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Abstract. We analyze if entangled fermionic states can be described by a projector
in the one-particle Hilbert space. A method is developed for realizing entanglement
and general second quantized fermionic and bosonic fields in the framework of the
fermionic projector. Our constructions are discussed with regard to decoherence
phenomena and the measurement problem.
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2 F. FINSTER

1. Introduction

In [6] it was proposed to formulate physics based on a new action principle in space-
time (see also [8, 9]). One difference of this approach to standard quantum field theory
is that a many-particle state no longer corresponds to a vector in the fermionic Fock
space, but instead it is described by the so-called fermionic projector, an operator
which acts on the one-particle Hilbert space (or more generally on an indefinite inner
product space spanned by the one-particle wave functions). Another difference is that
the bosonic fields obtained in the so-called continuum limit are only classical. Due to
these differences, it is not at all obvious whether the fermionic projector can account
for all quantum effects observed in nature. More specifically, is it possible to describe
entanglement? Can one reproduce the effects of second quantized fields?

In this paper, we shall analyze these questions in detail. We will show that it is
indeed possible to describe entanglement as well as general second quantized bosonic
and fermionic fields in the framework of the fermionic projector. Our considerations
lead to the physical concept of a microscopic mixing of decoherent subsystems. The
physical picture is that space-time is not smooth on the microscopic scale (typically
thought of as the Planck scale), but has a non-trivial microstructure. Homogenizing
this microstructure, we obtain an effective description of the system by a vector in
the fermionic or bosonic Fock space. The key ingredient for making this concept work
is that in the framework of the fermionic projector, the usual topological and causal
structure of Minkowski space is not a-priori given, but it is induced on the space-time
points by the states of the fermionic projector (which form a Dirac sea configuration;
see [10]). Thus by bringing the wave functions between certain pairs of space-time
points “out of phase”, we obtain decoherence effects which result in a decomposition
of the whole system into subsystems between which the usual causal relations are no
longer valid. This makes it possible to realize many independent physical systems
simultaneously in one spacetime, in such a way that homogenizing on the microscopic
scale leads to an effective “superposition” of the subsystems. For technical simplicity,
we will describe the microscopic mixing by localizing the subsystems in disjoint space-
time regions (see Figure 2 on page 26). But one can also think of the subsystems as
being delocalized, similar as if one combines several images in a single hologram (see
Section 7.3).

In order to make the paper easily accessible, we begin on an elementary level and
develop our ideas step by step, also discussing attempts which turn out not to work.
These preliminary attempts are instructive because they motivate and show the ne-
cessity of the concept of microscopic mixing. More specifically, in Chapter 2 we begin
in the setting of non-relativistic quantum mechanics with the question of whether a
vector of the fermionic Fock space can be described by a projector in the one-particle
Hilbert space. This chapter also provides the mathematical preliminaries and fixes
our notation. We show that every projector in the one-particle Hilbert space corre-
sponds to a Hartree-Fock state (see Proposition 2.16), making it impossible to describe
entanglement. In Chapter 3 we show that this shortcoming cannot be overcome by
restricting attention to a subsystem and taking the partial trace over the outer system
(see Example 3.6). In Chapter 4 we describe entanglement by introducing the concept
of microscopic mixing, however on a rather formal level. Since justifying this formalism
goes beyond the scope of standard quantum mechanics, in Chapter 5 we generalize to
the relativistic setting and explain a few basic concepts behind the framework of the
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fermionic projector. In Chapter 6 we justify the formalism of Chapter 4 by introducing
a decoherence between space-time regions. As is worked out in Chapter 7, this notion
of decoherence also makes it possible to describe second quantized bosonic fields. Fi-
nally, in Chapter 8 we give a physical interpretation and discuss our constructions with
regard to the measurement problem, decoherence effects, the wave-particle duality and
the collapse of the wave function.

2. Preliminaries

2.1. The Fermionic Fock Space and Entanglement. We denote the one-particle
Hilbert space by (H, 〈.|.〉); as usual we assume that it is separable. In quantum me-
chanics and quantum field theory, a many-fermion state is usually described by a vector
in the fermionic Fock space, which we now introduce (see also [21, Section II.4] or [23,
Section I.1]). We let Hn = H ⊗ · · · ⊗ H be the n-fold tensor product, endowed with
the natural scalar product

〈ψ1 ⊗ · · · ⊗ ψn |φ1 ⊗ · · · ⊗ φn〉 := 〈ψ1|φ1〉 · · · 〈ψn|φn〉 . (2.1)

Totally anti-symmetrizing the tensor product gives the wedge product

ψ1 ∧ · · · ∧ ψn :=
1

n!

∑

σ∈Sn

(−1)sign(σ) ψσ(1) ⊗ · · · ⊗ ψσ(n) (2.2)

(here Sn denotes the set of all permutations and sign(σ) is the sign of the permuta-
tion σ). The wedge product gives rise to a mapping

Λn : H × . . . × H
︸ ︷︷ ︸

n factors

→ H
n : (ψ1, . . . , ψn) 7→ ψ1 ∧ · · · ∧ ψn .

We denote the image of this mapping by FHF
n . The vectors in FHF

n are called n-
particle Hartree-Fock states or factorizable states. These states do in general not form
a vector space, as the following example shows, which in discussions of spin correlation
experiments and Bell’s inequalities is often referred to as the EPR singlet state (see
for example [1, Section 1.5]).

Example 2.1. (The spatially separated singlet state) We consider the one-particle
Hilbert space H = C

2
A ⊕ C

2
B of two spins (in quantum information theory called

“qubits”), located at the positions of the two observers “Alice” and “Bob”. Choosing

in C
2 the standard basis ψ↑ = (1, 0) and ψ↓ = (0, 1) yields the basis (ψ↑

A, ψ
↓
A, ψ

↑
B , ψ

↓
B)

of H. The spatially separated singlet state is the following linear combination of
2-particle Hartree-Fock states

Ψ :=
1√
2

(

ψ↑
A ∧ ψ↓

B − ψ↓
A ∧ ψ↑

B

)

. (2.3)

Let us verify in detail that this state is not factorizable. To this end, we assume
conversely that Ψ can be written as a product,

Ψ = ψ1 ∧ ψ2 .

Computing this wedge product in the basis representations

ψ1 = α↑
Aψ

↑
A + α↓

Aψ
↓
A + α↑

Bψ
↑
B + α↓

Bψ
↓
B (2.4)

ψ2 = β↑Aψ
↑
A + β↓Aψ

↓
A + β↑Bψ

↑
B + β↓Bψ

↓
B , (2.5)
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the vanishing of the term ∼ ψ↑
A∧ψ

↓
A implies that the vectors α↑

Aψ
↑
A+α↓

Aψ
↓
A and β↑Aψ

↑
A+

β↓Aψ
↓
A must be linearly dependent. Similarly, the vanishing of the term ∼ ψ↑

B ∧ ψ↓
B

implies that the vectors α↑
Bψ

↑
B + α↓

Bψ
↓
B and β↑Bψ

↑
B + β↓Bψ

↓
B are linearly dependent.

Hence ψ2 can be written as

ψ2 = βA

(

α↑
Aψ

↑
A + α↓

Aψ
↓
A

)

+ βB

(

α↑
Bψ

↑
B + α↓

Bψ
↓
B

)

(2.6)

with suitable complex coefficients βA and βB . Taking the wedge product of (2.4)
and (2.6) yields

Ψ = ψ1 ∧ ψ2 = (βB − βA)
(

α↑
Aψ

↑
A + α↓

Aψ
↓
A

)

∧
(

α↑
Bψ

↑
B + α↓

Bψ
↓
B

)

.

Multiplying out and comparing with (2.3), one sees that the products α↑
Aα

↓
B and α↓

Aα
↑
B

must be non-zero, and thus none of these four coefficients vanishes. But then the

term ∼ ψ↑
A ∧ ψ↑

B is non-zero, a contradiction. ♦

We denote the vector space generated by the n-particle Hartree-Fock states by

Fn = <Λn(Hn)> .

Their direct sum is the fermionic Fock space,

F =

∞⊕

n=0

Fn .

The non-factorizable vectors Ψ ∈ Fn\Λn(Hn) are called entangled states. The spatially
separated singlet state is the standard example of an entangled state. Entanglement
is a basic phenomenon of quantum physics with important potential applications in
quantum computing.

2.2. Mixed States and the Density Operator. Another important concept, which
should not be confused with entanglement, is that of a mixed state. A state Ψ ∈ F

(no matter if factorizable or entangled) is referred to as a pure state. Keeping in
mind that the phase of Ψ has no physical significance, the physical system is described
equivalently by a projector PΨ onto this state,

PΨ =
1

‖Ψ‖2
F

|Ψ〉〈Ψ| . (2.7)

The expectation value of an observable O can be expressed by the trace over range of
the projector,

〈O〉 = Tr(PΨO) . (2.8)

Due to a limited knowledge on a physical system, the fermions can often not be
described by a pure state, but merely by an ensemble of states, coming with certain
probabilities. More precisely, one considers a family of pure states Ψ1, . . . ,ΨL ∈ F

together with corresponding probabilities p1, . . . , pL, normalized as follows,

‖Ψl‖F = 1 and 0 ≤ pl ≤ 1 ,

L∑

l=1

pl = 1 .

The expectation value of an observable O is then defined by

〈O〉 =
L∑

l=1

pl 〈Ψl|OΨl〉 . (2.9)
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We point out that here we do not take the linear combinations of the states Ψl, but
linear combinations of the expectation values 〈Ψl|OΨl〉. It is convenient to introduce
the operator

ρ =

L∑

l=1

pl |Ψl〉〈Ψl| .

Then the expectation value can be expressed in analogy to (2.8) by

〈O〉 = Tr(ρO) , (2.10)

whereas the conditions (2.9) become

ρ ≥ 0 and Tr(ρ) = 1 . (2.11)

The operator ρ is referred to as the density operator. If ρ is a projector, it follows
from (2.11) that ρ has rank one, and thus it can be written in the form (2.7) with a
pure state Ψ. If ρ is not a projector, it is said to describe a mixed state.

To us, mixed states are important because if the whole system is in a pure state, a
subsystem is described by a density operator (see Section 3).

2.3. Projectors and Hartree-Fock States. We now want to explore in which sense
a projector in the one-particle Hilbert space characterizes a many-particle quantum
state. Thus let P be a projector in the Hilbert space (H, 〈.|.〉), for simplicity of finite
rank f , i.e.

P ∗ = P = P 2 and dimP (H) = f . (2.12)

In order to get a connection between this projector and the fermionic Fock space
formalism, we choose an orthonormal basis ψ1, . . . , ψf of P (H) and form the Hartree-
Fock state

Ψ := ψ1 ∧ · · · ∧ ψf ∈ F
HF
f . (2.13)

The choice of our orthonormal basis was unique only up to the unitary transformations

ψi → ψ̃i =

f
∑

j=1

Uijψj with U ∈ U(f) . (2.14)

As the next simple lemma shows, this transformation changes the corresponding
Hartree-Fock state only by a phase factor.

Lemma 2.2. The transformed basis vectors (2.14) satisfy the relation

ψ̃1 ∧ · · · ∧ ψ̃f = detU ψ1 ∧ · · · ∧ ψf .

Proof. We compute the wedge product of the transformed basis vectors with (2.2),

ψ̃1 ∧ · · · ∧ ψ̃f =

f
∑

j1,...,jf=1

1

f !

∑

σ∈Sf

(−1)sign(σ)Uσ(1) j1 · · ·Uσ(f) jf
ψj1 ⊗ · · · ⊗ ψjf

.

Due to the anti-symmetrization, we only get a contribution if the indices j1, . . . , jf
are all different, and in this case the sum over all permutations gives up to a sign the
determinant of U . More precisely, choosing a permutation τ ∈ Sf with τ(i) = ji, we
obtain

ψ̃1 ∧ · · · ∧ ψ̃f =
∑

τ∈Sf

1

f !
(−1)sign(τ) det(U) ψτ(1) ⊗ · · · ⊗ ψτ(f) ,

and comparing with (2.2) gives the result. �
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This lemma shows that by (2.13) we can indeed associate to the projector P a
Hartree-Fock state, which is well-defined up to a phase. In order to avoid carrying
along irrelevant phases, it is more convenient to consider instead of the f -particle
state (2.13) the projector Pf onto the corresponding f -particle state, i.e. in bra-/ket
notation

Pf = f ! |ψ1 ∧ · · · ∧ ψf 〉〈ψ1 ∧ · · · ∧ ψf | : Ff → Ff . (2.15)

Here the factor f ! comes about because, according to our conventions (2.2) and (2.1),

〈ψ1 ∧ · · · ∧ ψf | ψ1 ∧ · · · ∧ ψf 〉 = 〈ψ1 ∧ · · · ∧ ψf | ψ1 ⊗ · · · ⊗ ψf 〉

=
1

f !

∑

σ∈Sf

(−1)sign(σ) 〈ψσ(1)|ψ1〉 · · · 〈ψσ(f)|ψf 〉 =
1

f !
.

Since the phase freedom drops out when forming the projector (2.15), this operator
is well-defined. The next proposition gives an alternative definition of Pf which does
not involve a choice of basis.

Proposition 2.3. For any projector P in (H, 〈.|.〉) of rank f , the corresponding op-
erator

Pf : Ff → Ff : ψ1 ∧ · · · ∧ ψf → (Pψ1) ∧ · · · ∧ (Pψf ) (2.16)

is a projector onto an f -particle Hartree-Fock state. The mapping P → Pf gives a one-
to-one correspondence between projectors in H and projectors on Hartree-Fock states
in F.

Proof. It follows immediately from the definitions that Pf is symmetric and idempo-
tent, and is thus a projector. To compute the rank of Pf , we choose an orthonormal
basis ψ1, . . . , ψf of P (H) and extend it to an orthonormal basis of H. As is obvi-
ous from (2.16), the operator Pf applied to any wedge product of basis vectors van-
ishes unless all basis vectors are elements of the set {ψ1, . . . , ψf}. Hence the vector
Ψ := ψ1 ∧ · · · ∧ψf is a basis of the image of Pf . We conclude that Pf has indeed rank
one and is thus a projector onto the Hartree-Fock state Ψ.

Now suppose conversely that Pf is a projector onto a Hartree-Fock state. Repre-
senting this operator in the form (2.15), we let P be the projector in H on the sub-
space <ψ1, . . . , ψf> . Then the operator Pf has the representation (2.16), concluding
the proof. �

To summarize, a projector P in (H, 〈.|.〉) of rank f uniquely describes an f -particle
quantum state, namely the Hartree-Fock state which is in the image of the correspond-
ing operator Pf .

2.4. Projectors and Expectation Values. We now consider how expectation values
of observables can be expressed in terms of the projectors P and Pf . We begin with
a one-particle observable O, being a self-adjoint operator on the one-particle Hilbert
space H. By

OF(ψ1 ∧ · · · ∧ ψn) := (Oψ1) ∧ · · · ∧ ψn + ψ1 ∧ (Oψ2) ∧ · · · ∧ ψn

+ · · · + ψ1 ∧ · · · ∧ ψn−1 ∧ (Oψn)
(2.17)

we can define a corresponding operator OF on the Fock space F. This operator pre-
serves the number of particles in the sense that it maps the n-particle subspace Fn to
itself.
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Suppose that an f -fermion state is described by a projector P (2.12). The next
lemma shows how the expectation values of OF and of products of one-particle oper-
ators can be expressed in terms of traces involving the projector P .

Lemma 2.4. Suppose that O and O1/2 are one-particle observables. Describing a
many-fermion state by a projector P in (H, 〈.|.〉), we have

〈OF〉 = TrH(PO) (2.18)

〈OF
1 OF

2 〉 = TrH(PO1O2) + TrH(PO1)TrH(PO2) − TrH(PO1PO2) . (2.19)

Proof. Following Proposition 2.3 and (2.8), the expectation values are obtained by
taking the trace of the observables multiplied by the operator Pf ,

〈OF〉 = TrFf
(PfOF) , 〈OF

1 OF
2 〉 = TrFf

(PfOF
1 OF

2 ) .

