refined using fault-tolerant refine-

ment that preserves both the functional, and fault-tolerant properties of the

program.

The fault tolerance mechanisms used are very much dependent on the

fault model used. For example, in data transfer, time outs may be used

to detect message losses, rather than, say, executable assertions. How-

ever, the problem of knowing in advance all the classes of faults the soft-

ware can be subjected to may be difficult to solve. For example, contin-

15

uing with the example on data transder, if the system designer assumes

only the case where messages can be lost during data transfer, he can have

an implementation such that the sending node can retry sending the loss

message after a timeout. But if a fault occurs that arbitrarily corrupt

the state of the program, such retry actions may not be sufficient, and

safety may be compromised. Hence, weak fault models are sometimes as-

sumed, such as Byzantine faults. In such cases, self stabilization [Dij74]

has been advocated, and is getting more and more attention in the commu-

nity. For example, Gouda and Multari proposed some self-stabilizing com-

munication protocols in [GM91]. Self-stabilizing protocols have been pro-

posed in [APSV91, DIM93, DW95, AD97, Dol97, BDDT98, Dol00] among

others. However, the problem with self-stabilization is that safety may be

temporarily violated. One interesting class of self-stabilization, called snap-

stabilization, has been proposed by Cournier et.al [CDPV01] that solves this

problem. A snap-stabilizing protocol is a self-stabilizing protocol meaning

that starting from an arbitrary state (in response to an arbitrary perturba-

tion modifying the memory state) it is guaranteed to behave according to its

specification.

Another line of approach for design of fault tolerance, where the goal is

for “scalable fault tolerance”, has been investigated by Arora et.al [ADK01].

To achieve self stabilization, one needs to make use of system implementa-

tion. However, the authors argue that this approach does not scale very well.

Hence, they propose to implement stabilization based on system specifica-

tion, such that the stabilization property is guaranteed irrespective of the

implementation.

The effectiveness of detectors is also affected by their placement in the

software, as indicated by Hiller et.al in [HJS01], and the authors also demon-

strate the sensitivity of the location set to the underlying fault model

in [HJS02]. Once the fault-tolerant software is obtained, fault-injection

experiments are conducted to evaluate the resulting dependability of the

program [IT96]. However, such work do not reveal the weak spots in the

software, for example, how errors propagate in the software, what are the

vulnerable signals/variables. Initial work focusing on these aspects ap-

16

pear in [HJS01, JHS01]. To conduct these validation experiments, effec-

tive test cases are needed. Sinha and Suri investigated the applicability of

formal methods in driving generation of test cases in [SS98, SS99a]. Specif-

ically, the authors reused verification information to drive test case gener-

ation. In [JHS02b], Jhumka et.al proposed a formal approach for design-

ing component-based dependable software and in [JHS02a], the authors pre-

sented a formal approach for test case generation, whereby they reuse detec-

tor design information to drive test case generation.

General surveys in the area of dependability can be found in [Cri91,

Gae99a], while Gaertner presented a survey of transformational approaches

in [Gae99b]

2.2 Automated Procedures

In an earlier work, Kulkarni and Arora [KA00] presented an algorithm

that automates the addition of fail-safe fault tolerance to an initially fault-

intolerant program. This algorithm is based on an analysis of the state

transition representation of the program in the presence of faults. The al-

gorithm is sound and complete meaning that (i) the transformed program

is in fact a fail-safe fault-tolerant version of the original program, and (ii)

if a fail-safe fault-tolerant version of the program exists, then the algorithm

will find it. The complexity of the algorithm is polynomial in the state of

the fault-intolerant program. Put in context with the work presented in this

thesis, the algorithm in [KA00] always adds fail-safe fault tolerance with

perfect detection. But, the algorithm can sometimes add fail-safe fault tol-

erance with perfect detection, and minimal detection latency to some classes

of programs. By way of contrast, our work presents algorithms that always

add both perfect detection, and minimal detection latency to a wider set of

programs. The algorithms have polynomial complexity in the state space of

the fault-intolerant program.

17

18

Chapter 3

Formal Preliminaries

In this chapter, we recall the standard formal definitions of programs, faults,

fault tolerance (in particular, fail-safe fault-tolerance), and of specifica-

tions [AK98c, Kul99]. Intuitively, a program is represented as a transition

system, since programs written in any imperative language can be repre-

sented as such. This chapter provides all the requisite formal basis upon

which the work presented in this thesis is based.

3.1 Concurrent Systems

A concurrent system consists of a set of components executing together.

They are usually associated with a form of communication among them.

The mode of execution, and that of communication may differ from system

to system. There are two main modes of execution:

1. Asynchronous or interleaved execution, where only one component

makes a step at any time.

2. Synchronous execution, where all components make a step at the same

time.

As for the communication part, we present two of the possibilities, namely

1. Shared Variables (we provide more details in Section 3.2).

2. Message Passing, where components communicate with each other by

sending messages.

19

The work assumes an interleaved semantics of execution, together with

the shared variable communication paradigm.

3.2 Programs

Definition 1 (Program) A program p consists of a set of variables Vp and

a finite set of processes. Each process contains a finite set of actions, and a fi-

nite set of variables. Each variable stores a value from a predefined nonempty,

finite domain and is associated with a predefined set of initial values. An ac-

tion has the form

〈name〉 :: 〈guard〉 → 〈statement〉

in which the guard is a boolean expression over the program variables and the

statement is either the empty statement or an instantaneous assignment to

one or more variables. The name is a unique identifier of that action.

Definition 2 (State and State Space) We define a state s of program p

as a possible value assignment to all variables in p. We also define the state

space Sp of a program p as the set of all possible assignments of values to

variables.

Definition 3 (State Predicate) A state predicate of p is a boolean expres-

sion over the state space of p.

Definition 4 (Initial States) The set of initial states Ip is defined by the

set of all possible assignments of initial values to variables.

Definition 5 (Enabled) An action ac of p is enabled in a state s if the

guard of ac evaluates to “true” in s.

Definition 6 (Action) An action ac of program p is represented by a set

of state pairs {(s, t) : s, t ∈ Sp}.

We assume that actions are deterministic, i.e., ∀s, s′, s′′ : (s, s′) ∈
ac ∧ (s, s′′) ∈ ac ⇒ s′ = s′′. Note that programs are permitted to be

20

non-deterministic since multiple actions can be enabled in the same state.

In particular, each non-deterministic action can be converted into a set of

deterministic actions with an identical state transition relation.

Definition 7 (Program Computation) A computation of program p is

a weakly fair (finite or infinite) sequence of states s0, s1, . . . such that s0 ∈ Ip

and for each j ≥ 0, sj+1 results from sj by executing the assignment of a

single action which is enabled in sj.

We require that weak fairness implies that if a program action ac is

continuously enabled, ac is eventually chosen to be executed. Weak fairness

implies that a computation is maximal with respect to program actions, i.e.,

if the computation is finite, then no program action is enabled in the final

state.

Definition 8 (Concatenation) If α is a finite computation and β is a com-

putation of p, we denote with α · β the concatenation of both computations.

Definition 9 (Occurs) A state s occurs in a computation s0, s1, . . . of pro-

gram p iff there exists an i such that s = si. Similarly, a transition (s, s′)

occurs in a computation s0, s1, . . . of program p iff there exists an i such that

s = si and s′ = si+1.

In the context of this thesis, programs are equivalently represented as

state machines, i.e., a program p is a tuple p = (Sp, Ip, δp) where Sp is the

state space of p, Ip ⊆ Sp is the set of initial states. The state transition

relation δp ⊆ Sp×Sp is defined by the set of actions as follows : Every action

ac implicitly defines a set of transitions which is added to δp. A transition

(s, s′) ∈ δp iff ac is enabled in state s and computation of the statement ac

results in state s′. We say that ac induces these transitions. State s is called

the start state and s′ is called the end state of the transition.

Definition 10 (Step) A transition from one state to another state is called

a step.

21

Definition 11 (Stuttering Step) If (si, si+1) is a step, and si = si+1, then

this step is a stuttering step.

A stuttering step is an important concept in program refinement, in the

sense that transitions at a lower level of abstraction appear as stuttering

steps at a higher level.

Definition 12 (Computation Equivalence) Two computations α1 and

α2 are said to be equivalent if they contain identical sequence of states.

Definition 13 (Stuttering Equivalence) Two computations α1 and α2

are equivalent under stuttering if α1 and α2 are equivalent after removing

stuttering steps from both computations.

Definition 14 (Property) A property is a set of computations which is

closed under stuttering, i.e., if a given computation c is in property P , then

all computations that are stuttering-equivalent to c are in P .

3.3 Communication

Two processes pr and pw of a program p communicate as follows: for each

pair of processes pr and pw there exists a set of “shared” variables Vs. Both

processes can read the contents of any variable in Vs, but only pw can update

these variables. This defines the information flow between two processes.

The set Vs represents the interface between processes pw and pr.

There exists a set of special variables, denoted by Vo, that are shared

by some processes (that write to the variables), and the environment that

reads them. These special variables are commonly referred to as the output

variables. There exists also a special set of variables, denoted by Vi, where

each of the variables is written to by the environment, and read by a process

in p. Such variables are known as input variables. Input and output variables

represent the interface of the program p with its environment.

Such program model reflects the system assumptions of distributed em-

bedded applications (like sensors and actuators), for which part of our formal

framework is targeted. Multiple initial states reflect the fact that a program

22

p may initially read external inputs before executing. In such cases, we ad-

ditionally assume a set of special variables called the output variables of p in

which the program should finally write the results of a computation. This

model is suitable for the domain of embedded applications (like sensors and

actuators). Program actions can be partitioned into two categories: (i) criti-

cal actions, and (ii) non-critical actions [AK98b]. Program actions that write

output variables are critical actions. Other examples of critical actions are

(i) actions that commit to a database, or (ii) actions that control progress in

a nuclear control plant. Critical actions are those actions whose execution in

the presence of faults can cause violation of safety.

Definition 15 (Critical and non-critical actions) An action ac of pro-

gram p with safety specification SS is said to be critical iff there exists a

transition (s, t) induced by ac and (s, t) is a bad transition (Proposition 2)

that is reachable (Definition 32) in presence of faults. An action is non-

critical iff it is not critical.

3.4 Specifications

A specification for a program p is a set of computations of p that is fusion-

closed.

Definition 16 (Fusion Closure) A specification S is fusion-closed iff the

following holds for finite computations α, γ, a state s and computations β, δ:

If α · s · β and γ · s · δ are in S, then so are α · s · δ and γ · s · β.

We will discuss the consequences of demanding fusion-closed specifica-

tions in Section 4.2.1.

Definition 17 (Satisfies) A computation cp of p satisfies a specification S

iff cp ∈ S.

Definition 18 (Violates) A computation cp of p violates a specification S

iff cp does not satisfy S.

23

Definition 19 (Correctness) A program p satisfies a specification S iff all

possible computations of p satisfy S.

Definition 20 (Maintains) Let p be a program, S be a specification and α

be a finite computation of p. We say that α maintains S iff there exists a

sequence of states β such that α · β ∈ S.

Definition 21 (Safety specification) A specification S of a program p is

a safety specification iff the following condition holds : For every computation

σ that violates S, there exists a prefix α of σ such that for all state sequences

β, α · β violates S.

Using a practical system of rail crossing where trains will need to share a

common track, a safety specification can be “no two trains will use the track

at the same time”.

Proposition 1 A specification S is a safety specification iff for all σ 6∈ S

there exists a prefix α of σ such that α does not maintain S.

Proof. Follows from the Definitions 20 and 21. �

Informally, the safety specification of a program states that “something

bad never happens”. Formally, it defines a set of “bad” finite computation

prefixes that should not be found in any computation. Alpern and Schneider

[AS85] have shown that every specification can be written as the intersection

of a safety specification and a liveness specification.

Definition 22 (Liveness) A liveness specification is a set of state se-

quences that meets the following condition : for each finite state sequence

α, there exists a state sequence β such that α · β is in that set.

A example of liveness specification, following from our previous example

of rail crossing, can be “eventually all trains will be able to use the track”.

Informally, a liveness specification determines what types of events must

eventually happen, i.e., it says that “something good eventually happens”.

For the work presented in this thesis, we will focus on safety specification.

However, liveness issues are important since any safety specification can be

24

satisfied by the empty program, i.e., the program that does nothing, and,

thus, liveness specification helps rule out trivial implementations.

In general, if a property is finitely refutable, then it is a safety property.

This means that the safety property can be refuted by inspecting only a

finite prefix of a computation. On the other hand, a liveness property is not

finitely refutable, i.e., it cannot be refuted by inspecting a finite prefix of a

computation, rather it is refuted by inspecting infinite state sequences.

3.5 Temporal Logic

In a sequential system, the input-output semantics is adequate for analyzing

the system, but is however inadequate for concurrent systems. For example,

the input-output semantics cannot adequately capture specifications such as

“eventually (x = 2)” or “never (y = 3) ”.

Temporal Logic is a formalism for describing sequences of transitions be-

tween states in a reactive systems. In temporal logic, a specification is a

logical formula that describes a set of computations. In the work presented

in this thesis, a semantic view is adopted, we reason about properties of

a program in terms of its transitions, rather than expressing them in any

specification language.

3.6 Refinement

A program can be viewed as a special type of specification. A lower level

specification differs from a higher-level specification in that it contains more

implementation details. Thus, we want lower-level transitions to appear as

stuttering steps (Def. 11) in the higher level specification.

This can be modelled through the concept of projection.

Definition 23 (State Projection) The projection of a state s of (a lower-

level specification) p on (a higher-level specification) p′ is the state obtained

by considering only the variable of p′.

25

Definition 24 (Computation Projection) The projection of a computa-

tion c of (a lower-level specification) p on (a higher-level specification) p′ is

obtained by taking the projection of each state of c (of p) on p′.

To model this, we introduce a projection function, π, from a lower-level

specification p to a higher-level specification p′. Given a state s of program

p, π(s) refers to the variables of p′. We abuse the notation by defining π(α)

for a projection of a computation α. Thus, π partitions the set of variables of

p, Vp, into a set of internal variables (Vi) and a set of external variables (Ve).

Therefore, changes to variables in Vi appears as stuttering steps in π(α).

This leads to the concept of refinement [AL91]. When we substitute p′

for a specification S, when we say that a computation c satisfies S (Defs. 17),

we really meant that the projection of that computation π(c) satisfies S (i.e.,

π(c) ∈ S).

Refinement from a specification represents a useful way to constructing

programs. Using refinement, a low-level program can be constructed from a

given specification through the application of correctness-preserving refine-

ments. With each refinement step, a lower-level program p is obtained from a

higher-level program p′through the addition of more implementation details.

It is those implementation details that are hidden by π.

3.7 Fault Models and Fault Tolerance

The faults that a program is subjected to can be systematically represented

by actions whose execution perturbs the state of the program. Such represen-

tation is possible regardless of the type of faults (stuck-at, crash, Byzantine

etc), nature of the faults (permanent, intermittent or transient), or the ability

to observe the effects of the faults (detectable or not).

First, we define the term fault class.

Definition 25 (Simple Fault Class) A simple fault class for a given pro-

gram p over a variable vi in p is a set of transitions (actions) over the variable

vi.

26

Definition 26 (Fault Class) A fault class F for a program p over variables

v1 . . . vn in p is a set of simple fault classes for p over v1 . . . vn.

In this thesis, we focus on the subset of fault models that can potentially

be tolerated: We disallow faults to violate the safety specification directly.

For example, if a safety specification constrains the output variables of a

program, the fault model prevents the fault actions of F to modify the out-

put variables in such way that the fault itself results in a safety violation.

However, fault actions can change the program state such that subsequent

program actions violate the safety specification.

The reason for choosing such a failure model is that we target tolerable

fault models. If a fault can directly violate safety, for example, by corrupting

the output variables in such a way that safety can be violated, then no fail-

safe fault-tolerant program exists. To see this, observe that if from state s,

a fault can cause safety violation, then this program should not visit state

s. If such faults can occur in every state, then all such states need to be

made unreachable, i.e., the invariant of the program is an empty set. Thus,

no fail-safe fault-tolerant program exists, hence our focus on tolerable fault

models.

Definition 27 (Fault model) A fault model F for program p and safety

specification SS is a fault class F for program p over its variables that do

not violate SS, i.e., if transition (sj, sj+1) is in F and s0, s1, . . . , sj is in SS,

then s0, s1, . . . , sj, sj+1 is in SS.

Definition 28 (Computation in the presence of faults) A computa-

tion of p in the presence of F is a weakly p-fair sequence of states s0, s1, . . .

such that s0 is an initial state of p and for each j ≥ 0, sj+1 results from sj by

executing a program action from p or a fault action from F and there exists

no program action ac such that ac is permanently enabled but never executed.

Weakly p-fair means that only the actions of p are treated weakly fair

(fault actions must not eventually occur if they are continuously enabled).

We say that a fault occurs if a fault action is executed.

27

Rephrased in the transition system view, a fault model adds a set of

transitions to the transition relation of p. We denote the modified transition

relation by δF
p . Since fault actions are not treated fairly, their occurrence

is not mandatory. Note that we do not rule out faults that occur infinitely

often (as long as they do not directly violate the safety property).

Fault Tolerance Specifications In the absence of faults, a program p

should refine its problem specification. In the presence of faulty actions, p

may not refine its specifications, but can, on the other hand, refine some

weaker “tolerance specification”. In this thesis, we focused on fail-safe fault

tolerance.

Definition 29 (Fail-safe fault-tolerance) Let S be a specification and SS

be the smallest safety specification including S, and fault class F . A program

p is said to be fail-safe F -tolerant for specification S iff all computations of

p in the presence of faults F satisfy SS.

If F is a fault model and SS is a safety specification, we say that a

program p is F -intolerant for SS iff p satisfies SS in the absence of faults

F but violates SS in the presence of faults F . For brevity, we will write

fault-intolerant instead of F -intolerant for SS if F and SS are clear from the

context.

A note on critical actions introduced in 3.2: Critical actions are exactly

those program actions whose execution in the presence of faults can lead to

violation of safety. As such, in embedded applications such as those of plant

controllers etc, the program actions that control progress while maintaining

safety are critical actions.

28

Chapter 4

Perfect Detectors: Basis for
Perfect Detection

Nowadays, there are computer systems all around us that control our every-

day lives, from being present in safety-critical systems such as airplanes, to

being present in consumer-oriented products, such as automobiles, washing

machines etc. Especially for the consumer-oriented products, cost-effective

solutions for the provision of dependability are of paramount importance,

leading to the fact that software-based fault tolerance is being provided.

In this thesis, we are interested in providing efficient fail-safe fault toler-

ance, i.e., it is acceptable for a fail-safe fault-tolerant program to halt, as long

as it remains in a safe state. The idea is to be able to detect when the pro-

gram is about to violate its safety specification, and halt at that time. Thus,

for the detection part, the program needs to be “upgraded” with a program

component, called a detector. Intuitively, the detector component helps the

program in detecting when “something bad” is about to happen, such that

the program halts to avoid doing the “bad” thing, i.e., violate safety.

However, the design of efficient detectors is problematic. Leveson et

al. [LCKS90] conducted a large experiment on the effectiveness of self checks,

which are instances of a detector, in software. They pointed out in [LCKS90]

that, among others, (i) some detectors (self-checks) detect non-existent er-

rors, i.e., there are many false alarms (i.e., false detections), and (ii) many

detectors that were designed were ineffective, i.e., they do not signal any

error, when there is one in the system. In the first case, the efficiency of

29

the system may decrease, since the system may halt prematurely, while in

the second case, the safety of the system may be violated. So, we need a

methodology for the design of efficient detectors.

In this chapter, we first provide a formal overview of detectors [Kul99],

and explain their role in fail-safe fault-tolerant program. Our main contribu-

tion is the development of a novel theory of detectors, that is centered around

the notion of an inconsistent transition. We further identify a special class

of detectors, called perfect detectors, and explain its role in the design of

fail-safe fault tolerance. Specifically, we show that composing critical actions

of a program p with perfect detectors is sufficient in transforming p into a

fail-safe fault-tolerant program. We then present an algorithm, based upon

the theory, that, given a fault-intolerant program p with safety specification

SS, and a fault class F , generates a fail-safe fault-tolerant program p′, which

is the fail-safe fault-tolerant version of p. The main property of perfect detec-

tors is that they detect errors if and only if these errors may lead to violation

of safety. Thus, perfect detectors can be shown to address the two problems

identified by Leveson et al.

In [JHCS02, JHS02b, JHS02a], a set of perfect detectors was initially

referred to as SS-globally consistent detectors. A SS-consistent detector is

one that detects an error if and only if the error can lead to violation of safety.

A set of such SS-consistent detectors is said to be SS-globally consistent.

30

4.1 Introduction

Safety-critical applications need to satisfy stringent dependability require-

ments in their provision of services. Unless sound design methods are used

to synthesize such applications, the process of designing safety-critical appli-

cations is likely to be a complex one. To reduce the complexity of designing

such applications, Arora and Kulkarni [AK98a] have proposed a transforma-

tional approach, whereby an initially fault-intolerant program is systemati-

cally transformed into a fault-tolerant one. The main step involved in design-

ing a fault-tolerant program is composing the corresponding fault-intolerant

program with components that (i) detect and/or (ii) correct errors that arise

as a result of faults, depending on the level of fault-tolerance to be achieved.

The class of programs that achieves the first goal is termed detectors while the

class of programs that achieves the second goal is called correctors [AK98c].

We restrict our attention to designing fail-safe fault-tolerance. Intuitively

this means that it is acceptable that the program “halts” if faults occur as

long as it always remains in a “safe” state. This type of fault-tolerance is

often used in (nuclear) power plants or train control systems where safety

(avoidance of catastrophic events) is more important that continuous pro-

vision of service. In the context of the Arora/Kulkarni approach, fail-safe

fault-tolerance can be achieved by merely employing detectors.

Generally, detectors can be regarded as an abstraction of many different

existing fault-tolerance mechanisms. For example, a common way to achieve

fault-tolerance is to replicate a critical task and schedule it on different pro-

cessors. The outputs of these tasks are brought together in a voter which

outputs a consistent value. The voter contains a comparator which is an

instance of a detector. Another (maybe more obvious) example of a detector

is the use of error detecting codes. Other error handling mechanisms like

acceptance tests or executable assertions can also be formulated as detectors

in the sense of Arora and Kulkarni [AK98c]. Hence, reasoning on the level of

detectors makes an approach applicable to many different practical settings.

In this chapter, we present a sound, and complete algorithm for trans-

forming an initially fault-intolerant program p into an efficient fail-safe fault-

31

tolerant program p′. The algorithm being sound and complete, meaning that

(i) the transformed program p′ is in fact a fail-safe fault-tolerant version of

the original program p (soundness), and (ii) if a fail-safe fault-tolerant ver-

sion of the program exists, then the algorithm will find it (completeness). By

efficient, we mean that the fail-safe fault-tolerant detect errors if and only

if errors lead to violation of safety, thus addressing some of the problems

identified by Leveson et al in [LCKS90], i.e., p′ has perfect error detection.

Overall, our approach is applicable to a class of programs, called bounded

programs. The property of bounded programs is that there is no unbounded

loop within or across processes. Embedded applications are often instances of

bounded programs. Distributed algorithms such as mutual exclusion, byzan-

tine agreement etc. are also instances of bounded programs.

