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1 Peroxisomes – versatile organelles 

1.1 The Microbody Family 

 

The characteristic of eukaryotic in contrast to prokaryotic cells is their compartmentalization 

into membrane-bound substructures. These organelles segregate metabolic pathways to tailored 

microenvironments thereby optimizing metabolite processing and adding spatial control over 

metabolic functions.  

In 1954, a new structure, the microbody, was described in mammalian cells as small, round-

shaped, single membrane-bound organelle (Rhodin, 1954). It was only in 1966 that de Duve and 

Baudhuin carried out the biochemical characterization (De Duve and Baudhuin, 1966) and described 

the microbody as hydrogen peroxide generating and degrading organelle, which led to the name 

“Peroxisome”.  

In fact, peroxisomes are present in every eukaryotic cell, from lower single cell eukaryotes to 

multicellular organisms. Peroxisomes are generally involved in the metabolism of lipids and also 

participate in a variety of other metabolic pathways ranging from hormone production to amino acid 

biosynthesis. Peroxisomes are versatile organelles and adapt their size, shape, number and even 

their protein content depending on the organism and tissue, and according to environmental 

conditions (Veenhuis and van der Klei, 2002). Indeed, specialized peroxisomes exist, that harbor 

exclusive metabolic pathways and hence, these peroxisomes are often named differently based on 

their major metabolic function (Hayashi et al., 2000; Pracharoenwattana and Smith, 2008). In plants, 

some peroxisomes contain enzymes of the glyoxylate cycle and are called glyoxysomes (Hayashi et 

al., 2000). Trypanosomes break down glucose in specialized peroxisomes, which are then called 

glycosomes (Michels et al., 2006). Further, peroxisomes often perform unique functions: In the firefly 

Photinus pyralis, peroxisomes harbor the light-generating enzyme luciferase (Keller et al., 1987), in 

the yeast Penicillium chrysogenum they take part in the biosynthesis of penicillin (Meijer et al., 2010), 

and in filamentous fungi, the function of Woronin bodies, peroxisome-derived organelles, is 

important for sealing septal pores (Jedd and Chua, 2000).  

Overall, metabolic pathways are seldom confined to one organelle. For instance, 

photorespiration requires chloroplasts, peroxisomes and mitochondria to collaborate. Hence, 

efficient communication and cooperation between organelles is required for metabolite exchange, 

acquisition of structural components or for adaptation to new conditions. Especially, the multi-

facetted roles of peroxisomes demand connectivity and cross-talk with other organelles. Indeed, 
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peroxisomes strongly depend on the endoplasmic reticulum (ER) and they share proteins and 

metabolites with mitochondria to properly maintain the organellar network as well as a functional 

metabolism in the cell (Mullen and Trelease, 2006; Neuspiel et al., 2008; Schrader and Yoon, 2007; 

Theodoulou et al., 2011).  

 

1.1.1 The metabolism of peroxisomes 

 

Peroxisomes participate in a variety of metabolic pathways, some of which exist in all 

organisms, others represent species-specific functions. Metabolic functions include - and - 

oxidation, fatty acid elongation, saturation and 4-desaturation, glycerol catabolism, ether lipid and 

isoprenoid biosynthesis, polyamine breakdown, lysine metabolism, purine and nicotinamid-adenin-

dinucleotide (NAD) salvage pathway and ketogenesis (Ashmarina et al., 1999; de Vet et al., 1998; 

Hayashi et al., 2000; Kovacs and Krisans, 2003; Mimouni et al., 1991; van den Bosch et al., 1992; Van 

Roermund et al., 1998; Wanders and Waterham, 2006a; Zaar et al., 1986). Strikingly, peroxisomes 

seldom harbor the complete set of enzymes of a certain metabolic pathway. For instance, while all 

steps of the -oxidation occur in peroxisomes, only part of the biosynthesis of higher isoprenoids 

takes place in the peroxisomal matrix.  

In contrast to other organelles, peroxisomes are capable of rapidly adjusting their protein 

content and adapt to new environments thereby influencing the entire cellular metabolism. The 

glycosomes of Trypanosoma brucei, which is living in the mammalian blood stream, contains almost 

exclusively glycolytic enzymes. This glycosomal population undergoes massive changes during 

differentiation into its parasite’s form living in the insect midgut which no longer utilizes glucose as 

main carbon source (Herman et al., 2008). Also in animals, the peroxisomal population may differ in 

the various tissues with regard to their number and enzymatic content, e.g., in hepatocytes, 

peroxisomes contain the enzyme bile acid-coenzyme A: amino acid N-acetyltransferase which is 

cytosolic in fibroblasts from the same organism (Pellicoro et al., 2007). Overall, in whichever tissue or 

organism, lipid metabolism constitutes the main function of peroxisomes.  

 

1.1.1.1 Peroxisomal lipid metabolism 

 

Cells process a plethora of lipids which derive either from the diet or are specifically 

synthesized in the cell. Lipids from the diet or adipose tissue are first modified to set free the fatty 
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acids in a process which can differ substantially. While most fatty acids are saturated with an even 

number of carbon atoms (14 to 26), some contain an uneven number of carbon atoms, some are 

mono- or polyunsaturated and some are even branched. All these fatty acids are eventually oxidized 

into C2-units (acetyl-CoA), which can be used for either energy generation under various metabolic 

conditions (tricarboxylic acid cycle (TCA-cycle), ketogenesis) or as building block for macromolecules 

(e.g., isoprenoids, prostaglandins).  

1.1.1.1.1 The peroxisomal lipid catabolism 

The majority of fatty acids is catabolized in a process called -oxidation (Figure 1). Here, 

every second carbon atom is sequentially oxidized and fused to coenzyme A yielding acetyl-CoA. In 

yeasts and plants, the -oxidation takes place exclusively in peroxisomes, whereas in mammals, only 

very long chain fatty acids (VLCFA) including polyunsaturated dicarboxylic fatty acids are processed in 

peroxisomes (Nguyen et al., 2008; Wanders et al., 2010). Indeed, fatty acids containing up to 18 

carbon atoms are oxidized in mitochondria in which the -oxidation directly feeds the obtained 

energy equivalents into ATP generation.  

 

Figure 1: Comparison of the -oxidation in peroxisomes and mitochondria in mammals. 
VLCFA are oxidized in peroxisomes identical to mitochondria except for the first oxidation. In 
mitochondria, the fatty acid is dehydrogenized using the cofactor FAD

+
, which subsequently 

reduces the Coenzyme Q for ATP generation. In peroxisomes, the hydrogen atoms are 
eventually passed onto O2 creating H2O2. This reactive oxygen species is degraded by catalase, 
thus this first peroxisomal oxidation results only in thermal energy. Once the fatty acids are 
shortened to about 18 carbon atoms, they escape the peroxisomal compartment and are 
actively transported via carnitine into mitochondria for further break-down. The peroxisomal 
acetyl-CoA is also used in the citric acid cycle (TCA cycle).  
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The major difference between mitochondrial and peroxisomal -oxidation lies in the 

recycling of the oxidizing agents used. In mitochondria, the first oxidation is achieved with the help of 

the co-factor FAD+, which recycles via feeding the hydrogen atoms to Coenzyme Q of the respiratory 

chain for ATP generation. The peroxisomal acyl-CoA oxidase also contains a flavin ring which 

however, is exposed to the solvent and transfers its hydrogen atoms onto elemental oxygen, O2, 

creating hydrogen peroxide, H2O2 (Nakajima et al., 2002). To prevent damage induced by this 

reactive oxygen species, H2O2 is degraded by peroxisomal catalase (ROS, see chapter 1.1.1.2 and 

Figure 1). Thus, this first peroxisomal oxidation does not preserve energy. In mammals, shortened 

acyl-CoA molecules are then actively transported to mitochondria for further break-down.  

Branched and cis-unsaturated fatty acids or those with uneven-numbered carbon atoms 

cannot be directly processed via β-oxidation and need additional enzymes or separate pathways to 

finally obtain molecules that can be fully oxidized. The proper decomposition of these fatty acids is 

not only a metabolic rationale to gain energy but is also vital to prevent the accumulation of 

substances or metabolites such as phytanic acid whose accumulation would be toxic (Wanders et al., 

2010). Phytanic acid or phytol are prominent components of our diet as products of the chlorophyll 

metabolism. They are processed via -oxidation in peroxisomes, which interestingly takes place in 

the cytosol in rodents (Figure 2, Singh et al., 1993).  

 

 

Figure 2: Peroxisomal -oxidation. A schematic representation of the key steps in 
peroxisomal α-oxidation. Phytanic acid, a catabolite of chlorophyll, is methylated at the Cβ 

position, inhibiting direct oxidation at this atom. To process this fatty acid via -oxidation, it is 
first oxidized at the Cα-atom using O2 and shortened by one carbon atom. The obtained 

pristanic acid is now amenable for -oxidation and further oxidized in peroxisomes and then 
in mitochondria.  
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The oxidation of phytanoyl-CoA to 2-hydroxyphytanoyl-CoA is carried out using elemental 

oxygen, O2. While phytanoyl-CoA is hydroxylated, 2-oxoglutarate accepts the other oxygen atom and 

is decarboxylated into succinate. Thus, unlike in the -oxidation, this reaction produces CO2, and not 

ROS (Jansen and Wanders, 2006; Wanders and Komen, 2007). Other enzymes involved in the 

peroxisomal lipid catabolism include the 2,4-dienoyl-CoA reductase, the 3,2-trans-enoyl-CoA 

isomerase which process unsaturated fatty acids prior to -oxidation and the malonyl-CoA 

decarboxylase (Gurvitz et al., 1998; He et al., 1995; Sacksteder et al., 1999).  

