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INTRODUCTION 

 

This thesis consists of three essays which estimate bilateral trade flows among 

European countries from 1962 to 2003 by using a modified gravity model of total 

trade. The basic gravity model explains bilateral trade between two countries with 

the product of their income and distances between them. According to this model, 

as the countries become richer, they are expected to trade more. Moreover, if they 

are further away from other trading partners, they tend to trade less because larger 

distances impose additional costs to trade such as higher transportation costs, 

cultural barriers, etc. 

In this thesis, the gravity model was extended with the population of exporting 

and importing countries and bilateral exchange rates between their currencies. 

Population is included due to our belief that higher population does affect how 

much people consume, how much they produce, buy (import) and sell (export) as 

a result. The regression results have proven that population has a significant effect 

on bilateral trade flows. Furthermore, real exchange rates are also expected to 

influence bilateral trade flows because they have a direct impact on how much an 

exporter and importer earns. During periods when there is much exchange rate 

fluctuation, traders’ earnings show some fluctuations as well, and therefore 

volatility in exchange rates is, in turn, supposed to decrease the amount of 

bilateral trade. 

Although the modified gravity model used in this thesis consists of real GDPs, 

population numbers and volatility of real exchange rates, in the second essay we 

include main and bilateral interaction effects and time effects. The main effects 

model consists of importing- country, exporting-country and time effects. 

Exporting-country and importing-country effects are used to capture any tendency 

to export and import while business cycle (time) effects are expected to control 

for cyclical changes and their effects on bilateral exports. On the other hand, the 

bilateral interaction effects model uses country-pair or bilateral effects to see any 

geographical, political, historical or cultural event that could affect bilateral trade 

between two countries. We refer to the main effects model as the 3-way model 
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and to the bilateral interaction effects model as the 2-way model. According to the 

results obtained, both the 3-way and the 2-way model explain a larger variation in 

bilateral trade as compared to the modified gravity model used in this study. 

In the literature, the gravity model is used in different versions by inserting more 

explanatory variables such as common borders, a common language, being in the 

same trade union, or having free trade agreements. Some of these studies do not 

take the income of each country separately into the equation, but the product of 

both countries` incomes. They apply the same to the population as well.  In our 

modified gravity model of total trade, however, we insert income and also 

population of exporting and importing countries individually into the model. The 

reasoning behind this is that if both countries` incomes have the same effect on 

their bilateral trade, then the coefficients of exporter and importer country`s GDPs 

should be equal. However, the results indicate that exporter and importer 

country`s GDPs influence bilateral trade by different amounts and this strengthens 

our expectations. 

 

What is the motivation? 

 

This thesis has two major aims. One is to see the effects of exchange rate 

volatility on bilateral trade flows. In the international trade literature, there is no 

agreement as to the effects of exchange rate volatility on trade flows. Some 

studies suggest a significant negative effect, while others show no association 

between exchange rate volatility and total trade. When starting this study, our 

expectation was that exchange rate volatility has a negative impact on bilateral 

trade. It was supposed that fluctuations in exchange rates make exporters and 

importers` earnings less predictable, and may lead them to behave more 

cautiously. As a result, in a non-stable environment they tend to trade less in order 

not to take more risks.  

Our second aim is to compare panel data analysis with different techniques which 

have become popular in the last decades. Although we think that panel data 

analysis or statistical methods give the most reliable results and are proven to be 
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one of the best means for analyzing bilateral trade flows, we use fuzzy logic and 

neural networks as alternative methods to analyze bilateral trade flows and to 

compare their performance with panel data analysis.  

In the first article, after running a regression for the panel data and obtaining 

significant results, we construct a fuzzy rule and a fuzzy decision table to 

calculate the effect of exchange rate volatility on bilateral trade. Fuzzy logic has 

been proposed by Lotfi Zadeh in 1965 as an alternative to probability theory; 

however, it has been somewhat exploited since its invention. When it was first 

introduced, there was some debate about using it because until that time problems 

had been mostly solved by using crisp models. This method encountered 

resistance especially in the mathematically oriented western world which is based 

on the Aristotelian either-or approach. However, most of the expressions in the 

real world cannot be categorized sharply in one or another set. For this kind of 

vague phenomena, the fuzzy approach may provide better solutions obtained 

when using crisp models. When employing fuzzy logic in our study to analyze 

bilateral trade flows, we use the expertise and knowledge about bilateral trade 

flows which we acquire from statistical methods. Indeed, when there is a 

sufficient and reliable data set, using panel data analysis may give satisfactory 

enough results. Our objective in using fuzzy logic is to make a robustness check 

to see whether fuzzy logic can give similar results to the panel data analysis. Our 

study proves that when the user has expertise in the topic and can construct a 

reliable fuzzy decision table and a fuzzy rule set, it is possible to get some 

approximate results by using fuzzy logic without requiring a data set. As is well 

known, panel data analysis requires a large data set to give reliable results. 

However, when there is any problem in obtaining or processing the data, this may 

impede acquiring good and reliable results. In such cases where there are 

problems with the data set, we should have an alternative to get first approximate 

results. For that reason, we made the robustness check for the fuzzy approach, 

even though we have a very large data set, to see whether we can use it in other 

cases where there is an insufficient data set. We believe that our results on the 

fuzzy logic are promising.  
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In the second article only statistical methods are used. Our modified gravity 

model of total trade was extended by using exporting and importing country as 

well as business cycle effects. This model is called the 3-way or main effects 

model. Another extension is made with bilateral interaction effects and time 

effects and is called the 2-way model. We first compared the explanatory power 

of each model and then did a forecasting exercise. The bilateral interaction effects 

model turns out to be superior to the main effects model and also to the modified 

gravity model used in this thesis, in estimating and also in forecasting bilateral 

trade flows. One important characteristic of the bilateral interaction effects model 

is that it enables us to capture any geographical, cultural, historical or political 

event which may have an influence on bilateral trade between two countries. 

However, using bilateral interaction effects hinder us from seeing the individual 

contribution of some variables in explaining the variance in the dependent 

variable, such as distance, common languages, common borders, and others.  

In the third article, we compare panel data analysis with a neural network model. 

In panel data analysis, we estimate bilateral exports with the explanatory variables 

that are income, population, distance and volatility of exchange rates. Then, we 

construct a neural network where the inputs are income, distance, population and 

volatility of exchange rates and the output is bilateral exports. Here, the inputs of 

the neural network are the explanatory variables of the panel model, and the 

output corresponds to the dependent variable of the panel model.  

As a first step, we use the neural network to learn the relationship between the 

inputs and the outputs from the introduced examples that are called the training 

set. Once the network has been trained with the training set, it is asked to predict 

the outputs in the validation set, by using the weights and biases which are 

determined in the training phase. When the error (MSE between actual outputs 

and the outputs produced by the neural network) in the validation set starts 

increasing, the neural network stops training. The weights and biases are chosen at 

the point where the minimum validation set error is reached. Weights and biases 

are determined using the back-propagation method, which is one of the 

differentiating characteristics between neural network models and traditional 
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statistical procedures. The main difference between back-propagation and 

traditional statistical methods is that the back-propagation algorithm can 

consecutively consider data records, and readjusts the parameters after each 

observation in a gradient search manner. By contrast, traditional methods such as 

maximum likelihood and least squares use an aggregated error across the whole 

sample in the estimation. 

The last step is to measure whether the network has learned the relationship 

between the inputs and the outputs very well. To do this, the network is asked to 

produce its own outputs for the given inputs of the test set. If the network has 

learned the relationship appropriately it should give a low MSE. However, the 

MSE is not the sole performance measure. Another option for measuring the 

performance of a neural network is to perform a regression analysis between 

neural network outputs and the corresponding targets (actual outputs). When the 

slope of the best linear regression and the correlation coefficient between network 

outputs and targets are obtained after simulating the network, it is seen that the 

results are quite satisfactory and the neural network model can explain 97% of the 

variation in bilateral exports. 

Another contribution of the third article is the comparison of the forecasting 

performance of the panel model and the neural network model. In performing this 

analysis, the panel model is asked to estimate bilateral exports from 1964 to 1993 

and then to forecast bilateral export flows for the years from 1994 to 2003. Then, 

a neural network is constructed by using the data set from 1964 to 1993 and then 

the data set from 1994 to 2003 is used to test this neural network. Lastly, the MSE 

produced by each model are compared. Whereas both models give very close and 

satisfactory R-squared values, which reflects their in-sample explanatory power, 

the neural network model appears to be superior in out-of-sample forecasting. 

Even though we use three different methods in the entire thesis, the basic model 

we employ is the extended gravity model. Of course, it is not surprising that 

different methods offer results which differ in quantity. However, the similarity 

between the results obtained from the three methods and the comparison with the 
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existing literature indicates that the adjusted gravity model, which serves as an 

umbrella in the whole thesis, is very successful in explaining bilateral trade flows. 
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THE IMPACT OF EXCHANGE RATE VOLATILITY ON 

INTERNATIONAL TRADE USING A MODIFIED GRAVITY 

MODEL AND A FUZZY APPROACH 

 

Elif Nuroğlu
+
,
 
Robert Kunst

++
 

(+)International University of Sarajevo 

(++)University of Vienna 

 

 

Abstract: In this paper through the use of a gravity model and cross sectional 

data for 91 pairs of EU15 countries, a negative effect of exchange rate volatility 

on bilateral trade across European countries is found for the years from 1964 to 

2003. Results illustrating the effects of exchange rate volatility on bilateral trade 

are obtained both by a modified gravity model and by a fuzzy approach. A 

remarkable match is observed between the results of these two approaches. 

 

Keywords: exchange rates, bilateral trade, volatility, gravity model, fuzzy. 

 

1- Introduction 

 

This study investigates the effects of exchange rate volatility on bilateral trade 

flows across European countries from 1964 to 2003 by employing panel data 

analysis and a fuzzy approach. The former approach uses a classical gravity 

model that is extended by including population of exporting and importing 

countries and exchange rate volatility as explanatory variables of bilateral trade 
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flows. This model is estimated for a data set of EU15 countries from 1964 to 

2003. The second, alternative approach uses fuzzy modeling. The effect of 

exchange rate volatility on bilateral trade flows is then compared across the two 

models. 

International trade history shows that different exchange rate regimes were 

preferred at different periods. In the last decades there is a tendency towards 

purely fixed or purely floating exchange rate regimes. A survey (Fischer, 2001) 

indicates that most countries have abandoned intermediate exchange rate 

regimes and instead prefer a purely floating or a purely fixed exchange rate. The 

percentage of fixed exchange rate regimes increased from 16% in 1991 to 24% 

in 1999 while percentage of floating exchange rate regimes increased from 23% 

to 42% during the same period. On the other hand, the number of intermediate 

regimes declined from 62% in 1991 to 34% in 1999. According to Fischer 

(2001), this movement from the intermediate regimes is towards currency 

boards, dollarization or currency unions on the hard peg side, and towards a 

variety of floating exchange rate regimes on the other side. The main reason 

suggested for this change is that ―soft pegs are crisis-prone and not viable over 

long periods‖. Moreover, Bubula and Otker-Robe (2003) provide some support 

for the proponents of the bipolar view. They find that during 1990–2001, 

intermediate regimes were more frequently subject to crises as compared with 

purely fixed and floating ones, while even the latter have not been totally free of 

pressures. 

The choice of exchange rate regime gives a country the freedom to use 

macroeconomic policies to manipulate the economy and enables it to fight 

recessions, crises etc. Furthermore, exchange rates influence the level of 

international trade as well. Therefore, the effects of volatility in exchange rates 

and of exchange rate regimes on the economy and on international trade have 

long been studied. There are two sides in the literature. One side claims that 

exchange rate uncertainty/volatility/variability does not have any impact on trade 

while there is another side which tries to prove the opposite. Hooper and 
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Kohlhagen (1978) analyze the impact of exchange rate uncertainty on the 

volume of the US – German trade between 1965 and 1975 and conclude that 

there is no statistically significant effect. Gotur (1985) reaches the same 

conclusion by analyzing the effects of exchange rate volatility on the volume of 

trade among the US, Germany, France, Japan and the UK. A famous IMF study 

(1984) summarizes that the large majority of empirical studies could not find a 

significant relationship between exchange rate variability and the volume of 

trade either on aggregated or bilateral basis. More recently, this view was 

supported by Bacchetta and van Wincoop (2000) who find that exchange rate 

uncertainty, or different exchange rate systems do not have any impact on trade.  

On the other hand, Ethier (1983) analyzes the effects of exchange rate 

uncertainty on the level of trade and finds that uncertainty in future exchange 

rates reduces level of trade. Cushman (1983) estimates fourteen bilateral trade 

flows among industrialized countries and finds a significant negative effect of 

exchange risk on trade. Akhtar and Hilton (1984) establish a significant negative 

effect of nominal exchange rate uncertainty on bilateral trade between Germany 

and the US. Kenen and Rodrik (1986) analyze the effects of volatility in real 

exchange rates on the volume of trade and conclude that volatility depresses 

volume of trade. De Grauwe and De Bellefroid (1986) employ cross sectional 

techniques for the European Economic Community countries for 1960-1969 and 

1973-1984, and investigate the effects of variability in real exchange rates on 

trade. They find significant negative effects. Lanea and Milesi-Ferretti (2002) 

examine the effects of appreciation and depreciation of exchange rates on trade 

and conclude that in the long run, larger trade surpluses are to be expected with 

more depreciated real exchange rates. Viane and de Vries (1992) study this issue 

from a different perspective, by analyzing the effects of exchange rate volatility 

on exports and imports separately and find that exporters and importers are 

affected differently by the changes in exchange rates, because they are on 

opposite sides of the forward market.  
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In the last decade, artificial intelligence methods such as neural networks and 

fuzzy logic have been employed in econometric studies especially in time series 

analysis. Tseng et al. (2001) propose a fuzzy model and apply it to forecast 

foreign exchange rates. Lee and Wong (2007) use an artificial neural network 

and fuzzy reasoning to improve the decision making under foreign currency risk 

and analyze the effect of trading strategy on the changes in exchange rates. They 

use fuzzy logic because they claim that it is capable to perform text reasoning of 

macroeconomic news. 

Employing statistical methods together with artificial intelligence methods in one 

study gives the user the opportunity to compare both results. In econometric 

analysis, a large data set and a strong model is needed to obtain reliable results. 

However, there may be some cases in which it is difficult to obtain a large data 

set sufficient to get reliable results, or there may be some missing data which 

affects the reliability of results. In these cases, combining a fuzzy approach with 

the expertise in the topic studied can be a good solution to get the first 

approximate results. For this reason, our study compares the results obtained by 

panel data analysis and by using fuzzy logic. While we have a large data set and 

thus it can be argued that fuzzy logic is not really necessary, we propose to use 

this approach as a robustness check on traditional modeling. Once fuzzy logic 

proves to be a good alternative, it can also be used in cases of data problems that 

impair the validity of traditional methods. 