Our algorithm is derived out of a refined theory of detectors. This theory

develops a terminology which captures and explains the working principles

of detectors better than before. The basic building block of the theory is the

notion of a transition which is inconsistent with respect to a safety specifi-

cation [Lam77]. This can be understood as follows: Executing a transition

inconsistent with respect to the safety specification can lead to a violation of

the safety specification if no countermeasures are taken.

Building upon this concept, we develop a theory of accurate, complete,

and perfect detectors together with the necessary correctness theorems. Intu-

itively, a detector is accurate if it “preserves” correct behaviors of the system

in the presence of faults. A detector is complete if it “rejects” incorrect be-

haviors in the presence of fault. A detector is perfect if it is accurate and

complete.

In this chapter, we make the following contributions:

• We first present a novel theory of detectors which accurately captures

the working principles of detectors.

• We identify a class of detectors, called perfect detectors, and explain

their role, and importance in fail-safe fault-tolerance.

• Based on this theory, we provide an algorithm that systematically

32

transforms a fault-intolerant program into a fail-safe fault-tolerant pro-

gram with perfect detection.

The chapter is structured as follows: Section 4.2 provides an overview of

detectors and their role in establishing fail-safe fault tolerance. Section 4.3

defines the problem of adding fail-safe fault-tolerance using detectors. Sec-

tion 4.4 develops the theory of perfect detectors. In Section 4.5, we present

the algorithm that automatically generates a fail-safe fault-tolerant program

from the corresponding fault-intolerant program with perfect detection capa-

bilities. Some examples are presented in Section 4.6. We conclude the paper

in Section 4.7.

4.2 An Overview of Detectors

In this section, we present a brief introduction of a detector component. For

a complete formalization, we refer the reader to Kulkarni [Kul99].

A detector module d is a program component that is used to check

whether its detection predicate D is “True”, where D is a state predicate.

Specifically, a detector d can be of the form

¬Z ∧D → Z := True.

It means that if the detection predicate D is “True”, then Z, the witness

predicate, becomes “True”. The detector component needs to satisfy three

properties:

1. Safeness,

2. Progress, and

3. Stability

By safeness, we mean that the detector never allows Z to witness D in-

correctly. Progress means that if D is continuously “True”, Z will eventually

be become “True”. Stability means that once Z becomes “True”, it contin-

ues to be unless D becomes “False”. Examples of detectors in the literature

33

abound, such as error detection codes, executable assertions [Hil00], com-

parators, and so on. However, if the detection predicate is such that it is not

related to the safety specification of the program, then the error detection

process will not be efficient. Hence, to design “relevant” detectors, they need

to relate to the specification of the program. In the next section, we explain

their role in fail-safe fault tolerance and relate it to their design.

4.2.1 Role of Detectors in Fail-Safe Fault Tolerance

We adopt the view of Arora and Kulkarni [AK98c] that a fault-tolerant pro-

gram is the composition of a corresponding fault-intolerant program with

fault tolerance components. Using the same system model as used in this

work, Arora and Kulkarni proved that detectors are necessary and sufficient

to establish fail-safe fault tolerance. Intuitively, a detector detects whether

a given state (detection) predicate is satisfied in a given state. Instances of

detectors can be executable assertions, error detection codes, self checks, and

comparators.

Given our focus on fail-safe fault tolerance, we review the result of Arora

and Kulkarni [AK98c] stating that detectors are necessary and sufficient to

build fail-safe fault-tolerant applications. The main idea of the result is to use

detectors to simply “halt” the program in a state where it is about to violate

the safety specification. An important prerequisite for the Arora/Kulkarni

sufficiency result is that specifications are fusion-closed. Fusion-closed spec-

ifications (Def. 16) allow to characterize a safety specification as a set of

disallowed “bad” transitions (instead of a set of disallowed computation pre-

fixes).

Proposition 2 Let SS be a safety specification, p an F -intolerant program

for SS for fault class F . If p violates SS then there exists a transition t ∈ δp

such that for all computations σ of p holds: If t occurs in σ then σ 6∈ SS.

Proof. Since p violates SS , there exists a computation σ which is not in

SS . The fact that SS is a safety property implies that σ contains a minimal

prefix, written α · s · s′, which does not maintain SS (i.e., which prevents the

computation from being in SS). This prefix has at least length 2 because all

34

initial states of p maintain SS . We must now show that if (s, s′) occurs in

any other computation ρ of p, then ρ 6∈ SS :

1. For a contradiction, assume ρ = α̂ · s · s′ · β̂ ∈ SS . We will show that

α · s · s′ maintains SS .

2. Since SS is a safety property and ρ ∈ SS (step 1), all prefixes of ρ

maintain SS .

3. From step 2 and because it is a prefix of ρ, computation α̂·s·s′ maintains

SS .

4. From step 3 and definition of maintains: ∃δ̂ : α̂ · s · s′ · δ̂ ∈ SS .

5. From assumption α · s maintains SS , so from definition of maintains

we have: ∃δ : α · s · δ ∈ SS .

6. Because of fusion-closure of SS and the steps 4 and 5 construct: α · s ·
s′ · δ̂ ∈ SS .

7. Step 6 means that α · s · s′ maintains SS , which is a contradiction to

the fact that α · s · s′ does not maintain SS .

�

We call the transitions identified in Proposition 2 bad transitions. In-

tuitively, to maintain a safety specification now requires to keep track of

the current computation and take precautions not to run into one of the

bad transitions which are disallowed by the safety specification. The safety

specification of a program can thus be concisely represented as a set of bad

transitions. Note that, in this work, we assume that the safety specification

is provided as such, i.e., the smallest specification that contains the speci-

fication. If this is not the case, and if the specification of the program is

expressed as a formula in temporal logic, the set of bad transitions can be

obtained in polynomial time, by considering all transitions (s, t) : s, t ∈ Sp.

From our restrictions of the fault model (Chapter 3, Section 3.7) (fault

transitions cannot directly violate safety) we know that bad transitions must

be program transitions (also from Proposition 2). A detector refines the

guard of the corresponding action in such a way that the action is never

executed whenever the computation could result in taking a bad transition.

35

Formally, a detector for an action implements a state predicate d which is

“True” iff execution of the action starting in d maintains the specification.

In the programming notation, given an action g → st , a detector for this

action refines the guard to g ∧ d. Arora and Kulkarni formulate this fact in

their original work as follows [AK98a, Theorem 4.3]:

Theorem 1 (Sufficiency of detectors) For each action ac of p there ex-

ists a predicate d such that execution of ac in a state where d holds maintains

SS.

Definition 30 (Detector for an action) Let SS be a safety specification.

An SS -detector d monitoring program action ac of p is a state predicate of

p which is guaranteed to exist according to Theorem 1.

We will simply talk about detectors instead of SS-detectors if the relevant

safety specification is clear from the context. Taken together, Theorem 1

and Definition 30 state that it is sufficient to compose a given action with

a relevant detector, which is guaranteed to exist, to ensure that the action

executes safely.

Consider the transition system view of a program p again. We define the

notions of reachable/unreachable states/transitions in the presence/absence

of faults [GV00, GV01].

Definition 31 (Reachable state) We say that a state s is reachable by p

iff starting from an initial state of p it is possible to construct a computation

which contains s using only transitions from δp. Otherwise s is unreachable.

Definition 32 (Reachable transition) A transition (s, t) of p is reachable

iff state s is reachable by p. Otherwise it is unreachable.

Definition 33 (Reachable state in the presence of faults) We say

that a state s is reachable by p in the presence of faults F iff starting from

an initial state of p it is possible to construct a computation which contains

s using only transitions from δF
p . Otherwise s is unreachable in the presence

of faults.

36

Definition 34 (Reachable transition in the presence of faults) We

say that a transition (s, t) is reachable by p in the presence of faults iff s is

reachable by p in the presence of faults. Otherwise, (s, t) is unreachable in

the presence of faults.

Fig. 4.1 illustrates the concepts of reachable states/transitions in the ab-

sence/presence of faults.

Figure 4.1: Reachable states/transitions

Observe that, starting from an initial state, in the absence of faults, all

computations of p satisfy the safety specification SS. Thus, the computations

of p go through those transitions (states) of p that are reachable in the absence

of faults.. However, in the presence of faults, some transitions (states) which

were unreachable in the absence of faults, now become reachable. Using

the above terminology, detectors remove some of the program transitions

which were unreachable by p in the absence of faults, but become reachable

in the presence of faults. In a sense, composing a program with detectors

means to refine the original transition relation and eliminate certain program

transitions so as to make bad transitions unreachable.

We close this section with a final remark regarding the assumption that

specifications be fusion-closed. Informally spoken, fusion-closure guarantees

that the entire history of a computation “is available” in the current state of

the system, i.e., it is sufficient to observe the current system state to know

whether the next step will result in a disallowed prefix. It has been observed

[Gum93, AK98a] that specifications in the popular Unity logic [CM88] are

fusion-closed, as are low-level specifications like C programs or transition

37

systems. In general a specification that is not fusion-closed can be converted

into a fusion-closed specification through the addition of history variables.

How this can be done in a way that minimizes the number of additional

states remains a topic for further research.

In this section, we have provided an overview of detectors and their role

and importance in the design of fail-safe fault tolerance. However, little is

known about whether the detectors designed are efficient or not. To address

this problem, we will first define the transformation problem of fail-safe fault

tolerance (Section 4.3). We will then develop a theory that underpins an

algorithm that solves the transformation problem.

4.3 The Transformation Problem

In this section, we will formally state the problem of transforming a fault-

intolerant program p into a fail-safe fault-tolerant version p′ for a given safety

specification SS and fault model F .

When deriving p′ from p, only fault tolerance should be added, i.e., p′

should not satisfy SS in new ways in the absence of faults. Specifically,

there are two conditions to be satisfied in the transformation problem:

• If there exists a transition (s, t) in p′ that is not reached by p to satisfy

SS , then (s, t) cannot be used by p′, since this means that there are

other ways p′ can satisfy SS in the absence of faults. Thus, the set of

transitions of p′ must be a subset of the set of transitions of p.

• Also, if there exists a state s reachable by p′ in the absence of faults

that is not reached by p in the absence of faults, then this means that

p′ can satisfy SS differently from p in the absence of faults, and such

a state s should not be reached by p′ in the absence of faults. Thus,

the set of states reachable by p′ should be a subset of the set of states

reachable by p.

In general, these conditions result in the requirement that both programs

should have the same set of fault-free computations. Formally, we define the

transformation problem as follows:

38

Definition 35 (Transformation for fail-safe fault tolerance) Let SS

be a safety specification, a fault model F , and p an F -intolerant program for

SS. Identify a program p′ such that the following three conditions hold:

1. p′ satisfies SS in presence of F .

2. In the absence of faults, every computation of p′ is a computation of p.

3. In the absence of faults, every computation of p is a computation of p′.

The transformation problem can also be formulated as a decision problem:

Definition 36 (Decision problem for the transformation) Let SS be

a safety specification, a fault model F , and p an F -intolerant program for

SS. Does there exist a program p′ such that the following three conditions

hold:

1. p′ satisfies SS in presence of F .

2. In the absence of faults, every computation of p′ is a computation of p.

3. In the absence of faults, every computation of p is a computation of p′.

Later in Section 4.5 we present a sound, and complete algorithm which

solves the above transformation problem, i.e., we present an algorithm that

systematically transforms a fault-intolerant program into a program that sat-

isfies the above three conditions. Soundness of the algorithm means that the

resulting program indeed solves the transformation problem. Completeness

of the algorithm means that if the solution to the decision problem is true,

then the algorithm will find the fail-safe fault-tolerant program.

The algorithm is based on a theory of detectors which we introduce in

the following section.

4.4 A Theory of Perfect Detectors

This section presents a theory of detector components which helps in the

design of efficient fail-safe fault-tolerant applications. The theory is centered

around the notion of an SS -inconsistent transition which is introduced in

Section 4.4.1. Using this notion, we identify correctness criteria for programs

39

composed with so-called perfect detectors in Section 4.4.2. Our algorithm to

add fail-safe fault tolerance presented in Section 4.5 directly follows from the

theory presented now.

4.4.1 Transition Consistency in the Context of Safety

Specifications

The intuition behind the definition of transition inconsistency is that if a

given computation violates the safety specification, then some “erroneous”

transition occurred in the computation, i.e., that transition is inconsistent

with the safety specification of the program. Specifically, consider a fault-

intolerant program p with safety specification SS, and a computation α that

violates SS. From Propositions 1 and 2 we know that there exists a prefix σ

of α that contains a bad transition.

Figure 4.2: An example to illustrate the concept of inconsistent transition

When a computation violates safety, intuitively it means that the program

is on a “wrong path”, and such deviation has happened earlier. This intuition

is captured by the SS-inconsistency concept, as defined below.

Definition 37 (SS -inconsistent transitions) Given a fault-intolerant

program p with safety specification SS, and a computation α of p in the

presence of faults. A transition (s, s′) is SS -inconsistent for p with respect

to α in presence of faults F iff

40

• There exists a prefix α′ of α such that α′ violates SS

• (s, s′) occurs in α′, i.e., α′ = σ · s · s′ · β,

• All transitions in s · s′ · β are in δp,

• σ · s maintains SS.

We now illustrate this concept pictorially. From Fig. 4.2, transition (7, 8)

is SS-inconsistent for p with respect to computation α = 1 · 7 · 8 · 9 α

violates SS since it contains a bad transition, i.e., (10, 11). Observe that

transitions (8, 9), and (9, 10) are also SS-inconsistent for p with respect to a

given computation.

Program P1
var x init 1, y init 1, z init 10, c init 1 : int

c = 1 → x := read(); c := c + 1; // value between 5 and 10
c = 2 → y := read(); c := c + 1; // value between 5 and 15
c = 3 → z := x + y; c := c + 1
c = 4 → output(z); c := 1 // loop forever

F (faults):
true → x := random [0 . . . 25]
true → y := random [0 . . . 50]

Figure 4.3: Program to illustrate the concept of SS-inconsistent transitions.

We now illustrate this definition: Consider the program P1 in Figure 4.3

which reads two sensors, and then outputs the sum of the two readings.

The safety specification SS requires the output to be always between 10

and 25. The fault transitions indicate that, from each state, the value of

variable x (respectively, y) can be arbitrarily changed to a value in the range

of [0 . . . 25](respectively, [0 . . . 50]). Consider now computation α (states are

given as triples 〈x, y, z〉, i.e., the program counter c is not explicitly given):

α : 〈1, 1, 10〉 · 〈10, 1, 10〉 · 〈10, 5, 10〉 · 〈10, 5, 15〉

41

Obviously, α satisfies SS and so no program transition is SS -inconsistent.

Now consider computation β which violates SS :

β : 〈1, 1, 10〉 · 〈10, 1, 10〉 · 〈25, 1, 10〉 · 〈25, 5, 10〉 · 〈25, 5, 30〉

In β, a fault transition occurs after the second state, i.e., state 〈10, 1, 10〉,
changing the value of x to 25. The subsequent program transition from

〈25, 1, 10〉 to 〈25, 5, 10〉 is SS -inconsistent, since the execution of the follow-

ing program transition to state 〈25, 5, 30〉 causes a violation of the safety

specification. The program transition from 〈25, 5, 10〉 to 〈25, 5, 30〉 is also

SS -inconsistent. The first program transition and the fault transition are

not SS -inconsistent.

Intuitively, an SS -inconsistent transition for a given program computa-

tion is a program transition where the subsequent execution of a sequence of

program actions causes the computation to violate the safety specification.

In a sense, SS -inconsistent transitions lead the program computation on the

“wrong path”. The requirement of a sequence of program transitions in the

prefix is to capture the fact that no precaution is being taken, and the in-

consistent transition captures the fact that something harmful has occurred.

Now we define SS -inconsistency independent of a particular computation.

This captures the fact that, starting from such a transition, it is possible to

violate safety, i.e., if such a transition occurs during a computation, then

there is a chance that this computation will violate safety.

Definition 38 (SS -inconsistent transition for p) Given a program p

with safety specification SS. A transition (s, s′) is SS -inconsistent for p in

presence of faults F iff there exists a computation α of p in the presence of

faults F such that (s, s′) is SS-inconsistent for p w.r.t. α in presence of F .

Intuitively, a transition (s, s′) is SS-inconsistent for a program p if the

transition starts leading the computation on the wrong path. From Fig. 4.2,

transition (7, 8) is SS-inconsistent for p since it has taken the computation

on a possible wrong path, i.e., there can subsequently be safety violation.

In general, a transition can be SS -inconsistent w.r.t. a computation α1,

and not be SS -inconsistent w.r.t. α2. This can be due to nondeterminism in

42

program execution. To see this consider the program P2 in Figure 4.4. The

safety specification SS mandates that 10 ≤ d ≤ 50 at all times. Consider

now the following computation α1 of P2 (a state is given as 〈w, x, y, z〉):

α1 = 〈1, 5, 1, 10〉·〈1, 10, 1, 10〉·〈1, 45, 1, 10〉·〈15, 45, 1, 10〉·〈15, 45, 15, 10〉·〈15, 45, 15, 60〉

In the second state a fault occurs setting x to 45 and effectively causing α1

to violate SS after execution of a sequence of program transitions. Notice

that the transition t = (〈1, 45, 1, 10〉, 〈15, 45, 1, 10〉) is SS -inconsistent for p

w.r.t. α1.

Now consider computation α2 of p:

α2 = 〈1, 5, 1, 10〉·〈1, 10, 1, 10〉·〈1, 45, 1, 10〉·〈15, 45, 1, 10〉·〈0, 45, 1, 10〉·〈0, 45, 0, 10〉·〈0, 45, 0, 45〉

Here again a fault happens in the second state but due to a lucky interleaving

of program actions α2 maintains SS . Hence, the same program transition t

as above is not SS -inconsistent for p with respect to α2.

Program P2
var w init 1, c1 init 1 : int // process a
var x init 5, y init 1, z init 10, c2 init 1 : int // process b

process a:
c1 = 1 → w := read(); c1 := c1 + 1; // value between 15 and 25
c1 = 2 ∧ x ≤ 15 → w := w + 5; c1 := 1; // loop
c1 = 2 ∧ x > 15 → w := w − 15; c1 := 1; // loop

process b:
c2 = 1 → x := read(); c2 := c2 + 1; // value between 0 and 20
c2 = 2 → y := w; c2 := c2 + 1;
c2 = 3 → z := y + x; c2 := c2 + 1;
c2 = 4 → output(z); c2 := 1; // loop

F (faults):
true → x := random [10 . . . 45]
true → w := random [1 . . . 50]

Figure 4.4: Program containing two concurrent processes with a transition
that is both SS -inconsistent and not SS -inconsistent w.r.t. two different com-
putations.

43

If we cannot find a computation in the presence of faults for which a

particular transition is SS -inconsistent then we say that this transition is

SS -consistent. Specifically,

Definition 39 (SS -consistent transition for p) Given a program p with

safety specification SS. A transition (s, s′) is SS -consistent for p in presence

of faults F iff (s, s′) is not SS-inconsistent for p in presence of F .

For example, from Fig. 4.2, transition (1, 2) is SS-consistent for p. Tran-

sition (13, 14) is also SS-consistent for p. The notion of SS-consistent transi-

tion captures the fact that executing such a transition is inherently safe, i.e.,

there is no chance of safety being violated unless something harmful occurs.

The notion of an SS -inconsistent transition is a characteristic of a com-

putation that violates SS , and is captured by the following proposition

(Prop. 3).

Proposition 3 Given an fault-intolerant program p with a safety specifica-

tion SS. Every computation α of p in the presence of faults that violates SS

contains an SS-inconsistent transition for p w.r.t. α in presence of F .

Proof.

1. Because p is F -intolerant, there exists a computation α of p in the

presence of faults such that α 6∈ SS .

2. From step 1 and Proposition 2 there exists a bad transition (s, s′) in α.

3. From step 2 and the restriction of F follows that (s, s′) ∈ δp.

4. From step 3 and Definition 37, (s, s′) is SS -inconsistent for p w.r.t. α.

�

Earlier, we have characterized inconsistent transitions by their ability of

causing computations to violate safety. Since a bad transition is reachable

only in the presence of faults, inconsistent transitions can also be character-

ized through the reachability of bad transitions.

44

Proposition 4 Given a fault-intolerant program p with a safety specification

SS. If (s, s′) is an SS-inconsistent transition for p in the presence of faults

F , then a bad transition is reachable starting from s using only program

transitions from δp.

Proof. The proof follows directly from the definition of SS -inconsistent

transitions and Proposition 2. �

Reachability of bad transitions in δp leads to the following observation.

Proposition 5 Given a fault-intolerant program p for safety specification

SS. Every SS-inconsistent transition for p in presence of faults F is not

reachable in the absence of faults F .

Proof.

1. For a contradiction, assume the start state s of an SS -inconsistent

transition (s, s′) is reachable in the absence of faults.

2. Step 1 implies that there exists a computation α·s·s′ of p in the absence

of faults.

3. From the fact that (s, s′) is inconsistent, and Proposition 4 there exists

a computation s · s′ · β of p in the absence of faults in which a bad

transition occurs.

4. From steps 2 and 3 follows that there exists a computation σ = α·s·s′ ·β
of p in the absence of faults containing a bad transition.

5. From step 4 and Proposition 2 there exists a computation of p in the

absence of faults which violates SS .

6. From step 5 p violates SS in the absence of faults, a contradiction.

�

Note that the previous observation cannot be strengthened to an equiv-

alence (a non-reachable transition in the absence of faults must not be SS -

inconsistent). But it can be reformulated to characterize reachable transi-

tions in the absence of faults as SS -consistent.

45

Corollary 1 Given a fault-intolerant program p for a safety specification

SS. Every reachable transition (s, s′) ∈ δp in the absence of faults F is SS-

consistent for p in the presence of faults F .

In the next section, we introduce the notion of perfect detectors using the

terminology of SS -(in)consistency.

4.4.2 Perfect Detectors

From the previous section, we observed that SS -inconsistent transitions are

those transitions that can lead a program to violate its safety specification in

the presence of faults, if no precautions are taken. Detectors, as we explained

in Section 4.2, are a means to implement these precautions. However, as

pointed out by Leveson et al. in [LCKS90], design of efficient detectors is

inherently complex. Hence, we introduce the class of perfect detectors.

Perfect detectors are a means to efficiently implement these precautions.

The definition of perfect detectors follows two design principles: A (perfect)

detector d monitoring a given action ac of program p needs to (1) “reject” the

starting states of all transitions induced by ac that are SS -inconsistent for

p in the presence of faults, and (2) “keep” the starting states of all induced

transitions that are SS -consistent for p in the presence of faults. These two

properties are captured in the definition of completeness and accuracy of

detectors (the notions are defined in analogy to Chandra and Toueg [CT96]).

Definition 40 (Detector accuracy) Given a program p with safety spec-

ification SS, and a program action ac of p. A detector d monitoring ac is

SS -accurate for ac in p in the presence of faults F iff for all transitions (s, s′)

induced by ac holds: if (s, s′) is SS-consistent for p in the presence of F , then

s ∈ d.

The accuracy property captures the fact that efficient detectors should

not make mistakes. Thus, if a detector detects that a transition is safe, then

it “accepts” the state.

