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1. Introduction 

The last years were marked by essential progress in formation and application of 

nanostructures, and this field of science has become a promising technology for 

applications in material science, biotechnology, medicine or chemical analysis. A 

development of nanotechnology is determined not only by technical possibilities 

to form practically useful nanostructures, but also by their temporal stability: a 

struggle between chaos and order is especially hardened in the nanoworld, where 

local concentration gradients are very high and diffusion processes extremely fast. 

It is typical for many systems ordered in the nanometer scale that even small 

structural changes lead to a total loss of function of the whole system. The 

stabilization by cross-linking leads to other problems, like complicated chemistry 
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and/or poor compatibility of subsequent preparation steps resulting in strong 

limitations in the selection of molecules which can be used. 

The known techniques to form micro structured ultra thin layers include 

photolithography [1, 2], electron beam lithography [3] or microcontact printing 

(μ-CP) [4, 5] and soft lithography [6, 7] are limited in their resolution and cannot 

reproducibly achieve stable patterns with dimensions at the nanometer scale. The 

LANGMUIR-BLODGETT technology which has a renaissance in 1980’s posses such 

essential disadvantages as low stability in liquid phases, huge defect density 

[8 - 10], expensive fabrication devices and poor compatibility with industrial 

requirements and therefore can hardly be considered as a perspective technology 

for structures working in liquids. A very interesting system based on alternatively 

charged polyionic layers [11, 12], is limited by using of polyectrolytes only. The 

μ-CP technique is inherently limited by the physical interaction of a macroscopic 

stamp with the surface, often leading to a less structured organic layer with 

significant defect density; moreover, very precisely structures achieved with 

microcontact printing (μ-CP) are only described up to now by using of long chain 

alkanethiols [13, 14]. Therefore, success of the top down approach breaks down, 

when molecular precision is desired.  

This challenge was a strong motivation for the development of bottom-up 

approaches based on subsequent assembly of complete structures molecule by 

molecule. Single-molecule manipulation has been successfully demonstrated 

using scanning probe microscopy, but this technique is extremely time 

consumable and therefore too expensive for any industrial and many laboratorial 

applications [14 - 19]. 

A combination of the speed and versatility of lithographic techniques with the 

resolution of single-molecule manipulation can be realized by introducing a 

technique using the way which biological systems explore: self assembly. 

Moreover, according to the current state of technology, the self-assembly is 

probably the only possible way to fabricate nanoscale assemblies simply and 

economically effective.  
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The natural phenomenon of self-assembly has been recently explored for 

producing supramolecular alignments and has been adapted to form even 

nanoscale patterns [20 - 24]. The best studied systems are self-assembled 

monolayers (SAMs) formed spontaneously by chemisorption of the thiol-

terminated molecules, onto gold surface [25 - 27]. The high stability and low defect 

density of these molecular arrangements is the consequence of the attractive VAN 

DER WAALS forces between the methylene groups and the covalent bond between 

gold and sulfur. The chain length of the alkanethiol determines the insulating 

properties of the SAM. Cyclic voltammograms show that electrodeposition of 

silver is kinetically hindered depending on the chain length of the alkanethiol [28]. 

Multi-component SAMs formed by co-deposition of two or more adsorbates from 

solution have been investigated for their patterning potential [21, 22, 29 - 32]; it has 

been shown that depending on the molecules used, the resulting monolayer 

content a homogeneous mixture or separated phases of these compounds [30, 33]. 

The mixed monolayers comprising electro-inactive insulating long-chain thiols 

and conductive aromatic thiols were also used to demonstrate a template directed 

growth of polymer nanostructures: a subsequent electropolymerisation of aniline 

occurred at the places occupied by the latter sort of thiols only [34].  

Self-assembled monolayers of thiolated molecules are used for development of 

different systems which are important not only for technology and applied 

science, but for basic research too. Namely these systems were used as a support 

for investigation of analyte-receptor-binding in the case of antigen-antibody 

systems [35 - 37], bioreceptor-lipoprotein binding [38] or G-protein dependent 

receptors [39]. The range of maximal stability of alkanethiol monolayers on gold 

electrodes is between about -0.3 V and 0.6 V versus a saturated calomel electrode 

(SCE). The open circuit potential of the gold electrode during thiol deposition is 

within this stability range [40]; that is why it is usually possible to obtain self-

assembled monolayers even without application of external potential. However, 

control of the electrode potential during deposition of monolayers allows one to 

obtain monolayers with better insulating properties and much faster [40]. 

Decrease of the electrical potential of gold electrodes coated by thiols leads to 
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some loss of insulating properties detected by impedance measurement [40 - 43]. 

The effect is comparatively small and reversible. At more negative potentials, a 

reductive desorption occurs. This desorption was measured electrochemically, by 

quartz crystal microbalance (QCM), X-ray photoelectron spectroscopy or IR 

reflection spectroscopy [44 - 54]. The potential of reductive desorption depends on 

the type of thiol derivative and on the properties of metallic surfaces [46, 49, 

55, 56]. For alkanethiol monolayers on silver electrodes, the reductive desorption 

occurs at more negative potentials [49]. The dependence of the desorption 

potential on the alkanethiol type can be used for selective substitution of one type 

of thiol by another one [51]. The dependence of this potential on the electrode 

metal, as well as a formation of islands of atomic monolayers of silver during its 

underpotential deposition on octanethiol coated gold electrodes [57], provides a 

technology for electrochemical formation of nanopores in self-assembled 

monolayers [58].  

According to the results of BARTHLOTT and NEINHUIS describing the so called 

“lotus”-effect, formation of lateral microstructures decreased adsorption of 

particles that are larger than these structures [59]. These results were explained by 

a decrease of interaction area. However, all the works exploit only the anchor 

function of the self-assembled monolayers as a “molecular glue” or just opposite, a 

formation of adsorption resistive surfaces [60, 61] and in some works their 

insulating properties; an exploring of the high potential of laterally 

nanostructured self-assembled monolayers in combination with bio molecules is 

just in the beginning. 

The introduction of in-situ synthesis on surface of solid substrates has resulted in 

essential progress in different fields of science and technology. Immobilized 

metallic nanoparticles are of particular interest. Their applications include 

electrocatalysis, data storage systems, new electronic devices, electrochemical 

chemo- and biosensors, refractometric and fluorescent sensors based on plasmon 

effects and many other fields of science and high technology [3 - 8]. The strategies 

for preparation of these systems are mostly based on the deposition of pre-

synthesized nanoparticles with [9] or without [10, 11] further treatment. So far the 
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deposition was mostly performed by electrospray technique [12] or adsorption [10, 

13] while only a few techniques based on the in-situ synthesis of nanoparticle were 

tested. Such a synthesis can be performed by electroless deposition or by 

electroplating. The electroless deposition of nanoparticles was used for deposition 

of gold, silver, nickel, palladium, copper and cobalt nanoparticles onto different 

substrates [3, 6, 14, 15]. Deposition by electroplating was used for formation of 

bulk phases of nanocrystalline metals by reduction of corresponding salts in ionic 

liquids [16, 17]. Formation of metallic nanoparticles by electrochemical reduction 

on the tip of scanning tunneling microscope (STM) followed by transfer to planar 

metal electrodes was reported [18, 19] and then reproduced by other groups [20],  

which gives one a powerful tool for composing desired surface characteristics.    

Molecular interactions at surfaces play an important role in many biochemical 

processes and they are of great interest for medical purposes. This processes are 

often rapid a complex in nature under physiological conditions and therefore they 

are very difficult or impossible to study. One of the most exciting applications of 

nanotechnology is a formation of hybrid structures including conductive solid 

supports, laterally nanonstructured organic layer of a definite design and 

biological ion pump. Such systems can be used for fundamental biological study 

(investigation of mechanisms of ion transport, measurement of kinetic or 

thermodynamic properties), for drug discovery (high-throughput screening to 

find effective pharmacological ways to control these ion pumps and ion fluxes 

through biological membranes) in technology (to form nanodevices for energy and 

information conversion and storage). Several such supported systems have been 

described in literature [62 - 65], however they provide only capacitive electrical 

coupling with bio molecules and cannot be used for direct measurements of 

steady-state ion fluxes and thermodynamic properties.  

Electrogenic ionic pumps like Na,K-ATPase are important house-keeping protein 

in most animal cells for the maintaining of the intracellular high K+ and low Na+ 

concentrations by active ion transport. Recent extensive studies led to a substantial 

progress in the understanding of the transport mechanism of the ion pump [66]. It 

was found that the transport of ions by Na,K-ATPase is performed through wells 
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or ion access channels which connect water solutions with the binding sites inside 

the protein. The information about the size of access channels and the kinetics of 

the active transport with Na,K-ATPase was obtained by electrical and optical 

studies which allowed the identification of the electrogenic reaction steps of the 

transport cycle and of the determination of their characteristic parameters [66 - 73]. 

However, further investigations on these systems are considerably restricted due 

to several problems typical for these systems. The main problem arising with 

patch clamp investigations on cells is that the cells contain many other proteins 

besides of Na,K-ATPase. It restricts the experimental conditions of measurements. 

Net electrical signal from Na,K-ATPase in such systems can be measured as a 

result of subtracting of electric currents before and after inhibition of the protein. 

The problem cannot be solved in model system based on bilayer lipid membranes 

with adsorbed membrane fragments where direct measurements of electric 

current through the membrane fragment and the control of voltage across it are 

impossible. However, these problems can be solved by formation of hybrid 

nanostructured systems with reversible nanoelectrodes. 

1.1 References 

 [1] Moreau, W.M.; Semiconductor Lithography: Principles and Materials, 1988, Plenum, 

New York. 

 [2] Brambley, D.; Martin, B.; Prewett, P. D.; Adv. Mater. Opt. Electron. 1994, 4, 55 - 74. 

 [3] Rai-Choudhury, P.; Handbook of Microlithography, Micromachining, and 

Microfabrication, 1997, SPIE, London. 

 [4] Xia, Y.; Zhao, X.-M.; Whitesides, G. M.; Microelectron. Eng. 1996, 32, 255 - 268. 

 [5] Xia, Y.; Kim, E.; Whitesides, G.M.; J. Electrochem. Soc. 1996, 143, 1070 - 1079. 

 [6] Xia, Y.; Whitesides, G. M.; Angew. Chem. Int. Edn. Engl. 1998, 37, 550 - 575. 

 [7] Zhao, X. M.; Xia, Y.; Whitesides, G.M.; J. Mater. Chem. 1997, 7, 1069 - 1074. 



Introduction  7 

 [8] Peterson, I. R.; J. Mol. Electron. 1986, 2(2), 95 - 99. 

 [9] Peterson, I. R.; J. Chim. Phys.-Chim. Biol. 1988, 85(11-12), 997 - 1001. 

 [10] Garnaes, J.; Schwartz, D. K.; Viswanathan, R.; Zasadzinski, J. A. N.; Synth. Met. 

1993, 57(1), 3795 - 3800.  

 [11] Shimomura, M.; Sawadaishi, T.; Current Opinion in Colloid & Interface Science 2001, 

6, 11 - 16. 

 [12] Shimomura, M.; Thin Solid Films 1985, 132, 243 - 248. 

 [13] Jeon, N. L.; Finnie, K.; Branshaw, K.; Nuzzo, R. G.; Langmuir 1997, 13, 3382 - 3391. 

 [14] Xia, Y.; Qin, D.; Yin, Y.; Current Opinions in Colloid & Interface Science 2001, 6, 

54 - 64. 

 [15] Becker, R. S.; Golovchenko, J. A.; Swartzentruber, B. S.; Nature 1987, 325, 419 - 421. 

 [16] Eigler, D. M.; Schweizer, E. K.; Nature 1990, 344, 524 - 526. 

 [17] Weiss, P. S.; Eigler, D. M.; NATO ASI Series E: Applied Sciences 1993, 235, 213 - 217. 

 [18] Gimzewski, J. K.; Joachim, C.; Science 1999, 283, 1683 - 1699. 

 [19] Hla, S.-W.; Bartels, L.; Meyer, G.; Rieder, K.-H.; Phys. Rev. Lett. 2000, 85, 

2777 - 2780. 

 [20] Allara, D. L.; Biosens. Bioelectron. 1995, 10, 771 - 783. 

 [21] Bain, C. D.; Evall, J.; Whitesides, G.M.; J. Am. Chem. Soc. 1989, 111, 7155 - 7164. 

 [22] Bain, C. D.;  Whitesides, G. M.; Langmuir 1989, 5, 1370 - 1378. 

 [23] Ulman, A.; An Introduction to Ultrathin Organic Films: from Langmuir-Blodgett to Self-

Assembly, 1991, Academic, San Diego. 

 [24] Ulman, A.; Chem. Rev. 1996, 96, 1533 - 1554. 

 [25] Dubois, L. H.; Nuzzo, R. G.; Annu. Rev. Phys. Chem 1992, 43, 437 - 463. 

 [26] Poirier, G. E.; Chem. Rev. 1997, 97, 1119 - 1122. 

 [27] Mirsky, V. M.; Trends in Analytical Chemistry 2002, 21(6+7), 439 - 450. 

 [28] Hagenström, H.; Esplandiú, M. J.; Kolb, D. M.; Langmuir 2001, 17, 839 - 848. 



Introduction  8 

 [29] Bain, C. D.; Whitesides, G. M.; J. Am. Chem. Soc. 1988, 110, 6560 - 6561.  

 [30] Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M.; Deutch, J.; J. Phys. Chem. 1994, 98, 

563 - 571.  

 [31] Stranick, S. J.; Attre, S. V.; Parikh, A. N.; Wood, M. C.; Allara, D. L.; Winograd, N.; 

Weiss, P. S.; Nanotechnology 1996, 7, 438 - 442.  

 [32] Stranick, S. J.; Parikh, A. N.; Tao, Y.-T.; Allara, D. L.; Weiss, P. S.; J. Phys. Chem. 

1994, 98, 7636 - 7646. 

 [33] Hayes, W. A.; Kim, H.; Yue, X.; Perry, S. S.; Shannon, C.; Langmuir 1997, 13, 

2511 - 2518. 

 [34] Hayes, W. A.; Shannon, C.; Langmuir 1998, 14, 1099 - 1102. 

 [35] Dong, Y.; Shannon, C.; Analytical Chemistry 2000, 72(11), 2371 - 2376. 

 [36] Blonder, R.; Katz, E.; Cohen, Y.; Itzhak, N.; Riklin, A.; Willner, I.; Anal. Chem. 1996, 

68(18), 3151 - 3157. 

 [37] Duschl, C.; Sevin-Landais, A.-F.; Vogel, H.; Biophys. J. 1996, 70(4), 1985 - 1995. 

 [38] Bajari, T. M.; Lindstedt, K. A.; Riepl, M.; Mirsky, V. M.; Nimpf, J.; Wolfbeis, O. S.; 

Dresel, H. A.; Bautz, E. K. F.; Schneider, J. W.; Biological Chemistry 1998, 379(8/9),  

1053 - 1062. 

 [39] Heyse, S.; Ernst, O. P.; Dienes, Z.; Hofmann, K.- P.; Vogel, H.; Biochemistry 1998,  

37(2), 507 - 522. 

 [40] Ma, F.; Lennox, R. B.; Langmuir 2000, 16, 6188 - 6190. 

 [41] Riepl, M.; Mirsky, V. M.; Wolfbeis, O. S.; Mikrochim. Acta 1999, 131, 29 - 34. 

 [42] Boubour, E.; Lennox, R. B.; J. Phys. Chem. B 2000, 104, 9004 - 9010. 

 [43] Boubour, E.; Lennox, R. B.; Langmuir 2000, 16, 7464 - 7470. 

 [44] Kawaguchi, T.; Yasuda, H.; Shimazu, K.; Porter, M. D.; Langmuir 2000, 16, 

9830 - 9840. 

 [45]  Wong S. S.; Porter, M. D.; J. Electroanal. Chem. 2000, 485, 135 - 143. 

 [46]  Zhong, C. J.; Zak, J.; Porter, M. D.; J. Electroanal. Chem. 1997, 421, 9 - 13. 



Introduction  9 

 [47]  Weisshaar, D. E.; Walczak, M. M.; Porter, M. D.; Langmuir 1993, 9, 323 - 329. 

 [48]  Walczak, M. M.; Popenoe, D. D.; Deinhammer, R. S.; Lamp, B. D.; Chung, C.; 

Porter, M. D.; Langmuir 1991, 7, 2687 - 2693. 

 [49]  Widrig, C. A.; Chung, C.; Porter, M. D.; J. Electroanal. Chem. Interfacial Electrochem. 

1991, 310, 335 - 359. 

 [50]  Yang, D. F.; Wilde, C. P.; Morin, M.; Langmuir 1997, 13, 243 - 249. 

 [51]  Yang, D. F.; Morin, M.; J. Electroanal. Chem. 1998, 441, 173 - 181. 

 [52]  Yang, D. F.; Morin, M.; Can. J. Chem. 1997, 75, 1680 - 1686. 

 [53]  Yang, D. F.; Al Maznai, H.; Morin, M.; J. Phys. Chem. B 1997, 101, 1158 - 1166. 

 [54] Vinokurov, I. A.; Morin, M.; Kankare, J.; J. Phys. Chem. B 2000, 104, 5790 - 5796. 

 [55]  Beulen, M. W. J.; Kastenberg, M. I.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; 

Langmuir 1998, 14, 7463 - 7467. 

 [56]  Imabayashi, S. I.; Hobara, D.; Kakiuchi, T.; Knoll, W.; Langmuir 1997, 13, 

4502 - 4504. 

 [57] Oyamatsu, D.; Kuwabata, S.; Yoneyama, H.; J. Electroanal. Chem. 1999, 473, 59 - 67. 

 [58]  Oyamatsu, D.; Kanemoto, H.; Kuwabata, S.; Yoneyama, H.; J. Electroanal. Chem. 

2001, 497, 97 - 105. 

 [59] Fuerstner, R.; Barthlott, W.; Neinhuis, Ch.; Walzel, P.; Langmuir 2005, 21, 956 - 961. 

 [60] Harder, P.; Grunze, M.; Dahint, R.; Whitesides, G. M.; Laibinis, P. E.; J. Phys. Chem. 

B 1998, 102, 426 - 436. 

 [61] Valiokas, R.; Svedhem, S.; Oestblom, M.; Svensson, C. T.; Liedberg, B.; J. Phys. 

Chem. B 2001, 105, 5459 - 5469.  

 [62] Naumann, R.; Jonczyk, A.; Hampel, C.; Ringsdorf, H.; Knoll, W.; Bunjes, N.; 

Graeber, P.; Bioelectrochemistry and Bioenergetics 1997, 42(2), 241 - 247. 

 [63] Naumann, R.; Baumgart, T.; Graber, P.; Jonczyk, A.; Offenhausser, A.; Knoll, W.; 

Biosensors & Bioelectronics  2002, 17(1-2), 25 - 34. 

 [64] Steinem, C.; Janshoff, A.; Hoehn, F.; Sieber, M.; Galla, H.-J.; Chemistry and Physics of 

Lipids 1997, 89(2), 141 - 152. 



Introduction  10 

 [65] Pintschovius, J.; Fendler, K.; Bamberg, E.; Biophysical Journal 1999, 76(2), 827 - 836. 

 [66] Apell, H.-J.; Karlish, S. J.; J. Membrane Biol. 2001, 180, 1 - 9. 

 [67] Heyse, S.; Wuddel, I.; Apell, H.-J.; Sturmer, W.; J. Gen. Physiol. 1994, 104, 197 - 240. 

 [68] Wuddel, I.; Apell, H.-J.; Biophys. J. 1995, 69, 909 - 921.  