Representing Pf in the form (2.15), it follows that

〈OF〉 = f ! 〈ψ1 ∧ · · · ∧ ψf | OF (ψ1 ∧ · · · ∧ ψf )〉
= f ! 〈ψ1 ∧ · · · ∧ ψf | OF (ψ1 ⊗ · · · ⊗ ψf )〉

=
∑

σ∈Sn

〈ψσ(1) ⊗ · · · ⊗ ψσ(f) | OF (ψ1 ⊗ · · · ⊗ ψf )〉 =

f
∑

i=1

〈ψi | Oψi〉 ,

where in the last step we applied (2.17) together with (2.1) and used the fact that the
vectors ψ1, . . . , ψf are orthonormal. This proves (2.18).

With the same method, we obtain

〈OF
1 OF

2 〉 = f ! 〈ψ1 ∧ · · · ∧ ψf | OF
1 OF

2 (ψ1 ⊗ · · · ⊗ ψf )〉

=

f
∑

k=1

f ! 〈ψ1 ∧ · · · ∧ ψf | ψ1 ⊗ · · ·ψk−1 ⊗ (O1O2ψk) ⊗ ψk+1 · · ·ψf 〉

+
∑

k 6=l

f ! 〈ψ1 ∧ · · · ∧ ψf | ψ1 ⊗ · · · (O1ψk) · · · (O2ψl) · · · ⊗ ψf 〉

=

f
∑

k=1

〈ψk|O1O2ψk〉 +
∑

k 6=l

(

〈ψk|O1ψk〉〈ψl|O2ψl〉 − 〈ψk|O1ψl〉〈ψl|O2ψk〉
)

.

The last sum can be extended to all k, l = 1, . . . , f , because the summands for k = l
vanish. We thus obtain (2.19). �

The method of this lemma immediately extends to higher powers of one-particle ob-
servables.

More generally, one can consider many-particle observables, described by a self-
adjoint operator O on the Fock space F. In this paper, we shall only consider observ-
ables which preserve the number of particles, i.e. which are invariant on the n-particle
subspaces Fn,

O : Fn → Fn . (2.20)

This assumption is justified by the physical law of the conservation of the baryon
and lepton numbers, stating that the total number of fermions is preserved. Thus
by considering a system which is so large that no fermion enters or leaves it, we can
arrange that all physical observables satisfy (2.20).
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For a many-particle observable satisfying (2.20), the expectation value is again ex-
pressed by a trace,

〈O〉 = TrFf
(PfO) . (2.21)

In order to clarify the connection to the fermionic Fock space formalism, we now
introduce the creation and annihilation operators, with the aim of expressing the
expectation value (2.21) again by traces involving the one-particle projector P . For a
one-particle wave function φ ∈ H, the creation operator a†(φ) is defined on Hartree-
Fock states by

a†(φ) (ψ1 ∧ · · · ∧ ψn) = φ ∧ ψ1 ∧ · · · ∧ ψn .

By linearity, it is extended to an operator a†(φ) : Fn → Fn+1. Its adjoint a(φ) :
Fn+1 → Fn, the so-called annihilation operator, acts on Hartree-Fock states by

a(φ) (ψ1 ∧ · · · ∧ ψn+1) =
n+1∑

k=1

(−1)k+1 〈φ|ψk〉 ψ1 ∧ · · · ∧ ψk−1 ∧ ψk+1 ∧ · · · ∧ ψn+1 .

A straightforward calculation shows that the creation and annihilation operators sat-
isfy the anti-commutation relations

{

a(φ), a†(ψ)
}

= 〈φ|ψ〉 11F . (2.22)

A one-particle observable (2.17) can be expressed in terms of the creation and annihi-
lation operators by

OF =
∑

k,l

a†(φk) 〈φk|Oφl〉 a(φl) ,

where (φl) denotes an orthonormal basis of (H, 〈.|.〉). Products of one-particle observ-
ables can be transformed with the anti-commutation rule (2.22); for example,

OF
1 OF

2 =
∑

k1,k2,l1,l2

a†(φk1) a
†(φk2) 〈φk1 |O1φl1〉〈φk2 |O2φl2〉 a(φl1) a(φl2) (2.23)

+
∑

k,l

a†(φk) 〈φk|O1O2φl〉 a(φl) , (2.24)

where in the last line we used the completeness of the basis (φl).
A useful rule in quantum field theory is Wick ordering, denoted by colons, which

states that all creation operators should be written to the left and all annihilation
operators to the right, leaving out all terms which would be generated by the anti-
commutations. For example, Wick ordering the above product of one-particle observ-
ables amounts to omitting the term (2.24),

:OF
1 OF

2 : =
∑

k1,k2,l1,l2

a†(φk1) a
†(φk2) 〈φk1 |O1φl1〉〈φk2 |O2φl2〉 a(φl1) a(φl2) . (2.25)

A general Wick-ordered two-particle observable can be written as

:O : =
∑

k1,k2,l1,l2

a†(φk1) a
†(φk2) g(k1, k2, l1, l2) a(φl1) a(φl2) , (2.26)

where the function g is anti-symmetric in its first and last two arguments,

g(k1, k2, l1, l2) = −g(k2, k1, l1, l2) = −g(k1, k2, l2, l1) . (2.27)

In the next proposition we express the expectation value of this two-particle observable
in terms of the one-particle projector P .
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Proposition 2.5. Describing a many-fermion state by a projector P in (H, 〈.|.〉), the
expectation value of the two-particle operator (2.26) with g according to (2.27) is given
by

〈:O :〉 =
∑

k 6=l

(

〈φk|Pφk〉〈φl|Pφl〉 − 〈φk|Pφl〉〈φl|Pφk〉
)

g(k, l, k, l) .

The expectation value of the Wick ordered product (2.25) is

〈:OF
1 OF

2 :〉 = TrH(PO1)TrH(PO2) − TrH(PO1PO2) . (2.28)

Proof. We again represent the projector Pf in the form (2.15). Using the obvious
transformation law of the function g under basis transformations, we can arrange
that φ1 = ψ1, . . . , φf = ψf . Then the results follows from a straightforward calcula-
tion. �

We point out that the formula (2.28) coincides with (2.19), except that the sum-
mand TrH(PO1O2) is now missing as a consequence of the Wick ordering.

With the above methods, one can express the expectation values of any many-
particle operator satisfying (2.20) in terms of the one-particle projector P .

3. Restriction to a Subsystem

According to Proposition 2.3, there is a one-to-one correspondence between projec-
tors in H and Hartree-Fock states. Furthermore, we saw in Example 2.1 that entangled
states can in general not be represented by Hartree-Fock states. Thus the description
of a fermionic state using a projector P in H seems to be in conflict with the physical
effect of entanglement. In this chapter, we will try to resolve this problem using the
fact that in all realistic situations, the relevant measurements are performed only in a
small subsystem of the universe. Thus the question is whether restricting attention to
a subsystem makes it possible to describe entanglement.

The observation that the restriction to a subsystem gives more freedom to describe
the effective fermionic state was already used in [6, Appendix A] to show that if
only one-particle measurements are made, describing the system by a one-particle
projector P is equivalent to the general Fock space formalism (this result corresponds to
Proposition 3.5 below). Here we generalize the methods to many-particle observables
and show that the restriction to a subsystem does not make it possible to describe
general entangled states (see Example 3.6).

In order to describe the subsystem, we assume that the one-particle observables
act only on a proper subspace I ⊂ H (the “inner system”). Extending such an
observable O by zero to all of H, we obtain a self-adjoint operator which vanishes
on the orthogonal complement of I,

O : H → H self-adjoint and O|I⊥ ≡ 0 . (3.1)

Extending this operator by (2.17) to the Fock space, we obtain an operator which
preserves the number of particles and vanishes on the orthogonal complement of the
space generated by I,

O : Fn → Fn self-adjoint and O|<Λn(In)> ⊥ ≡ 0 (3.2)

(for notational convenience the superscript of OF has been omitted). In order to
describe many-particle observables, we allow O to be a general operator on F which
satisfies (3.2) and thus leaves the number of particles n fixed.
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We again denote the projector onto the corresponding f -particle Hartree-Fock state Ψ
by Pf (see (2.15), (2.13) and Proposition 2.3),

Pf = f ! |Ψ〉〈Ψ| where Ψ = ψ1 ∧ · · · ∧ ψf . (3.3)

Setting O = I
⊥ (the “outer system”), we decompose all one-particle states ψi into

their inner and outer parts,

ψi = ψI

i + ψO
i with ψI

i ∈ I, ψO
i ∈ O . (3.4)

Substituting this decomposition into (3.3) and multiplying out, one gets a sum of
terms involving wedge products of the ΨI

i and ΨO
i . In order to keep track of the

combinatorics, it is convenient to denote by I a multi-index

I = (i1, . . . , ig) with 1 ≤ i1 < i2 < · · · < ig ≤ f ,

to set |I| := g, and to define the sign of I as the sign of a permutation in {1, . . . , f}
which maps I to the set {1, . . . , g}, i.e.

sign(I) = (−1)i1+···+ig+
g(g+1)

2 .

Furthermore, we denote the complement of I by O, i.e.

O = (j1, . . . , ih) with 1 ≤ j1 < · · · < jh ≤ f , g + h = f , ik 6= jl ∀k, l .
Finally, we set

ΨI = ψI

i1 ∧ · · · ∧ ψI

ig and ΨO = ψO
j1 ∧ · · · ∧ ψO

jh
.

Using this notation, we obtain

Ψ =
∑

I

sign(I) ΨI ∧ ΨO ,

and thus we can write (3.3) as follows,

Pf =
∑

I,I′

f ! sign(I) sign(I ′) |ΨI ∧ ΨO〉〈ΨI′ ∧ ΨO′| . (3.5)

When computing expectation values of operators localized in our subsystem, we
can take the partial trace over O to obtain an equivalent description of our quantum
system by a density operator defined in the subsystem. This is made precise in this
next lemma.

Lemma 3.1. For any operator O on F of the form (3.2), the expectation value (2.21)
can be expressed by 〈O〉 = Tr(ρO), where ρ is the density operator

ρ =

f
∑

g=0

∑

I,I′with|I|=|I′|=g

g!(f − g)! sign(I) sign(I ′) 〈ΨO′ |ΨO〉 |ΨI〉〈ΨI′ | . (3.6)

Proof. Applying (3.2), we find

〈ΨI′ ∧ ΨO′ | O
(
ΨI ∧ ΨO

)
〉 = 〈ΨI′ ∧ ΨO′ |

(
OΨI

)
∧ ΨO〉

= 〈ΨI′ ⊗ ΨO′ |
(
OΨI

)
∧ ΨO〉 =

g!(f − g)!

f !
〈ΨO′ | ΨO〉 〈ΨI′ |OΨI〉

=
g!(f − g)!

f !
〈ΨO′ |ΨO〉 Tr

(

|ΨI〉〈ΨI′ | O
)

.

Using this relation in (3.5) gives the result. �
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We point out that the density operator (3.6) involves states of a variable number of
particles g = 0, . . . , f . The coefficients of the representation (3.6) depend on the inner

products 〈ΨO′ |ΨO〉 of the wave functions in the outer region. Since in the outer region
no measurements are possible, we cannot determine the wave functions ΨO

i . Thus
we can take the point of view that these wave functions can be chosen arbitrarily.
At first sight, this seems to give a lot of freedom to choose the coefficients 〈ΨO′ |ΨO〉
in (3.6), and thus one might conjecture that with (3.6) it should be possible to describe
a general entangled state. We will now show that this conjecture is wrong, basically
because many degrees of freedom in choosing the wave functions ΨO

i drop out when
carrying out the sums in (3.6). Our method is based on a generalization of Cramer’s
rule. Since this method will not be needed later on, the hurried reader may skip the
remaining proofs in this chapter.

In order to bring the inner products 〈ΨO|ΨO′〉 into a more convenient form, we
introduce the (f × f)-matrix A by

Aij := 〈ψO
i |ψO

j 〉 ; (3.7)

it is a positive semi-definite matrix which can be considered as the Gram matrix of
the one-particle wave functions in the outer system. The matrix A might be singular.
Therefore, it is preferable to add a small multiple of the identity matrix to obtain an
invertible matrix. Thus for any ε > 0 we set

Aε = A+ ε 11 and Bε = (Aε)−1 . (3.8)

By Bε
I′,I we denote the (g × g)-matrix obtained from Bε by deleting all rows and

columns except for those corresponding to I and I ′, respectively.

Theorem 3.2. The expectation value (2.21) can be expressed by

〈O〉 = Tr(ρO) ,

where ρ is the density operator

ρ =

f
∑

g=0

∑

I,I′with|I|=|I′|=g

g! lim
εց0

(

det(Aε) det(Bε
I′,I)

)

|ΨI〉〈ΨI′ | , (3.9)

and the matrices Aε, Bε are defined by (3.7) and (3.8).

Proof. Setting h = f − g, the inner product in (3.6) is computed by

〈ΨO′ |ΨO〉 =
1

h!

∑

σ∈Sh

〈ψO
j′
σ(1)

⊗ · · · ⊗ ψO
j′
σ(h)

| ψO
j1 ⊗ · · · ⊗ ψO

jh
〉 =

1

h!
det(AO′,O) , (3.10)

where in the last step we used (2.1) and the definition of the determinant. Since the
determinant is polynomial and thus continuous, it is obvious that

det(AO′,O) = lim
εց0

det(Aε
O′,O) .

Using this relation in (3.10) and (3.6), we conclude that it remains to prove for any
invertible matrix A the identity

det(AO′,O) = sign(I ′) sign(I) det(A) det(BI′,I) , (3.11)

which relates the minors of A to the minors of its inverse. For proving (3.11), we
first note that in the special case where I and I ′ consist of only one index, this is
the well-known Cramer’s rule for the inverse of a matrix. In the general case, the
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identity (3.11) is stated in [13, Section 0.8.4]. It can be proved as follows. The signs
in (3.11) can be understood from the fact that if rows or columns of the matrices A
and B are permuted without violating the ordering of the multi-indices I, I ′, O and O′,
then every such conjugation flips the sign of det(A), and also the sign of one of the
functions sign(I) or sign(I ′). With such conjugations we can arrange that

I = I ′ = (1, . . . , g) and O = O′ = (g + 1, . . . , f) (3.12)

(but of course, the matrices A and B will no longer be Hermitian). It remains to show
that in this case,

det(AO′,O) = det(A) det(BI′,I) .

Using Laplace’s formula, in case (3.12) the minor det(AO′,O) can be written as a
multiple derivative of det(A),

det(AO′,O) =
∂

∂A11
· · · ∂

∂Agg
detA . (3.13)

Using the standard formulas

∂

∂Aii
det(A) = det(A)Bii

∂

∂Aii
Bjk =

∂

∂Aii
(A−1)jk = −

(

B

(
∂

∂Aii
A

)

B

)

jk

= −BjiBik ,

one can iteratively carry out the derivatives in (3.13) to obtain

det(AO′,O) = det(A) ×
(

homogeneous polynomial of degree g in Bjk with j, k ∈ I
)

.

Going through the combinatorial details, one finds that this homogeneous polynomial
coincides precisely with det(BI′,I). �

We now illustrate this theorem by a few examples and work out simple consequences.
We first explain how to recover a Hartree-Fock state.

Example 3.3. (Hartree-Fock state) Choosing ΨI = Ψ and ΨO = 0, the Gram ma-
trix (3.7) vanishes and thus

Aε = ε and Bε = ε−1 .

Hence
det(Aε) det(Bε

I′,I) = εf−|I| δI,I′ ,

and this vanishes in the limit εց 0 unless I = (1, . . . , f). Hence (3.9) reduces to

ρ = f ! |Ψ〉〈Ψ| ,
so that the density operator coincides with the projector Pf (3.3) of the whole system.

