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Zusammenfassung

Das Gebiet der Asteroseismologie beschäftigt sich vornehmlich mit der Theorie stel-

larer Pulsationen. Da die Eigenschaften der Schwingungen stark von der Struktur

und dem Aufbau der Sterne abhängen, kann durch ihre Untersuchung ein einma-

liger Blick ins Sterninnere geworfen werden. Die dadurch gewonnenen Erkenntnisse

können dazu beitragen unser Verständnis der physikalischen Abläufe, der Entwick-

lung und der Zusammensetzung dieser Himmelskörper zu verbessern.

In der vorliegenden Arbeit wird der δ Scuti-Stern 4 CVn untersucht. Es handelt

sich hierbei um einen Stern, von dem schon seit einigen Jahrzehnten spektroskopische

und photometrische Daten gesammelt worden sind, und der bereits in zahlreichen

Publikationen eingehend untersucht worden ist (Breger et al., 1999; Breger, 2000b;

Breger et al., 2008; Breger, 2010). In der vorliegenden Arbeit wurden Daten, die über

einen Zeitraum von vier Monaten am 2.1 m Otto-Struve-Teleskop des McDonald

Observatorium in den Davis Mountains in West Texas, USA gewonnen worden sind,

mit Hilfe des Computerprogramms IRAF reduziert und für weitere Untersuchungen

aufbereitet. Ein starker Trend in der Radialgeschwindigkeitskurve deutet darauf

hin, dass 4 CVn Teil eines Doppelsternsystems mit einer Periode der exzentrischen

Bahn von 124,3 Tagen ist.

Anschließend wurde das zeitlich variierende Profil einer Absorptionslinie unter-

sucht. Durch eine Fourieranalyse konnten elf Frequenzen, von denen acht bereits

photometrisch nachgewiesen worden sind, entdeckt werden. Für diese elf Moden

wurde anschließend eine Modenidentifikation durchgeführt. Es konnte jeder Pulsa-

tion Werte für die Quantenzahlen (`,m) zugewiesen werden, wobei die drei nur in

den spektroskopischen Datenstzen nachgewiesenen Frequenzen hohe `-Werte größer

als 4 haben.

Im Folgenden werde ich mich eingehend mit den verwendeten Methoden be-

fassen und jede einzelne ausführlich erklären. Ich werde die Ergebnisse meiner Anal-

yse präsentieren und diese in bezug zu einer bereits publizierten spektroskopischen

Studie über 4 CVn (Castanheira et al., 2008) stellen.
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Abstract

The study of stellar pulsations is one of the main components of asteroseismology.

Since stellar oscillations largely depend on the stellar interior, the frequency, ampli-

tude, and geometry of the modes provide a unique view into the inside of a star.

Thus, the investigation of pulsational properties reveals important information on

the internal stellar structure, which is used to improve stellar models.

This thesis deals with the analysis of spectroscopic measurements of the δ Scuti

star 4 CVn, which is a well studied pulsator (Breger et al., 1999; Breger, 2000b;

Breger et al., 2008; Breger, 2010). The star was observed for four months with

the 2.1 m Otto-Struve telescope at McDonald Observatory, which is located in the

Davis Mountains in West Texas, USA, using the Sandiford Cassegrain Echelle spec-

trograph. The obtained data were reduced with the help of the software tool IRAF,

preparing them for further interpretation regarding their time-dependent properties.

The reduction process revealed a strong non-sinusoidal periodicity in the first

moment of the line profile, which is usually related to radial velocity. This trend

was discovered to be due to binary motion. A Keplerian orbit of high excentricity

and a period of 124.3 d was fitted to the data and subsequently subtracted to correct

the radial velocity shift.

A following frequency analysis resulted in the detection of eleven frequencies, of

which eight were already found in photometric data sets. By means of the Fourier

parameter fit method, which interprets the profile variations of the absorption lines,

a mode identification was carried out. Values of (`,m) could be assigned to all the

eleven modes. The three frequencies which were only detected in spectroscopic data

sets turned out to be high-degree modes with ` > 4.

In the present thesis, I will discuss the applied methods in detail. I will present

the obtained results and discuss them with regard to a previously published spec-

troscopic study (Castanheira et al., 2008).

iv



Contents

Zusammenfassung iii

Abstract iv

1 Introduction 1

1.1 Geometry of the pulsations . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Radial modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Non-radial modes . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Stellar rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Pressure and gravity modes . . . . . . . . . . . . . . . . . . . 6

1.2 The κ mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 δ Scuti stars in general . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 4 CVn so far . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Observations and Data Reduction 16

2.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Binary motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methods 24

3.1 Frequency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1.1 The spectral window and aliasing . . . . . . . . . . . 29

3.1.2 Least-squares fit . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2.1 Mono-periodic signals . . . . . . . . . . . . . . . . . 33

3.1.2.2 Multi-periodic pulsations . . . . . . . . . . . . . . . 35

3.1.3 The significance of the frequencies . . . . . . . . . . . . . . . . 35

3.2 Mode identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Line-profile variations . . . . . . . . . . . . . . . . . . . . . . . 37

v



CONTENTS

3.2.1.1 Selection of lines . . . . . . . . . . . . . . . . . . . . 39

3.2.2 The moments of the line . . . . . . . . . . . . . . . . . . . . . 40

3.2.2.1 Frequency analysis and mode identification with the

moments . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 The Fourier parameter fit method . . . . . . . . . . . . . . . . 42

3.2.3.1 Chi-square test . . . . . . . . . . . . . . . . . . . . . 43

3.2.3.2 Genetic optimization algorithm . . . . . . . . . . . . 45

4 Results 47

4.1 The absorption lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Frequency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Mode identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion 61

Bibliography 64

Danksagung 67

Curriculum Vitae 69

vi



Chapter 1

Introduction

Stars are anything but quiet objects floating through the night sky. From the lowest

mass stars at the lower end of the main sequence to the largest giants, stars pulsate

in many different manners throughout their whole life. Starting at a very young age,

even before they reach the zero-age main sequence (ZAMS) and thermal equilibrium,

they already exhibit pulsations, while they cross the classical instability strip. This

is a special region in the pulsation Hertzsprung-Russell Diagram (HR Diagram),

where more pulsating stars can be detected than anywhere else. Figure 1.1 depicts

such an HR Diagram and the many different classes of pulsating stars. The classical

instability strip is indicated by the two horizontal lines on the right-hand side.

After the hydrogen core burning has been initiated, stars leave the pre-main

sequence stage and enter the longest phase of their lives, many of them pulsating.

Depending on their mass, the oscillations will vary in terms of frequency, amplitude,

geometry and excitation mechanism leading to solar-like oscillations, γDor and δ Sct

pulsators or slowly pulsating B stars, among many others. As soon as hydrogen is

depleted in the core, stars enter the most tumultuous phase of their lives as red

giants. They pulsate as RR Lyrae stars or Cepheids while crossing the instability

strip again before they end as old pulsating White Dwarfs.

Aerts et al. (2010) gave a detailed discussion about the many different classes of

pulsating stars including illustrative examples.

The reason why pulsating stars are so interesting and why they are studied in

such great detail, is that their oscillations provide us with a unique view into their

interiors. Pressure or gravity waves that travel through the star give rise to dis-

tortions on the surface, periodical swelling and contracting and thus will change

the light radiated. It are these periodic light variations that we can observe and

1



1 Introduction

Figure 1.1: A Hertzsprung-Russell Diagram showing the different classes of pulsating stars as seen
in Aerts et al. (2010). Red areas represent stars with g-mode oscillations and blue areas mark stars
that pulsate with p-modes. Indicated by the two horizontal lines on the right side of the diagram
is the classical instability strip.

interpret towards frequency, amplitude and phase of the oscillations.

A pressure wave is a propagating compression of gas, which moves at the speed

of sound. For the simplified approximation of the star as an adiabatic system, the

speed of sound can be written as c =
√
γp/ρ, where γ denotes the adiabatic index,

p is the pressure and ρ is the density of the gas. Assuming an ideal gas, the equation

of state is p = ρkBT/mM , with kB being the Boltzmann constant and mM being

the molecular mass. Hence, the speed of sound is not only sensitive to pressure

and density, but also to temperature and chemical composition. By applying basic

physics, we can derive the speed of sound from the observed oscillations and thus

get a good picture about the prevailing conditions inside a star.

However, a star is not uniform in its temperature profile and chemical composi-

tion, i.e., the fractions of the elements change throughout the interior. This causes

a variation in density and pressure and, consequently, of the sound speed. Different

oscillations will penetrate to different depths of the star, as they are reflected at
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1.1 Geometry of the pulsations

layers with a steep density gradient, which is also the reason why the waves are

“trapped” inside the star. Accordingly, multi-periodic stars allow for a mapping of

the density gradient in the cross-section of stars.

In the following sections I will discuss the geometry of the mode, i.e., radial

and non-radial pulsations, the difference between p-modes and g-modes and their

excitation mechanisms (following the explanations by Aerts et al. (2010)). I will give

an overview of the class of δ Scuti stars and give details on the findings about the star

4 Canum Venaticorum, which is the main subject of this thesis. In Chapter 2 I will

describe the observations and data that I used for my analysis. Chapter 3 provides

an outline of the applied methods and in Chapter 4 I will present the results. A

discussion and conclusion about the matter will be given in the Chapter 5, the last

chapter.

1.1 Geometry of the pulsations

An oscillating one-dimensional string (for example, the string of a guitar or any

other musical instrument) has nodal points in one direction only. These are points

on the string that do not move with respect to the other parts of the string. Be-

ing a three-dimensional object with the spherical coordinates (r, θ, φ), a star may

oscillate with nodal points in three directions, one for each coordinate. They are

represented by the three quantum numbers (n, `,m). An elaborate description of

the displacements in the three-dimensional star and the geometry of the pulsations

can be found in Aerts et al. (2010) or Collins (1989, chapter 8).

1.1.1 Radial modes

In the simplest case, the star keeps its spherical symmetry and only expands and

contracts in the direction of the radius r. A uniform oscillation without any nodal

points, where n = 0, is called the fundamental radial mode. The first overtone has

one node, n = 1, which is a concentric shell within the star that does not move,

similar to the nodal point of the one-dimensional string. Above and below this

shell, the movements of the displacements occur in opposite directions. The second

overtone then has two nodes with n = 2 and so forth.

For a guitar string, which has a homogeneous composition, the ratios of the

periods of the fundamental mode to the first overtone is a small integer value,

3



1 Introduction

therefore they are harmonic. However, this is not the case in stars that pulsate

in the n = 0 and n = 1 radial mode simultaneously, i.e., the overtones are not

harmonics of the fundamental mode. Thus, we can assume that temperature and

chemical composition are not uniform throughout those stars (Aerts et al., 2010).

This basic assumption already shows that asteroseismology provides very power-

ful instruments to understand the interior mechanisms of a star. The more complex

the oscillations become the more comprehensive and deeper our view into the stars

will get.

1.1.2 Non-radial modes

Pulsations that also displace the stellar surface in such a way that certain regions

are moving in opposite directions, are called non-radial modes. Contracting surface

elements are thereby always situated next to swelling parts and vice versa, only

separated by a stationary nodal line. We assume that the axis of symmetry for the

pulsations is equal to the rotational axis, which is true for most pulsating stars. The

nodes can be directed in either co-latitude θ, which is a measure for the polar angle,

or longitude φ. The degree ` defines the total number of surface nodes, while the

absolute value of the azimuthal order |m| is the number of lines along a meridian,

with −` ≤ m ≤ +`. It follows that there are 2`+ 1 possible values for m.

The non-radial mode with the lowest possible degree (` = 1) is called a dipole

mode. It can either be axisymmetric, meaning that there are no meridian nodal

lines (m = 0), or sectoral, where ` = |m|. A mode of the next higher degree (` = 2)

is called quadrupole, while an octupole mode already has three surface node lines.

Whenever |m| > 0 and m 6= ` one speaks of a tesseral mode. Figure 1.2 depicts

Doppler maps of stellar surfaces with an octupole mode at an inclination angle of

i = 45◦ and with different orders.