The structure of the paper is as follows. Section 2 introduces the modified 

gravity model of total trade used in this study and reports the regression results 

obtained. Section 3 shows how the fuzzy approach is used to explain the effects 

of exchange rate volatility on bilateral trade. Section 4 concludes. Appendices 1 

and 2 provide additional information about the fuzzy approach and fuzzy 

mathematics used. 
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2- A Modified Gravity Model of Total Trade 

 

According to the Gravity Model, trade flows between two countries depend on 

their income positively and on the distances between them negatively as shown 

in Equation 1 

ij

ji

ij
D

GDPGDP
CT


                                   ( Eq. 1) 

where c is a constant term, ijT  is the value of trade between country i and   

country j, iGDP  is country i`s income, jGDP  is the country j`s income and ijD  

is the distance between two countries (Krugman and Obstfeld, 2006).  

The gravity model says that large economies are expected to spend more on 

imports and exports; so, the higher the GDP of a country, the higher its total 

trade. The gravity model can be extended to catch other effects such as 

population, exchange rates, having a common language and common border or 

being in the same trade union that promotes bilateral trade.  

In this study, the gravity model is extended with additional variables, namely the 

population of exporting and importing country and exchange rate volatility. 

Another difference from the original model is that incomes of country i and j are 

not taken as products with the same coefficient but as separate variables. The 

same approach applies to the population, where we have different coefficients 

for each country. The proposed model that is used to capture the effects of 

exchange rate volatility on bilateral trade is: 

 

ln𝑇𝑖𝑗𝑡  = 𝛼 + 𝛽1ln𝐷𝑖𝑗 + 𝛽2ln𝑌𝑖𝑡 + 𝛽3ln𝑌𝑗𝑡 + 𝛽4ln𝑃𝑜𝑝𝑖𝑡   

                                   + 𝛽5ln𝑃𝑜𝑝𝑗𝑡 + 𝛽6𝑉𝑜𝑙𝑋𝑅𝑖𝑗𝑡 + 휀𝑖𝑗𝑡  

 

(Eq. 2) 
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where ijtT  represents total bilateral trade between country i and country j during 

time t which is calculated as the sum of exports from country i to country j and 

imports from country j to country i. Exports and imports are measured in 

nominal terms and then are converted to the volumes by using GDP deflators for 

each country at time t. ijD  is the distance between capital cities of country i and 

country j that is measured in kilometers. Two basic variables of gravity model 

are itY  and jtY , real GDP of country i and j respectively. itPop  and jtPop
 
are the 

populations of country i and country j in time t.  

ijtVolXR  is the volatility of nominal exchange rate between exporter and importer 

country in year t which is calculated as the moving average of standard 

deviations of the first difference of logarithms of quarterly nominal bilateral 

exchange rates (Kowalski, 2006).  

 

Results of the Modified Gravity Model  

 

The sample period covers 40 years from 1964 to 2003. Countries included are 

the EU-15, where Belgium and Luxembourg are taken as one country because of 

data availability. The sources for the data are World Bank`s World Development 

Indicators 2005, OECD`s International Trade by Commodity Statistics and 

IMF`s International Financial Statistics.  

The model is estimated using bilateral trade flows across the EU-15 countries 

from 1964 to 2003. From the data set of 14 countries, 91 bilateral trade flows are 

obtained during fixed, flexible and Euro periods. Equation 2 is estimated by 

using bilateral trade volumes and results are shown in Table 1-1. 

According to the gravity theory, the income of a country is expected to affect its 

trade in a positive way. Table 1 - 1 shows that both income terms for country i 

and j have the expected positive sign. The difference from previous studies is 
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emphasized by the discrepancy in the two coefficients. The contributions by the 

income terms of each country to the bilateral trade are quite different. We find 

that a 1 percent increase in the income of country i (exporting country) leads to a 

0.09% higher bilateral trade. On the other hand, a 1% increase in the income of 

country j (importing country) results in a 1.1% increase in bilateral trade. 

 

  Coefficient t-Statistic Prob. 

C -14.57 -20.38 0.00 

Distance -0.85 -41.18 0.00 

Exporter GDP 0.09 2.30 0.02 

Importer GDP 1.10 35.64 0.00 

Exporter Population 0.67 16.50 0.00 

Importer Population -0.41 -12.11 0.00 

Exchange Rate  Volatility  -0.21 -3.29 0.00 

R-squared 0.85     

Adjusted R-squared 0.84     

AIC 2.04     

Schwarz criterion 2.12     

Hannan-Quinn criter. 2.07     

Number of observations 3601     

Sample (adjusted) 1964-2003     

Periods included 40     

Cross-sections included 91     

Table 1 - 1: Balanced panel estimates with period fixed effects, dependent variable: log 

of total bilateral trade 

Moreover, population has a negative sign for the importing country. The 

intuition behind is that higher population is assumed to decrease income per 

capita which may lower the need for imports and also the level of exports. On 

the other hand, population of the exporting country has a positive effect on 
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bilateral trade suggesting that the higher the population the higher the production 

and exports as a consequence. Additionally, higher population may increase the 

need for the imported goods as well. 

One of the basic elements of the gravity model is the distance between countries, 

which is on the denominator of the gravity equation (Equation 1). Since it is on 

the denominator, it should have a negative sign with the assumption that higher 

distances tend to decrease international trade by increasing transportation costs 

and imposing other impediments to trading such as informational and 

psychological frictions (Huang: 2007). Last but not least, exchange rate volatility 

has a negative effect on bilateral trade. As the results indicate, when volatility 

increases by 1%, the percentage change in bilateral trade is -0.21%.  

 

3- A Fuzzy Approach to Total Trade 

 

As shown in section 2, exchange rate volatility leads to fluctuations in the 

volume of trade. The main objective of this study is to compare the results 

obtained by panel data analysis with the ones obtained by using fuzzy logic to 

see how close they are. If fuzzy rules are set appropriately, and if the intuition 

used is realistic and in accordance with theory, fuzzy reasoning may give very 

similar results to panel data analysis without requiring a very large data set 

which is necessary in panel data analysis. For econometric methods, the data set 

is crucially important. When there is any problem in obtaining or processing the 

data or in the specification of the model, it is impossible to get reliable results. 

Moreover, if no sufficient data is available, conventional models cannot give 

reliable results. For these cases, fuzzy reasoning can be suggested as an 

alternative to get some approximate results. 

In this section, the effects of exchange rate volatility on bilateral trade will be 

analyzed using fuzzy reasoning. The theory of fuzzy sets has been applied first to 
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engineering fields and then spread to a wide range of areas such as economics, 

management, artificial intelligence, psychology, linguistics, information 

retrieval, medicine etc. (Fu and Yao, 1980).  

Steps to be taken to apply a fuzzy approach to total trade are:  

(i) setting the fuzzy decision table; 

(ii) determining the change in total trade following a 1 percent increase 

in exchange rate volatility.  

To start with, it is needed to fuzzify exchange rate volatility and the decrease in 

bilateral trade. Describing process states by means of linguistic variables and 

using these variables as inputs is a very important step in fuzzy approach. Table 

1-2 shows the partitioning of the universe of exchange rate volatility into three 

fuzzy sets which are high, medium and low. Table 1-3 shows an analogous 

partitioning of the universe of total trade. When defining these expressions, 

membership values are assigned to each state intuitively based on experience 

(McNeil and Thro, 1994). A fuzzy set is defined solely by its membership 

function (Zimmermann, 2001). Membership degrees lie between 0 and 1, 

meaning that if an object completely belongs to the fuzzy set it has a membership 

value of 1. If an object does not belong to the fuzzy set at all, it has a 

membership value of 0. Membership degrees of borderline cases lie between 0 

and 1. The more an element is characteristic of a fuzzy set, the closer to 1 is its 

membership degree (Driankov et al., 1996).  

According to Table 1 - 2, ―high increase in exchange rate volatility‖ is meant to 

be a 1% increase in volatility. If the increase is 0.9%, this volatility is considered 

to be high with a membership value of 0.75. When the volatility increases by 

0.8%, the membership value for a high volatility decreases to 0.5.  𝐴 1 in Table  

1-2 is the fuzzy set which describes a high increase in exchange rate volatility. 

Furthermore, a 0.5% increase in exchange rate volatility is defined as being 

medium and therefore is assigned a membership value of 1 in 𝐴 2, which is a 

fuzzy set that describes a medium increase in exchange rate volatility. Similarly, 
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𝐴 3 in Table 1-2 represents the fuzzy set which describes a low increase in 

exchange rate volatility. These three fuzzy sets are described with the 

membership functions as Table 1-2 shows. In fuzzy language, ―high‖, ―medium‖ 

and ―low‖ (increase in exchange rate volatility) are called linguistic values. ―𝐴‖ 

in general is the linguistic variable that represents ―exchange rate volatility‖. 

 

 0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%  

high 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1 𝐴 1 

medium 0.00 0.00 0.25 0.50 0.75 1.00 0.75 0.50 0.25 0.00 0 𝐴 2 

low 0.50 0.75 1.00 0.75 0.50 0.25 0.00 0.00 0.00 0.00 0 𝐴 3 

Table 1 - 2: Increase in Exchange Rate Volatility Partitioning 
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medium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1.00 𝐵 1 

low-

medium 
0.00 0.00 0.25 0.50 0.75 1.00 0.75 0.50 0.25 0 0 

𝐵 2 

low 0.50 0.75 1.00 0.75 0.50 0.25 0.00 0.00 0.00 0.00 0 𝐵 3 

Table 1 - 3: Decrease in Total Trade Partitioning 

 

On the other hand, 𝐵 1, 𝐵 2 and 𝐵 3 are the fuzzy sets that describe a ―medium‖, 

―low-medium‖ and ―low‖ decrease in total trade respectively. ―𝐵‖ in general is 

the linguistic variable which stands for ―total trade‖. 

The benefit of fuzzy set theory should be mentioned here. One number is not 

necessarily high or low with a 100% certainty. If a value is closer to the target, its 
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membership value is closer to 1. For example, in Table 1-2, a 0.7% increase in 

exchange rate volatility is categorized as a high increase with a 0.25 membership 

degree, while it is also possible to count it as a medium increase with a 

membership value of 0.5. The membership degree to the fuzzy set  

𝐴 2 is higher than 𝐴 1 because 0.7% is closer to 0.5% than it is to 1%. By contrast, 

in the crisp sets, variables are categorized in certain classes and they can only 

belong to one class. If a number belongs to one class, it cannot be member of 

another.  

In this study, triangular membership functions are used due to computational 

efficiency (Figure 1-1). However, it is also possible to use other functions such as 

trapezoidal or bell-shaped functions. The triangular membership function 

Λ ∶ U  →   0, 1    is defined by Driankov et al. (1996) as follows
1
: 
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),,;(                                      (Eq. 3) 

 

Figures 1-2 and 1-3 show the partitioning of the universe of exchange rate 

volatility and that of total trade into three fuzzy sets. These figures depict the 

information given in Tables 1-2 and 1-3 respectively. The linguistic variable 

―exchange rate volatility‖ in Figure 1-2 is described via 3 linguistic values which 

are ―high‖, ―medium‖ and ―low‖ increase in exchange rate volatility. Similarly, 

in Figure 1-3 the linguistic variable is ―total trade‖ and linguistic values for it are 

―medium‖, ―low-medium‖ and ―low‖ decrease in total trade. 

                                                 
1
 The third line of this membership function was in error in the mentioned source, therefore it was 

corrected by the author of this article.  
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Figure 1 - 1: An example of a triangular function (Source: Driankov et al., 1996) 

 

 

 

   

 

 

 

Figure 1 - 3: Linguistic Values for Variable ―Total Trade 

 

When dealing with fuzzy sets, the entire knowledge of the system is stored as 

rules in the knowledge base (Zimmermann, 2001). Thus, the rules play a very 

important role in fuzzy systems and therefore a considerable effort should be 

taken when defining the rules. Detailed information on the problem to be solved 

   0.05    0.1  0.15    0.2    0.25   0.125 

   1 

  µ 
    Medium     Low-Medium      Low 

% Change in Total Trade 

  0.025   0.075   0.175   0.225     0 

    0.5 

  

 0.2  0.4  0.6  0.8   1  0.5 

    1 

   µ      High     Medium      Low 

% Change in Volatility 

 0.1  0.3  0.7  0.9    0 

0.5 

Figure 1 - 2: Linguistic Values for Variable ―Exchange Rate Volatility‖ 
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and experience are necessary to design a reliable fuzzy rule set and to obtain good 

results. If the designer does not have sufficient prior knowledge about the system 

or topic, it becomes impossible to develop a reliable fuzzy rule (Aliev et al., 

2004). Fuzzy rules are the means that will translate inputs into the actual outputs 

(McNeil and Thro, 1994).  

Under normal circumstances, traders do expect a stable economic environment 

and also no high volatility in exchange rates because high volatility in exchange 

rates means high volatility in their revenues as well. For this reason, when 

exchange rates fluctuate a lot, the impact of this change on total trade will be 

considerable because people do not expect enormous changes in exchange rate 

volatility. The fuzzy rule used in this study is constructed by considering that any 

increase in exchange rate volatility will affect total trade; however, the amount of 

decrease in total trade will not be exactly by the same percentage but lower. 

 

 FUZZY RULE  

 

If increase in exchange rate volatility is high ; Then decrease in 

total trade is medium 𝐴 1 × 𝐵 1 

         

ELSE 

If increase in exchange rate volatility is medium ; Then decrease  

in total trade is low-medium 𝐴 2 × 𝐵 2 

         

ELSE 

If increase in exchange rate volatility is low ; Then decrease  in 

total trade is low 𝐴 3 × 𝐵 3 

Table 1 - 4: Fuzzy rule for explaining the effects of increase in exchange rate volatility 

on bilateral trade 

 

According to the fuzzy rule used (see Table 1- 4), a high increase in exchange rate 

volatility (1 percent) results in a medium (0.25 percent) decrease in bilateral trade, 

while a medium (0.5 percent) increase in exchange rate volatility leads to a low-
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medium (0.125 percent) decrease in bilateral trade. Furthermore, a low increase in 

exchange rate volatility causes a low decrease in bilateral trade. 

After defining fuzzy rules, it is necessary to compute all rule-consequences 

(Zimmermann, 2001). In the fuzzification process, linguistic variables are 

described via linguistic values and quantitative values are assigned to these 

values. Then, possible consequences are defined for each possible input with 

 

 

 

 

 

 

 

Figure 1 - 4: The process of fuzzification and defuzzification (Reconstructed from 

Zimmermann (2001) and Driankov et al. (1996)). 