♦

Example 3.4. (A mixed state) We choose f = 3, ψO
1 = 0, ‖ψO

2 ‖ = ‖ψO
3 ‖ = κ ∈ [0, 1]

and 〈ψO
2 |ψO

3 〉 = 0. Thus

Aε = diag
(
ε, κ2 + ε, κ2 + ε

)
,

and a short calculation yields that

ρ =κ4|ψI

1 〉〈ψI

1 | + 2κ2
(

|ψI

1 ∧ ψI

2〉〈ψI

1 ∧ ψI

2 | + |ψI

1 ∧ ψI

3 〉〈ψI

1 ∧ ψI

3 |
)

+ 3! |ψI

1 ∧ ψI

2 ∧ ψI

3 〉〈ψI

1 ∧ ψI

2 ∧ ψI

3 | .
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Thus the density operator of the subsystem is an ensemble of one, two and three
particle states. The one-particle state ψI

1 is always occupied; this is because the
corresponding eigenvalue of the matrix A vanishes. The two-particle component cannot
be represented by a pure state; it is a mixed state. ♦

We next show that when restricting attention to one-particle observables, the ex-
pectation value of any vector in the fermionic Fock space can be approximated to
arbitrary precision by a one-particle projector P .

Proposition 3.5. For every normalized n-particle state Ψ in our subsystem, i.e.

Ψ ∈ <Λn(In)> ⊂ Fn and ‖Ψ‖ = 1 ,

there is a sequence of projectors (Pk)k∈N in H of finite rank fk, such that for every
one-particle observable O,

〈Ψ|OΨ〉 = lim
k→∞

Tr(PkO) .

Proof. Writing Ψ as a linear combination of Hartree-Fock states and computing the
expectation value with (2.17) and (2.1), we obtain

〈Ψ|OΨ〉 =
∑

k,l

ck,l 〈ψI

k |OψI

l 〉

with suitable vectors ψI

k ∈ I and complex coefficients ck,l. Using an approximation
argument, it clearly suffices to consider finite sums and finite linear combinations.
Choosing an orthonormal basis ψk of the subspace 〈ψI

k〉 ⊂ I, and expressing the ψI

k as
linear combinations of the ψk, we obtain

〈Ψ|OΨ〉 =
∑

k,l

ρk,l 〈ψk|Oψl〉 .

Diagonalizing the symmetric matrix ρk,l by a unitary transformation, this representa-
tion simplifies to

〈Ψ|OΨ〉 =
∑

k

ρk 〈ψk|Oψk〉 . (3.14)

Since the operator |Ψ〉〈Ψ| is positive and normalized, it follows that

ρk ≥ 0 and
∑

k

ρk = 1 .

We choose an orthonormal family of vectors (φk) in O and set

ψtot
k =

√
ρk ψk +

√

1 − ρk φk .

Then the family (ψtot
k ) is orthonormal, and thus

P =
∑

k

|ψtot
k 〉〈ψtot

k |

defines a projector in H. Using (3.1), it is immediately verified that the expectation
value Tr(PO) coincides with the right side of (3.14). �

The next example shows that the restriction to a subsystem does not make it possible
to describe general entangled states.
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Example 3.6. (The spatially separated singlet state) Let us try to realize the spatially
separated singlet state of Example 2.1. We assume that the inner system I ⊂ H has

the orthonormal basis (ψ↑
A, ψ

↓
B , ψ

↓
A, ψ

↑
B). Our goal is to find a projector P in H such

that the corresponding density operator of the subsystem (3.9) coincides with the
projector onto the singlet state (2.3), i.e.

ρ = |ψ↑
A ∧ ψ↓

B〉〈ψ
↑
A ∧ ψ↓

B | + |ψ↓
A ∧ ψ↑

B〉〈ψ
↓
A ∧ ψ↑

B |
− |ψ↑

A ∧ ψ↓
B〉〈ψ

↓
A ∧ ψ↑

B | − |ψ↓
A ∧ ψ↑

B〉〈ψ
↑
A ∧ ψ↓

B | .
(3.15)

The simplest way to see that such a projector P does not exist is to observe that
in (3.9) one necessarily gets the contribution involving four particles

|ψ↑
A ∧ ψ↓

B ∧ ψ↓
A ∧ ψ↑

B〉〈ψ
↑
A ∧ ψ↓

B ∧ ψ↓
A ∧ ψ↑

B | ,
which is not present in (3.15). However, this argument is not fully convincing, because
an additional four-particle contribution would not be observable in the standard spin
correlation experiments where “Alice” and “Bob” can only detect one particle at a
time. Furthermore, by making the matrix elements of Bε small, one could try to ar-
range that the four-particle contribution is negligible. For these reasons, it is preferable
to show that we cannot even realize that the two-particle component of (3.9) coincides
with (3.15), as we now explain.

Restricting attention to the two-particle component of (3.9), we need to consider
the determinants of the 2-submatrices of the matrix Bε. Noting that in the case |I| =
|I ′| = 2, we can write the product of the determinants in (3.9) as

det(Aε) det(Bε
I′,I) = det

(√

det(Aε)Bε
I′,I

)

,

it suffices to consider the 2-minors of the matrix

B := lim
εց0

√

det(Aε)Bε .

Grouping the first two and the last two basis vectors together, we write B as the block
matrix

B =

(
B11 B12

B21 B22

)

,

whose entries are 2×2 matrices acting on the subspaces <{ψ↑
A, ψ

↓
B}> and <ψ↓

A, ψ
↑
B> ,

respectively. In order to realize (3.15), we need to arrange that the determinants
of the submatrices B11 and B22 are non-zero, but all other 2-minors must vanish.

Diagonalizing B11 and B22 by unitary transformations in the subspaces <{ψ↑
A, ψ

↓
B}>

and <{ψ↓
A, ψ

↑
B}> , respectively, we obtain

B =







ρ1 0 a c

0 ρ2 b d
a b ρ3 0
c d 0 ρ4







with ρi > 0 .

Evaluating the condition detBI,I′ = 0 for I = (1, 3) and I ′ = (1, 2), we see that b
must vanish. Similarly, taking I = (1, 4) and I ′ = (1, 2) yields d = 0. Repeating
this procedure for I = (2, 3) and I = (2, 4) we find that a = c = 0. Hence B is a
positive diagonal matrix. But then the submatrix BI,I with I = (1, 3) has a non-zero
determinant, a contradiction. ♦
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M1

M2

M3

Bob
Alice

Figure 1. Example of microscopic mixing in a spin correlation experiment.

Remark 3.7. (Systems with purely classical bosonic fields) Let us consider a system
where second-quantized fermions are coupled to classical bosonic fields, in the pure
sense that also all measurement devices can be described by the classical field equations.
As pointed out in [6, Appendix A], the coupling of the fermions to classical fields can be
described by one-particle observables (like the expectation value of the Dirac current
in Maxwell’s equations or the expectation value of the energy-momentum tensor in
Einstein’s equations). In view of Proposition 3.5, the resulting system can be described
by a one-particle projector P . On the other hand, we saw in Example 3.6 that this
framework does not allow for the description of general entangled states. We conclude
that the physical phenomenon of entanglement makes it necessary to consider second
quantized bosonic fields.

This consideration suggests that there is a close connection between entanglement
and second quantization of the bosonic fields. This connection will become clearer in
the following chapters, because the method of microscopic mixing, which will allow for
the description of entanglement (see Chapters 4 and 6), will also make it possible to
describe second quantized bosonic fields (see Chapter 7). ♦

4. Microscopic Mixing of Subsystems

As we saw in Example 3.6, the restriction to a subsystem does not resolve the basic
problem that general entangled states cannot be realized by a projector P in the one-
particle Hilbert space (H, 〈.|.〉). Our next idea for overcoming this problem is to give P
a non-trivial microscopic structure, with the hope that “averaging” this microstructure
over macroscopic regions of space-time will give rise to an effective kernel P (x, y) of a
more general form which allows for the description of entanglement. More specifically,
we consider the situation where space is subdivided into sets M1, . . . ,ML, which are
fine-grained in the sense that every macroscopic region of space-time intersects several
of the sets Ma. The sets Ma can be localized, but they can also be extended over
a macroscopic region of space-time, for example by forming “layers” or “filaments”
connecting the two observers in the spin correlation experiment of Example 2.1 (see
Figure 1). The macroscopic physical objects are then introduced by homogenizing over
the sets Ma. We refer to this technique as the method of microscopic mixing.

We now work out this method in the non-relativistic setting (Section 4.1). Assum-
ing furthermore that the subsystems have an independent dynamics, we can give a
formalism for describing entangled states (Section 4.2). The microscopic justification
of this formalism is postponed to Chapters 6 and 8.
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4.1. Microscopic Mixing of the Wave Functions. We decompose M into a dis-
joint union of a finite number L of subsets Ma,

M = M1 ∪ · · · ∪ML and Ma ∩Mb = ∅ if a 6= b. (4.1)

Then H splits into an orthogonal direct sum of the Hilbert spaces Ha of square inte-
grable wave functions on Ma,

H =

L⊕

a=1

Ha . (4.2)

Thus every wave function ψi in the image of P , (2.13), has the unique decomposition

ψi =
L∑

a=1

ψ
(a)
i with ψ

(a)
i ∈ Ha . (4.3)

Our first attempt is to generalize a macroscopic local one-particle observable O (like
a position or spin operator) to an operator on H being invariant on Ha,

O : Ha → Ha . (4.4)

Then the corresponding one-particle expectation values split into a sum over the sub-
systems,

〈ψ|Oψ〉 =

L∑

a=1

〈ψ(a)|Oψ(a)〉 =

L∑

a=1

�
Ma

ψ(x)Oψ(x) dx ,

and this can be understood as an “averaging process” over the subregions Ma.
Following the constructions in Section 2.4, every one-particle operator induces a

corresponding operator on the Fock space F, and products of such operators yield
corresponding many-particle observables. Taking expectation values of such operators
in the Fock space again involves an “averaging process” over the subregions Ma. More
specifically, describing the many-particle system by a fermionic projector P , the ex-
pectation value of the Wick-ordered two-particle observables corresponding to “Alice”
and “Bob” (see Proposition 2.5) is given by

〈:OF
AOF

B :〉 =

f
∑

i,j=1

L∑

a,b=1

(

〈ψ(a)
i |OAψ

(a)
i 〉〈ψ(b)

j |OBψ
(b)
j 〉

−〈ψ(a)
i |OAψ

(a)
j 〉〈ψ(b)

j |OBψ
(b)
i 〉

)

.

(4.5)

Thus an “averaging” takes place at each of the observers. However, it is important to
note that there is no averaging process over correlations between the two observers, as
would be the case for an expression like

f
∑

i,j=1

L∑

a=1

〈ψ(a)
i |OAψ

(a)
i 〉〈ψ(a)

j |OBψ
(a)
j 〉 .

This shortcoming is the basic reason why the above method does not make it possible
to realize general entangled states. Before discussing this point in more detail, we first
prove that it is indeed impossible to realize the EPR-singlet state.

Proposition 4.1. In the above setting, there is no projector P in H which reproduces
the expectation values of the spatially separated singlet state (2.3) with respect to the
spin operators of “Alice” and “Bob” and the corresponding two-particle spin correlation
operators.
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Proof. We let S↑ be the spin operator having the expectation values one if the spin
is up and zero if the spin is down. Similarly, S↓ is the operator for spin down. The
spin operators corresponding to the observers “Alice” and “Bob” are denoted by S↑/↓,A
and S↑/↓,B , respectively; they are operators in H. Taking for convenience the Wick
ordered products of the corresponding operators on the Fock as defined by (2.25), we
can compute the following expectation values of the singlet state (2.3),

〈S↑,A〉 = 〈S↓,B〉 =
1

2

〈:SF
↑,A S

F
↓,B :〉 =

1

2
, 〈:SF

↑,A S
F
↑,A :〉 = 〈:SF

↓,B S
F
↓,B :〉 = 0

(4.6)

(all the other expectation values are irrelevant for the proof). Assuming that the
statement of the proposition is false, these expectation values can be reproduced by a
suitable one-particle projector P . Applying Lemma 2.4 and Proposition 2.5, we can
then express the expectation values by traces over the one-particle Hilbert space H,

〈OF〉 = Tr(PO) and 〈:OF
1 OF

2 :〉 = Tr(PO1)Tr(PO2) − Tr(PO1PO2) .

Using the idempotence of P , the arguments of these traces can all be rewritten purely
in terms of the operators

T↑,A := PS↑,AP and T↓,B := PS↓,BP , (4.7)

which are symmetric and of finite rank. The relations (4.6) give rise to the conditions

Tr(T↑,A) = Tr(T↓,B) =
1

2
, Tr(T 2

↑,A) = Tr(T 2
↓,B) =

1

4
, Tr(T↑,AT↓,B) = −1

4
. (4.8)

At this point it is helpful to regard the operators T.,. as vectors in the real Hilbert space
of symmetric Hilbert-Schmidt operators with the scalar product 〈A,B〉HS = Tr(AB)

and corresponding norm ‖A‖HS =
√

〈A,A〉HS . Then the last two equations in (4.8)
imply that

‖T↑,A + T↓,B‖2
HS = Tr(T 2

↑,A) + 2 Tr(T↑,AT↓,B) + Tr(T↓,B) = 0 . (4.9)

It follows that T↑,A = −T↓,B, in contradiction to the first equation in (4.8). �

We point out that in this proof we did not use that the one-particle operators are
invariant on the subsystems (4.4). Thus dropping this assumption would not change
the statement of Proposition 4.1.

4.2. A Formalism for the Description of Entanglement. The basic shortcoming
in the previous consideration was that we did not take into account that the measure-
ment process is a result of an interaction of the system with the measurement device.
Assuming that the subsystems have an independent dynamics (an assumption which
will be justified in Section 6.2 below), also the measurement process should take place
independently in the subsystems. Following this idea makes it possible to describe
entanglement, as we now explain.

Beginning with the one-particle observables, the assumption of an independent dy-
namics of the subsystems was already taken into account in (4.4) by the assumption
that O should be invariant on the subspaces Ha. However, for a many-particle ob-
servable, it was too simple to take the Wick-ordered product (4.5). Thinking of the
situation in Figure 1, “Alice” is built up of fermionic wave functions. Thus considering
her as part of the physical system, we should also replace the corresponding measure-

ment operator OA by separate operators O(a)
A for each of the subsystems. Proceeding
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similarly for “Bob”, in the subsystem Ma measurements are to be carried out with the

operators O(a)
A and O(a)

B . Thus for correlation measurement in Ma, we should extend

the one-particle observables O(a) to operators OF(a)
defined on the Fock space F

(a)
n of

the subsystem given by

F
(a)
n = <Λn(Hn

a )> ⊂ Fn (4.10)

(as explained after (2.20), we again restrict attention to observables which preserve
the number of particles) and consider the corresponding two-particle observable

:OF(a)

A OF(a)

B : : F
(a)
n → F

(a)
n .

More generally, we make the following assumption:

(A) The observables correspond to operators O which are invariant on F
(a)
n ,

O : F
(a)
n → F

(a)
n , a = 1, . . . , L .

Similar as explained in Section 2.3 for the Fock space Ff , we can get a simple connection

between the fermionic projector and the Fock spaces F
(a)
f . Namely, choosing again an

orthonormal basis ψ1, . . . , ψf of P (H) and decomposing each of the one-particle wave

functions according to (4.3), we can construct Hartree-Fock states Ψ(a) in the f -particle
Fock spaces of the subsystems,

Ψ(a) := ψ
(a)
1 ∧ · · · ∧ ψ(a)

f ∈ F
(a)
f . (4.11)

Exactly as in Lemma 2.2, one sees that these vectors are unique up to a common
phase,

Ψ(a) → eiϕ Ψ(a) with ϕ ∈ R independent of a . (4.12)

The setting so far is not sufficient for determining the expectation value of a mea-
surement, because for computing an expectation value we to take an “average” over
the subsystems. This process can be described conveniently by the so-called measure-
ment scalar product (.|.), which we now introduce (for a microscopic derivation and
interpretation of the measurement scalar product and the measurement process see
Sections 6.3 and 8.2 below). It is defined on the one-particle Hilbert space (H, 〈.|.〉) as
a positive semi-definite inner product

(.|.) : H × H → C , (4.13)

with respect to which the direct sum decomposition (4.2) need not be orthogonal. The
fact that this inner product is only semi-definite models the fact that the measure-
ment process may involve a homogenization process on the microscopic scale, so that
fluctuations of the wave functions on the small scale might not enter the measurement
process. The measurement scalar product induces on the Fock spaces the bilinear form

(.|.)(a,b) : F
(a)
n × F

(b)
n → C : (ψ

(a)
1 ∧ · · · ∧ ψ(a)

n , ψ
(b)
1 ∧ · · · ∧ ψ(b)

n )

7→ 1

n!