 

1.1.1.1.2 The peroxisomal lipid anabolism  

The major products of peroxisome lipid anabolism are ether lipids, including plasmalogens. 

These lipids are generated de novo in peroxisomes from glycerol and acyl-CoA. Acyl-CoA is first 

coupled to dihydroxyacetonephoshpate (DHAP) via an ester bond by dihydroxyacetonephosphate 

acyl-transferase (DHAPAT). The fatty acid is then replaced with a long chain fatty alcohol by 

alkyldihydroxyacetonephosphate synthase (ADHAPS). Further steps include the reduction to 1-alkyl 

glycerol-3-phosphate, the transfer of a second fatty acid to obtain 1-alkyl-2-acyl-glycerol-3-

phosphate, removal of the phosphate group and coupling to either ethanolamine or choline followed 

by a facultative desaturation (Hajra, 1995; Wanders, 2004b). Both, DHAPAT and ADHAPS are 

exclusively located in peroxisomes, while the other steps of the ether lipid biosynthesis are carried 

out in the cytosol and the ER.  

Isoprenoids are also synthesized in peroxisomes. These anabolites are the precursors of a 

range of substances, such as cholesterol, sterol hormones, heme or bile acids. While isoprenoids can 

be synthesized completely in the ER, their biosynthesis can also be carried out peroxisomes up to 

farnesyl pyrophosphate (Kovacs and Krisans, 2003; Kovacs et al., 2002) and all further steps take 

place in the ER. Importantly, the conjugation of bile acids to taurine or glycine occurs exclusively in 

peroxisomes of mammalian hepatocytes (Ferdinandusse et al., 2009; He et al., 2003; Kase and 

Bjorkhem, 1989; Pellicoro et al., 2007).  

Finally, the peroxisomal β-oxidation exerts also anabolic function as it constitutes a trimming 

mechanism in the formation of certain lipids. For instance, the fatty acid C22:6ω-3 is generated from 

linoleic acid via C24:6ω-3 using several elongation and desaturation steps. The final oxidation to 

obtain C22:6ω-3 is performed in peroxisomes (Sprecher et al., 1995).  
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1.1.1.2 Peroxisomal detoxification 

 

 Peroxisomes are often considered as cellular detoxifiers. Indeed, they contain manifold of 

enzymes that scavenge emerging reactive oxygen or nitrogen species (ROS, RNS). ROS typically 

contain either an oxygen radical as such, or a peroxide species which sporadically disintegrates 

homolytically yielding oxygen radicals. Singlet-oxygen is also a highly potent ROS. RNS encompass 

molecules of the NOx type, most notably peroxynitrate ONOO-, and (di)nitrogen dioxide, .NO2 and 

N2O3. If set free, both ROS and RNS react with DNA, proteins and lipids thereby damaging them. 

Despite the efforts of the cells to repair or exchange harmed molecules, damage induced by ROS and 

RNS can accumulate and implications for cancer and ageing have been proposed (Benz and Yau, 

2008; Dugan and Quick, 2005; Vigneron and Vousden, 2010; Waris and Ahsan, 2006; Ziech et al., 

2011). However, under controlled conditions ROS and RNS or precursors thereof are often used as 

signaling molecules (Brune et al., 2003; D'Autreaux and Toledano, 2007; Kalyanaraman, 2004).  

 

Figure 3: Peroxisomal DEtoxification mechanisms – ROS and RNS. Peroxisomal metabolism is 
a source for ROS. Fatty acid oxidation creates H2O2 and xanthin oxidase (XOD) generates O2

-
. 

These species are degraded by dedicated enzymes, such as catalase (CAT) or superoxide 
dismutase (SOD). If H2O2 homeolytically disintegrates, hydroxyl radicals are generated that 
preferably react with other hydroxyl groups, again leading to peroxide species which can be 
enzymatically reduced. Alternatively, H2O2 or other ROS can react with nitric oxide, and build 
the very reactive peroxynitrate radical that destroys any kind of molecule including lipids and 
proteins. However, under normal conditions, NO and also its glutathion (GSH) derivative 
(GSNO) are used in signaling.  
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 While peroxisomes contain ROS-scavenging enzymes such as catalase or the peroxiredoxins 

(e.g., PMP22), they are also major players in the generation of ROS and RNS (Figure 3, Angermuller et 

al., 2009; Antonenkov et al., 2009a; Bonekamp et al., 2009; Del Rio, 2011; Schonfeld et al., 2009; 

Schrader and Fahimi, 2004). The exact contribution of peroxisomes versus mitochondria with regard 

to redox balance remained unclear. However, a detailed study on the intraperoxisomal redox balance 

and the crosstalk with mitochondria shed new light on this topic (Ivashchenko et al., 2011). The 

authors showed by using redox-sensitive fluorescence marker proteins that the redox state inside 

peroxisomes is strongly influenced by the environment. Interestingly, mitochondria were strongly 

affected by ROS generated in peroxisomes of catalase-deficient cells. These findings place 

peroxisomes as ROS-signaling platform to a level equal to mitochondria. Indeed, correlations 

between production of peroxisomal ROS and ageing, inflammation and immune response have 

already been reported (Dixit et al., 2010; Koepke et al., 2007; Koepke et al., 2008; Terlecky et al., 

2006; Titorenko and Terlecky, 2011).  

Various other important ROS-unrelated detoxification processes occur in peroxisomes. 

Excessive retinal is removed by the dehydrogenase/ reductase SDR family member 4 present in 

peroxisomes in several organisms (Lei et al., 2003; Usami et al., 2003). Furthermore, localization 

studies on a thiol metalloendopeptidase, insulin degrading enzyme (IDE), showed its presence in 

peroxisomes (Kuo et al., 1994; Morita et al., 2000). This protein cleaves small molecules such as 

insulin or glucagon, but is also capable of degrading A peptides, the accumulation of which is known 

as critical cause of Alzheimer’s disease (Chesneau et al., 2000; Fernandez-Gamba et al., 2009; Qiu et 

al., 1998; Valera Mora et al., 2003). Indeed, in some mammalian organisms, peroxisomes were 

shown to protect against neurodegenerative diseases (Kou et al., 2011; Santos et al., 2005). Recently, 

the activity of IDE has been correlated to the cellular redox state outlining again the primordial role 

of peroxisomes as cellular detoxifiers (Cordes et al., 2011).  

 

1.1.1.3 Peroxisomes in yeasts 

 

Each Saccharomyces cerevisiae yeast cell typically contains 4-8 peroxisomes of 0.2-0.5µm 

diameter. In contrast to higher eukaryotes, yeasts do not entirely rely on the presence of 

peroxisomes. While peroxisomes are essential for plants and mammals, yeasts are able to grow 

without peroxisomes if supplemented with sugars as carbon source. This is due to the fact that the -

oxidation takes place exclusively in peroxisomes, and that yeasts do not rely on fatty acid oxidation 

when sugars are available. However, if grown on fatty acids as sole carbon source, such as oleic acid, 
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peroxisomes become essential which is also reflected by an increase in peroxisome number. 

Obviously, this makes yeasts an excellent model organism to study peroxisomes. Multiple yeast 

species have been used to analyze peroxisomal function and formation, including Saccharomyces 

cerevisiae, Hansenula polymorpha and Pichia pastoris (Erdmann et al., 1989; Liu et al., 1992; 

Veenhuis et al., 1979). While several metabolic functions are common to most species (e.g., -

oxidation of all fatty acids), some specialized functions are only present in the respective yeast 

species. For example, methanol oxidation takes place exclusively in peroxisomes in P. pastoris or H. 

polymorpha (van der Klei et al., 2006). Similar to the first oxidative step in the -oxidation, 

peroxisomes use elemental oxygen to produce formaldehyde from methanol which is subsequently  

fully oxidized in the cytosol via formic acid.  

A metabolic pathway common to all yeast species is the glyoxylate cycle. Herein, C4 

carbohydrate molecules are synthesized from C2-units enabling yeast cells to grow on alkane carbon 

sources. The glyoxylate cycle is initially identical to the TCA-cycle. Then, instead of the 

decarboxylation of isocitrate, it is split by isocitrate lyase into succinate and glyoxylate, the latter 

being subsequently condensed with acetyl-CoA through malate-synthase yielding malate. Finally, 

malate is oxidized to oxaloacetate by malate-dehydrogenase. While important steps occur 

doubtlessly in the peroxisomal matrix, isocitrate lyase and aconitase are present in the cytosol in 

yeast (Kunze et al., 2006). Indeed, the inherently necessary transport of glyoxylate metabolites 

through the peroxisomal membrane has been established in vitro using electrophysiological 

measurements confirming that the enzymes of the glyoxylate cycle are not exclusively present in 

peroxisomes (Antonenkov et al., 2009b).  

 Filamentous fungi grow as syncytium providing rapid growth and fast signaling. However, 

upon lesion of the plasma membrane, the septal pore has to be plugged to prevent cell death. 

Woronin bodies, hexagonal structures related to peroxisomes, serve to seal these septal pores in the 

plasma membrane in response to wounding and possibly also function in growth and development 

(Jedd, 2011; Jedd and Chua, 2000).  

 

1.1.1.4 Peroxisomes in plants 

 

Peroxisomes are indispensable for plant development and growth. Previously classified as 

leaf peroxisomes, gerontosomes, glyoxysomes and unspecialized peroxisomes, the differences in 

matrix protein content are only subtle, and hence it was proposed to refer to the term peroxisome 

only (Pracharoenwattana and Smith, 2008). These peroxisomes perform a variety of metabolic 
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functions depending on tissue and developmental stage (Hayashi and Nishimura, 2006). Similar to 

yeasts, plant peroxisomes are the only site of -oxidation for all fatty acids. Furthermore, important 

steps of the glyoxylate cycle (see section 1.1.1.3) take place in peroxisomes (Beevers, 1969; 

Eastmond and Graham, 2001).  