 

 ―if …., then ….‖ rules (see Table 1-4), and the consequences are aggregated into 

a fuzzy set (see Figure 1-4). The last step is defuzzification where one crisp 

value is generated from the fuzzy output set. The crisp value obtained after 

defuzzification enables the interpretation of the effect of a ―1% increase in 

exchange rate volatility‖ on bilateral trade as a percentage value. Figure 1-4 

shows how the whole process works. 

Given the conclusions obtained by individual fuzzy rules shown in Table 1-4, the 

overall fuzzy relation (𝑅 ) is calculated by taking the union of all individual 

effects: 

Fuzzy Rules 

Fuzzification 
Computational 

Unit 
Defuzzification Input  Output  

Fuzzy World 

Crisp World 
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𝑅 =  𝐴 𝑖 × 𝐵 𝑖 =

3

𝑖=1

 𝐴 1 × 𝐵 1 ∪  𝐴 2 × 𝐵 2 ∪  𝐴 3 × 𝐵 3                 (Eq. 4)
 

where ii BA
~

 and 
~

 are fuzzy sets and ―x‖ denotes Cartesian product. The Cartesian 

product of 𝐴 1and 𝐵 1 shows the impact of a high increase in exchange rate 

volatility on bilateral trade in a matrix form. Similarly, 𝐴 2 × 𝐵 2 and 𝐴 3 × 𝐵 3 

depict the effect of a medium and a low increase in exchange rate volatility on 

bilateral trade respectively, again in a matrix form. The combination of these three 

individual effects is obtained by applying the union operator to these three 

matrices and the resultant matrix is 𝑅 . Using this fuzzy relation (𝑅 ) in matrix 

form, the impact of ―1 percent increase in exchange rate volatility‖ on bilateral 

trade will be determined (See Appendix A.1.e for fuzzy mathematics used and 

Appendix 2 for the calculation of R
~

).  

To determine this effect we need to fuzzify ―1% increase in exchange rate 

volatility‖. The fuzzy set 𝐶 , called ―1% increase in exchange rate volatility‖, is 

described by the membership function illustrated in Figure 1-5
2
.  

 

 

 

 

 

According to this membership function, 1% increase in exchange rate volatility 

has a membership value of 1 to the fuzzy set 𝐶 . When the increase in exchange 

rate volatility is nearer to 1%, for example 0.9%, its membership value is 0.75. A 

                                                 
2
 Although it appears that the membership function of ―1% increase in exchange rate volatility‖ 

corresponds to the fuzzy set which describes ―high volatility in exchange rates‖ in Table 2 and also 

in Figure 2, it is just a coincidence. Different membership functions could also be used to define 

this fuzzy set such as  𝐶 =   0  0  0  0  0  0  0  0  0  0.75  1   or 𝐶 =   0  0  0  0  0  0  0  0  0  0  1  . 

µ 

1 

0.5 

% Increase in Volatility 
1 0.8 0.6 

Figure 1 - 5: Membership Function for a ―1% Increase in 

Volatility‖ 
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0.8% increase in exchange rate volatility is the member of the fuzzy set of ―1% 

increase in exchange rate volatility‖ with a degree of 0.5.  

The effect of 1 percent increase in exchange rate volatility on bilateral trade can 

be obtained by applying the compositional rule of inference to the fuzzy set 𝐶  

and fuzzy relation 𝑅 : (see A.1.e. Definition 6 for details about the compositional 

rule of inference and operator ― ‖). 

                   𝐵 ` = 𝐶  o 𝑅 
 

𝐵 ` =  0  0  0.25  0.25  0.25  0.25  0.25  0.25  0.5  0.75  1   

  where   𝐶 =   0  0  0  0  0  0  0  0.25  0.5  0.75  1   as shown in Figure 5. 

`~
B  is the fuzzified decrease in bilateral trade where each number is a weight 

factor between 0 and 1, corresponding to the percentage values between 0 and 1 

with an increment 0.025 (see Table 1-3).  

The last step requires the defuzzification process, which converts the overall 

fuzzy conclusion (𝐵 `) into a real number that represents the decrease in bilateral 

trade following a 1% increase in exchange rate volatility. There are different 

defuzzification methods. Here, the centroid method—the center of the output 

membership function—is employed in the defuzzification process. This method 

uses a weighted average. From the mathematical point of view, it corresponds to 

the expected value of probability (Zimmermann, 2001). The centroid method 

yields that:  

        % 𝐶ℎ𝑎𝑛𝑔𝑒 =
0×0+0.025 ×0+0.05×0.25+0.075 ×0.25+0.1×0.25+

0.125 ×0.25+0.15×0.25+0.175 ×0.25+0.2×0.5+0.225 ×0.75+0.25×1

0+0+0.25+0.25+0.25+0.25+0.25+0.25+0.5+0.75+1
= 0.183 

 

In words, this means that 1 percent increase in exchange rate volatility leads to 

0.18 percent decrease in bilateral trade. It is evident that this result is in 
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accordance with the coefficient of 0.21 that was obtained by using panel data 

analysis with period fixed effects and is reported in Table1-1. 

4- Conclusion 

 

This study explains the effects of exchange rate volatility on bilateral trade 

between EU15 countries by using cross sectional methods and a fuzzy approach. 

Considering data for 40 years, panel data analysis with period fixed effects 

shows a significant negative impact of exchange rate volatility on bilateral trade. 

A fuzzy approach delivers a very similar result. The key elements of the fuzzy 

approach are to set fuzzy decision rules describing the event and to assign 

membership functions to the fuzzy sets intuitively based on experience. It should 

be emphasized that although the use of econometric methods is essential to 

obtain reliable results, employing a fuzzy intuitive approach can be useful for 

estimating first approximate results, especially in the absence of adequate data. 

Here, the fuzzy approach gives results very close to the ones from traditional 

panel data analysis, which supports our recommendation to use it more generally 

as a complement to statistical methods.    

 

5- Appendices 

Appendix 1 

A.1.a. What is Fuzzy Set Theory?  

The difference between conventional dual logic and fuzzy set theory is that in 

conventional dual logic a statement can be either true or false; in set theory, an 

element can be either a member of a set or not. However, real situations are very 

often uncertain. Lack of information, for instance, may cause the future state of 

the system to be unknown. This type of uncertainty has been handled by 

statistics and probability theory. Fuzziness can be found in many areas of life 

such as meteorology, medicine, engineering, manufacturing etc. In daily life, the 
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meaning of words is often vague. When we say ―tall man‖, ―beautiful women‖, 

―successful company‖ the meaning of a word may change from person to person 

or from culture to culture. Fuzzy set theory provides a mathematical framework 

to study vague phenomena precisely. It is defined as a modeling language for 

fuzzy relations, criteria and situations (Zimmermann, 2001). 

In fuzzy set theory, normal sets are called crisp sets to be differentiated from 

fuzzy sets (Driankov et al., 1996). Let C be a crisp set and F a fuzzy set defined 

on the universe U. For any element u of U, either Cu or Cu . However, in 

fuzzy set theory it is not necessary that either Fu or Fu . In fuzzy set theory, 

a membership function F  assigns a value to every Uu  from the unit interval 

[0, 1], instead from the two element set {0, 1} as is done in crisp sets. A fuzzy 

set is defined on the basis of a membership function.  

According to Zimmermann (2001), major goals of fuzzy set theory are the 

modeling of uncertainty and the generalization of classical methods based on 

dual logic from dichotomous to gradual features. Moreover, it aims to reduce the 

complexity of data to an acceptable degree by means of linguistic variables. 

Computational units (see Figure 1-4) process these linguistic expressions, use 

membership functions of fuzzy sets and finally retranslate the fuzzified result 

into the words via linguistic approximation which is explained in A.1.c. 

A.1.b. Advantages and Disadvantages of Fuzzy Systems  

The use of fuzzy logic in various fields has been quite popular due to its 

advantages (McNeill and Thro, 1994). In fuzzy logic, linguistic variables are 

used instead of numerical ones, which makes it similar to the way human beings 

think. The need for fewer values, rules and decisions than conventional models 

can be counted as another advantage. However, it is hard to develop a model 

from a fuzzy system. Even though they are easier to design and faster to 

prototype than conventional methods, fuzzy logic may face cultural bias in some 

countries who favor mathematically precise or crisp systems. This is why 

Japanese firms exploited fuzzy systems before the United States. Furthermore, as 
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the complexity of a system increases, it becomes more difficult to specify the 

correct set of rules and membership functions to describe the behavior of the 

system appropriately (Aliev et al., 2004). 

A.1.c. Linguistic Variables 

Zadeh (1975) defines a linguistic variable as a variable whose values are words 

or sentences in a natural or artificial language. For example, age is a linguistic 

variable when it is defined as ―young, very young, old, not very old‖ instead of 

18, 15, 60 or 40.  

The following framework, cited from Driankov et al. (1996), explains the 

notions of linguistic variable, linguistic value, actual physical domain and 

semantic function: 

(X, 𝓛(X), 𝒳, Mx ).  

Here, X represents the symbolic name of a linguistic variable, for example age, 

temperature, error, weight, etc. In section 3, instead of X we have “A” and “B” 

which are the linguistic variables representing ―exchange rate volatility‖ and 

―total trade‖ respectively.  

𝓛(X) denotes the set of linguistic values that X can take. Again, in our case  

(A) = {high, medium, low}. 𝓛(X) can also be called as the term-set of X or the 

reference- set of it.  

Furthermore, 𝒳 is the actual physical domain over which the linguistic variable 

X can take its quantitative values. In the case of the linguistic variable 

―exchange rate volatility‖, 𝒳 is the interval [0%, 1%] with 0.1 increments.  

Mx is a semantic function which gives a quantitative interpretation of a 

linguistic value from the interval 𝒳 and is defined as 

                                 Mx: 𝓛(X) → ℒ(𝑋)   
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where ℒ(𝑋)  is a denotation for a fuzzy set defined over 𝒳. Put differently, Mx 

returns the meaning of a word into the fuzzy terms. Instead of 𝐿(𝑋)  it is also 

possible to use 𝜇𝐿𝑋  which is the membership function. 

The symbolic translation of natural language in terms of linguistic variables is 

explained by Driankov et al. (1996) as follows. The symbolic representation of 

the natural language expression ―Error has the property of being negative-big‖ is 

written as ―E is NB‖ and called an atomic fuzzy proposition.
3
 The interpretation 

of this atomic representation is defined by the fuzzy set 𝑁𝐵  or the membership 

function 𝜇𝑁𝐵  on the normalized physical domain 휀 = [−6,6] of the physical 

variable ―error‖, 

                                 ∀𝑒 ∈ 휀: 𝑁𝐵 =𝜇𝑁𝐵= ―membership function‖. 

where 𝜇𝑁𝐵  shows the degree to which a specific quantitative crisp value of the 

physical variable error, e, belongs to the set 𝑁𝐵 . For example, the degree of 

membership of -3.2 to the fuzzy set of negative big is 𝜇𝑁𝐵 −3.2 = 0.7. This 

degree of membership shows the degree to which the symbolic expression ―E is 

NB‖ is satisfied given the following circumstances: NB is interpreted as 𝜇𝑁𝐵  and 

E takes the value -3.2. 

A.1.d. Fuzzy If-then Statements 

A fuzzy conditional or a fuzzy if-then statement describes the relationship 

between process state (which contains a description of the process output) and 

control output variables (which describe the control output that should be 

produced given the particular process output).  

The meaning of the expression 

if X is A, then Y is B 

                                                 
3
 The symbol E denotes the physical variable ―error‖ and NB the particular value ―negative big‖ of 

error. 
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is represented as a fuzzy relation defined on 𝒳 × 𝛶 where 𝒳 and  𝛶 are the 

physical domains of the linguistic variables X and Y. The meaning of ―X is A‖ is 

called the rule antecedent and represented by the fuzzy set  𝐴 =  𝜇𝐴(𝑥)/𝑥
𝑥

. 

The meaning of ―Y is B‖ is called the rule consequent and represented by the 

fuzzy set 𝐵 =  𝜇𝐵(𝑦)/𝑦
𝑦

.
4
 

Then, the meaning of the fuzzy conditional is a fuzzy relation 𝜇𝑅  such that  

∀ 𝑥 ∈  𝒳  ∀ 𝑦 ∈  𝛶:  𝜇𝑅 𝑥, 𝑦 = 𝜇𝐴 𝑥 ∗  𝜇𝐵 𝑦 , 

where ― ‖ can be either Cartesian product or any fuzzy implication operator 

(Driankov et al., 1996).  

To give an example, first of the three if-then rules used in section 3 is: 

if <increase in exchange rate volatility is high> then <decrease in total trade is 

medium> 

represented by 𝐴 1 × 𝐵 1 in Table 1-4. Cartesian product was used to process the 

relation between the variable ―exchange rate volatility‖ and ―total trade‖. 

A.1.e. Fuzzy Set Mathematics  

The following definitions except Definition 2 and 6 will be cited from 

Zimmermann (2001). 

Definition 1: If X is a collection of objects denoted generically by x, then a 

fuzzy set A
~

 is a set of ordered pairs: 𝐴 = {(x, 𝜇𝐴  (x) |x ∈X}  

where 𝜇𝐴  is called the membership function of x in A
~

 that maps X  to the 

membership space M. The range of the membership function is a subset of the 

nonnegative real numbers whose supremum is finite. However, as a matter of 

convenience it is assumed that fuzzy sets are normalized to the range [0, 1].  

                                                 
4
 This fuzzy set was in error in the mentioned source, therefore it was corrected by the author of 

this article. 
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The membership function is the fundamental part of a fuzzy set. Therefore, 

operations with fuzzy sets are defined through their membership functions. It is 

defined by Driankov et al. (1996) as follows: 

Definition 2: The membership function  𝜇𝐹   of a fuzzy set F is a function 

𝜇𝐹: 𝑈 →  0,1 . 

So, each element u from U (universe) has a membership degree 𝜇𝐹 𝑢 ∈  0,1 .  

F is completely determined by the set of tuples 

𝐹 =   𝑢, 𝜇𝐹 𝑢  |𝑢𝜖𝑈 . 

Definition 3: The membership function )(~ x
C

 of the intersection BAC
~~~

 is 

pointwise defined by 

𝜇𝐶  𝑥 = min 𝜇
𝐴 
 𝑥 , 𝜇

𝐵 (𝑥) , 𝑥 ∈ 𝑋 . 

Definition 4: The membership function )(~ x
D

 of the union BAD
~~~

 is 

pointwise defined by 

𝜇𝐷  𝑥 = max 𝜇
𝐴 
 𝑥 , 𝜇

𝐵 (𝑥) , 𝑥 ∈ 𝑋 . 