In practice we are only able to measure the total brightness or Doppler velocity

integrated over the stellar surface. Since adjacent regions will always have opposite

signs in intensity and radial velocity, it is apparent that the values will average out

in such integrated measurements. This effect, which is called partial cancellation, is

more pronounced the higher the degree of the mode and especially for odd values of

`. The detection of modes in photometric light curves is thus limited to degrees ` < 4

(Aerts et al., 2010). Spectroscopic line-profile variations, on the other hand, are less

prone to partial cancellation effects, since they do not represent an integrated value.

4



1.1 Geometry of the pulsations

Figure 1.2: Surface velocity maps of a star pulsating in the octupole mode (` = 3) at an inclination
angle of i = 45◦, as seen in Aerts et al. (2010). Red areas are surface elements moving away
from the observer, while blue parts represent movements towards the observer, the white lines in
between are the nodal lines and the black dots mark the north pole of the star. From left to right
we see: pulsation in the sectoral mode (`,m) = (3, 3), the tesseral mode (`,m) = (3, 2) and the
axisymmetric or zonal mode (`,m) = (3, 0).

In fact, modes up to ` = 13 have already been confirmed by means of spectroscopic

mode identification (Zima, 2005).

1.1.3 Stellar rotation

Waves with a nodal line in the direction of longitude (m 6= 0) are traveling around

the star. Depending on the sign of the temporal dependence exp(−i2πνt) of the

spherical harmonics Y m
` (θ, φ) (for a definition see Aerts et al. (2010)), the direction

of the propagation of the sectoral waves changes. In the case of a negative exponent,

as shown in the above example, positive values of m represent movement in the same

direction of rotation, thus they are called prograde modes. Accordingly, modes with

negative m values move against the direction of rotation and are called retrograde

modes. I adopted this convention for the present thesis.

If we assume a non-rotating star, the frequencies of the modes for all possible

combinations of (`,m) will be the same. Whenever rotation is present, the Coriolis

force combined with other effects and the additional rotational frequency result in an

increase in frequency for prograde modes and a decrease in frequency for retrograde

modes. This will lead to an effect known as rotational splitting, where all 2` + 1

different modes are equally spaced in the frequency spectrum. However, in practice

not all modes are excited to such an extent that their amplitudes are detectable. In

other words, a rotationally split multiplet might not always be recognizable as such.
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1 Introduction

Figure 1.3: Ray paths of p-modes and g-modes in a cross-section of a Sun-like star. Panel a
shows the propagation of acoustic rays, as they are bent by increasing sound speed until they are
totally refracted. The steep density gradient at the surface reflects the acoustic waves back into
the interior of the star. The gravity waves, depicted in panel b, are reflected by the convective
layers. From Cunha et al. (2007).

1.1.4 Pressure and gravity modes

There are two different types of waves that occur in stellar pulsation: p-modes and g-

modes. The above mentioned p-modes are pressure or acoustic waves, where pressure

acts as a restoring force. Since they mainly oscillate in the direction of propagation,

they are longitudinal waves. The g-modes, or gravity modes, are transverse waves,

meaning that the gas motions are perpendicular to the direction of propagation.

Their main restoring force is buoyancy.

In general, p-modes have higher frequencies with increasing overtone n and de-

gree `, while the frequencies of g-modes are decreasing for a higher number of nodal

lines. Furthermore, the amplitudes of p-modes are higher in the outer regions of the

star. For g-modes, the opposite is true: their amplitudes are larger in the central

regions, although they are still detectable on the surface of some stars, like γ Dor

pulsators. Thus, they help to determine the limiting parameters of the physics of

stellar cores.

For a better understanding, we can view the waves as propagating rays (see

Figure 1.3). Whenever a non-radial p-mode penetrates to deeper layers of the star

it is reflected by the higher sound speed prevailing in regions of higher density and

temperature. At the surface the mode again encounters a change in those quantities

6



1.2 The κ mechanism

and is therefore directed back into the star. Hence, an acoustic wave cannot leave

the stellar interior. The higher the degree of the mode, the smaller is the depth into

which the ray penetrates and the more often it is reflected on the surface (although

this number is not equal to `).

Similarly, the ray paths of g-modes are constrained by convective regions. For

low-mass stars, convection takes place in the outer parts. Consequently, gravity

waves in the interior are reflected by this layer. In high-mass stars with convective

cores, the rays of g-modes only propagate in the radiative envelope.

1.2 The κ mechanism

Stars are usually in a state of hydrostatic and thermal equilibrium. In other words,

the gravitational force is held up by internal radiative pressure resulting from nuclear

reactions. On the other hand, the loss of heat on the surface, i.e., the luminosity, is

balanced by energy originating in nuclear fusion. A pulsation is a disturbance of this

fine equilibrium. Whenever a star contracts, the gravitational energy is transferred

into thermal energy, thus the gas is heated up while the density increases. This leads

to an increase in pressure and the star expands again. Not by the same amount,

however, since a part of the energy is lost by means of radiative transfer. Accordingly,

the oscillation is damped and the star reaches again a state of equilibrium after a

few cycles.

In order for small perturbations to lead to macroscopic oscillations it is necessary

to feed energy into the motion of the gas. One possibility is to prevent the loss of

energy through radiation and to turn it into kinetic energy instead. If a large number

of photons are scattered by particles like atoms, ions and electrons one speaks of a

high opacity. Usually opacity decreases with an increase in temperature. However,

this is not the case under special conditions. In partial ionization zones a part

of the gravitational energy which is released by the contraction is fed into lifting

the electrons to a higher energy level. Thus, the number of free particles is rising,

resulting in an increase of opacity. The radiation is blocked and so a main part of

the energy is put into the outward motion of the gas. While the star is expanding,

temperature and density are falling again causing recombination and thus a decrease

in opacity. Consequently, the radiation passes through more easily and the pressure

will decline. The star is contracting again and the whole process is repeated. For

most stars, hydrogen and helium are the main sources of opacity. In higher mass

stars also the elements of the Fe group are of importance.

7



1 Introduction

Since the opacity is denoted with the greek letter κ this form of driving mech-

anism is referred to as κ mechanism. It is important to note, that it only works

in layers of partial ionization. This layer must furthermore be situated at a certain

depth. If it is too close to the surface of the star, the density above the layer is

too low to support the oscillations. If it is too close to the center, the gravitational

force is high enough to maintain equilibrium. The most suitable conditions for the κ

mechanism, working in the HeII ionization zone, occur when the star is in the area

of the instability strip, i.e., when luminosity, temperature and the chemical compo-

sition of the star are in the right combination. For instance, also the pulsations of

δ Scuti stars are driven by this process.

1.3 δ Scuti stars in general

The δ Scuti stars are a group of pulsators that are located in the classical instability

strip on and slightly above the main sequence, as can be seen in Fig. 1.1. This means

that they mostly are rather old stars, still in the phase of hydrogen core burning and

evolving towards the giant branch, where they start to burn the hydrogen in their

shells. However, some stars also cross the instability strip on their way to the ZAMS.

Thus, there are also pre-main sequence pulsators with δ Scuti-like oscillations. The

excitation mechanism responsible for pulsations in δ Scuti stars is the κ mechanism

(see Section 1.2), working in the HeII ionization zone near 48, 000 K (Breger, 2000a).

Their masses range from 1.5 − 2.5 M�. From an astrophysical point of view, they

are situated in a very interesting range, since a mass of ∼ 2 M� is regarded as the

critical mass where stars start to develop convective cores. Also, their evolutionary

stage is very interesting for astrophysical research, as they move away from the main

sequence. Further observing campaigns will be needed in order to test the currently

inconsistent models of stellar structure.

δ Scuti stars oscillate with short periods, ranging from 18 minutes to 8 hours

and rather small amplitudes from a few millimag to about 0.30 mag. However, the

high-amplitude δ Scuti stars (HADS), which are considered a subgroup of δ Scuti

stars, have amplitudes ≥ 0.30 mag (Breger, 2000a). They mainly pulsate in the

fundamental radial mode and in the first and second overtone, sometimes in two

of them simultaneously. However, Mathias et al. (1997) was able to detect non-

radial pulsations for the HADS ρPup with amplitudes much smaller than that of

the dominant radial mode.

Non-radial as well as radial p-modes of low order (n ≤ 7) and a relatively high

8



1.4 4 CVn so far

Table 1.1: Photometrical results by Michel Breger.

Frequency Amplitude
Phase difference `

[cd−1] [mmag]

f1 8.594 124.85 -2.67 1

f2 5.048 115.14 -2.12 1

f3 5.850 88.26 -6.69 2

f4 6.976 48.55 0.38 0

f5 5.532 68.25 -4.90 1,2

f6 7.376 52.53 -2.69 1

f7 7.552 43.00 -3.31 1

f8 6.117 38.59 -5.04 1,2

f12 6.680 36.68 -3.42 1

degree (up to ` = 20) are generally found in δ Scuti stars. Their pulsational patterns

are very complex and sometimes exhibit amplitude and phase variations. Those with

shorter timescales, typically < 250 d, can be explained by simple beating of close

frequency pairs (Breger, 2010). However, variations with longer timescales, which

for some stars can extent to several years, are not that easy to comprehend. 4 CVn,

the main object of interest for this thesis, is one example for a δ Scuti star with

lengthy changes of amplitude and phase (see Section 1.4).

Breger (2000a) gives a very comprehensive review of δ Scuti pulsators. Additional

information about the topic is also provided by Aerts et al. (2010).

1.4 4 CVn so far

4 CVn is an evolved δ Scuti star with a spectral type of F3 III/IV, an effective tem-

perature of Teff = 6800 ± 100 K, and a surface gravity of log g = 3.5 ± 0.1 (Breger

et al., 1999). Castanheira et al. (2008) found a projected rotational velocity (v sin i)

larger than 120 kms−1, indicating that the star is a relatively fast rotator. However,

during my study I was able to correct this value to be slightly lower.

Ongoing photometric observations from 1966 to 2012 made it possible to study

this star in great detail and led to the publishing of various papers (Breger et al.,

1999; Breger, 2000b; Breger et al., 2008; Breger, 2010). There are large gaps between

the observations in the first 40 years. During the period from 2005 until 2012, 5

months per year of continuous light curves in two different wavelength ranges were

9



1 Introduction

Figure 1.4: Amplitude variability for 4 CVn in the years 1966 to 2007 by Michel Breger. Each peak
represents the measurement of a frequency in a year, while the respective amplitude is indicated
by its height.

obtained at the Vienna Automatic Photoelectric Telescope (APT) located at Mount

Washington, Arizona, USA. Their analysis revealed that the star is a very complex

pulsator, exhibiting a total of 75 significant frequencies with an interesting pattern

and great variability. Of 33 independent pulsation modes, 12 have amplitudes higher

than 3 millimag (mmag). The temperature variations during a pulsating cycle show

a strong dependence on wavelength. Therefore, multicolor photometry can help to

constrain the spherical degree ` of the pulsations (Aerts et al., 2010). The 12 most

significant modes and their ` value are listed in Table 1.1.

Furthermore, most of the detected modes show variations in amplitude and fre-

quency. Figure 1.4 illustrates the variability of the amplitudes throughout the years

1966 to 2007. As already mentioned above, frequency variations of δ Scuti stars with

periods smaller than 250 days can be explained by simple beating of close modes.

However, there is only one close frequency pair, 6.117 and 6.1077 cycles per day

(cd−1) with a beat period of 107 days, which was found in the light curves of 4 CVn.

All other modes have longer timescales of several years, as can be seen in Figures 1.5

to 1.9. In contrast to the amplitude variations that show no systematic behavior

10



1.4 4 CVn so far

Figure 1.5: Amplitude variations of six modes of 4 CVn (Breger, 2010). No correlation between
the different modes can be seen.
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1 Introduction

Table 1.2: Results of the spectroscopic mode identification by Castanheira et al. (2008).

Frequency
` m χ2

[cd−1]

f1 5.852 1 1 4.48

2 1 4.65

f2 7.374 2 -1 3.05

1 -1 4.44

f3 5.044 1 -1 3.32

2 -1 3.34

f4 8.596 2 1 1.04

1 1 1.27

f5 6.976 2 0 0.645

0 0 0.697

1 0 0.702

(see Fig. 1.5 for amplitude plots of 6 different modes), the frequency changes and

phase shifts follow a clear pattern. For almost all of them, a steady rise or fall is

preceded by a change in direction around the year 1990, followed by a decrease or

increase in frequency thereafter.