Photorespiration requires the function of three organelles, chloroplasts, mitochondria and 

peroxisomes, to cope with relatively high O2 concentrations. Herein, the enzyme RUBISCO adds 

oxygen instead of CO2 to ribulose-1,5-bisphosphate which is cleaved into phosphoglycolate and 3-

phosphoglycerate. While the latter can easily enter the Calvin-cycle and is converted back to 

ribulose-1,5-bisphosphate, phosphoglycolate shuttles to peroxisomes and subsequently 

mitochondria before it reenters the chloroplasts. In peroxisomes, glycolate becomes oxidized using 

O2 to glyoxylate which is then transaminated to glycine. The latter is then transported to 

mitochondria and modified into serine which is afterwards converted into glycerate in peroxisomes 

and finally transported back into chloroplasts. The oxidation to obtain glyoxylate produces H2O2 

thereby influences the redox state of peroxisomes which again, might play a role in signaling (Foyer 

et al., 2009).  

Plant peroxisomes participate significantly in the biosynthesis of jasmonic acid and auxins, 

important hormones for plant growth, development and stress response (Delker et al., 2006; 

Vanneste and Friml, 2009). Furthermore, polyamine and urate degradation as well as sulfite 

oxidation were reported to take place in peroxisomes (Hansch and Mendel, 2005; Tavladoraki et al., 

2006; Todd et al., 2006). Finally, peroxisomal functions in photomorphogenesis and plant-pathogen 

defense have also been shown (Bednarek et al., 2009; Hu et al., 2002; Lipka et al., 2005).  

 

1.1.1.5 Peroxisomes in mammals 

 

Mammalian peroxisomes feature many metabolic pathways previously described including 

etherlipid biosynthesis (section 1.1.1.1.2), detoxification (section 1.1.1.2) and polyamine breakdown 

(Seiler, 2004). However, some differences exist: Peroxisomes are responsible for the -oxidation of 

only VLCFA (see section 1.1.1.1.1) and they lack the glyoxylate cycle. Although absent in humans, 

rodent peroxisomes contain urate oxidase to convert uric acid to allantoin (Motojima et al., 1988; 

Wu et al., 1989). Furthermore, glycolysis and related reactions are strictly cytosolic. Thus, the main 

metabolic contribution of peroxisomes lies in lipid metabolism and ROS homeostasis.  
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1.2 Peroxisomal Diseases  

 

 An organelle that exerts such a plethora of metabolic functions is prone to be involved in 

diseases due to mutations in genes essential for i) a single pathway or ii) the formation of the whole 

organelle (Fidaleo, 2010; Gould and Valle, 2000; Steinberg et al., 2006; Wanders, 2004a; Wanders, 

2004b; Wanders and Komen, 2007; Wanders and Waterham, 2005; Wanders and Waterham, 2006b; 

Wei et al., 2000; Wierzbicki, 2007). Indeed, over 20 diseases have been correlated with peroxisomal 

dysfunction (Table 1).  

 

Disease Protein involved Molecular pathway affected 

        single enzyme deficiencies 

X-linked adrenoleukodystrophy ALDP -oxidation 

Acyl-CoA oxidase deficiency ACOX -oxidation 

D-bifunctional protein deficiency DBP -oxidation 

2-Methylacyl-CoA racemase deficiency AMACR -oxidation 

Sterol carrier protein X deficiency SCPx -oxidation 

Rhizomelic chondrodysplasia punctata type II DHAPAT ether phospholipid biosynthesis 

Rhizomelic chondrodysplasia punctata type III ADHAPS ether phospholipid biosynthesis 

Acatalasaemia CAT H2O2-katabolism 

Hyperoxaluria type I AGT glyoxylate detoxification 

Refsum disease PHYH/PAHX -oxidation 

Amyotrophic lateral sclerosis ALS type I SOD1 ROS detoxification 

Malonic aciduria MLYCD odd-chain fatty acid oxidation 

Sjorgen-Larsson syndrome ALDH3A2 -oxidation 

Xanthinuria type I/ II XDH purine salvage pathway 

Glutaric aciduria type III GAO amino acid catabolism 

       peroxisome biogenesis disorders (PBDs) 

Zellweger syndrome * PEX1/2/3/5/6/10/12/13/14/16/19/26  peroxisome formation/ protein import 

Neonatal adrenoleukodystrophy * PEX1/5/6/10/12/13/26 peroxisome formation/ protein import 

Infantile Refsum disease * PEX1/2/6/12/26 matrix protein import 

Rhizomelic chondrodysplasis punctata type I PEX7 PTS2-dependent matrix protein import 

 

Table 1: Overview of selected peroxisomal diseases. Single enzyme deficiencies and 
peroxisome biogenesis disorders are listed together with the protein and the molecular 
pathway affected. Note that different mutations in the same or different proteins can result 
in the same disease. * Zellweger spectrum diseases 
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1.2.1 Single enzyme deficiencies 

 

 Most peroxisomal disorders are recessive and inheritable. They originate from mutations in 

single genes coding for enzymes involved in one of the peroxisomal metabolic activities (Table 1). 

Onset and progression vary, but usually the phenotypes become visible in early childhood. As 

indicated in Table 1, patients fail to perform mostly α- or β-oxidation properly, thus accumulating 

phytanic acid, VLCFA or metabolites thereof in various tissues. Phenotypes vary greatly, and include 

neurological abnormalities, growth and developmental retardation, retinopathies and liver 

pathologies. The expected lifespan lies between early child- to adulthood, depending on severeness 

and time of diagnosis.  

 The most prominent disease is X-linked adrenoleukodystrophy (X-ALD, 1:20,000 in caucasian 

population, Bezman et al., 2001). Patients carry a mutation in the ABCD1 transporter protein which is 

involved in VLCFA transport across the peroxisomal membrane, and are thus unable to perform β-

oxidation properly (Fourcade et al., 2009; Hettema and Tabak, 2000; Kemp et al., 2011). VLCFA are 

thought to accumulate in the membranes of brain and kidney and are adversely affecting their 

function (Khan et al., 2010). Currently six phenotypic variants have been described, the two 

prevalent being childhood cerebral ALD and adrenomyeloneuropathy (Wanders, 2004b). 

 While in ALD a catabolic process is impaired, in rhizomelic chondrodysplasia punctata (RCDP), 

the biosynthesis of ether lipids is dysfunctional due to mutations in either DHAPAT (type II) or 

ADHAPS (type III). Usually, plasmalogens make up 30% of the lipid content in the heart muscle, 20% 

in the brain and 70% in myelin sheaths (Farooqui and Horrocks, 2001). Thus, RCDP patients display 

demyelinated nervous tissue resulting in severe mental retardation, dwarfism, disproportional 

growth and spasticity.  

 Only a limited range of therapies are amenable to slow down progression of the peroxisomal 

single enzyme deficiencies. Besides medication against secondary effects provoked by the diseases 

and dietary therapies, mostly bone marrow or organ transplantation is an effective treatment for 

some diseases such as X-ALD (Hitomi et al., 2003). The addition of certain lipids (Lorenzo's oil) to 

balance the body's lipid metabolism slowed down progression in many cases but since random 

studies and controls are missing this strategy is controversially discussed (Moser et al., 2007; Shapiro 

et al., 2000). Basically, only gene therapy could provide permanent cure for these diseases. Recently, 

Patrick Aubourg and colleagues reported a breakthrough in the case of X-ALD by using allogeneic 

hematopoietic cell transplantation (Cartier et al., 2009).  
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1.2.2 Peroxisome biogenesis disorders and Peroxins 

 

 With a remarkable high incidence rate of 1 in 50,000, individuals display phenotypes similar 

to the diseases described previously (section 1.2.1). However, no metabolic peroxisomal enzyme is 

involved. Rather, peroxisomes as such are not assembled properly. Here, proteins are mutated that 

are responsible for the formation of peroxisomes. Hence, a malfunction in these important 

mechanisms leads to mislocalization of peroxisomal proteins and thus to massive metabolic 

pathologies.  

These diseases are called peroxisome biogenesis disorders (PBD) and encompass the 

Zellweger spectrum diseases (Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile 

Refsum's disease) as well as RCDP type I (see Table 1, Fidaleo, 2010; Gould and Valle, 2000; Steinberg 

et al., 2006; Wanders and Waterham, 2005). 

Zellweger patients display severe cerebrohepatorenal symptoms, low muscle tone, facial 

abnormalities and eye defects and usually die within the first years of age. The milder Zellweger 

spectrum diseases show less grave phenotypes and some motor-functional development. Similar to 

patients suffering from RCDP, these individuals might live a few years or even reach early adulthood. 

However, therapies are limited to dietary supplementation and eventually organ transplantation or 

gene therapy.  

Screening for mutants reflecting these PBDs in model organisms have been performed to 

identify the factors involved in the formation of peroxisomes (Elgersma et al., 1993; Erdmann et al., 

1989; Gould et al., 1992; Liu et al., 1992; Nuttley et al., 1993; Subramani, 2002; Titorenko et al., 1993; 

Tsukamoto et al., 1990). These proteins are called peroxins (PEX) encoded by the PEX genes and 

execute vital functions in peroxisome proliferation and protein import (Distel et al., 1996). Today, 

over 30 peroxins are known (Table 2, (Kiel et al., 2006; Vizeacoumar et al., 2004). Not all of them are 

present in every organism and the molecular function of most peroxins is still a matter of debate. 