Definition 5: The Cartesian product of fuzzy sets is defined as follows: Let 

nAAA
~

,....,
~

,
~

21  
be fuzzy sets in nXX ,....,1 . The Cartesian product is then a fuzzy 

set in the product space nXXX  .....21  with the membership function 

𝜇 𝐴 1×…×𝐴 𝑛   𝑥 = min 𝜇𝐴 𝑖
 𝑥𝑖 |𝑥 =  𝑥1, … . , 𝑥𝑛 , 𝑥𝑖 ∈ 𝑋𝑖 . 

Definition 6: Compositional Rule of Inference: If 𝑅  is a fuzzy relation from U to 

V, and 𝑥  is a fuzzy subset of U, then the fuzzy subset 𝑦  of V which is induced by 

𝑥  is given by the composition of 𝑅  and 𝑥 ; that is 

𝑦 = 𝑥 ∘ 𝑅  
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in which 𝑥  plays the role of a unary relation (Zadeh, 1973). 

Appendix 2: Calculation of Overall Fuzzy Relation 

𝑅 =  𝐴 𝑖 × 𝐵 𝑖 =

3

𝑖=1

 𝐴 1 × 𝐵 1 ∪  𝐴 2 × 𝐵 2 ∪ (𝐴 3 × 𝐵 3) 

if < increase in exchange rate volatility is high> then <decrease in total trade is medium> 

𝑨 𝟏 × 𝑩 𝟏 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1 

  (High x medium)                0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.25 

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.50 0.5 

0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 0.75 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1 

 

if < increase in exchange rate volatility is medium> then <decrease in total trade is low-medium> 

𝑨 𝟐 × 𝑩 𝟐 0.00 0.00 0.00 0.25 0.50 0.75 1.00 0.75 0.50 0.25 0 

 (Medium x low-medium)      0                         0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0.25 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.00 0 

0.5 0.00 0.00 0.25 0.25 0.50 0.50 0.50 0.50 0.50 0.00 0 

0.75 0.00 0.00 0.25 0.25 0.50 0.75 0.75 0.75 0.50 0.00 0 
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1 0.00 0.00 0.25 0.25 0.50 0.75 1.00 0.75 0.50 0.00 0 

0.75 0.00 0.00 0.25 0.25 0.50 0.75 0.75 0.75 0.50 0.00 0 

0.5 0.00 0.00 0.25 0.25 0.50 0.50 0.50 0.50 0.50 0.00 0 

0.25 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

 

if <increase in exchange rate volatility is low> then <decrease in total trade is low> 

𝑨 𝟑 × 𝑩 𝟑 0.50 0.75 1.00 0.75 0.50 0.25 0.00 0.00 0.00 0.00 0 

          (Low x low)           0.5                                                 0.50 0.50 0.50 0.50 0.50 0.25 0.00 0.00 0.00 0.00 0 

0.75 0.50 0.75 0.75 0.75 0.50 0.25 0.00 0.00 0.00 0.00 0 

1 0.50 0.75 1.00 0.75 0.50 0.25 0.00 0.00 0.00 0,00 0 

0.75 0.50 0.75 0.75 0.75 0.50 0.25 0.00 0.00 0.00 0.00 0 

0.5 0.50 0.50 0.50 0.50 0.50 0.25 0.00 0.00 0.00 0.00 0 

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

            

                          𝑹  0.5 0.5 0.5 0.5 0.5 0.25 0.00 0.00 0.00 0.00 0.00 

 0.5 0.75 0.75 0.75 0.5 0.25 0.00 0.00 0.00 0.00 0.00 

 0.5 0.75 1 0.75 0.5 0.25 0.25 0.25 0.25 0.00 0.00 

 0.5 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.25 0.00 0.00 

 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.5 0.25 0.00 0.00 
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 0.25 0.25 0.25 0.5 0.75 1 0.75 0.5 0.25 0.00 0.00 

 0.00 0.00 0.25 0.5 0.75 0.75 0.75 0.5 0.25 0.00 0.00 

 0.00 0.00 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 

 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 

 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.5 0.75 0.75 

 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.5 0.75 1 
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Abstract: In this study we investigate bilateral trade flows across EU15 countries 

from 1962 to 2003 by using two different specifications of the gravity model. We 

augment the basic gravity model with (i) exporting-country, importing country 

and time effects (3-way model) and (ii) country pair and time effects (2-way 

model), compare the results of the 3-way model with those of the 2-way model, 

show the differences between them and claim the superiority of the latter to the 

former due to its higher explanatory and predictability power. 

 

Keywords: gravity model, main effects, bilateral interaction effects. 

 

1. Introduction 

 

This study explains bilateral trade flows among European countries from 1962 to 

2003 using different specifications of the gravity model, one is with exporting-

country, importing country and time effects and the other is country pair and time 

effects. This sheds some light on deciding which model to use when we have 

some specific purposes such as to see how fertility affects bilateral trade or to 
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learn about the influences of bilateral variables such as the distance, common 

border, trade agreement etc. on bilateral trade. 

We start with the most basic gravity model that includes only GDPs of exporter 

and importer countries and distances between them. Then we insert population 

and real bilateral exchange rates into the equation and see that variation in 

bilateral trade is explained better. Our objective is to specify the model so that the 

most relevant effects are included; therefore, finally by including exporting-

country, importing-country and time effects (3-way model) on the one hand and 

by including country pair effects together with time effects on the other hand (2-

way model) we show that our new models can explain a much larger part of the 

variation in bilateral exports. In the last step, we compare out-of-sample 

forecasting performances of the 3-way and the 2-way model and claim the 

superiority of one to the other. 

Following Egger and Pfaffermayr (2003) and Harris and Matyas (1998) we apply 

a main effects three-way model and a bilateral interaction effects model to a panel 

of EU15 countries for the years between 1962 and 2003. We show how the results 

are affected by the use of different specifications concerning the existence of 

exporting and importing-country and country-pair effects. We find that the 2-way 

model explains a larger variation in bilateral exports across Europe. However, the 

3-way model may be preferable if one wants to see the effects of bilateral 

variables such as distance, common language, common border etc. on bilateral 

trade separately. 

The plan of the paper is as follows: section 2 gives a short survey, section 3 

describes the data and section 4 explains about the augmented gravity model. 

Section 5 summarizes our findings, section 6 compares the forecasting 

performance of the main effects model with the bilateral effects model and section 

7 concludes. 
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2. A short survey 

 

Using the gravity model to explain and estimate bilateral trade flows has become 

very popular in the international trade literature. The basic gravity model which is 

developed by Tinbergen in the 1960s says that bilateral trade between two 

countries depends on their economic size positively and distances between them 

negatively (Tinbergen 1962: 263-264). This model suggests that higher income 

tends to boost trade by leading to more production, higher exports and also higher 

demand for imports (Dell`Ariccia: 1999; De Grauwe and De Bellefroid: 1986; 

Cushman: 1983, Balogun: 2007; Clark et al.: 2004; Glick and Rose: 2002; 

Matyas: 1997; Rose et al.: 2000). Furthermore, larger distances between countries 

tend to decrease bilateral trade (Clark et al.: 2004; Glick and Rose: 2002; Rose et 

al.:2000) by imposing higher transport costs and some other difficulties to trade 

such as informational and psychological frictions (Huang: 2007). As is well 

known, transport costs are an important barrier to trade and therefore they tend to 

reduce international trade (Jacquemin and Sapir: 1988; Neven and Röller: 1991).  

The gravity model can be extended by including the populations of exporting and 

importing countries to see how the population affects bilateral trade. Matyas 

(1997), among others, finds that population has a positive effect on trade and 

increase the level of specialization by creating gains from specialization. Other 

authors, such as Bergstrand (1989) and Dell`Ariccia (1999), find negative 

population coefficients, suggesting that imports and exports are capital intensive. 

In addition to the population, real bilateral exchange rates are also important 

variables in explaining bilateral trade flows. International trade theory suggests 

that an appreciation in a country makes its goods more expensive abroad and 

therefore decreases exports. However, at the same time an appreciation makes 

imports into that country cheaper and has a tendency to increase imports. If the 

decrease in exports exceeds the increase in imports for a country, the result will be 

a decrease in total trade.  
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Some studies which analyze the effects of exchange rate uncertainty and/or 

volatility on international trade find significant negative effects (Lane and Milesi-

Ferretti: 2002; Dell`Ariccia: 1999; De Grauwe: 1987; De Grauwe and De 

Bellefroid: 1986; Kennen and Rodrik: 1986; Thursby and Thursby: 1985; Thursby 

and Thursby: 1987; Akhtar and Hilton: 1984; Cushman: 1983; Ethier: 1973; 

Kowalski: 2006; Wei: 1999; Chowdhury: 1993; De Grauwe: 1988; Rose et 

al.:2000). One explanation for this negative effect is offered by Frank and 

Bernanke (2007) who suggest that uncertainty in exchange rates under flexible 

exchange rate systems makes exporters` profits less predictable, therefore it may 

make people more reluctant to export and reduce total trade.  However, there is 

another side in the literature which claims that there is no significant effect of 

exchange rate uncertainty and/or volatility on the volume of trade. Some of these 

studies argue that even if there is some small significant effect of exchange rates 

on trade, this effect is neither stable nor consistent (Hooper and Kohlhagen: 1978; 

Gotur: 1985; Bacchetta and van Wincoop: 2000). One reason that these authors 

could not find any significant effect may be their focus on short-run measures. 

Moreover, while Perée and Steinherr (1989) find that exchange rate uncertainty 

has negative effects on the volume of trade among industrial countries, their 

conclusion is noteworthy: The effects of uncertainty can be expected to vary from 

country to country depending on the structural characteristics of the country. 

Therefore, it is not surprising that different studies have different results.  

More recently, Clark et al. (2004) find a negative association between exchange 

rate volatility and trade in certain country groupings. However, when they analyze 

the time of the increase in volatility and decrease in trade, they see that the 

decrease in trade may not be attributed only to the increase in exchange rate 

volatility. At crises, for instance, even if volatility in exchange rates increases, the 

fall in domestic demand is a much more important factor which decreases 

imports. When they allow for time-varying fixed effects they do not find a 

negative association between exchange rate volatility and trade. 
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3. The Data 

 

The data used in this study is obtained from IMF`s International Financial 

Statistics, World Bank`s World Development Indicators 2005, and OECD`s 

International Trade by Commodity Statistics. The sample period covers 42 years 

from 1962 to 2003. Countries included are the EU-15 where Belgium and 

Luxembourg are taken as one country because of data availability.  

Our model uses bilateral trade flows which cover fixed and flexible exchange rate 

periods as well as the Euro era.  

 

4. A Modified Gravity Model of Bilateral Trade 

 

Our study analyzes trade flows across Europe from 1962 to 2003 by using cross 

sectional data. We expand the basic gravity model which explains bilateral trade 

between two countries only with their GDPs and distances to a more general 

model. We form a model which includes the population of importing and 

exporting countries, real exchange rates between exporter and importer’s 

currency, exporting country, importing country, country pair and time effects. 

Exporting-country and importing-country effects are supposed to capture the 

tendency to export and import while business cycle effects control for cyclical 

changes and their effects on bilateral exports. Country-pair or bilateral effects are 

used to see any geographical, political, historical or cultural event that influence 

bilateral trade between countries.  

In the first step of this study, we insert exporting-country, importing-country, 

business cycle and country-pair effects into the gravity model. In the second step, 

we compare the 3-way model with the 2-way model. Main and bilateral effects 

models have been used by Matyas (1997), Harris and Matyas (1998) and Egger 

and Pfaffermayr (2003) previously. In contrast to previous studies, we do not 
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include main and bilateral effects in one model, but form two different models, 

one with main effects and the other with bilateral effects, to see which one 

explains the variation in bilateral trade better and which one serves what purpose. 

The augmented model used here is: 

ln𝐸𝑥𝑝𝑖𝑗𝑡 = 𝛽0 + 𝛽1ln𝐷𝑖𝑗 + 𝛽2ln𝑌𝑖𝑡 + 𝛽3ln𝑌𝑗𝑡 + 𝛽4ln𝑃𝑜𝑝𝑖𝑡 + 𝛽5ln𝑃𝑜𝑝𝑗𝑡 +

                     𝛽6𝑑ln(𝑋𝑅𝑖𝑗𝑡 ) +𝛼𝑖 + 𝜆𝑗 + 𝛾𝑡 + 𝛿𝑖𝑗 + 휀𝑖𝑗𝑡 ,                   

where i=exporter, j= importer, and 

 ijtExp  represents nominal exports from country i to country j,  

 ijD  is the distance between country i and country j measured in 

kilometres,  

 itY  is exporting country’s real GDP,  

 jtY  is importing country’s real GDP, 

 itPop  is exporter country’s population in year t, 

 jtPop  is importer country’s population in year t, 

 ijtXR  is the real exchange rate between exporter and importer country in 

time t, 

 i is exporter country effects, 

 j  is importer country effects, 

 t is business cycle effects, 

 ij is country pair or exporter-by-importer effects, 

 ijt  is the error term. 

 

i  and j  may differ depending on the countries` tendency to export and import. 

Exporter country dummy i  equals 1 whenever country i is exporting and 0 

otherwise. Similarly, j equals 1 whenever country j is importing and 0 otherwise. 
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Time or business cycle effect dummy t  equals 1 in the current year and 0 

otherwise. Moreover, country pair dummy ij  equals 1 whenever country i is 

exporting to country j and 0 otherwise. 

 

5. Results 

 

Table 2-1 compares the results of the main effects three-way model (Model 1), the 

bilateral effects model with time effects (Model 2), the main effects three-way 

model without distance (Model 3), simple OLS results (Model 4) and the very 

basic gravity model (Model 5). The bilateral effects model with time effects 

(Model 2) appears to be superior to all others, and also to the main effects three-

way model (Model 1) as indicated by adjusted R-squared and Akaike`s ―an 

information criterion‖ (AIC). 

