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Abstract 
It is well established that full activation of T cells requires the interaction of the TCR complex 

with the peptide-MHC complex (Signal 1) and additional signals (Signal 2). These second 

signals are generated by the interaction of accessory molecules expressed on antigen 

presenting cells (APC) with their receptors on T cells. Numerous costimulatory and 

coinhibitory pathways have been described, but many aspects of these pathways are still 

incompletely understood. By acting as potent regulators of host-protective as well as 

pathological processes, T cell costimulatory pathways play a pivotal role in immunity and 

thus are promising therapeutic targets. It is evident that a better understanding of the function 

of T cell costimulatory molecules is a prerequisite for the development of efficient therapeutic 

strategies. 

Since APC harbor a plethora of stimulating and inhibitory surface molecules, the contribution 

of individual costimulatory molecules is difficult to assess on these cells. Thus, we have 

developed a system, called T cell stimulator cells, that can give signal 1 to human T cells via a 

membrane-bound anti-CD3 antibody fragment. By expressing human 

costimulatory/coinhibitory ligands on these cells, their role in T cell activation processes can 

readily be analyzed. Here, we showed that our system of T cell stimulator cells is an excellent 

tool to evaluate the functional role of ligands implicated in T cell activation processes and to 

investigate the effect of immunomodulatory drugs on T cell activation. 

In detail, we assessed the functional dualism of B7-H3, a recently identified B7 homolog, in 

human T cell activation, since activating as well as inhibitory roles have been ascribed to this 

molecule. Based on various experimental conditions we found that B7-H3 potently down-

modulated human T cell responses.  

Using T cells that received distinct costimulatory signals, we investigated the interplay 

between costimulation and immunosuppression. We found that CD28 signals, but not 

costimulation via CD2, 4-1BB, ICOS or LFA-1 greatly increased the IC50 (mean inhibitory 

concentration) for Cyclosporine A. By contrast, the inhibitory effects of azathioprine were not 

influenced by this T cell costimulatory signals. 

Studies on individual costimulatory pathways can complement investigations using 

experimental systems employing natural human APC or animal studies to get a better insight 

into the intricate processes that govern human T cell responses. 
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Structure of this thesis 
Chapter 1 provides a brief introduction on the complex theme of T cell activation and the 

aim of this thesis. 

Chapter 2 gives a general overview of receptors and ligands implicated in human T cell 

costimulatory processes is given. The resulting manuscript was published in IMLET 2010 Feb 

16;128(2):89-97. 

Chapter 3 describes the experimental system we used. To assess the contribution of 

individual costimulatory and coinhibitory molecules on human T cell activation, we 

developed a system called T cell stimulator cells. These cells can deliver signal 1 to human T 

cells via a membrane-bound anti-CD3 antibody fragment. By expressing human 

costimulatory ligands on these cells, their role in T cell activation processes can readily be 

analyzed. The resulting manuscript was published in JIM 2010 Oct 31;362(1-2):131-41. 

Chapter 4 specifically addresses a potential functional dualism of human B7-H3 by assessing 

the effect of this molecule under varying experimental conditions as well as on different T 

cell subsets. The resulting manuscript was published in EJI 2009 Jul ;39(7):1754-64. 

Chapter 5 deals with the interplay between costimulation and the immunosuppressive agents 

cyclosporine A and azathioprine during the in vitro activation of human T cells. The resulting 

manuscript was submitted to IMLET. 

Chapter 6 outlines the essential points and provides a synopsis of this thesis.
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Introduction 
It is well established that two signals are required for an efficient T cell activation. 

Signal 1 is delivered via the MHC-peptide complex to the T cell receptor complex expressed 

on T cells. The second signal, also called costimulatory signal, is generated by accessory 

molecules on antigen presenting cells (APC) interacting with their receptors on T cells [1]. 

Lack of the second signal leads to T cell anergy, a state of unresponsivness to antigenic 

stimulation. 

Besides, these costimulatory signals numerous inhibitory signaling pathways have 

been described. These negative costimulatory pathways, have important regulatory function 

such as attenuation of T cell responses, maintenance of peripheral tolerance and termination 

of immune responses after clearance of infections [2]. Consequently, costimulatory pathways 

are prime therapeutic targets in diseases that are associated with aberrant T cell responses, 

such as autoimmune diseases, allergy or organ transplant rejection [3,4]. Moreover, blocking 

inhibitory signals and enhancing costimulatory pathways is a promising strategy to ameliorate 

persistent virus infections and to improve anti-tumor responses[5,6]. 

 
Figure 1: 2-signal hypothesis of T cell activation. 

To date, numerous costimulatory and coinhibitory molecules have been described [7]. 

Among them the CD80/CD86 – CD28/CTLA-4 pathway of the B7/CD28 superfamily is 

regarded to play the most prominent role in T cell activation [8]. In the last few years 

additional members of this family have been identified, the so-called B7-homologs [9]. The 

second major group of T cell costimulatory ligands comprises members of the TNF-

superfamily, which interact with their cognate receptors of the TNF-receptor superfamily 

[7,10,11]. However, a large number of molecules that do not belong to these families have 

been reported to be involved in the generation of T cell costimulatory and coinhibitory 

signals. A detailed overview is given in chapter 2 [7]. 
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Since APC harbor a plethora of stimulating and inhibitory surface molecules, the 

contribution of single molecules to T cell activation processes is difficult to assess on these 

cells. Furthermore, studies on costimulatory pathways on human cells are hampered by 

several circumstances. First, studies on individual costimulatory pathways are mostly based 

on the use of immobilized antibodies. Such antibodies might differ from the natural ligands 

regarding their binding site and affinity. Secondly, the crosslinking of receptors by 

immobilized antibodies generates signals that might not exactly reflect the effects of 

interaction of costimulatory ligands with their receptors. In addition, there are numerous 

molecules that have been categorized to act costimulatory based solely on their ability to 

generate a second signal when ligated with antibodies [7]. Recombinant proteins representing 

the extracellular domains of costimulatory ligands are valuable and widely used tools to study 

T cell activation processes. However, their generation is time consuming and costly and they 

might differ from their membrane resident natural counterparts regarding their capability to 

modulate T cell responses [12]. There was a demand for a cellular experimental system, 

which can be used to assess the contribution of individual costimulatory and coinhibitory 

ligands on T cell activation. We have developed such a well defined system, called T cell 

stimulator cells and described it in detail in chapter 3). Our systems of T cell stimulator cells 

is an excellent tool to study various aspects of T cell activation, such as evaluation of ligands 

implicated in T cell costimulation. 

For several accessory molecules there is still limited information about their function on T 

cell regulatory processes or divergent results concerning their functional role in these 

processes have been described. One of these molecules is B7-H3, a recently described B7-

homolog [13]. Human B7-H3 consists of 4 immunglobulin like domains and has about 25% 

amino acid homology in its extracellular part [14-16]. In initial reports, Chapoval et al. 

described human B7-H3 as 2 Ig form and to act costimulatory on T cell activation [13]. 

However, there are several recent reports, which implicate an inhibitory role of B7-H3 in T 

cell activation [17,18]. These contradictary results could be explained by the existence of two 

receptors with different functions. To shed some light on the functional role of human B7-H3 

we focused on a potential functional dualism of B7-H3 in human T cell activation, as 

described in detail in chapter 4[19]. 

T cell responses play a pivotal role in allograft rejection, graft versus host diseases and 

autoimmune pathologies. In most cases the clinical management of these conditions requires 

the extensive use of immunosuppressive agents. These drugs limit and down-modulate T cell 

activation by targeting different cellular processes. Briefly, drugs like Cyclosporine A (CsA), 

tacrolimus, rapamycine or AEB071 directly interact with T cell signaling pathways [20-22]. 
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By contrast, other agents, such as azathioprine, interfere with DNA-syntheses and thus finally 

lead to cell cycle arrest [23,24]. Moreover, there is also the possibility of blocking or 

enhancing coinhibitory or costimulatory pathways, respectively using immunoglobulin 

fusionproteins or monoclonal antibodies. For instance, several studies showed that 

monoclonal antibodies to CTLA-4 enhanced antitumor response in melanoma patients [25-

27]. Furthermore, several successful clinical trials showed that CD28 costimulation blockade 

by Belatacept, a CTLA-4 fusionprotein derivative, is an emerging treatment modality to 

prevent acute rejection and protect renal function in kidney transplant recipients [28-30].  

 

Figure 2: Scheme outlining the influence of Cyclosporine A (A) and azathioprine (B) on T cell 
activation. 

Since many different signals can contribute to T cell activation processes, the interplay 

between such signals and immunosuppressive agents might have differential effects on the 

outcome of T cell responses. The interaction of CD80/CD86 with CD28 is generally regarded 

as the primary and most potent T cell costimulatory pathway[8]. However, there are many 

alternative costimulatory ligand-receptor pairs that potently enhance the proliferation, 

differentiation and cytokine production of T cells that recognize antigens [7,9,10]. Among 

these the CD58 - CD2, 4-1BBL - 4-1BB, ICOS-L - ICOS and CD54 - LFA-1 (CD11a/CD18) 

pathways are well documented to generate strong and consistent costimulatory effects in 

human T cells [7,12,31]. Costimulatory receptors belong to different molecule-families. 
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Consequently, they can induce signaling events that are distinct from the engagement of the 

CD28 costimulatory pathway. Previous studies have shown that engagement of the CD28 

receptor greatly reduces the sensitivity of T cells to the immunosuppressive effect of CsA 

[32,33]. By contrast, it is not known whether triggering alternative costimulatory receptors 

has similar effects. Furhtermore, there is limited knowledge how different costimulatory 

signals affect the immunosuppressive effects of other drugs in clinical use. In chapter 5, we 

focused on the interplay of the immunpsuppressive drugs, Cyclosporine A and azathiporine, 

acting via different costimulatory receptors namely, CD28, CD2, 4-1BB, ICOS and LFA-1, 

during human T cell activation [34]. 

It is evident that a better understanding of the function of T cell costimulatory 

molecules is a prerequisite for the development of efficient therapeutic strategies. Studies on 

individual costimulatory pathways can complement investigations using experimental systems 

employing natural human APC or animal studies to get a better insight into the intricate 

processes that govern human T cell responses. 

 

Aim of this thesis 
The aim of this thesis was to address the functional role of different costimulatory and 

coinhibitory pathways in human T cell activation. These pathways play a decisive role in 

regulating T cell responses. Furthermore, many aspects of these pathways are currently 

incompletely understood. Moreover, costimulatory and coinhibitory pathways are prime 

therapeutic targets in diseases that are associated with aberrant T cell responses. Furthermore, 

enhancing costimulatory receptors or blocking inhibitory pathways might aid the clearence of 

pathogens and improve tumor immunity.  

In this thesis we assessed the functional dualism of B7-H3, a recently identified B7 

homolog, in human T cell activation. In addition, the impact of the immunsuppressive drugs, 

Cyclosporine A and azathioprine, acting via different costimulatory ligands namely, CD80, 

CD58, 4-1BBL, ICOS-L and CD54, on human T cell activation was analyzed. 
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ABSTRACT 
It is well established that full activation of T cells that recognize antigens requires additional 

signals. These second signals are generated by the interaction of costimulatory ligands 

expressed on antigen presenting cells with their receptors on T cells. In addition, T cell 

activation processes are negatively regulated by inhibitory costimulatory pathways. 

Interaction of members of the B7 and the TNF-superfamilies with members of the CD28 and 

TNF-R-superfamilies play major roles in costimulatory processes. However, a large number 

of molecules that do not belong to these families have been reported to be involved in the 

generation of T cell costimulatory signals. In addition to well-defined costimulatory 

pathways, where both receptors and ligands are known, there are many T cell surface 

molecules that have been described to generate a second signal under certain experimental 

conditions, f. i. when ligated with antibodies. Furthermore, there are several ligands that have 

been shown to positively or negatively modulate T cell activation by interacting with as of yet 

unknown T cell receptors. Here, we give a comprehensive overview of molecules that have 

been implicated in human T cell activation processes and propose criteria that define genuine 

T cell costimulatory pathways.  

 

key words: T cell, human, costimulation, T cell activation, costimulatory receptors, inhibitory 

receptors 

abbreviations: ADA: adenosin deaminase, ALCAM: activated leukocyte cell adhesion 

molecule, BTLA: B-and T lymphocyte attenuator, BTNL2: butyrophilin-like 2, DAF: decay 

accelerating factor, DC-SIGN: dendritic cell-specific ICAM-3-grabbing nonintegrin, DR3: 

death receptor 3, Eph: erythropoetin-producing heaptocyte, FAP: fibroblast activation protein, 

GITR: glucocorticoid-induced tumor necrosis factor receptor, GPI: glyco-phosphatidyl-

inositol, HCV: Hepatitis C virus, HSPG: heparan sulfat proteoglycane, HVEM: herpes virus 

entry mediator, IAP: integrin-associated protein, Ig-SF: immunglobulin-superfamily, LAG-3: 

lymphocyte activation gene, LAMP-3: lysosomal associated membrane proteine 3, LFA: 

lymphocyte-function associated antigen, LPAM-1: lymphocyte Peyer’s patch HEV adhesion 

molecule, LT: lymphotoxin, MAdCAM: mucosal cell adhesion molecule-1, MCP: membrane 

cofactor of proteolysis, NKG2D: natural killer group 2 member D, PADGEM: platelet 

activation dependent granule-external membrane protein, PD-1: programmed death-1, PSG-

17: pregnancy-specific glyoprotein 17, PtdSer: phosphatidylserine, SEMA: semaphorin, 

SIGLEC: sialic acid binding Ig-like lectin, SIRP: signal regulatory protein alpha - possibly 

also beta and gamma, SLAM: Signaling lymphocytic activation molecule, SRCR: receptors 

with scavenger receptor cyteine-rich domains, TAPA-1: target of anti-proliferative antibody-
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1, TIM: T-cell immunoglobulin domain and mucin domain, TL1A: TNF-like ligand 1A, 

TM4-SF: transmembrane 4 – superfamily, TM7-SF: transmembrane 7 – superfamily, 

TNFRSF: tumor necrosis factor receptor superfamily, TNFSF: tumor necrosis factor 

superfamily, TRAMP: TNF-receptor-related-apoptosis-mediated-protein, TREML2: 

triggering receptor expressed on myeloid cells like transcript 2, VCAM: vascular cell 

adhesion molecule, VLA: very late antigen, VSIG4: V-set and immglobulin containing 4 

 

INTRODUCTION 
The current interpretation of the two signal hypothesis of T cell activation is a useful 

approximation of the stimuli that T cells require to achieve unmitigated activation under 

physiological conditions. It proposes that in addition to the antigen-specific signal that 

consists of the cognate interaction of the T cell receptor complex with the peptide-MHC 

complex (Signal 1), T cells depend on additional – costimulatory – signals  (Signal 2) to 

achieve full activation. Although soluble factors like cytokines can also efficiently enhance 

the activation of T cells, that receive stimuli via their T cell receptor complex, the term 

costimulation usually describes the modification of T cell activation processes by the 

interaction of membrane-bound ligands with their T cell expressed receptors.  

T cell costimulatory signals are important regulators of host-protective as well as 

immune-pathological processes. Positive costimulatory signals are mandatory for the 

initiation of effective immunity and the absence of costimulatory signals results in abortive T 

cell response and T cell anergy [1]. Negative costimulatory – coinhibitory – pathways afford 

an additional layer of control that play important regulatory functions thereby contributing to 

the maintenance of peripheral tolerance as well as to the termination of immune responses 

after clearance of infections [2]. Consequently costimulatory pathways are attractive 

therapeutic targets in diseases that are associated with aberrant and harmful immune 

responses e.g. autoimmune conditions and responses to allergens or organ grafts [3-5]. 

Furthermore, blocking inhibitory pathways and enhancing stimulating pathways is a 

promising strategy to ameliorate persistent virus infections and to enhance spontaneous or 

therapeutically induced immune responses to tumors [6, 7]. 

Interaction of the B7 molecules B7.1 (CD80) and B7.2 (CD86) with CD28 and 

CTLA-4, are generally regarded as the primary costimulatory pathways and additional 

members of the extended B7-family - the so-called B7-homologs - can also convey potent 

activating or inhibitory signals to T cells. The second major group of T cell costimulatory 

ligands comprises members of the TNF-superfamily, which interact with their cognate 

receptors belonging to the TNF-receptor superfamily. Intensive research has focused on 
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costimulatory pathways involving B7 or TNF family members and results obtained in these 

studies have been summarized in excellent reviews [8-12]. 

It is however well-established that there are numerous potent costimulatory pathways 

involving interaction of molecules that do not belong to these molecule families, and the list 

of different molecules that have been reported to mediate T cell costimulation is long. Such 

pathways might play important roles in immune responses especially under conditions where 

activation of T cells via CD28 the primary costimulatory receptor, is impaired e.g. in CD28 

negative CD8 T cells or in patients treated with CTLA-4 fusion proteins. 

 In addition to receptors expressed on T cells that have been shown to act 

costimulatory upon interaction with their natural ligands expressed on antigen presenting cells 

(APC), a large number of T cell molecules have been categorized as costimulatory based 

solely on their ability to generate a second signal when ligated with antibodies. Although the 

effects of antibodies targeting such molecules could be therapeutically exploited for the 

modulation of immune responses, their physiological role as costimulatory receptors remains 

to be established.  

Members of the B7-CD28 superfamily 

The B7-CD28 superfamily is the primary group of costimulatory molecules involved in T cell 

costimulatory and coinhibitory processes.  

The B7-CD28 superfamily comprises following receptor/ligand pairs: CD28/CTLA-

4:CD80/CD86, ICOS:ICOS-L and PD-1:PD-L1/PD-L2. In addition there are two members of 

the B7 superfamily for which no human receptors have been identified: B7-H3 and B7-H4 

[8]. The CD28/CTLA-4:CD80/CD86 pathway is the best characterized T cell costimulatory 

pathway. CD80 and CD86 have dual specificities for the stimulatory receptor CD28 and the 

inhibitory higher affinity receptor CTLA-4 [13]. CD28, which can be regarded as the most 

potent costimulatory receptor, promotes IL-2 production, activation of naive T cells, T cell 

survival and entry into the cell cycle.  Engagement of CTLA-4, which is upregulated on 

activated T cells counterbalances the activating effects of CD28 and leads to inhibition of cell 

cycle progression and IL-2 production. Recently it was shown that CD80 binds also to PD-L1 

and that this interaction can down regulate murine T cell responses [14]. Specific interaction 

between human CD80 and PD-L1 has also been demonstrated [14-16] but to date functional 

consequences of this interaction have not been reported. 