 

 A deeper understanding of how peroxisomes are formed and maintained, and of how 

peroxins contribute on a molecular level is essential for proper diagnosis of PBDs at early age and 

effective therapies. 
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Gene 
Functional 
orthologs 

Identified in Function in 
biogenesis 

Characteristics Molecular function first described in 
Sc Yl Hs 

PEX1 
 

+ + + 
Matrix protein 
import 

AAA-type ATPase ATP-dependent dislocation of Pex5 (Erdmann et al., 1991) 

PEX2   + + + 
Matrix protein 
import 

RING-finger   (Erdmann and Kunau, 1992) 

PEX3 
 

+ + + 
PMP-targeting;  
de novo formation  

Membrane anchor of Pex19 (Höhfeld et al., 1992) 

PEX4   + - - 
Matrix protein 
import 

Ubc Mono-ubiquitination of Pex5 (Wiebel and Kunau, 1992) 

PEX5 
 

+ + + 
Matrix protein 
import 

WxxxF-motifs; 
TPR; ubiquitinated 

PTS1-receptor (Van der Leij et al., 1992) 

PEX6   + + + 
Matrix protein 
import 

AAA-type ATPase 
ATP-dependent dislocation 
of Pex5 

(Voorn-Brouwer et al., 1993) 

PEX7 
 

+ + + 
Matrix protein 
import 

WD40- domain PTS2-receptor (Marzioch et al., 1994) 

PEX8   + + - 
Matrix protein 
import 

coiled-coil 
domain, 
leu-zipper 

Connection of docking- and  
RING- complex; cargo release (?) 

(Waterham et al., 1994) 

PEX9 
 

Eliminated, 
wrong ORF 

Matrix protein 
import  

ORF of YlPex9 misidentified;  
corresponds to Pex26  

PEX10   + + + 
Matrix protein 
import 

RING-finger   (Erdmann and Kunau, 1992) 

PEX11 PEX25/27? + + + Proliferation 
 

Elongation of peroxisomes (Erdmann and Blobel, 1995) 

PEX12   + + + 
Matrix protein 
import 

RING-finger   (Kalish et al., 1996) 

PEX13 
 

+ - + 
Matrix protein 
import 

SH3- domain Member of docking complex (Erdmann and Blobel, 1996) 

PEX14   + + + 
Matrix protein 
import 

PxxP- motif,  
phosphorylated 

Member of docking complex (Komori et al., 1997) 

PEX15 PEX26 + - - 
Matrix protein 
import 

Phosphorylated Membrane anchor of Pex6 (Elgersma et al., 1997) 

PEX16   - + + 
PMP-targeting;  
de novo formation 

    (Honsho et al., 1998) 

PEX17 
 

+ - - 
Matrix protein 
import  

Member of docking complex (Huhse et al., 1998) 

PEX18 PEX20 + - - 
Matrix protein 
import 

WxxxF-motifs, 
ubiquitinated 

PTS2-co-receptor in Sc (Purdue et al., 1998) 

PEX19 
 

+ + + 
PMP-targeting;  
de novo formation 

CAAX-box, 
farnesylated 

PMP class I receptor 
and chaperone 

(Kammerer et al., 1997) 

PEX20 PEX18/PEX21 - + - 
Matrix protein 
import 

WxxxF-motifs, 
ubiquitinated 

PTS2-co-receptor in most fungi (Titorenko et al., 1998) 

PEX21 PEX20 + - - 
Matrix protein 
import 

WxxxF-motifs, 
ubiquitinated (?) 

PTS2-co-receptor in Sc (Purdue et al., 1998) 

PEX22   + - - 
Matrix protein 
import 

  Membrane anchor of Pex4 (Koller et al., 1999) 

PEX23 PEX30/31/32 - + - Proliferation DysF Growth regulation in Yl (Brown et al., 2000) 

PEX24 PEX28/29 - + - Proliferation   Separation of peroxisomes in Yl (Tam and Rachubinski, 2002) 

PEX25 PEX11 + - - Proliferation 
 

Elongation of peroxisomes (Smith et al., 2002) 

PEX26 PEX15 + - + 
Matrix protein 
import 

  Membrane anchor of Pex6 in Hs (Matsumoto et al., 2003) 

PEX27 PEX11 + - - Proliferation 
 

Elongation of peroxisomes (Rottensteiner et al., 2003) 

PEX28 PEX24 + - - Proliferation   Separation of peroxisomes in Sc (Vizeacoumar et al., 2003) 

PEX29 PEX24 + - - Proliferation 
 

Separation of peroxisomes in Sc (Vizeacoumar et al., 2003) 

PEX30 PEX23 + - - Proliferation DysF 
Growth regulation in Sc; 
ER tethering ? 

(Vizeacoumar et al., 2004) 

PEX31 PEX23 + - - Proliferation DysF Growth regulation in Sc (Vizeacoumar et al., 2004) 

PEX32 PEX23 + - - Proliferation DysF Growth regulation in Sc (Vizeacoumar et al., 2004) 

PEX33 PEX17 ? - - - 
Matrix protein 
import  

Member of docking complex 
 in N. crassa 

(Managadze et al., 2010) 

PEX34   + - - Proliferation   link to fission machinery ? (Tower et al., 2011) 

 

Table 2: The Peroxins. Functions investigated in this study are marked in red. AAA: ATPase 
associated with diverse cellular activities; CAAX-box: farnesylation motif; DysF: Dysferlin 
domain; PXXP: class II SH3 interacting motif; RING: really interesting  new gene; SH3: Src 
homology 3; TPR: tetratricopeptide repeat; Ubc: ubiquitin-conjugating enzyme; WD40: 40 
amino acid long domain containing conserved Trp-Asp; adapted from Koch J., 2008, Diploma 
thesis, "Functional Analysis of Protein of the PEX11-Family in Human Cells and their Role in 
Peroxisome Proliferation".  



2. Formation of Peroxisomes  

14 

2 Formation of Peroxisomes 

 

 Peroxisome number and function are maintained throughout cellular life. The life cycle of a 

peroxisome can be conceptually structured into membrane and matrix protein import, proliferation, 

inheritance and degradation. The proteins involved are called peroxins (Table 2). Peroxisomes 

multiply by growth and division and can be generated de novo from the ER. Matrix and membrane 

proteins are continuously replenished to maintain the peroxisome pool in a mature functional state. 

 

2.1 Import of matrix and membrane proteins 

 

 Peroxisomes do not contain DNA and thus every protein has to be imported or transported 

to the peroxisomal membrane and matrix. Some peroxisomal proteins are synthesized on free 

polyribosomes and thus peroxisomes were believed to import every protein posttranslationally 

(Fujiki and Lazarow, 1985; Fujiki et al., 1984; Lazarow et al., 1982; Rachubinski et al., 1984). Most 

peroxins are involved in matrix protein import and a peroxisomal protein import complex has been 

characterized that is called importomer (Brown and Baker, 2008; Lanyon-Hogg et al., 2010; Ma and 

Subramani, 2009; Rucktaschel et al., 2010). For membrane proteins, import pathways remain 

dubious and no detailed import mechanism has been established, so far (Brown and Baker, 2003; 

Fujiki et al., 2006).  

 

2.1.1 Matrix protein import 

 

 The import of matrix proteins is one of the best studied processes within the field of 

peroxisome research. Figure 4 provides an overview of the current knowledge. Proteins destined for 

the peroxisomal matrix carry one of two peroxisomal targeting signals, PTS1 or PTS2, which are 

specifically recognized in the cytosol by receptor proteins, PEX5 and PEX7, respectively (Brocard et 

al., 1994; McCollum et al., 1993; Rehling et al., 1996; Zhang and Lazarow, 1995). The PTS1, which is 

the targeting signal of the majority of peroxisomal matrix proteins, has originally been described as 

the consensus tripeptide (S/A/C)-(K/R/H)-(L/M) at the extreme C-terminus of the cargo protein 

(Gould et al., 1989). However, detailed studies revealed that the region upstream of this tripeptide is 

also crucial for protein sorting, as it contributes significantly to the interaction with the 

tetratricopeptide region (TPR) of the receptor protein, PEX5 (Brocard and Hartig, 2006; Brocard et al., 
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1994; McCollum et al., 1993; Neuberger et al., 2004; Neuberger et al., 2003a; Neuberger et al., 

2003b).  

  

 

Figure 4: Peroxisomal matrix protein import. The cargo protein is recognized by a cytosolic 
receptor protein either by its PTS1 signal (PEX5) or via the PTS2 signal (PEX7). PEX5 interacts 
with the importomer (PEX13/14) and is transported together with the cargo into the 
peroxisomal matrix, where the cargo is released. The PEX7-PTS2-cargo complex needs 
additional coreceptors to be transported. PEX5 is exported back into the cytoplasm involving 
the RING finger complex (PEX2, PEX10, PEX12, (Chang et al., 1999; Leon et al., 2006) as well as 
PEX1 and PEX6 for another round of import (monoubiquitinylation via PEX4). Alternatively, 
PEX5 is polyubiquitinylated and marked for degradation (not shown).  