Definition 41 (Detector completeness) Given a program p with safety

specification SS, and a program action ac of p. A detector d monitoring

46

action ac is SS -complete for ac in p in the presence of faults F iff for all

transitions (s, s′) induced by ac holds: if (s, s′) is SS-inconsistent for p in

presence of F , then s 6∈ d.

On the other hand, the completeness property captures the notion that

a detector should “reject” all harmful transitions.

Definition 42 (Perfect detector) Given a program p with safety specifi-

cation SS, and a program action ac of p. A detector d monitoring ac is

SS -perfect for ac in p in presence of faults F iff d is both SS-complete and

SS-accurate for ac in p in presence of F .

Where the specification is clear from the context we will write accuracy

instead of SS-accuracy (the same holds for completeness and perfection).

Overall, the perfectness property of detectors captures the fact that such a

detectors detect all harmful faults, and do not make mistakes.

Intuitively, the completeness property of a detector is related to the safety

property of the program p in the sense that the detector should filter out all

“harmful” SS -inconsistent transitions for p, whereas the accuracy property

relates to the liveness specification of p in the sense that the detector should

not rule out SS -consistent transitions. This intuition is captured by the fol-

lowing lemmas. The first one (Lemma 1) uses the accuracy property to show

that the fault free behavior of a program is not affected by adding perfect

detectors. Intuitively, this also means that, in the absence of faults, addition

of perfect detectors to a program does not cause the original program to lose

any of its behavior. The next one (Lemma 2) uses the completeness property

to show that perfect detectors indeed establish fail-safe fault-tolerance. In-

tuitively, this also means that these detectors are efficient, in the sense that

they do not make mistakes, and they also cause “rejection” of all “harmful”

transitions. Jhumka et al. introduced the concept of SS-globally consis-

tent detectors in [JHCS02]. As mentioned in [JHS03], a set of (SS-) perfect

detectors for different actions in program p with safety specification SS is

SS-globally consistent for p.

47

Lemma 1 (Perfect detectors and fault-free behavior) Given a fault-

intolerant program p and a set D of perfect detectors, consider program p′

resulting from the composition of p and D. Then the following statements

hold:

1. In the absence of faults, every computation of p′ is a computation of p.

2. In the absence of faults, every computation of p is a computation of p′.

Proof.

1. From Corollary 1, every program transition which is reachable in p is

SS -consistent.

2. From construction, p′ results from adding perfect detectors to p. Be-

cause they are perfect (Definition 42), they are accurate.

3. From steps 1, 2 and the definition of accuracy, all SS -consistent tran-

sitions of p are also transitions of p′.

4. Steps 1 and 3 imply that every reachable transition in p is also reachable

in p′.

5. Step 4 implies that every computation of p is also a computation of p′,

proving the first claim of the lemma.

6. From the definition of a detector (Definition 30) follows that composi-

tion with detectors does not introduce new state transitions.

7. Step 6 implies that δp′ ⊆ δp.

8. Step 7 implies that every computation of p′ is also a computation of p,

proving the second claim of the lemma.

�

Lemma 1 intuitively suggests that, in the absence of faults, program p,

and its corresponding fail-safe fault-tolerant program have identical behav-

iors. What it also suggests is that any other detector that is designed defen-

sively (defensive programming) interferes with the behavior of the fail-safe

48

fault-tolerant program in the absence of faults. Specifically, it means that

there exists valid (SS-consistent) transitions that are however ruled out by

the detector, hence liveness is compromised.

To understand the behavior of a program in the presence of faults, we

make use of the notions of critical actions, which we formalized here. Intu-

itively, a critical action is one which if executed in an erroneous state will

cause violation of safety.

Definition 43 (Critical and non-critical actions) Given a program p

with safety specification SS, and fault model F . An action ac of p is said to

be critical iff there exists a transition (s, t) induced by ac such that (s, t) is a

bad transition (Proposition 2) that is reachable in presence of faults F . An

action is non-critical iff it is not critical.

Thus, the set of bad transitions reachable in the presence of faults define

a set of critical actions.

Lemma 2 (Perfect detectors and behavior in the presence of faults)

Given a fault-intolerant program p for a safety specification SS. Given also

a program p′ by composing the critical actions of p with perfect detectors.

Then, p′ satisfies SS in presence of faults.

Proof.

1. For a contradiction assume that p′ violates SS . From definition of

violates follows that there exists a computation σ of p′ which is not in

SS .

2. Step 1 and Proposition 2 imply that there a bad transition (s, s′) occurs

in σ.

3. Because of the restrictions on the fault model (critical variables are not

affected), the transition (s, s′) from step 2 must be a program transition

(i.e., (s, s′) ∈ δp′)

4. From step 3, and Definition 43, there exists a critical action ac that

induces the bad transition from step 3

49

5. From Definition 37 and step 3 the transition (s, s′) is SS -inconsistent.

6. Consider the critical program action ac (from step 4) causing the bad

transition. From construction of p′, ac is composed with a perfect

detector d.

7. From step 5 and because d is perfect, it is also complete.

8. Because d is complete (step 6), d monitors ac (step 5) and transition

(s, s′) induced by ac is SS -inconsistent (step 4), the definition of com-

pleteness implies that s 6∈ d.

9. Step 7 implies that (s, s′) 6∈ δp′ which contradicts step 3.

�

Thus, Lemma 2 shows that perfect detectors for critical actions are suf-

ficient for design of fail-safe fault-tolerant program. Overall, composing the

critical actions of a fault-intolerant program p (resulting in p′) with perfect

detectors ensures that (i) in the absence of faults, p and p′ have identical

behavior, and (ii) in presence of faults, p′ is fail-safe fault-tolerant (From

Lemmas 1 and 2).

Lemma 3 (Perfect Detection and Safety Specification) Given a

fault-intolerant program p with safety specification SS, which is encoded as

a set of bad transitions ss, and a fault class F . Given also a program p′,

such that p′ = p \ ssr, where ssr is the set of all reachable SS-inconsistent

transitions using transitions in δF
p . Then, the following hold:

1. In the absence of faults, every computation of p is a computation of p′

2. In the absence of faults, every computation of p′ is a computation of p

3. In the presence of faults, p′ is fail-safe fault-tolerant.

We prove the first part of the claim:

Proof.

1. From Def. 38, ss contains only SS-inconsistent transitions for p.

50

2. From Propositions 3, and 4, only SS-inconsistent transitions are re-

moved from p′.

3. From step 3, no SS-consistent transition for p is removed in p′.

4. From step 3, all SS-consistent transitions of p are also transitions of p′

5. From Corollary 1 and step 4, all reachable transitions of p in absence

of faults are reachable by p′ in absence of faults.

6. From step 5, every computation of p is a computation of p′ in absence

of faults.

�

The proof of the second part of the claim follows:

Proof.

1. From Def. 38, ss contains only SS-inconsistent transitions for p.

2. From Propositions 3, and 4, only SS-inconsistent transitions are re-

moved from p′.

3. From step 2, and by construction, no transition is added in p′

4. From step 3, no transition is added in p′ that is reachable in the absence

of faults

5. From step 4, δ′p ⊆ δp

6. From step 5, every computation of p′ is a computation of p in absence

of faults.

�

The proof of the third claim follows: We assume that p′ is not a fail-safe

fault-tolerant program, and then show a contradiction.

Proof.

1. Assume p′ is not a fail-safe fault-tolerant program. There exists a

computation α of p′ such that α violates SS in presence of faults.

51

2. From Prop. 2, there exists a bad transition (s, s′) in α

3. From step 3, (s, s′) is not removed in p′.

4. From step 3, (s, s′) is reachable using transitions in δF
p since (s, s′) is

SS-inconsistent for p in presnce of faults.

5. Contradiction, since by construction of p′, all SS-inconsistent transi-

tions for p reachable by using transitions in δF
p have been removed.

�

Thus, from Lemma 3, p′ = p \ ssr solves the transformation problem.

Also, removing ssr from δp can be likened, following Lemma 2, to composing

the critical actions of p with perfect detectors.

We now present a result on the existence of perfect detectors.

Lemma 4 (Existence of perfect detectors) Given a program p with

safety specification SS, and fault class F . For every critical action ac in

p, there exists a detector D such that D is perfect for ac in p.

Proof.

1. From assumption, action ac in p is critical

2. From 1, and Definition 43, there exists a set of SS-inconsistent

transitions for p B = {(s, t) : (s, t)is SS-inconsistent for p ∧
(s, t)induced by ac}.

3. Let acr be the set of transitions induced by ac reachable in the presence

of faults.

4. From steps 3, and 3, the set O = acr \B is the set of all transitions in-

duced by ac reachable in presence of faults that will not cause violation

of SS when executed.

5. From step 4, set O does not contain any reachable transition (s, t)

induced by ac that is SS-inconsistent (bad) for p.

52

6. From step 4, set O contain all reachable transitions (s, t) induced by

ac that are SS-consistent for p.

7. From steps 5, and 6, the set OS = {s : (s, t) ∈ O} defines a state

predicate (thus a detector) that is perfect for ac in p.

�

Thus, we have shown that for every critical action ac of a program, there

exists a perfect detector for ac in p. At this point, since we for every critical

action of a program, there exists a perfect detector, the question is: how do

we design these?

4.4.3 Constructing Perfect Detectors

Finally, we study how to construct perfect detectors for critical actions. This

will also provide a basis for automated construction of such detectors.

Theorem 2 (Constructing perfect detectors) Given a fault-intolerant

program p with safety specification SS, and fault model F . The following

two statements are equivalent:

1. The program p′ is obtained by composing each critical action ac of p

with a perfect detector for ac in p in presence of F .

2. Each SS-inconsistent transition induced by the critical action ac of p

reachable in the presence of F is unreachable in p′ in the presence of

F , and each SS-consistent transition of p reachable in the presence of

F is also reachable in p′ in the presence of F .

Proof.

We assume a given critical action ac of p being composed with a detector

that is perfect for ac in p in presence of F , and show the implication of the

second statement from the first one.

1. ac is composed with a detector d that is perfect for ac in p in presence

of F .

53

2. Since d is perfect, it causes all SS-inconsistent transitions induced by

ac to be unreachable in p′ in presence of F .

3. Since d is perfect, it causes all SS-consistent transitions induced by ac

to still be reachable in p′ in presence of F .

4. From steps 2 and 3, we have statement 2.

The proof for the implication of statement 1 from statement 2 is

straightforward. The first part of statement 2 (unreachability of SS-

inconsistent transitions induced by a critical action ac in presence of

faults F) implies completeness if a detector d monitoring ac, and the

second part of statement 2 (reachability of SS-consistent transitions

induced by a critical action ac in presence of faults F) implies accu-

racy of a detector d monitoring ac. Taken together, d is perfect for ac

in p in presence of F .

�

The algorithm for synthesizing perfect detectors (or fail-safe fault-tolerant

programs with perfect detection) is based directly on Theorem 2.

4.5 An Algorithm for Perfect Detectors

In this section, we present a sound and complete algorithm for synthesizing

fail-safe fault-tolerant programs with perfect detection. Based on the fact

that composing critical actions of a fault-intolerant program p with perfect

detectors results in a fail-safe fault-tolerant program p′ whose behavior in the

absence of faults is identical to that of p.

Theorem 3 (Correctness the of transformation algorithm) The al-

gorithm in Figure 4.5 solves the transformation problem of Definition 48.

Proof. Since the algorithm constructs p′ by removing the set ssr of all

SS-inconsistent transitions induced by critical actions of p reachable by using

transitions in δF
p , we can apply Lemma 3 and Theorem 2. �

54

add-perfect-fail-safe(δp, δF , ss : set of transitions):

{
ssr := get-ssr(δp, δF , ss)

return (p′ = p where transition relation is δp \ ssr)}

get-ssr(δp, δF , ss : set of transitions):

{
ssr := {(s, t)|(s, t) is induced by a critical action of p and (s, t) is

SS-inconsistent for p in presence of F }

return (ssr)}

Figure 4.5: Algorithm to synthesize fail-safe fault-tolerant program with per-

fect detection.

Theorem 4 (Perfect Detection) Given a fault-intolerant program p with

safety specification SS encoded as a set ss of bad transitions, and fault class

F . Program p′ :=add-efficient-fail-safe(p, F, ss) has perfect detection.

Proof.

1. All τ ∈ ssr are transitions induced by critical actions (fault model)

2. From step 1, removing set ssr is equivalent to composing critical actions

of p with detectors.

3. From Lemmas 1, 2, and 3, , p′ has perfect detectors.

4. From steps 3, and 3, the detectors for the critical actions of p are

perfect.

�

We say that p’ is fail-safe fault-tolerant to F (or fail-safe F -tolerant),

and has perfect detection to F .

Theorem 5 (Soundness and Completeness) Algorithm add-perfect-

fail-safe is sound and complete.

55

Soundness means that the resulting program solves the transformation

problem, while completeness means that if the result of the corresponding

decision problem is true, i.e., the fail-safe fault-tolerant program exists, then

the algorithm finds it.

Proof.

The proof of soundness (from Lemma 3), and completeness (by construc-

tion and assumption) is straight forward.

�

Complexity of Algorithm add-perfect-fail-safe

We now provide a brief analysis of the complexity of the algorithm:

1. Assume that the number of bad transitions specified by ss be m.

2. Assume that the maximum number of transitions visited to determine

reachability of a bad transition is n. Then, the number of transitions

visited is O(n).

3. Therefore, maximum number of transitions visited when computing set

ssr is O(m · n).

4. Removing set ssr has complexity O(m), since the size of set ssr is

O(m).

5. Overall, the algorithm in Figure 5.1 has complexity O(m · n + m) =

O(m · n), where m is the number of bad transitions specified by ss ,

and n is the maximum number of transitions considered to ascertain

reachability.

The complexity of our algorithm is no more than the complexity of an-

other algorithm presented by Kulkarni, and Arora [KA00], which also has

polynomial complexity in the state space of the program. An instance of

algorithm add-perfect-fail-safe was introduced by Jhumka et al. in [JHCS02]

that generates a set of perfect detectors. In fact, Jhumka et al. performed

a fault-injection experiment on a medium-scale embedded system for an air-

craft arrestment system to ascertain the viability of the concept of perfect

56

detectors in [JHS03]. The main finding was that perfect detectors (i) indeed

detect errors that lead to violation of safety, (ii) make no detection mistakes.

In the next section, we present several case studies showing the applica-

bility of our approach.

4.6 Three Case Studies

In this section, we present several simple examples to show how the algorithm

add-perfect-fail-safe works.

4.6.1 A Simple Example

Figure 4.6: Example program p in the presence of faults

In Fig. 4.6, we show a program p, together with the fault transitions

that can affect it. For example, transition (1, 7) is a fault transition. There

are two bad transitions that are specified by the safety specification SS of

the program, namely transitions (10, 11), and (20, 21). From Lemma 3, and

algorithm add-perfect-fail-safe, we need to remove only the set ss of bad tran-

sitions, as specified by the safety specification SS of the program, to make it

fail-safe fault-tolerant. Thus, add-perfect-fail-safe(δp, δf , {(10, 11), (20, 21)})
will result in the removal of all the transitions in ss from the program.

This is depicted in Fig. 4.7. Observe that there can no longer exist a

computation of p′ in presence of faults that will include a bad transition.

Thus, the resulting program p′ is fail-safe fault-tolerant, and program p′

solves the transformation problem.

57

Figure 4.7: Fail-safe fault-tolerant program p′ obtained by removing ss

4.6.2 A Majority Voter System

We recall how a triple modular redundant (TMR) majority voter system

works. The system consists of three inputs in.1, in.2 and in.3 from three

processes p1, p2, and p3 respectively, and an output variable, called out. For

simplicity, we consider the case where each process pi inputs a binary value

in.i to the voter. In the absence of faults, all three values are identical.

For the majority voter system, the class of faults that we consider is one

that can corrupt the input value of at most one of the three processes. In the

absence of faults, all inputs are identical and the value of the output variable

out can be set to that of any in.i, for any process pi.

Thus, the fault-intolerant majority voter program can be written as fol-

lows:

ITMR1 :: out = ? → out := in.1

Variable out = ? means that the output has not yet been set. In the

absence of faults, the value of the output variable is set to that of in.1.

The faults transitions F that we can consider are those transitions that

corrupt the input value in.i from at most one process pi, setting it to some

arbitrary value. Thus, in our example, the fault transitions considered can

be represented as such:

F :: (in.1 = in.2) ∨ (in.1 = in.3) → in.1 = ⊥

58

In presence of faults F that can corrupt the input value from process p1,

i.e., in.1, the out variable can be wrongly set, i.e., it obtains its value from a

corrupted value of in.1. The specification of a majority voter is that it always

outputs the majority of its inputs, and its safety specification is such that it

never outputs a value that is not the majority, i.e., a fail-safe majority voter

will never output a corrupted value (under our assumed fault model), though

it may deadlock in presence of faults. However, as we explained before, a

fail-safe fault-tolerant program needs to satisfy only its safety specification

in presence of faults.

Thus, every transition that sets the output variable out to a corrupted

value should be removed. Specifically, consider set

T = {t : ((t(out) = t(in.1)) ∧ ((t(in.1) 6= t(in.2)) ∧ (t(in.1) 6= t(in.3)))},
where s(v) is the value of variable v in state s, and set T represents the set

of states where variable out is incorrectly set, i.e., variable out is not set to

the majority value. Hence, any transition (s, t) : t ∈ T is a bad transition for

the TMR program, ITMR1, i.e., ss = {(s, t) : t ∈ T}.
Thus, running algorithm add-perfect-fail-safe results in removing set ss

from program TMR. Removing set ss from TMR means that all the remain-

ing transitions that set the output variable out set out to a majority value,

whenever out is not already set. In other words, all the other remaining

transitions that set out to in.1, they start from a state where out is different

from in.1, and where in.1 is equal to at least one of the other input variables,

i.e., in.1 = in.2orin.1 = in.3. Thus, in detector terms, we need to check that

in.1 is equal to the input value of at least one of the other processes. Hence,

the fail-safe fault-tolerant program majority voter, FSTMR1, is:

FSTMR1 :: (out 6= in.1) ∧ ((in.1 = in.2) ∨ (in.1 = in.3)) → out := in.1

Theorem 6 (Fail-safe TMR) Program FSTMR1 is fail-safe fault-tolerant

with perfect detection to faults that corrupt the input of at most one process.

Observe that if faults can arbitrarily corrupt the output out of the TMR

system, then no fail-safe fault-tolerant TMR exists, hence our focus on tol-

erable fault models.

59

4.6.3 Token Ring

In this example, we present an example of a fail-safe fault-tolerant version of

the token ring. We first recall the mutual exclusion algorithm using a token

ring.

Multiple processes wait to access their critical section. They can do so

provided that at any one time, at most one process is accessing its critical

section. This is the safety specification for a mutual exclusion algorithm.

Also, no process waits indefinitely to access its critical section, assuming that

each process leaves its critical section in finite “time”. This is the liveness

specification of a mutual exclusion protocol.

We assume a collection of processes arranged in a ring. Mutual exclu-

sion can be achieved in such a scenario by circulating a token among these

processes, and a process accesses its critical section only upon receipt of the

token. The token is circulated among the processes in a particular direction.

For the token ring, the safety specification is that at most one process holds

the token at any one time. In this example, we present a fail-safe fault-

tolerant version of a token ring, i.e., in the presence of faults, at most one

process holds the token.

Processes 0 . . . N are arranged in a ring. Process k, 0 ≤ k < N passes

the token to process k + 1, whereas process N passes the token to process 0.

Each process k has a binary variable, t.k, and a process k, k 6= N holds the

token iff t.k 6= t.(k + 1), and process N holds the token iff t.N = t.0.

The fault-intolerant program for the token ring is as follows (+2 is modulo-

2 addition) :

ITR1 :: k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

ITR2 :: k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Fault action: The fault action that we consider is

F :: true → t.k :=⊥

60

Note: In general, we assume faults like timing faults, message loss, or

duplication etc. However, we assume that when such faults occur, a process

k sets its variable t.k =⊥. In this sense, representing the faults as F above

is representative of a large class of faults. Moreover, these faults are then

detectable. Also, there can be any number of state corruptions.

The safety specification of the token ring is that at any time no more than

one process holds the token. In presence of faults, especially when t.k =⊥,

no action based on t.k should be taken, just in case process k + 1 receives a

duplicate token inadvertedly. Hence, all transitions of process k that occur

when the state of process (k − 1), t.(k − 1) =⊥ will lead to safety violation,

and should be removed. Thus, we only allow process k to execute its action

when t.(k − 1) 6=⊥.

Thus, applying add-perfect-fail-safe to the fault-intolerant token ring

ITR, the resulting fail-safe fault-tolerant token ring FSTR is:

FSTR1 :: t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

FSTR2 :: t.N 6=⊥ ∧k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Theorem 7 (Fail-safe TR) Program FSTR is fail-safe fault-tolerant to

faults that corrupt the state of any process.

4.7 Chapter Summary

In this chapter, we have presented a novel theory of detector components for

the design of fail-safe fault-tolerant programs. This theory allows to derive

a transformation algorithm which automatically adds fault-tolerance ability-

with perfect detection. Specifically, we have made three important contri-

butions in this chapter: (i) We have presented a novel theory of detectors,

and (ii) identified a class of detectors called perfect detectors, and then ex-

plained their role, and importance in fail-safe fault-tolerant programs, (iii) we

have provided an algorithm that adds perfect detectors to a fault-intolerant

program to synthesize a fail-safe fault-tolerant program.

61

The motivation for perfect error detection is obvious in adaptive sys-

tems. In adaptive systems, usually (in periods of non-perturbation) a fault-

intolerant program p executes. During periods of perturbation, a fault-

tolerant version p′ of p (with possibly lower efficiency) is switched in. If

a detector is not accurate, then p′ may be switched in, even when there is

no perturbation, lowering the efficiency of the system. If the detector is not

complete, it might fail to detect an error entirely. Hence, perfect detection

is necessary if the system is to be correct and efficient.

We close this chapter with a final remark concerning an observation made

by Arora and Kulkarni [AK98b, Sect. 3]. The authors observed that “based

on their experience”, when designing fail-safe fault-tolerant programs, the

detectors for non-critical actions are trivial, i.e., “true”, whereas the detectors

for critical actions are non-trivial. Lemma 2 is the first formal justification

of the validity of Arora and Kulkarni’s observation since it shows that it is

sufficient to compose critical actions with perfect detectors to ensure fail-safe

fault-tolerance. Proving this statement was made possible by our notions of

accuracy and completeness of detectors. In this sense these properties can

be regarded as a concretization of “non-trivial”.

62

Chapter 5

Fast Detectors: A Basis for
Fast Error Detection

In the previous chapter 4, we introduced the concept of perfect detection

(perfect detectors), i.e., the ability of a detector to detect all harmful faults,

and not making any mistakes. This represents one aspect of efficiency of

fail-safe fault-tolerant programs.

In this chapter, we look at a second aspect of efficiency of fail-safe fault-

tolerant programs, namely fast error detection. We introduce the concept

of fast detection, and is based upon the concept of SS-consistency and SS-

inconsistency, as defined in Chapter 4. Further, while providing for fast error

detection, we endeavor to preserve the ability for perfect error detection. In

this chapter, we make the following contributions:

1. We present a theory of fast and perfect detection, and formalize a

metric, called detection latency, that can be used to (i) estimate the

detection latency of a fail-safe fault-tolerant program, and (ii) com-

pare the detection latency efficiency of different fail-safe fault-tolerant

programs .