To further investigate the properties of this pulsational pattern, an observational

spectroscopic campaign was initiated in the year 2008. For more details I refer to

Chapter 2. The results were published by Castanheira et al. (2008), who found 5

independent frequencies and were able to perform mode identification on each of

them. They are summarized in Table 1.2. Since all of them were previously de-

tected by means of photometry, it is possible to distinguish between retrograde and

prograde modes in terms of frequency variability. For retrograde modes we can see a

decrease in frequency until the sign of the slope changes around the year 1990, while

prograde modes behave contrarily with a rising frequency followed by a decreasing

value after 1990. Radial (or axisymmetric) modes on the other hand show very small

frequency variation. Figs. 1.6, 1.7, 1.8 and 1.9 depict the frequency plots for the 5

modes which were found in both the spectroscopic and the photometric data, and

which have identified degrees and orders.

Breger (2010) determines a relation between the frequency variations of the dif-

ferent modes. He assumes a variation in rotational splitting, since retrograde and
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1.4 4 CVn so far

Figure 1.6: The varying frequencies of the non-radial retrograde mode at 7.38 cd−1 (Breger, 2010).

Figure 1.7: The varying frequencies of the non-radial prograde mode at 5.85 cd−1 (Breger, 2010).
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1 Introduction

Figure 1.8: The varying frequencies of the non-radial prograde mode at 8.59 cd−1 (Breger, 2010).

Figure 1.9: The varying frequencies of the radial mode at 6.98 cd−1 (Breger, 2010).

14



1.4 4 CVn so far

prograde modes change in exactly the opposite way while the radial mode nearly

remains unchanged. This indicates that differential rotation exists and varies ac-

cording to the stellar cycle. A further explanation could also be that the radius of

the star is changing.

The very complex oscillations with high variability make 4 CVn a very interesting

and promising target for asteroseismological studies. Due to the large amount of

photometric data it is an excellent candidate for further spectroscopic research.

The main goal of this thesis is to define more constraints on the parameters of

the pulsation modes, which is an important requirement for prospective seismic

modeling.
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Chapter 2

Observations and Data Reduction

2.1 Observations

The spectroscopic observations were started in January, 2008, complementing the

decades of photometric data of 4 CVn. The analysis of spectroscopic line-profile

variations is a very powerful tool, which also makes it possible to detect high-degree

modes (` > 3). It is very sensitive to the azimuthal order m of the pulsation modes

and furthermore enables the determination of other parameters, i.e., the stellar

inclination i, the projected rotational velocity v sin i, the equivalent width, which is

linked to the element abundance, and the intrinsic velocity amplitude of each mode

(see Section 3.2.1).

Over the period of four years, data were obtained until June, 2011. To get

a good picture about the amplitude and frequency variations of the spectroscopic

mode, each season was analyzed separately. In this thesis I will present the analysis

of the observations obtained in the season of 2010.

From February 18, 2010 to May 26, 2010 (thus, T = 96 d) a total of 767 stellar

spectra (see, e.g., Figure 2.1) were taken over a period of 33 nights. The number of

exposures per night ranges from 6 to 37 depending on atmospherical conditions and

the weather. Clouds, a high wind speed, high humidity, and high particle counts for

instance make it necessary to stop an observation. However, there were only seven

nights during all observing runs where no spectra could be taken.

All observations were carried out at McDonald Observatory located in the Davis

Mountains in West Texas, USA. We used the Sandiford Cassegrain echelle spec-

trograph mounted at the Cassegrain focal point of the 2.1 m Otto-Struve tele-

scope. This instrument is a high resolution spectrograph with a resolving power
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2.1 Observations

Figure 2.1: An echelle spectrum of 4 CVn taken at McDonald observatory. Every white line is one
echelle order. The wavelength increases from bottom to top and from right to left, spanning a
total range of 4200 Å to 4700 Å. The picket fence is the bright spot on the eighth and ninth line
from the bottom. It appears twice, because the orders are overlapping. The white dots are cosmic
rays.

of R = λ/∆λ of 60, 000 for a 1200× 400 thinned backside-illuminated CCD chip. A

continuous wavelength coverage is ensured for λ < 8000 Å (McCarthy et al., 1993).

For the observation of 4 CVn for each exposure a wavelength range of 4200 Å to

4700 Å was chosen.

The Cassegrain-mounting of the instrument causes a slight shift of the echelle

grating every time the telescope moves. Therefore, it is necessary to obtain calibra-

tion spectra of an integrated Thorium-Argon (Th-Ar) lamp before and after each

science exposure. By identifying the Th-Ar emission lines separately for each lamp

frame it is possible to subsequently track and correct the shift of wavelength in the

stellar spectra (see Section 2.2). For the same reasons it is furthermore important

to focus the instrument in the beginning of every night. A refocus is especially

needed after every change in temperature of a few degrees and large movements of

the telescope (like pointing to a new target).

Furthermore, an internal reflection of the echelle grating causes a disturbing

light source in the exposures, the so-called picket fence. It is clearly visible in the

spectrum shown in Fig. 2.1. This light will contaminate a small part of the CCD

chip, making it impossible to recreate any information about the scientific target

in this area. In order to minimize the effects of the picket fence, the grating of the

spectrograph can be placed in such a way that the reflected light lies between two

orders and not too close to the preferred spectral lines.
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One goal of the project was to perform a mode identification, making use of

the line-profile variations of absorption lines. Thus, the spectra need to meet a

certain quality. First of all, it is necessary to use unblended absorption lines (see

Section 3.2.1.1). Finding such lines is not a trivial task, since there are mostly blends

due to the high rotational broadening at a v sin i > 120 kms−1 (Castanheira et al.,

2008). Castanheira et al. (2008) proposed the use of two FeII lines at 4508.288 Å

and 4549.479 Å, which lie in the center of the observed spectral range and have a

very high intensity. Unfortunately, the latter turned out to be highly blended by

TiII at 4549.617 Å.

Furthermore, a high S/N (≥ 200), a high resolving power (above R = 40, 000,

which is provided for this instrument), and a high temporal resolution, where the

ratio of exposure time to oscillation period lies below a few per cent, are required

(Aerts et al., 2010). A higher S/N is ensured by higher integration times, however

at the expense of temporal resolution. For 4 CVn a good balance is an exposure

time between 600 s and 900 s depending on the atmospheric conditions. For the two

main photometric modes (f1 = 8.594 and f2 = 5.048, see Table 1.1) this leads to a

temporal resolution of 4% to 10% at a mean S/N of ∼ 200.

2.2 Data Reduction

The data were reduced using standard IRAF (Image Reduction and Analysis Fa-

cility) routines, following the instructions by Jeffrey and Castanheira (2010). This

manual aims at the reduction of spectra taken with the Sandiford Cassegrain echelle

spectrograph. However, the proposed procedure was slightly modified by adding a

correction for the blaze function of the echelle grating. Also the continuum normal-

ization was performed in a different way.

The following reduction steps were carried out:

Overscan correction The so-called overscan is a small region on the CCD which

is not exposed to light. Therefore, it contains the bias level and the dark current of

the instrument. By stripping and subsequent trimming of the overscan those noise

levels are removed from the image. This is done using the IRAF task ccdproc in

the package ccdred.

Removal of bad pixels Bad pixels are pixels that are either too bright or too

dark and therefore defective. A file containing the coordinates of all bad pixels
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2.2 Data Reduction

Figure 2.2: Screenshot of the twelfth order of the one-dimensional, blaze corrected stellar spectrum
displayed with the IRAF task splot (package: echelle). Indicated with the red arrow is the FeII
line at 4508 Å.

is provided by Jeffrey and Castanheira (2010). They are removed again using the

IRAF task ccdproc.

Flat field correction In order to correct effects caused by the varying sensitivity

of the pixels, the stellar spectra need to be divided by the masterflat file. This is a

combination of all flat fields (uniformly exposed frames), created by the IRAF task

flatcombine. For echelle data it is important to set all pixels between the orders

to a unit value (task apflatten, package echelle), since they were not exposed

to light and therefore have very low intensities. Firstly, the position of the orders

need to be defined using the task aptrace in the package echelle. The flat field

correction can then be carried out, using the normalized masterflat file and the task

ccdproc.

Scattered light correction The residuals in between the orders are a good ap-

proximation for the scattered light. The task apscatter (package echelle) first

traces the orders of the stellar spectra and secondly removes the scattered light

between them.
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2 Observations and Data Reduction

Figure 2.3: A schematic display of the normalizing points and the linear function for the FeII line
at 4508 Å.

Aperture extraction All further reduction and analysis steps are performed on

the one-dimensional spectra. These are created in extracting the orders with the

task apall, also from the package echelle. This step needs to be carried out

likewise on the science and Th-Ar frames, as well as on the masterflat.

Blaze correction This step was added to the procedure outlined by Jeffrey and

Castanheira (2010). The blaze function shapes the spectrum in such a way that the

maximum intensity lies at the center of the CCD chip. This is a uniform shape for

the masterflat but not for the stellar spectra, since they are composed of absorption

lines of different depth. For this reason, the one-dimensional science frames are

divided by the one-dimensional masterflat, leading to a much smoother shape.

Wavelength calibration By comparing the one-dimensional Th-Ar spectra with

an atlas of Th-Ar emission lines, a wavelength can be assigned for each line using

the task ecidentify. It is sufficient to identify the lines in only one frame per

observing run. This spectrum can then be used as a reference for all other Th-Ar

frames. With the task refspectra each calibration frame can be assigned to one

science frame, usually to the one taken right before the Th-Ar exposure. By these
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2.3 Binary motion

means, the wavelength shift can be traced and each spectrum is calibrated correctly

with the task dispcor.

Figure 2.2 displays the twelfth order of a fully reduced stellar spectrum. This

order contains one of the absorption lines to be analyzed.

The reduced, calibrated, one-dimensional stellar spectra can now be converted

into text files for further processing. Since only two FeII lines (4508 Å and 4549 Å)

were used for the line-profile analysis, it was not necessary to combine the orders

before converting them.

Normalization and flux calibration A special Python script was coded to per-

form the flux calibration on the absorption lines. Before the actual calibration

process, the lines were cut from the spectra and raised to a global flux level. For

the normalization, a linear function was fit through a set of points, which were pre-

defined separately for each run. They were chosen in order to place the position of

the continuum between two neighboring lines. Subsequently, the flux values of each

spectrum were divided by the obtained linear function in order to shift them to a

uniform level.

Heliocentric shift For the following steps it is necessary to convert the dispersion

scale of the spectra from Ångström to kilometers per second. This was done using

the software FAMIAS (Zima, 2008). The absorption line is now a function of radial

velocity instead of wavelength.

Due to the Earth’s movement around the sun, the viewing angle from the point

of observation to the star is differing. Therefore, the radial velocity, i.e., the velocity

of the star in the line of sight, is varying periodically. A correction value for this

shift can be calculated with the IRAF task rvcorrect in the package astutil. This

value was then added to the velocity scale of each line.

2.3 Binary motion

Panel a) in Figure 2.4 shows a diagram of the first line moment, which represents

the radial velocity, after the heliocentric correction was applied. The strong non-

sinusoidal trend still visible can be explained by a binary component. The movement

of the star around the barycenter of the binary system leads to another periodic

variation of the radial velocity. The second component, however, must be a very
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2 Observations and Data Reduction

Figure 2.4: The first moment of the line 4508 Å before (panel a) and after (panel b) the correction
of the binary motion.

Figure 2.5: Phase diagram of the first moment of the line 4508 Å, using all spectra from 2008 to
2011. The red line represents the orbital model with a period of P = 124.3 days.
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2.3 Binary motion

Table 2.1: Parameters of the orbital model.

4508 Å 4549 Å

Orbital period [d] 124.3 125.0

Eccentricity 0.32 0.32

Systematic RV [kms−1] 3.3 2.6

Semi-amplitude [kms−1] 13.2 13.1

dim object, since the spectrum only shows absorption lines of one star.

To correct this shift, a binary model was computed by fitting a Keplerian or-

bit to the data (see Figure 2.5). Subsequently, the model is subtracted from the

spectra. For a higher accuracy of the calculated orbit it is important to include all

measurements. Therefore, also the spectra of the seasons of 2008 and 2011 were

reduced according to the new procedure before the first moment was calculated for

both absorption lines. The orbital parameters are listed in Table 2.1.