The exporter and importer GDP coefficients do not differ so much in the first 

three models, while these coefficients become slightly higher in the simple OLS 

model. In the first model, the exporter GDP’s coefficient of 1.48 means that a 1% 

increase in exporter country’s GDP increases its bilateral trade by 1.48%. In the 

second model, the exporter GDP’s coefficient of 1.49 implies that a 1% increase 

in exporter country’s GDP increases its bilateral trade by 1.49%. Positive GDP 

coefficients in all models prove that higher income tends to boost bilateral trade 

for the exporter as well as the importer country. Moreover, in the first three 

models exporter population has a high positive coefficient which shows that the 

effect of a 1% increase in exporter’s population on its bilateral trade is about 4% 

increase in its exports. The positive effect of exporter country’s population on 

bilateral trade suggests that higher population increases the level of specialization, 

leads to higher production and more trade. On the other hand, importer country’s 

population has a negative impact on bilateral trade in all models.  
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When comparing exporter population coefficients in the simple OLS model with 

the first three models, we see that exporter population has a negative effect on 

bilateral trade in the simple OLS model. In the literature, the effect of population 

on bilateral trade is interpreted in a different way in the simple OLS models than 

other models. Cross sectional OLS models, in most cases, suggest a negative 

population coefficient which refers to the long run effect of population on bilateral 

trade, where higher population tends to decrease income per capita and therefore 

causes production and exports to decrease. Additionally, lower income per capita 

is expected to decrease the demand for imports as well. In the first three models in 

this study, population coefficients show the short run effect of population on 

bilateral trade. In the short-run, higher population is good for the country as it 

means more labor and more products to export; therefore exporter population has 

a positive coefficient in the first three models. 

Another variable of interest in our study is the real exchange rate which has very 

close coefficients in the first three models, meaning that a 1% appreciation in the 

exporter country leads to a 0.33% decrease in bilateral trade.  

Finally, we have the results of the most basic gravity model which explain 

bilateral exports only with the distance and income of exporter and importer 

countries. Including population and real exchange rate variables increases the 

explanatory power of the model from 80% to 89%. Furthermore, including 

exporter, importer and time effects (Model 1) increases adjusted R-squared to 

95%. Ultimately, Model 2 with time and bilateral effects can explain the variation 

better than all other models (98%). The Wald tests indicate that exporter, 

importer, time and also bilateral effects are all highly significant and contribute 

well to the models. 

It appears that the bilateral and time effects model (2-way model) is superior to 

the 3-way model (Model 1) and all other models (Models 3 to 5) in this study. The 

only disadvantage of relying on a two-way model is that the two-way model 
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Model 1: Main effects 

(exporter, importer and 

time) 

Model 2: Time and 

bilateral effects 

Model 3: Model 1  

without distance 

Model 4: Simple OLS 

results 

Model 5:  The basic 

gravity model 
 

 

 Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic 

C -101.60 -13.47 -1.20 -24.22 -107.79 -11.18 -43.78 -87.09 -35.67 -56.51 

Distance -0.96 -48.44         -0.72 -35.71 -0.81 -30.53 

Exporter GDP 1.48 11.51 1.49 18.07 1.48 8.97 2.32 73.17 1.11 77.59 

Importer GDP 1.15 12.53 1.15 19.58 1.15 9.83 1.37 51.31 0.98 68.26 

Exporter Population 4.02 10.60 4.01 16.49 4.04 8.32 -1.41 -42.57     

Importer Population -0.52 -1.59 -0.49 -2.35 -0.54 -1.30 -0.64 -21.15     

Real Exchange Rate -0.33 -2.24 -0.33 -3.49 -0.32 -1.70 -0.60 -2.93     

R² 0.95   0.98   0.92   0.89   0.80   

Adjusted R² 0.95   0.98   0.92   0.89   0.80   

AIC 1.47   0.60   1.96   2.23   2.84   

Schwarz criterion 1.59   0.82   2.08   2.24   2.84   

Number of Observations  3760   3760   3760   3760   3887   

    p-value   p-value   p-value       

Wald-tests:                     

Exporter effect: F-stat. 143.22 0.00     139.70 0.00         

Importer effect: F-stat. 51.31 0.00     72.93 0.00         

Time effect: F-stat. 13.84 0.00 33.66 0.00 8.47 0.00         

Bilateral interaction: F-stat.     235.89 0.00             

Table 2 - 1: Balanced panel estimates, dependent variable: log of nominal bilateral exports 
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makes us unable to include some observable bilateral variables such as distance, 

common border, common language etc. into the model separately. However, higher 

R-squared and a much lower AIC of the two-way model prove that even if the two-

way model does not show the effects of bilateral variables individually, it is really 

powerful in explaining bilateral trade flows with aggregate bilateral effects. 

 

6. The Forecasting Performance of Main Effects Model and Bilateral Effects 

Model 

 

So far R-squared and AIC have been used to compare the main effects model with the 

bilateral effects model. In this part, the forecasting performance of both models is 

compared. The whole sample is cut into in- and out-of-samples randomly and 

forecast errors are calculated for each model as shown in Table 2-2. 

The forecast results indicate that the bilateral effects model (Model 2) gives lower 

forecast errors than the main effects model (Model 1) in all samples. This shows that 

in addition to its higher explanatory power, Model 2 offers better forecasts with lower 

errors for each sample used. These results strengthen the view that the bilateral 

effects model (2-way model) is superior to the main effects model (3-way model). 
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Forecast 

Sample 2003 

2002-

2003 

1997-

2003 

1996-

2000 

1990-

1995 

1995-

1998 

1986-

1990 

1971-

1974 

Model 1 

(Main effects 

model) 

Number of 

observations 55 146 601 455 429 364 455 364 

  

Root Mean 

Squared Error 0.53 0.51 0.52 0.50 0.51 0.45 0.51 0.56 

  

Mean 

Squared Error 0.28 0.26 0.27 0.25 0.26 0.20 0.26 0.31 

Model 2 

(Bilateral Effects 

Model) 

Number of 

observations 55 146 601 455 429 364 455 364 

  

Root Mean 

Squared Error 0.44 0.42 0.44 0.42 0.43 0.33 0.37 0.36 

  

Mean 

Squared Error 0.20 0.17 0.19 0.18 0.18 0.11 0.14 0.13 

Table 2 - 2: Forecast Errors produced by Model 1 and Model 2 

 

7. Conclusion 

 

In this study different specifications of the gravity model are used to show the 

differences between a three-way and two-way model, which were integrated by Egger 

and Pfaffermayr (2003). Instead of combining main and bilateral effects in one 

model, we analyze bilateral trade among the EU-15 countries with the help of two 

different models to see which model is more helpful for which purpose. It is found 

that the adjusted R-squared is higher and the AIC is much lower in the bilateral 

effects model (two-way model) which shows that the model with time and bilateral 
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effects explains the variation in bilateral exports between EU15 countries better than 

all other models used in this study, including main effects 3-way model. Moreover, 

when some forecasts for randomly chosen samples are performed, the two-way model 

is found to offer lower forecast errors than the three-way model. The results of this 

study prove that the two-way model is superior to the three-way model due to its 

higher explanatory and predictability power.  
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ESTIMATING BILATERAL TRADE FLOWS AMONG EU15 

COUNTRIES USING PANEL DATA ANALYSIS AND NEURAL 

NETWORKS 

 

Elif Nuroglu 

International University of Sarajevo 

 

Abstract: The objective of this paper is to investigate bilateral trade flows among 

European countries from 1964 to 2003 and their determinants by using panel data 

analysis and neural networks. In this study, the gravity model of bilateral trade is 

extended with population and volatility of exchange rates and this modified gravity 

model is used in the above mentioned models. Lastly, the results as well as the 

forecasting performance of both models are compared. It is demonstrated that neural 

networks are superior to traditional panel data analysis in learning and explaining the 

relationship between inputs and outputs. Moreover, it is shown that the out-of-sample 

forecasting performance of our neural networks dominates linear panel models. 

 

Keywords: gravity model, panel data, neural networks. 

 

1- Introduction 

 

This study investigates bilateral trade flows among EU15 countries from 1964 to 

2003 by using panel data analysis and neural networks. The basic concept for both 

approaches is the gravity model of bilateral trade which was developed by Tinbergen 
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(Tinbergen, 1962: 263-264). This model explains bilateral trade flows between two 

countries via the product of their incomes and distances between them. Here, we 

consider an extended version that also takes the population of both countries and 

exchange rate volatility into account. This augmented gravity model is estimated on a 

panel data set, with real bilateral exports as the dependent variable and the income 

and population of both countries, distances between them and the volatility of 

exchange rates as influence factors. We contrast this linear panel model with a neural 

network, in which income and population of both countries, distance and exchange 

rate volatility are the inputs of the network (influence factors in panel model) and 

bilateral exports (the dependent variable in panel model) is the output. We divide the 

data set of 3586 observations into training, validation and test sets; and we train the 

network. Finally, we compare the performances of panel model and neural network, 

and discuss the advantages of each model. 

The structure of the paper is as follows. Section 2 compares neural networks to 

traditional econometric and statistical methods by giving examples from conducted 

studies. Section 3 gives an overview about neural networks and discusses advantages 

and disadvantages of them. Section 4 and 5 introduces the data set used and our 

modified gravity model with its application to panel data analysis respectively. 

Section 6 shows how the modified gravity model is used to build a neural network. 

Section 7 discusses the results of panel data analysis and neural network model, and 

compares the forecasting performance of both models. Finally, section 8 concludes. 

Detailed information about neural networks can be found in Appendix 1. 

 

2- Studies on Neural Networks and Traditional Models 

 

The comparative advantage of neural networks over traditional econometric models is 

that they can approximate any function arbitrarily well if the networks are allowed to 



53 

 

contain a sufficiently large number of hidden units (Hornik, Stinchcombe, and White 

1989; 1990). White (1990) states that, as the size of the training set increases and the 

network acquires more experience, the probability of network approximation error 

approaches zero. However, in finite samples the asymptotic zero errors do not 

necessarily mean perfect forecasts.  

When working with neural networks, there is no need to make any assumptions about 

the properties of the distribution of the data (West et al., 1997). In regression models 

the relationship between dependent and independent variables should be specified 

with a mathematical function based on past experience or hypotheses. Such 

specifications are not necessary for neural networks because the network learns 

complex relationships between inputs (independent variables)  and output (dependent 

variable) through hidden layers (see Appendix 1 for more information about the 

hidden layer) (Gronholdt and Martensen, 2005). Instead of presupposing some 

statistical properties of the underlying population, neural nets with at least one hidden 

layer use the data set to understand the internal relationship between inputs and 

outputs. They have the ability to ignore the data that is not significant and to focus on 

the data which is most influential (Shachmurove, 2002). Moreover, the flexibility of 

neural networks in forming both linear and nonlinear relationships can be counted as 

an important factor in their superior performance compared to other methods.  

In a sample of stock returns on the S&P 500 index from 1960 to 1992, Qi (1999) 

finds that the nonlinear neural network model not only fits the data better than the 

linear model, but it also provides fairly accurate out-of-sample forecasts. The 

recursive neural model used in this study has smaller RMSE, MAE, and MAPE and 

higher Pearson correlation and percentage of correct signs than the linear model in 

the whole out-of-sample forecast period. Kuan and Liu (1995) show that nonlinearity 

in exchange rates may be utilized to improve point and sign forecasts of exchange 

rates using the data for five exchange rates against the US dollar  from 1980 to 1985. 

Hutchinson et al. (1994) find that linear models exhibit considerably weaker 
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performance than the neural network models where S&P 500 futures options data was 

used from 1987 to 1991.   

Hill and O`Connor (1996) compare time series forecasts based on neural networks 

with forecasts from traditional statistical time series methods including exponential 

smoothing, Box-Jenkins and a judgment-based method. According to their results, the 

neural network model outperforms traditional statistical and human judgment 

methods when forecasting quarterly and monthly data which is used in the forecasting 

competition of Makridakis et al. (1982), whereas the results are comparable on annual 

data. Moreover, the neural network model has almost always lower variance of 

forecasts than those of the traditional models. 

Kuo and Reitsch (1996) test the accuracy of forecasts produced by time series, 

multiple regression and neural network models by using two data sets first of which 

consists of 56 months measuring 14 variables and the second of which is time series 

data where the dependent variable is monthly dollar sale volumes of a tuxedo rental 

firm. Their results prove that neural networks tend to do better than conventional 

methods in all cases. They find neural networks especially valuable where inputs are 

highly correlated, some data is missing or the systems are non-linear. 

West et al. (1997) show that neural networks make superior predictions concerning 

consumer decision processes. Based on a sample of 800 people, they conclude that, 

when modeling consumer judgment and decision making, neural network models 

produce significantly better results than traditional statistical methods. The suggested 

reason for this improvement is their ability to capture nonlinear relationships without 

making an assumption of a parametric relationship between product attributes, 

perceptions and behavior. They demonstrate that neural networks are highly 

promising for improving model predictions in nonlinear decision contexts as well as 

linear decision contexts. They show that the neural network model outperforms 

statistical methods in terms of explained variance and out-of-sample predictive 
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accuracy. In addition to these, when predicting consumer choice in nonlinear and 

linear settings neural networks are again superior to traditional statistical methods.  

A very recent study carried out by Giovanis (2008) examines the effects of some 

factors on greenhouse effects for the fifteen countries of the European Union by using 

annual data from 1990 to 2004. The factors included are concerning not only gases, 

but also some economic variables, such as gross domestic product, consumption etc. 

In this study, the forecasting performance of panel regression analysis is compared 

with that of neural network modeling and it is found that forecasting performance of 

neural networks is much better than traditional econometric methods.  

The results of these studies are quite promising for the neural networks, nevertheless 

most of them are specific to a data set. Therefore, it is not possible to claim that 

neural networks will always perform better than traditional models. Besides, most 

studies carried out so far compare the traditional econometric models and neural 

networks; however, they are not necessarily substitutes. It is possible to combine 

neural networks with regression analysis to generate a much stronger forecasting tool 

(Kabundi, 2004).  

There is another side in the literature claiming that positive results for any new model 

or approach are always more interesting than negative ones; therefore, studies which 

show the superiority of neural networks on traditional models tend to be published 

more (Chatfield, 1995). Chatfield (1993) reexamines the study carried out by Refenes 

et al. (1993) and finds that the way they compare neural network forecasts with 

classical smoothing techniques is unfair. He points out that there are some studies 

(Hoptroff, 1993) which even do not compare neural networks with any alternatives 

but only mention about successful applications of neural networks and see the black 

box character of neural networks as an advantage because people with little 

knowledge or expertise can also make reasonable forecasts. Faraway and Chatfield 

(1998) think that this is especially dangerous, because without expertise unreasonable 
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results can be obtained and wrong conclusions can be drawn. They show that it is 

only possible to construct a good neural network model for time series data by 

combining traditional modeling skills with the knowledge of time series analysis, and 

at the same time by knowing the problems that are possible to face with in fitting 

neural network models. The architecture of the network, activation functions and 

appropriate starting values for the weights should be carefully chosen when working 

with neural networks. 

 

3- Neural Network Modeling 

 

Neural network models are mathematical imitation of the neurophysical structure and 

decision making way of the human brain. Although they are closely related to 

generalized linear models from the statistical point of view; artificial neural networks 

are nonlinear and use estimation procedures like feed-forward and back-propagation 

(for details see Appendix 1), while traditional statistical models use least squares or 

maximum likelihood (West et al., 1997). Artificial neural networks have different 

names such as connectionist networks, parallel distributed networks or neuromorphic 

systems. 