 [69] Clarke, R. J.; Kane, D. J.; Apell, H.-J.; Roudna, M.; Bamberg, E.; Biophys. J. 1998, 75, 

1340 - 1353.  

 [70] Sokolov, V. S.; Ayuan, A. G.; Apell, H.-J.; European Biophysics Journal 2001, 30, 

515 - 527. 

 [71] Holmgren, M.; Wagg, J.; Bezanilla, F.; Rakowski, R. F.; De Weer, P.; Gadsby, D. C.; 

Nature 2000, 403, 898 - 901.  

 [72] Cornelius, F.; Biophys. J. 1999, 77, 934 - 942. 

 [73] Sokolov, V. S.; Apell, H.-J.; Corrie, J. E. T.; Trentham, D. R.; Biophys. J. 1998, 74, 

2285 - 2298.



Aim of the work  11 

2. Aim of the work 

The aim of this work was the development of a new technology for simple 

formation of nanostructured organic monolayers. The resulting structures should 

be stable and exhibit different abilities like working as chemoreceptor or dealing 

as template for creating metallic nanoparticles. This should confirm the generality 

of this new technique.  

The technology is based on combination of self-assembly of thiol compounds on 

metals, by co-adsorption of different types of molecules: linear ones (matrix) and 

large rigid planar ones (template or molecular spreader-bar). This results in the 

fabrication of heterogeneous structured monomolecular film with so called 

spreader-bar moieties imbedded in the matrix.  
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In contrast to two-dimensional molecular imprinting, realized by formation of a 

monolayer in presence of an analyte and washing out the analyte after the self 

assembly, the structures formed by spreader-bar technique are temporary stable, 

because the spreader-bar molecules remain in the monolayer.  

Different types of spreader-bar molecules like purines and pyrimidines as well as 

thiol modified porphyrins was planned to investigate. The resulted structures 

should be characterized in their phenomenology by different surface sensitive 

methods like, contact angle measurements, electrical impedance studies, infrared 

spectroscopy, ellipsometry, atomic force microscopy, scanning electron 

microscopy, X-ray photon spectroscopy and NEXAFS. 

With this approach a formation of stable artificial receptors for different purines 

and pyrimidines was planed. The concept of this new type of receptors should be 

also tested by a formation of enantioselective receptors with thiol modified R- and 

S-stereoisomers of 1,1'-binaphthyl-2,2'-diamine.  

In a further step the spreader-bar approach should be used to design a 

nanostructured self-assembled monolayer consisting of insulating matrix (long 

chain alkanethiols) with incorporated conductive islands (large, planar adsorbed 

molecules). Reduction of metal onto such heterogeneous films was planed. Since a 

density of the electrical current through the spreader-bar molecules could be much 

higher than through the insulating alkanethiol environment, the formation of 

metallic nanoparticles was expected. 

Another application of nanostructured spreader-bar systems includes a formation 

of such new hybrid structures providing not only capacitive but also ohmic 

electrical contacts with Na,K-ATPase. Therefore it was tested, if the hybrid 

nanostructured systems with reversible nanoelectrodes, are suitable for adsorption 

of membrane fragments with Na,K-ATPase, detected by measurement of 

electrochemical properties.  



Ultrathin layers adsorbed on substrates  13 

3. Ultrathin layers adsorbed on substrates 

3.1 Ultrathin layers 

Ultrathin layers cover a substrate with a film of a thickness in the range from 

ångströms to micrometers. This layers can be of organic or inorganic nature, in the 

case they are as thin as their molecular dimensions they are called monolayer. 

Since the past 30 years there has been great interest in monolayers (more than 

100.000 references found by SciFinder), resulting in the development of surface 

analytical techniques [1, 2] to understand the phenomena of this layers in order to 

exploit them for surface modification, e.g., control of wetting [3 - 6], creation of 

bio-compatible materials [7 - 9], in development of solid-state electronic devices 

[10], for tuning the optical properties of lenses [11], as inhibitors for corrosion [12, 
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13], in lubrication [14], as adhesion materials [15 - 18], for passivation [19], or as 

biosensors [20 - 28]. 

There are many ways to cover substrates by ultrathin layers. The most common 

techniques are such as physical vapor deposition (PVD) [29], chemical vapor 

deposition (CVD) [30], plasma deposition [31] or molecular beam epitaxy (MBE) 

[32]. These techniques recommend relative complicated equipment and therefore 

they are cost intensive. Another strategy to form ultrathin layers is adsorption 

from solution. This versatile technique is one of the best ways to assembly 

monolayers of organic nature on a solid substrate. Furthermore, as described 

below, it gives the possibility to produce layers of controlled order, composition 

and properties without need of any expensive equipment. 

3.2 Monomolecular layer 

Thin films at the water-air interface attract the interest of scientists since the 18th 

century [33]. AGNES POCKELS was the first who describes a monolayer at this 

interface [34 - 37] and this type of monolayer are classified as LANGMUIR films after 

IRVING LANGMUIR, who has extensively studied the behavior of amphiphilic 

molecules at a liquid-gas-interface [38]. In a next step, KATHARINE BLODGETT 

developed a technique to deposit multilayer of long chain carboxylic acids from a 

LANGMUIR film to solid substrates by means of glass, silver, chromium, brass or 

steel. These thin layers are known as LANGMUIR-BLODGETT (LB) films [39, 40]. By 

this way it was possible to get a good controlled film with the disadvantage of 

poor time stability, because of thermodynamic disequilibrium of this deposited 

film on the substrate. This drawback of physisorbed layers was overcome by 

chemical binding of the molecules to the substrate, which is often the case by 

using the self-assembly (SA) technique.   

The first monolayers created by self-assembly resulted by dipping a glass surface 

into a solution of long-chain alcohols dissolved in hexadecane [41]. These well 
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oriented monomolecular films alter the wetting properties of the glass. It was 

demonstrated that self-assembly of monolayers could be extended to various 

metal and metal oxide surfaces in combination with different molecules like long-

chained amines, carboxylic acids and primary amides [42, 43]. The process of self-

assembly in these systems is driven by the large interfacial energy between the 

substrate and the nonpolar solvent phase, which will be decreased by spontaneous 

adsorption of the amphiphilic species. The polar head group adsorbs to the 

substrate and the hydrophobic part of the molecules is oriented away from the 

substrate.  

Monolayers of silanes on glass, described by SAGIV [44], were the first self 

assembled monolayers (SAMs) with driving force of the chemical binding of the 

monolayer compound to the substrate. This binding occurs, if an organosilane, 

like octadecyltrichlorsilane (OTS) is exhibited to surface hydroxyl groups (-OH) of 

the glass. Different ω-substituted alkyl silanes have been used to form SAMs on 

SiO2, like such as amines [45, 46], cyanides and thiocyanides [46], halogens [46 - 

50], methyl ether and acetate [47], thioacetate [47, 51], α-haloacetate [48], vinyl [52 - 

55], (trimethylsilyl)ethinyl [56], methyl ester [57, 58], and p-chloromethylphenyl 

[48, 59 - 61]. All these systems of monolayer based on organosilanes show 

enhanced stability and allow generating a wide variation of SAMs with different 

functional groups on top of the surface. It is reported that the controlling of the 

amount of water in the coating solution makes the production still difficult [52, 62, 

63]. The exclusion of water leads to incomplete monolayer formation [53, 64], and 

an excess of water results in polymerization in solution and deposition of 

polysiloxane at the surface [65]. An easier and more perspective way to get very 

stable monolayer can be reached by the use of organosulfur compounds instead of 

organosilanes.  
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3.3 Alkanethiol monolayers on gold 

The first report on monomolecular assemblies of alkanethiols on a gold surface 

was given in 1983 [66] and it describes that dialkyldisulfides adsorb in an oriented 

direction to the gold surface, with the alkane moiety at the interface to the air. The 

reason for that is the strong interaction of the sulfur to the gold [67 - 71]. Because 

sulfur exhibits also this strong interaction to other metals, monolayers of 

alkanethiols can also be formed on silver [72], copper [73 - 75], palladium [76], and 

platinum [77]. An overview about different systems of molecules self assembled 

on sold substrates is given in table 3.1. For most applications and investigations 

most of these metal surfaces are incompatible because they form, in contrast to 

gold, stable oxides.  

Beside different metal surfaces, many other organosulfur compounds have been 

investigated in their ability to form SAMs on gold. Among others alkanethiols 

[78], dialkylsulfides [77, 79], cysteines [80, 81], thiocarbamates [82] and 

xanthates [83] were used. If it is desired to get a well ordered, dense packed 

monolayers, investigations by studying the contact angle of water and hexadecane 

at the monolayer air interface, small head groups give better results compared to 

bulky groups, by similar length of the alkane chain [84].   
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TABLE 3.1. Overview of combinations of self assembled monolayers on solid substrates. R stands 
for an organic, Ar for an aromatic moiety. X symbolizes a halogen [85]. 

Substrate Monolayer 
forming molecule 

Binding Reference 

Au RSH, ArSH -S-Au [86] 

Au RS-SR’ -S-Au [87] 

Au RSR’ -S-Au [77] 

Au RSO2H -O2S-Au [88] 

Au R3P -P-Au [89] 

Ag RSH, ArSH -S-Ag [90] 

Cu RSH, ArSH -S-Cu [91] 

Pd RSH, ArSH -S-Pd [69] 

Pt RNC -NC-Pt [92] 

GaAs RSH -S-GaAs [93] 

InP RSH S-InP [94] 

SiO2 RSiCl3, RSi(OR’)3 -O-Si [95] 

Si/Si-H (RCOO)2 C-Si [96] 

Si/Si-H RCH=CH2 C-Si [97] 

Si/Si-Cl RLi, R-MgX C-Si [98] 

 

3.3.1 Adsorption kinetics 

Self-assembly of alkanethiols on a gold surface is characterized by two steps with 

different kinetics. By dipping a clean gold surface into a solution of an alkanethiol 

in millimolar concentration a monolayer is formed within several seconds. 

Measurements of contact angles demonstrate that there is no further change in 

these values after this process. Studies in thickness of the resulting layer as a 

function of coating time show that thickness reaches only 80 - 90% of its final value 
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after the first rapid step [99]. This behavior is explained by a fast adsorption of the 

thiols to the gold surface by formation of an imperfect monolayer. In a second 

process lasting for several hours, the packing density of the monolayer is 

increased, lateral diffusion on the surface reduces defects, and a well ordered 

monolayer is formed (figure 3.1). 

 

FIGURE 3.1. Self-assembly of alkanethiols on gold surfaces. In a fast process the sulfur binds to 
the gold. In a second step the alkyl chain get well oriented and a dense monolayer is formed.  

The adsorption kinetics is also influenced by the concentration of the alkanethiol 

in the solution. For concentrations less than 1 mmol·L-1 a slower kinetic for the first 

step is reported [99]. By the use of very high concentrations it was found that 

functionalized alkanethiols like 1-mercapto-11-undecanol form monolayer with 

excessive thickness. An explanation could be that additional adsorption or 

incorporation of ethanol used as solvent for the alkanethiols will occur [100]. 

As mentioned above, not only alkanethiols form self assembled monolayer on 

gold surfaces. For molecules with other organosulfur headgroups it needs a time 

up to several days to get a well-oriented, densely packed monolayer [84]. 

For alkanethiols with different chain length it is described that the kinetics of 

monolayer formation for the long chain 1-octodecanethiol HS-(CH2)17-CH3 are 

faster than for the 1-decanethiol HS-(CH2)9-CH3 [101]. An increase of the chain 
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length is attended by an increase of the VAN DER WAALS interaction in the resulting 

monolayer, which might enhance the assembly of long chains. 

One important step in the formation of the self assembled monolayer of thiols on 

the gold surface is the chemisorption of the organosulfur compound to the metal 

surface. The resulting bonding is described by a Au(I)-thiolate species [2]. The 

commonly accepted mechanism is considered as an oxidative addition of the S-H 

bond to the gold surface and a reductive elimination of hydrogen. This is 

indicated by the fact that monolayers can be formed from gas phase [102 - 104] 

even in the absence of any oxygen: 

 R-SH  ൅  Au௡
଴     ՜    R-S

ି
Au୬ିଵ

଴   ൅   ଵ
ଶ

Hଶ (3.1) 

The reaction (3.1) is exothermic and the bonding of the thiolate group is very 

strong. For homolytic dissociation of the Au-S bond an energy of approximately 

40 kcal·mol-1 has been estimated [67].  

3.3.2 Order and geometry 

The order of the monolayer is affected by VAN DER WAALS interaction between the 

alkyl chains. Studies of the thickness of the monolayer by varying the chain length 

of alkanethiols HS-(CH2)n-CH3 by ellipsometry [78] show two linear regions, one 

for short alkanethiols up to n < 8 and second one for long alkanethiols beginning from 

n ≥ 9, with a slope of 1.5 Å for every CH2-unit. The intercept was determined to 3.8 Å. 

Short-chain alkanethiols exhibit a lower slope. From infrared spectroscopy it was found 

[78] that long-chain alkanethiols are tilted 20 - 30° from surface normal. These results 

show that alkanethiols with more than nine CH2-groups form nearly perfect monolayer 

with fully extended alkyl chains in trans-configuration, densely packed and with high 

order. 

Investigation of the symmetry of the monolayer on the gold surface has been done 

by electron diffraction studies [91, 105, 106], helium diffraction [106], and atomic 

force microscopy [107]. On Au (111) the sulfur occupies not all hollow sites due to 
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of the alkanethiol and the characteristics of the solvent. By using hexadecane as 

solvent at 83 °C, a decrease of desorption rate with increase of the chain length 

was found [99]. 

  A self-exchange of radio labeled 1-octadecanethiol molecules from a monolayer 

exposed to a solution containing the same thiol was observed and its kinetics were 

described by first order [91]. 

3.4 Mixed monomolecular layers 

To increase the possibilities to design surfaces with certain properties it is also 

possible to obtain mixed monolayer, consisting of different molecules. This mixed 

SAMs can be prepared by immersing the gold substrate into a solution of different 

molecules with thiol moieties. The composition of the resulting monolayer 

depends on the concentration ratio of these molecules in solution, the type of the 

molecules and the solubility of them in the solvent. It has to be stressed out that 

the concentration of one thiol in the mixed monolayer is in general not the same as 

in the solution used for self assembly [109 - 114]. 

3.5 Spreader-bar system  

A new type of mixed self assembled monolayers is described by the spreader-bar 

technique. As for known systems, the mixed monolayer is not formed by similar 

alkanethiols which only differs in their length and the headgroup. The spreader-

bar system describes the self assembly of two different molecules. 

The basic idea was from the work of SAGIV [115]. He describes a monolayer of 

n-octadecyltrichlorsilane (OTS) on glass, assembled together with a dye, 

characterized by a polar moiety at one end of the molecule and a nonpolar part. A 
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mixed monolayer of OTS with incorporated dye molecules is formed. After 

treatment of the surface by chloroform the physisorbed dye was washed out and 

the silane remains on the substrate. By immersion of this silane covered glass 

substrate to a solution of the dye a readsorbtion of this molecule was found. And it 

was found that not only the molecule, which was present during the self assembly 

of the silane, was able to adsorbe to this surface, although other molecules which 

have the same geometrical properties like the displaced molecule could be 

entrapped (figure 3.3).  

1

- +

lateral
diffusion

2

3

self
 assembly

 

FIGURE 3.3. Adsorption of a silane (1) together with a polar molecule (2) onto a glass surface (3). 
A memory effect for the surface was found. The polar molecules could be washed out and rebound. 
This characteristics get lost with time, because of lateral diffusion of the molecules within the 
monomolecular film.   

One drawback of this concept is that after desorption the stability of this 

structured monolayer is weak, because of lateral diffusion of the molecules 

forming the SAM. Another limitation is in the choice of molecules which can be 

used for this memory effect. They have to be from the same type like the 

monolayer forming compound with a small polar and a large non-polar moiety.   
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The spreader-bar technique provides a stable nanostructured mixed self-

assembled monolayer and is based on creation of mixed monolayers of two 

different compounds, none of them exhibiting recognition properties alone. One 

component, called matrix, is an alkanethiol, the second component called 

spreader-bar molecule (template), is similar to the analyte in shape and chemical 

structure. The matrix molecule must be able to form a monolayer thicker than a 

monolayer of the template molecules. Both types of molecules are chemisorbed to 

the gold surface. The structures formed should be able to interact with analyte 

molecules in a solution and theses structures are stable against lateral diffusion, 

because the template will remain in the surface (figure 3.4).  
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FIGURE 3.4. Principle of a spreader-bar stabilized, nanostructured monolayer.  
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3.5 Summary 

Beside other possible systems for testing the concept of spreader-bar structured 

monomolecular films, the self assembly of alkanethiol on gold has been chosen 

because of the following reasons: 

• The general inertness of gold to nearly all chemical species in ambient 

conditions makes it sure that only the organosulfur compound will be 

assembled. A concurrent chemosorption of any non-sulfur based moiety 

can be excluded. 

• Monolayer on gold can be easy investigated by a lot of techniques, 

including electrochemistry, STM, SEM, or SPR. Experimental approaches to 

study organosilanes on glass are very limited.   

• Alkanethiols and thiols containing heteroaromatic systems are available in 

large variations, and therefore no special synthesizing is necessary. 

• Monolayers of thiols on gold are easy in preparation and can be formed 

high reproducible. 

• SAMs of alkanethiols on gold are known for the low density of defects and 

their high stability under ambient conditions.  
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4. Methods of surface characterization 

There are many surface sensitive techniques available to investigate thin films on 

surfaces. Each technique has only a very small focus and so it is always necessary 

to combine several methods to get a more or less complete picture of an ultrathin 

film.  

In case of self assembled monolayer, especially those of alkanethiols on gold there 

have been a lot of studies exploiting the techniques listed in the table 4.1 below. In 

the following the most important methods used in this work for surface 

characterization are described in detail. 
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TABLE 4.1. Common methods for surface characterization used for self assembled monolayers of 
thiols on gold. 

Information Technique References 

Composition X-ray photoelectron spectroscopy (XPS) [1, 2] 

 Time of flight secondary ion mass spectroscopy [1, 3] 

 Temperature programmed desorption (TPD) [4] 

Structure Infrared spectroscopy [5 - 7] 

 Atomic force microscopy (AFM) [8, 9] 

 X-ray diffraction [1] 

 Electron diffraction [1, 10] 

 Surface raman scattering [1] 

 Sum frequency generation spectroscopy [1] 

 Low energy helium diffraction [1] 

Coverage Quartz crystal microbalance (QCM) [11] 

 Surface acoustic wave device [1, 12] 

 Electrochemical methods [12, 13] 

Thickness Ellipsometry [14, 15] 

 Surface plasmon resonance spectroscopy (SPR) [1, 16] 

Defects Scanning probe microscopy (STM and AFM) [3, 17] 

 Wet etching [18] 

Wettability Contact angle measurements [1, 19] 
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4.1 Contact angle measurement 

If a liquid is dropped on a surface two phenomena are well known (figure 4.1). 

The first is that the surface becomes wetted, the second can be described by 

formation of droplets which can be easy spilled of the surface.  

θ θ

a) b)

 

FIGURE 4.1. Contact angle θ of water on a solid surface. The surface has hydrophillic properties 

(a) when θ < 90°. In the case of θ > 90° the surface is hydrophobic (b). 

All liquids which do not completely wet a solid surface form droplets on the 

surface which can be characterized by a definite angle, θ, given by the tangent to 

the surface at the three-phase boundary, the so called contact angle [1] (figure 4.1).  