 

 The cargo-receptor complex is docked onto the peroxisomal import machinery, a multi-

enzyme complex comprising PEX13 and PEX14, and translocated into the peroxisomal matrix 

(Albertini et al., 1997; Brocard et al., 1997; Dammai and Subramani, 2001; Komori et al., 1997). PTS2-

PEX7 complexes need to interact with PEX5 in order to bind to the import machinery (Stein et al., 

2002). Here, species-specific co-receptors exist, such as Pex18p, Pex21p in S.cerevisiae, or a long 

splice variant of PEX5, PEX5L, in mammals (Einwachter et al., 2001; Stein et al., 2002). In plant, PEX7 

can directly interact with PEX5 (Nito et al., 2002). Upon release of the cargo, the receptor is shuttled 

back into the cytosol also involving the RING-finger proteins PEX2, PEX10 and PEX12 (Dammai and 

Subramani, 2001; Dodt and Gould, 1996; Nair et al., 2004). Here, ubiquitination is essential for the 

release of the receptor PEX5 from the membrane and also plays a decisive role in the fate of PEX5 

(Platta et al., 2007). For recycling, PEX5 is monoubiquinated and released in the cytosol (Alencastre 
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et al., 2009; Kragt et al., 2005b; Platta et al., 2009; Williams et al., 2008). Upon polyubiquitination, 

PEX5 is marked for degradation and broken down by the proteasome (Kiel et al., 2005; Leon and 

Subramani, 2007). 

 Already a long time ago it was shown that peroxisomes are capable of importing fully folded, 

even oligomeric proteins (McNew and Goodman, 1994). Indeed, Walton et al. showed that large 

protein complexes such as IgGs genetically engineered to contain a PTS1 and even PTS-coated gold 

particles of up to 9nm in diameter were able to enter peroxisomes (Walton et al., 1995). This 

amazing property of the peroxisomal translocation machinery explained some hitherto unsolved 

problems; for instance, catalase can be imported as fully folded protein already loaded with its 

cofactor. Hence, de- and refolding mechanisms including chaperones and a separate import or 

biosynthesis of the cofactor are not required. Additionally, a PTS-independent mode of import via 

piggyback translocation was reported allowing the import of protein complexes also comprised of 

proteins without a PTS (Islinger et al., 2009). However, unlike the nuclear pore complex, peroxisomes 

do not leak higher molecular weight matrix content into the cytosol (Antonenkov et al., 2005; 

Antonenkov et al., 2004; Verleur and Wanders, 1993; Wolvetang et al., 1990), and thus the 

translocation pore must be tightly sealed, only transiently open for the import and then accurately 

adapt to its cargo. It has not been fully clarified which peroxins are involved in the pore formation, 

however, electrophysiological measurements on reconstituted proteoliposomes with membrane 

protein complexes isolated from various yeast strains point to the involvement of the receptor PEX5 

together with PEX14 (Meinecke et al., 2010).  

 

2.1.2 Membrane protein import 

 

 The import of peroxisomal membrane proteins (PMPs) has not been completely 

characterized, so far. Evidently, the whole importomer consists of PMPs and thus, PMPs have to be 

present to maintain peroxisomes functional. PMPs have been categorized into two classes: Class I is 

believed to directly target to peroxisomes in a PEX19-dependent manner, whereas class II proteins 

first enter the ER and are subsequently transported to the peroxisomal membrane PEX19-

independent (Figure 5, Fang et al., 2004; Jones et al., 2004). Although targeting signals for class I 

PMPs, the membrane PTS (mPTS), were reported, no consensus sequence has been found (Dyer et 

al., 1996; Honsho and Fujiki, 2001; Pause et al., 2000; Rottensteiner et al., 2004; Wang et al., 2001). It 

seems that multiple regions including a PEX19 binding site and at least one transmembrane domain 

are necessary for proper import. Proteins necessary for the import of class I PMPs include PEX3, 
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PEX19, and in some organisms PEX16. PEX19 is a soluble protein thought to act as chaperone-like 

receptor for PMPs in the cytosol. The cargo-loaded PEX19 is then docked to the peroxisomal 

membrane by interaction with PEX3 or PEX16 and the cargo is somehow inserted into the membrane 

(Hettema et al., 2000; Purdue and Lazarow, 1995; South and Gould, 1999). PEX3 and PEX16 however, 

the only class II PMPs reported, are also involved in the de novo biogenesis of peroxisomes from the 

ER. Consequently, dysfunctions of these factors result in the loss of peroxisomes and hence, cells 

bearing a mutated version of one of these proteins are not amenable to study PMP import.  

 

 

Figure 5: Membrane protein sorting. Class I PMPs are translated on free ribosomes in the 
cytosol and recognized by the soluble form of PEX19 which could act as chaperone. The 
cargo-loaded PEX19 is then recruited to peroxisomes through PEX3 and/or PEX16 and 
additionally anchored via its farnesyl group (Rucktaschel et al., 2009), while the PMP is 
inserted into the membrane via an unknown mechanism. Some PMPs including class II 
proteins sort via the ER to peroxisomes. Here, some proteins also require the function of 
PEX19 and PEX3 (e.g., PEX15), others might directly sort to pre-existing peroxisomes via direct 
membrane contact.  

 

The classification of membrane proteins in class I and II has been challenged repeatedly. The 

class II protein PEX3 could also be delivered in a PEX19-dependent manner to mature peroxisomes 

behaving as class I PMP (Matsuzaki and Fujiki, 2008). Moreover, cell-free synthesized PEX19 was 

targeted to peroxisomes in a cell fraction of CHO cells, and delivered in vitro synthesized PEX26 and 

PEX16 to enriched peroxisomes, both integrating into the peroxisomal membrane. Hereby, a ternary 
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complex of PEX3, PEX19 and the cargo was reported in vitro (Matsuzono and Fujiki, 2006). Following 

the reintroduction of several GFP-tagged GalS-driven PMPs in the respective mutant yeast strains 

demonstrated the ability of a total of 16 PMPs to traffic via the ER to peroxisomes suggesting ER 

sorting as mode of delivery for many if not all PMPs (van der Zand et al., 2010).  

 It still remains unclear whether in wild type conditions all PMPs sort via the ER to 

peroxisomes. While some PMPs could integrate in the membrane of mature peroxisomes even in 

vitro, no adequate import factors have been described. Structural studies on PEX3/ PEX19 fragments 

characterized the interaction site between these two proteins and showed that the cytosolic part of 

PEX3 consists of a helix bundle (Sato et al., 2010; Schmidt et al., 2010). This structural insight creates 

doubts as to whether and how these proteins can indeed facilitate membrane protein import from 

the cytosol to the peroxisomal membrane. Thus, PMP transport in a PEX3/ PEX19-dependent manner 

from another membrane is more likely than direct incorporation from the cytosol. Herein, a classical 

vesicular traffic would involve a minimal fusion machinery at the peroxisomal membrane 

encompassing SNARE proteins, which were not reported in several in-depth peroxisomal proteomic 

approaches (Arai et al., 2008; Islinger et al., 2006; Marelli et al., 2004; Reumann et al., 2009; Saleem 

et al., 2008; Wiese et al., 2007). Alternatively, membrane contact sites could provide the 

environment for direct transfer of PMPs between membranes of different organelles, but has not 

been analyzed, so far. Overall, the ER plays a pivotal role for PMP import and thus is tightly 

connected to peroxisome biogenesis. 

 

2.2 Peroxisome Proliferation 

 

Similar to mitochondria, peroxisomes can proliferate via growth and division from pre-existing 

peroxisomes (Lazarow and Fujiki, 1985; Motley et al., 2008). This requires the growth of the 

organelle, its elongation and constriction followed by a membrane scission step. Indeed, a 

membrane fission machinery was identified at peroxisomes consisting of hFis1, Mff and DRP1, the 

latter being a dynamin-related protein performing the scission event (Gandre-Babbe and van der 

Bliek, 2008; Koch et al., 2004; Koch et al., 2003; Koch et al., 2005; Li and Gould, 2003; Otera et al., 

2010). This fission machinery is well-known from mitochondrial division and seems to be shared 

between the two organelles (Schrader and Fahimi, 2006; Scott and Youle, 2010). 

Interestingly, while the fission machinery is hijacked from mitochondria and all factors 

required for peroxisome formation including peroxins are purely eukaryotic, most peroxisomal 

enzymes have prokaryotic origin (Gabaldon et al., 2006). Phylogenetic studies in fact exclude a 
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prokaryotic ancestor of peroxisomes (de Duve, 2007; Gabaldon et al., 2006; Schluter et al., 2006). It 

looks as if peroxisomes evolved from the ER compartmentalizing key metabolic processes. Here, 

some well-evolved features could be adopted, such as the mitochondrial fission machinery; however, 

specialized proteins had to be established that coordinate peroxisome formation and also direct the 

fission machinery selectively to peroxisomes. 

In mammals and plants, the PEX11 protein family was shown to recruit the fission machinery 

to peroxisomes (Kobayashi et al., 2007; Lingard et al., 2008). Indeed, the lack of the PEX11 proteins in 

mutant yeasts results in fewer and enlarged peroxisomes per cell, whereas its overexpression leads 

to more, smaller peroxisomes (Erdmann and Blobel, 1995).  

 

2.2.1 The PEX11 proteins and the peroxisomal fission machinery 

 

 The finding that PEX11 directly influences the peroxisome number and shape stimulated 

many studies and eventually led to the discovery of the peroxisomal fission machinery. PEX11 

proteins were identified in most eukaryotic organisms and also the fission machinery seems to 

consist of similar proteins in yeast, plant and human (Fujimoto et al., 2009; Motley et al., 2008; 

Nagotu et al., 2008; Zhang and Hu, 2009; Zhang and Hu, 2010; Zhang and Hu, 2008). Interestingly, 

most organisms contain more than one PEX11 protein (Abe and Fujiki, 1998; Abe et al., 1998; Lingard 

and Trelease, 2006; Marshall et al., 1995; Orth et al., 2007; Rottensteiner et al., 2003; Schrader et al., 

1998; Smith et al., 2002; Tam et al., 2003; Tanaka et al., 2003). Besides the established link between 

members of the PEX11 protein families and the fission machinery, the molecular function of the 

PEX11 proteins remains unclear. Only, enlargement of the peroxisomal membrane were reported 

upon over-expression of some PEX11 family members (Schrader et al., 1998; Tanaka et al., 2003). 