A neural network is defined as a nonlinear regression function which characterizes 

the relationship between the dependent variable (t, target, output) and n-vector of 

explanatory variables (p, inputs). Instead of forming a nonlinear function, many basic 

nonlinear functions are combined via a multilayer structure which is shown in Figure 

3-9 in Appendix 1 (Kuan and Liu, 1995).  

Neural networks are proven to be useful tools when the relation between variables is 

not known but some examples of inputs and outputs already exist and there is some 

evidence on a functional relationship between inputs and outputs.  To estimate the 
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output, first, some examples of inputs and corresponding outputs (targets) are 

introduced to the network for training purposes and the network is allowed to 

generalize the relation between inputs and corresponding outputs. Their only way to 

learn the relationship between inputs and outputs is to use these introduced examples. 

Therefore, data collection and deciding about the training set is extremely important 

in neural network modeling. If a neural network is not provided with a rich set of 

examples (training set) that show the relation between inputs and outputs from as 

different aspects as possible, obtaining reliable results may not be possible. 

Neural networks have many advantages. One advantage of them is that they can 

handle incomplete or fuzzy information and are suitable for the cases where 

generalization or inference is required (Lodewyck and Deng, 1993). Even though the 

data is partly missing, neural networks are still able to give good results. However, 

when the performance of the network decreases because of missing data, then it can 

be concluded that the missing data was important to the network and since the 

network does not have it, its performance is low. On the contrary, traditional methods 

have more difficulties in working with missing data. Missing data may even directly 

result in insignificant results under traditional methods. Another advantage of neural 

networks is that they have tolerance for error. Even when some neurons have 

deteriorated and are not able to work, the network can still produce results. However, 

depending on the importance or the position of that neuron, the performance of the 

neural network may be lower. Öztemel (2003) claims that artificial neural networks 

are the best and most powerful means to process missing, unusual or uncertain data.  

On the other hand, artificial neural networks have some disadvantages as well. First, 

there are no certain rules that help the user how to construct a network, how to decide 

about the learning rate, the number of nodes and hidden layers etc. (Details about 

neural networks terminology can be found in Appendix 1). It is very important for the 

user to have some experience in working with neural networks for different problems 

so that the user knows which activation function to use, which learning rate to set, 
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which topology to use etc. Second, neural networks work only with numerical data. If 

the data is not numerical, the user has to convert it. The reliable solution to the 

problem may be impeded when the data is not converted successfully into numerical 

terms. A third disadvantage is that there are no concrete rules to determine when to 

stop training the network. When the error is reduced to an acceptable level the user 

can stop training. However, it cannot be concluded that the network has produced 

optimum results, but it has produced good results. Last but not least, once a solution 

to a problem is offered by a neural network the user cannot explain why and how this 

solution is produced. 

Neural networks are spread to a wide range of areas such as finance, medicine, 

engineering, biology, psychology, statistics, mathematics, business, insurance, and 

computer science (West et al., 1997). They have become quite popular among 

economists, mathematicians and statisticians since they do not require any 

assumptions about population distribution (Shachmurove, 2002). 

 

4- Data 

 

The data used in this study is obtained from IMF`s International Financial Statistics, 

World Bank`s World Development Indicators 2005, and OECD`s International Trade 

by Commodity Statistics. The sample period covers 40 years from 1964 to 2003. 

Countries included are the EU-15 where Belgium and Luxembourg are taken as one 

country because of data availability. The model is estimated using bilateral trade 

flows among EU15 countries from 1964 to 2003. For these 15 countries, 91 bilateral 

trade flows are obtained which cover fixed and flexible exchange rate periods as well 

as Euro period. The number of total data points analyzed is 3586. 
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Nominal exports in the data set are converted into export volumes by using GDP 

deflators. Volatility of exchange rates is calculated as the moving average of standard 

deviations of the first difference of logarithms (i.e. percentage changes) of quarterly 

nominal bilateral exchange rates (Kowalski, 2006). )( ijtxrVol  is the 5-year (―t-4,...,t‖) 

average of standard deviations from the average quarter-on-quarter percentage 

change in bilateral nominal exchange rate calculated over the last 4 quarters, given by 

the following formula: 
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q is a standard deviation from the average quarter-on-quarter percentage change in 

bilateral nominal exchange rate calculated over the last 4 quarters where 

1 qqq eede and qe  is a logarithm of bilateral exchange rate at the end of quarter q.

 

5- A Modified Gravity Model of Bilateral Exports and its Application to Panel 

Data Analysis  

 

The gravity model is extensively used in international trade literature to analyze 

international trade flows. The original gravity model explains bilateral trade between 

two countries with their incomes and distances between them. According to this 

model, the product of income of both countries affects bilateral trade positively while 

distance imposes an obstacle to trade. This original gravity model has been extended 
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later on by including population, exchange rates, common language, common 

borders, foreign currency reserves etc. to better explain the variation in bilateral trade. 

We insert population of both countries and volatility of exchange rates into the 

equation and do not take the product of incomes, but take each variable separately 

into the equation. 

The modified gravity model of bilateral trade used is given by:  

ijtijtjtitjtitijijt xrvolPopPopYYDExp   )(lnlnlnlnlnln 6543210                        

                                                                                                                           Eq. 3 

where i=exporter, j= importer, and 

 ijtExp  represents the volume of exports from country i to country j in year t,  

 ijD  is the distance between country i and country j measured in kilometers,  

 itY  is the exporting country`s real GDP in year t,  

 jtY  is the importing country`s real GDP in year t, 

 itPop  is exporter country`s population in year t, 

 jtPop  is importer country`s population in year t, 

 )( ijtxrVol  is the volatility of nominal exchange rate between exporter and 

importer country in year t, 

 ijt  is the error term. 

 

Some authors find that as distance becomes larger, bilateral trade between countries 

tends to decrease (Clark et al.: 2004; Glick and Rose: 2002; Rose et al.: 2000). 

Furthermore, higher income in the exporting country will have a positive effect on 

bilateral trade by leading to more production and higher exports (Dell`Ariccia: 1999; 
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De Grauwe and De Bellefroid: 1986; Cushman: 1983, Balogun: 2007; Clark et al.: 

2004; Glick and Rose: 2002; Matyas: 1997; Rose et al.: 2000). For a similar reason, 

higher income tends to increase the level of imports as well, by forcing countries to 

import more to be able to consume and produce more.  

On the other hand, population has an ambiguous effect on bilateral trade, which is 

positive for some countries and negative for others (Matyas: 1997; Bergstrand: 1989; 

Dell`Ariccia: 1999). Moreover, the impact of population on trade may also change 

depending on the length of the estimation period (short-term vs. long-term). The last 

variable of interest is the volatility of exchange rates. The expected effect of volatility 

of exchange rates on bilateral trade is negative, because when the economic 

environment is not stable, prices are very changeable depending on the fluctuations in 

exchange rates. As a result, profits of exporters become less predictable and this may 

reduce bilateral trade (Frank and Bernanke, 2007: 889).  

 

6- A Modified Gravity Model of Bilateral Exports and its Application to Neural 

Networks 

 

An essential decision for most approximation techniques and particularly for neural 

networks is about the type and complexity of the model. Different approaches and 

various network architectures can be used depending on the type of the 

approximation function used to solve the problem. Even if the user decides on one 

type of network architecture based on prior knowledge, the question about the 

appropriate complexity of the architecture remains (Hutchinson et al., 1994). 

Furthermore, some issues should be clarified very carefully when constructing a 

neural network such as the number of hidden layers and the number of neurons in 

each hidden layer etc., because when the model is not constructed properly neural 

nets can give inferior results (Chatfield, 1997). Additionally, explanatory variables 
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are also of a vital importance. It is a very well known fact that, the success of any 

model, whether traditional or neural network, relies on the explanatory variables 

(Church and Curram, 1996). 

In this study, bilateral export flows will be analyzed through a panel model and a 

neural network model. In both models, exactly the same data set and the same 

explanatory and dependent variables will be used. Equation 3 will be the base for the 

panel model as well as the neural network model. In panel model, distance, real GDP 

of the exporting (country i) and importing country (country j), population of the 

exporting and importing country and the volatility of exchange rates are regressed on 

bilateral exports to explain the variation in them. On the other hand, the inputs of the 

neural network are also the same as the explanatory variables of the panel model 

(distance, real GDP of the exporting (country i) and importing country (country j), 

population of the exporting and importing country and volatility of exchange rates). 

Neural network model is expected to learn the relationship between these 6 inputs 

and bilateral exports (the output) through neurons in each layer. The hidden layer 

which processes and sends the information received from the input layer to the output 

layer consists of 25 neurons. The output layer has one output neuron namely bilateral 

exports from country i to country j. The structure of the neural network model is 

shown in Figure 3-1 and Figure 3-2. Our network has tan-sigmoid transfer function in 

the hidden layer and a linear transfer function in the output layer. The role of these 

transfer functions is explained in Appendix 1 in detail.  

 

Figure 3 - 1: The multilayer network with 6 inputs, 25 hidden neurons and 1 output 



63 

 

 

 

7- A Comparison between Panel Data Analysis and Neural Network Model 

 

7.1 Results of Panel Data Analysis 

 

The data set used in this study consists of bilateral export flows, GDPs, population, 

volatility of exchange rates and distances among the EU-15 countries from 1964 to 

2003. For each country pair we have 40 years of data. Our initial attempt is to 

investigate how trade flows across European countries can be explained by income, 

population, distance and also volatility of exchange rates. To this aim, we apply panel 

data analysis on the basis of equation 3. 
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jtGDP  
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Figure 3 - 2 : The topology of the panel network 
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  Coefficient Std. Error t-Statistic Prob. 

C -18.97 0.75 -25.21 0.00 

Distance -0.84 0.02 -38.50 0.00 

Exporter GDP 0.53 0.04 12.20 0.00 

Importer GDP 0.90 0.03 27.84 0.00 

Exporter Population 0.27 0.04 6.39 0.00 

Importer Population -0.17 0.04 -4.80 0.00 

Volatility of Exchange Rate -0.26 0.07 -3.91 0.00 

R-squared 0.84       

Adjusted R-squared 0.84       

AIC 2.14       

Schwarz criterion 2.22       

Number of observations 3586       

Sample Period 1964-2003       

Table 3 - 1: Panel least squares with period fixed effects, dependent variable: log of real 

bilateral exports 

 

Table 3-1 shows the results of panel data analysis that are in consistency with the 

international trade theory. The results indicate that as distance becomes larger, 

bilateral trade between countries tends to decrease.  Furthermore, higher income in 

the exporting country has a positive effect on bilateral trade by leading to more 

production and higher exports. As Table 3-1 shows, when income of exporting 

country increases by 1%, its exports increase by 0.53%. For a very similar reason, 

higher income tends to increase the level of imports as well. According to Table 3-1, 

a 1% increase in the importing country’s real GDP increases its imports by 0.90%. 

Additionally, population of the exporting country has a positive effect on bilateral 

exports. This shows that higher population will create opportunities for specialization 
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which will boost production and exports from that country. The last variable of 

interest is the volatility of exchange rates. Our results indicate that volatility of 

exchange rates has a negative effect on real bilateral exports. For all variables that are 

used to explain the variance in bilateral exports, coefficients are highly significant. 

 

7.2 Results of the Neural Network Model 

 

This section deals mainly with the feed-forward network used to analyze bilateral 

exports across European countries and their determinants.  

Before constructing and training the network, the inputs (distance, GDP and 

population of exporting and importing country, volatility of exchange rates) and 

targets (bilateral exports) are normalized so that the mean is zero and variance unity. 

In some situations, the input vector has a large dimension, but the correlation among 

components of the vectors is quite high. In this case, it is useful and necessary to 

reduce the dimension of input vectors. An effective method for performing this 

operation is principal component analysis (Demuth et al., 2002). When we perform 

principal components analysis, we see no redundancy in our data set, because the size 

of input vectors does not reduce. 

The objective of model selection is to construct a model with acceptable levels of 

model bias and variance. Therefore, it is necessary to divide the data set into three 

subsets: training, validation and test sets. The training set is used to determine the 

network parameters: weights and biases. Weights show how strongly a signal from 

one node affects the other node, while bias influences the strength of the effects of 

inputs on the output. So, the net effect of an explanatory variable or input on the 

output is calculated as the product of the input and weight, including the impact of the 

bias (see Appendix 1 for more details). The outcome of the validation set is predicted 
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by using these weights and biases calculated using the examples given in the training 

set. Then, the network architecture –a combination of weights, biases and the number 

of hidden neurons- that gives the smallest validation set error is chosen and the 

network`s performance is evaluated by using the test set (Hung et al., 2002).  

The network is trained using early stopping which is a method employed for 

improving generalization. In this method, while the network is being trained the error 

on the validation set is observed simultaneously. The training and validation set error 

normally decreases during the initial stage of training. However, the error on the 

validation set starts increasing when the network begins to overfit the data. When the 

validation set error increases for a pre-determined number of iterations, the training 

must be stopped, and the weights as well as biases which result in minimum 

validation set error are accepted (Demuth et al., 2002). 

After dividing the data set into three subsets, a feed forward network with two layers 

is created as shown in Figure 3-1 and 3-2. The number of neurons in the hidden layer 

is selected experimentally. As stated in Hung et al. (2002), too many hidden layers 

may cause overfitting of the data resulting in a low model bias and a high model 

variance. It is found that the network with 25 hidden neurons gives quite satisfactory 

results.  

The Levenberg-Marquardt training function is used to train the network. This is a 

numerical optimization technique and is especially adapted to the minimization of the 

error. This algorithm is known as the fastest technique for training moderate-sized 

feed forward neural networks (Demuth et al., 2002). One advantage of this training 

method is its fast convergence about minimum and its good prediction performance 

(Koker, 2007). Kisi (2004) provides a comprehensive explanation for this algorithm. 

Training results of the network are shown in Figure 3-3. As the figure shows, when 

the number of epochs increases the errors of all three sets decline. At the beginning of 
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training, the decrease in squared error is very sharp, but then it decreases at a lesser 

pace. In our neural network, training is stopped after 48 epochs, because at that point  

 

 

Figure 3 - 3: Training, validation and test set errors 

 

the error for validation set starts increasing. If the model is constructed successfully, 

the test set and validation set error should show similar characteristics. Figure 3-3 

shows that they both follow the same pattern which proves that our model is reliable. 

The performance of the model is measured with the mean squared error which 

reduces to 0.00095 after 48 epochs. 

