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Abstract 

In reconstructive and plastic surgery, there exists an overwhelming demand for adipose tissue 

surrogates to replace fat tissue following tumor resections, complex trauma and congenital 

abnormalities as well as to augment tissues for cosmetic purposes. However, the optimal 

approach to adipose tissue replacement and reconstruction still remains elusive after decades 

of research. The fast growing field of tissue engineering may provide alternative strategies 

that improve upon the conventional surgical options. In this review, we highlight recent 

approaches based on tissue engineering techniques including de novo genesis of adipose 

tissue and cell-based therapies. A brief overview of basic processes involved in the 

differentiation of adipocytes and in the development of adipose tissue is followed by a 

summary of the applicable tissue engineering strategies, cell sources, and materials. 
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Introduction 

A plethora of research approaches have been applied the engineering of bone, cartilage, liver, 

skin, and other tissues since the beginning of the 1990s. Soft tissue engineering, however, still 

remains a neglected discipline although there is an outstanding and continuously increasing 

demand for adipose tissue surrogates. The American Society of Plastic Surgeons (ASPS) 

reported that more than 68,000 breast reconstructions were performed and more than 39,000 

burn cases were treated in the U.S. in 2003 [1]. In general, adipose tissue substitutes are 

required in reconstructive and plastic surgery, for instance, for tissue reconstruction following 

a mastectomy and other tumor resections, posttraumatic defect reconstruction (especially 

burns), treatment of congenital abnormalities and augmentation of breast, cheek and chin as 

well as facial rejuvenation in regard to wrinkles (reviewed in [2,3]).   

Beyond interest in the field of surgery, adipose tissue is also intrinsic to the basic science 

study of several diseases, such as hypertension, dyslipidemias, cardiovascular problems, type 

2 diabetes mellitus, and obesity [4]. Traditionally, fat tissue has been viewed as filling and a 

cushion material and as the “oil can” of the body, that is, as storage center for triacylglycerols 

[5]. More recently, however, adipose tissue has been recognized as an important secretory and 

endocrine organ [6-8]. Adipocytes secrete factors such as leptin, angiotensinogen, tumor 

necrosis factor α (TNFα), interleukin-6, adipsin, and adiponectin [9]. In this capacity, fat is 

involved in the regulation of energy balance, insulin sensitivity, immunological responses, 

and vascular diseases [10].  

In the following chapters, current surgical techniques in fat reconstruction will be presented 

first, followed by a brief overview of the characteristics of adipose tissue and insights into 

adipogenic differentiation processes. Thereafter, tissue engineering will be introduced as an 

alternative to surgical techniques. Then recently published approaches towards adipose tissue 

engineering, including de novo adipogenesis and cell-based strategies, will be summarized 

and discussed. Herein, the three major components of tissue engineering, cells, cell carriers, 

and growth factors, will be described in detail. The important role of neovascularization is 

discussed in the following section. Subsequently, the role of engineered adipose tissue 

constructs in basic research will be illustrated and, finally, the authors provide a perspective 

on adipose tissue engineering, including an estimation of the current state of the art and of the 

critical issues to be investigated or optimized in the future. 
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Surgical techniques for the substitution of adipose tissue 

In plastic and reconstructive surgery, fat grafts are utilized as filling material for the 

reconstruction of soft tissue defects [11-13]. A source of excess adipose tissue is available 

from almost every individual, that is, donor tissue availability is not the limiting factor. For 

these reasons, autologous fat grafts would appear to be optimal for the restoration of soft 

tissue volume and contour defects by the “replacement of like with like” [2,14]. However, 

autologous adipose tissue remains minimally effective due to insufficient neovascularization. 

In the long term, this leads to necrosis and apoptosis in free fat grafts and resultant tissue 

resorption over time [15]. The unpredictable shrinkage of the fat graft requires repeated 

surgery and a hardly calculable hypercorrection, respectively. In some cases, autografting 

causes donor site morbidity, accompanied by scar formation [2,14,16].  

Another standard approach involves the injection of single cell suspensions of mature 

adipocytes following various aspiration techniques. Again, this method does not appear 

suitable, because exposure of the fragile adipocytes to the mechanical forces during 

liposuction traumatizes about 90% of the adipocytes [3,16]. 

Alternative approaches to soft tissue replacement traditionally include alloplastic and 

allogeneic products, such as Teflon, silicon implants and bovine collagen. More recent 

options utilize autologous injectable collagen as dermal allograft scaffolds [3,14]. Each of 

these methods is accompanied by certain drawbacks, including foreign body reactions, 

allergic reactions, infection transmission, and ultimately, a failure to integrate into the 

recipient site and tendencies towards migration [14].  

Thus, although numerous techniques and materials have been developed and have undergone 

practical tests, an optimum strategy for the regeneration and replacement of adipose tissue 

still remains elusive. For this reason, tissue engineering may represent a promising alternative 

to replace and regenerate fat. 
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What are the characteristics of adipose tissue?  

In order to generate adipose tissue by means of tissue engineering, one should be aware of the 

composition of this type of tissue. Fat is composed of blood cells, endothelial cells, pericytes, 

fibroblasts, adipose precursor cells, and adipocytes [17]. The latter constitute about one third 

to two thirds of the total cell number within native adipose tissue [17]. Fat is subdivided into 

brown adipose tissue (BAT) and white adipose tissue (WAT). Brown fat cells are 

morphologically and functionally distinct from white adipocytes. BAT functions primarily to 

dissipate energy in the form of heat [18]. Phenotypically, brown fat cells are rich in 

mitochondria and accumulate lipids in multiple small droplets [19].  

 
Fig. 1 Mature adipose tissue dissected from the upper part of the femur of rats were stained 
with H&E and OsO4. Dissolution of lipid inclusions with organic solvents during dehydration 
in the paraffin embedding procedure led to blank spaces within the cells. In the H&E stain, 
cell nuclei were stained violet. OsO4 crosslinked intracellular lipids which then appear black.      
 
The tissue commonly recognized as “the fat” and the distinctly larger proportion of the body 

fat consists of WAT. Mature adipocytes of WAT occur as cells with one large lipid droplet 

and very little cytoplasm with the nucleus located at edge of the cell [20]. This morphology is 

described as the signet ring form and the cell may be termed a univacuolar adipocyte. 

Typically, mature adipose tissue consists of adipocytes with a hexagonal shape; each 

adipocyte is in direct contact with neighboring cells with capillaries interspersed throughout 

(Fig. 1). During adipogenesis, the differentiation of precursor cells into adipocytes, or in times 

native adipose tissue
(H&E staining)

native adipose tissue
(OsO4 staining)

native adipose tissue
(H&E staining)

native adipose tissue
(OsO4 staining)
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of energy expenditure, adipocytes adopt a multivacuolar phenotype containing several 

discrete lipid droplets (Fig. 2).  

Fat is distributed throughout the body and its large depots are located in epididymal, 

parametrial and perirenal regions [21]. Adipose tissue from different sites of the body undergo 

a physiological specialization with regard to lipid composition, responses to diet, lipolytic 

activity, and the secretion of various factors [21].  

 As a metabolically active and secretory tissue, adipose tissue is highly vascularized [11,22]. 

The neogenesis of adipose tissue in the embryonic stage is closely associated with the 

development of a vascular network [17]. Postnatal fat growth still occurs, either by 

hypertrophy of established adipocytes, i.e. the increase of the adipocyte size, or by 

hyperplasia, i.e. the increase of the number of adipocytes [23]. Reduction in fat mass is 

associated with a decrease in fat cell size; whether or not the reversion of mature adipocytes 

to immature phenotypes plays a role in this respect is still unclear [23]. 

Adipogenesis – the differentiation of precursor cells into 
adipocytes 

The exact origin of the adipocyte is still poorly understood. Likely, the earliest stage in 

adipocyte differentiation are pluripotent stem cells which give rise to mesenchymal precursor 

cells (reviewed in [24]) (Fig. 2). These multipotent precursor cells have the capacity to 

undergo differentiation at least towards the chondrogenic, osteogenic, and adipogenic 

lineages. Commitment of precursor cells to the adipogenic lineage leads to preadipocytes, 

which terminally differentiate into mature adipocyte upon environmental stimulation. Most of 

the knowledge of the molecular mechanisms of adipogenesis in vitro has been obtained in 

studies with preadipocytic cell lines such as 3T3-L1, 3T3-F442A, and Ob1771 [25]. In 

summary, more than 300 proteins are supposed to be involved in the structural and functional 

morphogenesis during adipocyte differentiation [9]. Some of the most prominent factors 

belong to different families of transcription factors, which will be briefly introduced in the 

next section.  

Transcription factors. Peroxisome proliferator-activated receptors (PPARs) are members of 

the superfamily of nuclear hormone receptors (reviewed in [26]). Three known members of 

the PPAR family exist: PPARα, PPARδ, and PPARγ, and two isoforms of PPARγ are known: 

PPARγ1 and PPARγ2. The latter is abundantly and specifically expressed in adipocytes. 

PPARγ and its obligate heterodimeric partner, retinoid X receptor α (RXRα), are key 

regulators of adipocytic gene expression in lipid metabolism. The ectopic expression of 
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PPARγ under adipogenic conditions in multpile non-progenitor cell lines results in adipocyte 

differentiation [27]. 

 

Fig.2 Differentiation of adipocytes. Fat cells are commonly thought to derive from stem cells. 
The pictures show rat mesenchymal stem cells (MSCs) in the undifferentiated state (day 0), in 
an immature state seven days after induction with a hormonal cocktail (as described in 
Chapter 3 and 4), and four weeks after induction exhibiting an advanced maturation. Some of 
the adipocytes shown are fully differentiated, containing one large lipid droplet per cell. Lipid 
inclusions were stained red using the lipophilic dye Oil Red O. 
 

The CCAAT/enhancer-binding proteins (C/EBPs) belong to the family of leucine zipper 

transcription factors with three important members: C/EBPα, C/EBPβ, and C/EBPδ 

(reviewed in [28,29]). C/EBPs can form homodimers and heterodimers with each other. Their 

distribution is not limited to adipose tissue. However, they play a crucial role in adipogenesis; 

the ectopic expression of C/EBPα and C/EBPβ provokes adipogenesis in fibroblasts [30,31]. 

Sterol regulatory element binding proteins (SREBPs) represent another group of transcription 

factors known to modulate gene transcription for proteins involved in lipid metabolism 

(reviewed in [32]). Again, this family has three important members: SREBP-1a, SREBP-1c, 

and SREBP-2. In adipose tissue, SREBP-1c is mainly expressed. All three members activate 

similar gene expression, however, with different efficiencies. Fatty acid biosynthesis is 

mainly driven by SREBP-1a and SREBP-1c; cholesterol metabolism is affected by SREBP-2.   

The important role of SREBP1 is suggested by the fact that adipogenic differentiation of 

fibroblasts is enhanced by overepressing SREBP-1 after viral transfection [33].  
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Transcriptional cascade. In the course of time, linear and parallel transcriptional cascades 

emerge, mediating adipocyte differentiation; the gene expression of several mediators are 

downregulated or upregulated (reviewed in[34]). After reaching confluency, preadipocytes 

express the lipoprotein lipase (LPL) via an unknown mechanism [35]. In addition, initial 

events include the repression or inactivation of inhibitory proteins expressed by 

undifferentiated preadipocytes. A prominent example of an inhibitory protein represents 

preadipocyte factor 1 (Pref-1) [36]. Immediately after the exposure of preadipocytes to 

inducing agents, the transient expression of C/EBPβ and C/EBPδ is activated, which (in turn) 

mediates the expression of C/EBPα and PPARγ [37,38]. Thereafter, C/EBPα and PPARγ 

each stimulate the expression of the other in a positive feedback loop [39]. At this stage, 

multiple genes characterizing the adipogenic phenotype are de novo or increasingly expressed 

in cells displaying massive lipid accumulation [19]. The products of these genes include 

glycerophosphate dehydrogenase (GPDH), fatty acid synthase (FAS), glucose transporter 4 

(Glut 4), the insulin receptor, the adipocyte-specific fatty acid binding protein (aP2), and 

many more. SREBP-1c is upregulated early and can synergize with the PPAR-C/EBP 

pathway by inducing gene expression of PPARγ [40] and production of endogenous PPARγ 

ligand [41]. 

Adipogenic inducers. A wide variety of low-molecular weight drugs and hormones are 

commonly used to induce the adipogenesis of preadipocytes and stem cells. Insulin in 

pharmacological doses has been shown to increase the number of differentiated adipocytes 

and the amount of accumulated lipids, likely by cross-activation of the insulin-like growth 

factor (IGF) receptor [19]. Glucocorticoids, usually administered in the form of 

dexamethasone, bind to the nuclear hormone glucocorticoid receptor (GR), whereas the 

transcriptional targets remain unclear [19]. Ensured mechanisms of glucocorticoid action are 

the induction of C/EBPδ [38] and the reduction of pref-1 expression [42]. High intracellular 

cAMP levels, caused by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine 

(IBMX), strongly exert adipogenesis by a not completely understood mechanism. IBMX has 

been shown to produce an increase in C/EBPβ [43] and a reduced suppression of the C/EBPα 

promoter by decreasing levels of the Sp1 transcription factor [44]. Thiazolidinediones, certain 

prostaglandines, and indomethacin have been proven to strongly induce adipogenesis as 

ligands of PPARγ [45,46]. Furthermore, growth hormone (GH), thyroid hormone, retinoic 

acid, and other hormones have been described to affect adipocyte differentiation [19]. The 

most preferred and robust induction regimen in basic research consists of a glucocorticoid, 

IBMX, and insulin (sometimes combined with indomethacin). 
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This part of the review does not claim comprehensiveness. A plethora of additional molecules 

is involved in the complex process of adipogenesis, which is excellently described in detail in 

other reviews [5,9,47-55]. 

Tissue Engineering as alternative to surgical techniques 

In general, four major strategies have been adopted for the generation of artificial tissues: (1) 

the use of isolated cells or cell substitutes, (2) the implantation of matrices, (3) the use of cells 

placed on or within matrices, and (4) the administration of tissue-inducing substances [56,57]. 

Recently, promising new therapy strategies based on tissue engineering techniques have been 

developed to generate fat surrogates. On the one hand, cell-based therapy approaches 

emerged, and on the other hand, tissue-inducing substances were administered in order to 

induce de novo adipogenesis. 