On plane, homogenous surfaces the shape of the droplet, and therefore the contact 

angle is the result of the free energy of the drop in affection of the free energy of 

the surface. So the wetting properties of a liquid on a plane substrate give 

information about the homogeneity of the surface. The relationship between the 

free energy of the surface and the contact angle θ, in equilibrium and under ideal 

conditions is given by YOUNG’s equation (4.1) [20, 21]. 

௅ீߛ   · cos ߠ ൌ ௌீߛ െ  ௌ௅ (4.1)ߛ

with: 

γSL  surface-free energy at the solid-liquid interface 

γSG  surface-free energy at the solid-gas interface 

γLG·cosθ surface-free energy at the liquid-gas interface 

θ  contact angle 
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In practice it is hardly to get thermodynamic equilibrium, and so the angle differs 

by measurements, when a droplet is advanced (θadvancing) or receded (θreceding). In 

general θreceding < θadvancing and the difference between this two angles, the hysteresis 

[22 - 24], is getting bigger the more heterogeneous the structure of the surface is. 

The hysteresis is also caused by contaminations of the surface or the liquid [1], 

surface roughness, or reorientation of the surface molecules due to interactions 

between the surface and the liquid.  

For smooth surfaces of heterogeneous chemical composition, the contact angle can 

be described by the CASSIE Equation (4.2) [25]: 

 cos ߠ ൌ ଵߌ  · cos ଵߠ ൅ ߌଶ · cos  ଶ (4.2)ߠ

with 

θ  contact angle of a liquid on a heterogeneous surface 

Ξi  fraction of the compound i; Ξ1 + Ξ2 = 1 

θi  contact angle of this liquid on a pure, homogeneous surface of i. 

The CASSIE Equation takes the cohesion of the liquid to the surface into account. 

This work of cohesion, W is known as 

 ܹ ൌ ௅ሺ1ߛ ൅ cos  ሻ (4.3)ߠ

with  

γL  free-surface energy of the liquid. 

For a heterogeneous surface, W can be described by the sum of the fraction 1 

multiplied by W1 and fraction 2 multiplied by W2, where 1 and 2 stands for the two 

compounds of the mixed surface. This assumes that the surface is composed by 

well defined domains, which is not the truth in mixed monomolecular films. In 

case of SAMs VAN DER WAALS and electrostatic forces [26] suggest that the 

polarizability, surface charges and the dipole moment of the surfaces should be 

averaged and not the cohesion energy. This has been done by ISREALACHVILI and 

GEE. They took the arithmetic mean values of the polarizability and the dipole 

moment of each compound and calculated the VAN DER WAALS interaction. For a 
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monomolecular film of two compounds with domain of only molecular dimension 

they got an equation which is known as ISRAELACHVILI-GEE equation [27]: 

 ሺ1 ൅ cos ሻଶߠ ൌ ଵߌ · ሺ1 ൅ cos ଵሻଶߠ ൅ ଶߌ · ሺ1 ൅ cos  ଶሻଶ (4.4)ߠ

This equation is still a simplification, because all interactions among the surface 

functional groups are neglected.  

By comparision of the ISRAELACHVILI-GEE equation (4.4) with the CASSIE equation 

(4.2) one can see that the values for the contact angle of the same surface are 

always larger if they were calculated by the CASSIE equation. In practice, this 

means if we are moving from the randomly mixed monomolecular film to a layer 

with an increase of the area of one domain, also an increase in the contact angle 

hysteresis should be found [27, 28]. Therefore the measurement of contact angle 

can provide useful information about the heterogeneity of a mixed SAM.  

4.2 Electrochemistry of monomolecular surfaces  

Electrochemistry studies on electrodes covered by thin molecular films provide a 

lot of information, not only for characterization of the quality of the 

monomolecular layer; it is also a useful method for the investigation of the 

receptor properties of the spreader-bar coated electrodes. Two techniques are of 

special interest in this work: a) impedance measurements and b) cyclic 

voltammetry.   

4.2.1 Electrochemical impedance spectroscopy 

The electrochemical impedance is a variable that represents the ability of an 

electric circuit to resist the flow of electrical charge. In alternating current circuits 

impedance has the same physical meaning as resistance in direct current circuits. 

In contrast to resistance, impedance usually depends on the frequency of the 
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voltage. Measurements of the impedance of an electrochemical cell are done by 

applying a sinusoidal AC potential with low amplitude at different frequencies 

and analysis of the current response through the cell. This response is an AC 

current signal with the same frequency but shifted in phase (figure 4.2). 

φ

E(t) = E
0
 sin (ωt)

 

I(t) = I
0
 sin (ωt + φ)

t

phase-shift

 

FIGURE 4.2. Typical responding current I(t) of a electrochemical cell by applying a voltage E(t). 

According to OHM’s Law, the impedance Z(t) can be calculated from the excitation 

potential E(t) and the measured current I(t) as follows:   

ሻݐሺܧ  ൌ ଴ܧ · sinሺ߱ ·  ሻ (4.5)ݐ

ሻݐሺܫ  ൌ ଴ܫ · sinሺ߱ · ݐ ൅ ߶ሻ (4.6) 

 ܼሺݐሻ ൌ ாሺ௧ሻ
ூሺ௧ሻ

ൌ ாబ·ୱ୧୬ሺఠ·௧ሻ
ூబ·ୱ୧୬ሺఠ·௧ାథሻ ൌ ܼ଴ · ୱ୧୬ሺఠ·௧ሻ

ୱ୧୬ሺఠ·௧ାథሻ (4.7) 

with 

E(t)  electrical potential, as a function of the time t 

E0  amplitude of the excitation potential 

I(t)  electrical current, as a function of the time t 

I0  amplitude of the resulting current 

ω = 2·π·f angular frequency, (f is the frequency) 

φ  phase angle. 
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From expression (4.7) impedance can be described by Z0 and the phase angle φ. 

This implies to use the complex plane for the illustration of the impedance (Figure 

4.3). 

Z

θ

Im

Re

Im

ZRe

Z

 

FIGURE 4.3. Illustration of the impedance Z(t) in the complex plane. The imaginary part 
represents the capacitance and the real part the conductivity of the system.  

 ܼሺݐሻ ൌ ܼோ௘ ൅ i · ܼூ௠ (4.8) 

with 

ZRe  real part of the impedance 

ZIm  imaginary part of the impedance 

i² = -1. 

The absolute value of the impedance Z0 and the phase angle φ are given by 

equations (4.9) and (4.10):  

 ܼ଴ ൌ ඥܼோ௘
ଶ ൅ ܼூ௠

ଶ  (4.9) 

 tan ߶ ൌ ௓಺೘
௓ೃ೐

 (4.10) 

For simple electronic circuits, of only a resistor, the phase angle φ is 0, or of only a 

capacitor, the phase angle is - గ
ଶ
. For electrochemical systems usually phase angles 

in between these two values are found.  
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Electrochemical impedance spectroscopy (EIS) studies the change of impedance as 

a function of the frequency. There are two common ways for data presentation, the 

so called BODE plot and the NYQUIST plot. In BODE plot the logarithm of the 

impedance, log|Z|as well as the phase angle φ is plotted against the logarithm of 

the angular frequency, logω. A NYQUIST plot is characterized by presenting the 

imaginary part of impedance ZIm versus the real part of impedance ZRe. For each 

measured frequency, the obtained values are plotted in this coordinate system. For 

data analysis the spectra are fitted by theoretical data obtained from electrical 

equivalent circuits of consisting of common electrical elements as resistors, 

capacitors, and inductance, and elements like WARBURG impedance or the constant 

phase element (table 4.2). 

TABLE 4.2. Elements for description of equivalent circuits of electrochemical systems. 

Element 
Current and voltage 

relationship 
Impedance Z 

Phase-
shift  
φ 

Resistance, R ܧ ൌ ܫ · ܴ R 0 

Capacitance, C ܫ ൌ ܥ ·
dܧ
dݐ

 
1

i · ߱ · ܥ
 െ

ߨ
2

 

Inductance, L ܧ ൌ ܮ ·
dܫ
dݐ

 i · ߱ · ൅ ܮ
ߨ
2

 

Constant phase 
element, CPE 

- 
1

ሺi · ߱ሻ୬ · ܥ
 െ݊ ·

ߨ
2

 

Warburg Impedance, σ - 
ߪ · ሺ1 െ iሻ

√߱
 െ

ߨ
4

 

 

All these elements used for modeling of equivalent circuits in data analysis are 

related to electrode processes. A resistor can be used for describing the resistance 

of the solution. The effect of charging an electrical double layer as well as the 

coating of an electrode by an insulating layer is represented by the physical 

meaning of a capacitance. Electrochemical reactions can show similar behavior 
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like an inductor as common electrical element. The elements of WARBURG 

impedance and constant phase element (CPE) have been designed to simulate 

electrochemical phenomena that cannot be described by the known electrical 

elements. The WARBURG impedance for example is used to model the diffusion of 

the electroactive species to the electrode [29, 30]. For a planar diffusion with an 

infinite thickness of the diffusion layer, the WARBURG impedance ZW is given by 

equation 4.11:   

 ܼW ൌ ఙ·ሺଵି୧ሻ
√ఠ

 (4.11) 

with the WARBURG coefficient σ, which is defined as: 

ߪ  ൌ ோ·்
௡మ·ிమ·஺·√ଶ

· ൬ ଵ
௖೚ೣ

బ ·ඥ஽೚ೣ
൅ ଵ

௖ೝ೐೏
బ ·ඥ஽ೝ೐೏

൰ (4.12) 

with 

A  surface of the electrode 

D  diffusion coefficient of oxidative (ox) and reductive (red) 

  species 

c0  bulk concentration of oxidative (ox) and reductive (red) species. 

The characteristics of WARBURG impedance can be easy identified from the 

NYQUIST plot by its appearance as a straight line with a slope of 0.5, due to equal 

values for the imaginary part and the real part of the impedance.   

The CPE helps to fit non ideal characteristics of the capacitance of the double 

layer. An electrochemical double layer is formed, when there is an excess of ions 

with opposite charge to that on the electrode surface at the phase boundary. For a 

capacitor the phase angle φ is -90°, but this shift is often at some other, non-ideal, 

values for double layer capacitance. For that case, the impedance of a CPE, ZCPE 

differs from the capacitance by an exponent n: 

 ܼCPE ൌ ଵ
ሺ୧·ఠሻ೙·஼

 (4.13) 
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The value for n is between 0 and 1, and it is an empirical constant. For an ideal 

capacitor n = 1. 

4.2.2 Cyclic voltammetry 

In cyclic voltammetry the current flow of an electrochemical cell is measured 

during the application of a potential to the working electrode, which alters in 

triangular waveform with time (figure 4.4). This technique is widely used to study 

oxidative or reductive processes, their mechanism and kinetics, but it is also a 

valuable tool for the investigation of adsorption or desorption of some species to 

an electrode surface. 

 

FIGURE 4.4. A typical cyclic voltammogram with oxidative and reductive species in solution. The 
potential is cycled foth and back between a starting potential and a reversal potential. The resulting 
current is measured.  

The characteristic peaks in a cyclic voltammogram are caused by the mass 

transport of the reductive or oxidative species in solution, which is usually slower 

in contrast to the sweep rate of the potential. The process of oxidation and 



Methods of surface characterization  42 

reduction is diffusion controlled. For analytic purpose, it is interesting to notice 

that the peak current ia and ic are proportional to the concentration of electroactive 

species in solution. 

For electrodes, covered by an insulating layer, cyclic voltammetry can be used to 

detect defects in the layer which form microelectrodes or ultramicroelectrodes. 

These types of electrodes are characterized by very small surface area in the 

micrometer or nanometer range and they show a different behavior in cyclic 

voltammogram. Due to diffusion controlled processes, the shape of the resulting 

curve is sigmoid. This can be described by different ways of diffusion. Fore planar 

electrodes the diffusion is linear, because of its relative large dimensions in 

contrast to that of the diffusion layer. For ultramicroelectrodes and not too fast 

sweep rates of the potential this is changed, the diffusion becomes spherical, and 

therefore the shape of the voltammogram becomes different [31].   

4.3 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a very sensitive analytical technique for 

investigation of the chemical composition of surfaces. The idea behind XPS goes 

back to the photoelectric effect, first proposed by ALBERT EINSTEIN in 1905. It 

describes the possibility to get information of the binding energy by studying the 

electrons emitted by irradiation with photons [16, 32, 33] (figure 4.5): 

௕௜௡ௗ௜௡௚ܧ  ൌ h · ଴ߥ െ ௞௜௡ܧ െ ߶ (4.14) 

with 

Ebinding  binding energy of the electrons before photo ionization 

h·ν0  energy of the excited photons 

Ekin  kinetic energy of the emitted photoelectron 

φ  work function of the material for the amount of energy which is  

  necessary to exceed the potential barrier at the surface. 



Methods of surface characterization  43 

 

FIGURE 4.5. Scheme of the X-ray photoelectron emission process [34]. 

This emission of electrons is characteristic for each element due to its unique set of 

binding energies. By observing the number and the kinetic energy of the emitted 

photoelectrons it is possible to identify the elements in a surface and get 

information about their concentration in the surface. 

An important parameter is the energy of the incident photon. This energy 

determines whether an electron from the valence or from the core will be emitted. 

With low photon energies (< 100 eV) the valence electrons are emitted, this is used 

in ultraviolet photo electron spectroscopy (UPS) [32]. In classical XPS – this 

technique is also called electron spectroscopy for chemical analysis (ESCA) – high 

photon energies are used, and the emission of core electrons is detected. This 

detection has to be done in ultra high vacuum (UHV, ~10-9 mbar) to prevent 

collisions of the emitted electrons. Typical the photon energy of magnesium K 

(1253.6 eV) or aluminum K (1486.6 eV) X-ray irradiation is used.  

The high surface sensitivity of the XPS technique is because of the fact that the 

emitted photoelectrons can only escape short distances in the material due to 
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inelastic collisions with other electrons. Therefore about 95% of all detected 

electrons come from a maximum distance of 10 nm in the surface [35]. The 

maximum deepness from which an electron can escape from a surface depend on 

its kinetic energy. The detection is done by an electron spectrometer, with tunable 

range for scanned energies. A variable electrostatic field in front of the analyzer 

allows visualizing different energies of the electrons. 

Beside the identification of an element, XPS can also be used to estimate the 

concentration of an element in a surface. All elements except Hydrogen and 

Helium can be detected. For homogeneous surfaces the peak intensity for an 

element X is described by equation (4.15) [36]: 

௑ܫ  ൌ  ௑ܰ · ௑ߪ
௘ሺhߥሻ · ሻߛ௑ሺܮ · ௞௜௡ሻܧௌሺߣ ·  (4.15) ܤ

with 

  ௑  XPS intensity of atom Xܫ

௑ܰ  atomic density of atom X 

௑ߪ
௘ሺhߥሻ cross section for electron e of atom X at photon energy hߥ 

 ሻ  angular asymmetry factorߛ௑ሺܮ

  angle between the X-ray beam and the electron beam to the  ߛ

  spectrometer 

 ௞௜௡ሻ mean free path length at Ekin in the surfaceܧௌሺߣ

 .instrumental constant  ܤ

With the estimation that ܮ௑ሺߛሻ is equal for all atoms and ߣௌሺܧ௞௜௡ሻ is independent of 

hߥ, the atomic concentration x1 of compound 1 of a mixed monomolecular layer of 

two compounds can be calculated as: 
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ଵݔ  ൌ
ூభ

ூభ
ಮ൘

∑ ூ೔
ூ೔

ಮ൘೔సభ,మ
 (4.16) 

with 

௜ܫ
ஶ intensity from a pure monolayer of compound i. 

X-ray photoelectron spectroscopy is a very helpful surface analytical technique for 

investigating monomolecular films of thiols on gold surfaces. In case of the 

spreader-bar systems, by using heteroaromatic molecules together with 

alkanethiols, the intensity of the nitrogen peak can be used to determine the 

surface concentration of the spreader-bar molecules in the surface. 

4.4 NEXAFS spectroscopy 

The near edge X-ray absorption fine structure (NEXAFS) spectroscopy is a 

technique based on X-ray emission spectroscopy which was used for structural 

investigations since the 1920s. In contrast to XPS, which has its focus on the 

occupied part of the electronic state of the sample, NEXAFS spectroscopy is 

providing information about the unoccupied orbitals. Therefore the sample will be 

irradiated by photons with energy of that height that there occurs no complete 

cleavage of the electrons from the atom.  

To give an idea of the emission of X-rays a simple model describes in a first step 

the elimination of an electron of the inner K-shell of the atom. In a second step 

refilling of this blank by an electron from the next shell (L-shell) seems to be most 

likely. This change in energy of the atom is accompanied by the emission of 

radiation. The most probably electron transfer comprise the line with the highest 

intensity in the K-spectrum, this is called the Kα-line. 

The absorbed energy of an atom in a molecule shows a fine structure which covers 

an energy range of several hundreds eV above the absorption edge. This fine 
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structures are caused by intramolecular electron migration from 1s electrons to the 

empty or partly occupied non binding molecule orbitals with π*- and σ*- 

symmetry. The typical resonances give information about bindings in the 

molecule. In case of adsorbed molecules to a surface it is possible to obtain 

information about the orientation of the molecules on the surface by analysis of 

resonance intensity as a function of the angle of incidence of the x-ray beam.  

One of the experimental difficulties in NEXAFS-spectroscopy is the low content of 

atoms in the adsorbed film. If an X-ray absorption cross section for carbon is in the 

range of 10-18 cm² per molecule is considered, 103 photons per each absorption is 

needed if there are 1015 molecules per cm². By estimation that every photoelectron 

for each absorption process can be detected by an efficiency of 10-3, it becomes 

clear that a high rate of photons of about 109 photons per second is required to get 

1000 counts per second. This calculation clarifies that one requirement for 

studying NEXAFS is the need to have radiation from a synchrotron [37].  

4.5 Infrared spectroscopy 

Infrared spectroscopy is a well known technique to identify chemical bonds due to 

the fact that irradiation in the range between about 800 nm and 50 μm stimulates 

molecular vibration and rotation.  If this motion changes the dipole moment of the 

molecule energy will be adsorbed.   

In the simplest model, when atoms are illustrated by balls and the binding 

between them behave like a perfect spring, HOOKE’s law can be used to calculate 

the frequency f for the resulting vibration: 
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 ݂ ൌ  ଵ
ଶ஠ ට௞

ఓ
 (4.17) 

with 

k  spring constant 

μ  reduced mass. 

To describe the vibrational energies with a quantum mechanical model the 

potential and kinetic energies of this harmonic oscillator have to be introduced 

into the HAMILTON operator. Equation (4.18) shows the Eigenvalues, or energy 

levels. The selection rules for the IR absorption process, Δv = ± 1, results in discrete 

energy levels. 

௩௜௕௥ܧ  ൌ h · ݂ · ቀݒ ൅ ଵ
ଶ
ቁ (4.18) 

with 

h  PLANCK’s constant 

f  frequency of the vibration 

v  vibration quantum number (v = 0, 1, 2, …). 

The observed wavenumbers ߥҧ can be calculated from the absorbed energy by 

exciting the first harmonics (ν =1) from the vibrating ground state (ν =0), ΔE = E1 – 

E0 = h·c·ߥҧ under consideration of the equations (4.17) and (4.18): 

ҧߥ  ൌ ଵ
ଶ஠·ୡ ට௞

ஜ
 (4.19) 

with 

c  velocity of light in vacuum. 

Equation (4.19) shows that the wavenumbers depend on the mass of the atoms 

and the strength of the binding between them. 