The ICOS-L:ICOS signaling pathway induces little IL-2 but promotes T helper cell 

differentiation and effector function through production of TH1, TH2 and TH17 cytokines (IL-

10, IL-4, IFN-γ, IL-17 and IL-21) [17-21]. Furthermore, ICOS:ICOS-L interaction is crucial 
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for T cell dependent B cell response, B cell differentiation, germinal center formation and 

memory B cell development. ICOS engagement leads to upregulation of CD40L, a molecule 

critically involved in immunoglobulin isotype switching [22, 23].  

PD-L1 and PD-L2 deliver a coinhibitory signal via PD-1 to T cells thereby strongly inhibiting 

T cell proliferation and cytokine production [24-29]. The PD1:PD-L1/2 pathway may also 

play an inhibitory role in CD4+CD25+ regulatory T cells and was shown to contribute to 

peripheral tolerance and might have a role in preventing autoimmunity [30-34]. PD-L1 

bearing tumor cell lines could be associated with increased apoptosis of CD4+ and CD8+ T 

cell clones in vitro. However, there are also reports suggesting a costimulatory role for both 

PD-1 ligands [35-37]. Thus the existence of putative second receptors for PD-L1 and PD-L2 

with costimulatory function on T cells has been suggested. All data suggesting an activating 

function of PD-L2 stem from experiments with murine T cells whereas costimulatory effects 

of human PD-L2 have not been described. In line with this we found that there is no evidence 

for a stimulatory receptor for PD-L2 on human T cells [38].  

B7-H3, another member of the B7 superfamily, was originally reported to function as 

a T cell costimulator [39], but we and others find that B7-H3 does not enhance T cell 

activation and plays an important role as coinhibitory molecule [16, 40-42]. Recently 

TREML2 was reported to serve as a costimulatory receptor for B7-H3 on murine T cells [43]. 

We have analyzed the interaction of fusion proteins representing human B7-H3 and TREML2 

with cells expressing high levels of TREML2 and B7-H3, respectively, and found no 

evidence for a specific interaction of these molecules [16]. Furthermore, independent 

experiments performed in two laboratories could also not confirm a role of B7-H3 as a ligand 

for murine TREML2 [16, 44]. Thus B7-H3 has still to be regarded as an orphan ligand.  

Whereas several independent studies on B7-H4 (B7S1; B7x), another member of the 

extended B7 family report coinhibitory functions for murine B7-H4 [45-47], published data 

on the function of human B7-H4 are rare. In line with data obtained in mouse studies, 

Kryczek and coworkers reported that B7-H4 expression identifies a suppressive macrophage 

population in human ovarian carcinoma and show that ectopic expression of B7-H4 an human 

monocytes inhibits their T cell stimulatory capacity [48]. In the first report on human B7-H4 

it was however found that B7-H4 fusion proteins have a higher capacity to costimulate human 

T cell activation than fusion proteins representing CD80 [49]. 

Butyrophilins and butyrophilin-like molecules are distantly related to the B7-family 

and among these molecules butyrophilin-like 2 (BTNL2) was shown to have a close structural 

homology to B7-1 (CD80) [50]. Murine BTNL2 was shown to act as an inhibitory 
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costimulatory ligand [51, 52] and Arnett et al. demonstrated that immobilized BTNL2-fusion 

proteins also inhibited anti-CD3 induced proliferation of human T cells.  

The macrophage complement receptor CRIg (Z39Ig) was recently identified as B7 

family related protein and reported to negatively costimulate the activation of human T cells 

[53].  

Cellular receptors that mediate T cell inhibitory effects of B7-H4, BTNL-2 or CRIg on 

T cells have not been identified to date.  

Members of the TNF-R/TNF superfamilies 

Members of the TNFR superfamily comprise the second major group of T cell costimulatory 

receptors. Signals from the large family of TNF-R family members have important roles, 

many of which are not related to immune functions. There are six receptor-ligand pairs which 

are generally regarded as being involved in T cell costimulatory processes: 4-1BB/4-1BBL; 

OX40/OX40L; CD27/CD70; GITR/GITRL; CD30/CD30L and HVEM/LIGHT [9]. Extensive 

studies support a costimulatory function of 4-1BB, OX40, CD27 but few reports have 

described such a function for human LIGHT and human CD30L. We have recently compared 

the capacity of TNF-family members to costimulate human T cells. We found human 4-1BBL 

to have the most potent T cell costimulatory effects in this group. Furthermore, whereas 

OX40L, CD27L and GITRL readily costimulated the proliferation and cytokine production of 

human T cells, CD30L and LIGHT consistently failed to do so [18]. An independent study 

has demonstrated that 4-1BBL and CD70 but not LIGHT can costimulate cytokine production 

and effector function of virus specific human CD8+T cells [54]. Thus we suggest that CD30 

and HVEM might be functionally distinct from the costimulatory members of the TNF-R-

family. More recently several studies in murine systems have demonstrated that TL1A is a 

costimulatory ligand for DR3 (TRAMP) [55-57] and a costimulatory function for human 

TL1A has been reported as well [55, 58].  

The TNFR family member HVEM appears to have a central position in the network of 

stimulatory and inhibitory interactions: In addition to its role as a receptor for LIGHT and 

lymphotoxin(LT)-alpha it has been demonstrated to serve as a ligand for two receptors 

expressed on T cells: the immunoglobulin superfamily members BTLA and CD160, which 

both have been demonstrated to convey negative signals into human T cells upon engagement 

[59, 60]. 

The interaction of DC-expressed TNF-R family member CD40 with CD40L (CD154) 

on activated CD4 T cells can profoundly enhance T cell responses, since CD40 signals result 

in the up-regulation of MHC molecules and costimulatory molecules in DC [61]. Thus the 
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major role of CD40L in T cell costimulation is an indirect one: by inducing T cell 

costimulatory ligands like CD80 and CD86 on APC. However, several studies report that 

ligation of CD40L transduces costimulatory signals into human T cells [62, 63]. 

Members of the CD2 Superfamily 

Like the B7- and the CD28 families, the CD2 family of receptors is part of the large 

immunoglobulin (Ig) superfamily. Activation of the T cell receptor CD2 (LFA-2) via CD58 

(LFA-3), another member of the CD2 superfamily, was one of the first T cell costimulatory 

pathways to be identified [64, 65]. 

In addition to this interaction, which can transduce very potent costimulatory signals into 

human T cells, CD48, which also belongs to the CD2 family, has also been reported to 

costimulate human T cells via CD2 [66]. Recently it was demonstrated that T cell expressed 

CD48 cooperates with CD2 in the establishment of the TCR signalosome in a human T cell 

line [67]. Human CD48 has a much lower affinity to CD2 than CD58, whereas murine CD48 

is the major ligand for murine CD2. The GPI-linked molecule CD59 has also been described 

to serve as a costimulatory ligand for CD2 [68] but these findings have been disputed [69]. 

Signaling lymphocytic activation molecule (SLAM; CD150) is expressed on activated 

human T cells and ligation of this receptor by antibodies was shown to costimulate anti-CD3 

mediated T cell activation resulting in enhanced proliferation and production of IFN-γ [70, 

71]. SLAM is a selfligating receptor but this interaction is of very low affinity (200 µM). 

Human T cell costimulatory effects mediated by SLAM/SLAM interaction have not been 

reported.  

Integrins 

Integrins are widely expressed on leukocytes and mainly involved in controlling and 

maintaining cell-cell as well as cell-extracellular matrix interaction. Integrins are 

noncovalently linked αβ heterodimers, which are diveded in 3 families defined by their β-

subunits, which associate with multiple α-chains. The principal integrins expressed on naïve 

T cells are LFA-1, αβ2 integrins and VLA-4, -5 and -6. Integrin function is regulated via 

conformational changes. These changes can be on one hand primarily induced in the 

cytoplasmatic tail of the integrins e.g. by chemokines or cell differentiation and then 

transmitted to the extracellular domain, i.e. “inside-out” signaling. One the other hand 

“outside-in” signaling occurs upon ligand binding and leads to conformational changes that 

allow for signaling through the cytoplasmic domains [72]. 

LFA-1 (β2 integrin; CD11a/CD18) is the best known costimulatory member of the integrin 

family. LFA-1 binds to ICAM-1, -2 and -3 and ligation of LFA-1 with mAbs as well as with 
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its ligands in context with a signal 1 enhanced T cell proliferation and cytokine production 

[73, 74]. LFA-1 signaling is especially effective in context of a weak signal 1. LFA-1 is part 

of the immunological synapse and furthers cell-cell contact thereby allowing prolonged T 

cell/APC interaction. However, studies in mice have shown that LFA-1 does not only 

function as enhancer of TCR signaling but activates true costimulatory pathways similar to 

CD28 [75]. 

The VLA subfamily is defined by a common β-chain, β1 (CD29). VLA integrins mainly 

mediate interaction with the extracellular matrix. A costimulatory function has been described 

for VLA-4 (α4β1 integrin, CD49d/CD29) and VLA-5 (α5β1, CD49e/CD29) when interacting 

with fibronectin as well as VLA-6 (α6β1, CD49f/CD29) that binds to laminin [76]. VLA-4 

has a second, cellular interaction partner VCAM-1 (CD106), interaction with whom leads to 

enhanced cytokine production and T cell proliferation [77]. VCAM-1/VLA-4 interaction 

inhibits actin dependent centralization of SLP 76 thereby promoting sustained signaling [78].  

Another costimulatory integrin is the α4β7 integrin (LPAM-1), which is especially expressed 

on gut homing memory T cells and interacts with MAdCAM-1 [79].  

Tetraspanins 

Tetraspanins are considered to serve as organisator structures for molecular assembly on the 

cell membrane and to be involved in cell-cell adhesion, cell-cell fusion, signal transduction 

and activation processes [80]. CD9, CD37, CD63, CD81, CD82 and CD151 have been 

studied in the context of T cell activation. Although for some of the tetraspanins (e.g. CD9: 

pregnancy-specific glycoprotein 17; CD81: HCV-E2) interaction partners have been 

identified, their role in T cell activation has been analyzed by ligation with mAbs or by 

studying T cell activation in animals deficient for different tetraspans (e.g. CD37) [81]. CD9 

has been reported to deliver a costimulatory signal to Jurkat cells [82], however in mice it has 

been shown to induce T cell activation followed by enhanced apoptosis [83]. An immobilized 

mAb interacting with CD63 was shown to provide a potent costimulatory signal leading to 

sustained activation of human T cells [84]. Costimulatory functions have also been shown for 

CD81 and CD82 in mice and men [85, 86]. For CD81 antibodies a superagonistic potential as 

well as Th2 polarization capacity have been described [87]. CD37 and CD151 however have 

been found to play a regulatory role in T cell activation since CD37 and CD151 knock-out 

mice show hyperresponsive T cells but also hyperstimulatory DC, and human T cells 

displayed reduced proliferation when stimulated in presence of CD37 mAbs [81, 88].  
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The TIM family 

The T cell immunoglobulin domain and mucin domain (TIM) family, consisting of 3 human 

members (TIM-1, TIM-3, TIM-4) has been implicated in regulation of autimmunity, allergy 

and transplantation immunity [89, 90]. TIM-1, the receptor for the hepatitis A virus, is highly 

polymorphic and certain variants were shown to be associated with protection against allergic 

asthma. TIM-4 is primarily expressed on APC and has been shown to serve as a ligand for 

TIM-1 in mice [91]. Depending on the experimental conditions used, TIM-4 was found to 

costimulate or inhibit the proliferation of murine T cells activated with CD3 and CD28 

antibodies. In humans TIM-1 has been shown to potentiate TCR signaling, since 

overexpression as well as crosslinking TIM-1 by mAbs leads to enhanced cytokine secretion 

[92]. TIM-3, in contrast, has been originally identified as marker of Th1 cells in mice and 

ligates to galectin 9. TIM-3 expression is associated with human T cell activation and TIM-3 

antibodies have been shown to enhance Th1 and Th17 cytokine secretion but not proliferation 

of human T cells [93]. Interaction of TIM-4 and galectin 9 with human TIM-1 and TIM-3, 

respectively, has not been demonstrated to date.  

Receptors harboring SRCR domains 

CD5 (Leu 1) and CD6 both belong to the superfamily of receptors that harbor scavenger 

receptor cysteine-rich (SRCR) domains. CD5 is associated with the TCR complex and 

antibodies to CD5 augment anti-CD3 induced proliferation of human T cells [94, 95]. Cellular 

ligands for CD5 have not been identified, since a report that CD5 interacts with CD72 could 

not be substantiated [96, 97].  

Antibody engagement of human CD6 enhances T cell proliferation induced via the TCR-

complex, and there are numerous studies supporting a role of the CD6-ligand activated 

leukocyte cell adhesion molecules (ALCAM; CD166) in enhancing T cell responses via CD6 

[98-100].  

Other molecules implicated to serve as costimulatory receptors 

There are numerous additional human molecules that have been described to serve as 

costimulary T cell receptors (Table 1a). Cellular ligands have currently not been described for 

many of these molecules and most studies have used immobilized antibodies to demonstrate 

that these molecules can mediate augmented activation of human T cells that are stimulated 

via the TCR-complex. Table 1 does not show receptors that have been described to act 

costimulatory in murine T cells for which such functions have yet to be confirmed in human T 

cells.  
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Orphan costimulatory ligands 

There are several molecules that have been reported to modulate human T cell responses by 

interacting with as of yet unidentified receptors on T cells (Table 1b). Identification of T cell-

expressed binding partners for such orphan ligands is a prerequisite to better understand their 

functional role in the activation of T cells.   
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CONCLUSION 
The immune system employs many different receptor-ligand pairs that contribute to 

the activation of T cells. The complexity of the regulation of T cell responses by activating 

and inhibitory costimulatory signals underlines the necessity for a tight control of T cell 

immunity to ensure protective responses to pathogens with limited harm to host tissues. 

Currently the redundancy among costimulators is incompletely understood but since different 

costimulatory receptors induce distinct signaling events in T cells, the concert of 

costimulatory processes might afford a fine tuning of T cell activation processes. A better 

knowledge of the temporal and spatial expression patterns of human costimulatory molecules 

and intracellular signaling events triggered by costimulatory receptors will improve our 

understanding regarding the regulation of human T cell responses in vivo.   

The advent of transgenic and gene-deleted animals along with the enormous 

possibilities resulting from in vivo studies of experimentally induced diseases has spawned 

the interest in mouse immunology. The current emphasis on the murine immune system is 

demonstrated by the human costimulatory ligand CD58. It is well established that interaction 

of CD58 with human CD2 results in a potent costimulatory signal [64, 65] and we have found 

that the T cell costimulatory potency of human CD58 is only surpassed by the B7 molecules 

(unpublished results). However since CD58 lacks a murine orthologue, CD2 and CD58 are 

not discussed in most recent reviews on costimulatory pathways. Murine studies have brought 

valuable insights on the regulation of T cell responses in vivo. Since there are many 

considerable differences between the human and murine immune system it is nevertheless 

necessary to carefully evaluate data generated in animal studies regarding their impact on 

humans T cells.  

Furthermore, there are large differences between the experimental systems that have 

been used to demonstrate costimulatory functions on human T cells for the molecules 

described in table 1. In this context it should be pointed out that for a significant number of T 

cell molecules that have been described to transduce costimulatory signals upon crosslinking 

with antibodies no “natural” ligands have been identified to date. We suggest however that 

the term costimulatory receptor should mainly designate T cell molecules that have been 

shown to modulate Signal 1 upon interaction with natural ligands. Thus from our point of 

view, the identification of functional membrane-bound ligands for such molecules is a 

prerequisite to establish novel costimulatory pathways. It should be stressed that the strong 

crosslinking of receptors by plate-immobilized antibodies might induce events in T cells that 

cannot be re-capitulated upon their interaction with natural ligands expressed on the surface 

of antigen presenting cells. Thus we propose criteria that should be met by receptor-ligand 
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pairs to qualify them as genuine human T cell costimulators (Box 1) and such molecules are 

shown in Figure 1. 

Box 1:  
Criteria for well-established human T cell costimulatory pathways:  

1. both receptor and ligand are known 
2. the costimulatory functions have been described by independent investigators 
3. costimulatory signals can be generated upon interaction of the costimulatory 

ligand with the receptor 
4. the costimulatory ligand is a cell surface molecule  
5. the costimulatory receptor can interact with the intracellular signaling machinery 

– either directly via intracellular signaling motifs or via (in cis) interaction 
partners that harbor such motifs 

6. there is good evidence that the functional role of the receptor and ligand lies 
mainly in the activation of lymphocytes 

7. under physiological conditions the receptor signal does only modulate Signal 1 – 
no significant signaling in absence TCR-complex triggering 

 

Figure 1: Receptor ligand pairs that are well established to play a role in the costimulation of human T 
cells. (A) Members of the B7-CD28 superfamily, (B) members of the TNF- TNF-R superfamily and 
(C) additional costimulatory pathways. 
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    positive costimulation negative costimulation 

Receptor 
Molecule 

family Ligand 
Molecule 

family pos. 

Shown with  
natural 
ligands Refs. neg. 

Shown with 
natural 
ligands Refs. 