2. We present a sound, and complete algorithm that, given a fault-

intolerant program p with safety specification SS and fault model F ,

synthesizes a fail-safe fault-tolerant program with perfect detection,

and minimal latency. As way of contrast, the algorithm of chapter 4

synthesizes fail-safe fault-tolerant programs with perfect detection only.

63

5.1 Introduction

Given the pervasiveness of current computer systems, their ability to tolerate

effect of faults is becoming increasingly important, as shown in Chapter 4.

When such (harmful) faults occur, they can corrupt the state of the program.

When a variable is corrupted, and its corrupted value is used to update the

value of another variable, error is said to propagate. If no immediate action

is taken, the error may propagate beyond a given boundary. When the error

propagates beyond the “system” boundary, a failure is said to occur. Thus, as

we showed in Chapter 4, composing critical actions with perfect detectors will

prevent the errors from propagating beyond the “system” boundary. If the

system/program to be designed is only needed to be fail-safe fault-tolerant,

one only needs to compose critical actions with perfect detectors.

However, as we mentioned in Chapter 1, when designing a masking fault-

tolerant program, designing a corresponding fail-safe fault-tolerant program

can be the first step of the process. Hence, as we explained in Chapter 1

on the design of fault tolerance, once an error is detected, it needs to be

corrected too. However, the greater the error propagation, the greater is the

recovery process. To see this, consider the following: assume that in a given

program p, the value of a variable v1 is used to update the value of another

variable v2. Now, a fault occurs that corrupt the value of v1, and the resulting

error is detected, before v2 is updated. During recovery, only the value of

v1 needs to be “recovered”. However, if v2 is updated with the corrupted

value of v1, then during recovery, both the value of v1, and v2 needs to be

recovered. Hence, the recovery process is more complicated. Thus, from the

point of view of recovery, the earlier the error is detected, the simpler the

error recovery process. Thus, in this chapter, we present a theory of fast

error detection.

The theory of fast detection is also based on the notion of SS-consistency

and SS-inconsistency of transitions, developed in Chapter 4. Recall that a

given detector monitors a certain program action. If the state of a program is

such that safety can potentially be violated by execution of program actions

alone (see definition of SS-inconsistent transitions – Def 37 – Chapter 4), then

64

these program actions need to be prevented from occurring. Specifically, the

program can be halted even before safety is about to be violated, through

execution of bad transitions. This has the effect of preventing errors from

propagating, and corrupting the whole state space of the program, i.e., the

effect of the fault is contained.

Intuitively, to achieve fast detection, not only do the critical program

actions need to be monitored with perfect detectors, but other non-critical

program actions too (depending on the fault model) . What this means is

that we may need to refine the guards of both critical and non-critical actions,

depending on the fault model. As way of contrast, the theory presented in

Chapter 4 refines only the guards of critical actions.

To evaluate the “fastness” at which a fail-safe fault-tolerant program de-

tects an error, we formalize a commonly-used metric called detection latency.

For a program that is fail-safe fault-tolerant, from Chapter 4, only bad tran-

sitions induced by critical actions are removed. Thus, from the onset of a

“harmful” fault to the “time” the program “halts” at a critical action (i.e.,

the transition induced by the critical action is removed, since it is bad), the

detection latency for this fault is “maximal”. Whenever we say that detectors

are fast, we mean that the “time” (more specifically, the number of program

transitions) it takes for the program to “halt” is less than that maximum

detection latency. In this chapter, we show how the detection latency can

be minimized, i.e., the fault is detected in 0-step. Further, as we composed

both non-critical and critical actions with detectors, we endeavor to develop

perfect detectors in such cases, thus preserving the ability of having perfect

detection.

This chapter is structured as follows: In Section 5.2, we present a theory

of fast error detection. We define the transformation problem for fast, and

perfect error detection in Section 5.3. In Section 5.4, we present an algorithm

that solves the transformation problem. We present examples to illustrate the

working of the algorithm in Section 5.5. We discuss some issues concerning

the approach in Section 5.6, and we summarize and conclude the chapter in

Section 5.7

65

5.2 Fast Error Detection

Perfect detectors, introduced in Chapter 4, ensure correctness of the fail-safe

fault tolerance transformation problem. They ensure that, in the absence

of faults, liveness of the resulting program is not compromised, while also

ensuring that safety is not violated in presence of faults.

We now turn to a different aspect, namely the detection latency efficiency

of fail-safe fault-tolerant programs. Intuitively, we would like an error to be

detected as early as possible to prevent further contamination of the program

state. If a fault occurs, and no precaution is taken, then the error can prop-

agate, and corrupt the entire state space of the program. More sophisticated

recovery methods, such as a distributed reset [AG94], may then be needed to

get the system into a consistent state, which are computationally expensive

procedures.

In this section, we focus on explaining the relationship between fast de-

tection and SS -inconsistent transitions. To see fast detection, consider a

computation α = s0 . . . si−1 · si · si+1 . . . of a fault-intolerant program p in

the presence of faults that violates safety. Assume (si, si+1) is a bad transi-

tion (from Proposition 2) in α. From the algorithm add-perfect-fail-safe of

Chapter 4, transition (si, si+1) would be removed from p when synthesizing

the fail-safe fault-tolerant program p′, so that transition (si, si+1) is unreach-

able in α. However, if transition (si−1, si) is a program transition, and is

thus SS-inconsistent for p, then removing transition (si−1, si) will also make

transition (si, si+1) unreachable in α. So, from the point of view of safety,

removing transition (si−1, si), or (si, si+1) achieves the same result, that of

making the bad transition (si, si+1) unreachable. However, not executing

transition (si−1, si) prevents error from propagating, i.e., the variables that

would have been updated and corrupted had the transition (si−1, si) taken

place are now not corrupted, hence errors are contained.

Informally, a detector d monitoring an action ac in p is perfect for ac in p if

it removes every arbitrary SS -inconsistent transition induced by ac for every

violating execution, while keeping all SS-consistent transitions induced by

ac. Thus, given a computation α of p that violates safety, α has a sequence of

66

program transitions leading to a bad transition (following from the definition

of SS-inconsistency of Chapter 4), where every such program transition in

that sequence is SS-inconsistent for p. For fast detection, i.e., to prevent

error from propagating, a given program action ac of p should be composed

with a perfect detector such that the “first” SS -inconsistent transition of that

sequence is removed, and that transition is induced by ac. This will allow a

fail-safe fault-tolerant program to have both perfect and fast error detection.

On this background, we formalize the notion of an earliest SS-inconsistent

transition.

Definition 44 (Earliest SS -inconsistent transition) Given an F -

intolerant program p with safety specification SS, and a computation

α = s0 · s1 · · · si · si+1 · · · sm of p in the presence of faults that violates

SS. The transition (si, si+1) is the earliest SS -inconsistent transition for p

w.r.t. α iff the following two properties hold:

1. (si, si+1) is SS-inconsistent for p w.r.t. α.

2. (si−1, si) is a transition induced by a fault action.

Intuitively, when a computation α of a program p in the presence of faults

violates the safety specification SS of p, there exists a suffix of the violating

computation prefix of α that starts with an SS -inconsistent transition and

ends in a bad transition. The earliest SS -inconsistent transition is the first

SS -inconsistent transition in this suffix. Basically, it is the first program

transition that leads the program on the wrong track. Since we have no

control on fault transitions, this is the first transition which can be enabled

or disabled, depending on whether it is SS-consistent, or SS-inconsistent.

Define the set EIT F
p (SS) of earliest SS -inconsistent transitions of a pro-

gram p as the union of the earliest SS -inconsistent transitions over all com-

putations of p violating SS . Define p \EIT F
p (SS) as the program p′ which is

the same as p except that all transitions from EIT F
p (SS) have been removed

from δp.

67

Definition 45 (Fast detectors) Let p be a fault-intolerant program. A set

of perfect detectors D for program p is fast iff p composed with D results in

p \ EITF
p (SS).

At this point, we need to assess the role and impact of fast (perfect)

detectors in the presence of faults. We find that, composing a fault-intolerant

program with these fast detectors, and also since these fast detectors are

perfect, the resulting program is indeed fail-safe fault-tolerant, and this is

captured by Lemma 5.

Lemma 5 (Fast perfect detectors and behavior in the presence of faults)

Let p be a fault-intolerant program for a safety specification SS. Then p

composed with a set of fast perfect detectors for p satisfies SS in the presence

of faults.

Proof. This is a generalization of the proof of Lemma 2.

1. For a contradiction, it is again assumed that p′ violates SS , i.e., that

there exists a computation σ of p′ which is not in SS .

2. From Definition 44 it is possible to generalize Proposition 3 to state

that in every violating execution there exists an earliest SS -inconsistent

transition in every violating computation. Denote this transition in σ

as (s, s′).

3. The fact that detectors are fast and from Definintion 45 we have that all

earliest inconsistent transitions are removed from p while constructing

p′, which is a contradiction to the occurrence of (s, s′) in a computation

of p′.

�

We now define, and formalize a metric to measure the “fastness” of detec-

tors. Intuitively, the detection latency metric defines the number of program

transitions executed until the program “halts” at a detector, after a “harm-

ful” fault has occurred.

68

Definition 46 (Detection latency) Let SS be a safety specification and p′

be a program which has been made fail-safe fault-tolerant for SS by compos-

ing a fault-intolerant program p with a set of detectors. Consider a finite

computation α = s0 · · · si−1 ·si ·si+1 · · · sm of p′ in the presence of faults, such

that:

1. (si−1, si) is a transition induced by a fault action,

2. all transitions in si . . . sm are in δp′, and

3. starting from sm a bad transition in SS is reachable by using a sequence

of program actions of p.

Then, the detection latency Lp(α) of p′ w.r.t. α is the number of transitions

executed in si . . . sm, i.e., (m− i) transitions.

Intuitively, the detection latency measures the number of (SS-

inconsistent) transitions executed after the occurrence of a harmful fault,

and before a detector halts the program.

Definition 47 (Maximum detection latency) Let F be a fault model,

SS be a safety specification and p′ be a fail-safe F -tolerant program for SS.

The maximum detection latency LM ′
p of p′ is defined as the maximum of

L′
p(α) for all computations α of p′ in the presence of faults.

Lemma 6 (Latency of fast detectors) Given a fault-tolerant program p′

which is the result of the composition of a fault-intolerant program p with a

set of fast perfect detectors. Then p′ has maximum detection latency 0.

Proof. Consider any computation α = s0 · · · si · · · sm of p′ which satisfies

Definition 46. We need to show that si = sm.

1. Definition 46 implies that there exists a computation σ of p which can

be written as σ = α · β (i.e., a continuation of α) which violates SS .

2. Step 1 and Definition 44 imply that (si, si+1) is the earliest SS -

inconsistent transition of p w.r.t. σ.

69

3. Step 2 and the definition of fast detectors imply that p′ evolved from p

by removing (among other transitions) also (si, si+1).

4. Step 3 implies that si = sm, which in effect means that Lp′(α) = 0.

Since we have not restricted the choice of α, the statement holds for all α.

This implies that LM p′ = 0. �

Since the maximum detection latency of a fail-safe fault-tolerant program

p′ must be at least 0, composition of a fault-intolerant program p with fast

perfect detectors results in a fail-safe fault-tolerant program p′ with optimal

detection latency. It remains to be shown that this composition preserves

the original behavior of the fault-intolerant program in the absence of faults.

Lemma 7 (Fast perfect detectors and fault-free behavior) Given a

program p′ that is the composition of a fault-intolerant program p and a set

of fast perfect detectors. For p and p′ holds:

1. In the absence of faults every computation of p′ is a computation of p.

2. In the absence of faults every computation of p is a computation of p′.

Proof. The proof is the same as that of Lemma 1. �

Lemmas 5 (behavior in the presence of faults), 6 (optimal detection la-

tency) and 7 (behavior in the absence of faults) taken together show that

composing a fault-intolerant program with fast, perfect detectors, the re-

sulting program (i) preserves the original behavior in the absence of faults,

(ii) is fail-safe fault-tolerant in the presence of faults, and (iii) has minimal

detection latency. These lemmas will form the basis for deriving the trans-

formation algorithm for adding fast, perfect detectors in Section 5.4.

In the next section, based on the results developed in Chapter 4 and in this

section, we provide an algorithm that automates the synthesis of a fail-safe

fault-tolerant algorithm with perfect and fast error detection capabilities.

70

5.3 The Transformation Problem for Fast

and Perfect Detection

We now formally state the problem of transforming a fault-intolerant program

p into a fail-safe fault-tolerant version p′ for a given safety specification SS

and fault model F with perfect detection, and minimal detection latency.

Again, when deriving p′ from p, only fault tolerance should be added, i.e.,

p′ should not satisfy SS in new ways in the absence of faults. For complete-

ness, we recall the main constraints defining the transformation problem:

• If there exists a transition (s, t) in p′ that is not reached by p to satisfy

SS , then (s, t) cannot be used by p′, since this means that there are

other ways p′ can satisfy SS in the absence of faults. Thus, the set of

transitions of p′ should be a subset of the set of transitions of p.

• Also, if there exists a state s reachable by p′ in the absence of faults

that is not reached by p in the absence of faults, then this means that

p′ can satisfy SS differently from p in the absence of faults, and such

a state s should not be reached by p′ in the absence of faults. Thus,

the set of states reachable by p′ should be a subset of the set of states

reachable by p.

In general, these conditions result in the requirement that both programs

should have the same set of fault-free computations. Formally, we define the

transformation problem as follows:

Definition 48 (Transformation for efficient fail-safe fault tolerance)

Let SS be a safety specification, a fault model F , and p an F -intolerant

program for SS. Identify a program p′ such that the following four conditions

hold:

1. p′ satisfies SS in presence of F .

2. In the absence of faults, every computation of p′ is a computation of p.

3. In the absence of faults, every computation of p is a computation of p′.

4. p′ has detection latency 0.

71

The transformation problem can also be formulated as a decision problem:

Definition 49 (Corresponding decision problem) Let SS be a safety

specification, a fault model F , and p an F -intolerant program for SS. Does

there exist a program p′ such that the following three conditions hold:

1. p′ satisfies SS in presence of F .

2. In the absence of faults, every computation of p′ is a computation of p.

3. In the absence of faults, every computation of p is a computation of p′.

4. p′ has detection latency 0.

Later in Section 5.4 we present a sound, and complete algorithm which

solves the above transformation problem, i.e., we present an algorithm that

systematically transforms a fault-intolerant program into a program that sat-

isfies the above three conditions. Soundness of the algorithm means that the

resulting program indeed solves the transformation problem. Completeness

of the algorithm means that if the solution to the decision problem is true,

then the algorithm will find the fail-safe fault-tolerant program.

The algorithm is based on a theory for perfect detectors which we in-

troduce in the following section. The algorithm also synthesizes fail-safe

fault-tolerant program that detects faults early, and is based on a theory for

fast detectors.

5.4 Adding Efficient Fail-Safe Fault Toler-

ance

In this section we give an algorithm to solve the transformation problem of

Definition 48 which follows from the theory presented in Section 4.4.

The basic idea of the algorithm is to remove the set of earliest inconsistent

transitions from the input program p. Intuitively, the algorithm works as

follows: It takes as parameters the fault-intolerant program p (in the form

of its transition relation δp) and the fault model F (in the form of the set of

fault transitions). The safety specification SS is encoded as the set of bad

transitions and passed to the algorithm in variable ss .

72

Starting from the set of bad transitions in ss , the algorithm constructs the

set it of all inconsistent transitions. From this set, it constructs the set eit

of earliest inconsistent transitions. This set of transitions is removed from δp

yielding the transition relation of the transformed program. The algorithm

is presented in Figure 5.1.

add-efficient-fail-safe(δp, δF , ss : set of transitions):

eit := get-eit(δp, δF , ss)

return (p′ = p where transition relation is δp \ eit)

get-eit(δp, δF , ss : set of transitions):

it := {(s0, s1) | ∃α = s0 · s1 · s2 · · · of program transitions:

∃(s, s′) ∈ ss : (s, s′) occurs in α and (s, s′) is reachable

in δF
p }
eit := {(s0, s1) | (s0, s1) ∈ it ∧ ∃s ∈ Sp : (s, s0) ∈ δF}

return (eit)

Figure 5.1: Algorithm to add efficient fail-safe fault-tolerance.

Theorem 8 (Correctness of the transformation algorithm) The al-

gorithm in Figure 5.1 solves the transformation problem of Definition 48.

Furthermore, the resulting program has minimal detection latency.

Proof. Since the algorithm constructs p′ by removing the set of all ear-

liest inconsistent transitions, we can apply the lemmas from Section 5.2.

Lemma 5 ensures that p′ satisfies the specification in the presence of faults,

which proves the first requirement of Definition 48. Lemma 6 ensures that

the maximum detection latency is 0, meaning that it is trivially optimal.

Lemma 7 ensures that p and p′ have the same fault-free behavior which

proves the second and third requirements of Definition 48. �

Theorem 9 (Soundness and Completeness) Algorithm add-efficient-

fail-safe is sound and complete.

73

Proof.

The proof of soundness (from Lemma 5), and completeness (by construc-

tion) is straight forward. �

In contrast, another algorithm for automatic synthesis of fail-safe fault-

tolerance proposed by Kulkarni and Arora [KA00] generates programs with

detection latency equal to the maximum length over all partial computations

considered when computing set it , since they remove only bad transitions,

i.e., the last transition in the partial execution, whereas we remove the first

one.

We now provide a brief analysis of the complexity of our algorithm:

1. Assume that the number of bad transitions specified by ss is m.

2. Let the maximum number of computations containing any bad transi-

tion is c.

3. Thus, to compute set it , the number of partial computations visited is

O(m · c).
4. Assume that the maximum number of transitions visited in any partial

computation when computing set it is n.

5. The maximum number of transitions visited when computing set it is

O(m · c · n).

6. Computing set eit means going through set it , thus this step has com-

plexity O(m · c · n).

7. Removing set eit has complexity O(m ·c), since set eit has size O(m ·c).
8. Overall, the algorithm in Figure 5.1 has complexity O(m·c·n+m·c·n+

m · c ·n+m · c) = O(m · c ·n), where m is the number of bad transitions

specified by ss , c is the number of maximum number of computations

containing any given bad transition, and n is the maximum number of

transitions considered in any partial computation.

Also, as mentioned in the Introduction (Chapter 1), our approach targets

a class of programs known as bounded programs. In bounded programs, the

length of the partial executions to be considered when calculating the set it

is finite. This means that in the program, there are no infinite or unbounbed

74

loops, rather all loops are bounded. An instance of bounded programs can

usually be found in the domain of embedded applications, more specifically

applications where the output is to be written within a bounded number of

steps. Another instance of bounded programs are distributed algorithms.

The algorithm add-efficient-fail-safe was also presented in [JHCS02] to

generate SS-globally consistent detectors. The algorithm basically removed

all earliest SS-inconsistent transitions such that the resulting program have

both perfect detection, and minimal detection latency.

We next some examples to show the working of our algorithm.

5.5 Two Case Studies

In this section, we present two examples. For the first example, we reuse the

fault-intolerant program of the first example of Chapter 4, and the second

example concerns a majority voter.

5.5.1 A Simple Example

In Fig. 5.2, state 1 is an initial state, and in the absence of faults, execution

goes from states 1 . . . 6. However, in the presence of faults, other states

previously unreachable become reachable, for example, state 7. Transition

(10, 11) is a bad transition, specified by the safety specification. Transition

(7, 8) is an SS-inconsistent transition.

Figure 5.2: An example to illustrate how algorithm add-efficient-fail-safe

works

75

A call to add-efficient-fail-safe(p, F, ss) will pass the program of Fig. 5.2

as argument, with the set of fault transitions. The variable ss holds the set

of bad transitions specified by the safety specification of the program, and is

equal to {(10, 11), (20, 21)}. Thus,

1. The program p = {(1, 2), (2, 3) . . . (7, 8), (8, 9) . . .}

2. fault F = {(1, 7), (1, 17), (3, 9), (3, 14) . . .}

3. ss = {(10, 11), (20, 21)}

From the algorithm, we collect all earliest inconsistent transitions. We

start with each bad transition specified by the safety specification. For exam-

ple, transition (10, 11) ∈ ss. We “backtrack” along all possible computations

in presence of faults that include transition (10, 11), until a fault transition

occurs. The program transition that follows the fault transition is an earliest

inconsistent transition. For example, going backwards, starting from transi-

tion (10, 11), we reach reach fault transition (3, 9), which makes transition

(9, 10) an earliest inconsistent transition. Similarly, transition (7, 8) is an

earliest inconsistent transition. Hence, eit = {(9, 10), (7, 8)}.
Likewise, starting with transition (20, 21) ∈ ss, we have the following

earliest inconsistent transitions: {(20, 21), (20, 19), (19, 18), (18, 17)}. Hence,

eit = {(9, 10), (7, 8), (20, 21), (20, 19), (19, 18), (18, 17)}, and we need to re-

move eit from the program.

The resulting program is shown in Fig. 5.3. Observe that the transitions

in ss are now unreachable in the presence of faults, which makes the pro-

gram fail-safe fault-tolerant. Also, as soon as a “harmful” error occurs (i.e.,

those that could have brought about violation of safety), the SS-inconsistent

transition is disabled/removed.

In the next example, we present the case of the majority voter, developed

in the last chapter.

5.5.2 A Majority Voter System

To recall the working of the triple modular redundant majority voter, there

are three processes p1, p2, and p3 that inputs values in.1, in.2, and in.3

76

Figure 5.3: Fail-safe fault-tolerant program resulting from applying algorithm

add-efficient-fail-safe

respectively, and an output variable, called out. For simplicity, each process

pi inputs a binary value in.i to the voter. In the absence of faults, all three

values are identical.

The mojority voter program is written as follows:

ITMR1 :: out = ? → out := in.1

The fault transitions are represented as follows:

(in.1 = in.2) ∨ (in.1 = in.3) → in.1 = ⊥

To compute the set eit of earliest SS-inconsistent transitions, we start

with a transition in ss (recall that ss encodes SS by holding the set of

bad transitions), and “backtrack” along every computation until a fault

transition is reached. To illustrate this, consider a small example of a

computation α of the majority voter in presence of faults (a state of the

majority voter is represented as 〈in.1, in.2, in.3, out〉:

α = β · 〈1, 1, 1,−〉 · 〈 ⊥, 1, 1,−〉 · 〈 ⊥, 1, 1,⊥〉 · γ

Recall that ⊥ is some “bad” value. Variable out = − means that out is not

set. Transition (〈1, 1, 1,−〉 · 〈 ⊥, 1, 1,−〉) is a fault transition, and transition

77

(〈 ⊥, 1, 1,−〉·〈 ⊥, 1, 1,⊥〉) is a bad transition in ss, and needs to be removed.

Now, when computing set eit, the transition (〈 ⊥, 1, 1,−〉 · 〈 ⊥, 1, 1,⊥〉) is in

eit, since it is preceded by a fault transition. However, observe that every

bad transition in ss will always be preceded by a fault transition, and hence

ss ⊆ eit. Also, since there is only one action in the majority voter, eit = ss.