Until the 1980’s infrared spectra were mainly measured by using classical 

dispersive spectrometers. With the development of computers fourier transform 

infrared (FTIR) spectrometers brought the advantages of more exact measurement, 
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higher signal-noise ratio and faster scans of the spectra. FTIR spectrometer use 

laser light for measuring the position of the moveable mirror, which allows 

simultaneous calibration of the wavelength. The higher signal-noise ratio is due to 

the fact that no entrance slits or monochromators are needed and therefore higher 

intensities of the light are possible. And the main advantage is that all 

wavelengths are measured at the same time [38 - 40]. 

A polychromatic IR beam is spitted and by passing an interferometer one part is 

sent to the sample. From a moveable mirror the beam is reflected in that way that 

it interferes and superimposes with the separated, initial beam. Depending on the 

position of the mirror the intensity of the beam is increased or decreased and an 

interferogram is obtained. The absorption by the sample alters the interferogram 

and this effect is recorded by a detector. 

For investigating a thin film on a surface, FTIR has to be combined with the 

attenuated total reflection (ATR) technique. This method allows that the beam not 

only passes once the sample, which is due to the small dimensions of a monolayer 

not enough to detect any characteristic vibrations. As the name ATR implies, this 

can be realized by total reflection of the infrared beam at the interface between an 

infrared-transparent crystal with refractive index ncrystal and the sample with 

refractive index nsample. If the crystal is optically denser than the sample (ncrystal > 

nsample), total reflection takes place for angles of incidence θi which have to be 

greater than the so-called critical angle θc. According to SNELL’s Law [41] the 

critical angle for total reflection is described by equation (4.20): 

௜ߠ  ൒ 90° ฻ ௜ߠ ൐ ௖ߠ௖   with   sinߠ ൌ ௡౩౗ౣ౦ౢ౛

௡ౙ౨౯౩౪౗ౢ
 (4.20) 

At the reflecting interface, an evanescent field is generated by the interference of 

the incident and the reflected electromagnetic field. The evanescent field, as a 

standing wave, is aligned perpendicular to the surface with a sinusoidal shape. By 

passing the interface into the sample with lower refractive index, its amplitude 

decreases exponentially with the distance from the interface. Three variables have 

influence on the depth of penetration: (i) the angle of incidence θi, (ii) the ratio of 



Methods of surface characterization  49 

nsample to ncrystal, and (iii) the depth is proportional to the wavelength of the light in 

the ATR crystal. When the polarization of the infrared radiation is parallel to the 

plane of incidence it causes a transverse magnetic wave (figure 4.6). Its amplitude 

 :଴ is given by,צܧ

଴,צܧ  ൌ  ටหܧ௭,଴หଶ ൅ หܧ௫,଴หଶ
 (4.21) 

with 

Ez,0, Ex,0  spatial components of the amplitude of the electric field.  

 

FIGURE 4.6. Scheme of a FTIR-ATR configuration with multiple reflections and parallel 
polarized infrared radiation (TM). 

The transverse magnetic wave (TM) can interact with the dipole moments of 

molecules in x- and z- orientation. To excite dipole moments oriented in the y-axis, 

the polarization of the laser radiation has to be changed in perpendicular position 

to the plane of incidence and a transverse electric wave (TE) is generated.  

By this way, one can get information on the chemical structure of a molecule and 

the orientation of the molecule can be estimated.  

A further increase of the signal-noise ratio is done by measurement of many scans 

(usually about 500) in series. Practical problems are caused by atmospherically 

distortion because of interference of water or CO2. This is overcome by measuring 

in vacuum, or inert gas atmosphere.  
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4.6 Surface plasmon resonance 

Surface plasmon resonance (SPR) technique is a widely used method to study 

molecular interactions at thin metal films [42 - 44]. Changes in surface plasmon 

resonance can be detected with high precision and within very short time. These 

changes are caused by alterations in refractive index near a thin metal film. For 

typical SPR measurements a dielectric transparent substrate, usually a prism, 

which has been coated at one side with a suitable noble metal of a thickness of 

about 50 nm is used. This metal layer is further coated by a thin layer and 

adsorption processes on this film will be studied. When monochromatic 

p-polarized light passes through the substrate in a certain angle, it gets reflected at 

the metallic interface between substrate and the medium which should be 

investigated. The angle of the incident light has to be greater than the critical angle 

in order to obtain total reflection. For a certain wavelength, at this certain angle of 

incidence, surface plasmon waves along the metallic interface will be evoked and 

therefore the energy of the reflected light is diminished (figure 4.7).  

metal film
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laser

photodiode

surface plasmon

θ

 

FIGURE 4.7. One possible scheme of a surface plasmon resonance transducer. If the refractive 
index of the substrate is higher than that of the medium, a laser beam at a cedrtain angle of 
incidence is reflected at a thin metal layer between substrate and medium and surface plasmons are 
induced. The intensity of the reflected light is measured.  

When the intensity of the reflected light is observed as a function of the angle of 

incidence at constant wavelength the surface plasmon resonance effect can be seen 
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as a sharp attenuation of the signal which passes a minimum. The angle of 

incidence which represents the minimum is the so called resonance angle. The 

position of the resonance angle is very sensitive to changes in the refractive index 

on top of the metal film. In case that the refractive index is not uniform due to 

mixed composition of this layer or because of partly adsorption of molecules, an 

average of the refractive index is measured [45]. As the evanescent field decays 

exponentially from the surface, the SPR technique is sensitive to refractive index 

variation within a few hundreds of nm from the surface [46]. 

4.7 Ellipsometry 

Ellipsometry is an optical method for investigation of optical constants of a 

material or to measure the thickness of a thin homogeneous film adsorbed on a 

reflecting substrate [47]. For a substrate covered by an isotropic medium, FRESNEL 

found the principles for reflection (R) and transmission (T), and how they are 

related to the ellipsometric angles Δ and Ψ that describe the change in the 

polarization of the light reflected at the surface.  

Polarized light, reflected at a metallic surfaces changes amplitude and phase of 

both parallel, צܧ and perpendicular, ୄܧ components. For example, linearly 

polarized, monochromatic light will become elliptically polarized after reflection 

on a surface. A typical setup for measuring ellipsometry is outlined in figure 4.8. 
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FIGURE 4.8. Experimental setup of a PCSA ellipsometer, consisting of polarizer, compensator, 
sample and analyzer. Initially linear polarized light becomes elliptically polarized by the 
compensator and after reflection the laser beam again is linear polarized. Analyzer and polarizer 
are rotatable. The analyzer is adjusted to give zero intensity at the detector [15]. 

The polarization of the reflected light is detected by the orientation of the analyzer. 

Its orientation is varied until no light passes through the analyzer. When the 

polarization of the incident light is known, the relative phase change cos(Δ) and 

the relative change in amplitude tan(Ψ) can be calculates from the orientation. 

The reflection properties of a sample change with the thickness of a layer on top of 

the sample. To study the thickness of a thin film, the change in the reflection 

properties are measured. To calculate the thickness, the refractive index of the film 

on the surface has to be known. For monolayers of alkanethiols on gold a 

refractive index of 1.45 is used [1]. The thickness of a layer can be estimated with 

ellipsometry with a precision of several ångströms.   
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4.8 Atomic force microscopy 

Atomic force microscopy (AFM) is a surface analytical method providing 

information about the topography of a sample. The surface is scanned with a 

sharp tip mounted on the end of a cantilever (figure 4.9). The flexible cantilever 

bends in response to force between the tip and the sample. A laser beam is 

adjusted to the end of the cantilever and the reflected light is detected by a 

quadrant photodiode. When the force between the specimen and tip is changed, 

the cantilever got bend and therefore the position of the light hitting the 

photodiode is altered. As a result the electrical current produced by the 

photodiode changes.  
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photodiode

laser

piezo-electric
scanner

tip

feedback control

surface
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FIGURE 4.9. Scheme of the atomic force microscopy concept for surface sensity probing. 

If the cantilever is lowered by a movement in z-direction, past the point where the 

tip touches the surface, the photodiode will measure the normal force between the 

tip and surface due to a bend upwards of the cantilever. Movements of the 

cantilever in x- or y-direction twist the cantilever and the resulting changes in the 

current of the photodiode include components due to lateral force between the tip 

and surface. By taking different combinations of the four parts of the photodiode 
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one can separate out the lateral and normal force components for a particular scan 

direction. 

By recording the deviations in the force between the tip and the surface, which is 

the easiest way to scan a surface by AFM, there are two risks. First, if the surface is 

not very flat, scanning in x- and y-directions can result in large forces that will 

damage either the tip or specimen by scratching. And second, if the tip is not close 

enough to the surface, the forces between the tip and the surface will get to weak, 

or even lost.  

Therefore a more elegant way to practice AFM is to scan the surface in x- and 

y-direction while maintaining a constant normal force. This is known as contact 

mode measurement. A negative feedback is used to adjust the tip height by 

controlling the voltage on the z-piezo positioning element as an answer to a 

deviation of the force on the tip from a user-determined set point. The voltage 

applied to the z-piezo is directly related to the level of the tip to the surface. 

Therefore it is possible to image the z-piezo voltage as topography of the scanned 

surface. 

A different method is the so called non-contact or tapping mode: The cantilever 

oscillates at its resonant frequency during the surface scan. The variation in the 

amplitude of oscillation due to the attracting or repulsing forces between the tip 

and the sample is measured. A feedback control system overcomes systematical 

errors due to a constant decrease in the amplitude of oscillation relative to the 

amplitude, which is the case when the tip gets too far from the surface. The 

advantage of this method is that there is no permanent contact with the surface 

and thereby a damage of the sample or the tip is avoided. In contrast to 

measurements in contact mode lateral forces are much lower in tapping mode. 

Difficulties in getting images representing the real surface in non-contact mode 

occur when there is a purely attractive force between the tip and the surface. Then 

it is requires to operate the AFM in ultra-high vacuum. Although it has to be taken 

into account that in case of measurements in ambient conditions a water layer can 
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be formed on top of the surface which would result in interference or causes the 

tip to jump into intermittent contact.  

Many artifacts in AFM images are caused by tip shape and imperfections in the 

feedback control system not recognized by untrained personal. In perfect 

conditions, the tip should be infinitely sharp in order to be sensitive enough to 

recognize as much of the surface as possible. And the feedback algorithm should 

give an infinitely sharp impulse response to instantly adjust the level of the tip by 

scanning over the surface. In reality, the tip has a pyramidal or conical shape with 

some definite end radius so it is durable enough to withstand the surface 

interaction forces. The effects of the tip shape cannot be avoided and these result 

in characteristic tip-dilation artifacts. 

4.9 Scanning electron microscopy 

A scanning electron microscope (SEM) investigates a sample by irradiation with a 

sharply focused high energy beam of electrons and detects the resulting electrons 

that scatter out of the sample (figure 4.10).  
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FIGURE 4.10. Basic principle of an scanning electron microscope. The sample is irridiated by a 
high energy electron beam. The deflected back scattered electrons (BSE) and the secondary electrons 
(SE), kicked out of the sample are detected. 

The electron beam is focused from an initial diameter of about ten micrometers to 

a very small spot of only several nanometers in diameter by magnetic lenses. By 

electromagnetic deflection, similar to the beam in a cathode ray tube, this spot is 

directed over the surface in order to create an image of sample. The signal 

produced by scattered electrons from the sample is recorded by an appropriate 

detector and displayed as image on a screen. The electron beam direction 

determines the projection of the image. Its deflection is typically about one 

centimeter above the sample. Because of the great distance between deflection 

point which is the effective center of projection, in contrast to the diameter of 

several nanometers of the electron beam at the surface, the direction of the electron 

beam will be almost constant and therefore, the resulting projection can be 

considered as nearly orthographic.  

The electrons, emitted from a cathode, accelerated by the electric field, hit the 

surface of the sample and interact due to their energy with the atoms of the 

sample. There are different ways of interactions possible. First, the electron can hit 

another electron which belongs to the atom of the sample. By this inelastic 

interaction some energy is transferred from one electron to the other. And second, 
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the electron can hit the heavy nucleus of the atom, and it will be deflected with 

almost no loss of energy by elastic interaction.  

When a high energy electron is penetrating the surface its velocity is decreased by 

numerous inelastic interactions on its way into the sample. The inelastic 

interactions with the nucleus occur much less often, but they are more responsible 

for the change of direction of the electron. Electrons deflected from the sample are 

known as a back-scattered electron (BSE).  The electrons that are kicked out from 

the atoms of the sample by inelastic interactions are the so called secondary 

electrons (SE). The origin of scattered electrons cannot be measured directly; 

therefore, they are characterized by their energy. Typically the electron gun is at a 

potential of -1000 volts relative to the sample, so each electron hits the surface with 

1 keV. One electron penetrating the surface generates multiple secondary electrons 

with much lower energy of below 50 eV. Because of their low energy secondary 

electrons cannot overcome big distances and they get stopped by collisions with 

atoms in the sample. So the only secondary electrons which can leave the sample 

are those, generated within a very thin layer of several nanometers thickness near 

the surface of the sample. To distinguish if an electron is from the type of a SE or 

of the type of BSE, the energy they have is the determining factor. The energy of 

back scattered electrons is about 0.8 to 0.9 times of the energy of the incident 

electron beam [48], and the secondary electrons typically reaches energies in the 

range of 3 - 5 eV, but by convention all detected electrons of energies below 50 eV 

are classified as SE, all with energies higher 50 eV as BSE. Such a classification, 

given typical SE and BSE energy distributions, attempts to minimize the 

probability that an electron will be misclassified as SE or BSE. 

If the sample which is scanned by SEM has some regions were the roughness is 

significant higher than on other regions, the rough parts will appear brighter than 

the smooth parts. Surface roughness means that the total area of surface is 

increased, and therefore the volume of the thin layer from which electrons can 

escape will be higher and of course the number of these electrons reaching the 

detector will be increased, and the image becomes brighter. The same 

phenomenon occurs near sharp edges where electrons scattering within the 
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specimen effectively have more opportunities to escape the specimen and reach 

the detector, the image gets brighter too. 

Figure 4.11 shows a comparison of the artifacts of AFM and SEM for the same 

sample. In AFM, due to the finite size of the dip, the resulting output cannot 

image the sharp borders, and in SEM the borders will get brighter due to the 

bigger amount of electrons that can leave the surface.  

AFM tip
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electron
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FIGURE 4.11. Simplified scheme of the output signals for a surface at an elevation with sharp 
edge, for AFM and SEM. 
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5. Results and discussion 

A method for formation of a new type of nanostructured monomolecular films, 

with high reproducibility and affordable effort was an important feature of this 

work. This was one of the reasons to decide that the fabrication of the 

nanostructured films should be done completely by self assembly in one 

experimental step, from solution onto polycrystalline gold surfaces. In this case 

there are only a few parameters, like concentration of the molecules used, the 

solvent, and the time and temperature for the self assembly process which have 

influence on the resulting layer. All these parameter can be easy adjusted and they 

warrant a reproducibility of the nanostructured films obtained. Furthermore there 

is no need of expensive devices or material to perform the formation of 

molecularly structured ultrathin films. As main criterion for optimization of the 
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conditions for self-assembly, the receptor properties of the resulting spreader-bar 

systems were taken into account.  

Of course, there are a lot of other techniques to get structured self assembled 

monolayer, like soft lithography [1 - 8], irradiation techniques [9 - 12], electron 

beam writing [13, 14] or by using scanning probes [15 - 20],  but all of these 

techniques are limited either the resolution of the structures or by its high 

experimental complexity compared to self assembly. In view of these 

considerations, self assembly in one step should be the best way to obtain the 

desired spreader-bar systems.  

Freshly cleaned gold surfaces were kept for certain time in solutions of the two 

types of molecules: one of them was an alkanethiol (matrix molecule) the other 

one a spreader-bar molecule.  

The spreader-bar molecule has to be rigid in its conformation, and it should 

exhibit a thiol group for anchoring it to the gold surface. Additionally it was 

favored if the spreader bar molecule was from aromatic or heteroaromatic type. In 

this case additional interaction of the π-electron-system with the gold [21 - 24] 

could be expected. This may stabilize the flat position of the spreader-bar, lying on 

the gold surface.  

Alkylthiol monolayers with the following spreader-bars were investigated: 

2-thiobarbituric acid (TBA), thiocyanuric acid (TCA), thiouric acid (TUA), thiol 

derivatives of the bases adenine (ASH), guanine (GSH), cytosine (CSH), thymine 

(TSH) and uracil (USH), stereoisomers of a conjugate of 1,1’-binaphthyl-2,2’-

diamine with DL-6,8-thioctic acid (BNTA), a thiol modified 

5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrine (TMPP), and aluminum 

naphthophthalocyanine chloride (Al-PC). The last molecule, Al-PC is without any 

thiol moiety, it was used to proof the idea that the π-interaction of an aromatic 

system could be strong enough to keep such a big molecule adsorbed on the gold 

surface in the presence of alkanethiols. All spreader-bars used in this work are 

depicted in figure 5.1. 
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FIGURE 5.1. Chemical structures of the template molecules : 6-mercaptopurine (ASH), 2-amino-
6-purinethiol (GSH), 4-amino-2-mercapto-pyrimidine (CSH), 4-hydroxy-5-methyl-2-
mercaptopyrimidine (TSH), 4-hydroxy-2-mercaptopyrimidin (USH), 2-mercaptouric acid (TUA), 
2-thiobarbituric acid (TBA), trithiocyanuric acid (TCA), stereoisomers of a conjugate of 
1,1’ binaphthyl-2,2’-diamin with DL-6,8-thioctic acid (BNTA), 5,10,15,20-Tetrakis-(4-
sulfonatophenyl)-porphyrin (TMPP) with partly reduced sulfonato-groups to thiol-groups, and 
aluminum 2,3-naphthalocyanine chloride (Al-PC).   
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All matrix molecules were generally from the type: HS-(CH)n-CH3, with n from 3 

to 17, except tert.-butanethiol, 16-mercaptohexadecanoic acid, and DL-6,8-thioctic 

acid. On overview is given in table 5.1. 

TABLE 5.1. Overview of the used matrix molecules for creation of nanostructured spreader-bar 
systems. 

Matrix molecule 
Used in combination  

with these templates 

tert.-butanethiol TBA 

1-butanethiol (C4) TBA 

1-hexanethiol (C6) TBA, ASH 

1-octanethiol (C8) TBA, ASH 

1-dodecanethiol (C12) 

TBA, ASH, CSH, GSH,  

TSH, USH, TUA, TCA, 

TMPP, AlPC 

1-tetradecanethiol (C14) TBA, ASH 

1-hexadecanethiol (C16) 
TBA, ASH, TMPP,  

BNTA, AlPC 

1-octadecanthiol (C18) TBA 

16-mercaptohexadecanoic acid BNTA 

DL-6,8-thioctic acid BNTA 
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5.1 Characterization of mixed monolayers formed by the 

spreader-bar technique  

5.1.1 Formation of mixed monolayers  

The spreader-bar technique enables the formation of mixed monolayers consisting 

of two types of molecules by immersion of a gold substrate into one solution 

containing both constituents. One type of molecules is responsible for the 

receptive properties of the resulting monomolecular film. It has to have a more or 

less rigid structure, similar to the shape of the desired analyte. We started the 

work with heteroaromatic systems like purines and pyrimidines. They are 

available in great number of variations, and most of them dissolve in a wide 

concentration range in solvents like ethanol, methanol or mixtures of ethanol and 

water. A lot of organic solvents have successfully been used for self assembly of 

pure thiols on gold. Important influence on the quality of the resulting layer was 

not found. For the preparation of mixed monolayer the situation becomes more 

difficult. It was demonstrated that the molar ratio of two different thiols within the 

monolayer can be controlled by the molar ratio of the two molecules in the 

deposition solution, but surface composition is determined neither by 

thermodynamics nor by kinetics [25 - 27]. In that case the choice of the solvent can 

be very important for the formation of mixed monolayer. In this work, only 

ethanol, methanol and mixtures of ethanol with water were used. There was no 

need to test other ones due to the success in the assembly of the spreader-bar 

system. 