Therefore, it was believed that the PEX11 protein could be involved in the growth of the peroxisomal 

membrane prior to fission. Although growth of the organellar membrane is crucial for proliferation, 

an isotropic omnidirectional growth cannot lead to fission because the membrane has to meet some 

physical requirements concerning shape and diameter before the fission machinery can assemble 

and act.  

 The molecular mechanism by which DRP1 (Dnm1p in yeasts) executes the scission is still a 

matter of debate. Recent findings, combining biophysical experiments, structural studies and in vitro 

as well as in vivo assays, propose that dynamin dimerizes, and upon GTP hydrolysis form spirals 

around the membrane exerting tension and deforming the membrane to its extreme. These spirals 

were shown to fit exactly mitochondrial constriction sites with a diameter in the 100nm range 
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(Ingerman et al., 2005). Then, upon release of GDP the spiral collapses, releasing the tension in the 

membrane, which spontaneously retracts and thereby divides (Bashkirov et al., 2008; Chappie et al., 

2010; Gao et al., 2010; Ghosh et al., 2006; Low and Lowe, 2006; Low and Lowe, 2010; Low et al., 

2009; Pucadyil and Schmid, 2008). Indeed, membrane fission and fusion are closely related 

phenomena, only the mechanism by which the membrane is deformed differs. For assembling at 

membrane constrictions, the DRPs need membrane elongation factors to pre-curve the membrane 

and shape it as the DRPs alone cannot form constrictions on organelles having several micrometers 

in diameter (Ramachandran, 2011; Roux et al., 2010). In our work (Section 6), we characterize the 

PEX11 protein family as membrane elongation factors that actively protrude the membrane and 

regulate the fission machinery (Koch and Brocard, 2011a; Koch and Brocard, 2011b, in revision; Koch 

et al., 2010).  

Besides these proteins, the cytoskeleton which is responsible for the transport of 

peroxisomes was shown to also be actively involved in peroxisomal proliferation (Brocard et al., 

2005; Fagarasanu et al., 2006; Jourdain et al., 2008; Mathur et al., 2002; Nguyen et al., 2006; Wiemer 

et al., 1997).  

 Still, the intriguing question of lipid recruitment remains. A proliferating organelle needs 

lipids to provide sufficient membrane environment during and after division. Since peroxisomes 

cannot generate phospholipids de novo, organellar contact, especially with the ER might be involved. 

Studies in yeast mutants deficient in phosphatidylethanolamine biosynthesis suggested membrane 

contact between peroxisomes and the ER, mitochondria and lipid droplets (Rosenberger et al., 2009). 

Indeed, a non-vesicular lipid transfer from the ER to peroxisomes has been proposed making the ER 

the central stage for peroxisome proliferation (Raychaudhuri and Prinz, 2008).  

 

2.2.2 Peroxisomes and the ER 

 

 The ER plays a unique, unquestioned role in lipid biosynthesis and protein sorting – 

important for every organelle. The specialization into membrane-bound compartments requires 

controlled crosstalk between the organelles, especially between the ER and other organelles. This is 

effectively achieved via vesicles (COPI, COPII,…), non-vesicular signaling (Ca2+ release) or direct 

membrane contact (ERMES, PM-ER MCS, Duden, 2003; Elbaz and Schuldiner, 2011; Hajnoczky et al., 

2000). In fact, the mitochondria and the ER maintain exchange sites for the transport of proteins and 

lipids (Giorgi et al., 2009; Kornmann and Walter, 2010). These require certain membrane shapes for 

both, the ER and mitochondria. In fact, the ER forms a network throughout the cell with distinct 
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architectures: the perinuclear ER, sheets often decorated with ribosomes, smooth tubules and a 

cortical ER in yeasts tightly fitting to the cell´s borders (Lynes and Simmen, 2011; Park and 

Blackstone, 2010; Pendin et al., 2011). Indeed, dedicated proteins maintain the different shapes of 

the ER. Reticulon proteins insert into the outer leaflet of the tubular ER membrane and through their 

hairpin-like shaped transmembrane regions keep the ER tubule in shape (Voeltz et al., 2006). Atlastin 

proteins (Sey1p in yeast) were shown to be involved in ER tubule fusion to generate the 

interconnected network structure (Rismanchi et al., 2008). The different architectures restrict 

biological processes to certain areas, e.g., fission of vesicles is likely to occur at regions of high 

membrane curvature, present in the tubular ER (Friedman and Voeltz, 2011; Pendin et al., 2011).  

 The ER contributes significantly to peroxisome maintenance. Apart from speculations on PMP 

and lipid transfer from the ER to peroxisomes, it has been shown that peroxisomes can form de novo 

from the ER. pex3 mutant yeast cells lacking peroxisomal structures could reform peroxisomes 

upon reintroduction of the missing gene (Geuze et al., 2003; Haan et al., 2006; Kragt et al., 2005a). 

Similar results were obtained in mammalian cells (Toro et al., 2007; Toro et al., 2009). In fact, PEX3 

sorts to specific regions of the ER, thereby marking sites at which budding of peroxisomes will occur 

(Hoepfner et al., 2005; Tam et al., 2005). In contrast to the fission of pre-existing peroxisomes, de 

novo formation was shown to be Dnm1p-independent in yeast (Motley and Hettema, 2007). 

Recently, two in vitro assays for peroxisome biogenesis were reported (Agrawal et al., 2011; Lam et 

al., 2010). Both approaches followed the budding of PEX3 vesicles co-packaged with another 

membrane protein, PEX15 or PEX11. The budding did not depend on a functional COPII system (Lam 

et al., 2010). Interestingly, even in the absence of PEX3, vesicles containing PEX11 were observed 

questioning the role of PEX3 as sole initiator of peroxisome formation from the ER. PEX3 could rather 

act as control station for peroxisome fate. PEX3 definitely is required for the generation of functional, 

mature peroxisomes and furthermore, has been suggested to also act in peroxisome inheritance and 

its absence seems to be required for peroxisome degradation (section 2.2.3, Bellu et al., 2002; Munck 

et al., 2009). The specific interaction with other proteins or its absence seems to mark peroxisomes 

and classify them according to certain criteria as young, mature, inheritable or old peroxisomes. The 

underlying molecular principles remain to be discovered.  

 The two processes by which peroxisomes can proliferate seem to be independent. Studies 

using photoactivatable GFP and pulse-chase experiments differentiated between de novo formation 

and growth/ division in living mammalian and yeast cells, and reported that while yeasts mostly rely 

on fission of pre-existing peroxisomes, de novo formation is prevalent in mammalia (Kim et al., 2006; 

Motley and Hettema, 2007). Interestingly, although yeast peroxisomes multiply by growth and 

fission, Pex3p was distributed via the ER to existing peroxisomes (Motley and Hettema, 2007). In fact, 
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the two routes of peroxisome biogenesis seem to be effectively linked and regulated. Why should 

one pathway predominate over the other without regulation? How could PMP sorting and lipid 

transfer be possible without the participation of the ER in the growth and division? Already in the 

1970s, close proximity of peroxisomes to the ER was observed in electron microscopy studies 

(Novikoff and Novikoff, 1972; Tabak et al., 2003). The molecular link between peroxisomes and the 

ER however, has not been established, so far. From our work in yeast cells, we propose the Pex30 

protein family as regulators of peroxisome formation and suggest an ER-to-peroxisome tethering 

(David et al., 2011, in revision). 

 

2.2.3 Inheritance and degradation of peroxisomes  

 

During cell division, peroxisomes are inherited to the daughter cells. While in mammals, the 

large number of peroxisomes per cell and the symmetrical cytokinesis allows for equal distribution of 

peroxisomes, in budding yeast specific transporters are necessary. Two proteins, Inp1p and Inp2p, 

are regulating peroxisome inheritance in S. cerevisiae. Inp1p is anchoring peroxisomes at the cortex 

of the mother cell, whereas Inp2p attaches peroxisomes onto Myo2p, a myosin motor protein to 

transport these peroxisomes into the daughter cell (Fagarasanu et al., 2006; Fagarasanu et al., 2010; 

Fagarasanu et al., 2005; Saraya et al., 2010). The antagonistic action of Inp1p and Inp2p controls 

inheritance for the peroxisome population. However, whether preferably younger peroxisomes are 

inherited remains unclear.  

 Elderly, excessive or malfunctional peroxisomes are selectively degraded through an 

autophagic process called pexophagy (Iwata et al., 2006; Kiel, 2010; Oku and Sakai, 2010; Sakai et al., 

2006). Two distinct modes are employed, micro- and macropexophagy. In micropexophagy, 

peroxisomes or accumulations thereof are engulfed in the vacuole, whereas in macropexophagy 

individual peroxisomes are sequestered by membrane layers forming the pexophagosome which 

subsequently fuses with the vacuole. It is still a matter of debate how peroxisomes are marked for 

degradation. PEX14 was shown to be solely required for peroxisomes degradation (Zutphen et al., 

2008), and the removal of PEX3 was reported to initiate peroxisome breakdown (Bellu et al., 2002).  
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3 Contributions and Concepts 

 

Cells maintain their number of peroxisomes through proliferation, inheritance and 

degradation. Herein, two modes of proliferation exist, de novo generation from the ER, and 

multiplication from pre-existing peroxisomes. These two pathways seem to be intimately linked, 

however, a mechanism for their coordination and cooperation has not been found, so far. Several 

proteins are involved in peroxisome proliferation, among which are proteins of the PEX11 and PEX30 

family. We investigated these protein families to establish mechanisms for their molecular function. 