Cell-based strategies 

Cell-based adipose tissue engineering approaches aim at the generation of cell-scaffold 

constructs that result in mature fat tissue in vitro and in vivo, respectively. The basic strategy 

of these approaches is quite similar (Fig. 3): (a) cells are isolated from the desired donor site 

of a species, (b) undifferentiated cells are propagated ex vivo until the required cell number is 

obtained, (c) cells are seeded onto and/or into a cell carrier, and (d) subsequently cultivated 

and differentiated in vitro or implanted. Most of these approaches are based on the three 

critical components in tissue engineering: cells, scaffolds, and growth factors [58]. In the 

following parts, the use of these critical components in publications concerning adipose tissue 

engineering will be elucidated in detail and potential alternatives will be discussed. Table 1 

summarizes the cell types that have been used as well as the growth factors and inducing 

regimens applied in adipose tissue engineering approaches. 

Cells and growth factors 

In tissue engineering in general, potential cell sources include autologous cells from the 

patient, allogeneic cells from a human donor, and xenogeneic cells from a different species 

[56]. Autologous cells seem to be most preferable due to the exclusion of immune rejections 

and legal problems [59]. However, there are a couple of issues to be considered: First, a 

relevant cell type has to be identified that is applicable for the specific purpose [60]. Second, a 

process of cell isolation has to be existent providing facile isolation of an appropriate cell 

number combined with a low degree of donor-site morbidity [61]. Third, cells must allow for 
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ex vivo culture and have a capacity for extensive expansion in order to obtain an appropriate 

cell number to replace a specific defect [61].  

 
Fig. 3 Strategies of cell-based adipose tissue engineering approaches. Cells are isolated from 
the body, expanded ex vivo and seeded onto cell carriers by various methods. Cell-polymer 
constructs can be cultivated in vitro and subsequently implanted or can be directly implanted. 
 

Cell types and the influence of growth factors on proliferation and differentiation. Potential 

candidates for the cellular component in adipose tissue engineering can be found among cells 

of the adipogenic differentiation lineage [62]. Stages in adipocyte differentiation include 

pluripotent or totipotent stem cells, mesenchymal precursor cells, preadipocytes, immature, 

and finally mature adipocytes (Fig. 2) [24]. To date, mature adipocytes, preadipocytes, 

preadipocytic cell lines, and mesenchymal stem cells have been used as cell sources in 

adipose tissue engineering approaches (Table 1) [63-78]. 

Mature adipocytes have certain drawbacks for the use in tissue engineering in regard to their 

fragility [3], their buoyancy rendering ex vivo cell culture more difficult [3], and their 

extremely low proliferation potential [79]. Yuksel et al. implanted diced, mature adipose 

tissue mixed with PLGA/PEG microspheres containing IGF-1, insulin, and basic fibroblast 

growth factor (bFGF). The added growth factors resulted in an increase in fat graft survival 

[80]. In another approach, mature adipocytes were placed in a collagen gel to develop a skin 
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model. The aim was to investigate the influence of adipocytes on the behavior of co-cultured 

keratinocytes and dermal fibroblasts [72]. 

Preadipocytes can be isolated from many fat depots within the body by minimally invasive 

liposuction or by enzymatic digestion of adipose tissue [3]. A potential up-scaling technique 

for cell washing and dissociation of liposuctioned tissue has already been presented [14]. A 

shortage of autologous donor tissue is, in the case of adipose tissue, very unlikely in most 

individuals. Preadipocytes are described to possess the capacity for expansion. Innumerable 

publications exist identifying extracellular and intracellular signals that modulate 

preadipocyte growth and differentiation. It is impossible to give a comprehensive overview, 

but a selection of important and widely used growth factors, hormones, and drugs is presented 

here. A wide variety of growth factors such as IGF-1, IGF-2, platelet-derived growth factor 

(PDGF), transforming growth factor β1 (TGFβ1), acidic fibroblast growth factor (aFGF), and 

basic fibroblast growth factor (bFGF) have been found to provoke stimulatory effects on 

preadipocyte proliferation [81,82]. Principally, differentiation of preadipocytes can be 

induced by the supplementation of hormones and substrates to the growth medium. 

Glucocorticoids (corticosterone, cortisol, dexamethason, hydrocortisone), phosphodiesterase 

inhibitors (3-isobutyl-1-methylxanthin (IBMX), forskolin), peroxisome proliferator-activated 

receptor γ (PPARγ) ligands (thiazolidinediones, 15-Deoxy-Delta(12,14), prostaglandin J2), 

indomethacin, fibrates (clofibrate, bezafibrate, fenofibrate), insulin, and triiodothyronine have 

been used to induce adipogenesis of preadipocytes [83-88]. Again, growth factors have been 

found to modulate preadipocyte differentiation. Basic FGF, EGF, PDGF, TGFβ, and TNFα 

have been reported to diminish or suppress adipogenesis of preadipocytes [89-92]; in contrast, 

IGF-1 enhances adipogenic conversion [93].  

Several issues have to be considered in regard to aforementioned data. Most data were 

assessed by the use of preadipocytes from various species from different sites or by the use of 

preadipocytic cell lines. Preadipocytes from different species may respond to signals 

differently, that is, it is difficult to transfer information from species to species. For instance, 

rat adipocyte precursor cells undergo differentiation after exposure to insulin, transferrin, and 

triiodothyronine, whereas rabbit preadipocytes do not respond to these inducers [83]. The use 

of preadipocytic cell lines such as 3T3-L1 or 3T3-F442A reveals at least two drawbacks. 

Their aneuploid status may influence their propensity to undergo adipogenesis. Furthermore, 

the use of cell lines does not allow for the assessment of depot-specific differences in cell 

behavior [19]. It has repeatedly been shown that variations in the number, growth and 

differentiation of preadipocytes derived from different sites of the body exist [21,85,94-97].   
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As yet, preadipocytes from different sites (epididymal, mammary, subcutaneous, omentum) 

isolated from humans, rats, and sheep have been used for adipose tissue engineering (Table 

1). These studies were conducted in order to test of new materials and optimize cell carriers 

and culture conditions for preadipocyte-based tissue engineering, on the one hand 

[65,69,70,76,77], and the generation of adipose tissue in vitro or in vivo providing a quality 

comparable to native fat, on the other hand [63,64,66-68,71,73,75,78]. The growth factors 

bFGF and EGF were administered to stimulate preadipocyte proliferation [65,66,69,71,77]. 

The compositions of inducing regimens range from a widely used hormonal cocktail 

(glucocorticoid, IBMX, insulin ± indomethacin) to thiazolidinediones and triiodothyronine-

containing mixtures. 

 

Cell Type Donor Site Species Adipogenic 
Inducers 

Growth 
Factor 

Model Ref. 

MSC bone marrow rat D, IBMX, IM, I bFGF in vitro Ch.7 

PA epididymal rat - - in vitro / in vivo [63] 

PA epididymal rat - - in vivo [67] 

PA epididymal rat I, T3 - in vivo [64] 

PA subcutaneous human - EGF in vivo [65] 

PA subcutaneous human D, I bFGF in vitro / in vivo [77] 

PA subcutaneous human D, I bFGF in vivo [69] 

PA mammary human C, Tro - in vitro [68] 

PA n.d. human HC, IBMX, I - in vitro [76] 

PA mammary human HC, I, T3, CT - in vitro [75] 

PA mammary human D, I, T3 bFGF in vivo [71] 

PA omentum sheep - FGF in vivo [66] 

3T3-L1 - mouse CS, IBMX, IM, I - in vitro [70] 

3T3-L1 - mouse CS, IBMX, IM, I - in vitro / in vivo [78] 

3T3-F442A - mouse - - in vivo [73] 

Adipocyte abdominal rat - - in vitro [72] 

Adipocyte inguinal rat - 
IGF-1, I, 

bFGF 
in vivo [80] 

 
Table 1 Cell types and sources, inducing regimens, and growth factors used in cell-based 
adipose tissue engineering approaches. All cell types are primary cells except of 3T3-L1 and 
3T3-F442A which are preadipocytic cell lines (Abbreviations: C: Cortisol, CS: 
corticosterone, CT: cholera toxin, D: dexamethasone, HC: hydrocortisone, I: insulin, IBMX: 
3-isobutyl-1-methylxanthine, IM: indomethacin, MSC: mesenchymal stem cell; PA: 
preadipocyte, T3: triiodothyronine, Tro: troglitazone). 
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Stem cells represent another potential cell source for adipose tissue engineering. The National 

Institutes of Health suggests a definition of stem cell: “A stem cell is a cell from the embryo, 

fetus, or adult that has, under certain conditions, the ability to reproduce itself for long periods 

or, in the case of adult stem cells, throughout the life of the organism. It also can give rise to 

specialized cells that make up the tissues and organs of the body.”[98]. Examples of such 

stem cells include the totipotent zygote, embryonic stem cells (ESs), hematopoietic stem cells 

(HSCs) and mesenchymal stem cells (MSCs) and further stem cells derived from distinct 

adult somatic tissues [99]. A wide variety of somatic stem cells were discovered in and 

isolated from adult tissues, for instance, from bone marrow [100-102], brain [103], muscle 

[104], fat [105], blood [106], liver [107], and skin [108]. This review is restricted to stem cells 

isolated from bone marrow, where stem cells are prevalent in adults, and to stem cells isolated 

from adipose tissue, where stem cells can be easily isolated. 

Mesenchymal stem cells - the definition of an MSC still remains a challenge due to the fact 

that neither the origin of MSCs is clearly evidenced nor are specific phenotype markers 

known to select MSCs from the heterogeneous population derived from bone marrow [109]. 

For these reasons, the nomenclature is not definite and thus, various synonyms like bone 

marrow stromal (stem) cells, bone marrow progenitor cells, multipotent adult progenitor cells, 

bone marrow stromal fibroblasts, bone marrow mesenchymal progenitor cells and many more 

are commonly used. Bone marrow-derived MSCs show adherent, clonogenic, non-

phagocyctic and fibroblastic habits and possess the capability of multipotent differentiation. 

These cells were originally called fibroblastic colony-forming cells or colony-forming units-

fibroblastic (CFU-F) [110,111]. Apart from that, MSCs can be defined, as well as other stem 

cells, as cells with a high capacity of self-renewal and a potential to differentiate into a variety 

of cell types [112].  

Bone marrow samples can easily be obtained following a simple bone marrow aspiration 

[112]. Bone marrow is composed of at least three cellular systems: hematopoietic, endothelial 

and stromal. In adult bone marrow, macrophages, adipocytes, osteogenic cells, hematopoietic 

cells, cells originating from blood vessels and “reticular” cells coexist and partially cooperate 

[113]. The simplest way to isolate MSCs is through their adherence to plastic without further 

purification and was reported as early as 1974 by Friedenstein et al [114]. In order to isolate 

the “pure” MSC, bone marrow can be preliminarily purified by gradient centrifugation 

techniques to remove cells with different densities like hematopoietic cells. Subsequently, 

cells can be sorted by fluorescence-activated cell sorting (FACS) or magnetic cell sorting 

(MACS) via detection of positively or negatively expressed surface antigens using 
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fluorescence-labeled and magnetic-labeled antibodies, respectively. The most abundantly 

used negative antigens are the hematopoietic markers CD34 and CD45 for this purpose, 

whereas MSCs have been reported to be positive for Stro-1, CD29, CD44, CD90, CD105, 

CD106 and many more [102,112,113]. Stro-1 is supposed to represent the nearest 

approximation to identify the “pure” MSC, though a few hematopoietic cells weakly express 

Stro-1 [109,115]. Apart from that, subpopulations can also be separated by FACS utilizing the 

size and granularity of the cells as criteria [116]. However, as yet, no definite marker has been 

found to identify and isolate the “pure” MSC.  

Adipose-tissue derived stem cells, also called processed lipoaspirate cells (PLA cells), are 

isolated by collagenase digestion following liposuction [117,118]. Most of the surface 

proteins expressed by MSCs have been demonstrated to also be expressed by PLA cells, with 

the exception of Stro-1 [117].  

MSCs possess a high expansion potential, that is, ex vivo expansion is possible over 15 

passages and about 40 population doublings resulting in a billion-fold expansion [119]. 

Stimulation of the proliferation of MSCs, their life span and the retention of the differentiation 

potential during the expansion has been shown to be strongly influenced by growth factors. 

Different laboratories have proved the expression of growth factor receptors (bFGF-R, EGF-

R, PDGF-R, TGFβ1+2-R) on the surface of MSCs [102,120]. Basically, the minimum 

conditions for the initial growth of MSCs under serum-free conditions requires participation 

of at least four growth factors: PDGF, bFGF, TGF-β and EGF [121]. bFGF has repeatedly 

been reported to strongly stimulate the proliferation of MSCs [122-127]. Furthermore, EGF, 

IGF-1, and PDGF-BB increase the growth of MSCs [128-131], whereas TGFβ1 is 

controversially discussed [131,132]. The retention of the differentiation potential of cells after 

extensive expansion is another capacity of bFGF.[125,133]  

The expansion of PLA cells has been demonstrated over 15 passages including more than 20 

population doublings [118]. 

Aging of MSCs is associated with a decrease in the maximal life span and accelerated 

senescence of MSC [134]. An extension of the life span of MSCs can be achieved by 

supplementation of growth factors such as bFGF [125,133]. The origin of senescence is 

attributed to the lack of telomerase activity in MSCs [135]. Telomerase-transduced cells 

exhibit reduced senescence, extended life span and additionally, retention of the 

differentiation potential [136,137].  

PLA cells exhibited only weak senescence, virtually undetectable after one passage and, after 

15 passages, less than 15% of cells exhibited the senescence marker β-galactosidase [118]. 
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In regard to the differentiation potential, Owen proposed a system of marrow stromal stem 

cells in 1988 and found CFU-F to give rise to at least fibroblastic, reticular, adipocytic and 

osteogenic lineages [101]. Recently, MSCs were shown to differentiate into a wide variety of 

mesenchymal tissues like those mentioned above and, additionally, into cartilage, muscle, 

tendon, and marrow stroma [138]. Until recently, ESs and adult stem cells were strictly 

distinguished because ESs have been shown to be pluripotent and adult stem cells are 

supposed to be multipotent. Pluripotent stem cells have the ability to give rise to types of cells 

that develop from any of the three germ layers (mesoderm, endoderm, and ectoderm) from 

which all the cells of the body arise [98]. Cells capable of differentiating into lineages of one 

germ layer are called multipotent. Adult stem cells were supposed to be multipotent, but 

recent results indicate a pluripotency [109,139,140]. Adult stem cells derived from different 

adult tissues were shown to transdifferentiate into lineages of germ layers unrelated to their 

origin, a phenomenon called plasticity [98]. MSCs gave rise to cells outside the limb-bud 

mesoderm, including endothelium, neuroectoderm and endoderm [141].  