∑

σ∈Sn

(−1)sign(σ)(ψ
(a)
σ(1)

|ψ(b)
1 ) · · · (ψ(a)

σ(n)
|ψ(b)

n ) .

We now specify how expectation values are to be computed and state the assumptions
which ensure that these expectation values are real.
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(B) The expectation value of the measurement of the observable O is given by

〈O〉 =

∑L
a,b=1(Ψ

(a) | OΨ(b))(a,b)

∑L
a,b=1(Ψ

(a) |Ψ(b))(a,b)
. (4.14)

(C) The observables are symmetric possibly up to a microscopic error, meaning
that

(Ψ(a) | OΨ(b))F = (OΨ(a) |Ψ(b))F + O(ε) ,

where ε is the length scale of the microscopic mixing.

Finally, we need to specify how a state changes in a measurement process. In order
to ensure that a repeated measurement of the same observable yields identical results,
one usually asserts that after the measurement, the state should be an eigenstate of the
observable. In our setting, the situation is a bit more involved because the measure-
ment process may change the number of subsystems, and only the wave function after
the homogenization should be an eigenstate of the observable. This is made precise

by the following construction. We take the direct sum of the vector spaces F
(a)
n ,

G :=

L⊕

a=1

F
(a)
n ,

and on these spaces we introduce the inner product

(.|.)G : G × G → C :
(

(Ψ(a))a=1,...,L, (Ψ
(b))a=1,...,L

)

7→
L∑

a,b=1

(Ψ(a)|Ψ(b))(a,b) .

This inner product is positive semi-definite, but it need not be definite. Dividing out
the null space and taking the completion,

Feff
n := G/G0 where G0 = {u ∈ G with (u|u)G = 0} , (4.15)

we obtain a Hilbert space, which we can regard as the effective n-particle Fock space
obtained by homogenization over the subsystems. We denote the natural projection
operator by πn,

πn :
L⊕

a=1

F(a)
n → Feff

n . (4.16)

Using linearity together with Assumption (C) above, every observable O induces an
operator

Oeff : Feff
n → Feff

n , (4.17)

uniquely defined possibly up to a microscopic error. To the fermionic projector P we
associate a corresponding state

Ψeff = πf

(

Ψ(1), . . . ,Ψ(L)
)

∈ F
eff
f (4.18)

(with the Ψ(a) as in (4.11)). According to (4.12), this state is well-defined up to an
irrelevant phase.

(D) After a measurement of the observable O, the one-particle projector P takes
such a form that the corresponding state Ψeff ∈ Feff

f defined by (4.18) is an

eigenstate of the operator Oeff, (4.17).
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Similar as in the Copenhagen interpretation or the formulation of the measurement
process by von Neumann [24, Section V.1], the above Assumptions (A)–(D) are merely
working rules to determine the results of measurements. For a conceptually convincing
treatment, these assumptions should be derived from the physical equations. This will
be discussed in Chapter 8.

We now verify that the above setting indeed makes it possible to realize the EPR
singlet state.

Example 4.2. (The spatially separated singlet state) We choose a microscopic length
scale ε > 0 and subdivide position space M = R

3 into two subregions M1 and M2

which form layers of width ε,

M1 = {~x ∈ R
3 with [x1/ε] ∈ 2Z} , M2 = {~x ∈ R

3 with [x1/ε] ∈ 2Z + 1}
(where [x] = min{n ∈ Z | n ≥ x} is the Gauss bracket). We introduce the wave
functions

ψ1(~x) = ψ↑
A(~x) χM1(~x) + ψ↓

A(~x) χM2(~x)

ψ2(~x) = ψ↓
B(~x) χM1(~x) − ψ↑

B(~x) χM2(~x) ,

where ψ
↑/↓
A/B are smooth one-particle wave functions supported near “Alice” or “Bob”

(and where χ is the characteristic function defined by χN (x) = 1 if x ∈ N and χN (x) =
0 otherwise). Defining P as the projector on the subspace spanned by ψ1 and ψ2, the
corresponding two-particle wave functions of the subsystems are

Ψ(1) = c
(

ψ↑
A ∧ ψ↓

B

)

χM1×M1 and Ψ(2) = −c
(

ψ↓
A ∧ ψ↑

B

)

χM2×M2

with c a normalization constant.
In order to realize a suitable mixing of the subregions in the measurement process,

we introduce the measurement scalar product by

(ψ|φ) =

�
M
ψ(~x)φ(~x) d~x+

1

2

�
M

(

ψ(~x+ εe1)φ(~x) + ψ(~x)φ(~x+ εe1)
)

d~x .

The spin operators are symmetric with respect to this inner product, whereas the
position operators are symmetric up to an error of order ε,

(~xψ|φ) − (ψ|~xφ) =
ε

2

�
M
x1

(

ψ(~x+ εe1)φ(~x) − ψ(~x)φ(~x+ εe1)
)

d~x .

Thus the general observables introduced according to (A) indeed satisfy the condi-
tion (C). The expectation values of the spin operators can now be calculated by ap-
plying the rule (B). More precisely, the inner products in (4.14) are computed by

(Ψ(1)|OΨ(1))(1,1) = 〈Ψ(1)|OΨ(1)〉
(Ψ(2)|OΨ(2))(2,2) = 〈Ψ(2)|OΨ(2)〉

(Ψ(1)|OΨ(2))(1,2) =
1

2

(

〈Ψ(1)
+ |OΨ(2)〉 + 〈Ψ(1)|OΨ

(2)
+ 〉

)

(Ψ(2)|OΨ(1))(2,1) =
1

2

(

〈Ψ(2)
+ |OΨ(1)〉 + 〈Ψ(2)|OΨ

(1)
+ 〉

)

,

where on the right the scalar product on F as defined by (2.1) appears, and the
subscript + denotes that both spatial arguments of the corresponding two-particle
wave function have been shifted by εe1. Note that all these inner products involve
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integrals over M1 ×M1 or M2 ×M2. Since the wave functions ψ↑↓
A/B are all smooth,

we can extend the two-particle wave functions of the subsystems to smooth functions
on M ×M ,

Ψ
(1)
eff = c

(

ψ↑
A ∧ ψ↓

B

)

and Ψ
(2)
eff = c

(

ψ↓
A ∧ ψ↑

B

)

. (4.19)

Shifting the arguments changes these smooth wave functions only by a term of order ε.
Also, extending the integration range in the above integrals from M1×M1 or M2×M2

to M ×M changes the values of the integrals only by a factor of four, again up to
contributions of order ε. We thus obtain

L∑

a,b=1

(Ψ(a) | OΨ(b))(a,b) = 4
〈

(Ψ
(1)
eff + Ψ

(2)
eff ) | O (Ψ

(1)
eff + Ψ

(2)
eff )

〉

+ O(ε) .

We conclude that in the limit ε ց 0, the expectation values as defined by (B) indeed
coincide with the expectation values of the spin singlet state.

Moreover, it is straightforward to verify that the space Feff
2 as defined by (4.15)

can be identified with the ordinary Fock space F2, and that under this identification,

the state Ψeff as given by (4.18) goes over to the state Ψ
(1)
eff + Ψ

(2)
eff with the wave

functions Ψ
(1/2)
eff as in (4.19). ♦

5. A Few Basics on the Fermionic Projector

The concept of microscopic mixing of subsystems as introduced in the previous
chapter goes beyond the scope of ordinary quantum theory. In order to justify this
concept, we need to use ideas and methods from the theory of the fermionic projector,
which we now outline. We keep the setting as simple as possible and restrict attention
to those aspects which will be important for our purpose (for details we refer to [6, 8, 9]
or the review papers [7, 10]).

5.1. The Relativistic Setting, Indefinite Inner Product Spaces. For the rel-
ativistic generalization of the previous constructions we consider Dirac wave func-
tions ψ(t, ~x) in Minkowski space (M, 〈., .〉), which satisfy the Dirac equation for exam-
ple in the presence of an electromagnetic field

iγj(∂j − ieAj)ψ = mψ

(here γj, j = 0, . . . , 3, are the Dirac matrices, A is the electromagnetic potential,
and m is the rest mass). At every space-time point, the Dirac wave functions are
endowed with the Lorentz invariant inner product ≺ψ|φ≻ := ψφ (where ψ = ψ†γ0 is
the usual adjoint spinor), having the signature (2, 2). Integrating this inner product
over space-time gives rise to the inner product on the wave functions

<ψ|φ> :=

�
M

≺ψ(x)|φ(x)≻ d4x . (5.1)

Moreover, the non-negative quantity ≺ψ|γ0ψ≻ has the interpretation as the probability
density of the Dirac particle. Polarizing and integrating over space yields the scalar
product

(ψ|φ) =

�
t=const

≺ψ(t, ~x) | γ0φ(t, ~x)≻ d~x . (5.2)

For solutions of the Dirac equation, current conservation implies that this scalar prod-
uct is time independent.
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In the framework of the fermionic projector (see [6, Chapter 3] or [8]), one considers
Dirac wave functions ψ1, . . . , ψf being vectors in the space (H, <.|.> ) endowed with
the indefinite inner product (5.1) (possibly in finite 4-volume in order to make the
space-time integrals finite). Thus the space of one-particle wave functions is no longer
a Hilbert space. But we assume that the wave functions ψ1, . . . , ψf span a negative
definite subspace of (H, <.|.> ) (i.e. the vectors ψi in (3.3) all satisfy the inequality
<ψi, ψi>≤ 0). Let us verify that our previous results carry over to this framework.
We begin by reviewing the restriction to subsystems in Chapter 3.

Remark 5.1. (Restriction to subsystems) As just explained, we assume that the wave
functions ψ1, . . . , ψf form a negative-definite subspace of (H, <.|.> ). This subspace
can be regarded as a Hilbert space. When considering a subsystem, we split up the
wave functions according to (3.4) into their inner and outer parts. Now the vectors ψO

need no longer be negative definite, and as a consequence, the Gram matrix (3.7) need
no longer be semi-definite. This major difference to the setting in Chapter 3 has no
consequences on our results, because the semi-positivity of the Gram matrix Aij was
never used in the subsequent arguments. In particular, the consideration in Exam-
ple 3.6 shows that it is again impossible to realize the density operator of the spatially
separated singlet state in (2.3). ♦

We now verify that the argument in Proposition 4.1 remains valid in indefinite inner
product spaces.

Remark 5.2. (Microscopic mixing of the wave functions) Since the space-time inner
product (5.1) is indefinite, the symmetric linear operators no longer form a Hilbert
space (in particular, the trace Tr(A2) need no longer be non-negative). As as conse-
quence, the argument after (4.9) in Proposition 4.1 no longer seems to apply. However,
at this point we can exploit the fact that the span I of the wave functions ψ1, . . . , ψf

forms a negative-definite subspace of H. Namely, considering the operators in (4.7) as
symmetric operators in the Hilbert space I, all the arguments in the proof of Propo-
sition 4.1 go through. ♦

We conclude that the “no-go-results” in Chapter 3 and Section 4.1 remain valid in
the setting of the fermionic projector. Thus the only possibility to realize entangled
states seems to rely on the formalism of Section 4.2.

We finally mention that an indefinite inner product can lead to effects which can be
interpreted as a violation of Kolmogorov’s axiom that probabilities take values in the
interval [0, 1]. Such “extended probabilities” make it possible to formulate local and
causal quantum theories with hidden variables which do not violate Bell’s inequalities.
More precisely, it is possible to formulate a hidden variable theory in which the sta-
tistical average of the expectation values coincides precisely with the corresponding
expectation values of the spatially separated singlet state (2.3). However, this method
does not seem to work for spin 3/2. Moreover, in this formulation the expectation
values of the singlet state can be reproduced only in the statistical average, but it
is impossible to realize the singlet state itself. As we do not find this situation fully
convincing, we shall not follow this approach here. The interested reader is referred
to [1, Section 5.2.3], [18] and the detailed review paper [17].

5.2. Fermion Systems in Discrete Space-Time. In the discrete setting, we re-
place Minkowski space by a finite number of space-time points M = {1, . . . ,m}. To
each space-time point, we associate an indefinite inner product space (Sx,≺.|.≻) of
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signature (2, 2), referred to as the spinor space. A wave function ψ is defined as a
function which maps every space-time point x to a vector ψ(x) ∈ Sx. Introducing the
inner product

<ψ|φ>=
∑

x∈M

≺ψ(x)|φ(x)≻ , (5.3)

the wave functions form an indefinite inner product space (H, <.|.> ). To describe the
fermions, we consider a negative definite subspace I ⊂ H and introduce the fermionic
projector as a projector on I. Choosing a pseudo-orthonormal basis ψ1, . . . , ψf of I,
the projector on I can be written in bra/ket-notation as

P = −
f

∑

j=1

|ψj><ψj|

(the minus sign corresponds to the fact that I is negative definite). Using the form of
the inner product (5.3), we can also write P as

(Pψ)(x) =
∑

y∈M

P (x, y)ψ(y) with P (x, y) = −
f

∑

j=1

|ψj(x)≻≺ψj(y)| . (5.4)

Due to the similarity to an integral representation, we refer to P (x, y) as the discrete
kernel of the fermionic projector. Thus as in the setting of Section 2.3, P is a projector
in the space of one-particle wave functions. However, the inner product on the one-
particle vector space (H, <.|.> ) is no longer positive definite, as can be understood
from the analogy to the indefinite inner product on the Dirac wave functions (5.1).
We refer to P on (H, <.|.> ) together with the inner product of the form (5.3) as a
fermion system in discrete space-time.

It is important to keep in mind that according to the above definitions, there are
no relations between the space-time points which correspond to a nearest-neighbor
relation on a lattice or to the topological or causal structure of Minkowski space.
Discrete space-time M is merely a set of points, without any additional structures.
The key for getting such additional structures is to set up an action principle where
we minimize an action S being the space-time sum of a Lagrangian L,

S =
∑

x,y∈M

L[P (x, y)P (y, x)] → min . (5.5)

The Lagrangian is a non-linear functional of the discrete kernel, and in this way the
action depends on the fermionic wave functions ψ1, . . . , ψf . It turns out that for mini-
mizers of the action, an effect of spontaneous symmetry breaking generates additional
structures on space-time, like a notion of causality:

Definition 5.3. (causal structure) Two space-time points x, y ∈M are called time-
like separated if the spectrum of the product P (x, y)P (y, x) is real. Likewise, the points
are spacelike separated if the spectrum of P (x, y)P (y, x) forms two complex conjugate
pairs having the same absolute value.

In non-technical terms, this effect of structure formation can be understood as a self-
organization of the wave functions described by our action principle.

The important observation for what follows is that in the framework of the fermionic
projector, space-time is not smooth on the microscopic scale, but it has an underlying
discrete structure. The dynamics is described intrinsically in discrete space-time by the
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action principle (5.5). A minimizing fermionic projector has a rich microscopic struc-
ture, from which one can deduce notions which have a correspondence to macroscopic
physics (like the above notion of causality). There are good reasons to believe that
for systems involving many particles and many space-time points, these macroscopic
notions give rise to the structures of Minkowski space or a Lorentzian manifold [10].