Deletion of either a PEX11 or a PEX30 protein results in deregulated peroxisome 

proliferation. While the deletion of PEX11 correlates with a decreased number of peroxisomes 

(Erdmann and Blobel, 1995; Rottensteiner et al., 2003), alterations or the absence of PEX30 leads to 

hyper-proliferation (Vizeacoumar et al., 2004; Vizeacoumar et al., 2003). Although initially suggested 

as peroxisomal protein in S. cerevisiae, the localization of Pex30p in P. pastoris was shown to be 

partly peroxisomes, partly ER (Vizeacoumar et al., 2003; Yan et al., 2008). Our studies on Pex30p in S. 

cerevisiae now clearly show that most Pex30p resides in the ER. Indeed, Pex30p is present in high 

molecular weight complexes together with resident cortical ER proteins, the reticulons, Rtn1p, Rtn2p 

and Yop1p, and transiently interacts with Sey1p as well as all subunits of the COPI coaotmer (David et 

al., 2011, in revision). Pex30p contains a KKXX ER-retrieval motif, and seems to shuttle between 

peroxisomes and the ER. Although Arf proteins, known players in coatomer formation, have already 

been implicated in peroxisome proliferation, little is known about their contribution (Anthonio et al., 

2009; Anton et al., 2000; Lay et al., 2006; Passreiter et al., 1998). Interestingly, yeast cells deficient 

for selected Arf proteins contain peroxisomes, and similar to pex30 cells, their number is increased 

suggesting the involvement of Arf proteins in the regulation of peroxisome maintenance (Anthonio 

et al., 2009). 

The reticulon homology proteins (RHPs) present in Pex30p complexes significantly contribute 

to peroxisome maintenance. They act upstream of Pex30p and seem to provide the proper ER-

architecture to facilitate peroxisome formation. Deletion of the RHPs leads to a dramatic increase in 

the number of peroxisomes per cell and peroxisomes appear clustered (David et al., 2011, in 

revision). Indeed, upon induction of peroxisome proliferation, Pex30p accumulates at ER-subdomains 

and tethers peroxisomes. We propose these subdomains to represent ER-to-peroxisome contact 

sites (EPCONS), similar to other inter-organellar contact sites. Membrane contact between ER and 

peroxisomes would enable lipid exchange and PMP transport. Moreover, the EPCONS are in good 

agreement with previous observations reporting ER substructures continuous with peroxisomes 

(Geuze et al., 2003). Thus, it is tempting to speculate that EPCONS also represent ER exit sites specific 
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for peroxisomes used during de novo formation allowing for tight spatiotemporal control between de 

novo formation and multiplication of peroxisomes.  

 

 

Figure 6: Phylogenetic tree of the PEX11 proteins from S.cerevisiae, A. thaliana and H. 
sapiens. Close homologues are boxed. PEX11 proteins evolved from a common ancestor, 
however, the homologues Pex25p and Pex27p, split up early in evolution from the other 
PEX11 proteins (dotted box). This already points at a function for Pex25p and Pex27p distinct 
from other PEX11 proteins. The tree has been calculated via: www.ebi.ac.uk/Tools/es/cgi-
bin/tcoffee. 

 

Among other factors important for peroxisome formation from the ER, Pex25p plays a crucial 

role in peroxisome reintroduction (Huber et al., 2011; Saraya et al., 2011). Interestingly, Pex25p is a 

member of the PEX11 protein family in yeast, consisting of Pex11p, Pex25p and Pex27p (Erdmann 

and Blobel, 1995; Rottensteiner et al., 2003; Smith et al., 2002), yet it has a role distinct from the 

other PEX11 proteins. Although their deletion phenotype is similar as yeast cells lacking either of 

these proteins contain fewer peroxisomes, only Pex25p rescues triple mutant pex11pex25pex27 

cells (Rottensteiner et al., 2003). In fact, all PEX11 proteins seem to have evolved from a common 

ancestor, Pex25p and Pex27p however, split up early in evolution (Figure 6). Thus, PEX11 proteins of 

higher eukaryotes are more closely related to ScPex11p, than ScPex25p or ScPex27p. This reflects 

that while in yeasts each PEX11 protein exerts different roles, in higher eukaryotes, all PEX11 

proteins seem to function cooperatively in the same pathway to promote peroxisome proliferation. 

Plant and mammalian cells contain five and three PEX11 proteins, respectively. In humans, 

the three proteins, PEX11, PEX11 and PEX11, are differently expressed in every tissue, but only 
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PEX11 is inducible (Abe and Fujiki, 1998; Abe et al., 1998; Li et al., 2002a; Li et al., 2002b; Li and 

Gould, 2002; Schrader et al., 1998; Tanaka et al., 2003). All these proteins represent membrane 

elongation factors that remodel the peroxisomal membrane prior to fission (Delille et al., 2010; Koch 

and Brocard, 2011a; Koch and Brocard, 2011b, in revision; Koch et al., 2010; Opalinski et al., 2010). 

PEX11 proteins contain an amphipathic -helix, a common domain of membrane elongation factors, 

such as the BAR domain proteins (Frost et al., 2009; Koch and Brocard, 2011b, in revision; Opalinski 

et al., 2010). The amphipathic -helix inserts into one leaflet of the lipid bilayer thereby increasing 

the surface area of one layer with respect to the other hence promoting membrane curvature. 

However, membranes are three-dimensional objects and only a single amphipathic helix cannot 

induce enough curvature to protrude membrane extensions. Only a spatiotemporally controlled 

action of many PEX11 proteins can substantially curve the membrane. Moreover, the role of lipids 

and their interaction with membrane proteins should not be neglected. All membrane proteins, 

especially membrane curvature factors have an affinity for certain phospholipids whose biophysical 

properties could facilitate the reshaping of the membrane.  

 

In fact, PEX11 proteins in human were localized all around the peroxisomal membrane, even 

when peroxisomal membrane extension had formed (Delille et al., 2010; Koch et al., 2010). Other 

membrane proteins showed a differential localization across the peroxisomal membrane (Delille et 

al., 2010). While most PEX11 proteins are thought to contain an amphipathic α-helix at their N-

terminus, PEX11γ spans its helix in its C-terminal region between to membranous segments (Koch 

and Brocard, 2011b, in revision; Opalinski et al., 2010). It is hard to envision that this anchored 

amphipathic helix is only inserted into the membrane when needed. Unlike soluble membrane 

curvature factors, PEX11γ is an integral membrane protein that is always present in the peroxisomal 

membrane. During proliferation, PEX11 proteins specifically protrude the peroxisomal membrane at 

one distinct site (Figure 7). How can PEX11 that virtually through its presence in the membrane 

constantly influences membrane curvature be distributed over the whole membrane and induce 

membrane protrusion at one specific site? The presence of PEX11 proteins throughout the - non-

protruded - membrane suggests that two PEX11 species exist, the one at the site of membrane 

outgrowth, the other along the rest of the membrane. Even if all PEX11 proteins insert their 

amphipathic α-helix into the membrane; as long as these proteins are equally distributed no 

membrane outgrowth will occur. Upon assembling a critical number of PEX11 proteins at one site in 

a special geometry, the membrane would be sculpt outwards. Subsequently, the PEX11 proteins 

could assemble the fission machinery and trigger scission. Hence, interactions between members of 



3. Contributions and Concepts  

26 

the PEX11 family and the fission machinery are likely to take place within the lipid bilayer and 

regulate peroxisome multiplication (Koch and Brocard, 2011b, in revision). 

 

 

 
Figure 7: Proposed model for peroxisome proliferation. Peroxisomes are formed de novo 
from the ER at specialized ER exit sites requiring Pex3p and Pex25p (in yeast) or PEX16 (in 
higher eukaryotes). PEX30 proteins regulate this process, and the reticulon homology proteins 
(RHPs) provide the proper ER architecture for enrichment of the peroxisome biogenesis 
machinery at specific regions of the ER membrane. During growth membrane and matrix 
proteins are imported. For the multiplication of pre-existing peroxisomes, PEX11 proteins 
protrude the peroxisomal membrane at one distinct site. Here, matrix proteins are retained 
such that new material has to be imported to the newly formed protrusion inflating a new 
daughter peroxisome. During growth, peroxisomes transiently attach to the ER, mediated by 
PEX30 proteins, for the uptake of lipids and membrane proteins. These membrane contact 
sites could be identical to the ER exit sites allowing coordination between de novo formation 
and multiplication of peroxisomes. Older and possibly damaged peroxisomes are specifically 
degraded while others are inherited to the daughter cell upon cell division. 
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3.1 Peroxisome Proliferation revisited 

 

 Altogether, we propose a model for peroxisome proliferation in which the ER plays a central 

role in providing lipids and membrane proteins for both, de novo biogenesis and multiplication of 

pre-existing peroxisomes. The transfer of material is achieved through membrane contact sites 

(EPCONS) where cortical ER resident proteins provide the proper architecture and members of the 

PEX30 family are required for the tethering of peroxisomes to the ER. In fact, these membrane 

contact sites could be ER exit sites during de novo biogenesis of peroxisomes. Pex30p and the RHPs 

would then be important for the regulation and coordination of peroxisome proliferation. Indeed, 

further experiments using biogenesis and inheritance mutant yeast cells showed that deletions of 

RHPs or Pex30p increase the efficiency of yeast cells to form peroxisomes de novo (David et al., 

2011).  