CD28 CD28-SF 
CD80 (B7.1),  
CD86 (B7.2) B7-SF     [8, 44, 101]     

CTLA-4 (CD152) CD28-SF 
CD80 (B7.1),  
CD86 (B7.2) B7-SF        [8, 13] 

ICOS (CD278) CD28-SF 
ICOSL (CD275,  
B7-H2, B7h, B7RP-1) B7-SF     [8, 22, 23, 102]    

PD-1 (CD279) CD28-SF 
PD-L1 (CD274, B7-H1), PD-
L2 (CD273, B7-DC) B7-SF        

[8, 24, 
26-29, 

38] 

CD27 (TNFRSF7) TNFR-SF CD70 TNF-SF     
[9, 18, 54, 103-

105]     
4-1BB (CD137, 
TNFRSF9) TNFR-SF 4-1BBL (CD137L, TNFSF9) TNF-SF     [9, 18, 54, 106]     
OX40  
(CD134, TNFRSF4) TNFR-SF OX40L (CD252, TNFSF4) TNF-SF     [9, 107]     
GITR (TNFRSF18) TNFR-SF GITRL (TNFSF18) TNF-SF     [9]     
CD30 (TNFRSF8) TNFR-SF CD30L (CD153, TNFSF8) TNF-SF     [9, 108]     
HVEM 
(CD270,TNFRSF14) TNFR-SF LIGHT (CD258, TNFSF14) TNF-SF     [9]     
DR3 (TNFRSF25) TNFR-SF TL1A (TNFSF15) TNF-SF     [55-57]     
LIGHT  
(CD258, TNFSF14) TNF-SF TR6  TNFR-SF     [109]     
CD154 (CD40L, 
TNFSF5) TNF-SF CD40 (TNFRSF5) TNFR-SF     [62, 63]     
CD2 (LFA-2) CD2-SF CD58, CD48 (LFA-3) CD2-SF     [64-67]     
CD150 (SLAM) CD2-SF CD150 (SLAM) CD2-SF    [70, 71]     
LFA-1 (CD11a/CD18) 
 

IntegrinSF 
 

CD54 (ICAM1), CD102 
(ICAM2), CD50 (ICAM3) 

Ig-SF 
 

 
    

 
[73-75]     

VLA-4 (CD29/CD49d) IntegrinSF VCAM-1 (CD106), fibronectin Ig-SF     [76-78]     
VLA-5 (CD29/CD49e) IntegrinSF fibronectin       [76]     
VLA-6 (CD29/CD49f) IntegrinSF laminin, invasin, merosin       [76]     
LPAM-1 (a4b7-
integrin) IntegrinSF MAdCAM-1  Ig-SF     [79]     
CD9 (Tspan-29, MRP-
1, p24) TM4-SF PSG-17*      [82, 110]     

CD37 TM4-SF           
 [81, 
88] 

CD63 (LAMP-3) TM4-SF        [84]     
CD81 (TAPA-1) TM4-SF HCV-E2      [85, 87]     
CD82 (R2, C33) TM4-SF        [86]     
TIM-1 (HAVCR1, KIM-
1) TIM TIM-1, TIM-4, IgAl, PtdSer      [89, 90, 92]     
TIM-3 TIM galectin 9*     [93, 111]      

CD5 (Ly1, Leu-1) 

SCRC-
domain 
receptor CD72 (Lyb-2) c-type lectin    [94-97]     

CD6 (T12) 

SCRC-
domain 
receptor CD166 (ALCAM) Ig-SF    [99, 100]     

CD7 (gp40, Tp41) Ig-SF        [112-114]    
 [115, 
116] 

CD47 (IAP) Ig-SF 
SIRP (CD172), 
Thrombospondin 1      [117]     

CD50 (ICAM-3) Ig-SF LFA-1, DC-SIGN (CD209) c-type lectin    [118]     
CD54 (ICAM-1) Ig-Sf LFA-1 Integrin-SF    [119]     
CD147 (M6, EMMPRIN, 
Basigin) Ig-SF           

[120, 
121] 

CD160 (BY55, NK1, 
NK28) Ig-SF HVEM (CD270, TNFRSF14) TNFR-SF        [60] 
BTLA (CD272) Ig-SF HVEM (CD270, TNFRSF14) TNFR-SF        [59] 

LAG-3 (CD223) Ig-SF MHC-class II  MHC        
[122, 
123] 

CD26 (dipeptidly 
peptidase IV) 

polyoligo 
peptidase 
family 

Caveolin 1, ADA, fibronectin, 
collagen, FAP, HIV tat protein        [124-127]     

CD38 (ADP-ribosyl 
cyclase)  

CD31 
  Ig-SF    [128-130]     

CD43 (Leukosialin, 
Sialophorin) 
 
 
 

cell surface 
mucin family 
 
 
 

Siglec1 (CD169, 
Sialoadhesin), CD54 (ICAM-
1), MHC-I, P-selectin (CD62P, 
PADGEM)     [131]     

CD46 (MCP) RCA-family C3b, C4b, pathogens      [132, 133]     
CD55 (DAF) RCA-family CD97 TM7-SF     [134]     
CD52 (Campath-1)          [135]     
CD59 Ly-6-SF      [136]    

CD73 (L-VAP-2) 

GPI-linked 
5'-
nucleotidase        [137-139]     

CD99 (MIC2, E2) mucin CD99 (MIC2, E2) mucin    [140, 141]     

CD100 (SEMA4D) 
semaphorin 
family  CD72  c-type lectin    [142]     [142] 

CD101 (V7) Ig-SF        [143]    
[143, 
144] 

EphB6 Eph kinase EphrinB2  Ephrins     [145]    
NKG2D c-type lectin MIC-A  MHC-like     [146]    
Syndecan-2 HSPG EM, cytokines        [147] 
Syndecan-4 HSPG EM, cytokines            [147] 

Table 1a: Human T cell receptors that have been reported to play a role in T cell costimulatory processes. *) only shown in mice 
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  positive costimulation negative costimulation 

Ligand 
Molecule 

family pos. Refs. neg. Refs. 
B7-H3 (CD276) B7-SF   [39]   [16, 40, 41] 
B7-H4 (B7x, B7S1) B7-SF   [49]   [48] 
Z39Ig (VSIG4) Ig-SF        [53] 
CD31 (PECAM-1) Ig-SF       [148, 149] 
CD83 (HB15) Ig-SF    [150]   
BTNL2 butyrophilin      [51, 52] 
Siglec1 (CD169) SIGLECs       [151] 
Table 1b: Orphan human ligands implicated to play a role in T cell costimulatory processes. 
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ABSTRACT 
It is well established that full activation of T cells requires the interaction of the TCR complex 

with the peptide-MHC complex (Signal 1) and additional signals (Signal 2). These second 

signals are generated by the interaction of costimulatory ligands expressed on antigen 

presenting cells with activating receptors on T cells. In addition, T cell responses are 

negatively regulated by inhibitory costimulatory pathways. Since professional antigen 

presenting cells (APC) harbor a plethora of stimulating and inhibitory surface molecules, the 

contribution of individual costimulatory molecules is difficult to assess on these cells. We 

have developed a system of stimulator cells that can give signal 1 to human T cells via a 

membrane-bound anti-CD3 antibody fragment. By expressing human costimulatory ligands 

on these cells, their role in T cell activation processes can readily be analyzed. We 

demonstrate that T cell stimulator cells are excellent tools to study various aspects of human T 

cell costimulation, including the effects of immunomodulatory drugs or how costimulatory 

signals contribute to the in vitro expansion of T cells. T cell stimulator cells are especially 

suited for the functional evaluation of ligands that are implicated in costimulatory processes. 

In this study we have evaluated the role of the CD2 family member CD150 (SLAM) and the 

TNF family member TL1A (TNFSF15) in the activation of human T cells. Whereas our 

results do not point to a significant role of CD150 in T cell activation we found TL1A to 

potently costimulate human T cells. Taken together our results demonstrate that T cell 

stimulator cells are excellent tools to study various aspects of costimulatory processes. 

 

key words: T cell activation, costimulation, TL1A, CD150 
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INTRODUCTION 
The two signal hypothesis of lymphocyte activation proposes that T cells that receive Signal 1 

via their T cell receptor (TCR) complex depend on concomitant triggering of costimulatory 

receptors to achieve full activation [1, 2]. T cell activation is also modulated by inhibitory 

costimulatory receptors that are able to attenuate TCR-signals. By acting as potent regulators 

of host-protective as well as pathological processes, T cell costimulatory pathways play a 

pivotal role in immunity [3-5]. Consequently, such pathways are prime therapeutic targets in 

diseases that are associated with aberrant T cell responses [6, 7]. Likewise, tumor patients or 

individuals suffering from chronic viral infection might benefit from therapies that enhance 

costimulatory pathways or block inhibitory receptors [8]. In this context it is evident that a 

more complete understanding regarding the function of human T cell costimulatory molecules 

is a prerequisite for the development of efficient therapeutic strategies.  

Studies on costimulatory pathways on human cells are hampered by several 

circumstances. Antigen presenting cells (APC) harbour a plethora of activating and inhibitory 

ligands with overlapping and redundant functions, which complicate the assessment of the 

contribution of single molecules to T cell activation processes. Studies on individual 

costimulatory pathways often rely on the use of immobilized antibodies. Such antibodies 

might differ from the natural ligands regarding their binding site and affinity. Furthermore, 

the crosslinking of receptors by immobilized antibodies generates signals that might not 

accurately reflect the effects of interaction of costimulatory ligands with their receptors. 

However, there are numerous molecules that have been categorized as costimulatory based 

solely on their ability to generate a second signal when ligated with antibodies [9]. 

Recombinant proteins representing the extracellular domains of costimulatory ligands are 

valuable and widely used tools to study T cell activation processes. However, their generation 

is time consuming and costly and they might differ from their membrane resident natural 

counterparts regarding their capability to modulate T cell responses.  

We have developed a simple cellular system to assess the role of costimulatory ligands 

in the activation of human T cells. This system, which we have designated T cell stimulator 

cells, is based on the murine thymoma cell line Bw5417 that expresses membrane-bound anti-

human CD3 single chain antibody fragments at high or low densities. Upon retroviral 

expression of human costimulatory ligands on these cells their contribution to the activation 

of human T cells can readily be determined. In this study we describe this system in detail and 

demonstrate that T cell stimulator cells are an efficient and versatile tool to study various 

aspects of human T cell costimulatory processes. 
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MATERIAL AND METHODS 
Antibodies, cell culture and FACS staining 

293T cells and the mouse thymoma cell line Bw5147 (short designation within this work Bw) 

were cultured as described [10, 11]. The ethical review board of the General Hospital and the 

Medical University of Vienna approved the human studies performed within this work and 

informed consent was obtained from the donors. PBMC were isolated from heparinised whole 

blood of healthy volunteer donors by standard density centrifugation with Ficoll-Paque 

(Amersham Bioscience, Roosendaal, Netherlands). Human T cells were obtained through 

depletion of CD11b, CD14, CD16, CD19, CD33 and MHC-class II bearing cells with the 

respective mAbs by MACS (Miltenyi Biotech, Bergisch Gladbach, Germany). The mAbs to 

CD11b (VIM12), CD14 (VIM13), CD33 (4D3), MHC-class II (1/47), CD80 (7-480), CD58 

(1-456) and the non-binding control antibody VIAP (calf intestine alkaline phosphatase 

specific) were produced at our institute. The mAbs to CD14 (MEM-18) was purchased from 

An der Grub (Kaumberg, Austria), CD19 mAb (BU12) from Ancell (Bayport, MN), 41BB-L 

and CD150/SLAM (A12) from Biolegend (San Diego, CA). Goat anti-human 

TL1A/TNFSF15 antibodies were obtained from R&D (Minneapolis, MN). FACS analysis 

was performed as described previously [10]. Briefly, binding of primary antibodies was 

detected with PE-conjugated goat anti-mouse IgG-Fcγ specific Abs or donkey anti-goat IgG 

(H+L) (both Jackson ImmunoResearch, West Grove, PA). Expression of membrane-bound 

anti-CD3 antibody fragment was detected via APC-conjugated goat-anti-mouse IgG (H+L) 

Abs, which reacts with the variable regions of murine antibodies (Jackson ImmunoResearch). 

Fluorescence intensity is shown on a standard logarithmic scale.  

Double immunflourescence of T cell and stimulator cell co-cultures 

Human T cells were CFSE-labeled as described in detail [12]. Irradiated T cell stimulator 

cells (2x106/ml) were incubated with 0,5 µM working solution of CellTrackerTM Orange 

CMTMR (5-and 6 (4-chloromethyl-benzoyl-amino-tetramethylrhodamine) mixed isomers for 

30 minutes at 37°C in a CO2 incubator. The reaction was stopped by washing once with pre-

warmed medium. For double-immunflourescence CMTMR-labeled stimulatorcells 

(8x104/well) and CFSE-labeled T cells (4x105/well) were co-cultured in a 24-well cell culture 

plate in phenolred-free cell culture medium for 24h or 48h. To visualize the stimulator cell – 

T cell interaction at a higher magnification, cells were co-cultured for 24h, fixed in 4% 

paraformaldehyde and washed once with medium. Subsequently, cells were analyzed by laser 

scanning microscopy (LSM 410, ZEISS) [13]. CellTraceTM CFSE and CellTrackerTM Orange 

CMTMR were both purchased from Molecular Probes (Eugene, OR).  
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Generation of expression constructs encoding membrane-bound anti-CD3 single chain 

fragments 

cDNA derived from hybridoma cells producing the anti-human CD3 antibody OKT3 (ATCC, 

Manassas, VA) was subjected to PCR amplification using primer pairs specific for the 

variable regions of the heavy chain (VH-for 5’ 

GGAATTCGCTAGCCCAGGTCCAGCTGCAGCAGTCT 3’ , VH-rev 5’ 

GGGGGATCCGGTGACCGTGGTGCCTTGGCCCCAGTA 3’) and light chain (VL-for 5 

GGAATTCGAGCTCCCAAATTGTTCTCACCCAGTCTCCA 3’ and VL-rev 5  

GGGATCCCCACCGCCCCGGTTTATTTCCAACTTTGT 3’). The resulting PCR products 

were digested with Nhe I plus BstE II (VH) and Sac I plus BamH I (VL) and joined via a Sac I 

to BstE II fragment encoding a (G4S)3-linker by ligation. Two distinct DNA-fragments were 

generated by employing additional PCR and ligation steps: CD5L-OKT3scFv-CD28 encoded 

the OKT3-single chain antibody fragment flanked by the CD5 leader sequence and a BamH I 

to Not I fragment encoding the transmembrane and intracellular domains of human CD28, 

which was amplified using the primer pair (5’ 

CGCGGGGGATCCCCCAAGTCCCCTATTTCCCGG 3’ and 5’ 

GCGCCCGCGGCCGCTTTAGGAGCGATAGGCTGCGAAGT 3’), whereas CD5L-OKT3-

CD14 encoded the OKT3-single chain antibody fragment flanked by the CD5 leader peptide 

and the leaderless human CD14 molecule generated by fusing a CD14 BamH I to Nhe I 

fragment, which was amplified using the primer pair (5’ 

CGCGGGGGATCCCACCACGCCAGAACCTTGTGA 3’ and 5’ 

CCTTGAGGCGGGAGTACGCT 3’) to the Nhe I to Not I fragment of CD14 cDNA. Both 

constructs were cloned into the retroviral expression vector pMMP and the integrity of the 

synthetic expression constructs was confirmed by DNA-sequence analysis. 

The nucleotide sequences encoding the surface expressed anti-CD3 antibody fragments have 

been submitted to GenBank accession ns. HM208751 – CD5L-OKT3-scFv-CD28 (protein_id 

ADN42858) and HM208750 – CD5L-OKT3-scFv-CD14 (protein_id ADN42857).  

Generation of T cell stimulators 

Bw5147 cells were retrovirally transduced to express the CD5L-OKT3-scFv-CD28 or the 

CD5L-OKT3-scFv-CD14 constructs. Tranduction with the OKT3::CD28 yielded Bw5147 

cells expressing anti-CD3 antibodies at low density; the Bw-anti-CD3low stimulator cells. 

Transduction with the OKT3::CD14 construct resulted in Bw5147 cells expressing high levels 

of membrane-bound anti-CD3 antibody-fragment on their surface and were thus termed Bw-

anti-CD3high stimulator cells. Single cell clones were obtained from both Bw lines and cell 

clones expressing homogenous amounts of membrane-bound anti-CD3 antibodies were 
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selected for further use. cDNAs encoding human CD80, CD58, CD54, CD150, TL1A, 41BB-

L and ICOS-L were PCR amplified from a human dendritic cell library and cloned into the 

retroviral expression vector  pCJK2 generated in our laboratory.  Integrity of these expression 

plasmids was confirmed by DNA sequencing. Using retroviral transduction these molecules 

were expressed on the T cell stimulator cells as described [14]. Control stimulator cell lines 

expressing no human molecule were generated by treating T cell stimulator cells with 

supernatants derived from retroviral producer cell lines transfected with empty vector DNA or 

a vector encoding GFP.  

T cell proliferation assays 

All T cell proliferation assays were done in triplicates, means and SD are shown. For T cell 

proliferation assays human T cells (1x105/well) were co-cultured with irradiated (6000 rad) T 

cell stimulator cells (2x104/well) for 72 hours. In some experiments Adalimumab (Humira, 

Abbott Laboratories, Chicago, IL) or Beriglobin P as control (CSL Behring GmbH, Marburg, 

Germany), was added at a final concentration of 10 µg/ml at the onset of culture. To assess T 

cell proliferation methyl-3[H]-thymidine (final concentration: 0.025 mCi; Perkin Elmer/New 

England Nuclear Coorporation, Wellesley, MA) was added for the last 18 hours prior 

harvesting of the cells. Methyl-3[H]-thymidine uptake was measured as described [15]. 

In vitro expansion of human T cells  

Purified human T cells (5x105/well) were co-cultured in 1 ml medium with 1.2x105 irradiated 

anti-CD3high T cell stimulator cells expressing human costimulatory molecules as indicated. 

Following 7 days of culture, T cells were harvested, counted and analyzed for CD8+ 

expression. 5x105 T cells were re-cultured with 1.2x105 irradiated stimulator cells as 

described above. Five rounds of stimulation were performed. For each round of stimulation 

the T cell expansion factor was calculated by dividing the starting cell number by the cell 

number obtained after 7 days of stimulation.  

Cellular cytotoxicity assay  

Cytotoxic activity of expanded T cells was measured using a europium release assay kit 

(Delfia, Perkin Elmer) following the manufacturer’s protocol. Briefly, expanded T cells 

(1x105/well) were incubated with the labelled target cells (5x103/well; Bw-anti-CD3high cells 

or Bw cells not expressing anti-CD3 as control) for 2 hours at 37°C. For detection of cell 

lysis-associated europium release 20 µl of supernatant was transferred to a 96-well flat bottom 

plate and 200 µl enhancement solution was added. Fluorescence was measured using a time-

resolved fluorometer (Victor; Perkin Elmer). The percentage of specific cytotoxicity was 
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calculated as described using the formula: (experimental release-spontaneous 

release)/(maximum release-spontaneous release) x 100 [16].  

Cytokine measurement 

For cytokine measurement supernantants of T cell proliferation assays were collected after 

48h and pooled from triplicate wells. IFN-γ, IL-10 and IL-13 were measured in the 

supernatants using the Luminex System 100 (Luminex, Texas, USA). 