Then, we need to remove eit from the intolerant program to make it fail-safe.

Thus, the set of transitions that is removed is:

{(s, t) : t ∈ T}, where the set T is defined as

T = {t : ((t(out) = t(in.1)) ∧ ((t(in.1) 6= t(in.2)) ∧ (t(in.1) 6= t(in.3)))}, as

in Chapter 4

Running algorithm add-efficient-fail-safe results in removing set eit from

program TMR. Removing set eit from TMR will be equivalent to removing

set ss from TMR. So, the fail-safe fault-tolerant version of the majority voter

program, with perfect detection, and minimal detection latency is identical

to the version with only perfect detection (see below).

FSTMR1 :: (out 6= in.1) ∧ ((in.1 = in.2) ∨ (in.1 = in.3)) → out := in.1

Theorem 10 (Fail-safe TMR) Program FSTMR1 is fail-safe fault-

tolerant with perfect detection, and minimal detection latency to faults that

corrupt the input of at most one process.

Observe that if faults can arbitrarily corrupt the output out of the TMR

system, then no fail-safe fault-tolerant TMR exists, hence our focus on tol-

erable fault models.

In the next section, we present some discussion about the applicability of

the algorithm add-efficient-fail-safe.

5.6 Discussion

From the examples provided, we can see that the fail-safe fault-tolerant ma-

jority voter with perfect detection, and minimal latency is identical to the fail-

safe fault-tolerant majority voter with perfect detection presented in Chap-

ter 4. This can be explained by the following: Algorithm add-perfect-fail-safe

78

refines the guards of critical actions, while algorithm add-efficient-fail-safe

refines the guards of critical, as well as non-critical actions. Since the major-

ity voter program consists of only a critical action, the fail-safe fault-tolerant

majority voter resulting from both algorithms can be expected to be identi-

cal.

However, comparing the fail-safe fault-tolerant program of the first ex-

ample of Chapter 4, and that of the first example of this chapter, we find

that the fail-safe fault-tolerant programs are different. This is because the

program has both critical and non-critical actions. Since the algorithms re-

fine the guards of different sets of actions, the resulting fail-safe fault-tolerant

programs can be expected to be different.

Thus, given that the complexity of the algorithm add-efficient-fail-safe is

more than that of algorithm add-perfect-fail-safe, but that both algorithms

yield the same fail-safe fault tolerance version of the majority voter with

perfect detection, and minimal detection latency, then it is better to use

algorithm add-perfect-fail-safe to generate the fail-safe fault-tolerant majority

voter version.

In general, for distributed algorithms, such as mutual exclusion, token

ring, agreement problems etc, most of the actions are critical. Thus, as in

the case of the majority voter, applying algorithm add-perfect-fail-safe or

algorithm add-efficient-fail-safe to a fault-intolerant distributed algorithm

will result in identical fail-safe fault-tolerant distributed algorithm. Intu-

itively, any computation of a distributed algorithm in the presence of faults

consists of critical transitions and fault transitions. So, every program tran-

sition which is an earliest SS-inconsistent transition is also a bad transition,

and vice-versa. Thus, removing set eit will always have result identical to

when removing set ss from the fault-intolerant program of a distributed al-

gorithm. Hence, for distributed algorithms, it is preferable to use algorithm

add-perfect-fail-safe, since they will always have perfect detection, and min-

imal detection latency, and the algorithm have lower complexity.

However, algorithm add-efficient-fail-safe can be used to yield fail-safe

fault-tolerant programs with perfect detection, and minimal detection la-

tency for a wide class of programs which consists of both critical and non-

79

critical actions. Embedded programs typically consist of both critical and

non-critical actions, as examplified in the first example in this chapter. Then,

the set eit needs not be equal to the set ss of bad transitions, as in the case

of distributed algorithms.

5.7 Chapter Summary

In this chapter, we have presented a novel theory of fast detector compo-

nents for the design of efficient fail-safe fault-tolerant programs. This theory

builds upon the theory of perfect detectors, and allows the derivation of a

transformation algorithm which automatically adds fault tolerance abilities

with perfect detection and minimal detection latency to an initially fault-

intolerant program. Specifically, we have made two important contributions

in this chapter: (i) We have presented a theory of fast detectors, that ensures

perfect detection, and minimal detection latency of fail-safe fault-tolerant

program and (ii) we have developed an algorithm that adds fast, and per-

fect detectors to a fault-intolerant program to synthesize an efficient fail-safe

fault-tolerant program. We have shown that the complexity of the algorithm

is polynomial in the state space of the fault-intolerant program.

We have also shown that algorithm add-efficient-fail-safe is particularly

suitable for a class of programs that consist of both critical and non-critical

actions, while algorithm add-perfect-fail-safe is particularly suitable for dis-

tributed algorithms.

The motivation of minimal detection latency is for fault containment.

The earlier an error is detected, the higher is the error containment. If an

error is not contained, more sophisticated error recovery mechanisms may

be required to correct the fault than if the error is contained. Specifically, if

an error is contained, a local recovery procedure may be initiated, but if the

error is not contained and the state of several processes is corrupted, local

recovery mechanisms may not be adequate.

80

Chapter 6

Design of Efficient
Multitolerance

In Chapters 4 and 5, we introduced the concept of perfect, and fast detectors

respectively. We provided algorithms that, given a fault-intolerant program

p, a fault model F , and a safety specification SS for p, synthesize (i) fail-safe

fault-tolerant programs with perfect detection, and (ii) fail-safe fault-tolerant

programs with perfect detection, and minimal detection latency. In those

cases, we have considered only one given fault class, i.e., we have synthesized

efficient fail-safe fault tolerance to a given fault class.

However, in a distributed setting, the nature, and type of faults occurring

is varied. For example, faults can lead to message loss, corruption of program

state, processor crash and so on. Thus, faults that can affect a given program

can come from different sources (called fault classes), meaning that the pro-

gram should be (fail-safe) fault-tolerant to these different fault classes, i.e.,

the program should be (fail-safe) multitolerant. This points to a method-

ology that can support systematic addition of such efficient multitolerance,

i.e., we aim to generalize the results of Chapters 4 (addition of perfect de-

tection) and 5 (addition of perfect and fast detection) to deal with multiple

fault classes.

In this chapter, we consider two different approaches for automated syn-

thesis of efficient fail-safe multitolerant programs. The first design approach

for addition of multitolerance that we consider handles one fault class at a

time, where efficient fail-safe fault tolerance to different fault classes is added

81

in a stepwise (compositional) fashion, i.e., efficient fault tolerance is added

to one given fault class, before another fault class is considered. Then, we

consider a second design approach that, on the other hand, considers all fault

classes at the same time.

For each design approach, we provide two algorithms for the addition of

efficient multitolerance, and each algorithm (for each approach) adds some

efficiency properties to the resulting multitolerant program with respect to

each fault class considered. Specifically, starting from a fault-intolerant pro-

gram, and the different fault classes to be tolerated, we present algorithms

(for each design approach) that (i) add perfect fail-safe multitolerance to

every fault class considered, and (ii) add fail-safe multitolerance with both

perfect detection and minimal detection latency to every fault class consid-

ered. We show that the corresponding algorithms from each design approach

yield identical fail-safe multitolerant programs. We exploit this relation to

prove properties of programs generated using the second approach

The properties of the fail-safe multitolerant programs resulting from ei-

ther approach are: either (i) they have minimal detection latency, and perfect

detection to each fault class, or (ii) to each fault class, the fail-safe fault-

tolerant programs have perfect detection. By way of contrast, Arora and

Kulkarni observed in [AK98a, Kul99] that using a method that considers

one fault class at a time may not yield programs that are optimal (in some

sense) with respect to all fault classes, whereas the method that considers

all fault models at the same time may. Here, we show that both approaches

yield programs that are efficient (with respect to fault detection, and de-

tection latency) to all fault classes. In effect, we have identified a class of

multitolerant programs (i.e., fail-safe multitolerant programs) and classes of

efficiency properties (i.e., perfect detection, and minimal detection latency)

for which these efficiency properties can be effectively designed for each fault

class considered during the design of such multitolerant programs.

The first design approach can be used when fail-safe fault tolerance to

new fault classes needs to be added to a given program, whilst the second

approach can be used whenever some given fault classes are re-defined.

82

6.1 Introduction

In this chapter, we consider the design of (efficient) multitolerance, i.e., the

ability of a program to tolerate multiple classes of faults. Specifically, we

restrict our attention to adding fail-safe fault tolerance to multiple fault

classes to a given fault-intolerant program. We recall that a fault-intolerant

program is one that satisfies its specification in the absence of faults, but

violates it in the presence of faults. Specifically, as mentioned before, a

specification is composed of two parts, namely (i) a safety specification, and

(ii) a liveness specification, as indicated by Alpern and Schneider [AS85], and

a fail-safe fault-tolerant program satisfies at least its safety specification in

presence of faults.

In a distributed setting, the nature of faults arising is varied. For example,

faults may corrupt input variables, corrupt the interfaces of processes, cause

loss of messages, or processor crashes, among others. Thus, when designing

a (fail-safe) fault-tolerant program, the design should be cognizant of those

varied fault classes. To make a program fail-safe fault-tolerant to a given

fault class, (a set of) detectors are added that handle faults from that given

fault class. Thus, to transform a fault-intolerant program into a fail-safe

multitolerant one, a set of detectors is added to the fault-intolerant program,

where each detector handles faults from a particular fault class.

One obvious difficulty that needs to be handled, as observed by Arora

and Kulkarni in [AK98a], is the fact that detectors handling different fault

classes may interfere either with each other or with the program. Intuitively,

this means that every computation of a given program component, in the

presence of other program components, is still in its specification. For ex-

ample, one condition that needs to be verified is that the new components

introduced (such as detectors) should not interfere with the behavior of the

original program. Thus, non-interference between different program compo-

nents should be verified.

However, given our focus on efficiency properties of the fail-safe fault-

tolerant programs, such as perfect detection, and minimal detection latency,

the above verification conditions may not suffice. To see this, consider the

83

following: Though addition of two detectors may not cause interference, one

may cause the resulting fail-safe fault-tolerant program to lose one of its

efficiency properties, either perfect detection or minimal detection latency

or both. Thus, the verification conditions need to be extended to deal with

those efficiency properties.

Therefore, the difficulty to be handled when adding detectors to a pro-

gram p (resulting in program p′) for a new fault class Fn, in addition to

ascertaining non-interference across different program components, is to en-

sure that the new detectors included for the new fault class Fn (i) p′ still

has efficiency properties with respect to other fault classes, and (ii) p′ has

efficiency properties with respect to Fn, i.e., the resulting fail-safe multitol-

erant program p′ has efficiency properties to all fault classes considered. In

other words, when new detector components are added to a given program

for a new fault class, the verification conditions are (i) there is no interference

among the different program components, (ii) the new components preserve

and extend the efficiency properties of the original program with respect to

other fault classes. Thus, non-interference properties should include both

behavioral and efficiency aspects.

There are two possible approaches for the design of multitolerance:

1. The first approach considers one fault model at a time, and

2. The second approach considers all fault models at the same time.

For the first approach, we present two algorithms, one that automatically

yields fail-safe multitolerant programs, with perfect detection to all fault

classes considered, and another that yields fail-safe multitolerant programs

with perfect detection, and minimal detection latency to all fault classes.

By way of contrast, Arora and Kulkarni argued in [AK98a] that programs

designed using this appraoch can have complexity (in some sense) which is

efficient for some, but not all, fault classes.

For the second approach, we present two algorithms that consider all the

fault classes at the same time. The first algorithm yields a fail-safe multitol-

erant program with perfect detection to all fault classes considered, while the

84

second algorithm yields fail-safe multitolerant programs with perfect detec-

tion, and minimal detection latency to all fault classes considered. We also

show that the resulting fail-safe multitolerant programs obtained from the

corresponding algorithms, e.g., those that add fail-safe fault tolerance with

perfect detection, from each design approach are identical. For example, the

fail-safe multitolerant program obtained from the algorithm that adds mul-

titolerance with perfect detection to a program to every fault class according

to the first approach is identical to the fail-safe multitolerant program ob-

tained from the algorithm that adds multitolerance with perfect detection to

every fault class according to the second approach.

Thus, the contributions in this chapter are:

1. We present non-interference conditions (behavioral and efficiency) to

be verified during the design of multitolerance.

2. We present an automated approach for design of efficient fail-safe mul-

titolerant programs by considering one fault class at a time.

3. We present an automated approach for designing efficient fail-safe mul-

titolerant programs by considering all fault classes at the same time.

4. We also show that the programs obtained by corresponding algorithms

of either approaches are identical, and that they have some efficiency

properties for all fault classes.

This chapter is structured as follows: In Section 6.2, we present the non-

interference conditions that have to be verified during the addition of multi-

tolerance. In Section 6.3, we present the stepwise approach (one fault class at

a time) for automatic addition of multitolerance, and provide two algorithms

that yields fail-safe multitolerant programs. We present two other algorithms

that handle all the fault classes at the same time in Section 6.4. We discuss

and summarize the results presented in this chapter in Section 6.5.

85

6.2 Issues in Multitolerance Design

In this section, we present and discuss the non-interference issues involved in

the design of efficient multitolerance, i.e., fail-safe fault tolerance to multiple

fault classes with perfect detection, and minimal detection latency to all fault

classes.

First, we define a fail-safe multitolerant program:

Definition 50 (Fail-Safe Multitolerant Program) Given a program p

with specification S, and safety specification SS, and n fault classes F1 . . . Fn.

A program p is said to be fail-safe multitolerant to fault classes F1 . . . Fn iff

p is fail-safe Fi-tolerant for each 1 ≤ i ≤ n.

As mentioned in the introduction of this chapter, there are two pos-

sible approaches for the design of multitolerant program. The issues and

discussions presented in this section mostly apply to a stepwise approach

that considers one fault class at a time, in some fixed order F1 . . . Fn in

which a fault-intolerant program p is transformed into a fail-safe multitol-

erant program to fault classes F1 . . . Fn. In general, in the first step, the

fault-intolerant program p is augmented with detectors that will make it fail-

safe F1-tolerant, i.e., the resulting program p1 is fail-safe F1-tolerant. Then,

in the second step, the resulting program p1 is augmented with detectors that

will make it fail-safe F2-tolerant, while preserving its fail-safe F1-tolerance.

The same is repeated, until the nth step, where the program is augmented

with detectors that will provide fail-safe Fn-tolerance, while preserving fail-

safe fault-tolerance to F1 . . . Fn−1. However, because of our focus on perfect

detection, and minimal detection latency, these steps need to be extended to

deal with those efficiency requirements.

The steps are extended as follows, below:

In the first step, when the fault-intolerant program p is augmented with

detectors that will make it a fail-safe F1-tolerant program p1, p1 should have

perfect detection and/or minimal detection latency to F1. The following

non-interference conditions need to be verified:

86

1. In the absence of F1, the detector components added to p do not inter-

fere with p, i.e., each computation of p is in the problem specification

even if it executes concurrently with the new detector components.

2. In the presence of faults F1, each computation of the detector compo-

nents is in the components’ specification even if they execute concur-

rently with p.

3. In the presence of faults F1, the detector components added to p provide

perfect detection and/or minimal detection latency to F1.

Note: In this section, whenever it is clear from the context, we will use

the term “fail-safe fault-tolerant program (fail-safe fault tolerance)” to mean

“fail-safe fault-tolerant program (fail-safe fault tolerance) with perfect detec-

tion, and/or minimal detection latency”.

In the second step, when the fail-safe F1-tolerant program p1 is augmented

with detectors that will make p1 fail-safe fault-tolerant to F2 (i.e., transform

it into a program p2), the following non-interference conditions need to be

satisfied:

1. In the absence of F1 and F2, the new detectors for fail-safe fault toler-

ance to F2 do not interfere with p1, i.e., each computation of p1 satisfies

the problem specification even if p1 executes concurrently with the new

detectors.

2. In the presence of F1, the new detectors for fail-safe fault tolerance to

F2 do not interfere with the fail-safe fault tolerance to F1 of p1, i.e.,

every computation of p1 is in the fail-safe fault tolerance specification

to F1 even if p1 executes concurrently with the new components.

3. In the presence of F1, the new detectors for fail-safe fault tolerance to

F2 do not interfere with the perfect detection and/or minimal detection

latency to F1 of p1.

4. In the presence of F2, p1 does not interfere with the new detectors that

provide fail-safe fault-tolerance to F2.

87

5. In the presence of F2, p1 does not interfere with the new detector com-

ponents providing perfect detection, and/or minimal detection latency

to F2

In the ith step, when the fail-safe Fi−1-tolerant program pi−1 is augmented

with detectors that will transform it into a fail-safe Fi-tolerant program pi

(i.e, pi is fail-safe fault-tolerant to fault classes F1 . . . Fi), the following non-

interference conditions need to be satisfied:

1. In the absence of faults F1 . . . Fi, the new detectors for fail-safe fault

tolerance to Fi do not interfere with pi−1, i.e., each computation of pi−1

satisfies the problem specification even if pi−1 executes concurrently

with the new detector components for fail-safe fault tolerance to Fi.

2. In the presence of F1, the new detectors for fail-safe fault tolerance to

Fi do not interfere with the fail-safe fault-tolerance to F1 of pi−1, i.e.,

every computation of pi−1 is in the fail-safe fault tolerance specification

to F1 even if pi−1 executes concurrently with the new components.

3. In the presence of F1, the new detectors for fail-safe fault tolerance to F2

do not interfere with the perfect detection, and/or minimal detection

latency to F1 of pi−1.

4.
...

5. In the presence of faults Fi, pi−1 does not interfere with the new de-

tector components that provide fail-safe fault tolerance to Fi, i.e., each

computation of the detector components for fail-safe fault tolerance to

Fi is in the components’ specification.

6. In the presence of Fi, pi−1 does not interfere with the new detector

components that provide perfect detection, and/or minimal detection

latency to Fi.

Automated procedures that add fail-safe multitolerance to a previously

fault-intolerant program need to guarantee that these conditions are met by

design.

88

In the next section, we consider a design approach for addition of multitol-

erance that handles one given fault class at a time, and we then present two

algorithms that automatically yield fail-safe multitolerant programs with dif-

fering efficiencies. The first algorithm, presented in the first part, yields fail-

safe multitolerant programs with perfect detection to fault classes F1 . . . Fn,

while the second algorithm, presented in the second part, yields fail-safe mul-

titolerant programs with perfect detection, and minimal detection latency to

fault classes F1 . . . Fn, by considering one fault class at a time.

Before presenting the algorithms that automatically add multitolerance,

we adopt a step-by-step derivation of the algorithm, and each step of the

algorithm is shown to guarantee that the non-interference conditions stated

are met by design.

6.3 One-at-a-time Design of Multitolerance

In deriving both algorithms, we focus on the case of two fault classes, and

the approach can be easily generalized to n fault classes.

6.3.1 Multitolerant Programs With Perfect Detection

Given a fault-intolerant program p with safety specification SS, and n fault

classes F1 . . . Fn which have to be tolerated, the idea is to transform p into

a program pn that is fail-safe fault-tolerant to F1 . . . Fn with perfect detec-

tion for each fault class. To do this, we first consider fault class F1, then

F2 until fault class Fn is handled. In this section, whenever it is clear from

the context, we will use the term “fail-safe fault-tolerant program (fail-safe

fault tolerance)” to mean “fail-safe fault-tolerant program (fail-safe fault tol-

erance) with perfect detection”.

Before explaining and introducing our automated approach for addition

of fail-safe multitolerance, we present a result upon which our approach is

based. Intuitively, the result states that, starting with a program pi that is

fail-safe fault-tolerant to fault classes F1 . . . Fi with perfect detection to each

of these fault classes, composing pi with a perfect detector for fault class Fi+1

such that the resulting program pi+1 is fail-safe fault-tolerant to Fi+1 with

89

perfect detection, then pi+1 also preserves the efficiency properties of pi with

respect to F1 . . . Fi. Said otherwise, composing a program pi as above with

perfect detectors for a new fault class Fi+1 satisfy the verification conditions

presented in Section 6.2.

Lemma 8 (Perfect detectors and multitolerance) Given a fault-

intolerant program p with safety specification SS. Given a program pi−1

which is fail-safe multitolerant for SS with perfect detection to fault classes

F1 . . . Fi−1. Given also a program pi obtained from pi−1 by composing critical

actions of pi−1 with perfect detectors, such that pi is fail-safe fault-tolerant to

fault class Fi with perfect detection. Then, pi is also fail-safe multitolerant

with perfect detection to fault classes F1 . . . Fi−1.

Proof. Assume: (i) A fault-intolerant program p0 = p with safety spec-

ification SS, (ii) Program pi−1 is fail-safe multitolerant for SS with perfect

detection to fault classes F1 . . . Fi−1, (iii) a new fault class Fi which needs

to be tolerated, (iv) program pi that is fail-safe fault-tolerant for SS with

perfect detection to Fi obtained by composing some critical actions of pi−1

with perfect detectors for Fi.

Prove: Program pi is fail-safe multitolerant for SS with perfect detection

to fault classes F1 . . . Fi−1.

1. From assumption, pi−1 = p0 \ Bi−1
1 , where Bi−1

1 ⊆ ss and ss is the set

of bad transitions.

2. From assumption, pi = pi−1[]cPDi, where []c means composing critical

actions, and PDi meaning perfect detectors that will tolerate fault class

Fi.

3. From 3, pi = pi−1 \Bi, where Bi = {(s, t) : (s, t) is induced by a critical

action ∧(s, t) is reachable in presence of Fi ∧ (s, t) ∈ ss}.

4. From 3, since no SS-inconsistent transition is added to pi−1, pi has

complete detection to fault classes F1 . . . Fi−1.

5. From 3, since no SS-consistent transition is removed from pi−1, pi has

accurate detection to fault classes F1 . . . Fi−1.

90

6. From 4, and 5, pi has perfect detection to fault classes F1 . . . Fi−1.

�

The above lemma shows that by composing critical actions with perfect

detectors that makes a given program fail-safe fault-tolerant to a new fault

class, fail-safe fault tolerance with perfect detection to previous fault classes is

preserved, i.e., there is no interference between the new detector components

with detector components for previous fault classes either at the behavioral

level or at the efficiency level. This result allows us to reuse algorithm add-

perfect-fail-safe (see Chapter 4), since add-perfect-fail-safe generates perfect

detectors for a given fault class.

Step 1 in Multitolerance Design

To synthesize a program that is fail-safe fault-tolerant to F1, starting

from a fault-intolerant program p, with perfect detection to F1, we first need

to compute the set ss1 of bad transitions for p reachable in the presence of

faults F1 (reachable by using transitions in δF1
p)(from Lemmas 2, 3). We then

remove those transitions from program p, to obtain a program p1, which is

fail-safe F1-tolerant, with perfect detection for F1, as shown in Fig 6.1, where

ss is the set of bad transitions that the safety specification SS of p rejects.

p1 := add-perfect-fail-safe(p, F1, ss)

Figure 6.1: The first step in the design of multitolerant programs with perfect

detection.

At this point, we need to verify the non-interference conditions for the

first step of the transformation.

First, by construction, p1 has perfect detection to F1.