One difficulty is to find out the ratio of the matrix molecule and the spreader-bar 

molecule in the solution used for self assembly and the right time for immersion of 

the substrate into this solution. By studying the contact angles of several mixtures 

of purines and pyrimidines with 1-dodecanethiol it was found that the mixing 

ratio of alkanethiol and spreader-bar molecule has to be in the range of 1:100 and 
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1:10, in order to obtain monomolecular films with deviations in the contact angles 

from that of pure monomolecular films (figure 5.2). 
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FIGURE 5.2. Advancing contact angle of water on different mixtures of a purine (ASH) and a 
pyrimidine (USH) with 1-dodecanethiol on gold. x represents the molar fraction of the spreader-bar 
molecule in the solution used for self assembly. Immersion from ethanolic solutions for 70 hours. 
The dotted line indicates a guideline for the eye. 

For solutions with mixing ratios outside this range the measured contact angle are 

nearly the same as that of pure alkanethiol monolayer or that of pure spreader-bar 

monolayer.  

The immersion time for the characterization of the spreader-bar coated gold 

surfaces by contact angle was 70 hours. Self assembled monolayers are usually 

formed within some minutes. In order to get a well packed ordered layer the 

immersion time is increased to several hours. In case of mixed monolayer 

consisting of molecules of different types with different affinity to the gold surface 

it is necessary to wait such long time to get equilibrium with no further change in 
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orientation or composition of the resulted monomolecular film. Only in this case 

one can obtain nanostructured surfaces with high reproducibility. 

The receptive properties of the spreader-bar systems for purines and pyrimidines 

were monitored by electrical capacitance measurements. It was found that only 

systems immersed for at least about 70 hours for the self-assembly process exhibit 

receptive properties. Longer immersion time did not influence the performance of 

these modified surfaces as receptors. The influence of immersion time for creation 

of spreader-bar systems was evaluated by FTIR-spectroscopy (figure 5.3).  
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FIGURE 5.3. FTIR-spectra of 2-thiobarbituric acid (TBA) (1), 1-dodecanethiol (C12) (2) and a 
mixture of both (mixing ratio 1:100 C12:TBA) after immersion for one (3) and for three (4) days. 
(5) shows the spectra of (4) after additional immersion in pure 1-dodecanethiol for additional 1.5 
hours. 

The spreader-bar surface shows after long time immersion for three days the 

typical C-H vibrations of the alkanethiols as well as the specific bands of the 

spreader-bar molecule.  
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An analysis of the structure of the C-H vibrations point to a so called “spaghetti 

structure”: There are no sharp peaks as expected from well ordered pure 

alkanethiol monolayer caused by an uptight –CH3 moiety at the top of the surface. 

So the structure is more likely described by spreader-bar molecules surrounded by 

very narrow band of alkanethiol molecules, which do not form a own domain 

detectable by infrared spectroscopy. 

The mixed monolayer from the spreader-bar type were formed on the gold 

substrate by coadsorption of 1-dodecanethiol (C12) together with a large planar 

rigid molecule with a developed �π-electron system, a thiolated derivate of 

5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin (TMPP). The relative fractions of 

C12 and TMPP in the solution were varied. The deposition time was 72 hours, 

which is far beyond of a kinetic limit for surface/solution exchange of thiolated 

compounds on gold surface [28]. Therefore one can expect a quasi-equilibrium 

ratio of the template and matrix molecules in the film. 

The large planar molecule aluminum phthalocyanine chloride was also tested as 

spreader-bar. The presence of 12 conjugated aromatic rings in the molecule and a 

suggestion on a strong �π-electrons interaction with metal, caused us to expect that 

planar adsorption of these molecules occurs, even without exploiting of gold-thiol 

binding [29].  

XPS spectra of the pure AlPC films and the films prepared from the mixed 

AlPC/C16 solutions are presented in figure 5.4. In the spectra of the pure AlPC 

films (bottom curves), characteristic emissions of all the elements comprising the 

AlPC molecule, including those related to nitrogen, chlorine, and aluminum could 

be found. The C 1s XPS spectrum of these films can be decomposed into two 

components, related to the aromatic core (the main peak) and C-N groups (the 

high BE shoulder), in accordance with the chemical composition of the AlPC 

molecule. 
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FIGURE 5.4. Au 4f, C 1s, and N 1s XPS spectra of the SAMs formed from the AlPC and mixed 
C16/AlPC solutions, along with the Cl 2p and Al 2p spectra of the SAMs formed from the AlPC 
solution. The relative concentrations of C16 and AlPC in the primary solutions are given at the 
respective curves. 

The C and N K-edge NEXAFS spectra of the pure AlPC film are presented in 

figures 5.5 and 5.6, respectively (bottom lines). These spectra exhibit characteristic 

absorption resonances of naphtalenes (≈ 285 eV) and pyridine-like moieties 

(≈�400 eV and ≈ 410 eV) [30]. In addition to these characteristic resonances and 

broader σ-resonances at higher photon energies, a low intense �π-resonance related 

to the C=O moiety (288.7 eV) is observed in the C K-edge NEXAFS spectrum, 

suggesting that the AlPC film is slightly contaminated. This contamination 

stemmed, presumably, from the sample, which was exposed to ambient during its 

transfer from the evaporation chamber to immersion solution. Presumably, 

contamination was not completely removed upon the absorption of the AlPC 

molecules. 
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FIGURE 5.5. C K-edge NEXAFS spectra of the films formed from the AlPC and mixed C16/AlPC 
solutions; the relative concentrations of C16 and AlPC in the primary solutions are given at the 
respective curves. Left panel: The spectra acquired at a magic X-ray incidence angle of 55°. Right 
panel: the differences between the spectra acquired at X-ray incidence angles of 90° and 20°. 

The spectra presented in the left panel of figure 5.5 and figure 5.6 were acquired at 

so called magic angle of X-ray incidence, 55°. At this particular orientation, 

NEXAFS spectra are not affected by molecular orientation of the AlPC film [30]. 

The information on the molecular orientation can, however, be derived from the 

entire set of the NEXAFS spectra acquired at different angles of X-ray incidence, 

since the cross-section of the resonant photoexcitation process depends on the 

orientation of the electric field vector of the linearly polarized synchrotron light 

with respect to the molecular orbital of interest (so called linear dichroism in X-ray 

absorption) [30]. Generally, a high intensity is observed if the direction of the 

E-vector coincides with the direction of the transition dipole moment of the 

molecular orbital under consideration. A fingerprint of the molecular orientation 

is the difference between the spectra acquired at the normal (90°, E-vector is 

parallel to the sample surface) and grazing (20°, E-vector is almost perpendicular 

to the sample surface) incidence of X-rays. Such a difference spectrum for 

AlPC/Au is presented in the right panel of figure 5.5 (bottom curve). In this 

spectrum, the difference peaks related to the �π*- and �σ*-resonances of the AlPC 

molecule have the negative and positive signs, respectively. Taking into account 
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that the �π*- and �σ*-orbitals are perpendicular to and coplanar with the molecular 

plane of the AlPC molecule, respectively, it can be concluded that these molecules 

are predominantly oriented parallel to the substrate surface. The average angle 

between Al-PC molecules and surface was estimated to be about 40°. 

 

FIGURE 5.6. N K-edge NEXAFS spectra of the films formed from the AlPC and mixed C16/AlPC 
solutions; the relative concentrations of C16 and AlPC in the primary solutions are given at the 
respective curves.  The spectra were acquired at a magic X-ray incidence angle of 55°. 

On the basis of the XPS data (the C 1s and Au 4f intensities) and assuming an 

exponential attenuation of the photoemission signals and the attenuation lengths 

reported in ref. 31, the effective thickness of the AlPC film was estimated at about 

2 nm. This value correlates with the size of the AlPC molecule, suggesting that this 

film represents mainly a monolayer. Taking into account the obtained average tilt 

angle of the AlPC molecules in the film (40° with respect to the substrate surface), 

it can be suggested that the molecules are mostly adsorbed in a diagonal 

orientation, so that one bond of the naphtalene substituent is placed parallel to the 

metal surface. The inclined orientation of the APC molecules can be caused by a 

relatively strong contribution of the intermolecular interaction (stacking) of Al-PC 

as compared to the interaction with the substrate. Under definite circumstances 

(see below), the energy gain associated with a dense, SAM-like molecular packing 

of the AlPC moieties (inclined geometry) can prevail over the energy gain 

obtained at the optimal interaction of the molecules with the substrate, which 
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occurs at their in-plane orientation, since the latter geometry involves a loose 

molecular packing. Note that an inclined stacking has been observed previously 

for similar molecules, e.g. on the (001) surface of alkali halide [32] on stepped 

sapphire surface [33], and on silicon dioxide surface [34]. Additionally, the 

deviation from the parallel-to-the-substrate orientation, which is often observed in 

the case of organic molecular beam deposition of naphthalocyanines in ultra high 

vacuum (UHV) [35], can be caused by interaction of chlorine atom, standing out of 

the phtalocyanine plane [36], with gold by a similar way as in ref. 37. 

An important factor, which can contribute to the formation of the inclined phase, 

hindering the optimal interaction of the Al-PC molecules with the substrate, is 

surface contamination. Whereas, under UHV conditions, the substrate is usually 

completely cleaned from contamination before the molecular deposition, it is 

slightly contaminated in the case of deposition from solution (see above), since it 

was exposed to ambient, even though for a short time, before the immersion. In 

the case of chemisorption of dissolved molecules, so-called self-cleaning, i.e. 

complete removal of contamination upon the adsorption occurs, as it, e.g., 

happens for alkanethiols [38]. In contrast and presumably, contamination persists 

to some extent in the case of the comparably weak (π-d) bonding, characteristic of 

the adsorption of phtalocyanines. 

The situation changed crucially as soon as the Au substrates were immersed into 

the mixed AlPC/C16 solutions. In spite of the strong AlPC excess (by factors of 10 

and 100), the respective XPS and NEXAFS spectra in figures 5.4 to 5.6 are 

characteristic of a one-component C16 SAM and do not exhibit any features 

related to the AlPC molecules. In particular, the C 1s XPS spectra of both 

C16/AlPC films in Figure 5.4 exhibit a relatively sharp emission at about 285.0 eV, 

which is characteristic of the intact alkanethiolate SAMs [39, 40] whereas no 

emissions were observed in the N 1s, O 1s, Cl 2p, and Al 2p ranges. In the S 2p 

XPS spectra (not shown), a characteristic doublet at 162.0 eV (S2p3/2) [40] related 

to the thiolate headgroup of C16 appeared. The effective thickness of both films 

prepared from the mixed AlPC/C16 solutions was estimated at about 18.9 Å, 

which is the expected value for the C16 SAM on Au [40]. 
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The C K-edge NEXAFS spectra of both C16/AlPC films in Figure 5.4 also exhibit 

characteristic absorption resonances of well-ordered aliphatic SAMs: a mixed 

C-H*/Rydberg resonance at 287.7 eV and C-C and C-C' σ* resonances at ≈ 

293.4 eV and ≈ 301.6 eV. These resonances show pronounced linear dichroism (see 

the right panel of figure 5.5), which is characteristic of well-ordered aliphatic 

SAMs. The average tilt angle of the aliphatic chains in both C16/AlPC films was 

estimated at 32° with respect to the substrate normal, which is the typical value for 

alkanethiloate SAMs on Au. Most important, no characteristic resonances of the 

AlPC molecule was observed in both C and N K-edge NEXAFS spectra of the 

C16/AlPC films, as shown in Figures 5.5 and 5.6, respectively. A low-intense 

feature at a photon energy of 285 eV in the C K-edge spectra is frequently 

observed for alkanethiolate SAMs and is alternatively assigned to a contamination 

or an excitation into alkane-metal orbitals. The N K-edge NEXAFS spectra for both 

C16/AlPC films represent identical smooth and structure-less curves, without any 

features related to the excitation from the N1s core level to nitrogen-derived 

unoccupied molecular orbitals. 

Thus, it can be concluded that both C16/AlPC films represent well-ordered and 

densely packed C16 SAMs, which do not contain any AlPC molecules within the 

detection limit of XPS and NEXAFS spectroscopy (several % of the monolayer 

surface). It should be stressed out once more that the molar ratio of AlPC and C16 

in the mixed solutions used for the substrate coating was as high as 10:1 or even 

100:1. The deposition time was 72 h, which is above the characteristic time 

required for the formation of a well-ordered molecular monolayer. This result 

implies that even for large planar molecules with developed �π-electron systems 

special anchor groups (e.g. thiol) are important. 

Such molecules were synthesized by partial reduction of sulfonated tetraphenyl 

porphyrines, the XPS spectra imply that the average amount of the sulfone and 

thiol groups is approximately equal. The resulted thiolated tetraphenylporphyrine 

(TMPP) were used as spreader-bar in the mixture with alkanethiol as matrix and 

result in formation of mixed monolayer with the ratio dependent on the 

TMPP/alkanethiol ratio (figure 5.7).  
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FIGURE 5.4. Left panel: C K-edge NEXAFS spectra of SAMs formed from one-component and 
mixed solutions of TMPP and 1-dodecanethiol (C12). Right panel: Difference between the spectra 
acquired at X-ray incidence angles of 90° and 20°. A continuous variation of the spectra and 
difference curves with the solution composition (C12:TMPP) is observed, which assumes the 
formation of a mixed film of variable composition depending on the relative portions of TMPP and 
C12 in the solution. 

According to the spectra and the XPS data (see e.g. S 2p spectra in figure 5.8), the 

film formed from the 1:10000 (1-dodecanethiol:TMPP) solution contains only 

TMPP moieties, the “1:1000" film is mostly TMPP with some percentage of 

1-dodecanethiol, the "1:100" film contains a minor amount of TMPP, and the 

spectra for the "1:10" film exhibit only 1-dodecanethiol features. Thus, the amount 

of the TMPP species in the mixed film can be precisely adjusted. According to the 

NEXAFS difference curves (left panel in figure 5.7), the TMPP molecules both in 

the one-component and mixed films has an in-plane (strongly inclined) geometry. 
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FIGURE 5.8. S 2p XPS spectra of SAMs formed from one component and mixed solutions of 
TMPP and 1-dodecanethiol (C12). In the film formed from the one-component TMPP solution, two 
doublets related to the thiolate (a binding energy for S 2p3/2 of 162.0 eV) and sulfonate (a binding 
energy for S 2p3/2 of 168.5 eV) are observed. The occurrence of the thiolate-related doublet means a 
chemical anchoring of the TMPP species to the gold substrate. As C12 films do not contain the 
sulfonates species (see the bottom spectrum), the sulfonate-related peak can be considered as a 
fingerprint of the TMPP molecule and used to monitor the composition of the mixed TMPP/C12 
films. 

The analysis of the structure and composition of the mixed C12/TMPP 

monolayers was performed by Near Edge X-ray Absorption Fine Structure 

(NEXAFS) spectroscopy, X-ray Photoemission Spectroscopy (XPS). According to 

the XPS and NEXAFS data (see e.g. the NEXAFS carbon K-edge spectra in the left 

panel of Figure 5.7 and S 2p XPS spectra in Figure 5.8), the monolayer formed 

from the 1:10000 (C12:TMPP) solution contains only TMPP moieties, the “1:1000" 

film is mostly TMPP with some percentage of C12, the "1:100" film contains a 

minor amount of TMPP, and the "1:10" film consists exclusively of C12 moieties. 

Thus, the amount of the TMPP species in the mixed film can be precisely adjusted. 

According to the NEXAFS difference curves (right panel in Figure 5.7), the TMPP 

molecules both in the one-component and mixed films have an in-plane (strongly 

inclined) orientation. 
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5.1.2 Distribution of molecules in the mixed monolayer 

An indication of the content of spreader-bar molecules incorporated in the SAM of 

alkanethiol can be obtained by studying the thickness of the resulting layers by 

ellipsometry. If the thickness of a monolayer is not homogenous because of it 

consists of two molecules with different size, it can be expected that the measured 

thickness should be higher than the thickness of a monolayer from the smaller 

molecule and lower than value for the larger molecule. In the case of a self-

assembled monolayer from 1-dodecanethiol a thickness of 16.9 Å was measured. 

The monomolecular film of 2-thiobarbituric acid has a thickness of 7.6 Å. For a 

mixed monolayer, obtained by immersion of the gold substrate to a mixture of 

2-thiobarbituric acid and 1-dodecanethiol (100:1) under the same conditions like 

the pure monolayer, dissolved in 90% methanol and an immersion time of 70 

hours, a thickness of 10.8 Å was measured. By assumption of a linear dependence 

of the resulted thickness as a function of the content of spreader-bar molecules in 

the surface, coverage of about 34% is found.  

A similar estimation was done by measurement of the electrical capacitance and 

coverage of 48% was calculated. The difference of both values is due to different 

contribution of the single molecules to the sum of the resulted thickness. This may 

be taken into account especially for ellipsometry. The investigated structures are 

smaller than the wavelength of the light used. Therefore both values are rough 

estimations, but they are in the same range and show that both molecules cover 

the surface. For preparation of the spreader-bar monolayer of 2-thiobarbituric acid 

together with 1-dodecanethiol in such condition optimized to the receptive 

properties of this layer, the content of matrix molecules is slightly higher than that 

of 2-thiobarbituric acid. This is according to the model of the spreader-bar 

systems. 



Results and discussion  78 

 

FIGURE 5.9. Contact angles of water on different self assembled monolayer and spreader-bar 
systems on gold. The contact angle on the mixed layers are always in bewtween the angles 
measured for the two pure monolayers of the mixture. 

Studies in contact angles of spreader bar systems show the same results (figure 5.9, 

table 5.2). Contact angles of mixed monolayers give values in between the contact 

angles of monolayers of their single compounds. The main information from this 

study is that there really is a mixture of the two components with random 

distribution of both molecules and without formation of any domains or regions 

which could be identified as a distinct phase.  
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TABLE 5.2. Advancing and receding contact angles of self assembled monolayer of 1-dodecanethiol 
(C12), 2-thiobarbituric acid (TBA) and the spreader bar system of a 1:100 mixture of C12:TBA on 
gold surfaces. 

 water hexadecane 

 advancing receding advancing receding 

TBA/C12 44° 15° 7° 5° 

C12 104° 97° 43° 39° 

TBA 36° 9° 7° 5° 

 

The distinct hysteresis (Δθ = θadvancing - θreceding) of 29° for the contact angles of water 

in case of the spreader-bar system in contrast to a value of 7° for pure 

1-dodecanethiol monolayer indicates the heterogeneity of the surface composition. 

But this is no evidence, because also the hysteresis of a pure monolayer of 

2-thiobarbituric acid is nearly the same as for the mixture. An explanation of this 

result could be the rigid structure of 2-thiobarbituric acid. Because of that, a 

monolayer of pure spreader-bar molecules will be not able to result in a 

homogeneous film of such high order like for alkanethiols.  