Statistics 

Two-tailed Student-t test was used to assess significance. IMB® SPSS statistics software was 

used for Box plot and for analysis of variance (ANOVA) in Figure2. 
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RESULTS  
Generation of T cell stimulator cells 

mAbs that trigger the T cell receptor complex by interacting with CD3 molecules are widely 

used to study the activation of T cells. We aimed to establish a cellular system that can give 

“Signal 1” to human T cells. In a first step we generated synthetic retroviral expression 

constructs that encode a CD5 leader peptide and a single chain antibody fragment of the anti-

human CD3 antibody OKT3 fused to DNA sequences encoding the transmembrane and 

intracellular domains of human CD28 (CD5L-OKT3-scFv-CD28) or the leaderless human 

CD14 (CD5L-OKT3-scFv-CD14) molecule (Fig. 1a). These constructs were expressed on the 

murine thymoma line Bw5147. Their expression was assessed by flow cytometry using an 

anti-mouse IgG antibody that reacts with the variable regions of the anti-CD3 antibody. 

Whereas Bw cells expressing the CD5L-OKT3-scFv-CD14 construct displayed high levels of 

membrane-bound OKT3 antibody fragment on their surface (Bw-aCD3high), the CD5L-OKT3-

scFv-CD28 molecule was expressed at much lower density (Bw-aCD3low; Fig. 1a). Single cell 

clones that expressed homogeneous levels of membrane-bound anti-CD3 were established 

from both cell lines. Subsequently, both T cell stimulator cell lines were transduced to express 

human CD80 (Bw-aCD3high-CD80; Bw-aCD3low-CD80) or treated to express empty retroviral 

vector (Bw-aCD3high-control, Bw-aCD3low-control; Fig. 1b). In order to assess the T cell 

stimulatory capacity of these cell lines they were irradiated and co-cultured with purified 

human T cells. We found that T cell stimulator cells expressing low amounts of membrane-

bound anti-CD3 antibody (mb-aCD3) and no human costimulatory molecules did not induce 

significant proliferation of purified human T cells. The low levels of cellular 3[H]-thymidine 

incorporation that was measured in these co-cultures is the result of residual uptake by the 

irradiated T cell stimulator cells since similar incorporation was observed in cultures of 

irradiated T cell stimulator cells where no human T cells were present. This indicates that the 

murine thymoma line Bw5147 that was used for the generation of our T cell stimulator cells 

does not harbour accessory molecules that can costimulate human T cells. By contrast T cell 

stimulator cells that co-express low levels of anti-CD3 antibody fragments and human CD80 

elicited strong proliferative responses in human T cells. T cell stimulator cells expressing 

membrane-bound anti-CD3 antibodies at high density induced moderate proliferation in 

human T cells even in the absence of human costimulatory molecules and as expected T cells 

activated with stimulator cells harbouring high levels of anti-CD3 in combination with human 

CD80 showed the highest proliferative response (Fig. 1c). To visualize the interaction of 

human T cells and stimulator cells, we performed co-culture experiments using CFSE-labeled 

T cells and CMTMR-labeled stimulator cells. Large clusters of T cells and stimulator cells 
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expressing CD80 can be observed whereas much smaller clusters are formed when T cells 

were activated by stimulator cells expressing anti-CD3 but no human costimulatory molecule 

(Fig. 1d). 
Figure 1: Generation and 
characterisation of T cell stimulator 
cells.  
(A) Schemes of expression 
constructs encoding membrane-
bound anti-CD3 (mb-aCD3) single 
chain fragments. FACS analysis of 
Bw cells expressing the constructs 
are shown on the right. Open 
histograms: control cells; filled 
histograms: Bw cells expressing 
membrane-bound anti-CD3 single 
chain fragment. CD5L: CD5 
leader; VH: variable domain of the 
heavy chain; VL: variable domain 
of the light chain; TM: 
transmembrane domain; CT: 
cytoplasmic domain. 
(B) Generation of T cell stimulator 
cells co-expressing anti-CD3 at 
high and low levels (Bw- anti-
CD3high and Bw-anti-CD3low) and 
the costimulatory molecule CD80. 
Open histograms: control 
transduced cells; filled histograms: 
stimulator cells expressing CD80 
or mock treated stimulator cells 
(control). 
(C) Human T cells were stimulated 
with T cell stimulator cells 
expressing anti-CD3high and anti-
CD3low with and without CD80. 
3[H]-thymidine uptake of irradiated 
Bw5147 cells in the absence of T 
cells is also shown (far right). 
(D) Confocal microscopy of 
CFSE-labeled T cells (green) co-
cultured with CMTMR-labeled T-
cell stimulator cells (red). 
Interaction of T cells and T cell 
stimulator cells (left). Cluster 
formation between T cells and 
stimulator cells expressing CD80 
(middle) or stimulator cells 
expressing no costimulatory 
molecule (right). 
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Side by side comparison of different costimulatory molecules 

T cell stimulator cells transduced to express different costimulatory molecules are excellent 

tools to compare these ligands regarding their capacity to activate human T cells. We have 

generated stimulator cell lines retrovirally expressing different costimulatory molecules at 

high levels (Fig. 2). The resultant cell lines were used to stimulate purified T cells isolated 

from different healthy donors and T cell proliferation was assessed. As shown in Figure 2b 

stimulation of human T cells in presence of the costimulatory molecules used in this study 

(CD80, ICOSL, CD58, CD54 and 4-1BBL) significantly enhanced T cell proliferation 

compared to T cells co-cultured with stimulator cells expressing no human costimulatory 

molecule. Furthermore, our data show that CD80 was the strongest costimulatory ligand 

tested in these experiments and demonstrate that among the other molecules analyzed CD58 is 

the most potent inducer of T cell proliferation.  

 
Figure 2: Comparison of different costimulatory ligands. T cell stimulator lines expressing high levels of 
anti-CD3 antibodies and the indicated costimulatory ligands or no costimulatory molecule (control) 
were co-cultured with purified human T cells. 3[H]-thymidine uptake was assessed following 3 days of 
co-culture. Box plots show the results of 8 independent experiments with T cells from different 
donors. Circles indicate outliers. Stars indicate significant difference (p<0.05, n=8) from the stimulator 
cell type listed on the left. 
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The use of T cell stimulator cells to assess the role of immunomodulatory drugs in T cell 

activation   

There is an increasing number of immunosuppressive and immunomodulatory drugs for 

treatment of patients suffering from autoimmune diseases and recipients of hematopoietic 

stem cells or solid organs. Many of these drugs target fast dividing cells whereas others 

specifically suppress T cells or counteract inflammatory processes. Antibodies or receptor 

fusion proteins that block the cytokine TNF-α are successfully used in patients suffering from 

psoriasis, rheumatoid arthritis and various other autoimmune diseases [17-19]. TNF-α is a 

pleiotrophic cytokine and the beneficial effects of TNF-α blockade are mainly ascribed to 

their capacity to prevent and down-modulate proinflammatory processes. Whereas other 

members of the TNF-family have been shown to act as potent costimulatory molecules, few 

studies have addressed the ability of TNF-α to directly contribute to T cell activation 

processes. We found that expressing TNF-α on T cell stimulator cells enhances their ability to 

induce proliferation in purified human T cells (Fig. 3a). Furthermore, we show that 

Adalimumab, a humanized therapeutic antibody that targets TNF-α, reduced proliferation of 

T cells activated via different costimulatory molecules (Fig. 3b). Taken together these results 

indicate that TNF-α gives a costimulatory signal to human T cells and that TNF-α blockade 

reduces human T cell responses independently of accessory cells. 
Figure 3: The therapeutic TNF-α  
blocking antibody Adalimumab down-
modulates human T cell responses. (A) 
T cell stimulator cells expressing anti-
CD3 antibodies at high levels 
(control) and T cell stimulator cells 
expressing anti-CD3 antibodies and 
human TNF-α were used to stimulate 
purified human T cells in the presence 
of control antibodies (control Ab) or 
the therapeutic anti-TNF-α antibody 
Adalimumab. (B) T cell stimulator 
cells expressing the indicated 
costimulatory molecules were used to 
stimulate purified human T cells in 
the presence of control antibodies or 
Adalimumab (10 µg/ml). Data shown 
are representative for at least 5 
independently performed 
experiments.  



Chapter 3       T cell stimulator cells 

 44 

The use of T cell stimulator cells to assess the role of different costimulatory molecules 

in the in vitro expansion of human T cells 

Adoptive T cell transfer is a promising therapeutic strategy in the treatment of malignancies, 

and to combat virus infections [20-22]. Such approaches often depend on the efficient in vitro 

expansion of antigen specific T cells. We used T cell stimulator cells expressing individual 

costimulatory molecules or combinations thereof to assess their capacity to expand human T 

cells in vitro. In line with previous data we found that 4-1BB signals enhance the expansion 

of T cells costimulated via CD28 [23]. Furthermore, our results demonstrate that 

costimulation via CD2 can also potently increase the expansion of human T cells. Stimulator 

cells co-expressing CD80, CD58 and 4-1BBL induced significantly stronger T cell expansion 

compared to stimulator cells not expressing CD80. This underlines the importance of CD28 

signals and suggests that the combination of CD80, CD58 and 4-1BBL might be especially 

suited for the expansion of human T cells (Fig. 4). Importantly, we found that during 5 rounds 

of stimulation in the presence of these costimulatory ligands their effector function was 

retained as the expanded T cells were able to efficiently kill target cells expressing anti-CD3 

antibodies as surrogate antigen (Fig. 4d).  
Figure 4: Costimulatory 
signals and the in vitro 
expansion of human T cells. 
T cells were subjected to 
five rounds of expansion 
using T cell stimulator cells 
expressing high levels of the 
indicated molecules. (A) 
Box plots representing the 
average fold expansion per 
round of stimulation. T cell 
stimulator cells co-
expressing CD80, CD58 
and 4-1BBL induced 
significantly higher T cell 
expansion than the indicated 
T cell stimulator cells 
(p<0.05). The total 
expansion of T cells during 
five rounds of stimulation 
(B) and the calculated CD8+ 
T cell number that would 
have been obtained from 
5x105 T cells (C) is also 
shown. (D) Effector 
function of T cells expanded 
for 5 rounds in presence of 

the indicated costimulatory molecules was analyzed by europium release assay. T cell stimulator cells 
expressing high levels of anti-CD3 (black bars) were used as target cells and Bw cells expressing no 
anti-CD3 served as control cells (white bars). Percentage of specific lysis is shown. 
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The use of T cell stimulator cells to assess the role of CD150 and TL1A in the activation 

of human T cells 

There is a large number of human molecules that were described to costimulate T cell 

activation [9]. Although for several of these molecules such a role is well established, there 

are still some ligands where a limited number of studies have addressed their function in T 

cell stimulation. We have selected two such molecules, TL1A and CD150, to study their 

function in T cell activation using our system of stimulator cells (Fig. 5a). For comparison T 

cell stimulator cells expressing CD58, a member of the CD2 superfamily, and 4-1BBL, a 

member of the TNF-SF, which are well established costimulatory ligands were also used. 

TL1A (TNF-like molecule 1A), the newest member of the TNF-superfamily, is described to 

costimulate murine and human T cell proliferation via interaction with its receptor death 

receptor 3 (DR3, TRAMP) [24-26]. In our experiments T cell stimulator cells expressing high 

levels of anti-CD3 and TL1A strongly enhanced the proliferation of human T cells (Figure 

5b). This costimulatory effect was observed with CD4+ and CD8+ T cells (Figure 5d). In line 

with previous studies TL1A stimulation resulted in the induction of IFN-γ [27]. In addition we 

obtained elevated levels of IL-10 and IL-13 in supernatants of TL1A stimulated T cell 

cultures (Fig. 5c). 

CD150 (SLAM, signaling lymphocyte activating molecule) is a CD2 family member, 

expressed on activated human T cells. All previous studies that reported a costimulatory role 

of this molecule were based on the use of monoclonal antibodies to trigger the CD150 

molecule on T cells [28-30]. CD150 is a self-ligating molecule and no other binding partners 

have been described. Thus, we wanted to analyse whether the costimulatory effect was also 

observed upon engagement of T cell-expressed CD150 with its natural ligand. Therefore, we 

generated stimulator cells expressing CD150 in conjunction with anti-CD3. When co-

culturing these stimulator cells with human T cells, no significant contribution of this 

interaction to T cell proliferation and cytokine production was observed (Fig. 5b,c). In some 

of our experiments reduced proliferation rates of human T cells were observed in presence of 

human CD150 but additional experiments are required to confirm that CD150 can function as 

negative regulator of T cell responses. 
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Figure 5: The role of CD150 and TL1A in 
the activation of human T cells.  
(A) Characterisation of T cell stimulator 
cells expressing anti-CD3high in conjunction 
with CD58, 4-1BBL, TL1A, CD150 or 
control stimulator cells expressing no 
costimulatory molecule by FACS. Upper 
panel filled histograms: expression of mb-
anti-CD3 antibodies on stimulator cells; 
open histograms: control Bw cells. Lower 
panel: T cell stimulator cells expressing 
CD58, 4-1BBL, TL1A, CD150 were 
probed with antibodies specific for these 
molecules (filled histograms). Open 
histograms: reactivity of the indicated 
antibodies with control Bw cells. 
(B) Human T cells were stimulated with 
stimulator cells expressing high levels of 
anti-CD3 in conjunction with CD58, 4-
1BBL, TL1A, CD150 or control stimulator 
cells. Proliferation was assessed by 
measuring 3[H]-thymidine uptake. Presence 
of TL1A significantly enhanced T cell 
proliferation (p<0.0001, n=9), whereas 
CD150 had no effect on human T cells 
proliferation (ns, not significant). Data 
show +/- SD of triplicates from one 
experiment. The experiment shown is 
representative for 9 independently 
performed. 
(C) Human T cells were stimulated with 
stimulator cells expressing high levels of 
anti-CD3 in conjunction with CD58, 4-
1BBL, TL1A, CD150 or no costimulatory 
molecule (control). Culture supernatant 
was harvested after 72h and subjected to 
multiplex cytokine measurement. The 
experiment shown is representative for 3 
independently performed. 
(D) Purified human CD4+ and CD8+ T cells 
were co-cultured with stimulator cells 
expressing anti-CD3high in conjunction with 
TL1A, CD150 or control. Data show +/- 
SD of triplicates from one experiment. The 
shown experiment was repeated with 
similar outcome. 
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DISCUSSION 
During APC-T cell interaction a complex interplay of numerous cell surface molecules 

modulates cellular immune responses by either enhancing or inhibiting T cell receptor 

complex signaling. Thus, assessing the function of individual costimulatory ligands using 

natural APC is a difficult task. With our T cell stimulator cells we have generated an 

experimental tool for studying individual costimulatory ligands in a cellular system, but 

detached from the context of numerous other molecules involved in the regulation of T cell 

activation that are expressed on professional APC. Whereas similar cellular systems that have 

been termed artificial APC (aAPC) use cells engineered to express Fc-γ receptors (CD32 or 

CD64) and depend on the addition of anti-CD3 antibodies [31-33] we used cell lines that 

stably express membrane-bound anti-CD3 antibody fragments. Using different anti-CD3 

expression constructs we have generated two cell clones that stably express different levels of 

anti-CD3 antibody-fragments: A construct where the anti-CD3 antibody fragments are linked 

to the transmembrane domain of human CD28 molecules yielded Bw-aCD3low stimulator 

cells that give a weak signal 1 to human T cells, whereas a construct encoding anti-CD3 

antibody fragments fused to the human CD14 molecule was used to generate cells expressing 

high levels of GPI-anchored anti-CD3 antibody fragments (Bw-aCD3high; Fig. 1). The GPI-

anchored anti-CD3 antibody fragment is efficiently targeted to lipid rafts and has also 

successfully been used for the stimulation and manipulation of human T cells with 

immunosomes - virus-like particles decorated with TCR/CD3 ligands, costimulatory 

molecules and modified cytokines [34-37]. Another important difference between aAPC and 

stimulator cells is the cell type that is used as a scaffold: the former is based on the human 

K562 cell line and T cell stimulator cells are derived from the murine thymoma line Bw5147. 

Whereas K562 cells contains surface molecules that enhance T cell-APC interactions [31], 

Bw cells appear to be devoid of molecules that promote the proliferation of human T cells that 

receive a weak signal 1 (Fig. 1b). Thus, T cell stimulator cells are especially suited to study 

molecules that exert weak costimulatory effects. Furthermore, with this system it is also 

possible to compare different accessory molecules regarding their capacity to costimulate 

activation and proliferation of human T cells. Experiments where we have performed a side 

by side comparison of ligands belonging to different molecule families demonstrated a potent 

ability of CD58 to costimulate the activation of human T cells (Fig. 2).  

In addition, to the numerous different immunosuppressive drugs that are already used 

in the clinic to down-modulate T cell responses there are many additional compounds or 

biologics that are currently tested regarding their efficacy and safety for human use. 

Especially in the case of antibodies that often have limited or no reactivity with the non-
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human orthologues of their target antigens, extensive in vitro testing in human systems is 

highly warranted. Since costimulators govern the activation of T cells, their interplay with T 

cell suppressive antibodies and drugs is of great interest. Here, we have used our system of T 

cell stimulator cells to analyze the effect of Adalimumab, a therapeutic antibody to TNF-α, on 

T cell activation. We show that TNF-α has a costimulatory effect on human T cells and that 

TNF-α blockade reduces the proliferation of T cells, independent of accessory cells (Fig. 3). 

Adalimumab reduced T cell responses, regardless of the molecules used for their activation. 

However, we have observed that the capacity of some therapeutic antibodies and 

immunosuppressive drugs to diminish T cell proliferation and cytokine production is potently 

modulated by different costimulatory signals (our unpublished results).  

The efficient in vitro expansion of antigen specific T cells crucially depends on 

appropriate costimulatory signals to ensure the generation of large amounts of potent effector 

cells. Different combinations of costimulatory ligands can be readily expressed on stimulator 

cells. The resultant stimulator cell lines can be tested in parallel to identify combinations of 

stimulatory molecules that potently drive expansion of human T cells in vitro. Our results 

indicate that concomitant stimulation via their CD28, CD2 and 4-1BB receptors leads to an 

efficient expansion of T cells, which retain their effector function during several rounds of 

stimulations (Fig. 4). These results, together with our findings summarized in Figure 2, 

underline the potency and importance of the CD2 - CD58 pathway for the activation of 

human T cells. CD2 was one of the first T cell costimulatory receptors identified [38] and 

despite its importance this pathway is currently receiving limited attention. This is in part due 

to the fact that CD58 lacks a murine orthologue and demonstrates the current emphasis on 

mouse model systems to study the costimulatory pathways. 