Since there was still a slight scatter around the zero point of the first moment,

the spectra were further normalized to the average radial velocity per run. Panel b)

in Fig. 2.4 depicts the first moment after all corrections were applied.
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Chapter 3

Methods

Besides photometric light curves, asteroseismological analyses are also based on

stellar spectra, from which stellar pulsations can be derived. In general, temporal

variations, which originate from oscillations, are observed. However, it is not trivial

to interpret them with respect to their nature and origin. At first it is crucial to

describe the form of the oscillation, in terms of frequency, amplitude and phase,

by means of a frequency analysis (explained in Section 3.1). Those characteristics

can subsequently be interpreted by mode identification methods (see Section 3.2) to

determine the underlying pulsation.

There exist several techniques and methods, which are not always applicable to

all kinds of data and star. Thus, it is necessary to understand the mechanisms and

to find the most suitable approach for the analysis of the observed data.

In this chapter I will explain the methods that were used to analyze the spectro-

scopic data of the δ Scuti star 4 CVn and why they seemed to be the most eligible

approach. They were all implemented in a software package called FAMIAS (Fre-

quency Analysis and Mode Identification for AsteroSeismology) by Zima (2008).

3.1 Frequency analysis

As mentioned above, it is possible to derive frequency, amplitude and phase of oscil-

lations from time-dependent stellar properties. But which are those properties that

are affected by pulsation in a periodic way?

For photometric data the situation is relatively simple. The displacement of sur-

face elements lead to changes in temperature and radius, which in turn cause light
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variations that can be observed. The resulting light curves are then studied with

respect to their variations.

Stellar spectra, on the other hand, might provide much more information, but

their time-dependent factors are not that easily derived. The velocity variations of

the displaced elements with respect to the observer, lead to a blue or red shift in

wavelengths of spectral features due to the Doppler effect. These shifts cause dis-

torted line profiles (see Section 3.2.1), which can be studied for periodic variations.

The two most common practices applied on time-series spectroscopy today are the

interpretation of the variations in terms of radial velocity (see Section 3.2.2), and

the separate analysis of every wavelength bin (see Section 3.2.3).

Whenever time-dependent information is extracted from the data, it can be

treated just like photometric light curves. Since harmonic oscillations can be ex-

pected for δ Scuti stars such as 4 CVn, the preferred method to detect the frequencies

is a Fourier transform. In order to optimize the values of amplitude and phase, a

least-squares algorithm is applied. I will describe these two methods, following

closely the steps outlined by Deeming (1975), who describes the Fourier analysis

with unequally spaced data, and Aerts et al. (2010), who give a detailed discussion

about various frequency analysis methods.

3.1.1 The Fourier transform

A good method to find the periodicity of a data set, is to approximate the temporal

behavior with a series of sine functions. This can be done with the Fourier transform

(FT ) which is defined for an infinite, continuous function f(t) as

F (ν) =

+∞∫
−∞

f(t) exp(2πiνt)dt, (3.1)

This equation is transforming the function f(t) from time dependence into the

frequency domain, giving rise to the frequency dependent function F (ν). As F (ν)

is usually complex, only its amplitude |F (ν)| is displayed and plotted against ν in a

so-called periodogram or frequency spectrum. Sometimes the square of the amplitude

|F (ν)|2, the power, is indicated in these plots instead.

In reality we are bound to deal with a series of N measurements at discrete
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Figure 3.1: Synthetic light curve of an RR Lyrae pulsator (top panel) and its amplitude spectrum
(bottom panel). The non-sinusoidal shape of the signal can only be reproduced by six sine functions
with different frequencies. Taken from a lecture by Michel Breger.

points in time ti within an interval [0, T ], which is far from the ideal case of infinite

and continuous sine functions. Therefore, we describe the finite Fourier transform

(FFT ) as an integral between the limits t = 0 and t = T :

FT (ν) =

T∫
0

f(t) exp(2πiνt)dt. (3.2)

Taking into account a discrete distribution of points, other than the previous

continuous usage, the discrete Fourier transform (DFT ), can be written by replacing

the integral with a sum:

FN(ν) =
N∑
i=1

f(ti) exp(2πiνti). (3.3)

Due to the definition of F (ν) according to Equation (3.1), we need to assume that

the function f(t) is a sum of harmonic oscillations. In other words, it is important
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that the observed light curve shows a sinusoidal behavior. If the signal differs widely

from this assumption, as it is the case for RR Lyrae stars, another class of pulsators,

several sine functions are necessary to reproduce the shape of the light curve (see

Figure 3.1), resulting in misleading incorrect frequencies visible in the periodogram.

Therefore, in an ideal case, f(t) can be described as a sum of M harmonic oscillations

with amplitude Ak and frequency νk, k = 1 . . .M , as follows:

f(t) =
M∑
k=1

Ak exp(2πiνkt) (3.4)

Subsequently the DFT of this function can also be written as

F (ν) =
M∑
k=1

Akδ(ν − νk) (3.5)

where δ(ν) is Dirac’s delta function, which is defined as

δ(ν) =

+∞∫
−∞

exp(2πiνt)dt, (3.6)

having the following properties:

+∞∫
−∞

δ(ν)dν = 1 and

+∞∫
−∞

δ(ν − ξ)g(ν)dν = g(ξ). (3.7)

If f(t) has only one frequency ν1 (with M = 1), its FT for a series of test fre-

quencies will only be different from zero around the values ν = ±ν1. Consequently,

the FT of a multi-periodic function f(t) will result in a series of δ-functions, i.e.,

that the amplitude |F (ν)| is different from zero at ν1, . . . , νM .

Searching for the right frequency How can a certain periodicity of a light

curve be derived using the FT ? As an example we assume a signal in the form of

Equation (3.4), oscillating with the frequency ν1 = 3 cd−1. For illustrative reasons

we multiply the signal with the envelope function exp(−π · t2), which transforms

the continuous sinusoid into a short impulse, as can be seen in Figure 3.2. We write

F (ν) of this function with the test frequency ν = 3 cd−1, following the definition in

Eq. (3.1) and using the Euler formula eix = cosx+ i sinx:
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F (3) =

+∞∫
−∞

f(t) · [cos(6πt) + i sin(6πt)]dt

=

+∞∫
−∞

A1 exp(6πit) · [cos(6πt) + i sin(6πt)]dt

= A1 ·
+∞∫
−∞

[cos(6πt) + i sin(6πt)] · [cos(6πt) + i sin(6πt)]dt

= A1 ·
+∞∫
−∞

[2 cos2(6πt) + 2i sin(6πt) cos(6πt)− 1]dt. (3.8)

First we only plot the real part of the integrand, the amplitude |F (ν)| (see Fig-

ure 3.3). Whenever the real part of the signal is negative, <(exp(2πi · 3 · t)) will be

negative as well, which is why the real part of the integrand is always positive. Thus,

the integral of this oscillation will produce a rather large number. On the contrary,

if we try to measure a frequency that is not present in the data, the real part of

the integrand will be positive and negative in almost equal parts and so integrates

to a number close to zero. For example, when calculating F (5) the real part of the

integrand will be 2 cos(6πt) · cos(10πt). Hence, the signal and exp(2πi · 5 · t) do not

oscillate at the same rate anymore. The FT of the “wrong” frequency is depicted

in Figure 3.4.

This example illustrates that in order to find an unknown frequency in a data

set, an interval of test frequencies needs to be defined to serve as an input for the

FT . For the lower boundary, ν = 0 cd−1 is a good value, as the frequency is defined

as ν = 1/P and thus an infinite period will be the limit. Moreover, the FT is

mirrored around zero. The upper boundary is defined by the Nyquist frequency νNy.

Considering N equally spread measurements over a time span ∆T , the time

separation between two data points resolves to ∆t = ∆T/(N−1), while the sampling

frequency is 1/∆t. A sine curve needs to be covered by at least two points per cycle

in order to resolve it from discrete measurements. Thus, half the sampling frequency

is the largest frequency that can be reconstructed from the data set. This value, the

so-called Nyquist frequency, is defined as follows:

νNy =
1

2∆t
=
N − 1

2∆T
(3.9)
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Figure 3.2: A curve according to Eq. (3.4) with a frequency νt = 3. Its shape resembling a short
pulse is produced by the envelope function exp(−π · t2).

3.1.1.1 The spectral window and aliasing

For FT (ν) and FN(ν) the periodogram does not result in a series of δ-functions, due

to gaps in the observations and the limited data length. The length of the data

set T results in a widening of the frequency peaks of ' 1/T . Thus, two different

frequencies νi and νj will only be free of interference given that T � 1/|νi − νj|.
A good estimate of a reliable frequency resolution is provided for |νi − νj| > 2/T .

Accordingly the length of the data set plays a vital role for a good and satisfying

frequency analysis.

Another strong influence on the clearness of the frequency spectrum is caused

by gaps between the measurements. Naturally, astronomical observations are not

equally distributed over a given time span, as the night-day rhythm, changing

weather conditions, and phases of the moon regularly cause longer observing pauses.

Also the Earth’s orbit around the sun gives a certain limit to the continuity of the

data, as most of the stars are visible during night time only for a part of the year.

Collaborations between astronomers and observatories in different parts of the world,
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Figure 3.3: The diagram on the left-hand side shows the real part of the integrand of the FT of
the signal defined in Fig. 3.2 with the test frequency ν = 3. The imaginary part is displayed in the
right panel. Since the curve on the left side is mostly positive over t, it integrates to a relatively
high value, indicating that the test frequency is the right one.

so-called multisite campaigns, are used in order to minimize the effects of the Earth’s

rotation. Satellite missions such as Most, Corot and Kepler are another effort to

keep the length of the gaps to a minimum. However, this luxury of nearly continuous

observations over a long period of time is still the exception rather than the rule.

The data provided for this thesis are ground-based observations obtained at a single

site.

Those spaces of different length allow for several oscillations of different period-

icities to be fit to the data, as within them no statement can be made about the

number of passed periods. Thus, they give rise to incorrect frequencies, commonly

referred to as alias frequencies, which are visible as false maxima next to the cor-

rect frequency peak in the periodogram. Their distribution can be described by the

so-called spectral window.

For this we first need to describe the window function:

wN(t) =
N∑
i=1

δ(t− ti), (3.10)
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Figure 3.4: To enhance the statement made in Fig. 3.3, an FT using a test frequency which is not
present in the signal, in this case ν = 5, was calculated. Again the real and imaginary part of the
integrand are displayed in the left and right panel, respectively. This time the integral of the real
part produces a much smaller value.

which is only based on the time distribution of the N data points. The spectral

window then follows from the DFT of the window function:

WN(ν) = 1/N
N∑
i=1

exp(2πiνti). (3.11)

FN(ν) is a convolution of F (ν) and WN(ν):

FN(ν)

N
= (F ∗WN)(ν) =

+∞∫
−∞

F (ν − ν ′) ·WN(ν ′)dν ′. (3.12)

As stated above, F (ν) is a δ-function at frequency ν1 for a mono-periodic os-

cillator. Hence, taking into account the properties of the δ-function described in

Equation (3.7), we can write FN(ν)/N = WN(ν) ∗ δ(ν − ν1) = WN(ν1), correspond-

ing to the same shape of the DFT as the spectral window centered around ν1. If

F (ν) is a sum of M δ-functions, FN(ν) will be the sum of M spectral windows

centered around the different frequencies ν1, . . . , νM .
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Figure 3.5: The spectral window for the data set of the year 2010, which was analyzed for this
thesis. The side lobes at ±1, 2, . . . days are due to one-day aliasing.

Let us now examine the spectral window more closely. As alias peaks are caused

by the uncertainty of periods occurring within or between the gaps, it is obvious that

gaps appearing with a certain periodicity will allow for strong aliasing. Observational

breaks occurring clearly periodically are of course the above mentioned daily breaks

and seasonal visibility of the star in the night sky, giving rise to the most common

alias frequencies, the so-called one-day aliasing and one-year aliasing. The daily side

peaks occur with a period of multiples of 1 d at frequencies ±1,±2, . . . cd−1, while

the annual aliasing will have a periodicity of multiples of ∼ 365 d and thus appear at

a step rate of ±0.00274 cd−1. Figure 3.5 shows a plot as defined in Equation (3.11)

for the data set used for this thesis. Both the one-day and the one-year aliases are

clearly visible.