All spreader-bar systems assembled from alkanethiols together with purines or 

pyrimidines with thiol moieties were characterized by cyclic voltammetry. The 

modified gold electrodes show the typical redox activity of ruthenium(III)-

hexammin and ferro cyanide (figure 5.10). The shape of the cyclovoltammograms 

exhibits the characteristics of macro electrodes with linear diffusion of the redox 

molecules to the electro active surface. This result indicates that the surface could 

not be characterized by a monolayer of alkanethiol with defects in molecular 

dimensions caused by incorporation of the spreader-bar molecules. In that case the 

cyclovoltammogram should have a shape with sharp peaks which are typical for 

spherical diffusion.  
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Figure 5.10. Cyclovoltammogramm of a gold electrode covered by a monolayer of ASH and C12 
measured in the presence of different concentrations of adenine. As electrolyte 10 mmol·L-1 
phosphate, 100 mmol·L-1 potassium chloride and 5 mmol·L-1 K3[Fe(CN)6] was used at pH 7.2 was 
used. 

Gold electrodes covered by a pure monolayer of 1-dodecanethiol do not show the 

peaks of redox active substances like ferrocyanide and ruthenium(III)-hexammin 

at all. The redox processes are successfully blocked by the dense monolayer, which 

protect the gold surface from any contact to the Fe3+- and the Ru3+-ions in solution. 

It was confirmed by impedance spectroscopy that the receptive properties of 

spreader-bar systems can be monitored by measurement of electrical capacitance, 

if, at the adjusted electrochemical potential, no compound in the solution shows 

redox activity. 

From the BODE-plot (figure 5.11) one can see that for frequencies in the range from 

10 to 100 Hz the phase angle of spreader-bar coated gold surfaces is near 80°. For 

an ideal capacitor a value of 90° is calculated. So this result allows in a first 

approximation to characterize the electrical properties of spreader-bar systems by 
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binding an analyte at the given frequencies as an increase of the dielectric 

thickness of the layer. The binding is straight proportional to the change in 

electrical capacitance. 
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FIGURE 5.11. BODE-Plot of an impedance measurement of a gold electrode covered by a spreader-
bar system consisting od ASH and C12. 

At a more detailed view it gets clear that the simplest circuit of a capacitor in 

parallel to a resistor does not proof satisfactory the real situation. In the NYQUIST 

diagram (figure 5.12) this can be visualized easy. For the ideal system the values 

should describe a semicircle, but for low frequencies it was found that there is a 

linear increase. This can be described by WARBURG impedance. For an exact 

simulation of spreader-bar systems of alkanethiols and thiol modified purines and 

pyrimidines more complicated equivalent circuits consisting of capacitors and 

resistors in parallel together with WARBURG impedance in serial are necessary. 
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FIGURE 5.9. Nyquist diagram of a gold electrode covered by a spreader-bar system consisting of 
GSH and C12, without and in presence (500 mmol·L-1) of the analyte adenine.. 

Monolayer assembled from a solution consisting of 6-mercaptopurine and 

1-dodecanethiol (6-mercaptopurine : 1-dodecanethiol = 100:1), the both species 

formed a mixed SAM on the gold surface. The analysis of the NEXAFS (figure 

5.13) and XPS data suggest that there are about 74% of 6-mercaptopurine 

molecules in the mixed film. The orientation of the 6-mercaptopurine molecules in 

the mixed film (23°) differed from that in the one-component SAM while the 

orientation of  the 1-dodecanethiol species (32°) was identical with the orientation 

in one-component 1-dodecanethiol film. It is interesting that the effect of 

alkanethiol on the orientation of 6-mercaptopurine was observed even at very low 

alkanethiol concentration in the coating solution where the concentration of 

alkanethiol in monolayers was less than the FTIR-detection limit. This confirms 

the initial suggestion and interpretation of FTIR spectra. XAM images taken with a 

resolution of 50 nm did not exhibit any domain structure. 
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FIGURE 5.13. Left panel: C K-edge NEXAFS spectra of SAMs formed from 1-dodecanethiol (C12) 
and 6-mercatopurine (6-MP) solutions. Right panel: a linear combination of the left panel spectra 
(bottom curve) in comparison to the spectrum of the film formed from a mixed C12/6-MP solution. 
As the spectrum of the mixed film is fully reproduced by the linear combination of the left-panel 
spectra, the content of the 6-MP molecules in the mixed film can be estimated as 74%. 

 

5.1.3 Stability of mixed monolayer 

For demonstration of the stability of spreader-bar coated gold surfaces, NEXAFS 

and XPS data were collected over time and compared. The behavior shown in 

figure 5.14 is in accordance with the C K-edge NEXAFS spectra and XPS data. In 

particular, no oxidation of the pristine thiolate groups occurred after the 4.5 

months storage.  
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The one-component 6-mercaptopurine film and the mixed SAMs consisting of 

6-mercaptopurine and 1-dodecanethiol reveal a good stability over the time, 

which is at least comparable with the stability of alkanethiol monolayer. 

According to the results from NEXAFS (figure 5.14) and XPS data, the chemical 

identity and the orientation order of the 6-mercaptopurine and the mixed SAMs 

was not destroyed during months-long storage. 

FIGURE 5.14. N K-edge NEXAFS spectra of SAMs formed from single components and from 
mixed 6-MP and C12 solutions. The spectra for the freshly assembled and 4.5 months old samples 
are compared. The characteristic absorption structure is preserved upon the sample storage, even 
though a small intensity reduction can be observed. 

Electrochemical investigations also confirmed high stability of the spreader-bar 

structured monolayers. The results of four-month experiment are presented in the 

figure 5.15. While storage in ethanol led to some small desorption (the observed 

effect corresponds to desorption of ~ 1% compounds), only minor changes of 

electrical capacitance were observed for the samples stored in the phosphate 

buffer, or in air. The cyclic voltammetry and impedance spectroscopy of these 

probes performed after 30 and 80 days storage, demonstrated also functional 

nativity of the spreader-bar structures. 6-mercaptopurine structured monolayers 

displayed binding of adenine. 
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FIGURE 5.15. Changes of electrical capacitance of gold electrodes coated by dodecanethiol with 
6-mercaptopurine spreader-bars during the long time storage in phosphate buffer ( ), in ethanol 
( ) and in air ( ), at usual laboratory conditions (room temperature, day light). 

5.1.4 Kinetics of the analyte binding in spreader-bar systems 

The kinetics of the binding of analytes to spreader-bar systems consisting of 

2-thiobarbituric acid and 1-dodecanethiol was studied. It was found that for 

concentrations of the analyte up to 100 μmol·L-1 the binding can be described by 

monoexponential kinetics (figure 5.16). For higher concentrations this model does 

not fit to the experimental data, the kinetics could only be described by two 

exponential functions (figure 5.17). 
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FIGURE 5.16. Kinetics of the binding of barbituric acid (100 μmol·L-1) to a spreader-bar system 
formed by 2-thioberbituric acid and 1-dodecanethiol. 
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Figure 5.17. Kinetics of the binding of barbituric acid (470 μmol·L-1) to a spreader-bar system 
formed by 2-thioberbituric acid and 1-dodecanethiol. 
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The binding kinetics of barbituric acid and pyrimidine were measured at 30 °C for 

five different concentrations of each analyte. An analysis of the fitting parameters 

for the time constant shows a dependence on the analyte concentration for the 

faster process (figures 5.18 and 5.19). 
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FIGURE 5.18. Concentration dependence of the time constant of the faster process for the binding 
of barbituric acid to spreader-bar systems of 2-thiobarbituric acid and 1-dodecanethiol. 
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FIGURE 5.19. Concentration dependence of the time constant of the faster process for the binding 
of barbituric acid to spreader-bar systems of 2-thiobarbituric acid and 1-dodecanethiol. 
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Bi-exponential kinetics requires at best a three-state model to explain. A number of 

models was analyzed1. The simplest model describing these results the binding 

site performs a change in its conformation during the adsorption of the analyte. 

Therefore, after desorption of the analyte a relaxation process must take place in 

order to rebind another analyte molecule. By studying the adsorption and 

desorption by electrochemical measurement of the electrode capacitance for the 

concentration dependent kinetics kb can be estimated to 70 s-1·mol-1. For the 

desorption, from the concentration independent step kdes was estimated to 4.5 s-1.  

For the relaxation process, which has no influence to the electrochemical 

capacitance, krel is according to this modell about 2·10-3 s-1 (figure 5.20). 

 

FIGURE 5.20. Model of the binding kinetics of the receptor sites in spreader-bar systems with the 
following states: (1) unoccupied, (2) after binding of the analyte, (3) after desorption of the analyte.  

                                                 
1 in collaboration with V. I. Portnov, paper in preparation. 
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5.2 Applications  

5.2.1 Spreader-bar systems as molecular receptors 

The spreader-bar approach provides a simple method for producing a huge 

number of receptors with different selectivities, so as a first application a sensor-

array of five receptors is introduced, which offers the possibility to detect different 

purines and pyrimidines by pattern recognition was tested. The pattern 

recognition technique, based on principal component analysis or neuronal nets, 

was used because it allows one to reach a very high selectivity of chemical 

analysis, but requires a pre-formation of an array of chemical sensors with 

essentially distinguished properties of single sensors.  

With an array of electrodes, modified with mixed monolayers based on thiolated 

bases of nucleic acids as spreader-bars adenine, cytosine, thymine, uracil, caffeine 

and uric acid were used as analytes. The analyte binding was detected as changes 

of peak amplitude in cyclic voltammetry or modification of electrochemical 

impedance, the binding modifies reaction resistance and electrode capacitance 

while the Warburg impedance does not change. A monitoring of a capacitive 

current was used as the main detection method.  

For gold electrodes covered by monolayer of a single component, either of matrix 

or spreader-bar molecules, no recognition abilities were found. For example, the 

changes of capacitive current at 80 Hz due to adsorption of purines and 

pyrimidines from a solution of 300 μmol·L-1 on 1-dodecanethiol coated electrodes 

were 0.7% for adenine or even less for every other substance. 

A behavior of mixed monolayers consisting of dodecanethiol and one of thiolated 

purines or pyrimidines was quite different: an adsorption of adenine, cytosine, 

thymine, uracil, caffeine or uric acid resulted in over 25% changes of the capacitive 

current (figure 5.16).  
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FIGURE 5.16. Concentration dependence of the relative changes in the capacitive current of gold 
electrode coated by mixed monolayer from dodecanethiol and ASH on addition of different analytes. 

To obtain systems displaying such properties, the mixed monolayers have to be 

formed at definite concentration range of spreader-bar and matrix molecules in 

the coating solutions. An investigation of the obtained monolayers by IR reflection 

absorption spectroscopy (figure 5.3) and contact angle measurements (figures 5.2 

and 5.9) has shown that namely this range of coating conditions corresponds to 

the formation of mixed monolayers with comparable surface concentrations of 

both components. An increase of the spreader-bar/matrix ratio in the coating 

solutions, or the reduction in deposition time result in formation of monolayers 

displaying only weak adsorption of analytes, which do not differ from the 

property of pure monolayers. 

Concentration dependences of an electrode array consisting of 1-dodecanethiol 

and one of 6-mercaptopurine (ASH), 2-amino-6-purinethiol (GSH), 4-amino-2-

mercapto-pyrimidine (CSH), 4-hydroxy-5-methyl-2-mercaptopyrimidine (TSH) or 
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4-hydroxy-2-mercaptopyrimidine (USH) on additions of adenine are is shown in 

figure 5.17. 
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FIGURE 5.17. Concentration dependence of the relative changes in the capacitive current for an 
array of five different mixed monolayers on addition of adenine. 

The response depends on a specific combination of spreader-bar and adsorbate. 

The electrode coated by a mixture of TSH and dodecanethiol exhibit the highest 

change of the signal on adenine addition; for electrodes with other spreader-bars, 

the signal decreased according to the order: USH > GSH > ASH > CSH. This order 

can be explained by interactions between the template and analytes. It is well 

known that adenine binds its complementary bases thymine or uracil; most 

probably it is valid also for thiolated derivatives of the latter compounds. GSH 

and ASH have the same shape like the analyte thus providing conditions for 

adsorption of these molecules into cavities formed by the template molecules and 

for �π-stacking interaction with these molecules. Due to the minor energetic 

stabilization by �π-stacking in contrast to the hydrogen binding [41], the binding of 
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adenine to GSH and ASH spreader bar systems is less effective. In case of the CSH 

spreader bar, no hydrogen binding can occur, and due to the smaller size of CSH, 

the surrounding dodecanethiol molecules hinder the analyte to come close enough 

to the template thus preventing a stacking interaction. 

The observed interaction of adenine with mixed monolayers consisting ASH was a 

reason to test this system as an artificial receptor for ATP. The experiment 

confirmed this suggestion: an ATP addition resulted in a concentration dependent 

decrease of the capacitive current through the mixed monolayer with saturation at 

2.2% and binding constant of about 2·104 L·mol-1 (figure 5.18). 
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FIGURE 5.18. Change of electrochemical capacitance of an electrode covered by a mixed monolayer 
of 6-mercaptopurinethiol and 1-dodecanethiol in the presence of various concentrations of ATP. 

Variations of spreader-bars lead to essential modifications in sensor behavior. A 

study of relative signal changes on adsorption of the same concentrations of 

different purines and pyrimidines onto mixed monolayers formed with either 

ASH, GSH, TSH, USH or CSH, results in signal patterns which are typical for 

every specific analyte used (table 5.1).  
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TABLE 5.3. Pattern of the effectiveness of spreader-bars for the recognition of different analytes. 

analyte signal patterna) 

adenine T > U > A > G > C 

cytosine U > G > A > t > c 

thymine g > a > t > u > C 

uracil T > U > C > A > G 

caffeine A > C � T > U > g 

uric acid U > G > A > T > C 

a) The spreader-bar molecules are named by the first letter (A represents ASH) and ordered by 
decreasing response. A small letter indicates signal changes lower than 0.3 %. 

The sequences are valid for the whole concentration range (20 to 470 μmol·L-1) 

studied. This set of five artificial receptors based on these mixed monolayers 

allows one to identify every of the six different analytes tested (table 5.4) For 

cytosine and uric acid the patterns are the same, however the magnitude of the 

signal changes for uric acid was 5 to 17 times higher.  

TABLE 5.4. Relative decrease (%) of the capacitive current on addition of analytes (250 μmol·L-1) 
for different spreader bar systems. 

spreader-
bar 

adenine cytosine thymine uracil caffeine 
uric 
acid 

ASH 17.5 0.7 -0.1 6.5 1.7 7.0 

CSH 10.0 -0.4 -2.0 10.4 1.0 5.5 

GSH 16.2 1.2 0.0 4.6 0.7 8.0 

TSH 26.0 0.4 -0.2 15.0 1.0 6.7 

USH 19.6 1.8 -0.5 14.1 0.8 9.0 
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An analysis of principal components of the data array has shown that the first two 

components contain about 75 % of the data variation. The data obtained at 

different concentration for different analytes, being plotted in the virtual plane of 

the first and second principal components, add up by an arrangement in groups 

corresponding to individual substances (figure 5.19). 

 

FIGURE 5.19. Patterns of different concentrations of caffeine, uracil, adenine, cytosine, thymine 
and uric acid on an array of artificial receptors formed by thiolated derivatives of purines (ASH, 
GSH) and pyrimidines (CSH, TSH, USH) presented in the plot of principal components. 
Capacitive transducing was used. 

The results show that in spite of limited selectivity of every single sensor element, 

the sensor array can be used for recognition of bases of nucleic acids as well as 

caffeine and uric acid. This first application of the spreader-bar technology in 

sensor arrays illustrates its high potential in creation of large variety of 

chemoreceptors with different selectivity, thus fitting the main requirement in the 

development of modern analytical systems based on pattern recognition [42]. The 

spreader-bar technique provides a simple way to manufacture almost a non-

limited number of such receptors: practically every thiol derivative can be used. 

Here an application of this approach to form an array of only five sensors is 
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demonstrated, but there is no technical limit to prepare such array with hundreds 

of sensing elements.  

5.2.2 Spreader-bar systems as chiral selectors 

The spreader bar systems were tested as a new method to form chirally sensitive 

artificial chemoreceptors on a solid support. Optical as well as electrical 

techniques were used for detection. 

TABLE 5.5. Relative capacitive changes (in %) of gold electrodes coated by different self-assembled 
monolayers to racemic mixtures of phenylalanine (Phe) and 1,1-binaphthyl-2,2-diol. The molar 
concentration ratios of the spreader-bar and matrix molecules in the coating solution are given in 
parenthesis; the concentration of matrix molecule was always 0.1 mmol·L-1. 

Electrode Coating 
Effects to addition of racemic 

mixtures of 

 
1.25 mmol·L-1 

Phe 
25 μmol·L-1 

BNOH 
50 μmol·L-1 

BNOH 

1-Hexadecanethiol 0 0 0 

Thioctic acid -1.2 0.2 0.22 

S-Conjugate 0 11.9 17.6 

R-Conjugate 0 6.6 9.2 

S-Conjugate / 
16-Mercaptohexadecanoic acid 
(1/33) -3.5 3.6 4.8 

R-Conjugate / 
16-Mercaptohexadecanoic acid 
(1/33) -3.5 3.9 5.1 

S-Conjugate / 1-Hexadecanethiol  
(1/33) 0 1.8 3.2 

R-Conjugate / 1-Hexadecanethiol  
(1/33) 0 8.6 12.8 
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Table 5.5 presents changes in the capacitance of gold electrodes coated by various 

self-assembled monolayers on addition of racemic mixtures of phenylalanine and 

model target compound BNOH. It is notable that the electrodes coated by the 

conjugates of racemic thioctic acid with different enantiomers of 1,1'-binaphthyl-

2,2'-diamine (R- and S-conjugates correspondingly), being used alone or in a 

mixture with matrix molecules, displayed no capacitance increase on addition of 

phenylalanine, even in millimolar concentrations. However, they are very 

sensitive to the addition of even micromolar concentrations of racemic R/S-BNOH 

solution. Deviations of the recognition properties of the receptors formed by the R- 

and S-conjugates from ideal symmetric behavior are most probably caused by 

preferable binding of definite optical isomers of thioctic acid during the 

conjugation, thereby leading to the formation of molecules with two chiral centers 

and loss of the mirror symmetry. The binding of a model analyte to the conjugate 

may be explained by π-electron interactions. The affinity of the model analytes to 

the conjugates allows their use as spreader-bars for the selective recognition of the 

individual enantiomers. 

The ability of such surfaces to discriminate enantiomers was studied by measuring 

the change in the electrode capacitance on addition of R- or S-enantiomers of the 

analyte. The concentration range of BNOH was varied from 6.25 to 50 μM. 

Capacity changes for a number of electrodes coated by different organic 

monolayers are presented in Table 5.6.  
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TABLE 5.6. Relative capacitive changes (in %) of electrodes with different coating on addition of 
50 μmol·L-1 of chiral analytes. The molar concentration ratios of the spreader-bar and matrix 
molecules in the coating solution are given in parenthesis; the concentration of matrix molecule 
was always 0.1 mmol·L-1. 

Electrode coating 
Response 

to S-BNOH 
Response to 

R-BNOH 
Enantio-

selectivity 

1-hexadecanethiol  0 0 - 

Thioctic acid 0.2 0.2 1.00 

S-Conjugate 17.6 17.6 1.00 

R-Conjugate 9.5 8.7 1.09 

S-Conjugate/ 
1-Hexadecanethiol  (1/33)  3.3 3.6 0.92 

R-Conjugate/ 
1-Hexadecanethiol (1/33) 13 9.7 1.34 

S-Conjugate/ 
1-Hexadecanethiol (1/3.5) 9.3 2.9 3.21 

R-Conjugate/ 
1-Hexadecanethiol (1/3.5) 12.8 6.9 1.86 

S-Conjugate/ 
1-Hexadecanethiol  (1/2) 32.4 6.8 4.76 

R-Conjugate/ 
1-Hexadecanethiol (1/2) 35 10.23 3.42 

S-Conjugate/ 
1-Hexadecanethiol  (1/1) 60 43 1.39 

R-Conjugate/ 
1-Hexadecanethiol  (1/1) 62 49 1.26 

S-Conjugate/ 
1-Dodecanethiol  (1/3.5) 41 38 1.08 

R-Conjugate/ 
1-Dodecanethiol (1/3.5) 23 19 1.21 
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The ratio of the apparent capacitance changes assumed to be proportional to the 

adsorbed amount [43] and therefore to the enantioselectivity, was taken as a 

criterion for the chiral recognition properties of each of the tested coatings. The 

results showed that the concentration ratio between the matrix and the template 

molecules is the key parameter determining the chiral recognition properties of 

the modified surfaces.  