There is an ever growing number of ligands that have been implicated to play a role in 

T cell costimulatory processes and contradictory results have been reported for several of 

these molecules [9]. We believe that T cell stimulator cells are especially suited to assess the 

function of accessory molecules during T cell activation since they allow analysing human T 

cell responses under conditions that only differ regarding the presence of the molecules of 

interest. We have recently used stimulator cells expressing PD-L2 and B7-H3, two members 

of the extended B7 family, to address their function during the activation of human T cells 

[10, 39]. In these studies we could show that these molecules consistently inhibited T cell 

responses and our experiments did give any evidence for positive costimulatory functions for 

human PD-L2 and B7-H3. The CD2 superfamily member CD150 and the TNF-SF member 

TL1A have both been described to costimulate T cell activation. CD150 is a self-ligating 
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receptor, whereas TL1A binds to DR3 a member of the TNFR-SF. However, few studies on 

these molecules have directly analyzed the consequences of the interaction of CD150 or 

TL1A with human T cells. In the present study we have generated T cell stimulator cell lines 

expressing CD150 and TL1A and used them to stimulate purified human T cells. Our results 

demonstrate that presence of TL1A during T cell activation significantly costimulates their 

proliferation and production of cytokines, whereas T cells stimulated in presence of stimulator 

cells expressing CD150 did not show enhanced proliferation and cytokine production. 

Previous studies that have described a positive costimulatory function for CD150 have used 

antibodies to crosslink the CD150 molecules on T cells [28, 29]. In contrast, we have used T 

cell stimulator cells expressing its natural ligand CD150, to assess the role of CD150-CD150 

interaction in the activation of T cells. Our results, which suggest that CD150 does not 

function as a classical T cell costimulatory molecule, underline the importance of using 

natural ligands to study the functional consequences of receptor-ligand pairs implicated in T 

cell activation processes. The homophilic interaction of CD150 is of particular low affinity 

(Kd 200 mM; [40]), which might explain the different outcome of our experiments compared 

to studies that used antibodies. It has previously been suggested that antibody-induced 

SLAM/CD150 activation may not fully mimic the physiological role of CD150, because mice 

deficient in this molecule exhibit essentially normal levels of IFN-γ, whereas the ligation of T 

cell expressed CD150 by antibodies promotes strong IFN-γ secretion [41]. Further studies are 

required to address the physiological role of CD150 during human T cell activation. Since T 

cells that express costimulatory ligands can receive potent costimulatory signals 

(“autocostimulation”) it is also possible that homotypic interaction of CD150 in cis plays a 

role during human T cells activation [42]. 

 Taken together our results demonstrate that the system of T cell stimulator cells is a 

useful tool to assess the function of costimulatory ligands. In particular they are suited to 

compare the function of individual costimulatory molecules and analyze their effect on 

different T cell subsets and in context of a strong or weak signal 1. Since professional APC 

like DC harbour stimulatory as well as inhibitory ligands, the interplay of positive and 

negative signals determine the outcome of T cell responses. We have previously shown that 

combinations of costimulatory molecules can be expressed and analyzed on T cell stimulator 

cells [12]. We are currently using our system of stimulator cells to analyze the interplay of 

defined costimulatory and coinhibitory molecules during the activation of human T cells. 

Studies on individual costimulatory pathways can complement investigations using 

experimental systems employing natural human APC or animal studies to get a better insight 



Chapter 3       T cell stimulator cells 

 50 

into the complex interplay of the numerous accessory surface molecules that govern human T 

cell responses. 
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ABSTRACT 
B7-H3 belongs to the B7 superfamily, a group of molecules that costimulate or down-

modulate T cell responses. Although it was shown that B7-H3 can inhibit T cell responses, 

several studies - most of them performed in murine systems - found B7-H3 to act in a 

costimulatory manner. In this study we have specifically addressed a potential functional 

dualism of human B7-H3 by assessing the effect of this molecule under varying experimental 

conditions as well as on different T cell subsets. We show that B7-H3 does not costimulate 

human T cells. In presence of strong activating signals, B7-H3 potently and consistently 

down-modulated human T cell responses. This inhibitory effect was evident when analyzing 

proliferation and cytokine production and affected naïve as well as pre-activated T cells. We 

furthermore demonstrate that B7-H3 - T cell interaction is characterized by an early 

suppression of IL-2 and that T cell inhibition can be reverted by exogenous IL-2. 

Since TREML2 has been recently described as costimulatory receptor of murine B7-H3 we 

have extensively analyzed interaction of human B7-H3 with TREML2 (TLT2). In these 

experiments we found no evidence for such an interaction. Furthermore our data do not point 

to a role for murine TREML2 as a receptor for murine B7-H3. 
 
key words: costimulatory molecules, immune regulation, T cells  

abbreviations: APC: allo-phycoerythrin; BTLA: B-and T lymphocyte attenuator; Bw-anti-

CD3: Bw 5417 mouse thymoma cell line expressing membrane-bound αCD3 antibody 

fragments; ICOS-L: inducible costimulator ligand; PD-1: programmed death 1; PD-L: 

programmed death ligand; TREML2/TLT2: triggering receptor expressed on myeloid cells 

like transcript 2;  
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INTRODUCTION 
For fine-tuning the immune response several costimulatory and coinhibitory signals are 

needed in addition to signal 1 provided via the peptide-MHC/TCR-complex interaction. CD80 

(B7-1) and CD86 (B7-2) serve as primary costimulatory ligands. Recently, additional 

members of the B7 family – the so-called B7 homologs - have been identified [1]. The 

functional role of several of these B7 homologs is still controversially discussed. One of these 

molecules is B7-H3, which was originally described as a potent costimulatory molecule and 

inducer of IFN-γ in human T cells [2]. In contrast Ling et al. found human B7-H3 to strongly 

down-regulate T cell proliferation and cytokine production [3]. It was suggested that presence 

of two B7-H3 receptors with different functions could explain these divergent results [3]. 

Recent data that showed opposing effects of B7-H3 on resting and cytokine-activated T cells 

as well as contradicting results on the function of murine B7-H3 would also be in support for 

such a constellation [4-7]. Such receptor molecules could either be differentially regulated on 

T cells or be expressed on different T cell subsets. Depending on the experimental system 

used the effects of the costimulatory or the inhibitory receptor could prevail and explain the 

discrepancies in different studies. 

Here we have specifically addressed a potential functional dualism of B7-H3 by studying B7-

H3 effects under varying experimental conditions as well as on different subsets of human T 

cells. Our results point to a potent and consistent inhibitory role of human B7-H3 in T cell 

activation and give no evidence for a costimulatory function of this molecule. Recently, the 

triggering receptor expressed on myeloid cells like transcript 2 (TREM-like transcript 2, TLT-

2, TREML2) has been reported to act as a costimulatory B7-H3 receptor on murine T cells 

and it was shown that overexpression of this molecule renders T cells more responsive to B7-

H3 mediated costimulation [8]. We have therefore also extensively analyzed a potential 

interaction of B7-H3 with TREML2. We demonstrate in binding and functional studies that 

human TREML2 does not serve as a costimulatory receptor for human B7-H3. Furthermore 

we do not find any evidence for a role of murine TREML2 as B7-H3 receptor. 
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MATERIAL AND METHODS 
Antibodies, cell culture and FACS staining 

293T cells, the mouse thymoma cell line Bw5147 (short designation within this work Bw), 

and AKR1.G.1 cells (ATCC: TIB-232; designation within this work AK) were cultured as 

described [9, 14, 30]. Jurkat clone 41-19 expressing an IL-2 promoter-driving luciferase 

(designation in this work Jurkat reporter cells) was cultured as described [14]. The ethical 

review board of the General Hospital and the Medical University of Vienna approved the 

human studies performed within this work and informed consent was obtained from the 

donors. PBMC were isolated from heparinised whole blood of healthy volunteer donors by 

standard density centrifugation with Ficoll-Paque (Amersham Bioscience, Roosendaal, 

Netherlands). Human T cells were obtained through depletion of CD11b, CD14, CD16, 

CD19, CD33 and MHC-class II bearing cells with the respective mAbs by MACS. CD8+ T 

cells, CD4+ T cells and CD45RA+ T cells were purified from human T cells using MACS in 

conjunction with antibodies to CD4, CD8 or CD45RO. Umbilical cord blood from healthy 

donors was collected during full-term deliveries and cord blood T cells were purified by 

MACS using the antibody pool described above. Cord blood cells in this study were ≥ 90% 

CD45RA+ and CD45RO-.  

The mAbs to B7-H3 (13-I-241), CD11b (VIM12), CD14 (VIM13), CD33 (4D3), CD4 

(VIT4), CD8 (VIT8), MHC-class II (1/47), CD80 (7-480), B7-H1 (PD-L1, 5-272) and the 

non-binding control antibody VIAP (calf intestine alkaline phosphatase specific) were 

produced at our institute. The mAbs to CD14 (MEM-18) was purchased from An der Grub 

(Kaumberg, Austria), CD3 mAb from Ortho Pharmaceutical Corporation (Raritan, NJ), CD28 

(28.2), ICOS-L (2D3/B7-H2), 4-1BB (4B4-1), ICOS (DX29) and CTLA-4 (BN13) mAb from 

BD Pharmingen (Palo Alto, CA), CD19 mAb (BU12) from Ancell (Bayport, MN), CD45RO 

beads were purchased from Miltenyi Biotech (Bergisch Gladbach, Germany) and mAb PD-L2 

(MIH18) from eBioscience (San Diego, CA). Goat-anti-human TREML2 Ab was from R&D 

(Minneapolis, MN). This antibody was also used to measure expression of mouse TREML2 

since we found it to strongly cross-react with the mouse orthologue. Coating antibodies for 

proliferation assays: goat-anti-mouse IgG H+L antibodies were obtained from Caltag (Caltag; 

Burlingame, CA) and the goat-anti-human IgG-Fcγ-specific antibodies from Jackson 

ImmunoResearch (West Grove, PA).  

FACS analysis was performed as described previously [10]. Binding of primary antibodies 

was detected with PE-conjugated goat anti-mouse IgG-Fcγ specific Abs or PE-conjugated 

donkey anti-goat IgG Abs. Binding of Immunoglobulin (Ig)-fusion proteins was detected 
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using PE or APC-conjugated goat anti-human IgG-Fcγ specific Abs (all from Jackson 

ImmunoResearch). Flow cytometric analysis was done using a FACScalibur flow cytometer 

supported by CELLQUEST software (Becton Dickinson). Fluorescence intensity is shown on 

a standard logarithmic scale. CFSE labelling was performed as described [31]. 

For Western blotting goat-anti-mouse IgG-Fcγ-HRP (Jackson ImmunoResearch) and rabbit-

anti-goat Ig-HRP (Dako, Glostrup, DK) were used. 

Generation of immunoglobulin fusion proteins   

cDNAs encoding CD80, ICOS-L, B7-H3, TREML2, PD-1 and CTLA-4 were PCR amplified 

from a retroviral cDNA expression library derived from mature and immature human 

dendritic cells [11] or from cDNA prepared from PMA/Ionomycin activated human T cells. 

cDNA encoding for murine B7-H3 was PCR amplified from PMA/Iono activated C5Bl6 

spleenocytes. PCR products were cloned into a modified pEAK12 expression vector (Edge 

Biosystems, Gaithersburg, MD). The resultant expression constructs encode the extra-cellular 

domains of CD80 (aa 1-262), ICOS-L (aa 1-135), 4Ig B7-H3 (aa 1-462), TREML2 (aa 1-

223), CTLA-4 (aa 1-161), PD-1 (aa 1-202) or murine B7-H3 (aa 1-250) fused to the hinge 

region, the CH2 and CH3 domains of human IgG1 (short designation within this work: CD80-

Ig, ICOS-L-Ig, B7-H3-Ig, TREML2-Ig, CTLA-4-Ig, PD-1-Ig and mB7-H3-Ig). A control 

fusion protein consisting of the CD5 leader fused to the hIgG1Fc part was also generated (Co-

Ig). The integrity of the constructs was confirmed by DNA sequencing. The Ig fusion protein 

constructs were transiently transfected into the 293T cell line. Cell culture supernatant was 

collected 48 and 96 hours after transfection. For protein purification the HiTrap rProtein A FF 

column (Amersham Bioscience) was used. The human 2Ig B7-H3-Ig fusion protein was 

purchased from R&D and an additional mouse B7-H3-Ig also used in this study has been 

described [15]. 

Retroviral transduction  - Generation of T cell stimulators, AK, Bw and Jurkat-

transductants 

The system of T cell stimulators expressing high or low levels of mb anti-CD3 single chain 

antibodies has been described previously [9]. Expression plasmids encoding, CD80, ICOS-L, 

B7-H3, TREML2, PD-L1, PD-L2, CTLA-4, CD28, ICOS, 4-1BB and mouse TREML2 

(mTREML2) were retrovirally transduced in our system of T cell stimulators, AK, Bw or 

Jurkat cells as described [11]. Stimulator cells expressing 4-1BBL have been described [10].   

T cell proliferation assays  

All T cell proliferation assays were done in triplicates, means and SD are shown. 
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For T cell proliferation assays with plate-bound anti-CD3 mAb (OKT3) and human 

immunoglobulin fusion proteins (Ig-fusion proteins) 96 well ELISA plates were coated with 

anti-mouse IgG (final concentration: 3 µg/ml) and anti-human IgG Fcγ-specific Abs (final 

concentration: 10 µg/ml) in sterile PBS over night at 4°C. Anti-CD3 mAb and Ig-fusion 

proteins were immobilized at concentrations of 1 µg/ml and 10 µg/ml, respectively unless 

indicated otherwise. Human T cells (1 x 105/well) were added and cultured for 4 days. In 

some proliferation assays CD28 mAb or IL-2 (R&D) was added at the indicated final 

concentrations. Co-culture experiments of human T cells with the T cell stimulator cells were 

described previously [9].  

To assess T cell proliferation methyl-3[H]-thymidine (final concentration: 0.025 mCi; 

MP Biomedicals; Heidelberg, Germany) was added for the last 18 hours except for 

proliferation kinetic experiments where methyl-3[H]-thymidine was added 12 hours prior 

harvesting of the cells. Methyl-3[H]-thymidine uptake was measured as described [9]. 

In restimulation experiments purified CD4+ and CD8+ T cells were stimulated with 

Dynabeads T cell expander (Invitrogen) for 9 days. Subsequently, the T cells were harvested 

and restimulated using plate-bound anti-CD3 mAb (1 µg/ml) and human Ig-fusion proteins 

(10 µg/ml) and soluble CD28mAb (10 ng/ml) for 48 hours (105 cells/well).  

Jurkat luciferase assay activity 

Non-transduced Jurkat reporter cells and Jurkat reporter cells retrovirally transduced to 

express human TREML2 or 4-1BB (1 x 105/well) were co-cultured with T cell stimulators (2 

x 104/well) for 6 hours. Cells were lysed according to the luciferase assay system protocol 

(Promega, Madison, WI, USA). Luciferase activity was assayed as described [30, 32].  

Cytokine measurement  

For cytokine measurement supernatants of T cell stimulation experiments were collected at 

the indicated time-points and pooled from triplicate wells. IL-2, -10, -13 and IFN-γ were 

measured in cell culture supernatants using the Luminex 100 system (Luminex Corporation, 

Texas, USA).  

Bioinformatics-based search for candidate B7-H3 receptors  

We screened for molecules with similarity to CD28, CTLA-4 (CD152), ICOS (CD278) and 

PD-1 (CD279). These were studied using local and global alignments as well as profile 

sequence analysis methods [33, 34]. In a liberal, high-sensitivity screen, we accepted potential 

V-domains with an E-value less than 10 and rejected sequences only if they had a high-

confidence C2-domain (E<0.001). These sequences were then searched with PSI-BLAST 

using a query alignment [35] of the four known receptors and the default search parameters. 
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Hits that had an E<1 value and were not isoforms or fragments of the known B7 family 

receptors were expressed for binding studies with the B7-H3-Ig. 

Statistics 

Two-tailed Student-t test was used to assess significances. Differences were considered 

significant at p<0.01. The error bars indicate the SD of three replicates from one experiment, 

and the data are representative of three independent experiments, unless indicated otherwise. 
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RESULTS 
B7-H3 does not costimulate a weak signal 1 in human T cells 

In contrast to its first description as a costimulatory molecule and potent inducer of IFN-γ [2], 

several studies have found B7-H3 to inhibit T cell responses [3, 5, 7]. To specifically assess a 

potential functional dualism of human B7-H3 in T cell activation we analyzed its role under 

different conditions at different time points and on different T cell subsets. 

Costimulatory functions are best seen in context of a weak signal 1 since in this case T 

cell proliferation takes only place in the presence of a second signal. We therefore stimulated 

human T cells with different amounts of plate bound anti-CD3 antibody in presence of B7-

H3-Ig, ICOS-L-Ig or control-Ig (for characterization of fusion proteins see supplementary 

information Fig. 1A). In these experiments in absence of any costimulatory signal (control-Ig) 

0.1 µg/ml of plate bound anti-CD3 antibodies were needed to induce T cell proliferation 

whereas in presence of ICOS-L-Ig T cell proliferation could already be observed at anti-CD3 

antibody concentrations of 0.01 µg/ml and was strongly enhanced at higher concentrations. In 

contrast B7-H3-Ig failed to lower the threshold of anti-CD3 induced T cell proliferation and 

moreover we observed an inhibitory effect of this fusion protein at high concentrations of 

anti-CD3 antibody (Fig. 1a). Similar results were obtained when stimulating T cells with our 

system of T cell stimulator cells (described previously [9]) that is based on the murine 

thymoma cell line Bw5417 (short designation Bw; for characterization of T cell stimulator 

cells used in this study see supporting information Fig. 1b and 1c): Presence of ICOS-L but 

not B7-H3 costimulated proliferation of human T cells on our Bw-aCD3low T cell stimulators  

expressing anti-CD3 antibody fragments at a level that is not sufficient to induce significant T 

cell proliferation in absence of costimulatory signals (Fig. 1b).  

B7-H3 inhibits T cell activation 

In a next set of experiments we stimulated T cells with high amounts of plate-bound anti-CD3 

antibodies sufficient to induce T cell proliferation. In this setting B7-H3-Ig constantly 

inhibited T cell proliferation (median inhibition 74%, p<0.001, n=9; Fig. 2a). In line with 

these results presence of B7-H3 on Bw-CD3high T cell stimulator cells expressing high 

amounts of membrane-bound anti-CD3 antibody and thus inducing T cell proliferation also in 

absence of costimulation also strongly reduced T cell proliferation compared to control 

stimulator cells (p<0.001, n=14; Fig. 2b) [9, 10]. In contrast to B7-H3 we found that ICOS-L 

significantly increased T cell activation in both types of experiments.  