 The PEX11 protein family is mainly required for the coordinated DRP-dependent fission of 

pre-existing peroxisomes. Here, the coordinated interplay between members of the PEX11 protein 

family and the fission machinery controls peroxisome proliferation. Peroxisomal membrane 

outgrowth prior to fission allows for i) segregation of matrix proteins, ii) controlled delivery of 

membrane proteins and iii) direct assembly of the fission machinery, especially of DRP1 which can 

form spirals around the protruded membrane (Figure 7). Although seemingly independent from the 

ER, during the growth of the peroxisome, lipids and PMPs are likely to be delivered. In fact, ER 

tubules were shown to contact and effectively wrap around mitochondrial constriction sites possibly 

to administer proteins and lipid or even mediate physical constriction (Friedman et al., 2011). In a 

similar way, the ER could actively participate in peroxisome multiplication. Overall, the two modes of 

peroxisome proliferation seem to be tightly linked through the ER.  
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4 Outlook 

 

 Contact between the ER and peroxisomes has been proposed in the 70s, and with our work, 

we found proteins that are involved in this tethering. However, the architecture of the membrane 

contact sites remains to be investigated. Electron-microscopic studies will shed light on the nature of 

these contact sites and might even allow for differentiation between pre-existing peroxisomes that 

dock onto the ER and newly formed peroxisomes that bud off. Once established, the flow of material, 

including lipids and proteins could be recorded and thus pinpoint the role of the ER in peroxisome 

maintenance.  

 Upon membrane contact of two organelles and even during vesicular trafficking, proteins 

besides the cargo are co-transferred which have to be retrieved to their original membrane. A well-

established Golgi-to-ER retrieval machinery is the COPI retrograde transport (Beck et al., 2009; Pinot 

et al., 2010). Pex30p interacts with all subunits of the coatomer suggesting such a retrieval 

mechanism to the ER membrane. Although in principle it might be that small portions of Pex30p 

enter the Golgi and thus have to be transported back to the ER, it is more likely that retrieval occurs 

between peroxisomes and the ER. Arf proteins, factors necessary for COPI vesiculation, were shown 

to participate in the formation of peroxisomes, their morphology and protein sorting (Anthonio et al., 

2009; Anton et al., 2000; Passreiter et al., 1998). Interestingly, some PEX11 proteins of plant and 

human carry a KKXX motif. Also, Pex30p is the only yeast peroxin that carries such a signal. 

Understanding the contribution of retrograde vesicular trafficking in coordination with direct 

membrane contact to peroxisome maintenance would complete the picture of ER-peroxisome 

crosstalk and clarify the involvement of COPI proteins.  

 Peroxisomes segregate their matrix protein content during division and even membrane 

proteins seem to be differentially localized over the peroxisomal membrane (Delille et al., 2010; Koch 

and Brocard, 2011a; Koch et al., 2010). Indeed, this could represent a quality control mechanism to 

accumulate old and possibly damaged matrix proteins in the mother peroxisome. The selective 

inheritance of membrane proteins to the daughter peroxisome could mark it as younger peroxisome 

and thus prevent degradation, e.g., through PEX3 transfer to the new membrane. In contrast, the 

repeated loss of these marker proteins from the mother peroxisome below a certain threshold would 

trigger degradation of this organelle. Indeed, the loss of PEX3 was shown to be essential for initiation 

of pexophagy (Bellu et al., 2002). However, Pex3p was shown to sort to existing peroxisomes in yeast 

(Motley and Hettema, 2007) and the proposed quality control mechanism would require that those 

age-indicating proteins are not constantly delivered. A detailed analysis of these processes including 



4. Outlook  

29 

a thorough monitoring of individual peroxisomes and their PMPs over time would contribute to 

understand selectivity in peroxisome maintenance.  

 Eventually, most factors that are crucial for the assembly of functional peroxisomes have 

already been found. The deeper knowledge about the molecular mechanisms of many of these 

factors however, requires more subtle criteria as readout parameter than the simple absence or 

presence of peroxisomes. For inheritance proteins, the distribution of peroxisomes between dividing 

cells served as parameter (Fagarasanu et al., 2006; Fagarasanu et al., 2005). We used the shape of 

peroxisomes (juxtaposed elongated peroxisomes, JEPs) and also the motion of peroxisomes to study 

the effect of PEX11 and PEX30 proteins. Based on these criteria, new screens could be performed to 

identify hitherto unknown proteins that might also influence peroxisome maintenance.  
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7 Appendix 

7.1 Summary 

Peroxisomes are essential organelles present in every eukaryotic cell. They participate in many 

metabolic processes including lipid metabolism and ROS detoxification. Their absence correlates with 

the occurrence of severe cerebrohepatorenal diseases, such as the Zellweger syndrome, leading to 

death early after birth. Thus, understanding the molecular mechanisms by which cells maintain their 

pool of peroxisomes is critical.  

Peroxisomes multiply by growth and division of pre-existing peroxisomes, and they can be 

generated de novo from the ER. The proteins involved in the proliferation of peroxisomes are called 

peroxins (PEX).  

This work investigated the molecular mechanisms governing peroxisome biogenesis in yeast 

and human cells. We analyze proteins of the PEX11 and the PEX30 family, both responsible for 

regulating peroxisomal number and shape. The two mechanisms of peroxisome formation are not 

independent. Tight regulation must exist to ensure proper transfer of lipids and membrane proteins 

from the ER to peroxisomes. Based on our studies of the Pex30p protein in S. cerevisiae we propose 

that large membrane protein complexes including Pex30p act as hub for peroxisomes to the ER and, 

together with ER morphogenic proteins, designate specific ER sites for both, de novo formation and 

contact sites for existing peroxisomes. 

Furthermore, we analyzed proteins of the PEX11 family in S. cerevisiae and showed that 

while Pex11p is involved in the fission of pre-existing peroxisomes, Pex25p is required for the 

reintroduction of peroxisomes from the ER. Here, we also demonstrated that Pex30p acted 

downstream of Pex25p and independently of Pex11p.  

In further studies in yeast, plant and human cells, we established the PEX11 proteins as 

membrane elongation factors that coordinate peroxisome fission by protruding the peroxisomal 

membrane. We showed that the matrix protein content segregated during peroxisome fission and 

proposed this as quality control mechanism. Finally, based on our detailed analysis of the interplay 

between the human PEX11 proteins and factors of the fission machinery, we suggested a mechanism 

for peroxisome fission in human cells.  

Our data on multiple aspects of peroxisome proliferation contribute to the understanding of 

ER-to-peroxisome crosstalk and provide new insights on peroxisomal maintenance at the molecular 

level.   



7. Appendix  

178 

7.2 Zusammenfassung 

Peroxisomen sind essentielle Organellen in eukaryontischen Zellen. Sie nehmen an vielen 

metabolischen Prozessen teil, vor allem im Lipidstoffwechsel und in der Entgiftung von ROS. Ihr 

Verlust führt zu schweren cerebrohepatorenalen Krankheiten, wie zB dem Zellweger Syndrom, die 

bereits kurz nach der Geburt zum Tod führen. Daher ist das Verständnis der molekularen 

Mechanismen, mit denen Zellen ihre Peroxisomen erhalten, notwendig. 

Peroxisomen vermehren sich durch Wachstum und Teilung von existierenden Peroxisomen, und 

können auch de novo vom ER generiert werden. Die in der Proliferation involvierten Proteine heißen 

Peroxine (PEX). 

Diese Arbeit untersucht die molekularen Mechanismen der Peroxisomen-Biogenese in Hefe und 

Humanzellen. Wir analysierten Protein der PEX11 und PEX30 Familie, die beide für die Regulation der 

Anzahl und Form der Peroxisomen verantwortlich sind. Die beiden Mechanismen der 

Peroxisomenbildung sind nicht unabhängig voneinander. Strenge Regulation muss existieren, um 

einen ordnungsgemäßen Transfer von Lipiden und Membranproteinen vom ER zu Peroxisomen zu 

gewährleisten. Basierend auf unseren Studien am Pex30p Protein in S. cerevisiae schlagen wir vor, 

dass ein großer Membranproteinkomplex inklusive Pex30p als Andockstelle für Peroxisomen am ER 

dient, und zusammen mit ER-morphogenen Proteinen, spezifische Stellen am ER markiert sowohl für 

de novo Generierung und als Kontaktstelle für existierende Peroxisomes markiert. 

Weiters analysierten wir die PEX11 Protein Familie in S. cerevisiae und zeigen, dass während Pex11p 

eher in der Teilung von existierenden Peroxisomen involviert ist, Pex25p für die Wiedereinführung 

von Peroxisomen vom ER verantwortlich ist. Hierbei arbeitet Pex30p unterhalb von Pex25p und 

unabhängig von Pex11p.  

In unseren Studien in humanen, Hefe- und Pflanzenzellen etablierten wir die PEX11 Proteine als 

Membranelongationsfaktoren, die die peroxisomale Teilung durch ein Herausstülpen der 

peroxisomalen Membran koordinieren. Wir zeigten, dass der Matrixproteininhalt während der 

Peroxisomenteilung segregiert und schlagen dies als Qualitätskontrollmechanismus vor. Schließlich, 

basierend auf unseren detaillierten Analysen des Zusammenspiels der humanen PEX11 Proteine und 

Faktoren der Teilungsmaschinerie, zeigten wir einen möglichen Mechanismus der peroxisomal 

Teilung in humanen Zellen. 

Unsere Daten über verschiedene Aspekte der peroxisomalen Proliferation tragen zum Verständnis 

des Wechselspiels zwischen ER und Peroxisomen bei, und ergeben neue Sichtweisen auf den 

molekularen Mechanismus der Peroxisomenerhaltung.  
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