The errors on the training, validation and test sets are the first means to obtain some 

information about the performance of a trained network. However, the network 

Squared Error 
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response needs to be measured in more detail. One choice is to carry out a regression 

analysis between the network response which are outputs produced by the network 

and the corresponding targets that are actual outputs in the data set (Demuth et al., 

2002). Therefore, the next step is to simulate the trained network. Since the targets 

were normalized before constructing the network so that the mean was 0 and the 

standard deviation was 1, the network outputs are needed to be transformed back into 

the original units.  

In a linear regression analysis between the network outputs and the corresponding 

targets, there are two parameters to interpret: 

m = 1.0001 

r = 0.9871 

The first parameter m stands for the slope of the best linear regression between targets 

(actual outputs) and network outputs. In the case of a perfect fit, which means 

network outputs exactly equal to the targets, the slope should be 1. The second 

statistic r is the correlation coefficient (R-value) between network outputs and targets. 

It shows how well the variation in network output is explicated by the targets. If this 

number is equal to 1, then there is perfect correlation between targets and network 

outputs (Li and Liu, 2005). In our results, the numbers are very close to 1, which 

implies a very good fit. To compare neural network model with panel least squares 

we need R-squared for the neural network model which is the square of the 

correlation between targets and network outputs (r, R-value). R-squared calculated is 

0.97. According to this value of R-squared, it is possible to conclude that the neural 

network model can explain 97% of the variation in bilateral exports with the given 6 

inputs. 

In Figure 3-4, the network outputs are plotted against the targets. The best linear fit is 

displayed by a dashed line. The perfect fit, which requires network outputs equal to 
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targets, is shown by the solid line. Here, it is very difficult to differentiate the best 

linear fit line from the perfect fit line because the fit is very good. 

 

Figure 3 - 4: Outputs produced by the neural network versus targets 

 

7.3. Forecasting Performance of the Neural Network and of the Panel Model 

 

In this section, the performance of the panel model will be compared with that of 

neural network model in out-of-sample forecasting. To perform this, a panel least 

squares model is estimated with period fixed effects using the data from 1964 to 1993 

and this model is used to forecast bilateral export volumes from 1994 to 2003. The 

estimation output and the results of panel model forecasting are shown in Table 3-2 

and 3-3 respectively. A neural network model calculates MSE based on standardized 

data, while the panel model errors are based on non-standardized data. To make a fair  
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  Coefficient Std. Error t-Statistic Prob.   

          

C -0.33 0.05 -6.20 0.00 

Distance -0.30 0.01 -30.22 0.00 

Exporter GDP 0.22 0.03 6.84 0.00 

Importer GDP 0.68 0.03 27.11 0.00 

Exporter Population 0.30 0.03 9.52 0.00 

Importer Population -0.18 0.02 -7.65 0.00 

Volatility of Exchange 

Rate 

-1.07 0.18 -6.02 0.00 

R-squared 0.82       

Adjusted      R-squared 0.82       

Akaike info criterion 1.12       

Schwarz criterion 1.20       

Number of observations 2704       

Sample Period 1964- 1993       

Table 3 - 2: Panel Least Squares Model with Period Fixed Effects, Dependent  

        Variable: Log of Real Bilateral Exports 

 

  Log(export volume) 

Forecast sample 1994-2003 

Included observations 903 

Root Mean Squared Error 2.26 

Mean Squared Error 5.10 

Mean Absolute Error      1.44 

Mean Absolute Percentage Error 687.91 

Table 3 - 3: Forecast Results of Panel Least Squares  

        Model with Period Fixed Effects 
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comparison, the whole dataset was standardized before running the regression and the 

forecasts were obtained. The results shown in Tables 3-2 and 3-3 indicate that MSE 

of panel model is 5.1. 

On the other hand, the data set that will be used in the neural network model is 

divided into two parts. The first part consists of the years from 1964 to 1993 and is 

used to construct and train the neural network. The second part which includes the 

data from 1994 to 2003 is used to test the constructed neural network in terms of 

mean squared error and R-squared, and to make a comparison between neural 

network and panel data forecasting.  

After constructing and training the network, mean squared errors are obtained for the 

three subsets of the first part of the data set (years from 1964 to 1993). MSE is 

calculated as the average squared difference between normalized network outputs and 

targets. Table 3-4 shows the mean squared error and R-value for training, validation 

and test sets.  

Since 25% of the whole sample is employed as validation set and the other 25% as 

test set, 1341 data points out of 2683 are used for training the network. The  

 

 Number of Samples 

(Total: 2683) 

MSE R-value 

Training 1341 1.25697e-3 0.99 

Validation 671 1.95853e-3 0.98 

Test 671 1.98984e-3 0.98 

Table 3 - 4: Results of Training 
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regression R-value shown in Table 3-4 measures the correlation between 

unnormalized network outputs and targets for each subset. It is seen that for each 

subset we have satisfactorily high R- values. Figures 3-5, 3-6 and 3-7 plot these R- 

 

 

Figure 3 - 5: Training Set Outputs versus Targets 

 

Figure 3 - 6: Validation Set Outputs versus Targets    Figure 3 - 7: Test Set Outputs versus Targets 
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values for training, validation and test set respectively. When the network is trained 

with a different number of hidden neurons, for example with 10 hidden neurons, the 

results do not change enormously but very slightly. 

After constructing the neural network by using the data from 1964 to 1993, we use 

the rest of the data set, which is from 1994 to 2003, to test the network’s 

performance. If the network has learned the relationship between inputs and outputs 

appropriately, it is expected to perform well when a new data set is introduced to it. 

The performance of a neural network is measured as follows: The network 

determines the weights and biases by using the training set chosen from the 

observation points between the years 1964-1993.  Then, the neural network is asked 

to produce its own outputs that are bilateral export volumes for the years from 1994 

to 2003, for given input values for the same period (GDP and population of exporting 

and importing country, distance and volatility of exchange rates). Then, 

actual/observed values of bilateral export volumes from 1994 to 2003 will be 

compared with the ones that neural network produces using its own weights and 

biases. MSE is computed by comparing the network`s outputs with observed values 

of bilateral exports from 1994 to 2003. 

When the test set which has 903 observations - from 1994 to 2003- is introduced to 

the neural network, it yields the results summarized in Table 3-5. 

 

 Number of Samples MSE R-value 

Test Set 903 2.11193e-2 0.9176 

Table 3 - 5: The Test Results of the Neural Network Model 
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R-squared for the test set is calculated as the square of the R-value in Table 3-5 and it 

is 0.84. A comparison between R-squared produced by neural networks (0.84) and 

panel model (0.82) reveals that neural network modeling offers slightly higher 

explanatory power. Figure 3-8 plots test set outputs against test set targets. 

 

 

Figure 3 - 8: Test Set Outputs versus Targets 

 

When the MSE of neural network model -which is 0.0211- is compared to the MSE 

produced by panel data forecasting -which is 5.1- it is seen that neural networks offer 

a much lower MSE. The reason why there is so much difference between neural 

network and panel model forecasts is that the regression model uses logged data set 

while inputs given into the neural network are non-logged. Therefore, MSE of panel 

model is recomputed for logged data in terms of non-logged data. It is done as 

follows: First, forecasts are computed in logs and then are transformed using the 

exponential into the forecasts of the variable without logs. Lastly, MSE is computed 
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based on these predictions, which is 2.97. Our analysis reveals that there is still a 

large discrepancy between the MSE produced by the neural network model (0.0211) 

and panel model (2.97) which suggests that neural networks lead to much better out-

of-sample forecasting performance than the panel model. 

 

7.4. Panel Model Forecast Errors with Different Out-of-Sample Periods  

 

Since our model is a static model, it is not really necessary to choose the end of the 

sample period as the out-of-sample period. To extend the comparison made, different 

periods have been chosen as the forecast sample, and the average of forecasting errors 

were calculated. Since we have 40 years of data and one-fourth of it is used to test the 

neural network; panel model uses 30 years of the data set for estimation and 10 years 

of it as the forecast period. Table 3-6 indicates the forecast errors which are obtained 

by randomly cutting the whole sample into in- and out-of-samples and performing the 

out-of-sample predictions on this division by using panel model. 

It is seen that when the end of sample is chosen as the forecast sample, a very high 

MSE is obtained in panel data analysis (2.97). When the forecast sample is changed, 

the errors decrease enormously almost in all cases; however, the difference between 

errors produced by neural networks (0.02) and panel data analysis (on average 0.32) 

remains still high which shows that neural networks lead to high improvements in 

prediction. 
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Estimation Sample 
Prediction 

Sample 

Number of 

observations 
RMSE MSE 

1964-1980 and 1991-2003 1981-1990 910 0.34 0.12 

1964-1970 and 1981-2003 1971-1980 910 0.46 0.22 

1964-1983 and 1994-2003 1984-1993 884 0.33 0.11 

1964-1973 and 1984-2003 1974-1983 910 0.42 0.17 

1974-2003 1964-1973 910 0.55 0.31 

1964-1990 and 2001-2003 1991-2000 884 0.37 0.14 

1964-1985 and 1996-2003 1986-1995 884 0.33 0.11 

1964-1988 and 1999-2003 1989-1998 884 0.35 0.13 

1964-1978 and 1989-2003 1979-1988 910 0.36 0.13 

1964-1972 and 1983-2003 1973-1982 910 0.43 0.19 

1964-1974 and 1985-2003 1975-1984 910 0.40 0.16 

1964-1966 and 1977-2003 1967-1976 910 0.53 0.28 

1964-1966 and 1971-1997 
1967-1970 and 

1998-2003 

903 1.29 1.65 

1964-1966 and 1972-1998 
1967-1971 and 

1999-2003 

903 1.06 1.13 

1964-1975, 1981-1992 and 1998-2003 
1976-1980 and 

1993-1997 

910 0.38 0.15 

1964-1980, 1986-1997 and 2003-2003 
1981-1985 and 

1998-2002 

910 0.37 0.14 

  Average:  0.32 

Table 3 - 6: Forecast Errors of Panel Model for Different Samples 
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8- Conclusion 

 

This study compares the results produced by panel data analysis and neural networks. 

Both models give satisfactory results which show that our modified gravity model of 

bilateral trade can well explain the variation in bilateral exports among European 

countries from 1964 to 2003. Balanced panel estimates have the advantage of 

explaining the individual effect of each independent variable on bilateral exports and 

showing whether this effect is significant or not. R-squared given by panel data 

analysis is 84%, which shows that 84% of the variation in bilateral exports can be 

explained by distance, GDP and population of exporting and importing countries, and 

the volatility of exchange rates. Then, we construct a neural network by using the 

same independent and dependent variables. We find that 97% of the variation in 

bilateral exports can be explained with these variables using a neural network model. 

Neural networks seem superior to traditional panel data analysis in explaining 

bilateral exports when R-squared is used as a criterion.  

When we make out-of-sample forecasting by employing a panel model with period 

fixed effects, and use the period that is forecasted in panel model as the test set of our 

neural network, we see that neural networks produce a much lower MSE (0.02) 

which makes them superior to the panel model with an MSE of 2.97.  

However, neural networks lack the ability of showing the individual effect of each 

influence factor on bilateral exports. Once we construct the neural network, it learns 

the relationship between bilateral exports and their determinants internally through 

hidden layers by using the examples introduced to the network, although it does not 

explain what kind of a relationship it is exactly and how the network can explain it. 

This does not mean that the results produced by the network are not reliable, because 

we have some tests that give a signal whether the model and the network constructed 

is appropriate to draw some conclusions such as mean squared error and regression 
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analysis results. One of the main relative benefits of the neural network model is 

nonlinearity, as it uses sigmoid functions instead of linear functions as building 

blocks. This partly explains its success in our exercise. 

 

9. Appendices 

 

Appendix 1 

A Neuron Structure 

A simple neuron consists of six elements which are shortly described below: 

1- Inputs (p): Information from the environment or from other neurons that come into 

the system to be processed. For example, inputs of our neural network model are 

distance, GDP and population of exporting and importing country, and volatility of 

exchange rates as shown in Figure 3-2. 

2- Weights (w): Inputs have an effect on the output depending on their importance. 

Weights show how strongly a signal from one node influences another node by 

entering into the activation equation of it (Anderson, 1999). Weights are especially 

important for neural networks because the intelligence of a neural network depends 

on how true its weights are.  The knowledge of a network is stored in the connection 

weights. A neural network is used to compute a function by forcing input units to 

produce given outputs (Kryzanowski et al., 1993). By modifying the strength of the 

connections among neurons, which are called weights, the network learns the 

relationship between inputs and outputs, and by using these weights it can predict the 

value of the dependent variable for other given independent variables (Anderson, 

1999). 
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3- Bias (b): The product of inputs and weights is affected by a bias and the effects of 

the inputs may be reduced through the bias. The bias has a constant input of 1. 

4- Sum function: This function calculates the net input into the neuron with the 

following formula: 

ii

n

i

i bwpNET                                                  Eq. 1 

where i is the input neuron, n is the total number of neurons, p is the input and, w is 

the weight and b is the bias. 

5- Transfer function (Activation function): Takes the net input into the neuron and 

produces output a. Three of the most commonly used transfer functions are hard 

limit, pure linear and log-sigmoid functions. In multilayer networks mostly the log-

sigmoid function is used because it is differentiable. 

6- Output (a): The value produced by the activation function. This output is either 

sent to the environment or to another neuron as an input. 

Learning Rule 

A learning rule is defined by Demuth et al. (2002) as a process for adjusting the 

weights and biases of a network. At the beginning of this process, a set of examples, 

called the training set, is introduced to the learning rule, such as 

                                        
     nn tptptp ,,.....,,, 2211  

where p is the input, t is the accompanying target output and n is the total number of 

observations in the training set. When the inputs are provided to the network, the 

network is expected to produce its own outputs to be compared to the targets. To do 

this, the weights and biases of the network are determined using the training set and 

modified by using the learning rule to move network outputs closer to the targets. At 
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the end, the outputs produced by the network and real outputs are compared to see 

whether the network has learned the relationship appropriately. 

The objective is to reduce the error e=t-a, where a is output produced by the network 

for a given input and t is the target (actual/observed output). The performance of a 

network is measured by MSE which is equal to squared error (e). If there is no 

difference between network outputs and targets, no learning takes place (Demuth et 

al., 2002; Rumelhart, 1986). 

Multi Layer Networks 

When the relation between inputs and outputs is not linear, a single layer network 

cannot find a solution. In this case, we need more developed models of networks. 

Multilayer networks are good solutions to the nonlinear cases.  

As shown in Figure 3-9, a feed forward multi-layer network has three layers: 

Input layer: This layer receives inputs from the environment and sends them to the 

hidden layer without processing. Depending on the nature of the problem, there may 

be more than one input. Each process element (neuron) must have at least one input 

and one output. 