PLA cells also have the capacity of multipotent differentiation towards the adipogenic, 

chondrogenic, myogenic, and osteogenic lineages [118].  

Adipogenic differentiation is commonly induced by exposure of MSCs and PLA cells to a 

hormonal cocktail consisting of dexamethasone, IBMX, indomethacin, and insulin in various 

combinations and concentrations [102,118,142-144] or to thiazolidinediones [145-147] as 

single inducers or in combination with the hormonal cocktail or parts of it (Chapter 3,4).  

As explained for preadipocytes, donor diversity and age-related diversity of PLA cells and 

MSCs exist as shown in [147,148]. 

MSCs derived from rats have been used in our laboratory. Seeding and cultivation of MSCs 

onto PLGA scaffolds over four weeks leads to generation of cell-polymer constructs 

exhibiting characteristics of adipose tissue. Partially unilocular adipocytes embedded in 

structures considered to be extracellular matrix yielded a high adipocytic enzyme activity and 

clear gene expression of GLUT4 and PPARγ2. 

Pluripotent embryonic stem cells (ESs) have to be mentioned at this point as a future 

possibility. Among stem cells, the fertilized oocyte and blastomeres of 2-, 4- and 8-cell-stage 

embryos are totipotent, whereas cells of the inner cell mass of blastocysts, embryonic 

ectoderm and primordial germ cells are only pluripotent [149], because they do not form 

placenta [150]. Murine embryonic stem cell lines were established in the early 1980s [151], 

human ESs later in 1998.[152] ESs and embryonal germ cells have been isolated from the 

inner cell mass of blastocysts and from primordial germ cells, respectively. Mouse ESs can be 
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virtually infinitely propagated in the presence of leukaemia inhibitory factor (LIF), whereby 

human ESs require culture on mouse embryonic feeder (MEF) cell layers with basic fibroblast 

growth factor (bFGF) and Matrigel or on laminin in MEF-conditioned medium [153]. 

Differentiation experiments were performed towards a wide variety of cell types of all three 

primary germ layers like skeletal muscle cells, vascular smooth muscle cells, cardiomyocytes, 

neural cells, and adipocytes [154]. Growth factors and especially retinoic acid were found to 

play crucial roles in the differentiation processes of ESs [154,155]. ESs have been shown to 

give rise to adipocytes following the administration of retinoic acid for a precise period of 

time [156,157]. Due to their virtually unlimited proliferation and differentiation potential, ESs 

seem to be the most attractive candidate for the tissue engineering applications. However, 

ethical concerns will restrict the use of these cells in the field of tissue engineering and 

transplantation for the time being [158]. 

Scaffolds 

In principle, the scaffold material is supposed to provide a template for the three-dimensional 

shape of the desired tissue and to provide initial, transient stability [60]. The newly developed 

tissue, that is, the cells and secreted extracellular matrix, is responsible for the long-term 

maintenance. In this context, the scaffold should be recognized as an artifical extracellular 

matrix allowing for cell attachment, migration, proliferation, differentiation, and maintenance 

of a mature tissue [159]. Furthermore, the optimum scaffold material matches the properties 

of the tissue at the implantation site [160]. In general, there are several requirements in the 

design and fabrication of scaffolds for tissue engineering [159-162]:  

1. biocompatibility of the bulk and the degradation products 

2. appropriate mechanical properties for the new tissue and the surrounding tissue 

3. high surface area for specific and numerous cell interactions 

4. high porosity to allow cellular and capillary ingrowth and nutrient supply 

5. high interconnectivity of the pores to provide a uniform cell distribution and sufficient 

supply of cells located at inner parts of the scaffolds with oxygen and nutrients 

6. appropriate surface structure and chemistry for an improved control of the cellular 

behaviour 

7. biodegradability (if desired) at a controlled rate in concert with tissue formation  

 

A wide variety of synthetic (polyglycolic acid (PGA), lactide/glycolide copolymers (PLGA), 

polytetrafluoroethylene), partially synthetic (HYAFF11, a benzyl ester of hyaluronic acid) 
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and natural materials (alginate, collagen, fibrin glue, matrigel) have been used in adipose 

tissue engineering approaches (Table 2). Cell carriers have been employed as sponges, fiber 

meshes and hydrogels (Fig. 4) .  

The synthetic polymers polylactic acid (PLA) and PGA as well as the copolymer PLGA are 

widely used, have a long history as an FDA-approved suture material, are reasonably 

biocompatible and have a tunable degradation rate that can be tailored from weeks to years 

[161,162]. However, these polymers possess the following drawbacks. The release of acidic 

degradation products may affect cell function by acidification of the microenvironment and 

can lead to acylation of peptides and proteins [163]. Furthermore, these polymers exhibit a 

high stiffness which may be disadvantageous for soft tissue engineering purposes [161]. The 

lack of chemical reactive groups renders a surface modification of scaffolds made from these 

materials more difficult and requires complex reactions in order to introduce additional 

functional groups, such as carboxylic groups, peroxides, and thiols [164-166]. Nevertheless, 

adipose tissue engineering approaches using PLGA scaffolds seem promising in regard to in 

vitro (Chapter 7) and in vivo [63,67] tissue formation (Table 1). First, preadipocytes attached 

to PLGA scaffolds with a range of pore size from 135 to 633 µm generated by a salt leaching 

technique [63]. Preadipocytes differentiated into adipocytes in vivo without any inducing 

additives and the size of newly developed adipocytes almost reached that of native 

adipocytes. Second, MSCs were seeded onto PLGA sponges with pore size from 100 to 300 

µm obtained by a solid lipid template technique (Chapter 7). MSCs partially differentiated 

into mature adipocytes and formed a tissue-like structure by secreting ECM-like compounds 

within four weeks. Synthetic, strongly hydrophobic polytetrafluoroethylene fiber meshes 

proved useful to seed preadipocytes, but required a prior coating with proteins, preferably 

with fibronectin, to enable cell adhesion [76]. Seeded on these meshes, preadipocytes 

underwent adipogenesis following administration of a hormonal adipogenic cocktail (Table 

1). 

Semisynthetic benzylesters of hyaluronic acid (HYAFF11) appear to be suitable for fat 

engineering in vitro and in vivo (Table 2) [65,68]. Hyaluronic acid (HA) is one of a group of 

glycosaminoglycans (GAGs) that are important components of the extracellular matrix [167]. 

Sponges with a pore size ranging from 50 to 400 µm and non-woven fibers with an interfiber 

distance between 100 and 300 µm were applied. In vitro, HYAFF11 sponges with different 

esterification grades all allowed preadipocyte attachment and led to sporadically distributed, 

immature adipocytes exhibiting very low activity of adipocytic marker enzyme [68]. In vivo, 
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HYAFF11 sponges were shown to be superior to collagen sponges and non-woven HYAFF 

fiber carriers and exhibited mature adipocytes after two months [65].  

 

Scaffold Material Type 
Fabrication technique 

Pore size [µm] Modification Ref. 

PLGA (75:25) sponge 
solid lipid templating 

100-300 - Ch. 7 

PLGA (75:25) sponge 
particulate (NaCl) leaching 

135-633 - [63] 

polytetrafluoroethylene fiber mesh 
n.d. 

52 collagen, 
albumin, 

FN coating 

[76] 

fibrin glue hydrogel 
mixing of cells and gel 

- - [64] 

collagen hydrogel 
mixing of cells and gel 

- - [75] 

collagen  
 

HYAFF11 
 

HYAFF11, 
nonwoven 

sponge 
directional solidification 

sponge 
phase inversion 

fiber mesh 
n.d. 

50 
 

50-340 
 

100-300 

- 
 
- 
 
- 

[65] 

collagen sponge 
directional solidification 

40 - [77] 

alginate hydrogel - RGD [66] 
PLGA (75:25) sponge 

particulate ( NaCl) leaching 
135-633 - [67] 

HYAFF11, different 
esterification grade 

sponge 
n.d. 

200, 400 FN coating [68] 

collagen sponge 
directional solidification 

65±7, 98±15 - [69] 

collagen sponge 
freeze-drying, crosslinking 

60-100 microspheres 
with bFGF  

[71] 

PGA fiber mesh 
n.d. 

n.d. - [70] 

PGA fiber mesh 
n.d. 

n.d. - [78] 

matrigel hydrogel 
mixing of cells and gel 

- - [73] 

collagen hydrogel 
mixing of cells and gel 

- - [72] 

 
Table 2 Scaffold materials and types used in cell-based adipose tissue engineering 
approaches. Futhermore, pore size and fiber distances, respectively, are summerized. 
(Abbreviation: FN: fibronectin) 
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Among the wide variety of potential natural scaffold materials, fibrin glue, alginate, collagen, 

and Matrigel were employed in fat engineering (Table 2). For sure, natural materials such as 

GAGs and collagen may well reflect the structure and functional properties of native ECM 

and have a low toxicity and chronic inflammatory response [167]. Administration of these 

materials as injectable gels (e.g. alginates) would allow for minimally-invasive surgery. 

However, disadvantages of all natural materials such as batch-to-batch variations, poor 

mechanical performances, and difficult structure manipulation due their complex chemical 

structure have to be mentioned in regard to their use in tissue engineering [159,162].  

 

 
Fig. 4 Microstructure of different scaffold types. (A) Sponge-like structure obtained by a lipid 
solid templating technique (scale bar: 200 µm) (Chapter 7), (B) sponge-like structure 
obtained by freeze-drying and a directional solidification technique (scale bar: 100 µm) [77], 
(C) monofilament structure (scale bar: 60 µm) [76], (D), fiber mesh (scale bar: 200 µm) 
[70,78]. In picture C, preadipocytes are attached to the biomaterial. All other scaffolds are 
shown without cells.   
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 Fibrin glue can be produced from the patient’s own blood and, thus, it can be recognized as a 

potentially autologeous scaffold material [168]. Enzymatic polymerization of fibrinogen in 

the presence of thrombin forms hydrogels with a degradation rate, which can be regulated by 

the addition of aprotinin, a proteinase inhibitor. For adipose tissue engineering, preadipocytes 

were suspended in fibrin glue and implanted into a fibrous capsule, which was provoked by a 

prior implantation of silicon tubes into muscle tissue [64]. This technique yielded nearly 

normal adipose tissue within the fibrous capsule stable over one year. However, the relevance 

of this method for the application in the field of reconstructive and plastic surgery is 

questionable. 

Alginates are widely used in the field of drug delivery and tissue engineering because they are 

cheap, biocompatible, non-toxic, and gelation can be simply triggered with divalent cations, 

such as Ca2+ or Mg2+ [168]. Nevertheless, pure alginates are not suitable for tissue 

engineering purposes, because their high hydrophilicity suppresses protein adsorption, which 

strongly reduces their ability to interact with cells. For this reason, alginates have been 

modified with lectins [169] and RGD-containing adhesion peptides [66]. Halberstadt et al. 

subcutanously injected preadipocyte-seeded alginate gels and alginate gels with a covalently 

bound RGD-containing peptide into sheep [66]. Preadipocytes attached and proliferated in the 

RGD-modified gels and, after three months, well-defined adipose tissue was recovered at the 

implantation site. However, it remains unclear whether the new adipose tissue was derived 

from the implanted preadipocytes or from attracted endogeneous preadipocytes or other 

precursor cells. 

Collagen represents the most abundant component of native ECM [167]. Therefore, collagen 

matches some of the optimum scaffold material, because specific amino acid sequences are 

recognized by cells and degraded by cell-produced enzymes (collagenases). Disadvantages 

include the poor mechanical strength, potential immunogenicity, and the high price [168]. At 

least 13 types of collagen are known [170] exhibiting different properties. Mizuno et al. 

reported that only one type of collagen, type I, was able to support osteogenesis of MSCs in 

vivo, whereas collagen types II, III, and V did not possess this property [171]. For adipose 

tissue engineering, collagen hydrogels and sponges have been employed in vitro and in vivo 

[65,69,72,75,77]. Mammary epithelial cells and adipocytes were mixed with a collagen 

solution and co-cultured in a 3-D collagen gel in vitro [75]. After three weeks, clusters of 

adipocytes and tubular structures of epithelial cells were noticed. Beyond the use of 

preadipocytes, a mature adipocyte culture in collagen gels was performed, aimed at the 

reconstruction of a skin model to assess effects of fat cells on keratinocytes and dermal 
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fibroblast in co-culture in vitro [72]. Collagen sponges fabricated by a directional 

solidification method and subsequent freeze-drying were intensively investigated by von 

Heimburg et al. [65,69,77] Effects of different pore sizes of 40, 50, 65, and 98 µm on cell 

penetration and tissue formation were assessed in vitro and in vivo. An enlargement of the 

pore size tends to be advantageous in regard to cellular penetration, distribution, and 

differentiation. This fact is not surprising in consideration of the size of mature adipocytes, 

which can exceed 100 µm. Adipose tissue was only seen proximal to the scaffold surface 

surrounded by slightly calcified tissue. Von Heimburg stated that the HYAFF11 sponges 

appear superior to collagen scaffolds with regard to cellularity. However, the pore size of 

collagen sponges (50 µm) was distinctly smaller as compared to that of the HYAFF11 

sponges (50-340 µm) in this study [65]. 