As revealed from the results of Table 5.6, the sensitivity of the sensors to the target 

analyte increases on increasing the template concentration in the mixture with the 

matrix molecule. This is additional evidence for the important role of the template 

to create cavities of a specific size that act as a mould for the target analyte. The 

highest enantioselectivities were obtained for the gold electrodes coated by 

template/matrix mixtures with molar ratios of 1:3.5 and 1:2. The effectivity of 

artificial receptors was compared for two types of matrices, namely the long chain 

alkanethiols (1,16-mercaptohexadecanoic acid, 1-hexadecanethiol) and the shorter 

one (1-dodecanethiol). A decrease of the matrix thickness, realized by the 

substitution of 1-hexadecanethiol by 1-dodecanethiol, led to the loss of 

enantioselectivity.  
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FIGURE 5.20. Capacitance changes on five successive additions of 10 μM of R-BNOH (R) and 
S-BNOH (S). The gold electrodes were modified with a mixture of 1-hexadecanethiol (0.1 mmol L-1) 
and S-conjugate (0.03 mmol L-1) in ethanol/dioxane (9/1 v/v).  
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The kinetics of the decrease in capacitance on additions of analytes is shown in 

figure 5.20. The impedance spectra (figure 5.21) of gold electrodes modified by the 

same template with different matrices reveal the dependence on the length of 

alkyl chain of the matrix molecules.  
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FIGURE 5.21. Impedance spectra of gold electrodes coated by a mixture of 1-hexadecanethiol 
(0.1 mmol·L-1) and S-conjugate (0.03 mmol·L-1) in ethanol/dioxane (9/1) (■) or by  a mixture of 
1-dodecanethiol (0.1 mmol·L-1) and S-conjugate (0.03 mmol·L-1) in ethanol/dioxane (9/1) (●). 
Measurement conditions are described in the experimental section. 

The electrodes were coated with a mixture of 1-hexadecanethiol (0.1 mmol·L-1) and 

S-conjugate (0.03 mmol·L-1) in ethanol/dioxane (9/1, v/v) and a mixture of 

1-dodedecanethiol (0.1 mmol·L-1) and S-conjugate (0.03 mmol·L-1) in the same 

solvent. Impedance spectroscopy was performed in the presence of 

hexacyanoferrate. The results demonstrate that spreader-bar monolayers with 

larger matrix molecules possess an about four fold higher reaction resistance 

(Figure 5.21). These values are in between of that for bare gold electrodes and for 

the electrodes coated by pure matrix without spreader-bars.   
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The chiroselectivity of the spreader-bar structures with S-conjugate as the template 

was further examined by means of surface plasmon resonance measurements. The 

ratio of the template and matrix concentrations that had provided the highest 

enantioselectivity in the capacitive study (table 5.6) was used for coating the gold 

surface. As can be seen in figure 5.22, the signal changes upon addition of the S- 

and R-BNOH is higher in the case of S-BNOH. The enantioselectivity was 

calculated as a ratio of stationary SPR shifts on addition of corresponding 

enantiomers; a value of 2.55 was obtained. The unusual kinetics of the SPR signal 

may reflect some conformational changes in the receptor layer.  

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

W

W

S

R

S
P

R
 s

hi
ft 

/ a
ng

le
 m

in

Time / s

 

FIGURE 5.22. Shift of the surface plasmon resonance angle on addition of 50 μmol·L-1 S-BNOH 
(S) and 50 μmol·L-1 R-BNOH (R). Arrows (W) indicate washing by of the buffer solution. The gold 
coated glass slide was modified with a mixture of 1-hexadecanethiol (0.1 mmol·L-1) and S-conjugate 
(0.03 mmol·L-1) in ethanol/dioxane (9/1 v/v). 

The proposed methodology is wide-applicable and can be used to form chirally 

selective receptors for a large variety of species. One can expect further increase of 

the chiral sensitivity by conjugating chiral spreader bar to a non-chiral thiolinker. 
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Such sensors may be used for analysis of chiral compounds in complex mixtures, 

for quality control of chiral drugs and food additives, and in related applications. 

5.2.3 Spreader-bar systems as templates for metallic 

nanoparticles  

All spreader-bar-stabilized nanostructures were investigated by impedance 

spectroscopy and by cyclic voltammetry. The results demonstrated high 

electrochemical stability (except for the aluminum phthalocyanine chloride based 

systems) of the monolayers in the wide potential range; the shape of 

voltammograms indicated on homogeneous distribution of the spreader-bar 

molecules through the monolayer (no influence of nanostructures on the diffusion 

profile of ferro/ferri-cyanide ions). From these results it was considered to test the 

spreader-bar systems as templates for the generation of metallic nanoparticles by 

selective reduction of platinum into the nanopores formed by spreader-bar 

molecules.  
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FIGURE 5.23. Optical microscopy of gold electrodes coated by 1-dodecanethiol (top) or TMPP 
together with 1-dodecanethiol (bottom) after reduction of platinum from H2PtCl6 into defects and 
nanostructures of these monolayers. The reduction charge was 63 C·m-2. Magnification: 250. 

First, a formation of such metallic particles for indirect provement through optical 

microscopy was performed. On the gold electrodes coated by pure alkanethiols, 

the reduction of platinum from H2PtCl6 until the reduction charge reaches a value 

of 63 C·m-2 leads to the formation of visible platinum islands (figure 5.23, top). The 

same experiment with gold electrodes coated by mixed monolayers of 

6-mercaptopurine and 1-dodecanethiol and of TMPP and 1-dodecanethiol were 

tested. It was found, monolayers with nanostructures do not lead to the formation 

of optically visible defects (Figure 5.23, bottom). Therefore, the total area of 

electrochemically available gold area (obviously planar spreader-bars molecules 

with developed �π-electron systems posses much higher electrical conductivity 

than alkanethiol molecules) is much higher in the nanostructured monolayers. 

This experiment also gives a new perspective to the high application potential of 

the spreader-bar structured monolayers in selective electrocatalysis: after showing 
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of the receptive properties, now here the electrical transfer through bottoms of 

these pores is demonstrated. 

Systematic changes of the surface roughness in nanometer scale due to formation 

of spreader-bar stabilized nanostructures and platinum reduction with in this 

nanostrctures, were confirmed by experiments with atomic force microscopy. For 

example (figure 5.24), platinum (reduced until 0.5 C·m-2) does not change the 

smooth surface of gold on mica (a); a formation of alkylthiol monolayer leads to 

characteristic relief (b), these inhomogeneities are larger for the spreader-bar 

structured monolayer (c) and are further increased after platinum reduction (d) 

according to the model (figure 5.23, bottom). 
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FIGURE 5.24. Atomic force microscopy (non-contact mode) of bare gold electrode (a), alkylthiol 
coated gold electrodes (b), gold electrodes coated by the nanostructured monolayer consisting of 
TMPP and 1-dodecanethiol before (c) and after (d) electrochemical platinum deposition. The 
deposition charge was 0.5 C·m-2. 

A direct visualization of nanoparticles by electron microscopy was performed 

successfully. The nanoparticles were formed by reduction of copper or platinum 

(Figure 5.25). There should be no physical or chemical limitations for preparation 
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of nanoparticles from many other noble and transition metals according to this 

method. The particles are relatively homogeneous. Depending on the deposition 

charge, the size of nanoparticles can be controlled in the range between 20 nm and 

1000 nm.  

 
 

  

 
 

FIGURE 5.25. Scanning electron microscopy of gold electrodes coated by the nanostructured 
monolayer consisting of TMPP and 1-dodecanethiol after electrochemical platinum deposition. The 
deposition charge is 41 C·m-2 (left column) and 160 C·m-2 (right column). 
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It should be possible to form also smaller nanoparticles (the size is probably 

limited only by the size of the spreader-bar used, i.e. about 2 nm for TMPP), but by 

means of the electron microscopy it was not able to visualize the nanoparticles 

smaller than 20 nm (figure 5.26). The total area of the formed platinum 

nanoelectrodes, estimated from the investigation of underpotential deposition of 

copper, is about 1.5 times higher than geometrical electrode area. For smooth 

nanoparticles, it corresponds to the ratio of the nanoparticles radius to the mean 

distance between particles as about 0.35; this is similar to that value obtained from 

the digital analysis of electron microscopy images (0.22). 

 

FIGURE 5.26. Scanning electron microscopy of gold electrodes coated by the nanostructured 
monolayer consisting of TMPP and 1-dodecanethiol after electrochemical platinum deposition. The 
deposition charge is 6.5 C·m-2. The resolution of the used microscope did not allow to visualize 
smaller nanoparticles. 

5.2.4 Spreader-bar systems used as support for studying 

ionic pumps 

The first investigated nanostructured monolayers were tested as a support for 

functional reconstitution of Na,K-ATPase. Adsorption of membrane fragments 

with Na,K-ATPase, detected as decrease of electrical capacitance, on different 
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surfaces was studied; it was shown that the adsorption is similar to the surfaces 

coated by hydrophobic alkanethiols without nanostructures and to the 

nanostructured surfaces formed by 1-dodecanethiol and 6-mercaptopurine. To 

check functional activity of the Na,K-ATPase, impedance spectroscopy in the 

presence and without ATP in the electrolyte without potassium was compared. 

The absence of potassium blocks the turnover of the enzyme providing high 

concentration of the dephosphorylated Na-bond enzyme state. An addition of 

ATP in such conditions leads to the opening of the sodium channel and sodium 

transfer. An application of alternative current induces movement of sodium ions 

in the channel which should lead to the frequency dependent modifications of 

impedance spectra. The impedance spectroscopy confirmed this suggestion: the 

subtraction of admittance measured in the presence and in the absence of ATP 

evaluated frequency dependent changes of capacitance and conductance (Figure 

5.27, curves 1-2) related to the activity of Na,K-ATPase.  
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FIGURE 5.27. Difference in admittance of electrodes with adsorbed Na,K,ATPase due to ATP 
binding: 1, 3 - capacitance, 2 - conductance. The curve 1, 2 were measured on nanostructured 
electrodes with spreader-bars, the curve 3 was measured on non-structured electrode with 
hydrophobic surface. 
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The activity of this enzyme was higher on the surfaces with spreader-bars 

compared to non-structured surfaces coated by carboxy-alkanethiols. The lowest 

activity was found on surfaces of thiols with terminal methylene groups. If the 

membrane fragments were adsorbed on the gold electrode gold electrodes coated 

by hydrophobic alkanethiol, display only minor ATP-dependent changes of 

impedance spectra (figure 5.27, curve 3). In can be explained by the assumption 

that a water filled compartment between the support and membrane fragment is 

necessary for functioning of this ion pump: the tight contact of membrane 

fragments and hydrophobic alkylthiols block the activity of Na,K-ATPase (figure 

5.28).  
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FIGURE 5.28. Possible explanation of increasing of detecting activity of Na,K,ATPase adsorbed 
on nanostructured monolayers: microvolumes of water between membrane fragments and electrode 
provides natural-like environment for the ion pump but block electrical leakages. 

The surfaces with nanostructures and with carboxy-groups provide these aqueous 

cavities which are necessary for the functioning of the Na,K-ATPase. However, 

even in this case the nanostructured electrodes have an advantage that the lateral 

leakages of electrical current are blocked; it lead to minimization of artifacts in 

quantitative investigations. Additional advantage of the latter system is that it 

allows us to vary the size and the density of these cavities to reach the optimal 

conditions of the Na,K-ATPase function. 
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6. Summary 

Thiol modified purines and pyrimidines (spreader-bar) co-adsorbed with 

1-dodecanethiols (matrix) onto a gold surface form self-assembled nanostructured 

monolayers showing recognition properties towards different purines and 

pyrimidines, depending on the type of the spreader-bar used. The structures were 

investigated by FTIR spectroscopy, contact angle measurements, ellipsometry, 

impedance spectroscopy and voltammetry. The results show that the coating 

conditions optimized for affinity properties correspond to a narrow range of the 

spreader-bar/matrix ratio in the coating solution leading to the presence of both 

types of molecule on the surface.  

An array consisting of five receptors formed by thiolated derivatives of adenine, 

thymine, uracil, guanine and cytosine as spreader-bars, allows one to recognize 

different purines and pyrimidines. The results show that in spite of limited 

selectivity of every single sensor element, the sensor array can be used for 
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recognition of bases of nucleic acids as well as caffeine and uric acid. This first 

application of the spreader bar technology in sensor arrays illustrates its high 

potential in creation of large variety of chemoreceptors with different selectivity, 

thus fitting the main requirement in the development of modern analytical 

systems based on pattern recognition. 

Chiroselective binding sites have been created by application of the spreader-bar 

approach. Impedometric techniques and surface plasmon resonance were applied 

to detect binding. (R)-(+)-1,1'-binaphthyl-2,2'-diol (R-BNOH) and (S)-(-)-1,1'-

binaphthyl-2,2'-diol (S-BNOH) were used as model analytes. The artificial 

receptors were prepared by co-adsorption of 1-hexadecanethiol with a thiol-

modified chiral selector (conjugates of D,L-thioctic acid and (R)-(+)- or (S)-(-) 1,1'-

binaphthyl-2,2'-diamine). Different concentration ratios of the matrix and 

spreader-bar were tested. No chiral selectivity of surfaces formed by either the 

matrix or the spreader-bars alone was observed. The gold electrodes coated by the 

spreader-bar technique displayed an enantioselectivity of up to 4.76. 

The nanostructured monolayers of different types of spreader-bars with different 

size were investigated thoroughly by ellipsometry, photoelectron spectroscopy, 

near-edge X-ray adsorption fine structure spectroscopy, infrared adsorption 

spectroscopy, atomic force microscopy, contact angle measurements, voltammetry 

and electrochemical impedance spectroscopy. The results confirmed high-stability 

of monolayers, nanostructured by means of the spreader-bar technique within 

several months. Then the resulting complex materials formed by nanostructured 

monolayers were successfully used as chemical receptors and as molecular 

templates for electrochemical preparation of metallic nanoparticles. 

It has been demonstrated that spreader-bar stabilized nanostructures can be used 

for reconstitution of biological membrane proteins (this is important for 

applications in drug discovery) and for template-defined synthesis of 

nanoparticles (can be important for development of chemo- and biosensors, 

electrocatalysers, organic electronic devices).  
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The laterally organized surfaces obtained by this technology, could be of 

importance for applications in many fields of biology and medicine, including, for 

example, development of new bioanalytical methods and new biocompatible 

surfaces, new approaches for investigation of biological ion pumps and high-

throughput screening of chemical compounds. Not surprisingly, our first article 

where the concept of the spreader-bar system was presented was cited in over 30 

articles and more than 20 reviews up to now. 
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7. Zusammenfassung 

Thiolmodifizierte Purine und Pyrimidine, sogenannte spreader-bar Moleküle, 

bilden zusammen mit langkettigen Alkylthiolmolekülen (Matrixmoleküle) durch 

Selbstorganisation nanostrukturierte Monoschichten mit Rezeptoreigenschaften. 

Die Rezeptoreigenschaften können durch die Wahl des spreader-bar Moleküls 

gezielt gesteuert werden. Die so erzeugten Strukturen wurden mit den Techniken 

der Infrarotspektroskopie, Kontaktwinkelmessungen, Ellipsometrie, 

Impedanzspektroskopie und der zyklischen Voltammetrie eingehend 

charakterisiert. Es wurde gezeigt, dass die Bedingungen für die Erzeugung von 

künstlichen Rezeptoren mittels spreader-bar Technik nur einen kleine 

Variationsbreite des Spreader-bar-/Matrixmoleküle Mischungsverhältnisses in 

der Beschichtungslösung zulassen. Nur dann befinden sich beide Molekülarten 

nach dem Beschichten auf der Goldoberfläche. 
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Ein Array bestehend aus fünf künstlichen Rezeptoren mit thiolmodifizierten 

Derivaten aus  Adenin, Cytosin, Guanin, Thymin und Uracil als spreader-bar 

Moleküle erlaubte die Detektion verschiedener Purine und Pyrimidine. Die 

Ergebnisse zeigten, dass trotz geringer Selektivität eines einzelnen Rezeptors, ein 

Sensoren Array aufgebaut werden kann, der die zielsichere Erkennung der Basen 

der Nukleinsäuren, sowie von Coffein und Harnsäure benutzt werden kann. Diese 

erste Anwendung der spreader-bar Technologie zeigt deren Potential in der 

einfachen Erzeugung einer Vielzahl an Chemorezeptoren mit verschiedener 

Selektivität, die mit Hilfe der Mustererkennung in der Entwicklung von Sensoren 

hilfreich sein können. 

Die spreader-bar Technik konnte auch benutzt werden um chiroselktive 

Rezeptoren zu erzeugen. Mittels Impedanzmessungen und SPR-Messungen 

wurde die Analytbindung detektiert. (R)-(+)-1,1‘-Binaphthyl-2,2‘-diol (R-BNOH) 

und (S)-(-)-1,1‘-Binaphthyl-2,2‘-diol (S-BNOH) dienten hierbei als Modellanalyten. 

Die künstlichen Rezeptoren wurden durch Coadsorption von 1-Hexadecanthiol 

zusammen mit einem thiol modifizierten chiralen Selektor (Konjugat aus D,L-α-

Liponsäure und (R)-(+)- oder (S-)-(-)-1,1‘-Binaphthyl-2,2‘-diamine) hergestellt. 

Verschiedene Mischungsverhältnisse von Matrixmoleküle und spreader-bar 

Molekülen wurden getestet. Monoschichten die nur aus Matrix- oder spreader-

bar-Molekülen bestanden zeigten keinerlei chirale Selektivität. Mit gemischten 

Monoschichten bestehend aus beiden Molekültypen konnten künstliche 

Rezeptoroberflächen mit einer Enantioselektivität von bis zu 4.76 erhalten werden. 

Eine grundlegende Charakterisierung verschiedener spreader-bar Systeme mittels 

XPS, Ellipsometrie, elektrochemischer Untersuchungen, NEXAFS, 

Kontaktwinkelmessungen und AFM zum besseren Verständnis der erzeugten 

Nanostrukturen wurde durchgeführt. Dabei konnte gezeigt werden, dass der Weg 

der Nanostrukturierung mittels Selbstorganisation vielversprechend und 

perspektiv ist, denn die erzeugten Strukturen konnten eine hohe zeitliche 

Stabilität und Funktionalität über Monate vorweisen. Die entstandenen 

komplexen Materialen, selbst organiserter monomolekularer Schichten haben sich 
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nicht nur modellhaft als Rezeptorelemente sondern auch als Templatstruktur zur 

Erzeugung von metallischen Nanopartikeln bewährt. 