The diagram is centered around zero, within a range ±νi, because the resulting

frequency spectrum is comparable to the spectral window centered around the value

ν1. Obviously, the aliasing has a large effect on the surroundings of the correct

frequency peaks, as they not only spread in positive but also in negative direction.

Hence, as each frequency is convolved with the spectral window, the periodogram

of a multi-periodic pulsator will be subject to interference. The spectral window

should therefore always be studied thoroughly before any statements can be made
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about the periodicity of the data.

3.1.2 Least-squares fit

As a next step, the frequency found by the means of a Fourier transform is improved

by applying a least-squares algorithm. Also, amplitude and phase can be determined

within an error range.

Similar to the idea of the Fourier analysis described in the previous section,

this method is used to find harmonic oscillations in a signal. This is achieved in

minimizing the squared errors between the model and the data. Thus, we describe

an ideal case of N measurements x(ti) ≡ xi at time points ti, i = 1, . . . , N of a

signal consisting of M sinusoidal oscillations with frequency νk, k = 1, . . . ,M :

x(ti) =
M∑
k=1

ak cos[2πνk(ti − τ)] + bk sin[2πνk(ti − τ)] + c+ εi. (3.13)

Here τ describes the epoch of the observations, εi the measurement errors, and

ak, bk and c are free parameters defining the curve.

The unknowns that we want to determine in the best manner are νk, ak, bk and c.

3.1.2.1 Mono-periodic signals

The simplest case is a light curve with only one oscillation mode at a frequency ν1,

with M = 1, a1 = a, and b1 = b. In order to determine this frequency, we define

a model oscillation with the test frequency ν and express the squared deviations to

the signal as follows:

L =
N∑
i=1

{xi − a cos[2πν(ti − τ)]− b sin[2πν(ti − τ)]− c}2. (3.14)

First we need to form and solve the derivations ∂L/∂a = 0, ∂L/∂b = 0 and ∂L/∂c =

0 to find the unknown variables a, b, c. This allows us to calculate the value xci(ν)

for the point ti, an epoch τ and the test frequency ν in the way:

xci = a cos[2πν(ti − τ)] + b sin[2πν(ti − τ)] + c. (3.15)

The best frequency ν is determined by comparing the observations and the pre-

dictions and minimizing the sum of their squared deviations or residuals Ri(ν).
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Thus, for a time ti we write the difference between the measured and the calculated

value as

Ri(ν) = xi − xci(ν). (3.16)

And subsequently for the sum of their squares

R2(ν) =
N∑
i=1

R2
i (ν) =

N∑
i=1

[xi − xci(ν)]2. (3.17)

Since a, b, c are complex variables difficult to describe, we choose another form

for xci(ν), namely:

xci = A cos{2π[ν(ti − τ) + δ]}+ c (3.18)

where A is the amplitude, δ is the phase and ν is the frequency. These are

quantities that can be observed and are thus more intuitive than the arbitrary

a, b and c. Using Equation (3.18) a least-squares approach is carried out once more

to receive a model with test values for amplitude, frequency, and phase that describe

the signal best.

According to Equation (3.16), the residuals Ri(ν) are the differences between

observation and the predicted value. Furthermore, we describe the variance σ2
i as

the square of the standard deviation scaled with N or σ2
i = (xi − x̄)2/N . Hence, a

comparison between those two quantities can also be understood as a comparison

between the best and the worst model. This allows a measurement of the accuracy

of the predictions, also called variance reduction or fraction of the variance (fν),

i.e., the fraction of the variability that can be explained by a model. We write fν

as:

fν = 1−
∑

i=1N(xi − {A cos(2π[ν(ti − τ)− δ]) + c})2∑N
i=1(xi − x̄)2

= 1− L∑N
i=1(xi − x̄)2

, (3.19)

where x̄ =
∑N

i=1 xi/N is the average of xi. Obviously, for minimized residuals, L

is close to zero and therefore much smaller than the variance σ2
i , which results in fν

being close to one. Thus, the calculated value xci with the amplitude A, frequency

ν and phase δ describes the variability of the signal very well.
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3.1 Frequency analysis

3.1.2.2 Multi-periodic pulsations

In the case of a multi-periodic pulsator, we assume a signal of harmonic oscillations

of M different frequencies νk, k = 1, . . . ,M (see Equation 3.13). Naturally, we want

to apply the same procedure as in the example of a light curve with one periodicity

explained above. Since we cannot predict how many modes have an amplitude above

the detection limit, we also do not know M and we therefore have to determine it

along with the different frequencies. However, the estimation of discrete parameters

is still very difficult and it represents until now a not well developed field in statistics.

An attempt to avoid this problem is to perform a prewhitening after each search

for a frequency. Therefore, a fit for the best frequency is calculated and subsequently

subtracted from the data, before another search is started. The best value is selected

in adopting a minimal value of the residuals by means of Eq. (3.16). However,

to obtain the best possible fit, it is necessary to include each so far determined

frequency in the calculations. While the frequency can be set as a fixed value,

amplitude and phase are used as free parameters to avoid systematic errors. After

each prewhitening-step another frequency search is performed. The least-squares

calculation is used with frequency, amplitude and phase as free parameters this time.

Usually a good starting value for νk is determined by means of another method, such

as the Fourier transform, described above.

3.1.3 The significance of the frequencies

As the search for the oscillation frequencies is performed in an iterative way, and

the number of excited modes M is unknown, a reliable stop criterion needs to be

defined. An obvious assumption would be to stop as soon as all intrinsic frequencies

have been extracted from the data. The difficulty lies in distinguishing between the

peaks caused by stellar pulsation and mere noise. If the amplitude of the candidate

frequency is significantly higher than the mean amplitude of the surrounding noise,

it is more likely to originate from oscillations of the star.

Breger et al. (1993) argue that a critical value for the signal-to-noise amplitude

ratio (S/N) is ∼ 4.0. Later, Kuschnig et al. (1997) have confirmed this significance

level and stated for data obtained with the Hubble Space Telescope Fine Guidance

Sensors, which are mostly limited by photon noise, peaks above the critical value

of 4.0 times the mean noise amplitude are intrinsic to the star with a probability

of 99.9%. In order to avoid distorting the noise level by alias peaks accompanying

the candidate frequency, it is necessary to calculate the noise amplitude only after
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the removal of every previously detected frequency and within a reasonable region

around the peak in question. Once the amplitudes of the highest frequency peaks

lie below the critical S/N level, it can be assumed that all detectable oscillation

frequencies M have been extracted from the data.

If the amplitude of the frequency and the one of its aliases are very similar, it can

no longer be distinguished between the two. The ratio of these amplitudes largely

depend on the duty cycle in such a way that it is much smaller for a smaller data

coverage over time.

3.2 Mode identification

With the analysis of the periodic variations of observables, one is able to describe

the oscillations of a star. However, the nature of the pulsations and their origin

cannot be explained by frequency, amplitude, and phase alone. The geometry of

a mode, which is represented by the quantum numbers ` and m, allows to trace

the ray path, which in turn largely depends on the internal density profile and the

chemical composition of the star.

Mode identification is a method to derive values for (`,m) for each individual

mode. Several techniques were developed in the course of the history of asteroseis-

mology, each specified for the type of the derived data and the different properties of

pulsating stars, like the rotational velocity. Here I will present two techniques com-

monly applied to spectroscopic data, focussing on the Fourier parameter fit method,

which is especially suitable for fast rotating stars. It is an enhancement to the

pixel-by-pixel method and was developed by Zima (2005) for his PhD thesis.

Stellar spectra provide a large amount of specific information about the observed

star, especially in the profiles of absorption lines. Thus, the fitting of these profiles

with theoretical values, allows the determination of not only (`,m), but also of cer-

tain stellar parameters and line attributes. Among them are the projected rotational

velocity v sin i, the inclination i, i.e., the angle between the rotational axis and the

line-of-sight, the equivalent width EW , the intrinsic width σ, and the intrinsic pul-

sational amplitude vp of each mode.

However, to use the full capacity of modern mode identification techniques, it is

crucial to obtain highly resolved (R > 40, 000) spectra with a high signal-to-noise

ratio (S/N > 200). In order to fully resolve the oscillations over one period, it
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is furthermore necessary to keep the ratio of the exposure time to the pulsation

cycle to a minimum (Aerts et al., 2010). Hence, larger telescopes with sensitive

instrumentation are needed for a longer period of time to achieve the desired quality

for the data. As this is still a hard task, it is recommended to combine the advantages

of different techniques. For example, multicolor photometry is able to give a good

constraint on the harmonic degree `, and the analysis of line profile variations is

more sensitive to the azimuthal order m. There already exist large amounts of

photometrical studies for the δ Scuti star 4 CVn, as mentioned in Section 1.4. We

are now able to find a detailed description for its pulsation modes, by combining the

information of previous studies with spectroscopic results.

3.2.1 Line-profile variations

This section summarizes the origins of line-profile variations. For a detailed dis-

cussion on this topic and line-profile fitting I refer to Aerts et al. (2010) and Zima

(2005).

The variation of the profile of absorption lines originates from the perturbed

surface of a pulsating star. With these spectroscopic data it is possible to identify the

quantum numbers (`,m) of pulsation modes. Absorption lines are a characteristic

signature of the transitions of electrons between the different energy levels of atoms.

Usually, these transitions are caused by the absorption of stellar photons in the

atoms or ions. The lines occur at certain ranges of wavelengths of stellar spectra,

depending on the energy of the absorbed photon. The shape, however, is subject

to the physical conditions of the region where the line is formed, i.e., temperature,

pressure, gravity, and element abundance.

An important characteristic is the equivalent width (EW ) of a line: it is defined as

the width of a rectangle with unit height and the same area as the line. It is sensitive

to the totally absorbed energy and thus, a measure for the element abundance in

the region.

Several conditions cause a broadening of the line, their combined effect is called

intrinsic width. One of its components is the natural or atomic broadening. It is

due to the finite lifetimes of the excited states of the electrons and the significant

uncertainty of the measurement of energies necessary for the extremely short lived

transitions that can be described with the uncertainty principle. This effect results

in a Lorentz profile.

The line shape is furthermore altered by the presence of nearby particles. As

the density of the particles and hence the frequency of such encounters strongly
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depends on the pressure, this effect is called pressure broadening. On the one hand,

the collisions of particles shortens the lifetimes of energy levels and thus enhances

the uncertainty of the involved energies. On the other hand, the mere presence of

neighboring particles alter the energy levels and thus shift the frequency of the line.

The pressure broadening can also be represented by a Lorentz profile.

The last considered effect contributing to the intrinsic width is the so-called

thermal broadening, which can be approximated by a Gaussian profile. The thermal

energy of the gas results in microscopic movements of the particles, whose emitted

frequencies are subsequently Doppler shifted by the value ∆λ, defined as

∆λ

λ
=
v

c
, (3.20)

where λ is the laboratory wavelength, v is the velocity and c is the speed of light.

Because of the statistical distribution of the thermal motion of particles the Doppler

effect results in a broadening of the line. Moreover, this effect is strongly dependent

on temperature, because with increasing temperature the agitation of the particles

increases, too. On a macroscopic scale, turbulent motions like convection have to

be taken into account and result in a further broadening, represented again by a

Gaussian profile.

Thus, the intrinsic width is the convolution of a Lorentz and a Gaussian profile,

which results in a Voigt profile. For mode identification, however, the approximation

of the intrinsic line shape with a Gaussian is sufficient with benefit for the compu-

tational time.

In addition to these local effects originating from the conditions in a small region

around the absorbing element, the line shape is altered by more global effects. These

are rotational broadening and stellar oscillation, which both are a result of the

Doppler effect similar to thermal broadening.

The rotational broadening is caused by the rotation of the star. For a uniform,

time-independent rotation, the velocity fields on the opposite sides of the stellar disc

have a different direction. Therefore, the line is symmetrically broadened depending

on the rate of rotation. A high rotation rate leads to broader lines.