De novo adipogenesis in vivo 

Since adipocyte precursor cells are present in adipose tissue, the fat cell number in most of the 

depots can increase, for instance, following a high-carbohydrate or a high-fat diet [172]. The 

idea of de novo adipogenesis is to utilize this mechanism, that is, to mobilize endogenous 

cells. Thus, de novo approaches function without the use of exogenous cells and cell carriers 

such as scaffolds; adipose tissue development is induced by the delivery of specific growth 

factor(s) and other inducing agents and the subsequent migration, proliferation, and 

differentiation of endogenous cells. First reported in 1998, de novo adipose tissue formation 

and neovascularization was provoked by the injection of a mixture of Matrigel and bFGF into 

mice [173]. It was additionally reported that platelet-derived growth factor (PDGF) is as 

potent as bFGF, whereas insulin, insulin-like growth factor-1 (IGF-1), and growth hormone 

(GH) were less potent in regard to the induction of de novo adipogenesis [173]. An 

improvement of this method was achieved by the controlled release of bFGF from gelatin 

microspheres mixed with Matrigel [174,175]. Co-implantation of Matrigel and bFGF-

incorporated microspheres revealed a higher percentage of adipose mass and increased 

angiogenesis in the explant than Matrigel mixed with free bFGF. Alternatively, de novo 

generation of adipose tissue was achieved by long-term, local delivery of IGF-1 and insulin 

from PLGA/PEG microspheres in rats [176]. Delivery of insulin or IGF-1 exclusively also 

resulted in an increased de novo adipogenesis which was, however, inferior to the provoked 

adipogenesis by the simultaneous delivery of insulin and IGF-1. Masuda et al. combined the 

growth factors from the abovementioned systems and delivered growth factors by a co-release 

of bFGF, insulin, and IGF-1 from photocured, styrenated gelatin microspheres [177]. A rapid 
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delivery of the angiogenic factor bFGF and a prolonged release of insulin and IGF-1 resulted 

in a highly vascularized, mature adipose tissue. 

Mechanistic studies were performed by Toriyama et al. investigating the time course of de 

novo adipogenesis induced by bFGF-containing Matrigel [178]. Three biological main events 

turned out to be involved in this process: neovascularization, the spontaneous migration of 

endogenous fibroblast-like preadipocytes or stem cells, and the subsequent differentiation of 

attracted cells into adipocytes. In detail, within a few days, a multiple cell layer, consisting of  

fibroblast-like cells and endothelial/epithelial cells, was formed on both sides of implanted 

Matrigel. Thereafter, the cells proximal to the Matrigel underwent a change in cell shape and 

constitution of cell organelles, accompanied by an invasion of phagocytes. Phagocytic 

degradation of the Matrigel seemed to stimulate the maturation of all cells. Subsequently, 

invaded cells started to accumulate lipid droplets provided that these cells were in contact 

with newly formed capillaries. After five weeks [173], full maturation of adipocytes was 

achieved and could be maintained over at least 15 weeks [174]. 

The abovementioned mechanistic observations suggest the existence of a close relationship 

between the formation of blood vessels and adipogenesis. Indeed, it is well known that the 

earliest adipogenic event is associated with the organization of a vascular network [17,19,22]. 

However, there is no evidence of whether adipogenesis can induce angiogenesis, vice versa, 

or both [19]. 

Vascularization of adipose tissue 

Adipose tissue is a highly vascularized tissue; each adipocyte is attached to at least one 

capillary [2]. Vascularization is a pivotal requirement not only for adipose tissue engineering. 

Cells at a distance of more than 200 µm from a blood supply tend to be metabolically inactive 

or necrotic [162]. For instance, transplanted fat flaps undergo necrosis and resorption due to 

insufficient neovascularization [2]. The importance of blood vessel formation for the 

development of adipose tissue is indicated by the aforementioned fact that angiogenesis 

preceedes adipogenesis in the embryonic stage. Several findings also suggest a close 

relationship and cross-talk of (pre-)adipocytes and vascular cells in adult organisms. One 

study impressively demonstrates the reciprocal regulation of adipogenesis and angiogenesis in 

an in vivo model [179]. Dominant negative expression of PPARγ in preadipocytes led not 

only to the failure of adipogenic differentiation, but also reduced angiogenesis. Reciprocally, 

antibody blocking of the vascular endothelial-derived growth factor (VEGF) receptor-2 

reduces angiogenesis and, surprisingly, additionally inhibited the adipogenesis of 



Chapter 1                                                  Introduction - Adipose tissue engineering 

 -29-                        

preadipocytes. In a further study, ob/ob mice, leptin knock-out obese mice, have been treated 

with various angiogenesis inhibitors, such as angiostatin, endostatin, and TNP-470. This 

therapy caused decreased endothelial cell proliferation and increases apoptosis in the adipose 

tissue and led to a loss of adipose tissue mass that is similar to that resulting from leptin 

replacement [180]. Furthermore, the adipocyte-secreted hormone leptin modulated vascular 

permeability and stimulated angiogenesis in synergy with bFGF and VEGF [181]. Adipose 

tissue-derived endothelial cells could promote the proliferation [182] and differentiation 

[183,184] of preadipocytes.  

All of these facts underline the significance of a blood vessel supply to growing adipose tissue 

in regard to the differentiation of precursor cells and long-term maintenance of the tissue.  

In the presented adipose tissue engineering approaches, blood vessel ingrowth into cell-

polymer constructs have been reported in several cell-based approaches. Vascular support of 

implanted preadipocyte-loaded constructs has been observed using sponges made from 

collagen [69,77], HYAFF11 [65], PLGA [67], and PGA fibers [78] as well as hydrogels 

made from fibrin glue [64]. However, a long-term study by Patrick et al. clearly demonstrated 

the elusiveness of long-term maintenance of an engineered adipose tissue and elucidates a 

major challenge for future approaches [67]. Preliminary results from Dolderer et al. promise 

the generation of vascularized adipose tissue by an alternative tissue engineering approach 

[185]. This group places large polycarbonate chambers around vascular pedicles and adds fat 

flaps. After 12 weeks, the chamber is reported to be filled with new, vascularized, and 

transferable adipose tissue. Alternatively, co-cultures of endothelial cells and preadipocytes in 

a fibrin matrix could enable the early formation of a blood vessel network in vivo [186]. 

However, this study used an egg model with a chorioallantoic membrane and adipogenesis 

was neither induced nor investigated. 

The structure of scaffolds may play a crucial role in regard to vascularization. Pore size and 

interconnectivity have to be optimal for the ingrowth of fibrovascular tissue. In general, a 

pore size of 5 µm is supposed to be sufficient for neovascularization, however, 500 µm are 

required for a rapid vascularization and for the survival of transplanted cells [162].  

Remarkably, all of the aforementioned approaches towards de novo adipogenesis result in 

highly vascularized adipose tissue and long-term maintenance over at least 15 weeks has been 

reported [174]. Probably, the de novo adipogenesis approaches represent the currently most 

promising way to obtain optimally vascularized fat tissue. This strategy reflects the prenatal 

mechanism of neogenesis of adipose tissue in vivo. 
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Engineered adipose tissue in basic research 

As yet, basic research on adipose tissue differentiation and function has been performed using 

especially preadipocytic cell lines such as 3T3-L1 and 3T3-F442A in conventional 2-D cell 

culture systems. These systems provide standardized conditions and are, thus, certainly 

indispensable tools to gain deep insights into the molecular control of adipogenesis and to 

facilitate the discovery of molecules secreted by adipocytes. But it is worth mentioning that 

these systems have at least two major drawbacks. The aneuploid status of the cells may 

modulate their differentiation capacity and they are cultivated out of their normal 3-D context 

with an altered extracellular matrix [19].  

Primary cells such as preadipocytes and mesenchymal stem cells may circumvent the first of 

the mentioned drawbacks. However, standardized cell populations and cell culture techniques 

are necessary basic requirements. Donor-to-donor and age-related diversities of isolated cells 

as well as impurities of an isolated cell population are described difficulties [109,147,148]. A 

mixture of cell types such as macrophages, fibroblasts, endothelial cells, and hematopoietic 

cells are still present following cell isolation. As explained in the above “Cells” section, the 

use of preadipocytes is associated with the fact that cells from different body sites exhibit 

different behaviors. In addition, the procurement of “pure” MSCs still remain elusive though 

extensive efforts approach to develop an appropriate isolation technique.  

In vivo, cells are embedded in a 3-D matrix. However, cells are conventionally cultured in a 2-

D monolayer in vitro for most basic research purposes. Recent findings suggest that cells 

differentially behave in 2-D and 3-D cell culture [78,188-190]. Monolayer cultures have been 

repeatedly shown to yield a different cell phenotype and, for instance, differential expression 

profiles of extracellular matrix components, surface molecules, and differentiation markers as 

compared to cells in 3-D culture. In detail, a cross-modulation of β1-integrin and EGF-

receptor signalling has been shown in a tumor cell line in 3-D cell culture, whereas in a 2-D 

monolayer culture, the cross-modulation did not occur [187]. Another example of the 

differential cell behavior has been proven in 3-D thermoreversible gels as compared to 2-D 

culture of osteogenesis of MSCs [188]. Important differentiation markers such as osteopontin, 

osteocalcin, and alkaline phosphatase are upregulated, whereas an adipogenic marker, LPL, 

was downregulated in 3-D culture as compared to the 2-D assay. BMP-2 exerts differential 

effects on gene expression of VEGF, osteopontin, and collagen I during osteogenic 

differentiation of MSCs in a 2-D monolayer culture onto PLGA films and in a 3-D culture 

using PLGA scaffolds [189]. In a recent adipose tissue engineering approach, 3T3-L1 cells 

seeded onto PGA fibers yielded an increased secretion of leptin and laminin as compared to 
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the 2-D culture [78]. Furthermore, utilizing this model, it is possible to generate adipose tissue 

in vitro that resembles mature fat in vivo.  

Beyond these facts, cultivation of advanced differentiated and mature adipocytes requires 

special techniques of 2-D cell culture due to their rounded shape and their buoyancy. In 3-D 

cell culture, the adipocytes are embedded and detained in a solid matrix and are thus capable 

of developing their natural shape. In this context, it is worth mentioning that the cell shape, 

cytoskeletal components [25,190] and ECM structure and composition [25,191-194] have 

recently been found to strongly influence adipocyte differentiation and function. 

In conclusion, the generation of adipose tissue by utilizing tissue engineering techniques will 

not only be useful to supply tissues for reconstructive and plastic surgery, but will also be 

helpful to provide 3-D cell culture models that simulate in vivo conditions to study 

differentiation events, secretory processes, cell-cell interactions, and cell-matrix interactions. 

Conclusion and Perspective 

Three cell types have been tested in adipose tissue engineering approaches so far: mature 

adipocytes, preadipocytes, and mesenchymal stem cells. Studies based on preadipocytes 

provide the most extensive and detailed information and can be considered as the most 

advanced strategy in cell-based adipose tissue engineering. Engineered fat that phenotypically 

resembles native fat has been achieved in vivo [63,78] and, in one case using the 

preadipocytic cell line 3T3-L1, also in vitro [78]. Most of the studies, both in vitro and in 

vivo, are restricted to a phenotypical characterization by means of histology and reflection of 

lipid accumulation of the generated tissues, whereas proofs of functionality, that is for 

instance the capability to secrete adipocyte-specific hormones or the responsiveness to 

lipolytic drugs, and evidence of the expression of adipocyte-specific genes on the mRNA and 

protein level so far are rare. Stem cells, especially MSCs, represent an attractive alternative 

for adipose tissue engineering. As yet, MSCs have been applied in the fields of bone [196-

201], cartilage [202-205], and tendon [206] engineering. The in vitro study on adipose tissue 

engineering performed in our laboratory provides promising results for future research 

(Chapter 7). An overview of representative examples of engineered adipose tissue constructs 

using different cell types and strategies is shown in Figure 5.  
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Fig. 5 Overview of in vitro and in vivo engineered adipose tissue constructs using MSCs, 
primary preadiocytes, and the preadipocytic cell line 3T3-L1 as cell sources (A-F). 
Furthermore, adipose tissue obtained by a de novo adipogenesis approach is shown (H). 
Sections were stained with H&E (E-H) or OsO4 (A-D). Scale bars represent 100 µm (A), 500 
µm (C), 50 mm (D,E), 30 µm (F), and 200 µm (H). Pictures originate from [Chapter 7] (A), 
[68] (C), [67] (D), [78] (E,F), [175] (H).  
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Many biomaterials tested appear to be promising for the use in adipose tissue engineering in 

vitro and in vivo. So far, the focus has been on traditional materials such as PLGA, collagen, 

hyaluronic acid, alginate, and fibrin. Potential progress in this respect is based on the surface 

modification of these or alternative materials. The modification, for example, may aim at the 

enhancement of cell adhesion by the application of adhesion peptides such as the RGD motif. 

Principally, RGD peptides can be adsorbed or covalently bound to substrates, as already 

shown in one study on adipose tissue engineering by Halberstadt et al. [66]. Furthermore, 

adipocyte precursor cell adhesion, proliferation, and differentiation can strongly be influenced 

by components of the ECM which play a pivotal role in the adipocyte development [191-194]. 

Materials comprising such components or parts of them may improve adipose tissue 

development. Angiogenesis turns out to be a key process in fat development in vivo. Many 

attempts in fat engineering achieve a considerable degree of vascularized tissue. The delivery 

of angiogenic factors such as VEGF, bFGF, and PDGF with controlled release devices may 

be a useful tool to induce or enhance angiogenesis. Tabatas group demonstrated the 

superiority of controlled released bFGF as compared to the administration of the free growth 

factor in the de novo genesis of vascularized adipose tissue [174,175] and in the in vivo 

formation of fat tissue following implantation of preadipocytes [71]. Recently developed 

vascularization models will be helpful for the further elucidation of angiogenesis and its 

affecting factors in adipose tissue [207,208]. 

In conclusion, a variety of promising approaches have emerged in adipose tissue engineering 

with the goal of generating fat surrogates for reconstructive and plastic surgery as well as for 

use in basic research. Up to now, approaches for de novo adipogenesis appear to be most 

promising in regard to the degree of vascularization and long-term maintenance of engineered 

fat. For cell-based therapies, preadipocytes and stem cells in combination with various 

materials are useful for gaining knowledge on cell-biomaterial interactions, appropriate 

materials and culture conditions, and many more parameters. It is difficult to compare the 

results that have been presented, because different cells, materials, scaffold types and sizes, 

pore sizes, seeding techniques, cell numbers, and inducing regimens have been employed 

(Table 1 and 2). Cell-based engineered surrogates have to be optimized in regard to long-term 

maintenance and optimum vascularization in order to provide a superior substitute to the 

current surgical gold-standard, the autologous fat graft. 
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A plethora of research approaches towards the engineering of bone, cartilage, liver, skin, and 

other tissues has been performed since the beginning of the 1990s. However, the generation of 

adipose tissue equivalents is still an orphan discipline and a challenge (chapter 1). To date, 

exclusively mature adipocytes and preadipocytes have been used in the field of adipose tissue 

engineering. The overall goal of this thesis was to evaluate the potential of bone marrow-

derived mesenchymal stem cells (MSCs) as alternative cell source. 