Second, we need to prove that “In the absence of F1, the detector compo-

nents added to p do not interfere with p, i.e., each computation of p is in the

problem specification even if it executes concurrently with the new detector

components”.

91

Proof. By construction (using algorithm add-efficient-fail-safe, the de-

tector components for fail-safe fault tolerance to F1 do not interfere with p

�

Third, we need to prove that “In the presence of faults F1, each com-

putation of the detector components is in the components’ specification even

if they execute concurrently with p, i.e., p does not interfere with the new

detector components.”.

Proof. By construction, p does not interfere with the detector components

for fail-safe fault tolerance to F1. �

Step 2 in Multitolerance Design

In the second step of the multitolerance addition procedure, we consider

fault class F2, and we transform program p1 (which is fail-safe fault-tolerant

to F1) into a program p2that is fail-safe fault-tolerant to F2, while preserving

the existing fail-safe fault tolerance to F1. Specifically, we compute the set

ss2 of bad transitions that are reachable in presence of faults F2, and we

remove those transitions from program p1 to obtain program p2, which is

fail-safe fault-tolerant, with perfect detection to both F1, and F2, as shown

in Fig 6.2.

p2 := add-perfect-fail-safe(p1, F2, ss)

Figure 6.2: The second step in the design of multitolerant programs with

perfect detection.

By construction, p2 has perfect detection to F2, i.e., p1 does not interfere

with the new detector components that provide perfect detection to fault

class F2.

To verify the other non-interference properties, we first need to prove

that “In the absence of F1 and F2, the detector components added to p1 for

fail-safe fault tolerance to F2 do not interfere with p1, i.e., each computation

of p1 is in the problem specification even if it executes concurrently with the

new detector components”.

92

Proof. By construction, the new detector components for fail-safe fault

tolerance to F2 do not interfere with p1. �

We now prove the second part of the non-interference conditions, which is

“In the presence of F1, the new detectors for fail-safe fault tolerance to F2 do

not interfere with the fail-safe F1-tolerance of p1, i.e., every computation of

p1 is in the fail-safe F1-tolerance specification even if p1 executes concurrently

with the new components.”

Proof. We prove this by contradiction. We first assume that there exists

a computation in presence of F1 that violates safety, and show that such a

computation cannot exist, i.e., a contradiction.

1. Given p2 = add-efficient-fail-safe(p1, F2, ss)

2. Assume that there is a computation α in presence of F1 that violates

safety

3. From step 3 and Proposition 2, α contains a bad transition τ that is

reachable in presence of F1.

4. By construction of p1, τ 6∈ δp1

5. By construction of p2, transition τ is not added to δp1 .

6. From steps 3, 4, and 5, we have a contradiction.

�

We now prove that “In the presence of F1, the detector components for

fail-safe fault tolerance to F2 do not interfere with the perfect detection of p1

to F1.”

Proof.

1. From the fact that the new detector components do not interfere with

the fail-safe F1-tolerance of p1 in the presence of F1, we deduce that

the detector components for F1 are complete.

2. Since only SS-inconsistent transitions are removed, the detector com-

ponents for F1 are accurate.

93

3. From steps 1, and 3, the detector components for F1 are perfect.

�

The proof of the last part, which is “In the presence of F2, p1 does not

interfere with the new detectors that provide fail-safe fault tolerance to F2.”

Proof. By construction, p1 does not interfere with the new detector com-

ponents for fail-safe fault tolerance to F2. �

Step K in Multitolerance Design

In the kth step (3 ≤ k ≤ n), we consider fault class Fk, and we transform a

fail-safe F1 . . . Fk−1-tolerant program pk−1, i.e., pk−1 is fail-safe fault-tolerant

to fault classes F1 . . . Fk−1, into program pk that is fail-safe fault-tolerant

to Fk, while also preserving the fail-safe fault tolerance to F1 . . . Fk−1 i.e.,

program pk is fail-safe F1 . . . Fk-tolerant. To do this, we compute the set ssk

of bad transitions that are reachable in presence of faults Fk, and we remove

those transitions from program pk−1 to obtain program pk which have fail-

safe fault tolerance with perfect detection to fault classes F1 . . . Fk. The kth

step is shown in Fig 6.3.

pk := add-perfect-fail-safe(pk−1, Fk, ss)

Figure 6.3: The kth step in the design of multitolerant programs with perfect

detection.

With this step, we need to verify that non-interference conditions are

guaranteed.

First, pk has perfect detection to Fk by construction, i.e., program pk−1

does not interfere with the perfect detection of the new detector components

for fault class F2.

To verify the other non-interference properties, we prove that “In the

absence of F1 . . . Fk, the detector components added to pk−1 for fail-safe fault

tolerance to Fk do not interfere with pk−1, i.e., each computation of pk−1

is in the problem specification even if it executes concurrently with the new

detector components”.

94

Proof. By construction, the new detector components for fail-safe fault

tolerance to Fk do not interfere with pk−1. �

We now prove the ith part (2 ≤ i < k) of the non-interference conditions,

which is “In the presence of Fi, the new detectors for fail-safe fault tolerance

to Fk do not interfere with the fail-safe fault tolerance to Fi of pk−1, i.e.,

every computation of pk−1 is in the fail-safe fault tolerance specification to Fi

even if pk−1 executes concurrently with the new detector components.”

Proof. We prove this by contradiction. We first assume that there exists

a computation in presence of Fi that violates safety, and show that such a

computation cannot exist, i.e., a contradiction.

1. Given pk = add-efficient-fail-safe(pk−1, Fk, ss)

2. Assume that there is a computation α in presence of Fi that violates

safety

3. From step 3 and Proposition. 2, α contains a bad transition τ that is

reachable in presence of Fi.

4. By construction of pk−1, τ 6∈ δpk−1

5. By construction of pk, τ is not added to δpk−1

6. From steps 3, 4 and 5, we have a contradiction.

�

We now prove that “In the presence of Fi, the new detector components

for fail-safe fault tolerance to Fk do not interfere with the perfect detection

of pk−1 to Fi.”

Proof.

1. From the fact that the new detector components do not interfere with

the fail-safe Fi-tolerance of pi−1 in the presence of Fi, we deduce that

the detector components for Fi in pi−1 are complete.

2. Since only SS-inconsistent transitions are removed, the detector com-

ponents for Fi in pi−1 are accurate.

95

3. From steps 1, and 3, the detector components for Fi are perfect.

�

The proof of the last part, which is “In the presence of Fk, pk−1 does not

interfere with the new detectors that provide fail-safe fault tolerance to Fk.”

Proof. By construction, pk−1 does not interfere with the new detector

components for fail-safe fault tolerance to Fk. �

Observe that, in general, because (i) the new detector components that

provide fail-safe fault tolerance to Fk do not interfere with the fail-safe fault

tolerance of pk−1 to all fault classes Fi (1 ≤ i < k), and (ii) only bad tran-

sitions are removed from pk−1, the perfect detection to all fault classes Fi is

preserved.

In general, the algorithm for automatic synthesis of fail-safe multitolerant

programs with perfect detection to all fault classes is shown in Fig. 6.4

add-perfect-fail-safe-multitolerance(p, [F1 . . . Fn], ss : set of transi-

tions):

{i := 1; p0 := p

while (i ≤ n) do {
pi := add-perfect-fail-safe(pi−1, Fi, ss);

i := i + 1;} od

return(pn)}

Figure 6.4: The algorithm adds fail-safe fault tolerance to n fault classes,

with perfect detection to every fault class

Theorem 11 (Multitolerance with perfect detection) Given a fault-

intolerant program p with safety specification SS, and n fault classes

F1 . . . Fn. Algorithm add-perfect-fail-safe-multitolerance(p, [F1 . . . Fn], ss) re-

turns a program that is fail-safe fault-tolerant to F1 . . . Fn, with perfect de-

tection to all the fault classes.

In this section, we have presented a stepwise approach for the automatic

design of multitolerance. We have proved that every step of the algorithm

96

guarantees that there is no interference between the new detector components

and those existing fail-safe fault tolerance mechanisms for other fault classes,

as well as no interference with their perfect detection to those fault classes.

In the next two sections, we will present examples to show the working of

the algorithm.

6.3.2 A Simple Example

One-at-a-Time Addition of Perfect Fail-Safe Fault Tolerance

In this section, we present a small example to illustrate how algorithm

add-perfect-fail-safe-multitolerance works. Fig 6.5 shows the fault-intolerant

program in presence of faults F1. In this example, transitions (10, 11) and

(20, 21) are bad transitions.

Figure 6.5: Fault-intolerant program in the presence of F1 – first iteration of

the algorithm

During the first iteration through the algorithm, both bad transitions are

removed since both are reachable in presence of F1 (through the call to add-

perfect-fail-safe). The resulting fail-safe fault-tolerant program with perfect

detection to F1 is shown in Fig. 6.6. Denote it by p1.

Then, for the second iteration through add-perfect-fail-safe-

multitolerance, we need to add perfect fail-safe fault tolerance to F2

to p1, while preserving the fail-safe fault tolerance with perfect detection of

97

Figure 6.6: Resulting fail-safe fault-tolerant program p1 to F1

p1 to F1. First, we consider p1 in presence of F2, as shown in Fig. 6.7

Figure 6.7: Resulting fail-safe fault-tolerant program p1 in presence of F2

In the presence of F2, no bad transition is reachable, since all of them

has been removed during the previous pass. So, the program is also fail-safe

fault-tolerant to F2, while maintaining the fail-safe fault-tolerance to F1. The

resulting program (p2) is shown in Fig. 6.8. Observe that in presence of F1

or F2, p2 will never violate the safety specification.

6.3.3 Token Ring

The token ring was described in Chapter 4. Processes 0 . . . N are arranged

in a ring. Process k, 0 ≤ k < N passes the token to process k + 1, whereas

98

Figure 6.8: Resulting fail-safe multitolerant program p2 to F1 and F2 with

perfect detection to both fault classes.

process N passes the token to process 0. Each process k has a binary variable,

t.k, and a process k, k 6= N holds the token iff t.k 6= t.(k + 1), and process

N holds the token iff t.N = t.0.

The fault-intolerant program for the token ring is as follows (+2 is modulo-

2 addition) :

ITR1 :: k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

ITR2 :: k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Fail-Safe Fault Tolerance to Fault Class F1: First, we consider a fault

class where fault actions can corrupt the state of a single process k, which

can be any process.

Fault action: The fault class that we consider is

F :: |{k : t.k =⊥}| = 0 → t.k := ⊥

Running algorithm add-perfect-fail-safe-multitolerance will result in the

following program after the first iteration

99

1-FSTR1 :: |{k : t.k =⊥}| = 1 ∧ t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

1-FSTR2 :: |{k : t.k =⊥}| = 1 ∧ t.N 6=⊥ ∧k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Theorem 12 (Fail-safe TR) Program 1-FSTR is fail-safe fault-tolerant to

faults that corrupt the state of a single process k, which can be any process.

Fail-Safe Fault Tolerance to Fault Class F2: Second, we consider a

fault class where fault actions can corrupt the state of any two processes k

and l.

Fault action: The fault class that we consider is

F :: |{k : t.k =⊥}| = 1 ∧ t.k 6=⊥→ t.k := ⊥

The second iteration of algorithm add-perfect-fail-safe-multitolerance will

result in the following program:

2-FSTR1 :: |{k : t.k =⊥}| ≤ 2 ∧ t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

2-FSTR2 :: |{k : t.k =⊥}| ≤ 2 ∧ t.N 6=⊥ ∧k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Theorem 13 (Fail-safe TR) Program 2-FSTR is fail-safe fault-tolerant to

faults that corrupt the state of at most two processes k and l, which can be

any process.

Fail-Safe Fault Tolerance to Fault Class FN+1: Finally, we consider a

fault class where fault actions can corrupt the state of n (3 ≤ n ≤ N + 1)

processes.

100

Fault action: The fault action that we consider is

F :: |{k : t.k =⊥}| = n− 1 ∧ t.k 6=⊥→ t.k := ⊥

The nth iteration of algorithm add-perfect-fail-safe-multitolerance will re-

sult in the following program:

n-FSTR1 :: |{k : t.k =⊥}| ≤ n ∧ t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

n-FSTR2 :: |{k : t.k =⊥}| ≤ n ∧ t.N 6=⊥ ∧k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Theorem 14 (Fail-safe TR) Program n-FSTR is fail-safe fault-tolerant to

faults that can corrupt the state of any number of processes, upto all n pro-

cesses.

From program n-FSTR, we know that when n = N+1, |{k : t.k =⊥}| ≤ n

is always “True”, so program n-FSTR simplifies to:

MFSTR1 :: t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

MFSTR2 :: t.N 6=⊥ ∧k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Program MFSTR is identical to the fail-safe fault-tolerant token ring

program presented by Arora and Kulkarni in [AK98a]. However, our inter-

mediate programs are different. This is because, in [AK98a], certain bad

transitions that are unreachable in the presence of a fault class Fi were al-

ready removed. Thus, though the overall multitolerant program is correct,

the intermediate programs adopted a more defensive approach, by remov-

ing more transitions that are necessary. As way of contrast, our approach

removes only bad transitions that are reachable in the presence of faults.

In this section, we have considered the automated design of multitolerance

with perfect detection to all fault classes, by considering one fault class at a

time. In the next section, we consider the automated design of multitolerance

with perfect detection, and minimal detection latency to all fault classes by

considering one fault class at a time.

101

6.3.4 Multitolerant Programs With Perfect Detection

and Minimal Detection Latency

In the previous section, we presented an algorithm (together with necessary

proofs of non-interference) that yields fail-safe multitolerant programs to

n fault classes, with perfect detection to every fault class. The algorithm

considers the fault classes in a given total order.

In this section, an algorithm is developed (along with relevant proof

of non-interference) that yields fail-safe multitolerant programs to n fault

classes, with perfect detection, and minimal detection latency to every fault

class. Again, the fault classes are considered in a given total order. In-

tuitively, the approach builds partly upon algorithm add-efficient-fail-safe,

whereby, for each fault class, the set of earliest SS-inconsistent transitions is

computed, and these transitions are then removed from the given program.

Given a fault-intolerant program p with safety specification SS, and n

fault classes F1 . . . Fn, the idea is to transform p into a program pn that is fail-

safe fault-tolerant to F1 . . . Fn with perfect detection and minimal detection

latency to each fault class, by first considering fault class F1, then F2 until Fn

is considered. Specifically, given a fault class Fi, and a program pi−1 that is

fail-safe fault-tolerant with perfect detection, and minimal detection latency

to fault classes F1 . . . Fi−1, pi−1 is transformed into a program pi which is

fail-safe fault-tolerant with perfect detection, and minimal detection latency

to Fi, while preserving the fail-safe fault tolerance with perfect detection and

minimal detection latency of pi−1 to F1 . . . Fi.

Apart from having to verify non-interference between a program pi−1

and the new detector components for F2, we also need to verify that the

perfect detection, and minimal detection latency of program pi−1 to fault

classes F1 . . . Fi−1 are not interfered with when adding fail-safe fault toler-

ance with perfect detection, and minimal latency to F2. Thus, the set of

non-interference conditions, presented in Section 6.2, is extended with those

conditions that guarantee that no interference exists between the new de-

tector components for Fi, and the minimal detection latency of pi−1 to fault

classes F1 . . . Fi−1.

102

In this section, we show the stepwise addition of fail-safe fault tolerance

with perfect detection, and minimal detection latency to two fault classes F1

and F2. The procedure can be easily generalized to n fault classes.

Note: In this section, whenever it is clear from the context, we will use

the term “fail-safe fault-tolerant program (fail-safe fault tolerance)” to mean

“fail-safe fault-tolerant program (fail-safe fault tolerance) with perfect detec-

tion, and minimal detection latency”.

Step 1 in Design of Efficient Multitolerance

Given are: (i) A fault-intolerant program p with safety specification SS,

and (ii) fault classes F1 . . . Fn to be tolerated. To transform p into a program

p1 that is fail-safe fault-tolerant to F1, set eit1 of earliest SS-inconsistent tran-

sitions for p in presence of faults F1 is computed, and this set of transitions

is then removed from p. The program p1 obtained is fail-safe fault-tolerant,

with perfect detection, and minimal detection latency to F1. This first step

is shown in Fig 6.9.

eit1 := get-eit(p, F1, ss)

p1 := p \ eit1

Figure 6.9: The first step in the design of multitolerant programs with perfect

detection and minimal latency.

Proposition 6 Program p1 is fail-safe fault-tolerant, with perfect detection,

and minimal detection latency to F1.

Proof. The proof is based on Lemmas 5, 6 and 7, which ensure that p1

satisfies its safety specification in presence of F1, and have perfect detection,

and minimal latency to F1. �

We now need to show that this construction of p1 satisfies the non-

interference properties defined in Section 6.2.

First, we need to prove that “In the absence of F1, the detector compo-

nents added to p do not interfere with p, i.e., each computation of p is in the

103

problem specification even if it executes concurrently with the new detector

components”.

Proof.

1. From Lemma 7, p1 and p have the same behavior in the absence of

faults.

2. From step 1, each computation of p is in the problem specification even

if p executes concurrently with the detector components for fail-safe

fault tolerance to F1.

3. From step 3, the detector components for fail-safe fault tolerance to F1

do not interfere with p.

�

Secondly, we need to prove that “In the presence of faults F1, each com-

putation of the detector components is in the components’ specification even

if they execute concurrently with p, i.e., p does not interfere with the new

detector components.”.

Proof.

1. From Prop 6, p1 is fail-safe F1-tolerant.

2. From step 1, each computation of the detector components for fail-

safe fault tolerance to F1 is in their specification even if they execute

concurrently with p

3. From step 3, p does not interfere with the detector components for

fail-safe F1-tolerance.

�

In fact, these two non-interference conditions are guaranteed by construc-

tion of p1 since the synthesis method is identical to algorithm add-efficient-

fail-safe(p, F1, ss). It is also guaranteed that p1 has perfect detection, and

minimum detection latency to F1.

104

Step 2 in Design of Efficient Multitolerance

Next, fault class F2 is considerd, and program p1 (which is fail-safe fault-

tolerant to F1) is transformed into a program p2 that is fail-safe fault-tolerant

to F2, while preserving the fail-safe fault tolerance to F1, i.e., program

p2 is fail-safe F1, F2-tolerant. To achieve this, the set eit2 of earliest SS-

inconsistent transitions for p in presence of faults F2 is computed, and these

transitions are removed from program p1 to obtain program p2. Program

p2, designed as such, is fail-safe fault-tolerant, with perfect detection, and

minimal detection latency to both F1, and F2. The design of p2 is shown in

Fig 6.10.

eit2 := get-eit(p, F2, ss)

p2 := p1 \ eit2

Figure 6.10: The second step in the design of multitolerant programs with

perfect detection and minimal latency

Proposition 7 (Fail-safe fault tolerance of p2 to F2) Given a fault-

intolerant program p with safety specification SS, two fault classes F1 and

F2, and a program p1 which is fail-safe fault-tolerant to F1i.e., fail-safe

F1-tolerant. Then, p2 = p1\get-eit(p, F2, ss) (i) is fail-safe fault-tolerant

to F2, (ii) has perfect detection in presence of F2, and (iii) has minimal

detection latency in presence of F2.

Observe that the set eit2 is the set of earliest SS-inconsistent transitions

for p in presence of F2, but to obtain program p2, the set eit2 needs to be

removed from program p1.

To prove the correctness of such a step, we need to prove the following:

1. Program p2 is fail-safe fault-tolerant to F2 with perfect detection, and

minimal detection latency, i.e., we prove Proposition 7.

2. We need to fail-safe fault-tolerance to F1 in presence of F1 is preserved,

as explained in Section 6.2.

105

3. We need to prove that the perfect detection, and minimal detection

latency of p1 to F1 is preserved

First, we prove that p2 is fail-safe fault-tolerant to F2.

Proof.

1. Given: p2 = p1\get-eit(p, F2, ss)

2. There are two cases to consider:

(i) ∃τ ∈ get-eit(p, F2, ss) and τ ∈ δp1

(ii) ∃τ ∈ get-eit(p, F2, ss) and τ 6∈ δp1

3. (i) From step 3(i), τ 6∈ δp2 since τ ∈ get-eit(p, F2, ss) and p2 = p1\get-

eit(p, F2, ss)

(ii) From step 3(ii), τ 6∈ δp2 since τ 6∈ δp1 , and p2 = p1\ get-eit(p, F2, ss)

4. From step 3, ∀τ ∈ get-eit(p, F2, ss), τ 6∈ δp2 .

5. From step 4 and from Defs. 37 and 44, and construction of get-eit, bad

transitions in ss reachable in presence of F2 can no longer be reached.

6. From step 5, p2 is fail-safe fault-tolerant to F2.

�

We now prove the second part of Proposition 7: p2 has perfect detection

to F2.

Proof.

1. Given: p2 = p1\get-eit(p, F2, ss)

2. From Prop. 7 (i), p2 is fail-safe fault-tolerant to F2

3. From step 3, no computation of p2 in presence of F2 will violate SS.

4. From step 3, the new detector components for fail-safe fault tolerance

to F2 are complete.

5. From step 3 and Def. 44, all τ ∈ get-eit(p, F2, ss) are SS-inconsistent

for p

106

6. From step 5, the new detector components for fail-safe fault tolerance

to F2 are accurate.

7. From steps 4, and 6, the new detector components for fail-safe fault

tolerance to F2 are perfect.

�

We now prove the third part of 7: p2 has minimal detection latency to

F2.

Proof.

1. Given: p2 = p1\ get-eit(p, F2, ss)

2. From Prop. 7 (i), ∀τ ∈ get-eit(p, F2, ss), τ 6∈ δp2

3. From step 3, p2 has detection latency 0, i.e., minimal detection latency,

to F2.

� We have proved that this way of designing fail-safe fault tolerance to F2

is correct, and that p2 has perfect detection, and minimal detection latency

to F2.

However, we have yet to show that the construction preserves the fail-safe

fault-tolerance to F1, i.e., we need to verify that there are no interference.

To achieve this, we first need to prove that “In the absence of F1 and F2,

the detector components added to p1 for fail-safe fault tolerance to F2 do not

interfere with p1, i.e., each computation of p1 is in the problem specification

even if it executes concurrently with the new detector components”.

Proof.

1. From Prop. 7 (ii), p2 has perfect detection to F2.

2. From step 1, the new detector components for fail-safe fault tolerance

to F2 are perfect in p1.

3. From step 3 and Lemma. 1, the new detector components for fail-safe

fault tolerance to F2 do not interfere with p1.

107

�

We now prove the second part of the non-interference conditions, which is

“In the presence of F1, the new detectors for fail-safe fault tolerance to F2 do

not interfere with the fail-safe F1-tolerance of p1, i.e., every computation of

p1 is in the fail-safe F1-tolerance specification even if p1 executes concurrently

with the new components.”

Proof. We prove this by contradiction. We first assume that there exists

a computation in presence of F1 that violates safety, and show that such a

computation cannot exist, i.e., a contradiction.

1. Given p2 = p1\get-eit(p, F2, ss)

2. Assume that there is a computation α in presence of F1 that violates

safety

3. From step 3 and Proposition. 2, α contains a bad transition τ .

4. From step 3 and by construction of p1, τ is not reachable in presence

of F1.