Furthermore, the line varies periodically with non-radial oscillations of the stel-

lar sphere. Depending on the pulsation mode, the quantum numbers (`,m), the

amplitude of the oscillation, the ratio between horizontal and vertical components

of the pulsational amplitude k, and the stellar inclination i, the shape of the line is

altered in a way that the center shifts from one side to the other and bumps move
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3.2 Mode identification

Figure 3.6: Line-profile variations of the δ Scuti star ρPuppis. The star was observed with the
Coudé Echelle Spectrograph at the 1.4 m CAT Telescope at ESO (La Silla, Chile) in 1995 and
published by Mathias et al. (1997).

periodically across the line. The displacement of the line forming region due to the

pulsation, moreover, causes a change in effective temperature, pressure and density,

which is higher for more rapidly rotating stars. Since most of the discussed broaden-

ing effects are sensitive to temperature, this change will result in a variation of the

line’s equivalent width. All these factors will lead to the so called line-profile varia-

tions (LPV). Figure 3.6 displays the temporal variations of the CaI line at 6122.21 Å

for the δ Scuti star ρPuppis (Mathias et al., 1997).

3.2.1.1 Selection of lines

Not every line is eligible for frequency analysis and mode identification, because

certain criteria have to be fulfilled. Here I am following the selection process by
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Zima et al. (2006).

Most importantly, the absorption line has to be unblended, i.e., it must not

overlap with any other atomic or molecular line. In other words, the signature of

the pulsation across the line profile has to originate from one element only, without

being contaminated by any other features.

Another important property of the line is a great depth and sharpness, as in this

case the LPVs are more pronounced (Aerts et al., 2010). Metal lines are therefore

to be favored over hydrogen or helium lines. However, metal absorbers may be

sensitive to small local temperature changes, which, as explained above, can result

in EW variations. Since these variations have to be taken into account for mode

identification, it is advisable to choose lines which show no time dependence in EW .

De Ridder et al. (2002) studied the temperature and EW variations of slowly

pulsating B stars and slowly rotating β Cephei stars using the SiII doublet and the

SiIII triplet around 4130 Å and 4560 Å, respectively. Only for a few targets they

found a clear harmonic signal in EW . For the other objects the EW phase dia-

grams had a strong scatter due to multi-periodicity. Hence, the used silicon lines

are mostly insensitive to temperature variations and thus very suitable for mode

identification in B stars. They further argue that the EW variations are therefore

not adequate enough to study the pulsation modes of B stars. Unfortunately, for

δ Scuti stars no investigations of similar accuracy concerning the temperature de-

pendence of absorption lines have been conducted so far (Aerts et al., 2010).

If more than one line should be used for the analysis, it is important to choose

absorbers which have a similar behavior over time. Thus, it is best to use lines

originating from the same element in preferably the same ionization state. This is of

especial importance when the lines are to be combined in order to achieve a higher

S/N (Zima et al., 2006).

3.2.2 The moments of the line

The n-th moment in integration is defined as the integral over the product of a

variable to the power n and a function of this variable. The moments of the line

profile I(v, t) at a time t, as a function of the velocity v can therefore be written as

follows:
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〈vn〉I(t) =

∫ +∞
−∞ vnI(v, t)dv∫ +∞
−∞ I(v, t)dv

(3.21)

(Zima, 2005). Here, v represents the Doppler velocity, a combination of pulsational

and rotational velocity in a certain region on the stellar surface.

In theory all moments are necessary in order to reproduce the whole information

that can be extracted from the line profile. In practice, however, the first three

moments contain the most important information and are usually sufficient for the

purpose of mode identification. Also, the noise increases with increasing order of the

moments and is higher for even moments, compared to odd moments. Moreover,

they can be explained with the following physical properties:

• The first moment can be explained as the centroid of the line and the average

velocity in the line-of-sight, i.e., the radial velocity.

• The second moment measures the variance across the line.

• The third moment represents the line’s skewness.

The moment of order 0 is a measure for the equivalent width and, moreover, is

the denominator in Equation (3.21). Hence, all moments are normalized to EW and

therefore corrected for small changes in temperature and flux (Aerts et al., 2010;

Zima, 2005).

3.2.2.1 Frequency analysis and mode identification with the moments

All further temporal variations of the moments can now be interpreted as signatures

of the stellar pulsation. The frequency analysis methods explained above are appli-

cable and by these means, the oscillation frequencies can be detected.

The theoretical expression for the line-profile variations I(v, t) in Eq. (3.21) can

be calculated from a set of equations. Thus, the pulsational quantum numbers (`,m)

can be identified. These calculations are explained completely by Aerts et al. (1992).

The moments computed from an observed series of spectra can then be compared

to the theoretical moments. By minimizing a discriminant, a good estimation of

certain parameters (`,m, vp, i, v sin i and σ) can be made.
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The moment method is more sensitive to low-degree modes (` ≤ 4), as was

determined by de Pauw et al. (1993) in an accuracy test. Especially the first moment

is subject to partial cancellation effects, which lead to smaller amplitudes for modes

with ` > 4. Furthermore, Aerts et al. (1992) state that this method only works for

slowly rotating stars (v sin i ≤ 50 kms−1).

3.2.3 The Fourier parameter fit method

The main idea of the Fourier parameter fit method (FPF), developed by Zima (2005)

as an enhancement to the pixel-by-pixel method, is to analyze the variation of the

line profile for each wavelength bin separately. Thereby, the temporal variation of

each bin is transformed into the frequency domain by means of a Fourier analysis (see

Section 3.1.1). In this process a two-dimensional amplitude spectrum is produced,

showing not only the variation of amplitude as a function of frequency, but also

across the entire line profile. Figure 3.7 shows such an amplitude spectrum. A

more practical approach, however, is the analysis of a one-dimensional amplitude

spectrum (see right-side plot of Fig. 3.7). This can be obtained by calculating the

mean amplitude for each frequency across the line. Since all variations are integrated

over the entire profile, this method is very sensitive to high-degree modes (` > 4).

This is a main advantage compared to the moment method (see Section 3.2.2), which

is much more prone to partial cancellation effects.

After all significant oscillation frequencies have been detected, the Fourier pa-

rameters can be determined by means of a least-squares fit. These are the zero point

Zλ as well as the amplitude Aλ and the phase φλ across the line. By keeping the

frequency constant, it is possible to calculate the deviations from wavelength bin to

wavelength bin of Aλ and φλ. These results will later be used for mode identification.

The parameters of the pulsation modes can be determined by comparing the

observed values to theoretical expectations of Aλ and φλ, as shown in Figure 3.8.

Therefore, a theoretical line profile needs to be calculated and a model fitting for

amplitude and phase are derived. A goodness-of-fit parameter then determines the

model that provides the best approximation of the variation of Aλ and φλ. However,

it is not possible to pinpoint the correct solution among several models that all fulfill

a certain goodness of their fit. To remedy this handicap, Zima (2006) introduced

a χ2-test (explained below in more detail) to the method in order to distinguish

between the best fitting models. A genetic optimization algorithm is applied to

ensure a precise and reliable selection process. This makes the FPF method a very
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Figure 3.7: A two-dimensional Fourier transform of the pixel-by-pixel variations of a spectral line.
The amplitude is coded with the color scheme shown on the right-hand side of the diagram. The
top panel displays the mean line profile in black and the standard deviation of the mean in red. The
diagram on the right displays the one-dimensional frequency spectrum, i.e., the average amplitude
across the pixels for each frequency. Diagram taken from Zima (2005).

robust technique for mode identification, furthermore allowing the calculation of the

parameters `,m, vp, i, v sin i and σ.

As the variations in the line profile are studied in great detail, it is crucial to

obtain spectra of high resolving power and a good S/N. A high stellar rotation

(v sin i > 50 kms−1) is of further importance, since the rotational velocity leads to

an additional broadening and therefore better resolved features within the line.

3.2.3.1 Chi-square test

A χ2-test tries to find the goodness of the fit of a theoretical model to an observed

sample, assuming the validity of the null hypothesis. This hypothesis says that two

groups of samples which are mutually exclusive, do not differ from each other in any

way, i.e., have the same distribution.
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Figure 3.8: The Fourier parameters zero point, amplitude and phase (from top to bottom) of a
radial mode in simulated data. The red line is a model plot for the values (`,m) = (0, 0). From
Zima (2005).

For N independent observations oi, with a variance σ2
i and a theoretical fit fi

for each measurement, χ2 is defined as

χ2 =
N∑
i=1

[
(oi − fi)2

σ2
i

]
. (3.22)

By normalizing χ2 by the degrees of freedom ν = N −m, m being the number

of free parameters, one receives the reduced χ2
ν :

χ2
ν =

χ2

ν
. (3.23)

Whenever the null hypothesis is true, the result of the test will be χ2
ν = 1. For

values of χ2
ν < 1, Equations 3.22 and 3.23 inevitably lead to (oi − fi)

2 < σ2
i or

(oi − fi)
2 < ν, respectively. Thus, the fit is better than the observational errors,

which is not necessarily a better result. The application of the χ2-test to the FPF
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method, using the complex amplitudes of the Fourier analysis, is done by Zima

(2006) in the following way:

χ2
ν =

1

2nλ −m

nλ∑
i=1

[
(AoR,i − AtR,i)2

σ2
R,i

+
(AoI,i − AtR,i)2

σ2
I,i

]
, (3.24)

with nλ being the number of pixels across the line and Ao, At denoting the ob-

served and theoretical amplitude, respectively. The real part of the amplitude is

written as AR = Aλ cosφλ, while its imaginary part is AI = Aλ sinφλ. σ2 is the

variance of the observations and can also be separated in a real and an imaginary

part.

For pulsations with low amplitudes, the zero point Zλ can be regarded as pul-

sationally independent. By assuming a non-pulsating star, a theoretical fit to the

observed value Zλ allows the determination of a series of parameters. The projected

rotational velocity v sin i, the intrinsic line width σ and the equivalent width EW

describe the properties of the line profile, which are independent of the pulsations

and, hence, equal for all pulsation modes.

3.2.3.2 Genetic optimization algorithm

In order to define the model that approximates the observed values best, a genetic

optimization algorithm is applied. As the name implies, this method mimics the

way the natural evolutionary selection process works, by favoring better adapted

individuals.

A number of n starting individuals with stochastically selected properties is set

as the first generation. The goodness-of-fit, i.e. the χ2
ν , which is calculated for each

individual, decides whether or not it is eligible to pass on its genetic information. As

soon as a group of parents is selected, their attributes, which are coded as a string

of binary bits, are exchanged, in order to create new descendants. By randomly

inverting single bits of individuals, mutations are created to ensure that the full pa-

rameter space is taken into account and to find the global minimum. The members

of the new generation are then again tested for their fitness and used for another

iteration of the algorithm. Once a satisfying minimum is found, or a certain number

of generations is reached, the process of evolutionary selection and reproduction is

stopped.

45



3 Methods

The parameters to be optimized lie within a certain interval, with a step size that

can be defined before the algorithm is started. Also, the size of the population in one

generation and the number of maximal iterations are set beforehand. These values

largely affect the time in which a global minimum is reached. A more precise search

of the parameter space and a higher number of individuals will result in longer com-

putational times. Furthermore, it is necessary to perform a separate optimization

for each combination of (`,m), since the estimation of discrete parameters proves to

be very difficult (see Section 3.1.2).
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Results

4.1 The absorption lines

The absorption lines used for the analysis were proposed by Castanheira et al. (2008).

As already explained in Section 3.2.1.1, the most important criterion for the selection

of the lines is that they are unblended. Furthermore, they need to be deep, which

is the case for the two FeII lines.

Since the first attempt at mode identification yielded very high χ2 values for both

lines, but especially for the line at 4549 Å, the lines were checked for their eligibility.

A synthetic spectrum with a temperature of Teff = 6800 K, and a surface gravity of

log g = 3.2 was calculated. When the synthetic spectrum is rotationally broadened

by a projected rotational velocity of v sin i = 120 kms−1, the line at 4508.288 Å

becomes slightly blended at the wings (see Figure 4.1). This cannot be avoided, as

for a star with such a high v sin i most lines are blended. Therefore, the line was

selected for the analysis.

However, the line at 4549.474 Å is highly blended by TiII at 4549.617 Å, already

at zero velocity (see Figure 4.2). Thus, this line was omitted for the mode identifi-

cation. Since it is not so crucial for frequency analysis, whether the line is blended

or not, the frequencies found for this line are still listed below. Also, they are in

good agreement with the results of the analysis of the line at 4508 Å.

4.2 Frequency analysis

All results were obtained using the software FAMIAS (Zima, 2008).