This work can be subdivided into three main parts: 

 

1. Establishment of a stem cell-based adipogenic 2-D cell culture and thorough 

investigation of the effect of basic fibroblast growth factor (bFGF) on the 

adipogenesis of MSCs   

2. Generation of adipocyte constructs using MSCs in 3-D cell culture 

3. Utilization of biomimetic polymers for tissue engineering applications 

 

1. 2-D cell culture 

So far, MSCs have been used exclusively for engineering of bone, cartilage, and tendon. As a 

first step towards adipose tissue engineering, the establishment of an adipogenic cell culture 

based on MSCs was performed and various candidates of adipogenic inducers were tested in 

conventional 2-D cell culture. Furthermore, the growth factors epidermal growth factor 

(EGF), platelet-derived growth factor-BB (PDGF-BB), and basic fibroblast growth factor 

(bFGF) were evaluated with regard to their potential to modulate the proliferation, 

differentiation, and the cell shape of MSCs (chapter 3). The first goal of the next chapter was 

to investigate the effects of bFGF on the adipogenic differentiation of MSCs induced by an 

adipogenic hormonal cocktail in detail. Basic FGF was supplemented in different phases of 

the culture and adipogenesis was characterized on the cellular and the molecular level. A 

special focus was set on the effects of bFGF on the expression of a key transcription factor in 

adipogenesis, the peroxisome proliferator-activated receptor γ (PPARγ), and the modulation 

of the responsiveness of MSCs to PPARγ ligands by bFGF (chapter 4). In a follow-up study, 

the effect of bFGF on the adipogenesis of MSCs was investigated under clonal conditions 

because MSCs represent an inhomogeneous cell population. The responsiveness of single 

cells to bFGF was determined in order to distinguish between two different possible 

mechanisms of action of bFGF: (a) the preferential proliferation of a subpopulation of MSCs 

prone to differentiate into adipocytes and (b) the exertion of direct effects on the commitment 
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level of MSCs. Therefore, an appropriate medium for the cloning experiments was 

determined and bFGF was supplemented in different phases of the clone culture (chapter 5). 

 

2.  3-D cell culture 

The main goal of this part was to transfer the established adipogenic protocol from 2-D to 3-D 

cell culture applying tissue engineering techniques. In general, three major components have 

been adopted for the generation of artificial tissues: cells, scaffolds, and growth factors. First, 

scaffolds with different pore size ranges were tested for their potential use in tissue 

engineering approaches in combination with MSCs (chapter 6). In chapters 3 and 4, MSCs 

and bFGF have been demonstrated to be suitable for an adipogenic cell culture in 2-D cell 

culture. Consequently, combining the three components cells, scaffolds, and growth factors, 

the potential of MSCs was evaluated, for the first time, for a long-term adipose tissue 

engineering approach in vitro. The aims of this approach were an efficient differentiation of 

MSCs into mature adipocytes and a characterization of the differentiation processes on the 

histological and molecular level (chapter 7).   

 

3. Biomimetic polymers 

Biomimetic polymers for tissue engineering applications have been recently developed in 

order to control the cellular behavior at the molecular level. In our laboratory, a diblock 

copolymer consisting of a PLA and a PEG moiety was designed whereby the latter 

component can be modified in order to covalently bind peptides and proteins containing free, 

primary amine groups. These polymers can be processed into 3-D scaffolds which allow for 

an instant surface modification. A main goal of this project was to demonstrate the feasibility 

of the instant surface modification of these 3-D scaffolds with the angiogenic growth factor 

bFGF, that is, the covalent binding of bFGF to the scaffolds. As a first step, the adsorption of 

bFGF to a PEG-PLA polymer derivative was determined in comparison to PLA. Furthermore, 

a protocol was established to efficiently desorb bFGF from polymer surfaces which allowed 

for the determination of the absolute amounts of covalently bound bFGF (chapter 8). In a 

follow-up study, the covalent immobilization of bFGF to the scaffolds was characterized in 

detail, and furthermore, the stability of the linkage of bFGF to the scaffolds was tested in vivo. 

Finally, the potential of the scaffolds with tethered bFGF to induce angiogenesis was 

evaluated in vivo in comparison to scaffolds with adsorbed bFGF and injected bFGF  

(chapter 9). 
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Abstract 

The differentiation of precursor cells into adipocytes, termed adipogenesis, is a complex 

process that is affected by a wide variety of environmental conditions. Growth factors such as 

epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth 

factor-β (TGF-β), and basic fibroblast growth factor (bFGF) and drugs such as insulin, 

glucocorticoids, cAMP-elevating substances, and peroxisome proliferator-activated receptor γ 

ligands are known to influence the differentiation of mesenchymal stem cells (MSCs) into 

various lineages.  

In this study, the ability of a variety of growth factors  (EGF, PDGF-BB, bFGF) and drugs 

(dexamethasone, IBMX, indomethacin, insulin) to enhance the adipogenesis of MSCs was 

tested in conventional 2-D cell culture. To this end, different concentrations and combinations 

were administered and their success assessed by means of Red Oil O staining of differentiated 

adipocytes and by the measurement of a marker enzyme of adipogenesis, glycerol-3-

phosphate dehydrogenase. Basic fibroblast growth factor in combination with the hormonal 

cocktail consisting of dexamethasone, insulin, indomethacin, and IBMX exerted the strongest 

adipogenic conversion of MSCs among all tested systems.  

The growth factors EGF, PDGF-BB, and bFGF were further investigated to determine their 

influence on the modulation of the proliferation of MSCs. EGF and bFGF led to a stimulation, 

whereas PDGF-BB decreased the proliferation of MSCs, as assessed by the colony forming 

unit (CFU) assay. The cell shape and the cytoskeletal organization of MSCs after expansion 

in the absence or presence of growth factors was mostly similar irrespective of the treatment, 

however, in PDGF-treated and bFGF-treated cultures very small, round, and unspread MSCs 

were found and visualized by staining the actin filaments using a phalloidin toxin. 
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Introduction 

Adipogenesis, the conversion of precursor cells into adipocytes, is a complex process, which 

is affected by environmental conditions. Precursor cells of the adipocyte, that is preadipocytes 

and immature stem cells, have been reported to be capable to undergo adipogenesis [1]. 

Adipogenic processes have been studied mainly using preadipocytes and preadipocytic cell 

lines such as the 3T3-L1 and the 3T3-F442A cell lines [2]. Recently, several studies on the 

adipogenesis of stem cells, especially of the bone marrow-derived multipotent mesenchymal 

stem cells (MSCs), have contributed to the knowledge in this field [3-6]. To date, a wide 

variety of extracellular cues, consisting of low molecular weight drugs and growth factors, 

have been found to influence adipogenesis [2]. 

The most abundantly employed and most intensively researched prodifferentiative agents 

include insulin, glucocorticoids applied in the form of dexamethasone, hydrocortisone, and 

corticosterone, respectively, and compounds leading to elevated cAMP levels such as 3-

isobutyl-1-methylxanthine (IBMX) [2]. In addition, ligands of a key transcription factor in 

adipogenesis, the peroxisome proliferator-activated receptor γ (PPARγ) [7], are known to act 

as strong inducers and are administered solely or in combinations with the aforementioned 

inducers. Examples of PPARγ ligands include anti-diabetic drugs and the thiazolidinediones, 

such as troglitazone, pioglitazone, and rosiglitazone [8], as well as anti-inflammatory drugs, 

such as indomethacin [9]. The combination of IBMX with insulin and glucocorticoids, 

frequently named adipogenic hormonal cocktails, have reproducibly produced the strongest 

effects in various culture systems including 3T3-L1 cells, the system investigated most 

intensively [2]. In studies on the adipogenic conversion of MSCs of various species and MSC 

cell lines, hormonal cocktails consisting of various combinations of IBMX (0.5 mM), insulin 

(10 µg/ml), dexamethasone (10-1000 nM), and indomethacin (60-200 µM) were used [6,10-

15]. Thiazolidinediones were administered in the micromolar range [6,16]. For the adipogenic 

conversion of embryonic stem cells, retinoic acid administered in a specific scheme has been 

shown to play a critical role [17]. 

Growth factors also possess the capacity to modulate the differentiation of MSCs and 

preadipocytes. Transforming growth factor β (TGFβ) has been repeatedly described to 

promote osteogenesis, but inhibit adipogenesis of MSCs [10,11]. Basic fibroblast growth 

factor (bFGF) has been recognized as a promoter of osteogenesis [6,18,19], but has been 

controversially discussed in regard to adipogenesis of MSCs. It has been reported to exert no 

influence [14], an acceleration [11], and an enhancing effect [10] on the fat cell formation of 
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MSCs. Basic FGF slightly suppressed adipogenic differentiation of primary human 

preadipocytes [20]. Bone morphogenetic protein-2 (BMP-2) is acknowledged as a potent 

inducer of osteogenesis in MSCs [21] and as an inhibitor of adipogenesis [5]. However, BMP-

2 has also been reported to promote adipogenesis in combination with the thiazolidinedione 

rosiglitazone [16]. EGF is known to enhance osteogenic differentiation of purified MSCs 

[22], the differentiation of MSCs into neurons [23], and the differentiation of MSCs into 

photoreceptors [24], however, there is no data available on the influence of EGF on the 

adipogenic differentiation of MSCs. EGF showed a biphasic effect on the adipogenesis of 

3T3-L1 preadipocytes: it inhibited adipogenesis of undifferentiated preadipocytes, but 

enhanced progression of adipogenesis of differentiated adipocytes [25]. Using primary human 

preadipocytes, EGF exerted an inhibitory effect on the adipogenesis [20]. PDGF-BB has been 

reported to exert no effect on the osteochondrogenic differentiation of MSCs in vitro and in 

vivo [26,27], however, to date,  information concerning the influence of PDGF-BB on the 

adipogenesis of MSCs is not available. Regarding primary preadipocytes, PDGF-BB, 

similarly to bFGF, led to a suppression of the adipogenic differentiation [20]. 

In this study, various combinations of inducing cocktails and the growth factors epidermal 

growth factor (EGF), platelet-derived growth factor BB (PDGF-BB), and basic fibroblast 

growth factor (bFGF) were tested in order to assess their prodifferentiative properties. In 

addition, the modulation of the proliferation of MSCs by the growth factors was determined 

by the colony forming unit assay (CFU assay). Beyond the modulation of the proliferation 

and the differentiation potential of MSCs by growth factors, the cell shape and the 

cytoskeletal organization of cells can also be influenced by growth factors [28]. Remarkably, 

the differentiation of MSCs into a certain lineage is known to be modulated by the cell shape 

[29]. Both the cell shape and the actin filaments were visualized with phalloidin coupled to a 

fluorescent dye [28]. 
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Materials and Methods 

Materials 

If not otherwise stated, chemicals were obtained from Sigma, Steinheim, Germany. Basic 

FGF and PDGF-BB were obtained from PeproTec (Rocky Hill, NJ, USA). EGF was 

purchased from Biomol (Hamburg, Germany). Insulin was kindly provided by Hoechst 

Marion Roussel (Frankfurt am Main, Germany). Cell culture plastics were purchased from 

Corning Costar (Bodenheim, Germany). 

Cell culture 

Marrow stromal cells were obtained from six-week old male Sprague Dawley rats (weight: 

170 - 180 g, Charles River, Sulzfeld, Germany). MSCs were flushed from the tibiae and 

femora according to the protocol of Ishaug [30]. Cells were centrifuged at 1,200 rpm for 5 

min. The resulting cell pellet was resuspended in basal medium consisting of DMEM 

(Biochrom, Berlin, Germany), 10% fetal bovine serum (Gemini Bio-Products Inc., Calabasas, 

CA, USA), 1% penicillin/streptomycin (Invitrogen, Karlsruhe, Germany), and 50 µg/ml 

ascorbic acid. Cells were seeded in T75 flasks and cultured at 37°C and 5% CO2. Cells were 

allowed to adhere to the substrate for three days. The flasks were rinsed twice with phosphate-

buffered saline (PBS, Invitrogen, Karlsruhe, Germany) in order to remove non-adherent cells.  

In the experiments conducted to determine the influence of different growth factors and 

combinations of inducers, adherent cells were exposed to either basal medium (designated as 

“w/o GF”), to basal medium supplemented with 3 ng/ml EGF (“EGF”), 3 ng/ml PDGF-BB 

(“PDGF”), or 3 ng/ml bFGF (“bFGF”) from day 3 after the cell isolation until the end of the 

culture, that is, until the end of the differentiation period. In addition, the same experiment 

was performed with a growth factor dose of 10 ng/ml instead of 3 ng/ml. Furthermore, to 

elucidate the influence of bFGF in a more detailed manner, concentrations of 0, 0.1, 1, and 3 

ng/ml bFGF were administered after the cell isolation until the end of the culture.  

Culturing the adherent cells, 12 ml of basal medium with or without growth factors were 

exchanged every 2-3 days until confluence was reached after 12 days. Cells were passaged 

once with 0.25% trypsin and EDTA (Invitrogen, Karlsruhe, Germany). For adipogenic 

differentiation, cells were seeded at a density of 30,000 cells/cm² in 24-well plates and grown 

to postconfluence for 3 days with or without growth factors. Subsequently, cells were 

differentiated for 8 days either in the presence or absence of growth factors. In detail, to 

induce adipogenic differentiation, cultures were treated for 3 days with dexamethasone and 3-

isobutyl-1-methylxanthine (IBMX, Serva Electrophoresis, Heidelberg, Germany, 
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(“Dex/IBMX”), IBMX and indomethacin (“IBMX/Indo”), or dexamethasone, IBMX, 

indomethacin, and insulin (“Dex/IBMX/Indo/Ins”). The concentrations were: 0.5 mM IBMX, 

10 nM dexamethasone, 60 µM indomethacin and 10 µg/ml insulin. Subsequently, all cultures, 

irrespective of the inducer combination used, were maintained for 5 more days in 

differentiation medium consisting of basal medium supplemented with 10 µg/ml insulin. 