5. From step 4, and by construction of p2, no new transition is introduced,

hence τ is still unreachable.

6. From steps 3, 4 and 5, we have a contradiction.

�

The proof of the third part, which is “In the presence of F2, p1 does not

interfere with the new detectors that provide fail-safe fault tolerance to F2.”

Proof. By Proposition 7(i), p1 does not interfere with the new detector

components. � We have

proved that the new added components to p1 adds fail-safe fault tolerance

with perfect detection, and minimal detection latency to F2, and that this

addition preserves the fail-safe fault tolerance to F1. Thus, we now need to

prove that, in presence of F1, the perfect detection, and minimal detection

latency of p1 to F1 is preserved.

Proof. We prove that perfect detection to F1 is preserved in presence of

F1.

108

1. Given: p2 = p1\ get-eit(p, F2, ss)

2. From the first design step, p1 has perfect detection to F1

3. By construction, the new detector components for F2 do not interfere

with fail-safe fault tolerance of p1 to F1, hence completeness of detector

components for F1 is preserved.

4. From Def. 38, every transitions τ ∈ get-eit(p, F2, ss) is SS-inconsistent

for p.

5. From step 4, and by construction, no SS-consistent transition is re-

moved, hence accuracy of the detector components for F1 is preserved.

6. From steps 3, and 5, perfect detection is preserved.

�

Proof. We now prove that minimal detection latency to F1 is preserved

in presence of F1.

1. Given: p2 = p1\ get-eit(p, F2, ss)

2. From step 1, no transition is added.

3. From step 3, set eit1 is still “removed”

4. From step 3, minimal detection latency to F1 is preserved.

�

We have, at this point, proved the correctness of the transformation step

of program p1 into program p2. The procedure of adding fail-safe multitoler-

ance can be easily generalized for n fault classes.

109

The algorithm to design fail-safe multitolerance to n fault classes, with

perfect detection, and minimal detection latency is shown in Fig. 6.11.

add-efficient-fail-safe-multitolerance(p, [F1 . . . Fn], ss : set of transi-

tions):

{i := 1; p0 := p

while (i ≤ n) do {
eiti := get-eit(p, Fi, ss);

pi := pi−1 \ eiti;

i := i + 1;} od

return(pn)}

Figure 6.11: Algorithm add-efficient-fail-safe-multitolerance adds fail-safe

fault tolerance to n fault classes, with perfect detection, and minimal de-

tection latency to every fault class

Theorem 15 (Synthesis of Efficient Multitolerance) Given a fault-

intolerant program p with safety specification SS, and n fault classes

F1 . . . Fn. Algorithm add-efficient-fail-safe-multitolerance adds fail-safe fault

tolerance to F1 . . . Fn to p, with perfect detection, and minimal detection la-

tency to all fault classes.

6.3.5 A Simple Example

One-at-a-Time Addition of Fail-Safe Fault Tolerance with Perfect

Detection and Minimal Detection Latency

In this section, we will present a small example to illustrate the workings

of algorithm add-efficient-fail-safe-multitolerance. For continuity, we reuse

the same example as before. The fault-intolerant program is identical to the

program of Fig 6.5, and is depicted in the presence of F1. Recall that, for

this program, transitions (10, 11) and (20, 21) are bad transitions.

During the first iteration through algorithm add-efficient-fail-safe-

multitolerance, the call to get-eit causes transitions (7, 8), (18, 19) and (19, 20)

110

to be tagged as earliest SS-inconsistent transitions. These transitions are

then removed from the fault-intolerant program. The resulting fail-safe fault-

tolerant program p1 has perfect detection, and minimal detection latency to

F1. Program p1 in presence of F1 is shown in Fig. 6.12.

Figure 6.12: Resulting fail-safe fault-tolerant program with perfect detection,

and minimal detection latency to F1

Then, we consider program p1 in presence of F2, as shown in Fig. 6.13

Figure 6.13: Program p1 in presence of F2

In the second iteration through add-efficient-fail-safe-multitolerance, we

need to add fail-safe fault tolerance with perfect detection, and minimal

detection latency to F2 to p1, while preserving the fail-safe fault tolerance

with perfect detection, and minimal detection latency of p1 to F1. First,

111

we consider p1 in presence of F2, as shown in Fig. 6.13. The call to add-

efficient-fail-safe-multitolerance causes transitions (9, 10), (17, 18), (20, 21) to

be considered as earliest SS-inconsistent transitions.

Observe that the call to add-efficient-fail-safe-multitolerance in the sec-

ond iteration refers to the fault-intolerant program p, instead of p1. This

is so because had the call referred to p1, transition (17, 18) would not have

been included. Given that transition (19, 20) has been removed in the first

iteration, if p1 is referred to, then no path from a fault transition of F2 to

a bad transition, using only only program transitions, would be observed,

i.e. no path from transition (17, 18) to bad transition using only program

transitions would be observed. So, transition (17, 18) would not have been

included as an earliest SS-inconsistent transition.

The resulting fail-safe multitolerant program p2 to fault classes F1 and

F2 with perfect detection, and minimal detection latency to both is shown

in Fig. 6.14.

Figure 6.14: Resulting fail-safe fault-tolerant program p2 in presence of F2

In this section, we have considered the approach where fault classes are

considered in some fixed total order, and presented two algorithms that au-

tomates the addition of multitolerance. Another possible design approach

for multitolerance considers all fault classes at the same time.

In the next section, we present two algorithms that add multitolerance,

while considering all fault classes at the same time.

112

6.4 All-at-a-time Design of Multitolerance

In the previous section (Section 6.3), we presented two algorithms that syn-

thesize fail-safe multitolerant programs to n fault classes, by considering one

fault class at a time. The first algorithm ensures that the resulting fail-safe

multitolerant program has perfect detection to all fault classes, while the sec-

ond algorithm ensures that the multitolerant program has perfect detection,

and minimal detection latency to all fault classes.

In this section, we consider another design approach where all the fault

classes are considered at the same time, and we present two algorithms based

on this design approach that achieve the same goals as the algorithms of

Section 6.3. The first algorithm yields fail-safe multitolerant programs to

n fault classes F1 . . . Fn with perfect detection, by considering all the fault

classes at the same time, while the second algorithm, that again handles all

fault classes at the same time, yields fail-safe multitolerant programs to fault

classes F1 . . . Fn with perfect detection, and minimal latency. We also show

that fail-safe multitolerant programs obtained from corresponding algorithms

of either design approach are identical. We further exploit this relation to

prove properties of the fail-safe multitolerant programs obtained using the

algorithms presented in this section.

Design of multitolerance while considering all fault classes at the same

time still requires the verification of non-interference between the different

program components. Since all fault classes are considered at the same time,

adding fault tolerance to one fault class entails verification that the new

detector components do not interfere with the fail-safe fault tolerance to all

other fault classes. This problem is tackled by showing that the fail-safe

multitolerant program obtained using the all-at-a time algorithm is identical

to the fail-safe multitolerant program obtained by using the corresponding

one-at-a-time algorithm.

6.4.1 Multitolerance with Perfect Detection

In this section, we present an algorithm that adds fail-safe multitolerance

with perfect detection to fault classes F1 . . . Fn by considering fault classes

113

at the same time.

The algorithm,add-perfect-fail-safe-multitolerance-all, is shown in

Fig. 6.15.

add-perfect-fail-safe-multitolerance-all(p, [F1 . . . Fn], ss : set of tran-

sitions):

{ cobegin

||ni=1 ssri
:=get-ssr(p, Fi, ss); coend

ssr :=
⋃n

i=1 ssri

return(pn := p \ ssr)}

Figure 6.15: Algorithm add-perfect-fail-safe-multitolerance-all adds fail-safe

fault tolerance to n fault classes, with perfect detection to every fault class

by considering all fault classes at the same time.

Theorem 16 Given a fault-intolerant program p with safety specifica-

tion SS, and n fault classes F1 . . . Fn. Algorithm add-perfect-fail-safe-

multitolerance-all adds fail-safe fault tolerance to F1 . . . Fn, with perfect de-

tection to all fault classes, while considering all fault classes at the same

time.

To prove this, we make the following observation.

Proposition 8 Given a fault-intolerant program p with safety specifica-

tion SS, and n fault classes F1 . . . Fn. Given two programs pn :== add-

perfect-fail-safe-multitolerance (p, [F1 . . . Fn]), ss, and p′n :=add-perfect-fail-

safe-multitolerance-all(p, [F1 . . . Fn], ss). Then, pn = p′n.

To prove the above proposition, we need to show the following:

1. Every transition removed in pn is also removed in p′n.

2. Every transition removed in p′n is also removed in pn.

Proof. We consider any given transition τ that is removed in pn.

114

1. τ is removed in pn

2. From step 1, ∃i : 1 ≤ i ≤ n : τ ∈get-ssr(pi−1, Fi, ss)

3. From step 3 ∃ a computation α of pi−1 in presence of Fi s.t τ occurs in

α

4. From step 3 α is also a computation of p in presence of Fi and τ occurs

in α

5. From step 4, and by construction of p′n, τ is removed in p′n

�

We now prove the second part:

Proof. We prove this by contradiction, i.e., we assume there is a transition

τ that is removed in p′n but not in pn, and show a contradiction.

1. ∃i : 1 ≤ i ≤ n : τ ∈get-ssr(p, Fi, ss)

2. From step 1, there exists a comptutation α of p in presence of Fi s.t τ

occurs in α.

3. Since τ 6∈ δpn , ∀i : 1 ≤ i ≤ n, τ is not reachable by pi−1 in presence of

Fi

4. By construction of pi−1, i > 1, either τ is also unreachable by p in

presence of Fi, or τ is already removed from pn

5. From assumption, steps 3, and 4, we have a contradiction.

�

Thus, we have proved that algorithms add-perfect-fail-safe-multitolerance

and add-perfect-fail-safe-multitolerance-all yield identical fail-safe multitol-

erant programs with perfect detection. We present a simple example in the

next section to illustrate the working of the algorithm.

115

6.4.2 A Simple Example

All-at-a-Time Addition of Fail-Safe Fault Tolerance with Perfect

Detection

Again, we use the same example as before to illustrate the working of

algorithm add-perfect-fail-safe-multitolerance-all. The fault-intolerant pro-

gram in presence of F1 and F2 is shown in Figs. 6.16 and 6.17 respectively.

Figure 6.16: Fault-intolerant program in presence of F1

Figure 6.17: Fault-intolerant program in presence of F2

In the presence of F1, bad transitions (10, 11), (20, 21) are reachable, while

in the presence of F2, the same set of bad transitions is reachable (call to

get-ssr). These transitions are then removed from the program to yield a

fail-safe fault-tolerant program with perfect detection to both F1 and F2, as

shown in Fig. 6.18.

116

Figure 6.18: Resulting fail-safe multitolerant program p2 to F1 and F2 with

perfect detection to both fault classes.

Observe that the resulting program in Fig. 6.18 is identical to the program

shown in Fig. 6.8 (obtained using the approach that considers fault classes

one at a time).

In the next section, we present an algorithm that adds fail-safe fault

tolerance to n fault classes F1 . . . Fn, with perfect detection, and minimal

detection latency to all fault classes, while considering all fault classes at the

same time.

6.4.3 Multitolerance with Perfect Detection and min-
imal detection latency

In this section, we present an algorithm that adds fail-safe multitolerance

to fault classes F1 . . . Fnwith perfect fault detection, and minimal detection

latency, while considering all fault classes at the same time.

The algorithm,add-efficient-fail-safe-multitolerance-all, is shown in

Fig. 6.19.

Theorem 17 Given a fault-intolerant program p with safety specifica-

tion SS, and n fault classes F1 . . . Fn. Algorithm add-efficient-fail-safe-

multitolerance-all adds fail-safe fault tolerance to F1 . . . Fn, with perfect de-

tection, and minimum detection latency to all fault classes, while considering

all fault classes at the same time.

117

add-efficient-fail-safe-multitolerance-all(p, [F1 . . . Fn], ss : set of

transitions):

{ cobegin

||ni=1 eiti :=get-eit(p, Fi, ss); coend

eit :=
⋃n

i=1 eiti

return(pn := p \ eit)}

Figure 6.19: Algorithm add-efficient-fail-safe-multitolerance-all adds fail-safe

fault tolerance to n fault classes, with perfect detection, and minimal detec-

tion latency to every fault class by considering all fault classes at the same

time.

To prove this, we make the following observation.

Proposition 9 Given a fault-intolerant program p with safety specification

SS, and n fault classes F1 . . . Fn. Given two programs pn :== add-efficient-

fail-safe-multitolerance (p, [F1 . . . Fn]), ss, and p′n :=add-efficient-fail-safe-

multitolerance-all(p, [F1 . . . Fn], ss). Then, pn = p′n.

To prove the above proposition, we need to show the following:

1. Every transition removed in pn is also removed in p′n.

2. Every transition removed in p′n is also removed in pn.

Proof. The proof is trivial, by construction.

1. In both constructions, the set eiti is computed in the same way, and

then removed.

2. From step 1, every transition removed in pn is also removed in p′n

3. From step 1, every transition removed in p′n is also removed in pn

�

118

6.4.4 A Simple Example

One-at-a-Time Addition of Fail-Safe Fault Tolerance with Perfect

Detection and Minimal Detection Latency

As before, we reuse the same example to illustrate the working of algo-

rithm add-efficient-fail-safe-multitolerance-all. The fault-intolerant program

in presence of F1 and F2 is shown in Figs. 6.20 and 6.21 respectively.

Figure 6.20: Fault-intolerant program in presence of F1

Figure 6.21: Fault-intolerant program in presence of F2

In the presence of F1, transitions (7, 8), (18, 19), (1, 20) considered ear-

liest SS-inconsistent transitions, while in the presence of F2, transitions

(9, 10), (17, 18), (20, 21) are earliest SS-inconsistent transitions. These tran-

sitions are then removed from the program to yield a fail-safe fault-tolerant

program with perfect detection to both F1 and F2, as shown in Fig. 6.22.

119

Figure 6.22: Resulting fail-safe multitolerant program p2 to F1 and F2 with

perfect detection and minimal detection latency to both fault classes when

considering all fault classes at the same time.

Observe that the resulting program in Fig. 6.22 is identical to the program

shown in Fig. 6.14 (obtained using the approach that considers fault classes

one at a time).

6.5 Chapter Summary

In this chapter, we have presented four different algorithms that yields fail-

safe multitolerant programs, with various efficiency properties, such as per-

fect detection, and minimal detection latency for all fault classes, using dif-

ferent design approaches.

We have considered two possible approaches for the design of multitoler-

ance, namely (i) one that considers one fault class at a time, and (ii) another

that considers all fault classes at the same time. We first considered the

approach which adds multitolerance by considering one fault class at a time,

and we presented two algorithms, namely add-perfect-fail-safe-multitolerance,

and add-efficient-fail-safe-multitolerance, which add fail-safe multitolerance

to a previously fault-intolerant program, with various optimal properties. We

explained that, during the addition of multitolerance, some non-interference

conditions between different program components need to be verified. How-

ever, we extended the proof obligations to include non-interference with the

120

efficiency properties of the program. When fail-safe multitolerance with per-

fect detection is added, the non-interference conditions are similar to those

proposed by Arora and Kulkarni in [AK98a], and are guaranteed by the use of

algorithm add-perfect-fail-safe-multitolerance. For provision of fail-safe mul-

titolerance with perfect detection, and minimal detection latency, we verified

non-interference between various program components, as well as verified

that those efficiency properties are not compromised.

We then considered the approach where all the fault classes are handled

at the same time. We provided two algorithms, namely add-perfect-fail-safe-

multitolerance-all, and add-efficient-fail-safe-multitolerance-all that add fail-

safe multitolerance with perfect detection, and perfect detection and minimal

detection latency respectively to an initially fault-intolerant program. We

show that the corresponding fail-safe multitolerant programs are identical to

those obtained using the one-at-a-time design approach. This means that

all non-interference conditions are satisfied, as well as optimal properties

preserved.

The algorithms based on the one-at-a-time approach can be used to add

fault tolerance to new fault classes. Specifically, assume a fail-safe fault-

tolerant program Fn to n fault classes F1 . . . Fn. If fail-safe fault tolerance to

fault class Fn+1 needs to be added, those algorithms can be used, without

having to recompute the fail-safe fault tolerance to all the other fault classes.

On the other hand, the algorithms based on the all-at-a-time approach can be

used when a fault class is re-defined, or removed. Also, this also means that

for fail-safe multitolerance, efficiency properties such as perfect detection can

be designed for all fault classes.

121

122

Chapter 7

Conclusion and Future Work

In this thesis, we have presented a framework for the design of efficient fail-

safe fault tolerance. Such an approach is bound to raise several questions.

We first address some of the issues raised in Section 7.1. In Section 7.2, we

summarize the contributions made in this thesis, and we discuss their impact

in Section 7.3. In Section 7.4, we outline some possible future avenues.

123

7.1 Discussion

In this section, we address some of the issues our approach has raised.

Arora and Kulkarni [AK98c] also give a formal definition of de-

tectors. Isn’t every detector according to Arora and Kulkarni a

perfect detector? No. Arora and Kulkarni [AK98c, AK98a] define a de-

tector to be a component which relates two predicates with each other: a

detection predicate X (describing the presumed “bad” state like the crash

of a process), and a witness predicate Z (indicating that this state holds).

The safeness condition of the detector [AK98a] mandates that Z ⇒ X, i.e.,

the witness is never wrong, while the progress and stability conditions of the

detector [AK98a] mandates that if X is true for long enough, Z will even-

tually witness this fact and it will do this until X is falsified again. If the

detection predicate can be evaluated atomically by the processes, then the

detection predicate can be equivalent to the witness predicate. However, a

detector does not necessarily guarantee that the detection predicate has any

meaningful connection to the correctness specification. So even if the witness

predicate is equivalent to the detection predicate, there is no guarantee that

it detects bad or inconsistent states with respect to a safety specification.

However, Arora and Kulkarni [AK98a] prove that for any safety specifica-

tion and every action there exists a detection predicate such that executing

the action when the predicate holds maintains the specification. They also

indicate that a weakest predicate may exist. However, they do not explain

how such predicates (detectors) can be obtained. Our theory gives a guideline

how to find this weakest detection predicate d. Assuming that d ≡ X ≡ Z,

every detector in the sense of Arora and Kulkarni is perfect. Further, in the

sense of Arora and Kulkarni, the weakest predicate exists for critical actions,

while in our case, we make no such distinction.

124

How do perfect detectors in our work compare to Chandra and

Toueg’s perfect failure detectors? There is a close relationship between

our terminology and that of the failure detector theory of Chandra and Toueg

[CT96]. Kulkarni [Kul99] argues that these failure detectors can be regarded

as an instance of detectors in the sense of this paper. The accuracy property

of Chandra and Toueg also limits the number of mistakes a detector can

make. The completeness property of Chandra and Toueg also refers to the

ability of a detector to detect all faults.

In this paper, we have assumed bounded programs, i.e., programs

with finite state space. What is the impact if the program is un-

bounded? If unbounded programs are considered, the method has to deal

with an infinite state space and in the worst case loses completeness, i.e., it

may not terminate. However, the method remains sound. This is analogous

to the situation in the area of model checking where the failure to invali-

date the specification on any finite subset of the state space says nothing

about satisfaction of the specification on an infinite state space. Because

our method is transition-based, unfortunately, it does not allow to reason

directly on the level of guarded command programs, which can be regarded

as a finite representation of an infinite transition system.

In this paper, we provided an algorithm for automating design

of fail-safe fault tolerance. Is it efficient? Can the theory be

used as a stand-alone? There are two main contributions of the present

work: Firstly, the transformation algorithm automates the addition of fault-

tolerance and is efficient in the sense that it has polynomial time complexity

in the “size” of the specification (the number of bad transitions) and the

“size” of the program (the number of reachable transitions). If the program

is given as a guarded command program, it must first be translated into a

state machine.

Secondly, we provided a theory which allowed the derivation of the trans-

formation algorithm and is used to prove its correctness. The theory can

be regarded as a refinement of the detector theory of Arora and Kulkarni

125

[AK98c] and better explains the working principles of detectors, e.g., allows

a natural way to formulate and explain accuracy and completeness proper-

ties. For example, Leveson et al. [LCKS90] observed that the efficiency of

a detector is dependent on its location, i.e., which action the detector moni-

tors. Our theory contributes to this by proving that it is sufficient to monitor

critical actions with perfect detectors for fail-safe fault tolerance. This saves

the programmer of having to try different detectors at different locations to

add fail-safe fault tolerance.

Kulkarni and Arora [KA00] presented an algorithm which also

solves the transformation problem defined in Section 4.3. Isn’t

this algorithm the same as the algorithm presented in this paper?

No. The algorithm by Kulkarni and Arora [KA00] also works on the state-

transition representation of the pogram but does more work than absolutely

necessary: by adding detectors, it also removes non-reachable transitions

from the transition relation. So while the effect of the transformation is the

same, the form of the added detectors is different. The ability to formulate

this difference is one of the contributions of our theory.

In this paper, we made use of bad transitions. How are those

transitions obtained? Is the generation process computationally

expensive? If the safety specification is given as a state invariant, i.e., a

predicate φ on system states (without using history variables), then it is rela-

tively easy to compute the set of bad transitions. For this, it is just necessary

to inspect all possible transitions (s, s′) and check whether s satisfies φ and s′

satisfies ¬φ. This is feasible if the set of transitions is bounded. In practice,

most safety specifications are state invariants.

Not every safety specification can be represented as a predicate on system

states, even if it is fusion-closed. As an example, consider a system consisting

of three states s1, s2, s3 and the correctness specification SS = {s1 · s2 · s3}.
There is no “bad state” in this program, but there is a bad transition (s1, s3).

We are not aware of any method to efficiently calculate these transitions

from an abstract representation of the specification (e.g., a temporal logic

126

formula).

In the definition of SS-inconsistency, there exists a sequence of pro-

gram transitions after the occurrence of faults that eventually lead

to violation of safety. What is the impact of such a requirement?

In the definition of SS-inconsistency, we require that there exists a sequence

of program transitions that eventually lead to violation of safety. The reason

behind this requirement is based on the fact that fault cannot directly vio-

late safety, which can then only be violated by a (bad) program transition.

Thus, when safety is violated, at least one program transition is executed

(which is the bad transition itself). However, depending on the fault model,

there can then be a sequence of program transitions that ultimately leads

to the bad transition being executed. Also, the reason for considering only

when there exists a sequence of program transitions that ultimately lead to

safety violation is that one can prevent (bad) program transitions from oc-

curring, however this is not possible for fault transitions. The impact of such

a requirement is that it allows the definition of the earliest SS-inconsistent

transition that underpins fast detection. If such a requirement is “removed”,

then assuming that a fault transition is an “earliest inconsistent transition”,

one cannot prevent it from occuring.

Can the algorithm add-perfect-fail-safe be used to synthesize fail-

safe fault-tolerant programs with perfect detection, and optimal

detection latency? We have shown through examples how the use of al-

gorithms add-perfect-fail-safe, and add-efficient-fail-safe yield the same re-

sults for distributed algorithms. However, for other classes of programs, the

results will be different.