Prior to the analysis, all spectra were checked thoroughly for flaws. Those with

emissions due to cosmic rays or with very strong noise were deleted, since they are
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Figure 4.1: The black line represents the synthetic spectrum with the properties of Teff = 6800 K,
log g = 3.2, and zero velocity. The rotationally broadened synthetic spectrum with a v sin i =
120 kms−1 is represented by a red line. Indicated by the blue dashed line is the line center at
4508.288 Å. Credits to Paul Beck.

Figure 4.2: A synthetic spectrum with the same properties as the spectrum in Figure 4.1. The
black line is the synthetic spectrum at zero velocity, while the red line is the synthetic spectrum
rotationally broadened by a v sin i of 120 kms−1. The line center at 4549.474 Å is marked by the
green dash-dotted line. Credits to Paul Beck.

48



4.2 Frequency analysis

Figure 4.3: The frequencies of the line 4508 Å.

corrupt and unfeasible for our purpose. In total nine spectra were dropped. The

remaining 758 measurements were weighted according to their S/N, whereas spectra

of higher quality received a higher weight. Thus, the noise of the Fourier spectrum

was kept low.

The frequency analysis was performed by means of a Fourier transform. After

the periodogram was compared to the spectral window (see Fig. 3.5), the highest

peaks were selected for a least-squares fitting to optimize the Fourier parameters

and to calculate the S/N of each mode (see Section 3.1). Thereby, the deviations of

amplitude and phase across the line are derived. The computed fit was then used to

prewhiten the data. This process was iterated until the noise level in the amplitude

spectrum was reached and no more significant frequencies could be found. Con-

sequently, all frequency peaks with an amplitude S/N ratio < 4 were not included

(Breger et al., 1993).

Figure 4.4 displays the amplitude spectrum of the original data (top panel) and

four periodograms of prewhitened data. The strong one-day aliasing obscures most

frequencies and the real peaks only become visible after the main periodicities are

subtracted from the signal. The bottom panel of Fig. 4.4 shows the last obtained
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Table 4.1: Frequencies found in the two FeII lines 4508 Å and 4549 Å. The frequency resolution
is 0.01 cd−1 and the average error in amplitude is 0.08 kms−1 and 0.1 kms−1, respectively. The
frequencies f13 and f18 are all < 1.2 cd−1. Those as well as f3 and f8 can be explained by the
length of the data set, the different runs as well as longer gaps between the observations.

Frequency Amp. 4508 Å Amp. 4549 Å

[cd−1] [km s−1] [km s−1]

f1 7.38 0.96 2.1

f2 5.85 0.90 2.4

f4 5.04 0.53 1.3

f5 8.59 0.50 1.6

f6 8.65 0.41 0.8

f7 8.17 0.41 0.7

f9 5.53 0.38 0.9

f10 6.12 0.37 0.8

f11 6.68 0.34 0.7

f12 4.07 0.37 0.7

f18 4.75 0.27 0.7

f3 0.0104 0.71 2.0

f8 0.0603 0.4 -

Fourier spectrum. Although there seems to be still some periodicity left in the data,

the noise level was already too high to find reliable frequency peaks. Figures 4.6 to

4.11 display the results of the least-squares fitting of all significant frequencies.

The intrinsic frequencies of the star are listed in Table 4.1 and are displayed

graphically in Figure 4.3. The results are in good agreement with previous photomet-

ric studies (see Section 1.4). However, the frequencies f6 = 8.65 cd−1, f7 = 8.17 cd−1,

and f12 = 4.07 cd−1 could only be detected in the spectroscopic data set.

The general increase in noise toward lower frequencies in Fig. 4.4 can be explained

by the short length of the data set, which only spans over four months, and the long

gaps between the different runs. As they allow periodicities of several days to be

fitted to the data, many frequency peaks < 1 cd−1 occur. The most significant low-

frequency peak is f3 = 0.0104 cd−1, which is ∼ 1/T , with T = 96 d, resembling the

length of the data set.

While the last detected frequency, f18 = 4.75 already has an amplitude below

the significance limit in the data set of the line 4508 Å, it has a higher S/N in the
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Table 4.2: The pulsational independent parameters.

v sin i 105.3± 0.7 kms−1

EW 15.12± 0.01 kms−1

σ 8.9± 0.4 kms−1

dZ −21.59± 0.04 kms−1

data set of the line 4549 Å and was already confirmed by photometry (Breger et al.,

1999; Breger, 2000b). For these reasons, a mode identification was performed for

this frequency as well. The results, however, should be treated with caution.

4.3 Mode identification

The mode identification was carried out by means of the Fourier parameter fit

method (see Section 3.2.3), implemented in FAMIAS (Zima, 2008). Thereby, theo-

retical models are fitted to the amplitude across the line and phase across the line.

A χ2-test was then applied to derive the significance of the fit.

First, the zero point profile (see Figure 4.5), which is identical for every pulsation

mode, is fitted with a non-rotating model to derive starting values for the pulsa-

tional independent parameters. These are the inclination i, the projected rotational

velocity v sin i, the equivalent width EW , the intrinsic width σ and the zero point

offset dZ. Since the pulsations still contribute to the width of the zero point, these

parameters were kept variable for the fitting of amplitude and phase of each mode.

The intervals within which the free parameters were calculated, were narrowed in

an iterative process until they were within an acceptable error range (see Table 4.2).

While the limits and step rate of the pulsational independent values were equal for

each mode in every iteration, the interval of the line-profile parameters were defined

for each mode separately.

A definite value for EW and dZ could already be determined after a few iter-

ations. Thus, they were kept constant for all further calculations. However, the

scatter of i, v sin i, and σ was much larger. The values of v sin i and σ could only

be calculated within a slightly larger error range than EW and dZ, and were set to

constant values for the last iteration.

Tables 4.3 to 4.5 display the five to eight best combinations of (`,m) with the

pulsational velocity vp, i, v sin i, and σ set as free parameters. The results of the
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4 Results

Figure 4.4: One-dimensional Fourier spectra of the wavelength-bin variations. The amplitude is
the mean amplitude across the line per frequency with a unit relative to the continuum level. Each
panel displays a periodogram prewhitened by the frequencies indicated in the right top. Note that
the amplitude scale changes from top to bottom.
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4.3 Mode identification

Figure 4.5: The zero-point profile of the line 4508 Å.

calculations with v sin i, EW , σ, and dZ set to constant values, are listed in Ta-

ble 4.6. Only the models with the lowest χ2
ν value are shown. The slight increase

in χ2
ν compared to the previous results can be explained by the uncertainty of the

derived v sin i and σ.

On the other hand, it was not possible to derive the inclination i. Although most

of the displayed results tend to favor a higher inclination from ∼ 66◦ to ∼ 88◦, the

many outliers and the strong scatter prevented a clear determination of the value of i.

The mode parameters can be determined by fitting the amplitude and phase

across the line (displayed in Figs. 4.6 to 4.11). Whereas the phase is especially sen-

sitive to the azimuthal order m, the degree ` is defined by the amplitude. However,

` values derived by means of multicolor photometry are more reliable than the re-

sults obtained by an analysis of the line-profile variations. On the other hand, the

spectroscopic mode identification is much more suitable to determine the value of

m.

Positive gradients in phase (see right panel of Fig. 4.6, f1 for an example) result

in negative values of m, thus it is a retrograde mode. On the other hand, a negative

gradient in phase (for example the phase of f2, see left panel of Fig. 4.6) means a

positive value for m and therefore a prograde mode. A not uniformly continuous

gradient indicates an axisymmetric mode (m = 0). For the modes f4 = 5.05 cd−1,

f10 = 6.12 cd−1, f12 = 4.07 cd−1, and f18 = 4.75 cd−1 this case cannot be ruled out.
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4 Results

Figure 4.6: The amplitude and phase across the line of f1 = 7.38 cd−1 (left panel) and f2 =
5.85 cd−1 (right panel), derived by means of a least-squares fit of all significant frequencies.

Figure 4.7: The amplitude and phase across the line of f4 = 5.05 cd−1 (left panel) and f5 =
8.59 cd−1 (right panel).
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4.3 Mode identification

Figure 4.8: The amplitude and phase across the line of f6 = 8.65 cd−1 (left panel) and f7 =
8.17 cd−1 (right panel).

Figure 4.9: The amplitude and phase across the line of f9 = 5.53 cd−1 (left panel) and f10 =
6.12 cd−1 (right panel).
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4 Results

Figure 4.10: The amplitude and phase across the line of f11 = 6.68 cd−1 (left panel) and f12 =
4.07 cd−1 (right panel).

Figure 4.11: The amplitude and phase across the line of f18 = 4.75 cd−1.
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4.3 Mode identification

Table 4.3: The best combinations of (`,m) and the best values for the mode parameters are listed
for each mode. The velocity amplitude vp, the projected rotational velocity v sin i, and the intrinsic
width σ are in units of kms−1, while the inclination angle i is expressed in degrees. All results
were derived by means of the FPF method. While v sin i, σ, and i are set as free parameters, the
other pulsational independent quantities EW and dZ were set to the constant values 15.12 kms−1

and −21.59 kms−1, respectively.

f1 = 7.38 cd−1

χ2
ν ` m vp i v sin i σ

19.57 3 −1 44.29 56.7 104.6 9.2

26.06 3 −3 10.28 53.8 105.9 8.8

26.68 3 −2 10.98 37.6 105.8 8.7

31.73 2 −2 15.94 34.8 105.7 8.8

38.45 2 −1 11.34 30 105.7 8.7

f2 = 5.85 cd−1

χ2
ν ` m vp i v sin i σ

35.16 3 2 0.48 31.9 105.5 9.3

46.67 3 1 2.38 35.7 105.8 8.5

56.81 2 2 0.95 30 105.8 8.7

59.86 2 1 5.24 71.9 105.7 8.9

60.23 3 3 0.48 42.4 105.6 9.4

f4 = 5.05 cd−1

χ2
ν ` m vp i v sin i σ

14.09 2 −1 61.49 87.1 104.3 8.9

18.08 3 0 24.98 84.3 104.7 9.4

22.44 2 0 8.51 67.1 105.9 8.7

22.54 1 −1 10.43 39.5 105.9 8.7

23.09 3 −2 33.76 86.2 105.3 8.5

f5 = 8.59 cd−1

χ2
ν ` m vp i v sin i σ

23.76 3 1 7.29 51 105.9 8.7

23.96 3 2 4.59 71 105.9 8.6

26.46 2 2 3.24 89 105.9 8.6

27.13 2 1 14.71 81.4 105.9 8.5

27.34 1 1 6.53 39.5 105.9 8.6
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4 Results

Table 4.4: Table 4.3 continued.

f6 = 8.65 cd−1

χ2
ν ` m vp i v sin i σ

15.50 8 1 25.51 81.4 104.8 9.2

16.78 9 2 19.21 80.5 104.8 9

19.05 10 2 15.75 73.8 105.1 9

19.67 10 1 20.47 83.3 104.8 9.4

20.01 8 2 19.53 75.7 105 9.1

20.20 9 1 21.73 71.9 105.1 9.1

20.55 7 1 26.14 74.8 105 9.2

20.80 6 1 34.65 86.2 104.5 9.1

f7 = 8.17 cd−1

χ2
ν ` m vp i v sin i σ

17.37 12 3 7.45 77.6 105.3 8.5

17.46 11 2 11.18 78.6 105.3 8.6

17.55 11 3 8.04 78.6 105.3 8.4

17.67 10 1 16.18 80.5 105.1 8.9

17.92 10 2 11.86 79.5 105.3 8.7

18.39 9 1 17.25 82.4 105.1 9.4

18.53 12 2 9.22 72.9 105.5 8.5

19.5 12 1 13.24 76.7 105.3 8.9

f9 = 5.53 cd−1

χ2
ν ` m vp i v sin i σ

21.34 3 2 1.07 66.2 106 8.6

22.18 3 1 1.13 37.6 106 8.6

22.40 2 1 1.64 45.2 105.9 8.6

24.26 2 2 0.38 31 106 8.7

25.16 1 1 2.33 81.4 106 8.6
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4.3 Mode identification

Table 4.5: Table 4.4 continued.

f10 = 6.12 cd−1

χ2
ν ` m vp i v sin i σ

15.90 3 0 34.71 86.2 104.5 9.4

17.22 2 −1 38.0 87.1 105.3 8.9

21.24 1 −1 5.09 57.6 106 8.5

21.47 2 0 7.78 66.2 105.9 8.6

21.54 3 −2 37.7 88.1 105 8.7

f11 = 6.68 cd−1

χ2
ν ` m vp i v sin i σ

14.54 2 −1 66.35 88.1 104.3 9.4

20.33 1 −1 4.94 66.2 106 8.6

21.57 2 −2 3.18 84.3 106 8.6

21.78 3 −1 5.29 44.3 106 8.6

22.62 3 −2 5.65 75.7 105.9 8.6

f12 = 4.07 cd−1

14.98 7 0 7.56 84.3 105 9.3

15.02 8 −1 11.65 81.4 104.9 9.4

15.86 5 0 9.45 86.2 105.1 9.2

16.58 6 −1 15.12 83.3 104.9 9.4

18.56 7 −2 24.57 85.2 104.3 9.3

18.74 5 −2 34.33 86.2 104.3 8.5

19.88 5 −1 10.39 71 105.6 9.2

f18 = 4.75 cd−1

χ2
ν ` m vp i v sin i σ

12.67 2 −1 59.65 89 104.4 8.7

14.57 3 0 20.9 87.1 104.8 9.4

20.53 1 −1 5.1 33.8 106 8.6

20.88 3 −1 3.82 88.1 106 8.6

20.90 2 −2 2.8 59.5 106 8.5
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4 Results

Table 4.6: The models with the lowest χ2
ν value are listed for each mode. The pulsational indepen-

dent parameters were set as the constant values, which are mentioned in Table 4.2. Since v sin i
and σ are not set as free parameters, the χ2

ν values are slightly higher than the respective results
in Tables 4.3 to 4.5.