5.3. The Continuum Limit. The continuum limit is a mathematical method where
one homogenizes the unknown microscopic structure of the fermionic projector with
the goal of analyzing the action principle (5.5) for Dirac particles coupled to classical
fields. More specifically, one assumes that the fermion configuration of the vacuum
can be described after a suitable homogenization process by a Dirac sea configuration
in Minkowski space. Thus in the simplest case of one Dirac sea, the kernel of the
fermionic projector of the vacuum is given by

P sea(x, y) =

�
d4k

(2π)4
(kjγ

j +m) δ(k2 −m2) Θ(−k0) e−ik(x−y) , (5.6)

where Θ is the Heaviside function. In order to introduce particles and anti-particles,
one occupies (suitably normalized) positive-energy states and removes states of the
sea,

P (x, y) = P sea(x, y) − 1

2π

nf∑

k=1

|ψk(x)≻≺ψk(y)| +
1

2π

na∑

l=1

|φl(x)≻≺φl(y)| . (5.7)

In the case with interaction, the fermionic projector is described more generally as
a solution of a Dirac equation involving a general interaction. For our purposes, it
suffices to consider an electromagnetic field,

(
iγj(∂j − ieAj) −m

)
P (x, y) = 0 . (5.8)

Using the so-called causal perturbation expansion and light-cone expansion, the fermio-
nic projector can be introduced via (5.7) and (5.8) even in the time-dependent setting.

It is important that our setting so far does not involve the field equations; in partic-
ular, the electromagnetic potential in the Dirac equation (5.8) does not need to satisfy
the Maxwell equations. Our concept is that the field equations should be derived
from our action principle (5.5). Indeed, analyzing the corresponding Euler-Lagrange
equations, one finds that they are satisfied only if the potentials in the Dirac equation
satisfy certain constraints. Some of these constraints are partial differential equations
involving the potentials as well as the wave functions of the particles and anti-particles
in (5.7). In [9], such field equations are analyzed in detail for a system involving an
axial field. In order to keep the setting as simple as possible, we here consider the
analogous field equation for the electromagnetic field

∂jkA
k − �Aj = e

nf∑

k=1

≺ψk|γjψk≻− e
na∑

l=1

≺φl|γjφl≻ . (5.9)

With (5.8) and (5.9), the interaction as described by the action principle (5.5)
reduces in the continuum limit to the coupled Dirac-Maxwell equations. The many-
fermion state is again described by the fermionic projector. As explained in Section 2.3,
this is equivalent to working with a Hartree-Fock state in Fock space. In this sense,
we are working with second-quantized fermions. The electromagnetic field, however,
is a classical bosonic field. Treating the coupled Dirac-Maxwell system perturbatively
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yields all Feynman diagrams, giving agreement with the high-precision tests of quan-
tum electrodynamics (see [9, Section 8.4]). However, the framework of the continuum
limit does not make it possible to describe entanglement for two different reasons: first
because Hartree-Fock states are too restrictive (see Examples 2.1 and 3.6), and second
because entanglement does not arise in systems with purely classical fields (see Re-
mark 3.7).

We point out that the fermionic projector in Minkowski space (5.7) fits into the
framework in discrete space-time (5.4) if the number of space-time points and the
number of particles tends to infinity. Conversely, by considering the system in finite
4-volume and introducing an ultraviolet regularization, the continuum fermionic pro-
jector can be associated to a corresponding fermionic projector in a discrete space-time.
Note that, since we also count the states forming the Dirac sea, these regularized sys-
tems involve an extremely large number of particles (typically of the order ∼ (L/ℓP )3,
where L is the size of the system and ℓP denotes the regularization length).

It is important to keep in mind that in the continuum limit, the causal and metric
structure of Minkowski space can be recovered from the fermionic projector using the
notion of Definition 5.3. Thus we can say that the wave functions of the Dirac particles
(also taking into account the states of the Dirac sea) generate the causal and geometric
structure of space-time. This observation will be helpful in the next section, where by
bringing the wave functions in different regions of space-time “out of phase”, we will
be able to turn off causal influences between these regions.

6. Decoherent Space-Time Regions

In this chapter we reconsider the concept of microscopic mixing of subsystems (as
introduced in Chapter 4) in the framework of the fermionic projector. An effect of
decoherence will give rise to an independent dynamics of the subsystems, thus justify-
ing the ad-hoc assumption in Section 4.2. Moreover, we will get a natural explanation
for the measurement scalar product (4.13) and see that homogenizing the system on
the microscopic scale yields an effective description by superpositions of many-particle
wave functions, showing that the Fock space Feff

n defined in (4.15) is the right object
to work with. In this way, we will get an explanation for the framework introduced in
Section 4.2 for the description of entanglement.

The only point which remains unsatisfactory is that on one hand, the observables are
assumed to take part in the independent dynamics of the subsystems (Assumption (A)
in Section 4.2). On the other hand, the measurement process involves taking averages
over the subsystems and leads to a “collapse” of the wave function into an eigenstate
(Assumptions (B) and (D) in Section 4.2), being a process which contradicts an in-
dependent dynamics but requires an outside observer. This problem, which appears
similarly in ordinary quantum mechanics, will be discussed separately in Chapter 8.

6.1. Microscopic Mixing in the Relativistic Setting. In order to extend the
method of microscopic mixing of subsystems to the relativistic setting, we decompose
Minkowski space M into two disjoint subregions

M = M1 ∪M2 with M1 ∩M2 = ∅ , (6.1)

which may be fine-grained as depicted in Figure 2 (for simplicity, we only consider two
subregions; the generalization to a finite number of subsystems is straightforward). If
one prefers, one can in addition replace the space-time continuum by a discrete set
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Figure 2. Example of a microscopic mixing of two space-time regions.

of points, but the distinction between continuum and discrete space-time will not be
of relevance for the following considerations. We again consider a (suitable orthonor-
malized) family of wave functions ψ1, . . . , ψf , where in view of the fact that we also
count the states of the Dirac sea, the number f of particles is very large (see the end
of Section 5.3). As in (5.4), the fermionic projector takes the form

P (x, y) = −
f

∑

j=1

|ψj(x)≻≺ψj(y)| with x, y ∈M1 ∪M2 . (6.2)

Moreover, splitting up the wave functions similar to (4.3) by

ψj = ψ
(1)
j + ψ

(2)
j with ψ

(a)
j = ψj χMa (a = 1, 2) , (6.3)

to each subsystem we can associate similar to (4.11) the many-particle wave function

Ψ(a) = ψ
(a)
1 ∧ · · · ∧ ψ(a)

f . (6.4)

6.2. Justification of an Independent Dynamics of the Subsystems. Following
the concept of discrete space-time of Section 5.2, space-time is not smooth on the
microscopic scale, but should have a non-trivial microstructure. In order to explain
the possible consequences of such a microstructure in a simple setting, we consider what

happens if we choose the wave functions ψ
(a)
j in the two subregions differently. More

specifically, we transform the wave functions in the second subsystem by a unitary
matrix of determinant one,

ψ
(1)
j → ψ

(1)
j , ψ

(2)
j → ψ̃

(2)
j :=

f
∑

k=1

Ujkψ
(2)
j with U ∈ SU(f) . (6.5)

This transformation has the advantage that it has no effect on the many-particle wave
functions (6.4), because (exactly as in Lemma 2.2)

Ψ(2) → Ψ̃(2) = ψ̃
(2)
1 ∧ · · · ∧ ψ̃(2)

f = detU ψ
(2)
1 ∧ · · · ∧ ψ(2)

f = Ψ(2) . (6.6)

Furthermore, the fermionic projector does not change if its two arguments are in the
same subsystem, because in the case x, y ∈M2, the unitarity of U yields that
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P (x, y) →−
f

∑

j=1

|ψ̃(2)
j (x)≻≺ψ̃(2)

j (y)| = −
f

∑

j,k=1

(UU †)jk |ψ(2)
j (x)≻≺ψ(2)

k (y)|

= −
f

∑

j

|ψ(2)
j (x)≻≺ψ(2)

j (y)| = P (x, y) .

However, if the two arguments of the fermionic projector are in different space-time
regions, the operator U does not drop out. For example, if x ∈M2 and y ∈M1,

P (x, y) → −
f

∑

j=1

|ψ̃(2)
j (x)≻≺ψ(1)

j (y)| = −
f

∑

j,k=1

Ujk |ψ(2)
j (x)≻≺ψ(1)

k (y)| . (6.7)

In the special case when U is a diagonal matrix whose entries are phase factors,

U = diag(eiϕ1 , . . . , eiϕf ) with

f
∑

j=1

ϕj = 0 ,

the summations in (6.7) reduce to one sum involving the phase factors,

P (x, y) → −
f

∑

j=1

eiϕj |ψ(2)
j (x)≻≺ψ(1)

j (y)| .

If the phases ϕj are chosen stochastically, the phases of the summands are random.
As a consequence, there will be cancellations in the sum, and keeping in mind that
the number of summands is very large, we conclude that P (x, y) will be very small.
More generally, we find that if U is a random matrix, P (x, y) becomes small if x and y
lie in different subsystems (this argument will be quantified in Section 6.4 below by
integrating over the space of unitary matrices).

From the physical point of view, the above consideration can be understood using the

notion of decoherence. If the one-particle wave functions ψ
(1)
j and ψ

(2)
j are coherent

or “in phase”, then the fermionic projector P (x, y) has the usual form, no matter
whether x and y are in the same subsystem or not. If however the wave functions in
the subregions are decoherent or “out of phase”, then the fermionic projector P (x, y)
will be very small if x and y are in different subregion. We refer to this effect as
the decoherence between space-time regions. It should be carefully distinguished from
the decoherence of the many-particle wave function (see for example [14]). Namely,
as we saw in (6.6), in our case the many-particle wave functions remain unchanged.
Thus they remain coherent, no decoherence in the sense of [14] appears. But the one-
particle wave functions become decoherent (6.5), having an influence on the fermionic
projector (6.2).

We next consider the influence of the decoherence between space-time regions on
the dynamics of our system. We begin by discussing the extreme case where P (x, y)
vanishes identically for x and y in different subsystems. Then the action (5.5) splits
into the sum of the actions of the two subsystems, so that the interaction takes place
independently in the two subsystems. In other words, the subsystems decouple. By
restricting two different systems in Minkowski space to M1 respectively M2, one can
apply the methods of Section 5.3 to both subsystems separately. Then each subsystem
is described by an independent continuum limit in terms of a Dirac equation (5.8)
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coupled to a classical field (5.9). This explains the assumption of an independent
dynamics of the subsystems made in Section 4.2. We point out that, following the
concept that the wave functions generate the causal and geometric structure of space-
time (see the last paragraph in Section 5.3), the decoupling of the subsystems even
implies that between the subsystems, the usual causal and topological structure of
Minkowski space ceases to exist.

If we merely assume that P (x, y) is small for x and y in different subsystems, our
action principle (5.5) does describe a coupling of the two subsystems, which however
should be weak. Keeping in mind that the causal structure of Minkowski space is
related to the singularities of distributions like (5.6) on the light cone, and that this
singular structure will be destroyed by decoherence, we know that the coupling of
the two subsystems cannot be described by causal equations formulated in Minkowski
space. Although we have a precise mathematical framework (5.5), describing the
coupling of the subsystems quantitatively seems very difficult and goes beyond the
scope of this paper. But from the mathematical structure of our action it is already
clear that we do not get contributions from the boundaries of the two subregions.
Therefore, instead of considering the “layers” in Figure 1, it seems more appropriate
to draw each subsystem as many disconnected “bubbles” in space-time as shown in
Figure 2. In view of the continuum limit, each system has an underlying smooth
structure inherited from a corresponding system in Minkowski space, as is indicated
in Figure 2 by the two “smooth space-time sheets” M cont

1/2 . But of course, this picture

should be considered only as a vain attempt to illustrate an unknown and probably
very complicated microscopic structure of space-time (a maybe more realistic picture
will be outlined in Section 7.3).

6.3. Justification of the Superposition of Fock States. In the framework of
fermion systems in discrete space-time, the underlying inner product <.|.> involves the
sum over all space-time points (5.3). Likewise, in the continuum limit, the sum is to be
replaced by a space-time integral (5.1). This space-time inner product is useful for the
mathematical formulation, but it is not suitable for computing the expectation value
of a measurement, which usually takes place at a fixed time. Thus in the relativistic
setting, it is natural to work in the measurement process with a different scalar product,
which in Section 4.2 we referred to as the measurement scalar product (4.13). More
specifically, in view of the fact that the integrand of (5.2) has the interpretation as the
probability density, the scalar product (5.2) seems the correct choice.

Let us consider how to implement the scalar product (5.2) as the measurement
scalar product in the presence of a microscopic mixing of two subsystems. Fist, taking
into account that realistic measurements take place in a finite time interval, it seems
a good idea to replace the spatial integral in (6.1) by an integral over a strip of
width ∆t as shown in Figure 2. Moreover, the measurement should involve some kind
of homogenization process on the microscopic scale. This is clear empirically because
the expectation value must be a computable quantity which involves taking averages
over the subsystems. The homogenization can also be understood microscopically from
the fact that the measurement devices are themselves formed of quantum mechanical
wave functions which are spread out in space-time. A typical example for an idealized
measurement device is the operator |η ><η|, where η is a wave function which is
supported inside a strip of width ∆t as shown in Figure 2. The simplest way to take
into account the effect of such a measurement device would be to consider instead
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of (5.2) the measurement scalar product

(ψ|φ) =
1

(∆t)2

�
R3

d~x

� t+∆t

t
dt1

� t+∆t

t
dt2 ≺ψ(t1, ~x)|γ0φ(t2, ~x)≻ , (6.8)

where we take the average over a small time interval before computing the spatial inner
product. A more realistic measurement device is of course much more complicated,
but fortunately the details are of no relevance. All that matters is that the measure-
ment scalar product involves a homogenization process, with the effect that the direct
summands in (4.2) are in general not orthogonal with respect to (.|.) and that the null
space G0 in (4.15) becomes non-trivial.

We now want to verify that expectation values computed with respect to the mea-
surement scalar product indeed involve superpositions of Fock states. For simplicity,
we again consider the situation for two subsystems M1 and M2 and assume that the
fermions in each subsystem are described by an n-particle Hartree-Fock state

ψ
(a)
1 ∧ · · · ∧ ψ(a)

n ,

whereas the remaining f − n particles describe the Dirac sea. Thus we choose the

one-particle wave functions before microscopic mixing as ψ
(a)
1 , . . . , ψ

(a)
n , ψ

(a)
n+1, . . . , ψ

(a)
f ,

where the first n wave functions describe the particles, whereas the other wave func-
tions form the sea. We again introduce a decoherence between the subsystems by a
unitary transformation of all states in the second subsystem (6.5).

Expectation values (ψi|ψj) of the one-particle wave functions with respect to the
measurement scalar product involve a homogenization process, with the result that
wave functions should be identified which differ only by microscopic fluctuations. More
specifically, we should not distinguish between the sea states of the two subsystems.
Thus introducing on H the equivalence relation

ψ ∼= ψ̃ ⇐⇒ (ψ − ψ̃ |ψ − ψ̃) = 0 ,

we assume that
ψ

(1)
j

∼= ψ
(2)
j for all j = n+ 1, . . . , f .

For ease in notation, we make this identification clear simply by omitting the corre-
sponding superscripts (1) or (2).

Under this identification, the many-particle wave function of the whole system be-
comes

Ψ = ψ1 ∧ · · · ∧ ψf

= (ψ
(1)
1 + ψ̃

(2)
1 ) ∧ · · · ∧ (ψ(1)

n + ψ̃(2)
n ) ∧ (ψn+1 + ψ̃n+1) ∧ · · · ∧ (ψf + ψ̃f ) (6.9)

Multiplying out, we obtain many contributions. One of them corresponds to the many-
particle wave function of the first subsystem

ψ
(1)
1 ∧ · · · ∧ ψ(1)

n ∧ ψn+1 ∧ · · · ∧ ψf , (6.10)

and another is the many-particle wave function of the second subsystem

ψ̃
(2)
1 ∧ · · · ∧ ψ̃(2)

n ∧ ψ̃n+1 ∧ · · · ∧ ψ̃f = detU ψ
(2)
1 ∧ · · · ∧ ψ(2)

n ∧ ψn+1 ∧ · · · ∧ ψf

= ψ
(2)
1 ∧ · · · ∧ ψ(2)

n ∧ ψn+1 ∧ · · · ∧ ψf . (6.11)

All the other contributions involve matrix elements of the unitary operator U . Similar
as explained after (6.7), all these contributions become small if U is a stochastic matrix
(for details see Section 6.4).
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We conclude that the measurement process involves the sum of the many-particle
wave functions (6.10) and (6.11) of the two subsystems. This justifies Assumption (B)
in Section 4.2. Moreover, this consideration explains why for measurements one should
work in the Fock space Feff

n defined by (4.15).