Thus, MSCs underwent an 8-day differentiation phase consisting of a three day induction 

phase and a five day maintenance phase. A chart of the supplementation schedule is published 

in Figure 1 of Chapter 4. 

Oil Red O staining  

Cells were washed once with PBS and fixed with 10% formaldehyde (Merck, Darmstadt, 

Germany) overnight. Cells were covered with 3 mg/ml Oil Red O for 2h. Excess dye was 

removed with PBS and cells were fixed with 10% formaldehyde. 

Glycerol-3-phosphate dehydrogenase (GPDH) activity measurement 

The activity of GPDH, a key enzyme in lipid biosynthesis, was measured using a protocol 

adapted from Pairault and Green [31]. In brief, cells washed with PBS were scraped in lysis 

buffer containing 50 mM Tris, 1 mM EDTA, and 1 mM β-mercaptoethanol on ice. 

Subsequently, the resulting suspension was sonicated with a digital sonifier (Branson 

Ultrasonic Coporation, Danburg, CT, USA). Cell lysates were centrifuged for 5 min at 13,200 

rpm at 4°C. Aliquots of the supernatant were mixed with a solution containing 0.1 M 

triethanolamine, 2.5 mM EDTA, 0.5 mM β-mercaptoethanol, 120 µM reduced nicotinamide 

adenine dinucleotide (NADH) (Roche, Mannheim, Germany), and 200 µM 

dihydroxyacetonephosphate. Enzyme activity was monitored by measurement of the 

disappearance of NADH at 340 nm over 4.2 min. Enzyme activity was normalized to the 

protein content of each sample. Proteins were determined by the method of Lowry et al. [32]. 

Proteins were precipitated using 12% trichloracetic acid. Proteins were solubilized in an 

alkaline solution and complexed with a mixture of disodium tartrate, copper sulfate and folin-

ciocalteu reagent (all Merck, Darmstadt, Germany). Absorption was measured at 546 nm after 

30 min incubation.  

Actin staining 

Actin staining was conducted with fluorescein-phalloidin (Molecular Probes, Leiden, The 

Netherlands) at room temperature using a protocol adapted from Martin et al. [28]. MSCs 

were isolated and propagated to confluence as described above. Cells were passaged once 
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with 0.25% trypsin and EDTA and were seeded at a density of 4,000 cells/cm² in 24-well 

plates and grown for 48 to 72 hours with or without growth factor supplements. Subsequently, 

cells were washed with PBS and fixed using 3.7% formaldehyde for 10 minutes at room 

temperature. After washing the cells twice with PBS, the cells were permeabilized by a 0.1% 

Triton X-100 (Merck, Darmstadt, Germany) solution in PBS for 5 minutes. To reduce 

nonspecific background staining with the fluorescein-phalloidin conjugates, a 1% bovine 

serum albumin (BSA) solution in PBS was added for 30 minutes, followed by two washing 

steps with PBS. Subsequently, in each well, 5 µl of the methanolic stock solution of 

fluorescein-phalloidin (200U/ml; 6.6 µM) was diluted with 200 µl of 1% BSA in PBS and the 

cells were covered for 20 minutes in the dark. Excess dye was removed by washing twice 

with PBS. For storage, the stained cells were mounted using Vectashield H-1000 (Vector 

Laboratories, Burlingame, CA, USA) and kept at 4°C in the dark. Stained cells were 

photographed on the Zeiss Axiovert 200M microscope coupled to scanning device LSM 510 

(Zeiss, Jena, Germany) at 100-fold magnification (Ex = 496 nm, Em = 516 nm).  

Colony forming unit (CFU) assay 

The CFU assay was performed according to protocols adapted from Martin et al. [33] and 

Bianchi et al. [34]. After the isolation of the cells, which was performed as described above, a 

small sample of the cell suspension was treated with an equal volume of 4% acetic acid in 

order to lyse red blood cells. Mononucleated cell counts were determined with a 

hemacytometer following the staining of the cells with crystal violet in 0.1 M citric acid [35]. 

Subsequently, 64,000 mononucleated cells were seeded per T75-flask (75 cm²) and cells were 

left undisturbed for three days to allow for cell attachment. All experimental groups were 

maintained in basal medium for the first three days. Thereafter, adherent cells were 

propagated in basal medium (designated as “w/o GF”), in basal medium supplemented with 3 

ng/ml EGF (“EGF”), 3 ng/ml PDGF-BB (“PDGF”), or 3 ng/ml bFGF (“bFGF”). Medium was 

exchanged every two to three days. After 11 days of proliferation in the distinct media, cells 

were fixed with 10% formaldehyde, stained with 3 ml 1% methylene blue solution in 10 mM 

borate buffer, pH 8.8, for 30 minutes. Cells were washed three times with water. After 

complete drying, the cells were stored in the flasks. Colonies were counted under an inverse 

light microscope (Leica DM IRB, Leica Microsystems, Wetzlar, Germany). One colony was 

defined as a confluent area covered by at least 50 cells [36]. 
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 Statistics 

GPDH data are expressed as means ± standard deviation. Single-factor analysis of variance 

(ANOVA) was used in conjunction with a multiple comparison test (Tukey’s test) to assess 

statistical significance. 

Results 

Combinations of inducing agents for the adipogenesis of MSCs 

In preliminary experiments, dexamethasone (Dex, 10 nM), IBMX (0.5 mM), insulin (Ins, 10 

µg/ml), and indomethacin (60 µM) were applied in all possible combinations. The addition of 

single inducers did not induce adipogenic differentiation (data not shown). Minimum 

requirements were the combinations of Dex/IBMX or IBMX/Indo in order to obtain a 

detectable degree of differentiation (data not shown).   

Influence of growth factors and combinations of inducers on the adipogenesis of MSCs 

MSCs cultured in the absence of a growth factor (“w/o GF”) and in presence of 3 ng/ml EGF 

(“EGF”), 3 ng/ml PDGF-BB (“PDGF”), and 3 ng/ml bFGF (“bFGF”) were exposed to the 

inducing cocktails Dex/IBMX, IBMX/Indo, and Dex/IBMX/Indo/Ins. Figure 1 shows 

histological pictures after Oil Red O staining of intracellular lipid droplets of differentiated 

adipocytes. Dex/IBMX exerted a very weak adipogenesis in groups “w/o GF” and “EGF” and 

a moderate differentiation in the group “PDGF” (Fig. 1). In contrast, this combination was 

sufficient for a clear differentiation in presence of bFGF (Fig. 1). Measurement of the 

glycerol-3-phosphate dehydrogenase (GPDH) activity confirms the histological observations 

(Fig. 2). The highest activity was detected in the presence of bFGF as compared to all other 

groups. PDGF treatment yielded a GPDH activity significantly elevated to the groups “w/o 

GF” and “EGF”. Supplementation of the combination IBMX/Indo resulted in a very weak 

differentiation of cells grown in the presence of EGF and no growth factor, but clearly 

induced adipogenesis in the presence of PDGF and bFGF (Fig. 1). Again, the Oil Red O 

staining could be confirmed by the values of the corresponding GPDH activities (Fig. 2). The 

strongest prodifferentiative effect on MSCs was obtained after induction with the hormonal 

cocktail consisting of Dex/IBMX/Indo/Ins. In the groups “w/o GF” and “EGF”, the number of 

differentiated adipocytes was clearly increased as compared to cells induced by Dex/IBMX 

and IBMX/Indo. This cocktail also produced the highest number of adipocytes in the groups 

“PDGF” and “bFGF”. In the “PDGF” group, this cocktail yielded adipocytes with distinctly  
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Fig. 1 Adipogenesis of MSCs monitored by Oil Red O staining of lipid droplets on day 8 after 
induction. Growth factors were administered at a concentration of 3 ng/ml. Induction 
occurred by addition of the inducer combinations dexamethasone/IBMX, IBMX/indomethacin, 
and dexamethasone, IBMX, indomethacin, and insulin. 
 
larger lipid droplets as compared to cells induced by Dex/IBMX, IBMX/Indo, and the control 

group irrespective of the inducing regimen. In the case of bFGF, the size of the lipid droplets 

was increased following induction with Dex/IBMX and Dex/IBMX/Indo/Ins as compared to 

IBMX/Indo treatment; Dex/IBMX/Indo/Ins even yielded adipocytes with larger lipid 

inclusions than any other group. Using the latter cocktail, the GPDH activities of the groups 

“PDGF” and “bFGF” were significantly higher than the activities of the groups “w/o GF” and 

“EGF”. 

The following paragraph briefly summarizes the results with regard to the growth factors’ 

effects.  Basic FGF-treated MSCs appeared to be most sensitive to adipogenic inducers, an 

effect that was most pronounced after administration of the hormonal cocktail consisting of 

Dex/IBMX/Indo/Ins. The clearest differences relative to the groups with EGF, PDGF, and the 
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control were obtained following the exposure of MSCs to the weakest induction cocktail, the 

combination of Dex and IBMX. PDGF-BB also exerted an enhancing effect on the 

adipogenesis, but attenuated as compared to bFGF. In contrast, EGF had no stimulatory effect 

on the adipogenic differentiation of MSCs. 

 
Fig. 2 Adipogenesis of MSCs monitored by GPDH measurement on day 3 after induction. 
Growth factors were administered at a concentration of 3 ng/ml. Induction occurred by 
addition of the inducer combinations dexamethasone/IBMX, IBMX/indomethacin, and 
dexamethasone, IBMX, indomethacin, and insulin. Asterisks indicate statistically significant 
differences at a level of p < 0.01 (n=3). 
 
Adipogenesis of MSCs was additionally assessed using the growth factors at a concentration 

of 10 ng/ml and, again, exposed to the inducing cocktails Dex/IBMX, IBMX/Indo, and 

Dex/IBMX/Indo/Ins. Cells grown in the absence of a growth factor served as a control group 

and were the same as the control group shown in Figs. 1 and 2. In general, the three different 

combinations influenced the adipogenesis of MSCs in the presence of 10 ng/ml growth 

factors similarly to the way  they did in the presence of 3 ng/ml growth factors. Exceptions 

presented themselves in two groups especially: PDGF-treated and bFGF-treated cells 

exhibited a decreased differentiation after induction with IBMX/Indo as compared to the 

corresponding groups using 3 ng/ml growth factors (Figs. 1 and 3), most pronouncedly in the 

“PDGF” group. Remarkably, in presence of 10 ng/ml bFGF and the Dex/IBMX/Indo/Ins 

combination, 
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 Fig. 3 Adipogenesis of MSCs monitored by Oil Red O staining of lipid droplets on day 8 after 
induction. Growth factors were administered at a concentration of 10 ng/ml. Induction 
occurred with addition of the inducer combinations dexamethasone/IBMX, 
IBMX/indomethacin, and dexamethasone, IBMX, indomethacin, and insulin. 
 
differentiated adipocytes appear in clusters with a high density of adipocytes exhibiting large 

lipid droplets (Fig. 3). EGF administered at 10 ng/ml had no prodifferentiative effect on 

MSCs (Fig. 3). Values of the GPDH activity revealed no elevation after supplementation of 

10 ng/ml EGF as compared to 3 ng/ml EGF (Fig. 4). GPDH activities of the groups “PDGF” 

and “bFGF” were distinctly lower in presence of Dex/IBMX and IBMX/Indo after addition of 

10 ng/ml growth factors as compared to the values obtained by supplementation of 3 ng/ml 

growth factors (Fig. 4). In the case of PDGF, the GPDH activity was not significantly higher 

than the activities measured for the groups “EGF” and “w/o GF”. In contrast, GPDH activities 

of 10 ng/ml PDGF and bFGF supplementation were not decreased following the induction 
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with Dex/IBMX/Indo/Ins as compared to the supplementation with 3 ng/ml growth factors 

(Figs. 2 and 4). 

 

 
Fig. 4 Adipogenesis of MSCs monitored by GPDH measurement on day 3 after induction. 
Growth factors were administered at a concentration of 10 ng/ml. Induction occurred by 
addition of the inducer combinations dexamethasone/IBMX, IBMX/indomethacin, and 
dexamethasone, IBMX, indomethacin, and insulin. Asterisks indicate statistically significant 
differences at a level of p < 0.01(*) or p < 0.05 (**) (n=3). 
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Determination of the effects of bFGF concentrations ranging from 0 to 3 ng/ml 

The aforementioned data suggest that bFGF exerts the strongest enhancement of the 

adipogenesis of MSCs among the three growth factors. Supplementation of 10 ng/ml bFGF 

did not lead to an increase of adipogenic differentiation as compared to the addition of 3 

ng/ml bFGF (Figs. 1-4). 

 
Fig. 5 Adipogenesis of MSCs monitored by Oil Red O staining of lipid droplets on day 8 after 
induction. Basic FGF was administered at concentrations ranging from 0 to 3 ng/ml. 
Induction occurred by the addition of the inducer combinations dexamethasone/IBMX, 
IBMX/indomethacin, and dexamethasone, IBMX, indomethacin, and insulin. 
 
 For the determination of the most potent concentration of bFGF, the effect of bFGF 

concentrations of 0, 0.1, 1, and 3 ng/ml were assessed by Oil Red O staining and GPDH 

activity measurement. In all experimental groups, the cocktail consisting of 

Dex/IBMX/Indo/Ins provoked, again, the strongest adipogenic differentiation as compared to 
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the inducer combinations Dex/IBMX and IBMX/Indo (Fig. 5), confirmed by a clearly 

elevated GPDH activity in the group with Dex/IBMX/Indo/Ins (Fig. 6). Irrespective of the 

inducer combination, the differentiation of MSCs was enhanced with increasing 

concentrations of bFGF (Fig. 5). When Dex/IBMX was used as the inducing cocktail, there 

was, beyond the increased number of differentiated adipocytes, an augmentation of the size of 

the intracellular lipid droplets observable with increasing bFGF doses (Fig. 5), again reflected 

in the GPDH activity. The highest values of the GPDH activity were obtained using 3 ng/ml 

in all cases (Fig. 6). In regard to the cocktail Dex/IBMX/Indo/Ins, the size of lipid droplets 

was similar in all groups receiving bFGF, but clearly increased as compared to the control 

group (Fig. 5). Remarkably, the lipid droplet sizes were decreased after induction with 

IBMX/Indo as compared to Dex/IBMX and Dex/IBMX/Indo/Ins using 1 ng/ml and 3 ng/ml 

bFGF (Fig. 5).  