Frequency χ2
ν ` m vp i

[cd−1] [kms−1]

f1 7.38 20.63 3 −1 37.48 55.7

f2 5.85 36.85 3 2 0.47 31.9

f4 5.05 15.97 2 −1 48.59 86.2

f5 8.59 24.73 3 1 7.39 50

f6 8.65 15.95 8 1 23.62 81.4

f7 8.17 17.50 11 2 10.9 78.6

f9 5.53 22.72 3 2 1.32 70

f10 6.12 16.87 2 −1 40.0 87.1

f11 6.68 17.01 2 −1 53.33 88.1

f12 4.07 15.08 7 0 7.24 84.3

f18 4.75 14.05 2 −1 47.16 88.1

Figs. 4.7 (left panel), 4.9 (right panel), 4.10 (right panel), and 4.11 clearly show

smaller to larger bumps in the phase plot, which could have influenced the results.

Moreover, the derived m values are in good agreement with the findings for the

phase variations of the modes by Breger (2010).

The amplitude across the line of each mode shows a large scatter from pixel

to pixel. This leads to larger deviations between the model fit and the measure-

ments, which could explain the generally high χ2
ν values. In addition, the poorly

fitted amplitude causes an overestimation of the degree `. The ` values, which were

determined using multicolor photometry (see Table 1.1), lie all below the spectro-

scopic results. Since this method is more sensitive to the degree of the mode, the

photometric results should be favored.

Those frequencies which were not detected in the photometric data could be

assigned with an ` > 4. Partial cancellation effects lead to small amplitudes for

high-degree modes in photometric light curves, which measure the total brightness

integrated over the stellar disc (see Section 1.1.2). Therefore, the high ` values

derived for the modes f6 = 8.65 cd−1, f7 = 8.17 cd−1 and f12 = 4.07 cd−1 are com-

patible with the current theory of non-radial pulsations.
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Chapter 5

Conclusion

In this thesis I present the results of the analysis of the spectroscopic measurements

of the δ Scuti star 4 CVn obtained at McDonald Observatory (Davis Mountains in

West Texas, USA) in the year 2010. The reduction process of the highly resolved

stellar spectra was improved by introducing a correction for the instrumental blaze

function. Also, the manual continuum normalization conducted with a special IRAF

task was omitted in favor of an automated procedure. This procedure was carried

out with a Python script specifically coded for the purpose of this research and aimed

at raising the wings of the selected lines to a uniform value. Since the star is a very

fast rotator (v sin i = 105.3 kms−1), the absorption lines are heavily broadened and

there is nearly no continuum visible in the spectra. Thus, the normalization of the

line wings led to much better results than the fitting of the shape of the orders with

the IRAF task continuum. All further analysis of the line-profile variations were

performed with the software FAMIAS.

After a thorough inspection of every measurement, the line moments were cal-

culated to investigate the properties of the line. The non-sinusoidal shifts in the

first moment, which represents radial velocity, led to the discovery, that the star is a

single-lined binary with an excentric orbit with a period of 124.3 d. This trend was

corrected with a Keplerian orbit-fit.

Subsequently, the variations of the profiles of two FeII absorption lines at 4508.288 Å

and 4549.474 Å were studied by means of the pixel-by-pixel method. Unfortunately,

in the course of the research the second line turned out to be highly blended with the

TiII line at 4549.617 Å, and thus it proved unsuitable for the attempted methods.

The first step of the analysis involved a Fourier analysis of the temporal variations

of each wavelength bin of the line profile to search for frequencies in the data set.
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5 Conclusion

The amplitude and the phase across the line was then obtained by means of a least-

squares fitting. These Fourier parameters were then fitted with theoretical values

derived from the analysis of synthetic line profiles. By these means, it was possible

to determine the parameters of the line profile and the properties of the mode.

The applied methods, i.e., the Fourier analysis, the least-squares algorithm, the

moment method, the pixel-by-pixel method and its advancement, the Fourier pa-

rameter fit method, as well as the theory of the line-profile variations were studied

in detail and are elaborately explained in this thesis.

The evaluation led to the detection of many pulsation modes, most of which

were already discovered in photometry. However, three of the frequencies could only

be found in the spectroscopic data set. The subsequent mode identification yielded

high ` values for these modes. This result is not surprising, since partial cancellation

effects aggravate the detection of high-degree modes in photometry. Furthermore,

I was able to assign values of ` and m to the assumed intrinsic frequencies of the

star. Also, the line parameters and the projected rotational velocity v sin i could

be derived. The new value of v sin i = 105.3 ± 0.7 kms−1 is slightly lower than the

previously determined with v sin i > 120 kms−1 (Castanheira et al., 2008).

The results for the azimuthal order m are in especially good agreement with

the results of Castanheira et al. (2008) and of Breger (2010), as far as the phase

variations of retrograde and prograde modes are concerned. On the other hand, the

degrees of the modes derived during my research are slightly higher compared to

previous photometric results and those of Castanheira et al. (2008). Also, I could

only obtain high χ2
ν values > 10 for the calculated models, indicating that none of

the results have a high significance.

The deviations between the results presented here and the outcome of the anal-

ysis of the data set in 2008 originate from a slightly different approach chosen by

Castanheira et al. (2008). For instance, the reduction process was altered compared

to Castanheira et al. (2008), as they performed a manual continuum normalization.

Secondly, the new discovery of the binary system allowed the correction of the drift

in radial velocity due to the orbital motion, which was not detected by Castanheira

et al. (2008). Furthermore, they used the highly blended FeII line at 4549 Å and

combined it with the nearly unblended line at 4508 Å to improve the S/N. The re-

sults published by Castanheira et al. (2008) are derived from the analysis of the

combined line-profile variations.
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However, the origin of the high χ2
ν values still need to be investigated. One

reason could be the large scatter of the amplitudes across the line for each mode

which leads to large discrepancies between the model fit and the measurements.

An attempt to remedy this situation could be to find other unblended lines in the

spectra and rerun the analysis. Also, the combination of several unblended metal

absorption lines could help to improve the S/N and thus minimize the noise of the

spectra.

The star 4 CVn is one of the most detailed studied δ Scuti stars (Breger et al.,

1999; Breger, 2000b; Breger et al., 2008; Breger, 2010) with photometric light curves

obtained over several decades and three years worth of highly resolved time-series

spectroscopy. Thus, a modification of the analysis of the spectroscopic line-profile

variations of all the three years, 2008, 2010, and 2011 would be a suitable topic

of further investigations. More accurate mode identification could serve as a good

input for seismic modeling and in this way help gain promising new insights in the

field of asteroseismology.
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KU	  Leuven,	  Instituut	  voor	  Sterrenkunde	  
Celestijnenlaan	  200D,	  3001	  Leuven,	  Belgien	  
	  
Abschluss	  mit	  Auszeichnung	  
Titel	  der	  Bakkalaureatsarbeit:	  „Einführung	  in	  die	  Theorie	  der	  
Braunen	  Zwerge“	  
	  
Bakkalaureatsstudium	  Astronomie	  
Universität	  Wien,	  Institut	  für	  Astronomie	  
Türkenschanzstraße	  17,	  1180	  Wien	  
	  
Auslandsaufenthalt	  an	  der	  University	  of	  Texas	  at	  Austin	  
2515	  Speedway,	  Stop	  C1400	  Austin,	  Texas	  78712-‐1205,	  USA	  
	  
Abschluss	  mit	  Matura	  
	  
HTBLVA,	  Höhere	  Lehranstalt	  für	  Elektronische	  
Datenverarbeitung	  und	  Organisation	  
Ausbildungsschwerpunkt:	  Medientechnik	  und	  Medienwirtschaft	  
Spengergasse	  20,	  1050	  Wien	  
	  
BRG	  XIX,	  Allgemeinbildende	  Höhere	  Schule,	  
Krottenbachstraße	  11-‐13,	  1190	  Wien	  



Berufliche	  Laufbahn	  
	  

2006	  –	  2012	  
	  
	  
	  

2009	  –	  2011	  
	  
	  

März	  –	  Juni	  2011	  
	  
	  

März	  –	  Juni	  2010	  
	  
	  

Okt.	  2009	  –	  Jan.	  2010	  

Programmiererin	  
mv	  edv	  
Mühlgasse	  1	  /	  Objekt	  8,	  2353	  Guntramsdorf	  
	  
Wissenschaftliche	  Projektmitarbeiterin	  
Projekt	  „Stellare	  Einblicke“,	  Leitung:	  Prof.	  Dr.	  Michel	  Breger	  
	  
Tutorin	  für	  das	  Astronomische	  Anfängerpraktikum	  
im	  4.	  Semester	  Bakkalaureatsstudium	  Astronomie	  
	  
Tutorin	  für	  das	  Astronomische	  Anfängerpraktikum	  
im	  4.	  Semester	  Bakkalaureatsstudium	  Astronomie	  
	  
Tutorin	  für	  die	  Einführung	  in	  die	  Astronomie	  I	  
im	  1.	  Semester	  Bakkalaureatsstudium	  Astronomie	  

	  

Beobachtungsaufenthalte	  
	  

Okt.	  –	  Nov.	  2011	  
	  
	  

18.	  Febr.	  –	  05.	  März	  2010	  
25.	  März	  –	  09.	  Apr.	  2010	  

Beobachtung	  am	  Mercator	  Teleskop	  am	  
Observatorio	  del	  Roque	  de	  los	  Muchachos,	  La	  Palma,	  Spanien	  
	  
Beobachtung	  am	  2.1	  m	  Otto-‐Struve-‐Teleskop	  am	  
McDonald	  Observatory,	  Texas,	  USA	  

	  

Konferenzen	  
	  

20.	  –	  25.	  Mai,	  2012	  
	  
	  

21.	  –	  24.	  Febr.	  2012	  
	  
	  

10.	  –	  12.	  Mai,	  2011	  
	  

ESF	  Konferenz	  „The	  Modern	  Era	  of	  Helio	  and	  
Asteroseismology“,	  mit	  Posterpräsentation	  
	  
VAMDC	  Annual	  Meeting	  
Mitglied	  des	  Local	  Organizing	  Committee	  
	  
Workshop	  in	  „Pulsations	  of	  pre-main	  sequence	  stars	  and	  their	  
impact	  on	  stellar	  evolution“	  
Mitglied	  des	  Local	  Organizing	  Committee	  

	  

Publikationen	  
	  
Schmid,	  V.	  S.,	  Themessl,	  N.,	  Breger,	  M.,:	  „Spectroscopic	  Frequencies	  of	  4	  CVn	  in	  2010	  and	  
2011“,	  in	  Arbeit	  
	  

	  

Wien,	  am	  03.	  Sept.	  2012	  