Upon its identification B7-H3 has been described as a molecule containing 2Ig like 

domains [2]. However, subsequent reports have demonstrated that in humans and other 
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primates this molecule contains 4Ig like domains whereas mice and other rodents express a 

2Ig molecule [3, 6, 11]. To exclude the possibility that the different forms exert different 

functions in the process of T cell activation, we stimulated human T cells in the presence of 

our 4Ig B7-H3-Ig (short designation of 4Ig B7-H3 in this paper B7-H3) and a 2Ig B7-H3-Ig. 

As shown in Figure 2c, 4Ig B7-H3 and 2Ig B7-H3-Ig induced comparable inhibition of T cell 

activation, excluding the possibility that different functions apply to the two forms. 

Furthermore, since there was no difference in the T cell inhibitory properties of the 

commercially available 2Ig B7-H3 fusion protein and the 4Ig B7-H3 fusion protein produced 

in our laboratory, these experiments also rule out that the observed inhibitory effect of the 4Ig 

B7-H3 is due to the production procedure.  

Since B7-H3 is not only expressed on tumour cells and peripheral tissues but also on 

professional APC, like DC which harbour a plethora of potent accessory molecules we tested 

if costimulatory signals abrogate the inhibitory effect of B7-H3. We therefore analyzed the 

effects of B7-H3-Ig in presence of anti-CD28 antibodies and found that B7-H3 also strongly 

inhibited proliferation of human T cells receiving a costimulatory signal via CD28 (p<0.01, 

n=8; Fig. 2d). Since previously also stimulatory functions have been reported for human B7-

H3 we assessed if using B7-H3-Ig at different concentrations would reveal such an activity in 

our test system. However, when analyzing the effects of B7-H3-Ig immobilized at different 

levels we observed a dose-dependent inhibition of human T cell proliferation with relatively 

high levels of B7-H3-Ig required for significant T cell inhibition. Importantly, also the results 

obtained with concentrations too low to inhibit T cell proliferation (0.1 µg/ml) did not point to 

costimulatory effects of B7-H3 (supporting information Figure 2).  
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Figure 1. B7-H3 does not costimulate a weak signal 
1. (A) Human T cells were incubated with plate-
bound anti-CD3 mAb immobilized at the 
indicated concentrations in the presence of 
control-Ig (Co-Ig), ICOS-L-Ig or B7-H3-Ig 
(immobilized at 10 µg/ml). (B) Human T cells 
were co-cultured with control Bw-anti-CD3low 
stimulator cells and stimulator cells expressing 
ICOS-L and B7-H3. The thin black line indicates 
the mean methyl-3[H]-thymidine incorporation of 
the irradiated stimulator cells in absence of 
human T cells. T cell proliferation was 
determined by assessing methyl-3[H]-thymidine 
uptake (cpm: counts per minute) on day 4 (A) or 
on day 3 (B) of culture. Data show mean ± SD of 
triplicates from one experiment and are 
representative of three independent experiments. 
 
 
 
 
 
 
Figure 2. B7-H3 inhibits human T cell activation.  
(A) T cells were stimulated with plate bound anti-
CD3 mAb in presence of control-Ig (Co-Ig), 
ICOS-L-Ig or B7-H3-Ig. Presence of B7-H3 
significantly inhibits T cell proliferation (p<0.001, 
n=9) whereas ICOS-L strongly enhanced T cell 
proliferation (p<0.001, n=7). (B) T cell stimulator 
cells expressing ICOS-L or B7-H3 and control 
Bw-anti-CD3high stimulator cells were incubated 
with T cells. Differences in T cell proliferation 
induced by control stimulator cells and stimulator 
cells expressing B7-H3 were statistically 
significant (p<0.001, n=14).  
(C) 4Ig and 2Ig B7-H3 inhibit proliferation of 
human T cells to a similar extent. Human T cells 
were incubated with plate-bound anti-CD3 mAb 
in presence of Co-Ig, 4Ig B7-H3-Ig or 2Ig B7-H3-
Ig immobilized at the indicated concentrations. 
(D) T cells were stimulated with plate-bound anti-
CD3 mAb in the presence of Co-Ig or B7-H3-Ig 
without (p<0.001, n=8) or in the presence of anti-
CD28 mAb (final concentration of 5 ng/ml; 
p<0.01, n=8). Proliferation was measured on day 
3 (B) or on day 4 (A, C, D) of culture. Data show 
mean ± SD of triplicates from one experiment. 
Number of experiments indicated for each panel 
separately. Two-tailed Student-t test was used to 
assess significances.  
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B7-H3 reduces cytokine production of human CD4+ and CD8+ T cells 

B7-H3 has originally been described as a potent inducer of IFN-γ production [2] whereas Ling 

et al. reported reduction of cytokine production in the presence of B7-H3 fusion protein [3]. 

We did not find evidence for the specific induction of IFN-γ regardless if CD4+ and CD8+ T 

cells were stimulated with B7-H3-Ig in the presence of plate-bound anti-CD3 antibodies or 

with B7-H3 expressing T cell stimulator cells (Fig. 3 and data not shown). In contrast, we 

found B7-H3 to inhibit IFN-γ production. Moreover, and in line with the results obtained 

when measuring T cell proliferation, we found that B7-H3 profoundly reduced the levels of 

IL-2, IL-10 and IL-13 in the culture supernatants of both, CD4+ and CD8+ T cells (Fig. 3). 

The inhibitory effect of B7-H3 was also evident upon analysis of cytokine mRNA levels by 

quantitative PCR (data not shown). 

 
Figure 3. B7-H3 inhibits cytokine production. Human CD4+ and CD8+ T cells were stimulated with 
plate-bound anti-CD3 mAb in the presence of control-Ig (Co-Ig) or B7-H3-Ig. Culture supernatant was 
harvested after 72 hours and subjected to multiplex cytokine measurement. Data show mean ± SD of 
triplicates from one experiment and are representative of three independent experiments.  



Chapter 4                                                              B7-H3 is a potent inhibitor of human T cell activation 

 64 

B7-H3 inhibits proliferation of CD4+, CD8+, naïve and pre-activated T cells 

To determine the effects of B7-H3 on CD4+ and CD8+ T cells we performed two types of 

experiments. First we stimulated CFSE-labelled T cells with control stimulator cells or with 

stimulator cell expressing B7-H3 for 5 days. Subsequently, cells were stained for CD4 or CD8 

expression and analyzed by FACS. In these experiments presence of B7-H3 led to a 

comparable reduction of proliferation in both subsets (Fig. 4a). However upon analysis of 

purified CD4+ and CD8+ T cells we found B7-H3 to strongly reduce the proliferation of CD4+ 

cells (p<0.001, n=9) whereas CD8+ cells were less responsive to direct inhibition mediated 

via B7-H3 (p<0.01, n=9; Fig. 4b). Thus it appears that the strong inhibition of CD8+ T cell 

proliferation observed in the first type of experiments is mainly due to reduced help by CD4+ 

T cells.  

Recently, it was reported that the functional effects of B7-H3 expressed on fibroblast-

like synoviocytes depend on the activation state of T cells: Cytokine pre-activated T cells 

appeared to show increased cytokine production upon interaction with B7-H3 whereas resting 

T cells were inhibited [6]. To address the influence of the activation state of human T cells on 

the functional effects of B7-H3 we analyzed on one hand naïve T cells (T cells depleted from 

CD45RO+ cells) from adult donors. Although these cells showed lower proliferation upon 

anti-CD3 stimulation than purified T cells (CD45RO+ and CD45RO-) from the same donors 

we found B7-H3-Ig to reduce the proliferation of both T cell subsets to a similar extent (Fig. 

4c). Furthermore, we found that human cord blood T cells that contain over 90% naïve cells 

were also strongly inhibited by B7-H3-Ig (p<0.001, n=9; Fig. 4d). On the other hand to 

evaluate the effect of B7-H3 on pre-activated CD4+ and CD8+ T cells stimulated with anti-

CD3/CD28 antibodies for 9 days were restimulated in presence or absence of B7-H3-Ig. 

These experiments show that B7-H3 down-regulates also the proliferation of pre-activated 

CD4+ and CD8+ T cells (Fig. 4e). Taken together our results do not point to a significant 

influence of the activation state of human T cells on the functional effects of B7-H3. 
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Figure 4. B7-H3 inhibits proliferation of 
CD4+, CD8+, naïve and pre-activated T 
cells.  
(A) CFSE-labelled T cells were co-
cultured with Bw-anti-CD3high-control 
and Bw-anti-CD3high-B7-H3 stimulator 
cells for 5 days. Cell cycling was 
analyzed by FACS using CD4- and CD8-
specific antibodies. The data are 
representative for four independent 
experiments. (B) Human CD4+, CD8+ T 
cells, (C) CD45RA+ human T cells and 
(D) human umbilical cord blood T cells 
were incubated with plate-bound anti-
CD3 mAb in absence or presence of 
control-Ig (Co-Ig) or B7-H3-Ig. T cell 
proliferation was measured on day 4. 
Differences in proliferation induced in 
the presence or absence of B7-H3-Ig 
were statistically significant (B) CD4+ 

(p<0.001, n=9), CD8+ T cells (p<0.01, 
n=9); (D) human umbilical cord blood T 
cells (p<0.001, n=9). (E) CD3/CD28 
stimulated CD4+ and CD8+ cells were 
restimulated using plate-bound anti-CD3 
mAb in presence of Co-Ig and B7-H3-Ig. 
Proliferation was measured after 48 
hours. Data show mean ± SD of 
triplicates from one experiment and are 
representative of three independent 
experiments. (B, C, D) Two-tailed 
Student-t test was used to assess 
significances. 
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B7-H3 mediated T cell inhibition is characterized by early suppression of IL-2 

In order to test the kinetics of B7-H3-mediated T cell inhibition we stimulated T cells in the 

presence of B7-H3-Ig or control fusion protein and assessed their proliferation at several time 

points. In these experiments methyl-3[H]-thymidine uptake started at 32 hours of activation 

and peaked at 72 hours. B7-H3-Ig strongly reduced methyl-3[H]-thymidine uptake and its 

inhibitory effect was evident throughout the course of the experiment (Fig. 5a).  

We could observe that upon anti-CD3 stimulation of human T cells low levels of IL-2 are 

detectable in the cultures within a few hours (Fig. 5b). We therefore monitored the 

concentration of this cytokine in T cell cultures to determine the effects of B7-H3 on T cell 

activation at early time points. In the presence of B7-H3 the IL-2 concentration in the culture 

supernatant was strongly reduced. Importantly the B7-H3 mediated reduction of IL-2 was 

already evident after 4 hours of activation. This points to an interaction of B7-H3 with a 

receptor, which is either constitutively expressed or rapidly induced following activation. 

Furthermore, since IL-2 is an essential growth factor for T cells, the reduced availability of 

this cytokine in the early phase of T cell activation might explain the profound inhibition of T 

cell proliferation by B7-H3. In support for this we found that IL-2 added immediately to 

stimulation assays could revert B7-H3 mediated T cell inhibition, whereas IL-2 supplemented 

at later time points showed minimal reversion of this inhibitory effect (Fig. 5c). 

  
Figure 5. B7-H3 mediated T cell inhibition is 
characterized by early suppression of IL-2.  
Human T cells were stimulated with plate-bound anti-
CD3 mAb in presence of control-Ig (Co-Ig) or B7-H3-
Ig. (A) T cell proliferation was measured at the time 
points indicated. (B) Culture supernatant was 
harvested at the time points indicated and its IL-2 
content was measured by a Luminex-based assay. 
Data show mean ± SD of triplicates from one 
experiment and are representative of three 
independent experiments. (C) IL-2 (final 
concentration 50 units) was added to co-culture as 
indicated. Inhibition (mean ± SD of three 
independently performed experiments) of T cell 
proliferation in presence of B7-H3 is shown.  
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No evidence for interaction of human B7-H3 with TREML2 

Taken together all our results point to an interaction of B7-H3 with inhibitory receptors on 

human T cells. The identification of receptors would greatly aid the understanding of human 

B7-H3 – T cell interaction. Recently TREML2 (TLT-2) was reported to serve as a 

costimulatory receptor for murine B7-H3 [8]. To test whether human TREML2 might be a 

receptor for human B7-H3 we cloned and expressed it on the Bw cell line. In spite of very 

high expression of TREML2 we could not observe specific interaction with B7-H3-Ig: 

Neither the commercially available 2Ig B7-H3 nor the B7-H3 fusion protein produced in our 

laboratory bound to human cells expressing TREML2, strongly suggesting that on human T 

cells this molecule does not serve as a receptor for B7-H3 (Fig. 6a). In contrast ICOSL-Ig 

bound to ICOS expressing cells and CD80-Ig strongly and specifically interacted with human 

CD28, CTLA-4 and also with PD-L1, as recently reported [12, 13]. Importantly, the 

interaction of ICOSL-Ig and CD80-Ig with their receptors were detectable at concentration 

that were 100-fold lower than the highest concentration of B7-H3-Ig used for binding studies 

with TREML2 transductants, excluding the possibility that our binding assay might not be 

sufficiently sensitive. Experiments where we generated and tested a fusion protein 

representing the extracellular domain of human TREML2 (TREML2-Ig; for characterization 

of TREML2-Ig see supporting information Fig. 3) further excluded an interaction of this 

molecule with human B7-H3: TREML2-Ig did not bind to cells expressing high levels of B7-

H3 whereas fusion proteins representing CTLA-4 or PD-1 strongly bound to cells expressing 

their ligands (Fig. 6b). Hashiguchi et al. reported that mouse T cells overexpressing TREML2 

were rendered more responsive for B7-H3 costimulation [8]. We have previously found the 

Jurkat cell line to be unresponsive to B7-H3 mediated inhibition of activation. Thus this cell 

line seems not to express an inhibitory B7-H3 receptor that could interfere with a 

costimulatory signal putatively provided via B7-H3-TREML2 interaction. However we found 

that overexpressing TREML2 in a Jurkat reporter cell line [14] did not induce enhanced IL-2 

promotor activity upon interaction with B7-H3 expressing T cell stimulator cells, compared to 

control Jurkat reporter cells. In contrast we found that upon expression of the costimulatory 

receptor 4-1BB these cells were strongly costimulated by 4-1BBL expressed on T cell 

stimulator cells (Fig. 6c; for characterization of TREML2 and 4-1BB Jurkat reporter cells see 

supporting information Fig. 4). Stimulation of Jurkat-4-1BB with 4-1BBL also leads to 

enhanced induction of the activation marker CD69 whereas Jurkat-TREML2 did not up-

regulate CD69 upon interaction with B7-H3 (data not shown). Thus in line with binding 

studies our functional analysis did also not point to an interaction of TREML2 with human 

B7-H3. 
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Figure 6. Human TREML2 does not serve as a costimulatory receptor for B7-H3. (A) Fusion proteins 
representing human B7 family members were analyzed for binding to their receptors or TREML2 
(grey histograms) and control cells (open histograms). (B) Fusion proteins representing receptors for 
B7 family members and human TREML2 were analyzed for binding to their ligands or B7-H3 (grey 
histograms) and control cells (open histograms). (A+B) Left panels show expression of indicated 
molecules. Binding experiments were repeated four times with similar outcome. (C) Non-transduced 
Jurkat reporter cells and Jurkat reporter cells expressing 4-1BB or TREML2 were co-cultured with T 
cell stimulators expressing the indicated molecules. Following 6 hours of co-culture IL-2 promotor 
activity was analyzed in a luciferase assay. Results are representative for five independent 
experiments. 
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Mouse TREML2 does not serve as receptor for mouse B7-H3 

Since receptor-ligand interactions are generally conserved between mice and humans we also 

analyzed the interaction of mouse B7-H3 with mouse TREML2. For this we generated a 

fusion protein representing the extracellular domains of mouse B7-H3 (mB7-H3-Ig; for 

characterization of mouse B7-H3-Ig see supporting information Fig. 5) to analyse its 

interaction with cells expressing high levels of mouse TREML2 (mTREML2). In contrast to 

Hashiguchi et al. we did not observe evidence for an interaction of these molecules (Fig. 7). 

Importantly independently performed experiments using a previously described B7-H3-Ig 

[15] did also not point to a specific interaction of murine B7-H3-Ig with TREML2 

(supporting information Fig. 5).  

 
Figure 7. Mouse B7-H3-Ig does not bind to cells expressing TREML2. A fusion protein representing 
murine B7-H3 was analyzed for binding to Bw cells expressing murine TREML2 (Bw-mTREML2, 
grey histograms) and control cells (Bw, open histograms). Left panel show interaction of αTREML2 
antibody with cell lines as indicated. Results are representative for three independent experiments. 
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SUPPORTING INFORMATION 
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DISCUSSION 

For several of the new members of the B7 superfamily, the so-called B7 homologs, 

contradictory results regarding their role in the regulation of T cell responses have been 

reported. PD-L1 (B7-H1) and PD-L2 (B7-DC) bind the inhibitory receptor PD-1 and in line 

with this a number of studies describe a down-modulation of T cell response via PD-ligands 

[9, 16-20]. However, several reports found PD-L1 and 2 to act costimulatory on T cells, 

pointing to additional receptors for these molecules [21-25]. B7-H3 is another member of the 

B7 family that was described as a costimulatory but also as an inhibitory ligand: it was first 

reported to be a potent inducer of proliferation and INF-γ production in human T cells and 

additional studies supported a costimulatory function for this molecule [2, 4, 26]. In contrast, 

other authors have described inhibitory functions for human and murine B7-H3 and B7-H3 

deficient mice were found to have enhanced T cell responses in vivo and in vitro [3, 5, 7]. 

One possible explanation for these discrepant findings is that B7-H3 has two receptors and the 

contrasting results are due to different experimental conditions that preferentially lead to the 

engagement of either a costimulatory or an inhibitory receptor on T cells. The identification 

of a B7-H3 receptor would therefore not necessarily resolve the controversy regarding the 

function of B7-H3 as it could not rule out the existence of additional receptors with opposing 

roles. 

In this study, we specifically addressed a potential functional dualism of human B7-

H3 by analysing the consequences of B7-H3 - T cell interaction using several different 

experimental conditions. Costimulatory functions of accessory molecules are best studied in 

the context of a weak signal 1 since under such conditions T cell proliferation only takes place 

in the presence of a second signal. In our experiments this was observed for ICOS-L that 

significantly lowered the concentration of anti-CD3 that was required to induce T cell 

proliferation. In contrast B7-H3 failed to act costimulatory under such conditions and at high 

anti-CD3 level an inhibitory effect of co-immobilized B7-H3 fusion protein was evident (Fig. 