 

 
Fig. 6 Adipogenesis of MSCs monitored by GPDH measurement on day 3 after induction. 
Basic FGF was administered at concentrations ranging from 0 to3 ng/ml. Induction occurred 
by addition of the inducer combinations dexamethasone/IBMX, IBMX/indomethacin, and 
dexamethasone, IBMX, indomethacin, and insulin. Asterisks indicate statistically significant 
differences at a level of p < 0.01(*) or p < 0.05 (**) (n=3). 
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Actin organization and cell shape 

MSCs seeded at a low density of 4,000 cells/cm² were stained with fluorescein-phalloidin in 

order to assess the actin filament organization and the cell shape. Cells of all groups mainly 

exhibited long and thick actin filaments and wide-spread and flattened phenotype; only a few 

cells showed a diffuse actin labeling accompanied by a more spindle-like shape. In the groups 

“PDGF” and “bFGF”, a higher number of small, round, non-spread cells appeared as 

compared to “w/o GF” and “EGF”. 

 
Fig. 7 Staining of the actin filaments of MSCs. Cells were propagated under the influence of 
the growth factors EGF, PDGF-BB, and bFGF and under control conditions (“w/o GF”). 
Scale bars: 100 µm. 
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Colony forming unit (CFU) assay 

The number of developed colonies was counted in order to evaluate the effects of different 

growth factors on the initial expansion of MSCs. Cells were seeded at a very low density, 

about the tenth part of the density in the conventional culture, and proliferated over 14 days. 

The control group without supplementation of a growth factor yielded 88 ± 4 colonies per T75 

flask (Fig. 8). EGF and bFGF clearly stimulated the growth of colonies and resulted in 114 ± 

16 and 118 ± 6 colonies, respectively (Fig. 8). In contrast, the administration of PDGF 

statistically significantly inhibited the colony development and resulted in 70 ± 7 colonies per 

flask (Fig. 8).  

 
Fig. 8 Effects of different growth factors on the formation of MSC colonies. Data represent 
mean ± standard derivation values. Asterisks indicate significantly elevated values (n=3, p< 
0.05). 
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Moreover, the portion of large colonies is strikingly elevated in cultures in presence of PDGF; 

that is, the number of grown colonies was decreased as compared to the other experimental 

groups, but the cells that did respond to PDGF proliferated extensively (Fig. 9). Cultures with 

EGF, and especially with bFGF, displayed a bigger proportion of smaller colonies than 

cultures treated with no growth factor or PDGF (Fig. 9). 

 

Fig. 9 Stained colonies after 14 days of proliferation. The data presented in Fig. 8 are 
confirmed by these stainings. The size of the colonies can be estimated using these pictures. 
PDGF-treated cultures contained a bigger proportion of large colonies, whereas EGF-
treated and especially bFGF-treated cultures yielded a bigger portion of smaller colonies as 
compared to the control group without a growth factor and the PDGF group. 
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Discussion 

This study provides data about the adipogenic differentiation of rat MSCs and its modulation 

by inducing agents, including dexamethasone (Dex), IBMX, indomethacin (Indo), and insulin 

(Ins), and growth factors, such as EGF, PDGF-BB, and bFGF. The differentiation process was 

monitored by staining of developed adipocytes and measurement of GPDH, a key enzyme in 

lipid biosynthesis that converts dihydroxyacetonephosphate into glycerol-3-phosphate and is a 

late marker of adipogenesis [37]. The results obtained by these analytical tools were in strong 

agreement with each other. In addition, the influence of the growth factors EGF, PDGF-BB, 

and bFGF on the expansion and cell shape of MSCs was investigated. 

Dex/IBMX and IBMX/Indo were demonstrated to be the minimal requirement for the 

induction of adipogenesis in absence of growth factors (data not shown). The combination 

Dex/IBMX/Indo/Ins exerted the strongest effects on the adipogenic conversion as compared 

to the other combinations (Figs. 1-4). In regard to the influence of the growth factors, EGF 

had no effect on the adipogenesis of MSCs and PDGF clearly stimulated adipogenesis, 

however, bFGF enhanced adipogenesis the most strikingly, especially after the induction 

using the weak inducer combination Dex/IBMX (Figs. 1-4). Supplementation of any of the 

growth factors at 3 ng/ml led to stronger or at least similar effects as the addition of 10 ng/ml 

of the same growth factor. The most potent growth factor, bFGF, was additionally 

supplemented in the range from 0 to 3 ng/ml (Figs. 5,6). 0.1 ng/ml bFGF clearly increased the 

adipogenic differentiation as compared to the control. The differentiation was further 

enhanced by 1 ng/ml and 3 ng/ml bFGF. Consequently, 3 ng/ml bFGF appears to be the 

optimum concentration for the enhancement of the adipogenic differentiation of MSCs and 

was, therefore, administered in all following experiments (Chapters 4-7). 3 ng/ml bFGF in 

combination with Dex/IBMX/Indo/Ins led to the development of the most numerous and most 

mature adipocytes, that is, to adipocytes with the largest intracellular lipid droplets.  

The lack of responsiveness of MSCs to a certain growth factor in regard to the adipogenic 

differentiation may be due to the absence of cell surface receptors for the growth factors. 

However, Satomura et al. and Pittenger et al. previously demonstrated the expression of the 

receptors for EGF, PDGF-BB, and bFGF, the receptor tyrosine kinases EGF-R, PDGF-R β 

isoform, and FGF-R1 on the surface of MSCs [12,38]. Furthermore, the MSCs used in this 

study responded to all growth factors in the differentiation experiments and/or in the CFU 

assay. Gronthos et al. previously reported that EGF and PDGF-BB turned out be essential and 

the most potent growth factors for the initial stimulation of the growth of purified MSCs 

under serum-free conditions, however, bFGF played a secondary role [39]. In the present 
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study, EGF provoked no effect on the adipogenesis of MSCs, irrespective of the administered 

inducing cocktail, but increased the colony number in the CFU assay as compared to the 

control group (Figs. 1-4, 8, and 9). PDGF-BB exerted a clear effect on the adipogenic 

conversion and simultaneously decreased the colony number accompanied by a striking 

increase in the portion of large colonies. Basic FGF enhanced, similarly to PDGF-BB, the 

adipogenic differentiation, but increased, in contrast to PDGF-BB and similarly to EGF, the 

colony formation.  

Regarding these data, an association of the stimulatory effects on the proliferation and the 

stimulatory effects on the differentiation appears to be unlikely. The stimulation of the 

proliferation was not a requirement for the stimulation of the differentiation. In contrast, the 

stimulators of the differentiation of MSCs, PDGF-BB and bFGF, appear to influence the 

proliferation of different MSC subsets; this is recognizable by the different number and 

different sizes of developed colonies. As a possible mechanism for the effects of  bFGF on the 

modulation of the differentiation of human MSCs, Bianchi et al. discussed the preferential 

proliferation and the inhibition of the proliferation of a subpopulation of the MSCs by bFGF 

[34].  

Another mechanism that may clarify the modulation of the MSC behavior by growth factors 

is the change of the MSC shape after exposure to the growth factors. Martin et al. reported 

that human MSCs adopt different cell shapes dependent on the presence of bFGF; a large, 

flattened phenotype in the absence of bFGF and a fibroblastic, more spindle-like shape in 

presence of bFGF [33]. The osteogenic potential of MSCs cultivated with bFGF was strongly 

increased and the retention of the differentiation potential was maintained after extensive 

proliferation with bFGF. Similar observations have been made using bovine chondrocytes in a 

tissue engineering approach. Chondrocytes expanded in presence of bFGF also adopted a 

spindle-like shape in contrast to flattened, large cells cultivated in absence of bFGF and, 

finally, bFGF treatment led to an improvement in the quality of the engineered cartilage [28]. 

In the present study, the cell shape and the cytoskeletal organization of MSCs expanded under 

the influence of basal medium; EGF, PDGF-BB, and bFGF showed similar results: large, 

spread cells with thick actin fibers (Fig. 7). This finding is not in agreement with the two 

aforementioned studies using human MSCs and bovine chondrocytes under the influence of 

bFGF [28,33]. The culture conditions of the study using hMSCs are similar to those of the 

present study in that the MSCs were cultivated on conventional culture plastic with 3 ng/ml 

bFGF and the human MSCs were cultivated on conventional cell culture plastic using 1 ng/ml 
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bFGF. However, chondrocytes were cultivated on glass with 5 ng/ml bFGF supplementation. 

The different surface materials, glass and culture plastics, may explain to the different results.  

Remarkably, there was one observable difference between the groups “PDGF” and “bFGF” 

and the groups “w/o GF” and “EGF”. In the groups “PDGF” and “bFGF”, very small cells 

were observed, which were characterized by their round, non-spread shape. In another study 

using human MSCs, cells which were flattened and spread underwent osteogenesis, while 

unspread, round cells became adipocytes [29]. McBeath et al. demonstrated that the cell shape 

regulated the switch in lineage commitment by modulating endogenous RhoA activity; 

inhibition of RhoA promotes adipogenesis and activation of RhoA supports osteogenesis. 

This RhoA commitment signal required actin-myosin-generated tension. A further 

investigation of the subpopulation characterized by the small and round cells in the present 

study may give more detailed information about their properties and behavior with regard to 

the results from McBeath et al [29]. However, it appears to be unlikely that the small round 

cells are involved in the bFGF-influenced adipogenic differentiation of the MSCs, since the 

growth of large cell colonies preferably start from large, spread cells (unpublished data). 

In conclusion, PDGF-BB and bFGF appear to be enhancers of the adipogenic conversion of 

MSCs, whereas EGF has no effect in this respect. The highest degree of adipogenesis, the 

highest numbers of and the most mature adipocytes were obtained after induction with a 

hormonal cocktail consisting of dexamethasone, IBMX, indomethacin, and insulin in 

presence of bFGF. The growth factors have different effects on the initial proliferation of 

MSCs, inhibitory effects were provoked by PDGF-BB, whereby stimulatory effects were 

induced by EGF and bFGF. Most of the cells propagated either with or without growth factors 

phenotypically appear to be large and spread cells, however, in presence of PDGF-BB and 

bFGF a considerable portion of very small, unspread, and round MSCs were observed. 

Further data and discussion on possible mechanisms of effects of bFGF on the adipogenesis 

of MSCs are provided in chapters 4 and 5 of this thesis. 
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Abstract 

Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of lineages 

including bone, cartilage, or fat depending on the inducing stimuli and specific growth and 

differentiation factors. It is widely acknowledged that basic fibroblast growth factor (bFGF) 

modulates chondrogenic and osteogenic differentiation of MSCs, but thorough investigations 

of its effects on adipogenic differentiation are lacking.  

In this study, we demonstrate on the cellular and molecular level that supplementation of 

bFGF in different phases of cell culture leads to a strong enhancement of adipogenesis of 

MSCs, as induced by an adipogenic hormonal cocktail. In cultures receiving bFGF, mRNA 

expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription 

factor in adipogenesis, was upregulated even prior to adipogenic induction. In order to 

investigate the effects of bFGF on PPARγ ligand-induced adipogenic differentiation, the 

thiazolidinedione troglitazone was administered as a single adipogenic inducer. Basic FGF 

was demonstrated to also strongly increase adipogenesis induced by troglitazone, that is, 

bFGF clearly increased the responsiveness of MSCs to a PPARγ ligand. 
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Introduction 

Multipotent mesenchymal stem cells (MSCs) are present in a variety of tissues including bone 

marrow, blood, muscle, and adipose tissue [1-4]. MSCs were found to differentiate into 

cartilage, bone, fat, muscle, and other connective tissues [5,6] depending on culture 

conditions, which include supplementation of lineage-specific inducing agents as well as 

hormones and growth factors. 

Basic fibroblast growth factor (bFGF) belongs to the family of heparin-binding growth factors 

[7]. To date, more than twenty FGFs have been discovered and FGFs are known to induce 

chemotactic, angiogenic, and mitogenic activity and play an important role in early 

differentiation and developmental processes [8,9]. Basic FGF was reported to influence 

differentiation of MSCs of various species towards different lineages. Addition of bFGF was 

shown to enhance chondrogenic and osteogenic differentiation of avian MSCs [10] and to 

retain the differentiation potential of extensively expanded human MSCs towards both the 

chondrogenic and osteogenic lineage [11]. Using rat MSCs cultivated under varying 

conditions, the stimulatory effects of bFGF were repeatedly shown to promote differentiation 

towards the osteogenic lineage [12-14]. In contrast, the effect of bFGF on the adipogenesis of 

MSCs is controversially discussed [11,15,16]. However, those studies were not focused on 

adipogenesis; instead experimental conditions were adjusted to the investigation of 

osteogenesis or chondrogenesis and adipogenic differentiation was mainly assessed by 

morphology.  

Thus, the first goal of this study was to investigate the effects of bFGF on the adipogenic 

differentiation of rat MSCs induced by an adipogenic hormonal cocktail consisting of 

dexamethasone, insulin, 3-isobutyl-1-methylxanthine (IBMX) and indomethacin. bFGF was 

supplemented in different phases of the culture and adipogenesis was characterized on the 

cellular and the molecular level. Remarkably, in these experiments mRNA expression of the 

peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription factor in 

adipogenesis in vitro and in vivo [17], was elevated in the bFGF group not only during the 

course of differentiation, but already prior to adipogenic induction. From this result, it was 

hypothesized that bFGF can also enhance adipogenesis that is solely induced by a 

PPARγ ligand. Therefore, the second goal was to determine the effects of bFGF on 

adipogenic differentiation induced by the thiazolidinedione troglitazone, an acknowledged 

synthetic ligand of PPARγ [18]. 
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Materials and Methods 

Materials 

If not otherwise stated, chemicals were obtained from Sigma, Steinheim, Germany. Basic 

FGF was obtained from R&D Systems (Minneapolis, MN, USA). Troglitazone and insulin 

were kindly provided by Dr. T. Skurk (Deutsches Diabetes Forschungsinstitut, Duesseldorf, 

Germany) and Hoechst Marion Roussel (Frankfurt am Main, Germany), respectively. Cell 

culture plastics were purchased from Corning Costar (Bodenheim, Germany). 