So konnte gezeigt werden dass spreader-bar stabilisierte Nanostrukturen 

erfolgreich für die Rekonstitution von biologischen Membranproteinen eingesetzt 

werden können. Dies kann z.B. in der Medikamentenentwicklung von Interesse 

sein. Ein Einsatz der erzeugten metallischen Nanopartikel nicht nur zur 

Entwicklung neuer Chemo- und Biosensoren, sondern auch im Bereich der 

Elektrokatalyse oder für den Aufbau organischer Elektronik ist denkbar. 

Zusammenfassend kann festgestellt werden, dass die lateral organisierten 

Oberflächen, die mittels spreader-bar Technik erzeugt wurden, in vielen 

Bereichen, wie der Biologie, und Medizin, als auch zur Entwicklung 

bioanalytischer Methoden oder neuer biokompatibler Oberflächen, der 

Grundlagenforschung zum Verständnis biologischer Ionenpumpen, oder im 

Hochdurschsatz Screening chemischer Substanzen eingesetzt werden kann. Dass 

das Konzept der spreader-bar-Technologie Beachtung findet, zeigt sich in der 

Zitierung unseres ersten Artikels in über 30 Veröffentlichungen und über 20 

Übersichtsartikeln in den letzten Jahren. 
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8. Experimental methods 

8.1 Sample preparation 

8.1.1 Materials 

The gold substrates used as electrodes were fabricated by evaporation of 150 nm 

of gold on a silicon oxide layer of a silicon wafer previously coated by a Ti/Pd 

adhesion layer (25 nm). These gold electrodes, obtained from Bosch (Stuttgart, 

Germany) have a shape of a circle with a diameter of 700 μm and they are 

connected by a line of 10 μm width and 7 mm length to a contact pad of the size of 

2 mm². This geometry provides an active surface area of 0.38 mm². The change in 
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the surface area by different height of the liquid in the measurement cell can be 

neglected [1].     

For study of AFM also substrates of mica was used. Gold was evaporated with a 

thickness of 200 nm on mica previously by a Ti adhesion layer of 5 nm. Theses 

substrates were produced by University of Heidelberg. 

Gold substrates used for SPR measurements were made out of glass with a 

refractive index of 1.61 and a thickness of 1 mm. The size was 20 mm x 20 mm. On 

an adhesion layer of chromium with a thickness of 5 nm a gold layer with 

thickness of 50 nm was evaporated. The gold coated glass slides for SPR were 

obtained from Mivitec (Regensburg, Germany). 

Before using, all gold surfaces where cleaned by ultrasonication in chloroform and 

ethanol, followed by dipping in hot piranha solution (1:3 (v:v) mixture of H2O2 

30% and sulfuric acid 96%). Caution: piranha solution reacts very violently with 

organic material [2]. After rinsing with water and drying in a stream of nitrogen, the 

gold substrates were dried and stored in a desiccator under reduced pressure. 

8.1.2 Preparation of monolayers on gold 

8.1.2.1 Monolayer consisting of purines or pyrimidines and alkanethiols  

Monolayers were assembled by immersing the fresh cleaned gold substrates for 

three days in an ethanolic solution containing the thiol compounds. The 

adsorption was followed by rinsing with ethanol and drying in a stream of 

nitrogen. In the case of monolayers with GSH, the immersing solution consisted of 

saturated solution of GSH and 100 μmol·L-1 dodecanethiol. For other mixed 

monolayers, the immersing solution consisted of 10 mmol·L-1 thiol modified 

purines or pyrimidines and 100 μmol·L-1 dodecanethiol. Pure monolayers of 

dodecanethiol, ASH, CSH, THS and USH, respectively, were prepared by 12 h 

incubation at room temperature in ethanol solution containing 100 μmol·L-1 of the 

corresponding compound. 
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8.1.2.1 Monolayer consisting of chiroselectors and alkanethiols  

Artificial binding sites for R-BNOH and S-BNOH were created on fresh cleaned 

gold surfaces. For the preparation of the artificial receptors by the spreader-bar 

technique, the electrodes were immersed into a solution of 

16-mercaptohexadecane and R- or S-conjugate in a 9:1 (v:v) mixture of ethanol and 

dioxane for 72 h at room temperature, then rinsed with ethanol, and dried under 

nitrogen [11]. Self-assembled monolayers of thioctic acid, R-conjugate, S-conjugate 

or 1-hexadecanethiol, were formed on the gold electrodes from a 1 mmol·L-1 

solution in ethanol (or in a 1:1 (v:v) mixture of ethanol and dioxane, in the case of 

R- or S-conjugates) for 12 h at room temperature, then rinsed with ethanol and 

dried under nitrogen. A statistical deviation of the initial capacitance of coated 

electrodes prepared in the same conditions was typically within 10%. 

8.1.2.1 Monolayer consisting of porphyrines or phthalocyanines and 

alkanethiols  

The monolayers were prepared at room temperature by immersing the fresh 

cleaned gold substrates for 72 h in an ethanolic solution containing C12 and 

TMPP. The TMPP concentration in the solution was varied between 15 μmol·L-1 

and 15 mmol·L-1 while the C12 concentration was kept constant at 1.5 μmol·L-1.  

For the formation of the nanostructured templates for the metal deposition the 

TMPP concentration was 1.5 mmol·L-1. 

The mixed monolayers of C16 and AlPC were prepared at room temperature by 

immersing the fresh cleaned gold substrates in an ethanolic solution of for 72 h. 

The concentration of AlPC in the solution was kept constant at 250 μmol·L-1 while 

that of C16 was varied, being either 25 μmol·L-1 (C16:AlPC =1:10) or 2.5 μmol·L-1 

(C16:AlPC =1:100). An increase of the Al-PC concentration above 250 μmol·L-1 was 

not possible because of the solubility limitation.  
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8.1.3 Electrodeposition of platinum  

Electrodeposition of platinum on spreader-bar coated electrodes was performed at 

constant potential of -25 mV vs. SCE from 2.5 mmol·L-1 of hexachloroplatinic acid 

in 50 mmol·L-1 KCl. The electrodeposition was carried out by AutoLab-PG-stat-12 

Electrochemical Workplace (EcoChemie, Utrecht, TheNetherlands). 

8.2 Analytical methods 

8.2.1 Contact angle measurements 

Contact angles were measures with a ERMA 20676 goniometer (Shinbunsha, 

Tokyo, Japan). It is important to have always the same volume of the droplet; 

therefore a syringe with high precision in the range of micro liters was used. The 

needle had a hypodermic flat end to form perfect round drops. When the drop 

was on the end of the needle the syringe was lowered until the drop has touched 

the surface. The needle is kept in the droplet (captive drop) and the contact angle 

was read immediately. When the drop was added the advancing contact angle 

(θadvancing), when the drop was withdrawn, the receding contact angle (θreceding) was 

measured. 

If the drop has fallen from the needle, the obtained contact angles were significant 

smaller than by the method described above. Mechanical vibrations may cause 

this difference. It was not possible to get sufficient reproducibility for this second 

method. All values presented in this work were obtained by measuring with the 

needle remaining in the droplet. 

Measurements of contact angles of non polar solvents like hexadecane were not 

taken into account. Because of the high wettability of the spreader-bar surfaces is 

was not possible to measure such small values precisely. 
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8.2.2 Electrochemical measurements 

8.2.2.1 Capacitance Measurements 

The electrode capacitance was measured by recording electrical current with a 

phase shift of 90° by means of a lock-in amplifier. In this work lock-in amplifiers 

from the type Stanford DSP 850 (Stanford Research, Sunnyvale, USA), Ithaco 

Dynatrac 391 A (DL Instruments, Ithaco, USA), PAR 121 (Princeton Applied 

Research Corp., Oak Ridge, USA) of Femto LIA-BV 150 (Femto Messtechnik, 

Berlin, Germany) was used.  

For the measurements of the receptive properties in a sensor array, a set of five 

gold electrodes covered with different spreader bar molecules were put into a 

glass cell containing 3.5 mL of 10 mmol·L-1 phosphate and 100 mmol·L-1 KCl 

adjusted to pH 7.4. A homemade Ag/AgCl electrode (area more than 50 mm²) was 

used as a reference electrode. Binding events were detected as changes in 

capacitive current. It was measured in two-electrode configuration by parallel 

registration of the 90° component of the electrode current by means of 5 parallel 

lock-in amplifiers (Femto, Germany) at 80 Hz. Internal current amplifiers of these 

lock-in amplifiers were used. The current amplifiers were modified to provide an 

application of DC potential to gold electrodes. During the measurements, this 

potential was +300 mV (gold electrodes vs. Ag/AgCl). The amplitude of the sine 

voltage on the electrodes was 20 mV; an internal oscillator of one of the lock-in 

amplifiers was used. The measurement system was controlled by LabView 

software. Signal changes presented in the figures, were recalculated as relative 

decrease of the capacitive current, i.e. �C = (ic0 – ic) / ic0, where ic0 is an initial value 

of the capacitive current, and ic is this capacitive current after addition of purines 

or pyrimidines. The analyte concentration was increased step by step up to 

440 μmol·L-1. All measurements were performed at 30°C. 

All capacitive measurements for dectection of the enantioselctive binding 

properties of spreader-bar systems were performed with the same setup. As 
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electrolyte a solution of 15 mmol·L-1 phosphate and 50 mmol·L-1 KCl with pH 7.3 

was used. The measurements were performed at room temperature. 

8.2.2.2 Impedance spectroscopy 

Impedance spectroscopy experiments were performed with the Frequency 

Response Analyzer 2 (PGSTAT12/FRA2, Eco Chemie, Utrecht, The Netherlands) 

in a three-electrode cell under quiescent conditions in the presence of 10 mmol·L-1  

ferricyanide in 50 mmol·L-1 KCl, pH 7.2 as supporting electrolyte. A gold electrode 

was used as a working electrode, a saturated calomel electrode as a reference 

electrode, and a platinum wire as an auxiliary electrode. The impedance spectra 

were recorded in the frequency range from 1 Hz to 100 kHz by using a sinusoidal 

excitation signal. The DC potential was 0.3 V. Excitation amplitude of 10 mV was 

used. 

8.2.2.3 Cyclic voltammetry 

Cyclic voltammetry was measured with AutoLab-PG-stat-12 Electrochemical 

Workplace (EcoChemie, Utrecht, The Netherlands) in a three electrode 

configuration with a gold electrode used as a working electrode, a saturated 

calomel electrode as reference electrode, and a platinum wire as auxiliary 

electrode. The scan rate was 100 mV·s-1. All measurements were carried out in a 

buffer solution of 10 mmol·L-1 phosphate, 100 mmol·L-1 KCl, 10 mmol·L-1 

ferricyanide, pH 7.2, or in the same buffer containing 10 mmol·L-1 

rutheniumhexammin instead of ferricyanide. Before measurement, the solution 

was degassed in vacuum, and during measurement, the solution was bubbled 

with argon. 

8.2.3 SPR measurements 

Surface plasmon resonance (SPR) experiments were carried-out with the 

BIOSUPLAR-2 SPR-spectrometer (Analytical μ-Systems, Germany) onto gold 

coated glass slides that had been coated via the above procedure. 
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All capacitive measurements were performed in 15 mmol·L-1 phosphate, 

50 mmol·L-1  KCl, pH 7.3 at room temperature. 

8.2.4 NEXFAS, XPS Studies 

Scanning electron microscopy (SEM) was done with a LEO SUPRA35 (Germany). 

The film characterization by XPS, NEXAFS spectroscopy was performed at room 

temperature and under UHV conditions (at base pressure better than 

1.5·10-9 mbar). The XPS and NEXAFS measurements were carried out at the HE-

SGM beamline of the synchrotron storage ring BESSY II in Berlin, Germany. The 

energy resolution was �0.40 eV. The XPS spectra were acquired in normal emission 

geometry with a VG CLAM 2 analyzer. As an X-ray source, synchrotron light was 

used; the photon energy was chosen between 350 and 650 eV. The energy scale 

was referenced to the Au 4f7/2 peak at a binding energy of 84.0 eV. The NEXAFS 

spectra were collected at the carbon K-edge in the partial electron yield mode with 

a retarding voltage of –150 V. Linear polarized synchrotron light with a 

polarization factor of �82% was used. The incidence angle of the light was varied to 

monitor the orientational order within the TMPP/C12 films. The raw NEXAFS 

spectra were normalized to the incident photon flux by division through a 

spectrum of a clean, freshly sputtered gold sample. The energy scale was 

referenced to the pronounced �π* resonance of highly oriented pyrolytic graphite 

(HOPG) at 285.38 eV. The spectromicroscopic characterization of the SAMs was 

performed at a microscopy branch (7.3.1.1) of the beamline 7.3.1 at the Advanced 

Light Source in Berkeley, USA, using an X-ray photoelectron emission microscope 

(X-PEEM), which operates in the total electron yield (TEY) acquisition mode and 

provides a spatial resolution of typically 50-100 nm for elemental contrast 

imaging. Other experimental details are described elsewhere [3 - 9]. 
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8.2.5 Other techniques  

All atomic force microscopy measurements were carried out at the Institute of 

Physical and Theoretical Chemistry at the University of Regensburg with an 

Autoprobe CP scanning probe microscope from Park Scientific Instruments 

(Sunnyvale, USA). The experimental setup is described in [10]. 

FTIR spectra and ellipsometric data were obtained at the Department of Physics 

and Measurement Technology at Linköping University in Sweden. A Bruker IFS 

66 system (Billerica, USA) was used to measure the FTIR spectra at grazing angle 

of 85° and a liquid-nitrogen-cooled MCT detector [11]. The experimental details 

for ellipsometry are depicted in [12]. 

Scanning electron microscopy was done at the Institute of Experimental and 

Applied Physics at University of Regensburg, with a Topcon SM-510 microscope 

(Tokyo, Japan). 

Optical microscopy was performed with a Leica DMRE microscope (Wetzlar, 

Germany). 

8.3 Chemicals 

All alkanethiols and AlPC were purchased from Sigma-Aldrich and used without 

further purification.  

(R)-(+)-1,1'-binaphthyl-2,2'-diol (R-BNOH), (S)-(-)-1,1'-binaphthyl-2,2'-diol (S-

BNOH), (R)-(+)-1,1'-binaphthyl-2,2'-diamine, (S)-(-)-1,1'-binaphthyl-2,2'-diamine, 

L-phenylalanine, D-phenylalanine and D,L-thioctic acid were purchased from 

Sigma. N,N'-dicyclohexyl-carbodiimide and N-hydroxysuccinimide were obtained 

from Aldrich.  
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Deionized water was additionally purified by passing it through a Millipore-Milli-

Q system, the final resistivity being at least 18 MOhm·cm-1. ‘Milli-Q’ (Millipore) 

water was used throughout.  

Conjugates were prepared by mixing of 0.4 mmol·L-1 DL-thioctic acid, 30 mmol·L-1 

of N,N'-dicyclohexyl carbodiimide, 30 mmol·L-1 of N-hydroxysuccinimide and 

0.2 mmol·L-1 S- or R-BNH in dioxane (all the concentrations are referred to the 

final solution) and stirred for 5 days at room temperature. Then the mixture was 

centrifuged to remove the precipitate. A formation of the conjugates was indicated 

by thin layer chromatography (chloroform/methanol/water : 65/25/10 (v/v/v)) 

as an extra spots, besides that of S- or R-BNH, which was positive to both 

ELLMANNS reagent and ninhydrin. 

TMPP was fabricated from a precursor, 5,10,15,20-Tetrakis-(4-sulfonatophenyl)-

porphyrin, which was purchased from Porhyrins Systems, a derivative of 

5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin. The sulfonato-groups of the 

latter compound were chemically reduced to thiol-groups by triphenylphosphine 

and iodine [13]; XPS detected two thiol groups pro resulting TMPP molecule. 

Adenine, cytosine, guanine, thymine, uric acid, ATP were purchased from 

Aldrich. Caffeine was obtained from Avocado and uracil from Fluka. All 

chemicals were used as received. The alkanethiols and spreader bar compounds 

were dissolved in absolute ethanol (Baker) for preparing the SAM on the 

electrodes.  

All other chemicals were from Merck or Aldrich with quality of analytical grade.  
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9. Appendix 

9.1 Fundamental physical constants 

c Speed of light in vacuum 299792458 m·s-1 

e Elementary charge 1.60217733·10-19 C 

F Faraday constant 96485.309 C·mol-1 

h Planck constant 6.6260755·10-34 J·s 

R Molar gas constant 8.314510 J·mol-1·K-1  

 

Non-SI units: 

eV Electron volt 1.60217733·10-19 J 

9.2 Symbols 

α Phase angle 

γ Angle between X-ray beam and electron beam 

γ Surface free energy 

Δ Ellipsometric angle 

θ Contact angle 

θc Critical angle 

θi Angle of incidence 

λ Mean free path length 

μ Reduced mass 
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ν Frequency 

υ Vibration quantum number 

Ξ Molar fraction 

௑ߪ
௘ Cross section for electron e of atom X 

σ Warburg impedance 

φ Phase angle 

Ψ Ellipsometric angle 

ω Angular frequency 

A Area 

B Instrumental constant 

C Capacitance 

c Concentration 

D Diffusion coefficient 

E Energy 

E Potential 

f Frequency 

G Admittance 

I Current 

I  Intensity 

i Current 

k Spring constant 

L Angular asymmetry factor 

L Inductance 

N Atomic density 

n Refractive index 

R Resistance 
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R Reflectance 

t Time 

W Work 

x Molar fraction 

Z Impedance 

9.3 Abbreviations 

AC Alternating current 

AFM Atomic force microscopy 

Al-PC Aluminum 2,3-naphthophthalocyanine chloride 

ASH 6-Mercaptopurine 

ATP Adenosine triphosphate 

ATR Attenuated total reflection 

BNOH 1,1-Binaphthyl-2,2-diol 

BNTA 1,1’-Binaphthyl-2,2’-diamin conjugated to DL-6,8-thioctic acid 

BSE Back-scattered electrons 

C4 1-Butanethiol 

C6 1-Hexanethiol 

C8 1-Octanethiol 

C12 1-Dodecanethiol 

C14 1-Tetradecanethiol 

C16 1-Hexadecanethiol 

C18 1-Octadecanethiol 

CPE Constant phase element 

CSH 4-Amino-2-mercapto-pyrimidine 
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CVD Chemical vapor deposition 

DC Direct current 

EIS Electrochemical impedance spectroscopy  

ESCA Electron spectroscopy for chemical analysis 

FTIR Fourier transform infrared  

GSH 2-Amino-6-purinethiol 

IR Infrared 

LB-Film Langmuir-Blodgett-Film 

MBE Molecular beam epitaxy 

MP 6-Mercaptopurine 

μ-CP Microcontact printing 

NEXAFS Edge X-ray absorption fine structure 

OTS Octadecyltrichlorsilane 

Phe Phenylalanine 

PVD Physical vapor deposition 

QCM Quartz crystal microbalance 

SA Self assembly  

SAM Self assembled monolayer 

SCE Saturated calomel electrode 

SE Secondary electrons 

SEM Scanning electron microscope 

SI International Systems of Units 

SPR Surface plasmon resonance 

STM Scanning tunneling microscopy 

TBA 2-Thiobarbituric acid 

TCA Thiocyanuric acic 

TE Transverse electric  
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TM Transverse magnetic 

TMPP 5,10,15,20-Tetrakis(4-sulfonatophenyl)-porphyrin  partially thiol 

modified 

TPD Temperature programmed desorption 

TSH 4-Hydroxy-5-methyl-2-mercaptopyrimidine 

TUA Thiouric acid 

UHV Ultra high vacuum 

UPS Ultraviolet photoelectron spectroscopy 

USH 4-Hydroxy-2-mercaptopyrimidin 

XAM X-ray absorption spectromicroscopy 

XPS X-ray photoelectron spectroscopy
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