2). We found B7-H3 to negatively regulate the activation of naïve as well as pre-activated T 

cells and show that it down-regulates proliferation of CD4+ and CD8+ T cells. In contrast 

ICOS-L, a well established costimulatory member of the B7 family, consistently enhanced 

proliferation and cytokine production excluding a bias towards revealing inhibitory effects in 

our experimental systems. The effect of B7-H3 was also evident when we analyzed the levels 

of cytokines but our results did not point to a function of B7-H3 signals in skewing T cells 

towards the expression of a distinct cytokine pattern. Instead we observed a strong reduction 

of both, Th1 and Th2 type cytokines but also of IL-10, a pleiotropic cytokine, which was 

shown to have potent immunosuppressive functions. B7-H3 does not result in T cell apoptosis 
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nor does it induce anergy as T cell stimulated in the presence of B7-H3 are not impaired in 

their ability to respond to secondary stimuli (data not shown). Furthermore, co-culture 

experiments of T cells stimulated in the presence of B7-H3 did not reveal evidence that B7-

H3 induces a suppressor phenotype in human T cells (data not shown).  

IL-2 is generally regarded to be essential for efficient T cell activation and we detected 

IL-2 in culture supernatants very early after the initiation of T cell activation cultures. 

Furthermore, we found that presence of B7-H3 led to strongly reduced IL-2 concentrations 

and it is likely that down-regulation of IL-2 production contributes to the strong anti-

proliferative effect that is exerted by B7-H3. The inhibitory effect was already observed when 

we analyzed culture supernatants 4 hours following T cell activation. This indicates that B7-

H3 receptors are either present on resting T cells or quickly induced in these cells upon 

activation. Exogenous IL-2 could fully revert the inhibition of T cell by B7-H3 when present 

during initiation of T cell activation but was less effective when added at later time points. In 

line with the work of Ling et al. this study shows that B7-H3 strongly down-regulates 

proliferation and cytokine production of human T cells [3]. We extend their findings by 

demonstrating that analysis of B7-H3 under different conditions and on different T cell 

subsets does not yield any evidence for a costimulatory function of this molecule. Originally 

B7-H3 has been described as a molecule with 2 Ig-like domains but our previous data and 

work by others strongly suggest that B7-H3 is comprised of two highly homologous V and 

IgC2-like domains (4Ig B7-H3) [3, 6, 11]. Although, in this study we have primarily focussed 

on the 4Ig B7-H3 we have also analyzed a commercially available B7-H3 fusion protein 

representing a 2Ig form and found this molecule to have the same functional effects on T cell 

proliferation than the full-length molecule (Fig. 2C). Furthermore, very similar results were 

obtained when we compared the functional effects of 2Ig B7-H3 and 4Ig B7-H3 on our 

stimulator cells (data not shown). Thus the costimulatory effects for B7-H3 that were 

described in the initial report can not be explained by the fact that these authors used a short 

form of B7-H3 in their experiments [2].  

The identification of receptors would greatly aid the understanding of human B7-H3 – 

T cell interaction. We put extensive efforts in identifying B7-H3 receptors using different 

approaches: On one hand we are trying to identify such molecules by retroviral expression 

cloning and on the other hand we use bioinformatics to identify proteins homologous to the 

CD28 superfamily members. We have analyzed human molecules that have similarities to this 

family including IGSF6 (DORA), SIRPB1 (CD172B), HAVCR1 (TIMD1), GPA33 

(Glycoprotein A33) and CD300LG (TREM4). However none of these molecules bound B7-

H3-Ig (data not shown). Recently, TREML2 (TLT-2) was described as costimulatory receptor 
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for murine B7-H3 using a similar approach [8]. Interestingly, although the human TREML2 

protein has over 50% sequence identity with its mouse orthologue, it was not identified in our 

screens for molecules with similarity to the group of known receptors for B7-family members 

(PSI-BLAST or HMM search of candidates with matching domain structure; not shown). To 

experimentally test whether TREML2 might be a receptor for human B7-H3 we analyzed the 

interaction of immunoglobulin fusion proteins representing human B7-H3 and TREML2 with 

cells expressing high levels of human TREML2 and B7-H3, respectively. In these 

experiments we could not detect specific interaction between these molecules. Importantly 

fusion proteins representing human CTLA-4, PD-1, BTLA, CD80, PD-L1, PD-L2 and ICOSL 

that were produced in our laboratory using the same methodology strongly and specifically 

bound to cells expressing their respective ligands (Fig. 6 and data not shown). It is therefore 

very unlikely that our B7-H3 and TREML2 fusion proteins were not functional. In addition a 

commercial fusion protein representing human B7-H3 did also not bind to cells expressing 

high levels of human TREML2 (Fig. 6). Finally, in showing that a human T cell line 

overexpressing TREML2 is not activated by B7-H3 we also provide functional evidence that 

human B7-H3 is not a costimulatory ligand for TREML2. Moreover, in experiments 

performed in two laboratories with independently generated reagents we did also not find any 

evidence for an interaction of mouse TREML2 with mouse B7-H3 (Fig. 7 and supporting 

information Fig. 5).  

Although, we cannot completely rule out the existence of costimulatory B7-H3 

receptors our data indicate that the net effect of B7-H3 T cell interaction results in a profound 

down-modulation of T cell responses. B7-H3 is widely expressed on peripheral tissues 

including different tumours, which are known to express numerous surface molecules and 

soluble factors that are able to subvert the immune system [27]. This also points to an 

immunosuppressive role for B7-H3 as presence of costimulatory molecules on such cells is a 

rare phenomenon. Moreover, B7-H3 expression in human prostate and non-small lung cancer 

was found to be a predictor for reduced survival [28, 29]. Data from other groups and the 

results of this study strongly indicate that blocking human B7-H3 might be a promising 

strategy to enhance natural or therapeutically induced immune responses to B7-H3 expressing 

tumours. 
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ABSTRACT 
Immunosuppression is an important treatment modality in transplantation and human 

diseases that are associated with aberrant T cell activation. There are considerable differences 

regarding the cellular processes targeted by the immunosuppressive drugs that are in clinical 

use. Drugs like azathioprine (Aza) mainly act by halting proliferation of fast dividing cells, 

whereas others like cyclosporine A (CsA) specifically target signaling pathways in T cells. 

Since the outcome of T cell responses critically depends on the quality and strength of 

costimulatory signals, this study has addressed the interplay between costimulation and the 

immunosuppressive agents CsA and Aza during the in vitro activation of human T cells.  

We used an experimental system that allows analyzing T cells activated in the 

presence of selected costimulatory ligands to study T cells stimulated via CD28, CD2, LFA-1, 

ICOS or 4-1BB. The mean inhibitory concentrations (IC50) for Aza and CsA were determined 

for the proliferation of T cells receiving different costimulatory signals as well as for T cells 

activated in the absence of costimulation.  

CD28 signals but not costimulation via CD2, 4-1BB, ICOS or LFA-1 greatly 

increased the IC50 for CsA. By contrast, the inhibitory effects of Aza were not influenced by T 

cell costimulatory signals. 

Our results might have implications for combining standard immunosuppressive drugs 

with CTLA-4Ig fusion proteins, which act by blocking CD28 costimulation.  

 

key words: T cell costimulation, immunosuppression, Cyclosporine A, azathioprine 

abbreviations: Aza, azathioprine; CsA, Cyclosporine A; APC, antigen presenting cells, IC50, 

mean inhibitory concentration 
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INTRODUCTION 
T cells have important roles in allograft rejection, graft versus host diseases and autoimmune 

pathologies. In most cases the clinical management of these conditions requires the extensive 

use of immunosuppressive agents to control aberrant T cell responses. Such drugs limit and 

down-modulate T cell activation by targeting different cellular processes. Drugs like 

azathioprine (Aza) mainly act by halting proliferation of fast dividing cells, whereas others 

like Cyclosporine A (CsA) more specifically target T cells by interfering with signaling 

pathways in these cells. Since many different signals can contribute to T cell activation 

processes, the interplay between such signals and immunosuppressive agents might have 

differential effects on the outcome of T cell responses. Especially costimulatory signals 

generated by interaction of APC-expressed ligands with their T cell-expressed receptors have 

a crucial role in the efficient activation of T cells that recognize antigen. The interaction of 

CD80/CD86 with CD28 is generally regarded as the primary T cell costimulatory pathway 

[1]. However, there are many alternative costimulatory ligand-receptor pairs that potently 

enhance the proliferation, differentiation and cytokine production of T cells that recognize 

antigens [2-4]. Among these the CD58 - CD2, 4-1BBL - 4-1BB, ICOS-L - ICOS and CD54 - 

LFA-1 (CD11a/CD18) pathways are well documented to generate strong and consistent 

costimulatory effects in human T cells [2,5]. Costimulatory receptors belong to different 

molecule-families and consequently they can induce signaling events that are distinct from the 

pathways induced by CD28 ligation. Previous studies have shown that engagement of the 

CD28 costimulatory pathway greatly reduces the sensitivity of T cells to the 

immunosuppressive effect of CsA [6,7]. By contrast, it is not known whether triggering 

alternative costimulatory receptors has similar effects. Furthermore, currently there is limited 

knowledge how different costimulatory signals affect the immunosuppressive effects of other 

drugs in clinical use. 

We have previously developed a cellular system termed T cell stimulator cells that 

allows analyzing the effect of different costimulatory signals on human T cells [5,8,9]. This 

system is based on cell lines engineered to express membrane-bound anti-human-CD3 

antibody-fragments that trigger the TCR-complex on human T cells upon co-culture. By 

expressing high levels of human costimulatory ligands of interest on the T cell stimulator cells 

it is possible to analyze and compare human T cells that receive distinct costimulatory signals. 

In this study we used T cell stimulator lines expressing CD80, CD58, 4-1BBL, ICOS-L. 

CD54 and T cell stimulator lines expressing anti-CD3 antibody-fragments but no 

costimulatory molecules to activate T cells purified from healthy individuals. Using this 
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system we determined the mean inhibitory concentrations (IC50) for CsA and Aza for the 

proliferation of human T cells receiving different costimulatory signals.  
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MATERIAL AND METHODS 
Antibodies, cell culture and FACS staining 

293T cells and the mouse thymoma cell line Bw5147 (short designation within this work Bw) 

were cultured as described [9]. The ethical review board of the General Hospital and the 

Medical University of Vienna approved the human studies performed within this work and 

informed consent was obtained from the donors. PBMC were isolated from heparinised whole 

blood of healthy volunteer donors by standard density centrifugation with Ficoll-Paque 

(Amersham Bioscience, Roosendaal, Netherlands). Untouched human T cells were obtained 

through depletion of CD11b, CD14, CD16, CD19, CD33 and MHC-class II bearing cells with 

the respective mAbs by MACS (Miltenyi Biotech, Bergisch Gladbach, Germany). The mAbs 

to CD11b (VIM12), CD14 (VIM13), CD33 (4D3), MHC-class II (1/47), CD80 (7-480), CD58 

(1-456) and CD54 (5-216) were produced at our Institute. The mAbs to CD14 (MEM-18) was 

purchased from An der Grub (Kaumberg, Austria), CD19 mAb (BU12) from Ancell (Bayport, 

MN), 4-1BBL from Biolegend (San Diego, CA) and ICOS-L (2D3/B7H2) from BD 

Pharmingen (Palo Alto, CA). FACS analysis was performed as described previously [10]. 

Briefly, binding of primary antibodies was detected with PE-conjugated goat-anti-mouse IgG-

Fcγ specific Abs (Jackson ImmunoResearch, West Grove, PA). Expression of membrane-

bound anti-CD3 antibody fragment was detected via APC-conjugated goat-anti-mouse IgG 

(H+L) Abs, which reacts with the variable regions of murine antibodies (Jackson 

ImmunoResearch). Fluorescence intensity is shown on a standard logarithmic scale.  

T cell activation in the presence of different costimulatory molecules 

Human T cells (1x105/well) were co-cultured for 72 hours with irradiated (6000 rad) T cell 

stimulator cell lines (2x104/well) expressing high levels of membrane-bound anti-CD3 

antibody-fragments and one of the following costimulatory ligands: CD80, CD58, 4-1BBL, 

ICOS-L, CD54 or control T cell stimulator cells expressing anti-CD3 but no human 

costimulatory molecules as described [5]. Cyclosporine A (CsA; Sandimmun®, Novartis 

Pharma, Basel, Swiss) and azathioprine (Aza; Imurek®, GlaxoSmithKline, Greenford, GB) 

were added at the indicated final concentrations. To assess T cell proliferation methyl-3[H]-

thymidine (final concentration: 0.025 mCi; Perkin Elmer/New England Nuclear Coorporation, 

Wellesley, MA) was added for the last 18 hours prior harvesting of the cells. Methyl-3[H]-

thymidine uptake was measured as described [8]. All T cell proliferation assays were done in 

triplicates, means and SD are shown. 
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Cytokine measurement 

For cytokine measurement supernatants of T cell activation assays were collected after 48h 

and pooled from triplicate wells. IFN-γ, IL-2, IL-10 and IL-13 were measured in the 

supernatants using the Luminex System 100 (Luminex, Texas, USA). 

Statistical analyses 

The half maximal inhibitory concentration (IC50) for CsA and Aza was calculated for each 

experiment by blotting the percentage of proliferation (methyl-3[H]-thymidine uptake in the 

presence of inhibitor x 100/methyl-3[H]-thymidine uptake without inhibitor) against the log 

concentration of the immunosuppressive drug (mg/ml) using Graph-pad PRISM. Differences 

between the IC50 values for CsA and Aza of T cells stimulated in presence of different 

costimulatory ligands were calculated using ANOVA for repeated measures. IMB® SPSS 

statistics software was used for analysis and generation of Box plot graphs. Values of p≤0.05 

were considered statistically significant. 
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RESULTS 
T cell proliferation in the presence of different costimulatory ligands 

We have previously generated a cellular system called T cell stimulator cells that allows for 

analysing T cells receiving distinct costimulatory signals [5]. This system is based on Bw 

cells, a murine thymoma line, that has been engineered to express membrane-bound anti-CD3 

antibody-fragments and can thus generate “Signal 1” in human T cells by triggering their 

TCR-complex. By co-expressing human costimulatory ligands on these stimulator cells their 

contribution to T cell activation processes can readily be studied. Importantly, with this 

system we can analyze the net effects of individual costimulatory ligands in the absence of 

other accessory molecules that also regulate T cell activation on human antigen presenting 

cells (APC).  

For this study we have generated and used T cell stimulator lines expressing CD80, CD58, 4-

1BBL, ICOS-L, CD54 and control stimulator cells expressing anti-CD3 antibodies but no 

costimulatory molecules. Those molecules were chosen, because their role as costimulatory 

molecules is well described and moreover they represent different molecule families. Flow 

cytometric analysis of the resulting T cell stimulator lines demonstrate similar amounts of 

membrane-bound anti-CD3 and high expression levels of the respective costimulatory ligands 

(Fig. 1). In Figure 2 the proliferative response of T cells stimulated with T cell stimulator 

lines expressing the indicated costimulatory molecules or with T cell stimulators expressing 

no costimulatory molecule is shown. The costimulatory molecules tested in these experiments 

differed in their potency to induce proliferation. Importantly, all T cell stimulator cells 

harbouring costimulatory ligands induced a stronger proliferation of T cells than control the T 

cell stimulator cell line expressing no human costimulatory molecules (Fig. 2). 
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Figure 1. Characterisation of the 
T cell stimulator cells used in this 
study. Characterisation of T cell 
stimulator cells expressing anti-
CD3high in conjunction with CD80, 
CD58, 4-1BBL, ICOS-L, CD54 or 
no costimulatory molecule (control) 
by FACS. Left panel: expression of 
mb-anti-CD3 antibodies on 
stimulator cells; open histograms: 
parental Bw cells. Right panel: T 
cell stimulator cells expressing 
CD80, CD58, 4-1BBL, ICOS-L or 
CD54 were probed with antibodies 
specific for these molecules (filled 
histograms); open histograms: 
reactivity of the indicated 
antibodies with parental Bw cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Proliferative response 
of T cells activated in presence of 
different costimulatory signals. 
Stimulator cells expressing high 
levels of membrane-bound anti-
CD3 in conjunction with CD80, 
CD58, 4-1BBL, ICOS-L, CD54 or 
no human costimulatory molecules 
were co-cultured with human T 
cells. 3[H]-thymidine uptake was 
assessed following 3 days of co-
culture (cpm, counts per minute). 
Circles indicate outliers. Box plots 
show the results of 10 independent 
experiments with T cells from 
different healthy donors. 
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Impact of Cyclosporine A and azathioprine on human T cell proliferation acting via 

different costimulatory ligands 

We have previously demonstrated that our system of T cell stimulator cells is an excellent 

tool to study the influence of immunmodulatory drugs on T cell activation [5].  

In this study we addressed whether different costimulatory signals can influence the ability of 

the immunosuppressive drugs CsA and Aza to inhibit human T cell proliferation. T cell 

stimulator cells expressing high levels of anti-CD3 in conjunction with CD80, CD58, 4-

1BBL, ICOS-L, CD54 as well as T cell stimulator cells expressing no costimulatory 

molecules were co-cultured with human T cells in presence of different concentrations of CsA 

and Aza. As shown in Figure 3, CsA and Aza led to a dose-dependent inhibition of T cell 

proliferation. Importantly, the sensitivity of CD28 costimulated T cells to the anti-

proliferative effects of CsA was dramatically reduced. In contrast, the T cell-inhibitory effects 

of Aza were not modulated by costimulatory signals (Fig. 3b). 

 

Figure 3. The impact of CsA 
and Aza on the proliferation of 
human T cells receiving 
different costimulatory signals. 
Human T cells were stimulated 
with stimulator cells expressing 
high levels of anti-CD3 in 
conjunction with CD80, CD58, 
4-1BBL, ICOS-L, CD54 or 
control stimulator cells. On the 
onset of co-culture (A) 
Cyclosporine A (CsA) or (B) 
Azathioprine (Aza) were added 
at the indicated final 
concentrations. 3[H]-thymidine 
uptake was assessed following 3 
days of co-culture (cpm, counts 
per minute). Data show +/- SD 
of triplicates from one 
experiment. The experiment 
shown is representative for 10 
independently performed. 
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IC50 values of CsA depend on the costimulatory signal 

The half maximal inhibitory concentrations (IC50) for CsA and Aza was calculated from dose-

inhibition curves for T cells activated in the presence of T cell stimulator cells expressing the 

indicated costimulatory ligands. Representative dose-inhibition curves for each costimulatory 

molecule are shown in figure 4.  