But, there is a sense in which algorithm add-perfect-fail-safe is equivalent

to algorithm add-efficient-fail-safe. Since all SS-inconsistent transitions can

possibly lead to safety violation, then if we treat each such SS-inconsistent

transition as bad, then the set ss of bad transitions is extended to include

the set of transitions that are SS-inconsistent for p. Then, since all earliest

inconsistent transitions are SS-inconsistent, they are also included in set ss.

127

Running algorithm add-perfect-fail-safe thus removes the earliest inconsistent

transitions, which then gives the same result as that when running algorithm

add-efficient-fail-safe. However, the set eit of earliest inconsistent transi-

tions still needs to be determined. That is, algorithm add-efficient-fail-safe

can call add-perfect-fail-safe for generation of efficient fail-safe fault-tolerant

programs.

Is our assumption of such a fault model as assumed in this thesis

valid? What it the impact of choosing a fault model where faults

can directly violate safety? In this thesis, we have assumed fault models

that can be tolerated. Specifically, we have discarded fault models where

faults can directly lead to violation of safety. We can analyze the impact of

such an assumption for two general cases.

In the case of distributed algorithms, it is seldom the case that faults

can lead directly to violation of safety. To see this, consider, for example,

a mutual exclusion protocol. When one process is executing in its critical

section, even if a fault happens, the fault cannot just cause another process to

start accessing its critical section. The fault can however cause the process

to enter its critical section, by “enabling” a transition which would have

otherwise been disabled. Kulkarni and Ebnenasir termed such specifications

as fault-safe specifications [KE02].

For the case of embedded applications, such a fault model is still valid.

For example, the output register can be replicated in such a way that the

probability of more than a majority of registers being corrupted is always 0.

However, this ensures that safety is never violated by faults.

If we allow faults to directly violate safety, then our algorithms can be

extended to deal with such a case. When designing fail-safe fault tolerance,

we need to take steps to prevent the program from reaching those states

from where faults can directly violate safety. If such faults can occur from

any state, then we need to prevent the program from reaching any state, i.e.,

there is no fail-safe fault-tolerant program.

128

7.2 Summary of Research Contributions

In this section, we present brief summaries of the main contributions made

in this thesis. The aim was to develop a framework that can allow systematic

development of efficient (fail-safe) fault-tolerant programs, where efficiency

was characterized by such commonly-used metrics as detection coverage and

detection latency.

7.2.1 Perfect Detection

In Chapter 4, we developed a theory of detectors, and identified a class

of detectors, called perfect detectors, that are crucial in the design of fail-

safe fault-tolerant programs. The theory is believed to capture the working

principles of detectors better than before. We showed, among others, that

composing critical actions of a program with perfect detectors ensures fail-

safe fault tolerance in presence of faults, i.e., composing critical actions of a

program with perfect detectors is sufficient to ensure fail-safe fault tolerance.

We also showed that, in the absence of faults, liveness is not compromised.

In practical terms, this means that, whenever an error is flagged, there is a

“harmful” error in the system, i.e., it is not a false alarm. We have presented

examples to show the viability of our approach.

As indicated by Leveson et.al in [LCKS90], the design of “effective” detec-

tors is problematic, and the effectiveness is heavily reliant on the experience

of the software designers/programmers. Though the authors of [LCKS90]

did not explicitly indicate what they meant by “effectiveness” of detectors,

we have shown that “effectiveness” is captured by the completeness, and ac-

curacy properties of detectors. To lessen the impact of such requirements as

experience of programmers on the design of effective detectors, we provided

an algorithm that yields a fail-safe fault-tolerant program with perfect detec-

tion, by composing the critical actions of the corresponding fault-intolerant

program with perfect detectors. This is achieved by removing those bad

transitions that are reachable in presence of faults.

In general, to validate the fault tolerance mechanisms incorporated in a

program, fault injection experiments [IT96, AAA+90] are usually conducted.

129

In particular, they are used to quantify the coverage of the mechanisms,

such as in [Hil00], where the coverage is the ratio of the number of faults

detected to the number of faults injected. However, by design, the fail-safe

fault-tolerant programs obtained from the algorithm has “perfect” coverage,

since the detectors are perfect.

We have also shown that the automatic synthesis of fail-safe fault-tolerant

programs has polynomial time complexity in the size of the state space of

the fault-intolerant program.

7.2.2 Fast Detection

In Chapter 5, we developed a theory of fast detectors, and identified a class

of detectors, called fast detectors, that ensures minimal detection latency, as

well as perfect detection. The idea behind fast detection is to prevent errors

from propagating and corrupting the entire state of the program. However,

when designing fast detectors, one problem can be that these fast detectors

are not perfect. We have therefore identified the class of fast detectors that

ensures both perfect detection, and minimal detection latency.

As before, design of effective detectors is problematic. Also, when design-

ing fault-tolerant systems, when fault injection experiments are conducted

to determine the effectiveness of the fault tolerance mechanisms, detection

latency of these mechanisms is usually evaluated, and is taken to be the min-

imum time between the onset (injection) of a fault and its detection. Fault

injection experiments can be a computationally expensive process to evaluate

detection latency. Thus, to tackle the problem of designing perfect detectors

while ensuring minimal detection latency, we provided an algorithm that

achieves that. By construction, the detection latency of the fail-safe fault-

tolerant program to the fault class is 0 (minimal).

7.2.3 Design of One-at-a-time Multitolerance

Building upon the design of perfect and fast detectors, we aimed at gen-

eralizing the results to deal with multiple fault classes. In Chapter 6, we

addressed the problem of adding efficient fail-safe multitolerance, i.e., the

130

ability of a program to tolerate multiple classes of faults. We argued that, in

a distributed environment, the nature and types of faults affecting a system

is varied, and thus the design of fault-tolerant systems needs to be cognizant

of such diversity. There are two possible ways of designing multitolerance,

and in Chapter 6, we presented algorithms that build upon each approach.

The first approach deals with addition of multitolerance in a stepwise

fashion, that is adding fail-safe fault tolerance to a given fault class one at a

time. We explained that during the addition of multitolerance to an initially

fault-intolerant program, the program is extended with detector components

that handle faults from each fault class. Consequently, there can be interfer-

ence between different program components, for example between detector

components for different fault classes, or between the program and the detec-

tor components for some fault class. This interference needs to be handled,

and “removed”, since it may prevent the different program components from

satisfying their problem specification. Some of the non-interference condi-

tions were first presented by Arora and Kulkarni in [AK98a]. However, given

our focus on efficient fail-safe fault tolerance, we explained that during ad-

dition of multitolerance, the detector components for different fault classes

should not interfere with the optimal properties (perfect detection, and mini-

mal detection latency) of the fail-safe multitolerant program to different fault

classes. Therefore, we have extended the set of non-interference conditions

to include those relating to program properties. Therefore, any algorithm

that automatically adds multitolerance to a program needs to reflect those

non-interference requirements.

We developed two algorithms that automatically add multitolerance to

a fault-intolerant program. The first algorithm transforms a fault-intolerant

program into a fail-safe multitolerant program, with perfect detection to all

fault classes considered. The second algorithm transforms a fault-intolerant

program into a fail-safe fault-tolerant program with perfect detection, and

minimal detection latency to every fault class considered. Each algorithm

was incrementally developed, and each design stage was proved to handle

the non-interference conditions (between program components, and program

properties).

131

7.2.4 Design of All-at-a-time Multitolerance

In Chapter 6, we also focused on the second approach for designing multi-

tolerance. In this approach, all the fault classes are considered at the same

time. We developed two algorithms that add fail-safe multitolerance to a

fault-intolerant program, by considering all fault classes at the same time.

The first algorithm yields a fail-safe multitolerant program with perfect

detection to all fault classes, while the second algorithm yields a fail-safe

multitolerant program with perfect detection, and minimal latency to all fault

classes. We have shown that the programs yielded using these algorithms are

identical to those yielded by the corresponding algorithm that considers one

fault class at a time.

7.3 Impact

We now discuss briefly the impact our contributions have on design of fail-safe

fault tolerance. Our theory provides a general yet powerful basis for under-

standing the working principles of detectors. Specifically, we have been able,

through our defined notion of perfect detectors, to explain design decisions

in the design of fault-tolerant programs. For example, only critical actions of

programs were composed with detectors. How these detectors were designed

or what properties should they possess were mostly intuitive, or based on

experience. Our contribution has shown that, for fail-safe fault tolerance,

the detectors need to be perfect, and that it is sufficient to compose critical

actions with such detectors.

We have also shown that, in order to have minimal detection latency, the

detectors of non-critical actions are non-trivial, i.e., they are also perfect. By

way of contrast, Arora and Kulkarni observed in [AK98b] that, “according to

their experience”, detectors of non-critical actions are trivial, i.e., true. Thus,

we conclude that there are times when their approach can yield minimal de-

tection latency, but may be not always. Arora and Kulkarni also observed

in [AK98b] that the detectors of critical actions are non-trivial, while Leve-

son et.al observed in [LCKS90] that design of effective detectors is difficult.

Though the authors never explicitly clarified the meaning of “non-trivial”, or

132

“effective”, our theory has enabled us to determine the properties that un-

derpin the notions of “non-triviality” and “effectiveness”, i.e., the properties

of completeness, and accuracy.

Further, we have provided a generalization of our approach by looking

at the design of multitolerant programs. We have provided algorithms that

can automatically add efficient fail-safe multitolerance, and that for certain

classes of fault tolerance, and efficiency properties, the impact of the order

in which fault classes are handled can be minimized.

7.4 Future Work

Our work on automated synthesis of fail-safe fault tolerance has opened up

several new avenues for future research. Some of them are outlined below.

One of the main assumptions underpinning our work has been that spec-

ification are fusion closed. Fusion closure guarantees that the history of the

computation is “available” in the current state of the system, i.e., by just

looking at the current state, one can determine whether the next step is a

bad one or not. A specification that is not fusion closed can be made fusion

closed by adding history variables. However, adding another variable leads

to an exponential increase in size of the state space of the program. This sug-

gests two possible avenues: (i) Is there a way of converting non fusion closed

specifications into a fusion closed specification that minimizes the number of

states added?. (ii) Does there exist a class of non fusion closed specifications

which have sufficiently “nice” features such that the absence fusion closure

is irrelevant?.

In this thesis, we have looked at two properties of fail-safe fault-tolerant

programs, namely perfect detection, and detection latency. However, there

are other properties that can be investigated. One such property is avail-

ability. In fact, in the course of this work, we have observed that one needs

to adopt a pessimistic look of a computation in order to have fast detection.

However, for availability, one needs to adopt a more optimistic outlook. How

can availability be modeled, and its impact on design decisions will be inves-

tigated.

133

134

Bibliography

[AAA+90] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie,
E. Martins, and D. Powell. “Fault Injection for Dependability Valida-
tion: A Methodology and Some Applications”. IEEE Transactions on
Software Engineering, 16(2):166–182, 1990.

[AD97] Yehuda Afek and Shlomi Dolev. Local stabilizer. In Proceedings of the
16th Annual ACM Symposium on Principles of Distributed Computing
(PODC97), 1997.

[ADK01] A. Arora, M. Demirbas, and S. Kulkarni. “Graybox Stabilization”. In
Proceedings of the International Conference on Dependable Systems
and Networks, 2001.

[AG94] Anish Arora and Mohamed G. Gouda. Distributed reset. IEEE Trans-

actions on Computers, 43(9):1026–1038, September 1994.

[AK95] Anish Arora and Sandeep S. Kulkarni. Designing masking fault-
tolerance via nonmasking fault-tolerance. In Proceedings of the 14th
IEEE Symposium on Reliable Distributed Systems (SRDS95), pages
174–185, 1995.

[AK98a] Anish Arora and Sandeep S. Kulkarni. Component based design of
multitolerant systems. IEEE Transactions on Software Engineering,
24(1):63–78, January 1998.

[AK98b] Anish Arora and Sandeep S. Kulkarni. Designing masking fault toler-
ance via nonmasking fault tolerance. IEEE Transactions on Software
Engineering, 24(6), June 1998.

[AK98c] Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A the-
ory of fault-tolerance components. In Proceedings of the 18th IEEE In-

135

ternational Conference on Distributed Computing Systems (ICDCS98),
May 1998.

[AL91] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-

pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[APSV91] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
stabilization by local checking and correction. In FOCS91 Proceedings
of the 31st Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 268–277, 1991.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21:181–185, 1985.

[Avi85] A. Avizienis. “The N-Version Approach to Fault-Tolerant Software”.

IEEE Transactions on Software Engineering, 39(4):1491 – 1501, 1985.

[BDDT98] Joffroy Beauquier, Sylvie Delaët, Shlomi Dolev, and Sébastien Tixeuil.
Transient fault detectors. In Proceedings of the 12th International Sym-
posium on DIStributed Computing (DISC’98), number 1499 in Lecture
Notes in Computer Science, pages 62–74, Andros, Greece, September
1998. Springer-Verlag.

[CDPV01] A. Cournier, A. K. Datta, F. Petit, and V. Villain. “Snap-stabilizing
PIF Algorithm in Arbitrary Rooted Networks”. In Proceedings of the
International Conference on Distributed Computing Systems, pages 91
– 98, 2001.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A
Foundation. Addison-Wesley, Reading, MA, Reading, Mass., 1988.

[Cri91] Flaviu Cristian. Understanding fault-tolerant distributed systems.

Communications of the ACM, 34(2):56–78, February 1991.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors

for reliable distributed systems. Journal of the ACM, 43(2):225–267,
March 1996.

[CW96] E. M. Clarke and J. M. Wing. “Formal Methods: State of the Art and

Future Directions”. ACM Computing Surveys, 28(4):626 – 643, 1996.

136

[Dij74] Edsger W. Dijkstra. Self stabilizing systems in spite of distributed

control. Communications of the ACM, 17(11):643–644, 1974.

[DIM93] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization

of dynamic systems assuming only read/write atomicity. Distributed
Computing, 7:3–16, 1993.

[Dol97] Shlomi Dolev. Self-stabilizing routing and related protocols. Journal

of Parallel and Distributed Computing, 42(2):122–127, 1997.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[DW95] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchroniza-
tion in the presence of Byzantine faults. In Proceedings of the Second
Workshop on Self-Stabilizing Systems, pages 9.1–9.12, 1995.

[Gae99a] Felix C. Gaertner. Fundamentals of fault-tolerant distributed comput-

ing in asynchronous environments. ACM Computing Surveys, 31(1):1–
26, March 1999.

[Gae99b] Felix C. Gaertner. Transformational approaches to the specification
and verification of fault-tolerant systems: Formal background and clas-
sification. Journal of Universal Computer Science (J.UCS), 5(10):668–
692, October 1999. Special Issue on Dependability Evaluation and
Assessment.

[GM91] Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communica-

tion protocols. IEEE Transactions on Computers, 40(4):448–458, April
1991.

[Gum93] H. Peter Gumm. Another glance at the Alpern-Schneider character-
ization of safety and liveness in concurrent executions. Information
Processing Letters, 47(6):291–294, 1993.

[GV00] Felix C. Gärtner and Hagen Völzer. Redundancy in space in fault-
tolerant systems. Technical Report TUD-BS-2000-06, Department of
Computer Science, Darmstadt University of Technology, Darmstadt,
Germany, July 2000.

[GV01] Felix C. Gärtner and Hagen Völzer. Defining redundancy in fault-
tolerant computing. In Brief Announcement at the 15th International

137

Symposium on DIStributed Computing (DISC 2001), Lisbon, Portugal,
October 2001.

[Hil00] M. Hiller. “Executable Assertions for Detecting Data Errors in Em-
bedded Control Systems”. In Proceedings International Conference De-
pendable Systems and Networks, pages 24 – 33, 2000.

[HJS01] M. Hiller, A. Jhumka, and N. Suri. “An Approach for Analyzing the
Propagation of Data Errors in Software”. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks, pages 161
– 170, 2001.

[HJS02] M. Hiller, A. Jhumka, and N. Suri. On the placement of software mech-
anisms for detection of data errors. In Proceedings of the International
Conference on Dependable Systems and Networks, pages 135 – 144,
2002.

[IT96] R.K. Iyer and D. Tang. Experimental Analysis of Computer System
Design Dependability, chapter 5 in Fault-Tolerant Computer System
Design. Prentice Hall, 1996.

[JHCS02] A. Jhumka, M. Hiller, V. Claesson, and N. Suri. On Systematic Design
of Globally Consistent Executable Assertions in Embedded Software. In
Proceedings LCTES/SCOPES, pages 74–83, 2002.

[JHS01] A. Jhumka, M. Hiller, and N. Suri. “Assessing Inter-Modular Error
Propagation in Distributed Software”. In Proceedings of the 20th Sym-
posium on Reliable Distributed Systems, pages 152 – 161, 2001.

[JHS02a] A. Jhumka, M. Hiller, and N. Suri. “An Approach to Specify and
Test Component-Based Dependable Software”. In Proceedings of the
7th International Symposium on High Assurance Systems Engineering,
2002.

[JHS02b] A. Jhumka, M. Hiller, and N. Suri. “Component-Based Synthesis of De-
pendable Embedded Software”. In Proceedings of the 7th International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 111 – 128. Lecture Notes in Computer Science (LNCS),
2002.

138

[JHS03] A. Jhumka, M. Hiller, and N. Suri. “A Framework for the Design
and Validation of Efficient Fail-Safe Fault-Tolerant Programs.”. In To
Appear, Proceedings Software and Compilers for Embedded Systems
(SCOPES), 2003.

[KA97a] S. Kulkarni and A. Arora. “Once-and-forall Management Protocol

(OFMP)”. In Proceedings of the 5th International Conference on Net-
work Protocols, 1997.

[KA97b] Sandeep S. Kulkarni and Anish Arora. Compositional design of mul-
titolerant repetitive Byzantine agreement. In Proceedings of the 18th
International Conference on the Foundations of Software Technology
and Theoretical Computer Science, Kharagpur, India, pages 169 – 183,
1997.

[KA98] S. Kulkarni and A. Arora. “Multitolerance in Distributed Reset”.

Chicago Journal of Theoretical Computer Science, 1998(4), 1998.

[KA00] Sandeep S. Kulkarni and Anish Arora. Automating the addition
of fault-tolerance. In Mathai Joseph, editor, Formal Techniques in
Real-Time and Fault-Tolerant Systems, 6th International Symposium
(FTRTFT 2000) Proceedings, number 1926 in Lecture Notes in Com-
puter Science, pages 82–93, Pune, India, September 2000. Springer-
Verlag.

[KE02] S. Kulkarni and A. Ebnenasir. “Complexity of Adding Fail-Safe Fault
Tolerance”. In Proceedings International Conference on Distributed
Computing Systems, 2002.

[KRS99] Sandeep S. Kulkarni, John Rushby, and Natarajan Shankar. A case-
study in component-based mechanical verification of fault-tolerant pro-
grams. In Anish Arora, editor, Proceedings of the 19th IEEE Inter-
national Conference on Distributed Computing Systems Workshop on
Self-Stabilizing Systems, pages 33–40, Austin, TX, USA, June 1999.
IEEE Computer Society Press.

[Kul99] Sandeep S. Kulkarni. Component Based Design of Fault-Tolerance.
PhD thesis, Department of Computer and Information Science, The
Ohio State University, 1999.

139

[LA90] P. A. Lee and T. Anderson. “Fault Tolerance - Principles and Prac-
tice”. volume 3 of Dependable Computing and Fault-Tolerant Systems.
Springer Verlag, 1990.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs.

IEEE Transactions on Software Engineering, 3(2):125–143, March
1977.

[Lap92] J. C. Laprie. “Dependability: Basic Concepts and Terminology”. In
Dependable Computing and Fault-Tolerant Systems series, volume 5.
Springer-Verlag, 1992.

[LCKS90] N. Leveson, S. S. Cha, J. C. Knight, and T. J. Shimeall. The Use
of Self-Checks and Voting in Software Error Detection: An Empirical
Study. IEEE Transactions on Software Engineering, 16(4):432–443,
1990.

[Liu91] Zhiming Liu. Fault-tolerant programming by transformations. PhD
thesis, University of Warwick, Department of Computer Science, 1991.

[LJ92] Zhiming Liu and Mathai Joseph. Transformation of programs for fault-

tolerance. Formal Aspects of Computing, 4(5):442–469, 1992.

[LJ93] Zhiming Liu and Mathai Joseph. Specification and verification of re-
covery in asynchronous communicating systems. In Jan Vytopil, editor,
Formal Techniques in Real-time and Fault-tolerant Systems, chapter 6,
pages 137–165. Kluwer, 1993.

[LJ94] Zhiming Liu and Mathai Joseph. Stepwise development of fault-
tolerant reactive systems. In Formal techniques in real-time and fault-
tolerant systems, number 863 in Lecture Notes in Computer Science,
pages 529–546. Springer-Verlag, 1994.

[LJ95] Zhiming Liu and Mathai Joseph. A formal framework for fault-tolerant
programs. In C. M. Mitchell and V. Stavridou, editors, Mathematics of
Dependable Computing, pages 131–148. Oxford University Press, 1995.

[MAM84] A. Mahmood, D. M. Andrews, and E. J. McCluskey. “Executable As-

sertions and Flight Software”. In Proceedings of the 6th AIAA/IEEE

Digital Avionics Systems Conference (DASC-6), pages 346 – 351, 1984.

140

[Ran75] B. Randell. “System Structure for Software Fault Tolerance”. IEEE

Transactions on Software Engineering, 1(2):220 – 232, 1975.

[Ros95] D. S. Rosenblum. “A Practical Approach to Programming with As-

sertions”. IEEE Transactions on Software Engineering, 21(1):19 – 33,
1995.

[Sai78] S. H. Saib. “Executable Assertions: An Aid to Reliable Software”.
In Proceedings of 11th Asilomar Conference on Circuits, Systems and
Computers, pages 277 – 281, 1978.

[SS98] N. Suri and P. Sinha. “On the Use of Formal Methods for Validation”.
In Proceedings of the 28th International Symposium on Fault-Tolerant
Computing, pages 390 – 401, 1998.

[SS99a] P. Sinha and N. Suri. “Identification of Test Cases Using a Formal
FI Approach”. In Proceedings of the 29th International Symposium on
Fault Tolerant Computing, 1999.

[SS99b] P. Sinha and N. Suri. “On the Use of Formal Techniques for Analyzing
Dependable Real-Time Protocols”. In Proceedings Real Time Systems
Symposium, pages 126 – 135, 1999.

[YB94] H. Yin and J. M. Bieman. “Improving Software Reliability With Asser-
tion Insertion”. In Proceedings of the International Test Conference,
pages 831 – 839, 1994.

141

142

CV

Personal Data:

• Name: Arshad Jhumka

• Date of Birth: 14.04.1974

• Nationality: Mauritian

School Education

• Jan. 1985 – Dec. 1989: Royal College, Port-Louis, Mauritius (SC)

• Jan. 1990 – Dec. 1991: Royal College, Port-Louis, Mauritius (HSC)

University Education

• Oct. 1992 – Jun. 1995: University of Cambridge, England (BA Computer

Science)

• 1999: MA Computer Science, University of Cambridge

• Feb. 2000 – Nov. 2002: Chalmers University of Technology, Gothenburg,
Sweden

• Nov. 2002 – Nov. 2003: TU - Darmstadt, Germany (PhD Computer Sci-

ence)

143