6.4. Some Identities Involving Random Matrices. In order to quantify the above
considerations, we now state a few elementary results on random matrices. We first
note that the space SU(f) of unitary matrices is a compact Lie group, on which we
can introduce the normalized Haar measure dµSU(f) (see for example [3, Section I.5]).
For simplicity, we take the probability distribution on SU(f) according to the Haar
measure (but other choices would also be possible; see for example [16]). Then taking
averages over unitary matrices corresponds to integrating with respect to the Haar
measure; we write for clarity

�
SU(f) · · · dµSU(f).

We first observe that certain products of matrix elements of U vanish on average.

Lemma 6.1. Suppose that for any p in the range 1 ≤ p ≤ f − 1, we choose in-
dices i1, . . . , ip and j1, . . . , jp with i1 < · · · < ip. Then 

SU(f)
Ui1j1 · · ·Uipjp dµSU(f) = 0 .

Proof. We let k be an index which is not contained in {i1, . . . , ip} and let V be the
diagonal matrix which has entries one, except that Vi1i1 = Vkk = −1. Then V ∈ SU(f),
and thus a variable transformation shows that the above integral is invariant under
the replacement U → V U . But this transformation flips the sign of the integrand. �

Applying this lemma to the expression (6.7), we see that the the fermionic projec-
tor P (x, y) indeed vanishes for x and y in different subregions, if the mean value
over SU(f) is taken. The lemma also applies to the contributions obtained by mul-
tiplying out (6.9). It shows that all contributions vanish on average, except for the
many-particle wave functions (6.10) and (6.11) of the two subsystems.

Since the expectation value of a measurement involves the absolute square of the
wave functions, we would also like to integrate the absolute square of (6.7) and (6.9)
over SU(f). We begin with a simple integral involving the absolute square of one
matrix element of U .

Lemma 6.2. For any j, k ∈ {1, . . . , f}, 
SU(f)

|Ujk|2 dµSU(f) =
1

f
. (6.12)

Proof. By multiplying with suitable unitary operators from the left or the right, we
can arbitrarily change the values of the indices j and k, without changing the integral.
Thus  

SU(f)
|Ujk|2 dµSU(f) =

1

f2

 
SU(f)

f
∑

j,k=1

|Ujk|2 dµSU(f)

=
1

f2

 
SU(f)

Tr(U∗U) dµSU(f) =
1

f
,

concluding the proof. �
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Applying this result to (6.7), we see that decoherence typically scales the kernel of the

fermionic projector down by a factor f−
1
2 . This quantifies that P (x, y) really becomes

small if x and y lie in different subregions.
Lemma 6.2 could be extended to integrals involving the absolute squares of n matrix

elements, giving the result 
SU(f)

|Uj1k1|2 · · · |Ujnkn
|2 dµSU(f) ∼

1

fn
if n≪ f .

This result shows that every fixed summand obtained by multiplying out (6.9) except
for (6.10) and (6.11) vanishes in the limit f → ∞. Unfortunately, this is not quite good
enough, because the number of summands becomes large if f increases. Estimating
the whole sum of terms for large f seems a difficult problem which we shall not enter
here, also because the result might depend on whether the probability distribution
is chosen according to the Haar measure or to another probability measure. Even
leaving this point open, we can say that for a generic class of unitary matrices, the
many-particle wave function of the total system (6.9) indeed reduces to the sum of the
wave functions (6.10) and (6.11) of the two subsystems.

7. Second Quantization of the Bosonic Field

In Section 6.2 we considered two decoherent subsystems M1 and M2 and saw that
by analyzing each subsystem in the continuum limit, we could describe the dynamics
by the Dirac equation coupled to a classical field. Taking a finite number of such
decoherent subsystems, the whole dynamics is described by several classical fields, one
for each subsystem. In this section we will show that the resulting framework indeed
allows for the description of second quantized bosonic fields.

For simplicity, we only consider an electromagnetic field (the generalization to other
bosonic fields is straightforward). We subdivide Minkowski space into L disjoint
regions M1, . . . ,ML, which are again assumed to be fine-grained. Similar to (6.2)
and (6.3), the fermionic projector can be written as

P (x, y) = −
f

∑

j=1

|ψj(x)≻≺ψj(y)| with ψj =

L∑

a=1

ψ
(a)
j , ψ

(a)
j := ψj χMa , (7.1)

where f is a large number which tends to infinity if the ultraviolet regularization is
removed. As in Chapter 6, we arrange by unitary transformations of the form (6.5)
that the subsystems are decoherent. Considering each subsystem in the continuum
limit, we obtain similar to (5.8) and (5.9) the Dirac-Maxwell equations

(

iγj(∂j − ieA
(a)
j ) −m

)

P (a)(x, y) = 0

∂ k
j A

(a)
k − �A

(a)
j = e

nf∑

k=1

≺ψ(a)
k |γjψ

(a)
k ≻− e

na∑

l=1

≺φ(a)
l |γjφ

(a)
l ≻ .

(7.2)

We note for clarity that according to (6.3), the wave functions ψ
(a)
k and φ

(a)
l are ob-

tained by restriction to a subregion Ma ⊂ M of space-time. But it is reasonable
to assume that these wave functions are macroscopic in the sense that they can be
extended smoothly to the whole Minkowski space. Similarly, we assume that the po-
tentials A(a) and the fermionic projectors P (a) are defined on a whole sheet M cont

a of
Minkowski space (see Figure 2).
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7.1. Describing a Second Quantized Free Bosonic Field. In order to get a
simple connection to standard textbooks like [28, 15], we begin with a free electro-
magnetic field (i.e. the situation where no fermionic particles or anti-particles are
present). Furthermore, to avoid the technical issues involved in taking an infinite vol-
ume limit, we restrict attention to the situation in finite spatial volume by considering
a three-dimensional box of length L with periodic boundary conditions. Working in

the Coulomb gauge div ~A = 0, the Maxwell equations reduce to the ordinary wave
equation for each component of the vector potential,

� ~A(t, ~x) = 0 ,

whereas the electric potential A0 can be arranged to vanish identically. Decomposing ~A

into Fourier modes of momentum ~k ∈ (2πZ/L)3,

~A(t, ~x) =
∑

~k

(

~a(t,~k) ei
~k~x + ~a(t,~k) e−i~k~x

)

,

the Maxwell equations are solved by

~a(t,~k) = ~a(~k) e−iωt with ω := |~k| ,

whereas the Coulomb gauge gives rise to the transversality condition ~k · ~a(~k) = 0
(see [15, Chapter I, §2]). The two linearly independent solutions of this transversality
condition correspond to the two polarizations of the electromagnetic wave; we denote
them by an index β = 1, 2. Introducing the canonical field variables

qβ(~k) =
1

4π

(

aβ(~k) + aβ(~k)
)

, p(~k) =
d

dt
qβ(~k) = − iω

4π

(

aβ(~k) − aβ(~k)
)

,

the energy H of the classical electromagnetic field becomes (for details see [15, Chap-
ter I, §2])

H =
∑

~k∈(2πZ/L)3

∑

β=1,2

1

2

(

pβ(~k)2 + ω2qβ(~k)2
)

. (7.3)

Here each summand is the Hamiltonian of a harmonic oscillator. Thus we have rewrit-
ten the classical electromagnetic field as an infinite collection of classical harmonic
oscillators.

The second quantization of the electromagnetic field corresponds to quantizing each
harmonic oscillator as in standard quantum mechanics (see for example [28, Part I,
Section 1.2]). We now discuss the connection between the classical and the quantum
dynamics in detail, for simplicity for a single harmonic oscillator of frequency ω. Thus
our starting point is the classical Hamiltonian

h(p, q) =
1

2

(
p2 + ω2q2

)
. (7.4)

Here q and p are the canonical variables, which together form the classical phase
space P = {(p, q) with p, q ∈ R}. The classical dynamics is described by Hamilton’s
equations

d

dt
q =

∂h

∂p
= p ,

d

dt
p = −∂h

∂q
= −ω2q .
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A solution (p(t), q(t)) describes a classical trajectory. Solving Hamilton’s equations,
the classical dynamics describes a rotation in phase space,

(
p(t)
ωq(t)

)

=

(
cosωt − sinωt
sinωt cosωt

)(
p(0)
ωq(0)

)

. (7.5)

In order to get a setting similar to that in quantum theory, we next consider on
phase space complex-valued functions ψ(p, q), referred to as “classical wave functions.”
Introducing the scalar product

〈ψ|φ〉class =

�
R×R

ψ(p, q)φ(p, q) dp dq , (7.6)

the classical wave functions form a Hilbert space (Hclass, 〈.|.〉class). The phase flow (7.5)
induces a flow on H, which is described most conveniently by the time evolution oper-
ator Uclass defined by

(

Uclass(t)ψ
)

(p(t), q(t)) =
(

Uclass(0)ψ
)

(p(0), q(0)) . (7.7)

It is a unitary operator on Hclass. Before going on, we remark that in classical physics
one usually works instead of complex functions with positive functions or densities on
phase space. Working with complex-valued functions and the scalar product (7.6),
seems unusual but will be very useful for the following considerations. In a some-
what different context, the Hilbert space (Hclass, 〈.|.〉class) is also used in geometric
quantization for the the so-called prequantization (see [27, Section 5.2]).

For the quantization of the oscillator, one replaces the canonical variables p and q
by self-adjoint operators P and Q which act on a complex Hilbert space (H, 〈.|.〉)
and satisfy the canonical commutation relations [P,Q] = −i. The physical system is
now characterized by a state Ψ ∈ H. The dynamics is described by the Schrödinger
equation

i∂tΨ = HΨ with H =
1

2

(
P 2 + ω2Q2

)
. (7.8)

It is most common to represent H as the space of square integrable functions with the
inner product

〈Ψ|Φ〉 =

�
R

Ψ(q)Φ(q) dq , (7.9)

and to choose the operators Q and P as

(Qψ)(q) = q ψ(q) and P = −i d
dq

.

Integrating the Schrödinger equation gives rise to the unitary time evolution operator

U(t) = e−itH : H → H : Ψ(0, q) → Ψ(t, q) . (7.10)

With the above formulation we expressed both the classical and the quantum dy-
namics by a unitary time evolution operator acting on a Hilbert space (see (7.7), (7.6)
and (7.10), (7.9)). But the time evolution operators have a completely different form.
Furthermore, the Hilbert spaces are different, because the “classical wave functions”
depend on both q and p. In the quantized theory, however, the Heisenberg uncer-
tainty principle prevents P and Q from being simultaneously measurable, as reflected
mathematically by the fact that they correspond to non-commuting operators. Since
in the classical theory, position and momentum can be chosen independently, there is
much more freedom to choose the initial wave function ψ(p, q) than in quantum the-
ory, where choosing Ψ(q) automatically determines the corresponding wave function in
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momentum space. This raises the question if for a given quantum wave function Ψ(q)
we can choose a corresponding classical wave function ψ(p, q) such that the classical
dynamics of ψ as described by (7.7) coincides with the time evolution of the quantum
wave function (7.10). While the general answer to this question is no, it turns out that
for the harmonic oscillator this correspondence can indeed be made, as is specified in
the next lemma.

Lemma 7.1. (Correspondence between classical and quantum dynamics)
Consider the classical harmonic oscillator (7.4) with dynamics (7.5), (7.7) and the cor-
responding quantum harmonic oscillator with the dynamics described by the Schrödinger
equation (7.8) and (7.10). Then there is an isometric embedding ι : H → Hclass which
maps the quantum evolution to a corresponding classical evolution, in the sense that

Uclass(t) ι = ι U(t) eiωt/2 for all t ∈ R . (7.11)

Moreover, there are differential operators Hclass, Pclass and Qclass in Hclass such that

Hclass ι = ι H , Pclass ι = ι P and Qclass ι = ι Q .

We point out that the factor eiωt/2 in (7.11) corresponds to the zero point energy of
the quantum harmonic oscillator. This factor modifies the wave functions only by a
joint global phase, without an influence on any observations or any expectation values.

Proof of Lemma 7.1. We choose an orthonormal eigenvector basis Ψn of the Hamil-
tonian in (7.8) (see for example [22, Section 3.1])

HΨn =

(

n+
1

2

)

ωΨn , n = 0, 1, . . . .

Writing the Hamiltonian as H = ω(a†a+ 1
2 ) with the annihilation and creation oper-

ators

a =
1√
2ω

(

ωq +
d

dq

)

, a† =
1√
2ω

(

ωq − d

dq

)

, (7.12)

the eigenvectors can be obtained by acting with the creation operators on the ground
state,

Ψ0 = c0 exp

(

−ωq
2

2

)

and Ψn = cn (a†)n Ψ0 , (7.13)

were the cn are positive normalization constants. From (7.10) it follows immediately
that

U(t) eiωt/2 Ψn = e−inωt Ψn . (7.14)

In order to define the mapping ι, it suffices to associate to every eigenfunction Ψn a
corresponding classical wave functions ψn ∈ Hclass (then ι is determined uniquely by
linearity and continuity). First, in order to write the classical dynamics in a simpler
form, we rescale the momentum variable by introducing the new phase space variables

x = q and y =
p

ω
.

Setting z = x+ iy, the time evolution operator (7.7) becomes

(Uclass(t)ψ)(z) = ψ(eiωtz) . (7.15)

We now define the “classical annihilation and creation operators” on Hclass by

aclass =
1

2
(ax + iay) , a†class =

1

2

(

a†x + ia†y

)

,
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where ax and a†x are given in analogy to (7.12) by

ax =
1√
2ω

(

ωx+
d

dx

)

, a†x =
1√
2ω

(

ωx− d

dx

)

,

whereas the subscript y refers similarly to the variable y. We introduce the wave
functions ψn by

ψ0 = c20 exp

(

−ω(x2 + y2)

2

)

and ψn = cn (a†class)
n ψ0 . (7.16)

Let us verify that the resulting mapping ι has the required properties. First, it is
obvious from their definition (7.16) that the functions ψn are orthonormal in Hclass,
and thus ι is indeed an isometric embedding. Using a polar decomposition z = reiϕ, a
short calculation shows that

[

i∂ϕ, a
†
class

]

= a†class .

Applying this relation in (7.16) and using that ψ0 is radially symmetric, we obtain

i∂ϕψn = nψn and thus ψn(z) = e−inϕ φn(r)

with radially symmetric functions φn. Thus the classical dynamics (7.15) implies that

Uclass(t) ψn = e−iωnt ψn .

Comparing with (7.14) proves (7.11).
In order to construct the operators Hclass, Pclass and Qclass, we first note that both

the classical and quantum annihilation and creation operators satisfy the canonical
commutation relations

[

a†class, aclass

]

= 1 and
[

a†, a
]

= 1 ,

and in view of (7.13) and (7.16) they correspond to each other in the sense that

aclass ι = ι a and a†class ι = ι a† .

Thus expressing the operators in H in terms of a and a†, we obtain the corresponding
“classical” operators simply by adding subscripts. Thus we set

Hclass = ω

(

a†classaclass +
1

2

)

and

Qclass =
1√
2ω

(

aclass + a†class

)

, Pclass = −i
√
ω

2

(

aclass − a†class

)

,

concluding the proof. �

We remark that the mapping ι appears in the mathematical physics literature as the
so-called Bargmann transform (see [25, Section 4.3]). But to our knowledge, it has not
been used to get a connection between the classical and quantum dynamics.