  
Figure 4. Dose inhibition curves for CsA and Aza. 
Dose inhibition curves for CsA (A) or Aza (B) for T cells stimulated in the presence of different 
costimulatory ligands and for T cells activated in absence of costimulatory signals (control). The 
calculated IC50 values (half maximal inhibitory concentrations) are indicated. Each curve shown is 
representative for ten independently performed experiments.  
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Cumulative results of the IC50 values obtained with T cells from 10 healthy donors are shown 

in Figure 5. In the case of CsA the median half maximal inhibitory concentration for T cells 

stimulated via CD28 compared to T cells receiving no costimulatory signal was increased 

more than 10000-fold (median IC50 values 4 µg/ml versus 0.37 ng/ml; p≤0.05, n=10). 

Importantly, our results clearly demonstrate that decreased sensitivity to the 

immunosuppressive effects of CsA is an unique property of CD28 signals, since T cells 

stimulated via alternative pathways were inhibited by CsA to the same extent as T cells 

receiving no costimulatory signals (Fig. 5a). CD28 costimulated T cells were also less 

sensitive to CsA mediated inhibition of cytokine production (appendix supplementary figure 1 

and data not shown).  

Furthermore, statistical analysis of our data clearly showed that CD28 signals are completely 

ineffective in reducing Aza mediated T cell suppression and the IC50 values obtained for this 

drug were not influenced by any of the costimulatory signals investigated in this study (Fig. 

5b).  

 
 
 
Figure 5. IC50 values for T cell 
proliferation in presence of different 
costimulatory signals.  
The cumulative results of the IC50 values 
for (A) CsA or (B) Aza treated human T 
cells activated in the presence of different 
costimulatory ligands. Circles indicate 
outliers. Box plots represent data from 
ten experiments independently 
performed. Stars indicate significant 
differences (p≤0.05, n=10). Median 
values are indicated. 
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Appendix. Supplemental data. 
Supplementary figure 1. Inhibition of 
IFN-γ  production in the presence of 
CsA.  
T cells were stimulated in the presence of 
indicated costimulatory signals. The 
influence of CsA on the IFN-γ production 
was assessed by measuring the IFN-γ 
concentrations in the culture supernatants 
using Luminex-technology. 
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DISCUSSION  
CD28 is generally regarded as the primary and most potent costimulatory receptor on 

T cells and consequently many studies have investigated how CD28 signals contribute to T 

cell activation and differentiation processes. Several earlier studies have demonstrated that 

CD28 triggering greatly reduces the inhibitory effects of CsA on the proliferation and 

cytokine production of human T cells [6,7]. However, triggering of numerous alternative 

receptors can generate potent costimulatory signals in T cells and animal studies demonstrate 

that productive immune responses occur in the absence of CD28 signals [11,12]. Our study is 

the first to address whether alternative costimulatory signals can also interfere with CsA-

mediated T cells suppression. Since activated APC express a plethora of accessory molecules, 

it is difficult to study the role of distinct costimulatory pathways in T cells stimulated by 

natural APC. We thus relied on a previously described cellular system, which allows studying 

human T cells that were activated in presence of individual costimulatory ligands of choice 

[5,9,10].  

Our results clearly show that decreased sensitivity to the anti-proliferative effects of 

CsA is a unique feature of CD28 signals, since it was not observed with T cells activated by 

alternative costimulatory pathways. Although CD28 costimulation induced the strongest 

proliferative response we suggest that this is a qualitative effect. In support for this hypothesis 

we observed that IC50 values obtained for CD2 costimulated T cells, which also had very 

strong proliferative responses, were even slightly lower than those obtained for T cells 

stimulated via ICOS, which induced much less T cell proliferation and cytokine production 

(Fig. 2, 5 and data not shown). CsA acts by forming a complex with immunophilin which 

inhibits the Ca2+/calmodulin-dependent serine-threonine phosphatase calcineurin. Inactive 

calcineurin is unable to activate the nuclear factor of activated T cells (NFAT). Previous work 

by Ghosh and coworkers has demonstrated that NFAT can be activated in a CsA-resistant 

pathway that is independent of calcineurin [13]. Furthermore, the authors showed that this 

pathway is induced via CD28, which would explain why CsA inhibition of calcineurin 

signaling can be overcome by CD28 costimulation. The exact mechanisms for this 

phenomenon have not been defined, but okadaic acid sensitive serine/threonine phosphatases 

have been demonstrated to mediate CsA-resistant transactivation of the IL-2 promotor 

presumably by targeting NFAT [14,15]. 

 Importantly, our data demonstrate that CD28 costimulation does not result in a 

general insensitivity to immunosuppressive agents, since Aza reduced the proliferation of T 

cells stimulated via CD28 or alternative costimulatory molecules to a similar extent.  
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Successful clinical trials established CD28 costimulation blockade mediated by the 

CTLA-4Ig derivative Belatacept as emerging treatment modality to prevent acute rejection 

and protect renal function in kidney transplant recipients [16-18]. The results of our study 

suggest synergistic effects during the combined use of CTLA-4Ig and CsA, which target 

CD28 and alternative costimulatory pathways, respectively. In standard immunosuppressive 

regimens high doses of CsA might be required to overcome the low effectivity of this drug to 

block the activation of T cells through the CD28 pathway. Since very low concentrations of 

CsA are sufficient to inhibit T cells that do not receive CD28 signals, upon CD28 blockade 

the adverse effects of CsA could be largely avoided by administering this drug at greatly 

reduced doses. Current treatment regimens in renal graft recipients aim to achieve CsA-

plasma levels of 40-250 ng/ml. Based on the results of our in vitro experiments these 

concentrations are 100 times higher than the median IC50 values determined for human T cells 

activated in absence of CD28 costimulation, which ranged from 0.6 ng/ml to 0.2 ng/ml. 

Moreover, these concentrations are clearly insufficient to inhibit T cells that receive strong 

costimulation via CD28 as their IC50 value was found to be in the µg-range (Fig. 5A). 

Importantly, such synergistic effects can not be expected when CTLA-4Ig is combined with 

Aza and possibly other immunosuppressive agents, which halt the proliferation of T cells 

regardless of the costimulatory signals they receive.   

In some experimental transplant models the administration of CTLA-4Ig was 

suggested to induce tolerance and promoted long term survival [19,20]. There are studies that 

found concomitant use of CsA to be detrimental to tolerance induction since it prevented 

activation-induced cell death (ACID) of effector T cells [21-24]. However, in these studies 

high concentrations of CsA were used. Moreover, other studies have not observed impairment 

of long-term graft survival by combined treatment with CTLA-4Ig and CsA [25] and additive 

effects of CTLA-4Ig and CsA were also described [26,27].  

In nonhuman primate models CTLA-4Ig has not been shown to induce indefinite graft 

survival or tolerance [28,29], which might be due to an important role of CD28 independent T 

cell activation pathways. In human or primate T cells, the CD58-CD2 interaction functions as 

a second major T cell activation axis that is much more potent than other non-CD28 

costimulators [2,5,30-32]. This pathway is not operative in murine T cells, since mice lack 

CD58. Furthermore, following chronic stimulation human but not murine CD8+ T cells loose 

CD28 expression and thus become dependent on alternative costimulatory pathways for 

activation [33]. Therefore, in humans and primates alternative costimulatory pathways are 

likely to have more important contributions to T cell activation processes than in rodents and 
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consequently the efficacy of immunosuppressive drugs in blocking human T cells activated 

by such signals is of high interest.  

CONCLUSION 
The efficacy of immunosuppressive drugs in blocking human T cells, activated by different 

costimulatory signals, is of high interest especially under conditions where standard 

immunosuppressive drugs are co-administered with agents that specifically block selected 

costimulatory pathways. The interplay between costimulatory molecules and 

immunosuppressive agents should be considered when combining these drugs with 

costimulation blockers. 
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Synopsis 
It is well established that for efficient T cell activation two signals are required. Signal 

1 is generated upon cognate interaction between the MHC-peptide complex with the T cell 

receptor complex on T cells. Signal 2 is delivered by accessory molecules, expressed on 

antigen presenting cells (APC), interacting with their receptors on T cells. This second signal 

is important for regulation, fine tuning and in the case of inhibitory pathways also for the 

attenuation of T cell responses. Moreover, costimulatory and coinhibitory pathways are 

potential therapeutic targets in diseases that are associated with aberrant T cell responses. In 

addition, enhancing costimulatory signals or blocking inhibitory receptors might aid the 

clearence of pathogens and improve immune responses against tumors. Numerous 

costimulatory and coinhibitory surface molecules have been implicated in playing important 

roles in enhancing and downmodulating T cell responses. At the beginning of this work an 

overview about the hitherto described human activating and inhibitory receptor-ligand pairs is 

given.  

The aim of this thesis was to elucidate the role of different costimulatory and 

coinhibitory pathways in human T cell activation. In detail, we wanted to evaluate the 

functional role of human B7-H3 in T cell costimulation. Furthermore, the impact of the 

immunsuppressive drugs, Cyclosporine A and azathioprine, acting via different costimulatory 

ligands namely, CD80, CD58, 4-1BBL, ICOS-L and CD54, on human T cell activation was 

analyzed. 

Since APC harbour a plethora of costimulatory ligands, it is difficult to assess the 

contribution of single molecules to T cell activation. Thus, we have developed an 

experimental system, called T cell stimulator cells, that allows for analyzing T cells receiving 

distinct costimulatory signals during the in vitro activation of human T cells. Chapter three 

provides a detailed description of this system. Importantly, with this system we can assess the 

net effects of individual costimulatory molecules in the absence of other accessory molecules 

that also regulate T cell activation on human antigen presenting cells. This T cell stimulator 

cells can deliver signal 1 to T cells via a membrane-bound anti-CD3 fragment. By expressing 

human costimulatory and coinhibitory ligands on these cells, their role in T cell activation 

processes can readily be analyzed. Therefore, T cell stimulator cells are especially suited for 

the functional evaluation of ligands implicated in costimulatory/coinhibitory processes and 

the side by side comparison of different costimulatory molecules and. In addition, this system 

could be used to investigate the contribution of costimulatory signals to the in vitro expansion 
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of human T cells. Furthermore, these T cell stimulator cells can be used to assess the effects 

of immunomodulatory drugs acting on T cells stimulated by different costimulatory pathways.  

In chapter 4 of this study, we have specifically addressed a potential functional dualism of 

B7-H3 in human T cell activation, since previous reports describe activating and inhibitory 

functions of this molecule. Using different experimental settings and different T cell subsets 

we could demonstrate that B7-H3 is a potent inhibitor of human T cell proliferation and 

cytokine production. Since, murine TREML2 (triggering receptor expressed on myeloid cells 

like transcript 2) was previously described to serve as a receptor for murine B7-H3, we tested 

if human TREML2 might also be the receptor for human B7-H3. However, we found that  

TREML2 neither serves as a receptor for human nor for murine B7-H3.  

 

Figure 1: Functional consequences of B7-H3 interaction. 

In chapter 5, we showed whether different costimulatory signals could influence the ability of 

the immunosuppressive drugs Cyclosporine A and azathioprine to inhibit human T cell 

proliferation. We found that CD28 signals, but not costimulation via CD2, 4-1BB, ICOS or 

LFA-1 greatly increased the IC50 (mean inhibitory concentration) for cyclosporine A. By 

contrast, the inhibitory effects of Aza were not influenced by the T cell costimulatory signals, 

mentioned above.  

Taken together, T cell activation involves processes governed by complex interplay 

between numerous activating and inhibitory molecules. Redundancy and differences between 

costimulatory pathways is still incompletely understood. To assess the role of individual 

costimulatory ligands it is required to analyze them in a defined system detached from the 

complex content of APC. In this study, we developed such an approach, designated T cell 

stimulator cells, and demonstrated that it is an excellent suited tool to study various aspects of 
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T cell activation, for instance, the effect of immunomodulatory drugs on T cell costimulation 

or evaluation of ligands implicated in costimulatory processes. Here, we extensively analyzed 

the functional role of B7-H3 in human T cell activation. However, the receptor(s) for B7-H3 

are still not known. It is evident that identification of its receptor(s) would provide a better 

understanding of its function and furthermore open the field for therapeutic manipulation of 

this potent T cell inhibitory pathway. In addition, we used our sytem of T cell stimulator cells 

to investigate the influence of the immunomodulatory drugs azathioprine and cyclosporine A 

in human T cell activation. The interplay between costimulatory molecules and 

immunosuppressive agents should be considered when standard immunosuppressive drugs are 

combined with costimulation blockers. Thus, our results might have implications for 

combining standard immunosuppressive drugs with CTLA-4Ig fusion proteins, which act by 

specifically blocking CD28 signaling.  

Finally, studies on individual costimulatory pathways, using well defined systems, can 

complement investigations using experimental systems employing natural human APC or 

animal studies to get a better insight into the complex interplay of the numerous accessory 

surface molecules that govern human T cell responses. 
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Zusammenfassung 
Für eine effiziente T-Zellaktivierung sind zwei Signale notwendig. Signal 1 entsteht 

bei der Interaktion zwischen dem MHC-Peptid Komplex und dem T-Zellrezeptorkomplex. 

Signal 2, auch als kostimulatorisches Signal bezeichnet, wird von akzessorischen Molekülen, 

welche auf antigenpräsentierenden Zellen (APC) exprimiert sind, auf deren Rezeptoren, die 

sich auf T-Zellen befinden, übertragen. Diese Signale spielen eine wichtige Rolle in der 

Regulation der T-Zellantwort. Überdies stellen diese Signalwege, bei Erkrankungen die mit 

unerwünschter T-Zellantwort verbunden sind, hervorragende therapeutische Ziele dar.  

Eine Verstärkung von kostimulatorischen Signalen kann auch zu verbesserten 

Immunantworten gegen Tumore und Pathogene führen. In Tiermodellen aber auch in 

klinischen Studien wurde vielfach gezeigt, dass agonistische und antagonistische Antikörper 

oder Fusionsproteine hervorragende Werkzeuge zur Manipulation von kostimulatorischen 

oder koinhibitorischen Signalwegen darstellen. Bis heute ist eine Vielzahl verschiedener 

kostimulatorischer und koinhibitorischer Liganden beschrieben. Ein Überblick darüber wird 

im ersten und zweiten Teil dieser Dissertation gegeben. 

Das Ziel dieser Arbeit war es, die Rolle von verschiedenen kostimulatorischen und 

koinhibitorischen Signalwegen in der Aktivierung humaner T-Zellen zu untersuchen. Dafür 

sollte ein experimentelles System entwickelt werden mit dem es möglich ist die Rolle 

einzelner kostimulatorischer Signalwege in der T-Zellaktivierung zu evaluieren. 

Aufgrund der Tatsache, dass APC eine Vielzahl von Oberflächenmolekülen 

exprimieren, ist es schwierig den Effekt einzelner Liganden auf die T-Zellaktivierung zu 

erfassen. Basierend auf einem von uns entwickelten experimentellen System (beschrieben in 

Teil drei dieser Arbeit) wurde die Funktion ausgewählter Signalwege analysiert. Dieses 

System, die sogenannten T-Zellstimulatorzellen, basiert auf einer murinen Thymomzelllinie 

die ein single-chain anti-CD3 Fragment exprimiert und auf diese Weise Signal 1 in T-Zellen 

induziert. In diesem System kann jedes beliebige kostimulatorische oder koinhibitorische 

Molekül koexprimiert werden, das dann Signal 2 an die T-Zelle vermittelt. T-

Zellstimulatorzellen sind ein ausgezeichnetes Werkzeug um verschiedene kostimulatorische 

Moleküle miteinander zu vergleichen und die Funktion von Liganden, die eine Rolle bei 

kostimulatorischen Prozessen spielen, zu evaluieren. Weiters kann damit untersucht werden, 

welche Effekte immunmodulatorische Medikamente auf T-Zellaktivierung haben.  

Der vierte Teil der Arbeit analysiert die Funktion von B7-H3 in der humanen T-

Zellaktivierung. In dieser Studie konnten wir in verschiedenen experimentellen Systemen und 

in verschiedenen T-Zellsubpopulationen zeigen, dass das von B7-H3 vermittelte Signal stark 
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inhibitorisch auf die T-Zellproliferation und Zytokinproduktion wirkt. Weiters konnten wir 

TREML2 (triggering receptor expressed on myeloid cells like transcript 2), kürzlich als 

Rezeptor für das murine B7-H3 beschrieben, als Rezeptor für humanes und murines B7-H3 

ausschließen.  

In Teil fünf dieser Arbeit wird der Einfluss einzelner kostimulatorischer Signale auf die 

Wirkung der immunsuppressiven Medikamente Azathioprine und Cyclosporin A behandelt. 

Wir konnten zeigen, dass die IC50 (mittlere inhibitorische Hemmkonzentration) Konzentration 

für Cyclosporin A durch Signale über CD28 deutlich erhöht wird, während Signale über CD2, 

4-1BB, ICOS oder LFA-1 seine inhibitorische Wirkung nicht wesentlich beeinträchtigen. Im 

Gegensatz dazu wurde der inhibitorische Effekt von Azathioprine durch unterschiedliche 

kostimulatorische Signale nicht beeinflusst.  

Die Aktivierung von T-Zellen wird durch das komplexe Zusammenspiel 

verschiedenster kostimulatorischer und inhibitorischer Moleküle reguliert. In dieser Arbeit 

wird ein ausführlicher Überblick über die gegenwärtig beschriebenen kostimulatorischen und 

koinhibitorischen Signalwege in der humanen T- Zellaktivierung geboten. Weiters 

entwickelten wir ein experimentelles System, mit dem man hervorragend den Beitrag 

einzelner Moleküle zur T-Zellproliferation erfassen kann. Mit Hilfe dieses Systems und 

anderer methodischer Ansätze, wurde eine umfassende Evaluierung der Rolle von B7-H3 in 

der T-Zellaktivierung durchgeführt.  

Darüber hinaus konnten wir zeigen, dass kostimulatorische Signalwege die Wirkung von 

bestimmten immunsuppressiven Medikamenten stark herabsetzen, während sie andere nicht 

beeinflussen. Diese Ergebnisse können möglicherweise Einfluss auf Behandlungsstrategien, 

beispielsweise Kombination von herkömmlichen immunsuppremierenden Medikamenten mit 

CTLA-4 Fusionsproteinen, welche spezifisch den CD28 Signalweg targeten, haben. 
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