Hidden layer: Information received from the input layer is processed in the hidden 

layer and sent to the output layer. Multi-layer networks may have more than one 

hidden layer and more than one neuron in each layer. Hidden layers are expected to 

improve the networks ability to model complex data, including allowing piecewise 

approximation (Hill and O’Connor, 1996).  The number of hidden layers and the 

number of nodes in each hidden layer can be selected randomly; however, when 

making this decision it should be taken into account that too many nodes in the 

hidden layer may result in a neural network that only memorizes the input data and 

produces outputs without having any ability to generalize (Shachmurove, 2002). 
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Output layer: In this layer, information received from the hidden layer is processed 

and a network output to each given input is produced. Multilayer networks use 

supervised learning method which is explained under ―learning rule‖ in the previous 

page. 

 

 

Training a Neural Network 

Neural networks can be trained for function approximation, pattern association or 

pattern classification (Demuth et al., 2002).  Training in an MLP network requires 

two steps, forward and backward operation (Köker, 2007). During the first phase –

forward pass-, the network is introduced with inputs and propagated forward to 

produce its own outputs using current weights. Then, outputs of the neural network 

and targets are compared, and error is calculated for each output. At the second stage, 

called backward pass, the weights and biases of the network are repeatedly changed 

to minimize the network performance function that is measured by the mean squared 

error, the average squared error between network outputs and the targets (Demuth et 

al., 2002; Kröse and van der Smagt, 1996). As the number of training cases increases, 

j  
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Figure 3 - 9: A Multi Layer Feed Forward Network Structure (Source: Köker, 2007)  
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the network is expected to generate more reliable results, and have a better and ―more 

educated‖ generalization capability (Lodewyck and Deng, 1993).  

The back-propagation estimation algorithm used by neural networks is one of the 

differentiating characteristics between neural network models and traditional 

statistical procedures. As mentioned above, the back-propagation algorithm is a 

gradient search technique where the objective function is to minimize the squared 

error between an observed output (target) and the computed output of the network 

using given input values. A primary difference between the back-propagation and 

traditional statistical methods is that the back-propagation algorithm can sequentially 

consider data records, readjusts the parameters after each observation in a gradient 

search manner; whereas estimation procedures such as maximum likelihood and least 

squares use an aggregated error across the entire sample in the estimation (West et al., 

1997). 

 

Appendix 2 

MATLAB Code for feed-forward multilayer neural network model training and simulation 

fixunknowns(data); 

t=ans(:,2); 

p=ans(:,3:8); 

p=p'; 

t=t'; 

[pn,pp1] = mapstd(p); 

[ptrans,pp2] = processpca(pn,0.001); 

[tn,tp] = mapstd(t); 
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[R,Q] = size(ptrans); iitst = 2:4:Q; 

iival = 3:4:Q; iitr = [1:4:Q 4:4:Q]; 

vv.P = ptrans(:,iival); vv.T = tn(:,iival); 

vt.P = ptrans(:,iitst); vt.T = tn(:,iitst); 

ptr = ptrans(:,iitr); ttr = tn(:,iitr); 

net = newff(minmax(ptr),[25 1],{'tansig' 'purelin'},'trainlm'); 

net.trainParam.show = NaN; 

[net,tr]=train(net,ptr,ttr,[],[],vv,vt); 

plot(tr.epoch,tr.perf,'r',tr.epoch,tr.vperf,':g',tr.epoch,tr.tperf,'

-.b'); 

legend('Training','Validation','Test',-1); 

ylabel('Squared Error') 

an = sim(net,ptrans); 

a = mapstd('reverse',an,tp); 

[m, r] = postreg(a,t); 
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CONCLUSIONS 

 

This thesis analyzes bilateral trade flows across EU15 countries from 1962 to 2003 

by employing a modified gravity model of total trade to see the effects of exchange 

rate volatility on bilateral trade. Throughout the thesis, an extended version of the 

gravity model is used where real GDP and population of exporting and importing 

countries, distances between them and volatility of exchange rates are the influence 

factors and bilateral trade flows is the dependent variable.  

In the first essay, the effects of exchange rate volatility on bilateral trade between 

EU15 countries is investigated by using cross sectional methods and a fuzzy approach 

with the data set from 1964 to 2003. Panel data analysis with period fixed effects 

shows a significant negative impact of exchange rate volatility on bilateral trade. 

Then, the same analysis is conducted by using a fuzzy approach and it is seen that the 

fuzzy approach delivers a very similar result to the panel model. The objective of 

using a panel data analysis and a fuzzy approach in the same study is to make a 

robustness check for the fuzzy approach. Even though the use of statistical methods is 

essential to see the effect of each influence factor on bilateral trade individually, and 

to see whether this effect is significant or not; it is obvious that when the data set is 

not large enough, or some data is missing or not reliable, we cannot use panel data 

analysis and cannot draw any conclusions by using it. In such cases, we suggest the 

fuzzy approach as a complement to traditional statistical methods to estimate first 

approximate results. 

In the second essay, two different specifications of the extended gravity model of 

total trade are used. The first specification, called main effects or the 3-way model, is 

an extension of the modified gravity model with exporter, importer and time effects. 

The second model is called bilateral interaction effects or the 2-way model. By using 

these two models and also three more models to serve as a comparison, we analyze 

the variation in bilateral exports from 1962 to 2003 among EU15 countries. 
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Moreover, we investigate by how much does the explanatory power of the extended 

gravity model of total trade increase when main effects and bilateral interaction 

effects models are used. Lastly, we compare the explanatory power and forecasting 

performance of the 3-way and 2-way models. It is seen that bilateral interaction 

effects or the 2-way model outperforms the 3-way model and all other models in 

estimating bilateral export flows. Furthermore, the 2-way model shows a better 

performance in out-of-sample forecasting than the 3-way model. 

In the third essay, the variation in bilateral exports among European countries from 

1964 to 2003 is analyzed via a panel data analysis and a neural network model. When 

the explanatory powers of both models are compared, it appears that neural networks 

can explain a larger variation in bilateral exports (97%) compared to the panel data 

analysis (84%). Although their explanatory power is lower in this exercise, balanced 

panel estimates have the advantage of explaining the individual effect of each 

independent variable on bilateral exports and showing whether this effect is 

significant or not. However, the neural network model does not show the individual 

effect of each influence factor on bilateral exports, it only explains whether there is a 

relationship between given inputs (explanatory variables) and the output in total, and 

shows how much of the variation in bilateral exports can be explained by given 

inputs. When we compare out-of-sample forecasting performances of panel model 

and neural networks, we see that neural networks produce a much lower MSE which 

makes them superior to the panel model. One of the main relative benefits of the 

neural network model is nonlinearity, as it uses sigmoid functions instead of linear 

functions as building blocks. This partly explains its success in our study. Another 

advantage of neural networks is that they make no a priori assumptions about the 

population distribution and the relationship between explanatory variables and the 

dependent variable. 

Although the results given by panel data analysis, fuzzy approach and neural network 

model sometimes differ in quantity, the extended gravity model used throughout the 
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thesis proves to be a very good model in explaining bilateral trade flows across 

European countries. The differences in the results across models can be attributed to 

different ways of calculating the relationship between explanatory variables and the 

dependent variable. Furthermore, this thesis serves as a study which combines three 

different methods for analyzing the same problem, which is the variation in bilateral 

trade flows among European countries and the effects of exchange rate volatility on 

bilateral trade flows. It shows that fuzzy logic and neural networks can be employed 

in economics sometimes as an alternative and yet sometimes as a complement to the 

statistical methods, and may lead to satisfactory results which are in accordance with 

the international trade literature.  
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ZUSAMMENFASSUNG 

 

Diese Arbeit besteht aus drei Teilen (Kapiteln), die die bilateralen Handelsströme 

zwischen den europäischen Ländern von 1962 bis 2003 mit einem modifizierten 

Gravitationsmodell schätzen und erklären. Das grundlegende Gravitationsmodell 

erklärt die bilateralen Handelsströme zwischen zwei Ländern mit ihrem Einkommen 

und der Entfernung zwischen ihnen. Nach diesem Modell treiben die Länder 

voraussichtlich mehr Handel, wenn sie reicher werden. Außerdem neigen sie dazu, 

weniger zu handeln, wenn sie weiter entfernt vom anderen Handelspartnern sind, weil 

größere Entfernungen zu zusätzlichen Kosten für den Handel (wie höhere 

Transportkosten, kulturelle Barrieren usw.) führen.  

In dieser Arbeit wurde das Gravitationsmodell mit der Bevölkerungszahl der 

exportierenden und importierenden Länder und dem bilateralen Wechselkurs 

zwischen ihren Währungen erweitert. Unsere Resultate zeigen, dass die Bevölkerung 

eine erhebliche Auswirkung auf die bilateralen Handelsströme hat. Außerdem 

beeinflussen die realen Wechselkurse voraussichtlich auch die bilateralen 

Handelsströme. In Zeiten höherer Wechselkursschwankungen zeigen die Einnahmen 

der Händler auch einige Schwankungen. Deswegen ist zu erwarten, dass die 

Volatilität der Wechselkurse die Höhe der bilateralen Handelsströme verringert. Im 

zweiten Kapitel haben wir Haupteffekte-und bilaterale Interaktionseffekte  in das 

modifizierte Gravitationsmodell inkludiert. Dieses Modell besteht dann aus 

Exporteur-, Importeur- und Zeiteffekten.  Exporteur- und Importeur-Effekte werden 

verwendet, um die Tendenz zum Exportieren und Importieren zu erfassen, während 

Zeiteffekte die zyklischen Veränderungen (Konjunkturzyklen) und deren 

Auswirkungen auf bilaterale Exporte kontrollieren. Das bilaterale Interdependenz-

Modell versucht, die Auswirkungen der geographischen, politischen, historischen 

oder kulturellen Ereignisse zu erkennen, die den bilateralen Handel zwischen den 

beiden Ländern beeinträchtigen könnten. Beide Modelle erklären die Variation der 
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bilateralen Handelsströme besser als das modifizierte Gravitationsmodell, welches in 

der gesamten Arbeit als Grundmodell dient. 

Diese Arbeit hat zwei Hauptziele. Eines ist, die Auswirkungen von 

Wechselkursschwankungen auf die bilateralen Handelsströme zu erkennen. In der 

internationalen Fachliteratur, einige Studien finden eine signifikante negative 

Wirkung, während andere keinen Zusammenhang zwischen der Volatilität des 

Wechselkurses und den gesamten Handelsströmen aufzeigen. Beim Start dieser 

Studie war unsere Erwartung, dass die Wechselkurs-Volatilität sich negativ auf die 

bilateralen Handelsströme auswirkt. Es wurde angenommen, dass die Schwankungen 

bei den Wechselkursen die Erträge der Exporteure und Importeure weniger 

vorhersehbar machen, und sie dazu verleiten könnten, sich vorsichtiger zu verhalten. 

Als Folge neigen sie in einem instabilen Umfeld dazu, weniger Handel zu treiben, um 

Risiko zu vermeiden. 

Unser zweites Ziel ist die Paneldatenanalyse mit Fuzzy-Logik und neuralen Netzen 

zu vergleichen. Obwohl wir denken, dass die Paneldatenanalyse und statistische 

Methoden die zuverlässigsten Ergebnisse liefern und nachweislich die besten Mittel 

für die Analyse der bilateralen Handelsströme sind, verwenden wir Fuzzy-Logik und 

neuronale Netze als alternative Methode, um die bilateralen Handelsströme zu 

analysieren und ihre Performanz mit der Paneldatenanalyse zu vergleichen. 

Im ersten Artikel konstruieren wir eine Fuzzy-Regel und eine Fuzzy-Entscheidungs-

Tabelle, um die Auswirkungen der Wechselkursschwankungen auf den bilateralen 

Handel zu berechnen, nach einer Regression für Panel-Daten, in der wir 

aussagekräftige Ergebnisse erhalten. Wir prüfen die Robustheit für den Fuzzy-

Ansatz, obwohl wir eine sehr große Datenmenge haben, um zu sehen, ob wir die 

Fuzzy-Logik in anderen Fällen verwenden können, wo es unzureichende Daten gibt. 

Wir glauben, dass unsere Ergebnisse mit der Fuzzy-Logik vielversprechend sind. Im 

zweiten Artikel werden nur statistische Methoden verwendet. Unser modifiziertes 

Gravitationsmodell wurde durch die Einführung der exportierenden und 
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importierenden Landes sowie Konjunktureffekte erweitert. Dieses Modell wird 3-

Wege- oder Haupteffekt-Modell genannt. Eine weitere Erweiterung wurde mit 

bilateraler Interaktion und Konjunktureffekten durchgeführt und wird 2-Wege-

Modell genannt. Wir vergleichen die Aussagekraft und Vorhersageperformanz der 

beiden Modelle. Das bilaterale Interaktions-Modell erweist sich sowohl bei der 

Aussagekraft als auch bei der Vorhersage der bilateralen Handelsströme als besser als 

das Haupteffektmodell. Im dritten Artikel vergleichen wir die Paneldaten-Analyse 

mit einem neuronalen Netzwerk-Modell. Während die beiden Modelle zu sehr 

ähnlichen und zufriedenstellenden R²-Werten führen, scheint das neuronale Netz-

Modell überlegen bei der out-of-sample-Prognose. 

Auch wenn wir drei verschiedene Methoden in der gesamten Arbeit verwenden, ist 

das modifizierte Gravitationsmodell das Grundmodell, das wir anwenden. Natürlich 

ist es nicht verwunderlich, dass verschiedene Methoden zu numerisch 

unterschiedlichen Ergebnissen führen. Doch die Ähnlichkeit zwischen den 

Ergebnissen aus den drei Methoden und der Vergleich mit der vorhandenen Literatur 

zeigt, dass das modifizierte Gravitationsmodell sehr erfolgreich bei der Erklärung der 

bilateralen Handelsströme ist. Die Unterschiede in den Ergebnissen aus den drei 

Methoden können auf die verschiedenen Berechnungsmethoden zurückgeführt 

werden. Diese Arbeit dient als eine Studie, die drei verschiedene Methoden für die 

Analyse des gleichen Problems, nämlich die Variation der bilateralen Handelsströme 

zwischen den europäischen Ländern und die Auswirkungen von 

Wechselkursschwankungen auf die bilateralen Handelsströme, zusammenführt. Diese 

Arbeit zeigt, dass Fuzzy-Logik und neuronale Netze in der Volkswirtschaftslehre 

manchmal als Alternative und manchmal als eine Ergänzung verwendet werden 

können, und auch zu befriedigenden Ergebnissen führen, die im Einklang mit der 

internationalen Literatur sind. 
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