The above lemma shows that by choosing the “classical wave function” φ ∈ Hclass

appropriately, we can arrange that the classical dynamics reproduces any quantum
dynamics. In simpler terms, the quantum dynamics of the harmonic oscillator can
be recovered as a special case of the classical dynamics. However, for making this
correspondence, we had to take a somewhat unusual point of view and work on clas-
sical phase space with complex-valued functions and the scalar product (7.6). To us,
Lemma 7.1 is useful because it makes it possible to approximate a quantum state by
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a finite number of classical trajectories, if to every classical trajectory we associate a
complex number. This can be seen as follows: Suppose that we want to describe a
quantum state Ψ ∈ H. According to Lemma 7.1, this state has the same dynamics as
the classical wave function ψ := ιΨ ∈ Hclass. For any L ∈ N and an index a = 1, . . . , L,
we now choose points (p(a), q(a)) in phase space together with complex coefficients φ(a)
which approximate ψ in the sense that

L∑

a=1

φ(a) δ
(
p− p(a)

)
δ
(
q − q(a)

) L→∞−−−−→ ψ(p, q) , (7.17)

with convergence in the distributional sense. For these discrete configurations, we can
make sense of the scalar product (7.6) by setting

〈(p(a), q(a), φ(a))|(p̃(b), q̃(b), φ̃(b))〉 =
∑

a,b

δp(a),p̃(b) δq(a),q̃(b) φ(a)φ̃(b) .

Then by choosing L sufficiently large, we can approximate the quantum dynamics of Ψ
by a complex valued function φ defined on a finite number of classical trajectories.

Before going on, we point out that the scalar product (7.6) is invariant under the
local phase transformations

φ(p, q) → eiϕ(p,q) φ(p, q) , (7.18)

where ϕ is a real-valued function on phase space. Thus the phase of the functions
in Hclass is not of physical relevance. What counts is only the relative phase when
taking superpositions of two wave functions ψ, φ ∈ Hclass. Similarly, in the discrete
approximations in (7.17), the phase of the function φ(a) can be changed by

φ(a) → eiϕ(a)φ(a) under the constraint (p(a), q(a)) = (p(b), q(b)) =⇒ ϕ(a) = ϕ(b) .

In the remainder of this section, we carry over the previous results on the harmonic
oscillator to the Hamiltonian of the electromagnetic field (7.3). By taking tensor
products, the result of Lemma 7.1 immediately extends to a collection of harmonic
oscillators as in (7.3). It then states that by considering suitable complex-valued
functions on the set of all classical field configurations, one can reproduce the full
dynamics of the free second-quantized field. Using an approximation argument similar
to (7.17), it suffices to consider a finite number of classical field configurations. Thus
our task is to associate to every classical field configuration a complex number φ(a).
The point is that in the framework of the fermionic projector, this relative phase
information can easily be obtained, as we now explain. Returning to the setting
of decoherent subsystems in the continuum limit (7.2), every subystem involves a

classical electromagnetic potential A(a). In the considered case without fermions, the
field equations reduce to the free Maxwell equations, i.e. again in the Coulomb gauge

� ~A(a)(t, ~x) = 0 (7.19)

and (A(a))0(t, ~x) = 0. Moreover, we have the Dirac equation for the fermionic projec-
tor, which according to (5.7) consists only of the sea states,

(

iγj(∂j − ieA
(a)
j ) −m

)

P sea(x, y) = 0 if x ∈Ma . (7.20)

Having an ultraviolet regularization in mind, the number f of sea states is finite, so
that P sea can be written in the form (7.1). For a given solution Ǎ of the free Maxwell
equations, we now introduce the following reference system. The causal perturbation
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expansion distinguishes a subspace of the solution space of the Dirac equation as being
formed by the sea states. Selecting the f -dimensional subspace of the sea states which
is compatible with our regularization and choosing an orthonormal basis ψ̌1, . . . , ψ̌f

of this subspace, we can introduce the many-particle wave function ψ̌ of our reference
system by

Ψ̌ = ψ̌1 ∧ · · · ∧ ψ̌f .

As in Lemma 2.2, the freedom in choosing the orthonormal basis implies that Ψ̌ is
determined only up to a phase. Now suppose that Ǎ coincides with the electromagnetic

potential Aa in one of our subsystems. Then the wave functions ψ
(a)
1 , . . . , ψ

(a)
f obtained

by restricting the wave functions of the fermionic projector of the whole system to the
subsystem Ma span the same subspace of the Dirac solutions as the vectors ψ̌1, . . . , ψ̌f

(probably after suitably modifying the solutions on the microscopic scale or modifying
the regularization; a technical issue which for simplicity we will ignore here). Hence
the corresponding many-particle wave function (6.4) coincides with Ψ̌ up to a complex
number,

Ψ(a) = φ(a) Ψ̌ with φ(a) ∈ C . (7.21)

In this way, we have associated to the field configuration Aa a complex number φ(a).
Let us consider the phase freedom. As noted above, the phase of the wave func-

tion Ψ̌ depends on the choice of the basis ψ̌1, . . . , ψ̌f . Similarly, by transforming the

orthonormal basis ψ1, . . . , ψf of the image of P , we can also change the phase of Ψ(a)

arbitrarily. Thus (7.21) is well-defined only up to a phase. Now suppose that Ǎ also
coincides with the electromagnetic potential Ab of another subsystem. Then writing
the many-particle wave function of the new subsystem as Ψ(b) = φ(b) Ψ̌, transforming
the bases ψ̌1, . . . , ψ̌f or ψ1, . . . , ψf changes the phase of both φ(a) and φ(b) in the
same way. Thus the relative phase of φ(a) and φ(b) is well-defined. In other words,
the complex-valued function φ is uniquely defined up to the transformations

φ(a) → eiϕ(a)φ(a) under the constraint Aa = Ab =⇒ ϕ(a) = ϕ(b) . (7.22)

These transformations can be regarded as local phase transformations on the classical
field configurations, just as explained after (7.18) for one harmonic oscillator on phase
space.

We conclude that the above construction indeed yields a complex-valued wave func-
tion φ(a), a = 1, . . . , L, defined on the classical field configurations {A(1), . . . , A(L)} of
the subsystems. It is uniquely determined up to the local phase transformations (7.22).
These results make it possible to approximate a general state of the bosonic Fock
space by our decoherent subsystems, as the following consideration shows: According
to Lemma 7.1, the dynamics of a given bosonic Fock state can be described by a
complex-valued wave function φ on the classical field configurations. By considering
similar to (7.17) a sequence of systems where the number of decoherent subsystems
tends to infinity, we can approximate φ by a finite collection of classical field con-
figurations {A(1), . . . , A(L)} and a corresponding complex-valued functions φ(a). By

suitably adjusting the phases of the sea states ψ
(a)
1 , . . . , ψ

(a)
f (for given reference sys-

tems Ψ̌), we can arrange that the function φ(a) satisfies (7.21). Then the wave func-

tions ψ1, . . . , ψf of the whole system enconde the classical potentials {A(1), . . . , A(L)}
as well as the complex-valued function φ(a), which together approximate the given
bosonic Fock state.
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7.2. Describing a Second Quantized Fermion-Boson System. We will now com-
bine the considerations of the previous section with the constructions of Chapter 6
to obtain a unified framework for describing second quantized fermions and bosons.
We again consider L decoherent subsystems in the continuum limit (7.2). According
to (5.7), we can split up the fermionic projector into the particle- and anti-particle as
well as the sea states. We begin for clarity in the situation without pair creation where
the numbers na and nf of particles and anti-particles are constant and coincide in all
subsystems (this constraint will be removed below). Then setting n = na−nf , the cor-
responding many-particle wave functions of the subsystems (6.4) can be decomposed
as

Ψ(a) =
(

ψ
(a)
1 ∧ · · · ∧ ψ(a)

nf
∧ φ(a)

1 ∧ · · · ∧ φ(a)
na

)

∧
[

ψn+1 ∧ · · · ∧ ψf

]

. (7.23)

Here the round brackets can be regarded as the fermionic wave function of the particles
and anti-particles. As explained in Section 6.3, measurements involve superpositions
of these many-particle wave functions, so that it is reasonable to regard the round
brackets in (7.23) as a vector in the fermionic Fock space Feff. Likewise, the square
brackets in (7.23) describe the sea. The construction (7.21) yields a corresponding
complex wave function φ(a) on the classical field configurations, which can be used
to describe the dynamics of a second quantized bosonic field. In this way, we have
extracted from the fermionic projector both a fermionic and a bosonic quantum field.

We now give a construction which makes it possible to avoid the splitting of the
many-particle wave function into the particle/anti-particle component and the sea
component. Apart from being simpler and cleaner, this has the advantage of working
just as well for fully interacting systems, possibly involving pair creation or annihi-
lation processes. We first recall that in (7.21) we compared the many-particle wave

function Ψ(a) of our subsystem with the wave function Ψ̌ of a “reference system” hav-
ing the same classical field configuration. The proportionality factor φ(a) then gave us
the desired complex-valued function φ on the classical field configurations. Giving up
the requirement that the vector space Hclass should be represented by complex-valued
functions, one can work instead of φ(a) with the corresponding vector Ψ(a) ∈ Feff

f .

This has no effect on superpositions, because the complex coefficients φ(a) and φ(b)

can be linearly combined only if the corresponding classical field configurations A(a)

and A(b) coincide. But then the corresponding Fock vectors Ψ(a),Ψ(b) ∈ Feff
f are lin-

early dependent, so that taking their linear combination is the same as taking the
linear combinations of the coefficients φ(a) and φ(b). This consideration leads us to
replace the complex-valued function φ(a) constructed in (7.21) by a mapping with
values in Feff

f ,

φ : {1, . . . , L} → F
eff
f : a 7→ ψ

(a)
1 ∧ · · · ∧ ψ(a)

f . (7.24)

In the setting involving particles and anti-particles (7.23), this mapping has the nice
property that it involves at the same time the fermionic wave functions of the particles
and anti-particles. In free field theory, it can be thought of as the tensor product of a
fermionic Fock state and a bosonic state. As desired, two such tensor states are linearly
dependent only if both the fermionic and bosonic parts are. Superpositions of these
tensor states can be justified exactly as explained in Section 6.3. In a fully interacting
system, the mapping (7.24) can no longer be decomposed into a fermionic and a bosonic
part, in agreement with the fact that in interacting quantum systems the bosonic
and fermionic Fock spaces are coupled together and “mixed” by the Hamiltonian.
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Even in this highly complicated situation, the mapping φ gives a conceptually simple
description of the whole system.

7.3. Remarks and Outlook. To avoid confusion, we point out that the constructions
in this chapter are not equivalent to the canonical quantization of the bosonic field. In
particular, we do not get the physical equations for second quantized fields. Instead, we
only show that the dynamics of free second quantized bosonic fields can be mimicked by
our ensemble of decoherent subsystems, each with a classical dynamics. However, we do
not get a justification nor explanation for the physical assumption that electromagnetic
wave modes should behave like quantum mechanical oscillators. But we show that
this assumption is not in conflict with the framework of the fermionic projector. In
particular, it is possible to describe entangled bosonic states.

In order to explain why we do not even attempt to reproduce the physical equa-
tions for second quantized fields, we now briefly outline how interacting quantum field
theory should be formulated in the framework of the fermionic projector. Recently,
this formulation of quantum field theory has been worked out in detail for a system
involving an axial field [9]. The general strategy is as follows. Instead of quantizing the
classical field equations, we describe the interaction and the dynamics of the system by
the action principle (5.5). In the continuum limit, the Euler-Lagrange equations cor-
responding to this action principle give rise to the Dirac equation coupled to classical
bosonic field equations (see (5.8) and (5.9)). Treating this coupled system of nonlinear
partial differential equations in a perturbation expansion gives rise to all the Feynman
diagrams of perturbative quantum field theory (see [9, Section 8.4]). In particular,
this gives agreement with the high-precision tests of quantum electrodynamics. We
remark that we get additional small corrections to the field equations which are absent
in perturbative quantum field theory; the interested reader is referred to [9, Section 8.2
and 8.3].

Since the quantitative aspects are respected, it remains to explain the particular ef-
fects of quantized fields. The present paper is concerned with entanglement and shows
that entangled fermionic and bosonic states can be described in the framework of the
fermionic projector. Other quantum effects related to the measurement problem and
the wave-particle duality will be discussed in Chapter 8 below; see also [7, Section 4].
Putting these results together, it seems to us that the framework of the fermionic
projector is in agreement with all effects and predictions of quantum field theory (ex-
cept for the additional corrections discussed in [9, Sections 8.2 and 8.3]). But this
agreement cannot be stated in terms of a mathematical equivalence, partly because
standard quantum field theory at present has no fully convincing mathematical for-
mulation. Also, many difficulties of quantum field theory clearly remain unsettled in
our approach. Thus many conceptual and technical issues need to be debated in the
future.

We finally point out that the agreement with free quantized fields in Section 7.1 is
obtained only in the limit when the number of subsystems tends to infinity. Thus even
for describing the quantum oscillations of the harmonic oscillator corresponding to one
mode of the electromagnetic field, one needs to consider a large number of decoherent
subsystems. Although this seems possible in principle, it seems hard to imagine that
decoherence should really lead to a “fragmentation” of space-time into many disjoint
regions with an independent dynamics. This raises the question whether a microscopic
mixing of decoherent subsystems might not be a too simple picture for understanding
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the mechanisms of space-time on a small scale. Indeed, it might be more appropriate
to replace this picture by a more general concept which we now explain in words.
Recall that in Section 6.2 the decoherence of subsystems was introduced by inserting
a unitary transformation into the fermionic projector,

P (x, y) = −
f

∑

j,k=1

Ujk |ψ(2)
j (x)≻≺ψ(1)

k (y)| , (7.25)

if x and y are in different subsystems (see (6.7)). Since P (x, y) is a 4 × 4-matrix, a
dimensional argument shows that there is a large class of operators U ∈ SU(f) which
do not affect the form of P (x, y). In order to make use of this additional freedom, we
replace U by a family of local unitary transformations U(x) ∈ SU(f), which brings the
fermionic projector to the more general form

P (x, y) = −
f

∑

j,k,l=1

Ujk(x) U
−1
kl (y) |ψj(x)≻≺ψl(y)| . (7.26)

By dividingM into subregions and choosing U(x) to be constant on each subregion, we
get back to the setting of Section 6.2. But if U(x) is not a piecewise constant function,
the situation is more involved. Namely, for any space-time points x and y, it is possible
that the transformation Ujk(x) U

−1
kl (y) has no effect on P (x, y) (similar as discussed

in (7.25)); in this case the pair (x, y) is said to be coherent. Another possibility is that
the transformation Ujk(x) U

−1
kl (y) leads to cancellations in the sum so that P (x, y)

is very small (similar as explained after (6.7)), in which case the pair (x, y) is said
to be decoherent. This notion of decoherence again gives a relation between space-
time points. But in contrast to the situation in Section 6.2, this relation is no longer
transitive; for example, it is possible that the pairs (x, y) and (y, z) are coherent, but
the pair (x, z) is decoherent. As a consequence, decoherence no longer gives rise to a
decomposition of space-time into subregions. But for each fixed space-time point x, one
can form the set M(x) of all space-time points which are coherent to x. This set can
then be divided into subsets Mj(x) by the condition that any two points y, z ∈Mj(x)
should be coherent to each other. On the sets Mj(x), one can then again consider
the continuum limit to obtain for example the Dirac-Maxwell system (5.8), (5.9).
Thus on the coherent space-time points one again gets a description involving classical
field equations. Decoherent pairs of space-time points, on the other hand, are not
connected by our action principle. Apart from the considered cases of coherence and
decoherence, it is also possible that two space-time points are only partially decoherent
in the sense that there are cancellations in the sums (7.26), but without P (x, y) being
very small. However, such a partial decoherence should be suppressed by our action
principle because the corresponding space-time points should yield a large contribution
to the action. The resulting structure resembles the situation in Section 6.2 in that we
obtain decoherent subsystems with an independent dynamics. The main difference is
that the subsystems are no longer localized in disjoint regions of space-time. Instead,
they are all delocalized, and only when picking a pair of space-time points (x, y), the
phases in the sum (7.26) determine to which subsystem the pair belongs. Due to the
obvious analogy to a hologram, we refer to this concept as the holographic superposition
of subsystems (but it does not seem to be directly related to ’t Hooft’s holographic
principle).
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The main advantage of a holographic superposition is that a large number of sub-
systems no longer leads to a “fragmentation” of space-time into disjoint space-time
regions. On the other hand, all the effects considered in this paper can be described
just as well by decoherent space-time regions. Therefore, the holographic superposi-
tion is not essential for our purposes, and we shall not enter the detailed constructions
here.

8. Physical Interpretation

We now explain the previous constructions and results from the physical point of
view. For clarity, we try to explain the physical picture in simple examples, without
aiming for mathematical rigor nor maximal generality.

8.1. The Superposition Principle. In the standard formulation of quantum physics,
the one-particle wave functions as well as the whole physical system are described by
vectors in a Hilbert space. Taking linear combinations of such vectors, one can form
superpositions of wave functions, but also superpositions of physical systems. Thus in
this formulation, it is a general physical principle that superpositions of states can be
formed (for a good exposition see [14, Section 2.1]). In the framework of the fermionic
projector, however, where the whole system is described by a projector in an indefinite
inner product space, the validity of the superposition principle is not obvious. We now
explain this point by reviewing the previous constructions.

In the framework of the fermionic projector, the superposition principle arises on
different levels. On the fundamental level of discrete space-time, the wave functions are
vectors in the indefinite inner product space (H, <.|.> ). Thus superpositions of one-
particle wave functions can be formed. In the continuum limit, where the interaction is
described by the Dirac equation (5.8) coupled to a classical field (5.9), we thus obtain
the superposition principle for the Dirac wave functions. Moreover, since the Maxwell
equations are linear, the superposition principle also holds for classical electromagnetic
waves.

For many-particle states, however, the superposition principle does not hold on the
fundamental level. In particular, it is impossible to form the naive superposition of
two physical systems, simply because the linear combination of two projectors in gen-
eral is no longer a projector. But the superposition principle holds for the effective
fermionic many-particle wave function obtained by decomposing the system into de-
coherent subsystems and homogenizing on the microscopic scale (see Section 6.3). For
the free second-quantized electromagnetic field as described in Section 7, the super-
position principle corresponds to taking linear combinations of the complex-valued
wave function φ defined on the classical field configurations. Since the function φ
is constructed out of the fermionic many-particle wave function (see (7.21) or more
generally (7.23) and (7.24)), linear combinations are again justified exactly as for the
fermionic many-particle wave function (see Section 6.3).

We conclude that in the framework of the fermionic projector, the superposition
principle again holds. It is possible to form linear combinations of macroscopic systems
(like a dead and a living cat). Nevertheless, the framework of the fermionic projector
differs from standard quantum theory in that for many-particle wave functions, the
superposition principle does not hold on the fundamental level, but it is merely a
consequence of the microscopic mixing of decoherent subsystems. This means that the
superposition principle is overruled in situations when our action principle in discrete
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ψ↑

ψ↓
ψ

Figure 3. The Stern-Gerlach experiment.

space-time (5.5) needs to analyzed beyond the continuum limit. We will come back to
this point in Section 8.4 in the context of collapse phenomena.

8.2. The Measurement Problem and Decoherence. One of the most contro-
versial and difficult points in the understanding of quantum physics is the so-called
measurement problem. In simple terms, it can be understood from the dilemma that
on one side, the dynamics of a quantum system is described by a linear evolution
equation in a Hilbert space (for example the Schrödinger equation), and considering
the measurement apparatus as part of the system, one would expect that this lin-
ear and deterministic quantum evolution alone should give a complete description of
physics. But on the other side, the Copenhagen interpretation requires an external
observer, who by making a measurement triggers a “collapse” or “reduction” of the
wave function to an eigenstate of the observable. It is not obvious how the external
observer can be described within the linear quantum evolution. Also, the statistical
interpretation of the expectation value in the measurement process does not seem to
correspond to the deterministic nature of the quantum evolution. Similarly, in the for-
malism introduced in Section 4.2, the independent dynamics of the subsystems as well
as Assumption (A) seem to contradict the external observer entering Assumptions (B)
and (D).

The measurement problem has been studied extensively in the literature, and many
different solutions have been proposed (see for example [26, 5, 14, 4, 2, 20]). Here we
shall not try to enter an exhaustive discussion or comparison of the different interpre-
tations of quantum mechanics. We only explain how our concepts fit into the picture
and give one possible interpretation which corresponds to the personal preference of
the author. But it is well possible that the framework of the fermionic projector can
be adapted to other interpretations as well.

We begin by considering the Stern-Gerlach experiment. Thus a beam of atoms
passes through an inhomogeneous magnetic field. Decomposing the wave function ψ
into the components with spin up and down,

ψ = ψ↑ + ψ↓ , (8.1)

these two components feel opposite magnetic forces. As a consequence, the beam
splits up into two beams, leading to two exposed dots on the photographic material
(see Figure 3). If the intensity of the beam is so low that only one atom passes through
the magnetic field, then either the upper or the lower dot will be exposed, both with
probability one half. It is impossible to predict whether the electron will fly up or
down; only probabilistic statements can be made.

Let us try to describe the Stern-Gerlach experiment in the framework of the fermionic
projector. For simplicity, we replace the atom by an electron (disregarding the Lorentz
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force due to the electron’s electric charge). Then at the beginning, the system is de-
scribed by a classical external magnetic field and a Dirac wave function ψ(t, ~x) which
at time t = 0 has the form of a wave packet moving towards the magnetic field. This
situation is modeled by the fermionic projector in the continuum limit (5.7) for one par-
ticle; the dynamics is described by the Dirac equation (5.8) in the given external field.
Solving the Dirac equation, the wave function splits up into two components (8.1),
which are deflected upwards and downwards, respectively. Writing the contribution of
the wave function to the fermionic projector (5.7) as

− 1

2π
|ψ(x)≻≺ψ(y)| = − 1

2π

(

|ψ↑(x)≻≺ψ↑(y)| + |ψ↓(x)≻≺ψ↓(y)| (8.2)

+ |ψ↑(x)≻≺ψ↓(y)| + |ψ↓(x)≻≺ψ↑(y)|
)

, (8.3)

one gets contributions of different type. Namely, the two summands in (8.2) are
localized at the upper and lower electron beam, respectively. The two summands
in (8.3), however, are delocalized and give correlations between the two beams. As
observed in [9, Chapter 10], the Euler-Lagrange equations in the continuum limit
cannot be satisfied if general delocalized contributions to the fermionic projector are
present. This means that there should be a mechanism which tries to avoid nonlocal
correlations as in (8.3). A possible method for removing the nonlocal correlations is
to divide the system into two decoherent subsystems (as shown in Figure 2, although
at this stage they do not necessarily need to be microscopically mixed), in such a way
that ψ↑ belongs to the first and ψ↓ to the the second subsystem. Then the continuum
limit is to be taken separately in the two subsystems. The contribution of the wave
function in the two subsystems simply is

− 1

2π
|ψ↑(x)≻≺ψ↑(y)| and − 1

2π
|ψ↓(x)≻≺ψ↓(y)| ,

respectively. Thus the delocalized terms (8.3) no longer occur, so that the problem
of solving the Euler-Lagrange equations observed in [9, Chapter 10] has disappeared.
This consideration gives a possible mechanism for the generation of subsystems.

Let us carefully discuss different notions of decoherence. First of all, the space-time
points of the two subsystems should be decoherent, in the sense that the states of
the fermionic projector are unitarily transformed in the second subsystem (6.5). This
decoherence has the effect that the fermionic projector P (x, y) becomes very small
if x and y are in different subsystems (see (6.7) as well as Lemmas 6.1 and 6.2),
implying that the two subsystems have an independent dynamics in the continuum
limit. However, the many-particle wave function of the system is not affected by the
decoherence between the space-time points (see (6.6)). Rewriting it similar to (7.23) as
the wedge product of the one-particle wave function ψ with the sea states, one sees that
the quantum mechanical wave functions of the two subsystems are still coherent. In
particular, if the two beams interfered with each other (for example after redirecting
them with additional Stern-Gerlach magnets), they could be superposed quantum-
mechanically, giving rise to the usual interference effects of the double slit experiment.
We also point out that the dynamics of each subsystem is still described by the Dirac
equation (5.8) in the external magnetic field. Since the Dirac equation is linear, solving
it for ψ is the same as solving it separately for the two components ψ↑ and ψ↓. Thus
at this point, the dynamics is not affected by the decomposition into subsystems; we
still have the linear deterministic dynamics as described by the Dirac equation.
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As just explained, at this stage the generation of subsystems has no effect on the
dynamics of the system. This suggests that it should not be observable whether the
subsystems have formed or not. This motivates us to demand that expectation values
taken with respect to the measurement scalar product (as introduced in Section 6.3)
should not be affected by the generation of subsystems. Keeping in mind that, after a
suitable homogenization process, the measurement scalar product coincides with the
integral (5.2), we can say alternatively that the process of generation of subsystems
should preserve the probability densities. This condition also ensures that when we get
the connection to the statistical description of the measurement process, the proba-
bilities are indeed given by the spatial integrals of the absolute square of the wave
functions (in agreement with Assumption (B) in Section 4.2). Since the probability
density is the zero component of the probability current ≺ψ|γj |ψ≻, we can say equiv-
alently that the generation of subsystems should respect current conservation. This
assumption seems reasonable, because current conservation holds in each subsystem
as a consequence of the Dirac equation, and we merely extend this conservation law
to the situation when the number of subsystems changes.

The dynamics becomes more complicated when the wave function approaches the
screen, because the interaction with the electrons of the photographic material can no
longer be described by an external field. Instead, one must consider the coupled Dirac-
Maxwell equations (5.8) and (5.9) for a many-electron system. Since the interaction is
no longer linear, it now makes a difference that the two subsystems have an independent
dynamics. More specifically, in the first subsystem the wave function in the upper beam
interacts with the electrons near the upper impact point, whereas the second subsystem
describes the interaction of the lower beam. The whole system is a superposition of
these two systems, described mathematically by a vector in the Fock space Feff. Exactly
as explained in [14, Chapter 3], the different interaction with the environment leads to
a decoherence of the many-particle wave functions of the two subsystems. Thus now it
is no longer possible to form quantum mechanical superpositions of the wave functions
of the two subsystems. The whole system behaves like a statistical ensemble of the two
subsystems. Following the resolution of the measurement problem as proposed in [14],
one should regard the human observer as being part of the system. Thus the observer
is also decomposed into two observers, one in each subsystem. The two observers
measure different outcomes of the experiment. Due to the decoherence of their wave
functions, the two observers cannot communicate with each other and do not even
experience the existence of their counterparts. From the point of view of the observer,
the outcome of the experiment can only be described statistically: the electron moves
either up or down, both with probability one half.

Other experiments like the spin correlation experiment can be understood similarly.
One only needs to keep in mind that if entanglement is present, the subsystems must
be microscopically mixed. The quantum state of each subsystem is not entangled. But
homogenizing on the microscopic scale leads to an effective description of the system
by an entangled state in the Fock space Feff (see Example 4.2).

We finally remark that the mechanism for the generation of subsystems proposed
above could be made mathematically precise by analyzing the action principle (5.5)
in the discrete setting, going beyond the approximation of the continuum limit. One
should keep in mind that on this level, our action principle violates causality. Thus it
is conceivable that the formation of subsystems depends on later measurements or that
subsystems tend to form eigenstates of the subsequent measurement device. However,
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such effects cannot be verified or falsified in experiments, and therefore we will not
consider them here (for a discussion of a measurable effect of causality violation see [9,
Section 8.2]).

8.3. The Wave-Particle Duality. Following the above arguments, one can also un-
derstand the wave-particle duality in a way where the wave function is the basic
physical object, whereas the particle character is a consequence of the interaction
as described by the action principle (5.5). To explain the idea, we return to the
Stern-Gerlach experiment of Figure 3. In the previous section, we justified that if one
electron flies through the magnetic field, the atom will expose either the upper or the
lower dot on the screen, much in contrast to the behavior of a classical wave, which
would be observable at both dots of the screen at the same time. Repeating the argu-
ments of the previous section on the scale of the atoms of the photographic material,
we conclude that more and more subsystems will form, which become decoherent as
explained in [14, Chapter 3]. For an observer in one of the subsystems, the electron
will not expose the whole dot on the screen uniformly, but it will only excite one atom
of the photographic material. As a consequence, the electron appears like a point
particle. Again, the outcome of the measurement can only be described statistically.

8.4. The Collapse of the Wave Function. The resolution of the measurement
problem in Section 8.2 is mathematically convincing and explains the experimental
observations. It goes back to Everett’s “relative state interpretation” and has found
many different variations (see [26] and [4]). But no matter which interpretation one
prefers, there always remains the counter-intuitive effect that all the possible outcomes
of experiments are realized as components of the quantum state of the system. Thus
when time evolves, the quantum state disintegrates into more and more decoherent
components, which should all describe a physical reality. This phenomenon, which
is often subsumed under the catchy but oversimplified title “many-worlds interpreta-
tion,” is difficult to imagine and hard to accept. Another criticism is that decoherence
leads to an effective description by a density operator, which however does not uniquely
determine the Fock states of the decoherent components (for details see [11, Section 4]
or [2, Section 6]). In order to avoid these problems, it has been proposed to introduce
a mechanism which leads to a “collapse” or “reduction” of the wave function. Different
mechanism for a collapse have been discussed, in particular models where the collapse
occurs at discrete time steps [12] or is a consequence of a stochastic process [19]. These
models have in common that the superposition principle is overruled by a nonlinear
component in the dynamics. The nonlinearity is chosen so weakly that it does not
contradict the experimental evidence for a linear dynamics. In other words, the non-
linear term is so small that it cannot be detected experimentally. But nevertheless,
this term can be arranged to prevent superpositions of macroscopically different wave
functions.

In the framework of the fermionic projector, the dynamics as described by the ac-
tion principle (5.5) is nonlinear. This indeed provides a new collapse mechanism, as we
now explain. Suppose that our system is described by many decoherent subsystems.
Since perfect decoherence seems impossible to arrange, the kernel of the fermionic
projector P (x, y) will in general not vanish identically if x and y are in two different
subsystems. This gives rise to a contribution to the action (5.5) which, although being
small due to decoherence, is strictly positive. These contributions, which “mix” dif-
ferent subsystems, grow quadratically with the number of subsystems, thus penalizing
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a very large number of subsystems. This shows that there is a mechanism which tries
to reduce the number of subsystems, violating the superposition principle and the in-
dependent dynamics of the subsystems. It seems very plausible that this mechanism
leads to a collapse of the wave function (although a derivation from the action princi-
ple (5.5) or a quantitative analysis has not yet been given). We also point out that, just
as in other collapse theories, the collapse itself seems very difficult to observe. Namely,
as systems whose quantum states are decoherent no longer interact with each other, it
is impossible to decide whether there are other worlds beside the one observed by us,
or whether the whole system has collapsed into the state which we observe. For this
reason, despite its importance for the interpretation of quantum theory, the issue of the
collapse of the wave function is often regarded as being speculative. But at least, the
framework of fermion systems in discrete space-time outlined in Section 5.2 provides
a well-defined mathematical setting for studying collapse phenomena. Analyzing this
framework in more detail might help to overcome the open problems discussed in [20],
thus leading to a fully satisfying quantum theory.

To summarize the physical interpretation, the framework of the principle of the
fermionic projector seems in agreement with the superposition principle and the de-
coherence phenomena which explain the appearance of our classical world as well as
the wave-particle duality. Our description is more concrete than the usual Fock space
formulation because the decoherent components of the quantum state should all be
realized in space-time by the states of the fermionic projector. Moreover, we saw quali-
tatively that our action principle (5.5) provides a mechanism for a collapse of the wave
function and a reduction of the number of decoherent components. But this collapse
seems very difficult to observe in experiments. Thus the remaining question of how
many “different worlds” are realized in our space-time seems of more philosophical
nature. The personal view of the author is that the fermionic projector should only
realize one macroscopic world, but at present this is mere speculation.

Acknowledgments: I would like to thank Andreas Grotz and Joel Smoller for valuable
comments on the manuscript.
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