Cell Culture 

Marrow stromal cells were obtained from six-week old male Sprague Dawley rats (weight: 

170 - 180 g, Charles River, Sulzfeld, Germany). MSCs were flushed from the tibiae and 

femora according to the protocol of Ishaug [19]. Cells were centrifuged at 1,200 rpm for 5 

min. The resulting cell pellet was resuspended in basal medium consisting of DMEM 

(Biochrom, Berlin, Germany), 10% fetal bovine serum (Gemini Bio-Products Inc., Calabasas, 

CA, USA), 1% penicillin/streptomycin (Invitrogen, Karlsruhe, Germany), and 50 µg/ml 

ascorbic acid. Cells were seeded in T75 flasks and cultured at 37°C and 5% CO2. Cells were 

allowed to adhere to the substratum for three days. The flasks were rinsed twice with 

phosphate-buffered saline (PBS, Invitrogen, Karlsruhe, Germany) in order to remove non-

adherent cells. In the following experiments, bFGF was supplemented during different periods 

of the culture (Fig. 1). Culturing the adherent cells, 12 ml of basal medium with or without 3 

ng/ml bFGF were exchanged every 2-3 days until confluence was reached (proliferation phase 

I, Fig. 1). Cells were passaged once with 0.25% trypsin and EDTA (Invitrogen, Karlsruhe, 

Germany). For adipogenic differentiation, cells were seeded at a density of 30,000 cells/cm² 

in either six-well plates (RT-PCR) or 24-well plates (GPDH activity assay, flow cytometry 

and histological staining) and grown to postconfluence for 3 days with or without bFGF 

(proliferation phase II, Fig. 1). Subsequently, cells were differentiated for 8 days either in the 

presence or absence of bFGF (differentiation phase, Fig. 1). In detail, to induce adipogenic 

differentiation, cultures were treated for 3 days with a hormonal cocktail containing 0.5 mM 

3-isobutyl-1-methylxanthine (IBMX) (Serva Electrophoresis, Heidelberg, Germany), 10 nM 

dexamethasone, 60 µM indomethacin and 10 µg/ml insulin, which was added to the basal 

medium. Subsequently, cultures were maintained for 5 more days in differentiation medium 

consisting of basal medium supplemented with 10 µg/ml insulin. Alternatively, cells treated 

with or without bFGF were differentiated by adding exclusively 5 µM troglitazone (instead of 

the hormonal cocktail) to basal medium. For this purpose, troglitazone was dissolved in 
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dimethylsulfoxide as a 1000-fold stock solution, which was administered with each medium 

change during the complete course of differentiation (i.e. 8 days) [20]. 

The supplementation scheme of bFGF is depicted in Fig. 1. Briefly, medium supplemented 

with bFGF is abbreviated with “F”, basal medium without bFGF with “B”. Cultures treated 

with bFGF only in proliferation phase II for 3 days are designated as BFB. Addition of the 

factor during proliferation phases I and II for 15 days is indicated as FFB. Supplementation of 

bFGF exclusively in differentiation phase is abbreviated as BBF and bFGF treatment during 

complete time of cell culture as FFF. Cells grown in complete absence of bFGF (BBB) served 

as control. In preliminary experiments (assessment of adipogenesis by Oil Red O staining), 

bFGF was additionally supplemented only in the proliferation phase I for 12 days. This 

condition yielded results similar to those of the group receiving bFGF during proliferation 

phases I and II for 15 days (data not shown); consequently, in order to simplify the 

experimental design, this group (bFGF in proliferation phase I only) was omitted in the 

presented study. 

 

 
Fig.1 Basic FGF supplementation in different periods of the cell culture. MSCs were exposed 
to bFGF only in proliferation phase II for 3 days (BFB), only in both proliferation phases I 
and II for 15 days (FFB), only in the differentiation phase (BBF), or throughout the complete 
culture period (FFF). Cells grown in the absence of bFGF (BBB) served as a control. Grey 
boxes represent basal media without bFGF (B), black boxes represent basal medium 
supplemented with bFGF (F). 
 

 

 

Proliferation 
phase I (12d)

Proliferation 
phase II (3d)

Differentiation
phase (8d)

B Fbasal medium basal medium with bFGF

BBB

BBF

BFB

FFB

FFF

Proliferation 
phase I (12d)

Proliferation 
phase II (3d)

Differentiation
phase (8d)

B Fbasal medium basal medium with bFGF

BBB

BBFBBF

BFB

FFBFFB

FFFFFF



Chapter 4          Basic FGF enhances PPARγ ligand-induced adipogenesis of MSCs 

 -84- 

GPDH activity assay 

Glycerol-3-phosphate dehydrogenase (GPDH) activity was measured using a protocol adapted 

from Paircault and Green [21]. In brief, cells washed with PBS were scraped in lysis buffer 

containing 50 mM Tris, 1 mM EDTA, and 1 mM β-mercaptoethanol on ice. Subsequently, the 

resulting suspension was sonicated with a digital sonifier (Branson Ultrasonic Coporation, 

Danburg, CT, USA). Cell lysates were centrifuged for 5 min at 13,200 rpm at 4°C. Aliquots 

of the supernatant were mixed with a solution containing 0.1 M triethanolamine, 2.5 mM 

EDTA, 0.5 mM β-mercaptoethanol, 120 µM reduced nicotinamide adenine dinucleotide 

(NADH) (Roche, Mannheim, Germany), and 200 µM dihydroxyacetonephosphate. Enzyme 

activity was monitored by measurement of the disappearance of NADH at 340 nm over 4.2 

min. Enzyme activity was normalized to the protein content of each sample. Proteins were 

determined by the method of Lowry et al. [22]. Proteins were precipitated using 12% 

trichloracetic acid. In alkaline solution, proteins were solubilized and complexed with a 

mixture of disodium tartrate, copper sulfate and folin-ciocalteu reagent (all Merck, Darmstadt, 

Germany). Absorption was measured at 546 nm after 30 min incubation.  

Oil Red O staining 

Cells were washed once with PBS and fixed with 10% formaldehyde (Merck, Darmstadt, 

Germany) overnight. Cells were covered with 3 mg/ml Oil Red O for 2h. Excess dye was 

removed with PBS and  finally, cells were fixed with 10% formaldehyde. 

Flow cytometry  

This method was carried out using a protocol adapted from Gimble et al. [23]. Cells were 

carefully harvested by treatment with 0.25% trypsin/EDTA and centrifuged at 200 g at 4°C 

for 5 min. After washing the pellet with PBS, cells were centrifuged as described above and 

resuspended in PBS containing the lipophilic fluorescent dye Nile Red. Cells were incubated 

for 30 min on ice. Samples were analyzed with a FACSCalibur flow cytometer (Becton 

Dickinson, Heidelberg, Germany). Nile Red fluorescence was measured on the FL2 emission 

channel through a 585±21 nm band pass filter, following excitation with an argon ion laser 

source at 488 nm. For each sample, 104 cells were collected. To determine the number of 

adipocytes in each sample, a selection marker M1 was set in histograms. The amount of 

adipocytes was assessed by determing the percentage of cells within the M1 region. 
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Reverse transcription-polymerase chain reaction (RT-PCR) 

Total RNA was harvested from the cells with Trizol reagent (Invitrogen, Karlsruhe, Germany) 

and isolated according to the manufacturer’s instructions. First-strand cDNA was synthesized 

from total RNA by using random hexamers (Roche Diagnostics, Mannheim, Germany) and 

Superscript II RNase H Reverse Transcriptase (Invitrogen, Karlsruhe, Germany). Samples 

were incubated at 42°C for 50 min and heated afterwards at 70°C for 15 min to inactivate the 

enzyme. Subsequently, PCR was performed with Sawady Taq-DNA-Polymerase (PeqLab, 

Erlangen, Germany); initial denaturation occurred at 94°C for 120 s, final extension at 72°C 

for 30 s for each set of primers. The amplification was carried out using the following specific 

oligonucleotides:   

 

PPARγ2:  5´-GAGCATGGTGCCTTCGCTGA-3´/ 5´-AGCAAGGCACTTCTGAAACCGA-3´ 

GLUT4:  5´-AGCAGCTCTCAGGCATCAAT-3´/ 5´-CTCAAAGAAGGCCACAAAGC-3´  

SCD-1:     5’-CGGGATCACCGCGCCCACCACAAGT-3’/ 5’-CCACGGACCCCAGGGAAACCAGGATG-3’ 

18S:          5´-TCAAGAACGAAAGTCGGAGGTTCG-3´/ 5´-TTATTGCTCAATCTCGGGTGGCTG-3´  

 

18S rRNA served as control. Conditions set for the investigated genes were: 94°C for 45 s, 

62°C for 45 s, 72°C for 1 min (36 cycles) for PPARγ2;  94°C for 45 s, 56 °C for 45 s, 72°C 

for 1 min (32 cycles) for GLUT4; 94°C for 45 s, 62°C for 45 s, 72°C for 1 min (36 cycles) for 

SCD-1; and 94°C for 45 s, 56°C for 45 s, 72°C for 1 min (25 cycles) for 18S rRNA. Reverse 

transcription and PCR were performed using a Mastercycler Gradient (Eppendorf AG, 

Hamburg, Germany). The PCR products were analyzed by electrophoresis on 2% agarose 

gels, stained with ethidium bromide. Finally, the gels were subjected to imaging and 

densitometric scanning of the resulting bands under UV light (λ = 312 nm) using a Kodak 

EDAS 290 (Fisher Scientific, Schwerte, Germany).  

Statistics 

FACS data, GPDH data, and RT-PCR quantification are expressed as means ± standard 

deviation. Single-factor analysis of variance (ANOVA) was used in conjunction with a 

multiple comparison test (Tukey’s test) to assess statistical significance at a level of p < 0.01 

for FACS and GPDH data and of p < 0.05 for RT-PCR data. 
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Results 

In cultures that did not receive adipogenesis-inducing agents, no lipid droplets were observed 

in the absence of bFGF (Fig. 2 “BBB-not induced”, Tab. 1) and only very few lipid droplets 

were detected in the presence of bFGF (Fig. 2 “FFF-not induced”, Tab. 1). Moreover, the 

activity of GPDH, a key enzyme in lipid biosynthesis, was virtually undetectable in the 

absence of inducing agents, irrespective of bFGF supplementation (Fig. 3). 

In order to investigate the modulating effects of bFGF, cultures stimulated by hormonal 

inducers were supplemented with bFGF in different phases of the cell culture (Fig. 1). In 

cultures without bFGF (BBB-control), MSCs only weakly gave rise to adipocytes after 

induction with a hormonal cocktail (Fig. 2): Only about 2% of cultured cells differentiated 

into adipocytes, as determined by FACS analysis (Table 1). Exposure to bFGF enhanced the 

adipogenesis of MSCs in all cases, as determined 8 days after induction by Oil Red O staining 

and Nile Red flow cytometry of differentiated adipocytes (Fig. 2). Supplementation with 

bFGF only during the proliferation phase II (BFB) and during the proliferation phases I and II 

(FFB) yielded a 2.8-fold and 6-fold increase of the fraction of adipocytes, respectively, as 

compared to BBB-control (Table 1). The latter resulted in adipocytes containing the largest 

lipid droplets of all groups investigated (Fig. 2). Addition of bFGF in the differentiation phase 

only (BBF) resulted in a 2.3-fold increase of the adipocyte fraction (Table 1), whereas bFGF 

supplementation during the complete culture (FFF) yielded the largest increase, i.e., 9.4-fold. 

 

Experimental group FACS (% cells in M1) FACS (relative) 
BBB - not induced  0.34 ± 0.06 - 
FFF - not induced  1.43 ± 0.65 - 
BBB (induced) - control 2.23 ± 0.42 1.00 
BFB (induced)    6.21 ± 0.95 * 2.78 
FFB (induced)    13.46 ± 1.19 ** 6.03 
BBF (induced)    5.07 ± 0.64 * 2.27 
FFF (induced)      20.90 ± 1.15 *** 9.36 

 
Table 1 Quantification of flow cytometry analysis. To determine the number of adipocytes in 
each sample, a selection marker M1 was set in histograms (see Fig. 2). Column 2 represents 
the quantification of differentiated adipocytes expressed as a percentage of total cells in 
culture, column 3 shows the relative increase as compared to control group without bFGF 
(BBB induced-control). Tukey’s test (n=4) indicates a statistical significantly increase as 
compared to control group (BBB) (*), compared to BBB, BFB and BBF (**), and compared 
to all groups (***). 
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Fig. 2 Adipogenesis of MSCs on day 8 of differentiation: assessment by Oil Red O staining 
and Nile Red flow cytometry (for quantification data, see Tab. 1). The groups designated as 
“not induced” were cultivated without induction by the hormonal cocktail (BBB-not induced: 
in the absence of bFGF; FFF-not induced: in the presence of bFGF). All other groups were 
hormonally induced. BBB-control was cultivated in the absence of bFGF and served as a 
control group. Other cultures were treated with bFGF in proliferation phase II for 3 days 
(BFB), in proliferation phase I and II for 15 days (FFB), in the differentiation phase (BBF), 
and in complete culture (FFF), respectively. Scale bar: 50 µm. 
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Measurement of the GPDH activity supported the observations with regard to effects of bFGF 

(Fig. 3). In all induced cultures supplemented with bFGF, a significant increase of GPDH 

activity was detected as compared to the BBB control group. The highest values were again 

determined for experimental groups FFB and FFF.  

 
Fig. 3 Measurement of GPDH activity on day 3 of differentiation. Cultures were treated with 
bFGF in proliferation phase II for 3 days (BFB), in proliferation phase I and II for 15 days 
(FFB), in the differentiation phase (BBF), and in complete culture (FFF), respectively. Cells 
grown in absence of bFGF served as control (BBB). GPDH activity was determined in not 
induced cultures (�) and in induced cultures (�). Tukey’s test (n=4) indicated a statistically 
significant increase as compared to control group (BBB) (*) and as compared to BBB, BFB 
and BBF (**). 
 

Expression of the adipocyte-specific genes PPARγ2, a key transcription factor, GLUT4, a 

glucose transporter and late marker of adipogenesis, and stearoyl-CoA desaturase (SCD-1), a 

key enzyme in the synthesis of unsaturated fatty acids and also a late marker of adipogensis, 

was determined on the mRNA level by RT-PCR (Fig. 4). Selected experimental groups were 

investigated in order to further elucidate the contribution of bFGF to adipogenic 

differentiation, i.e., the group receiving bFGF throughout the entire proliferation phase (FFB) 

was compared to the BBB control group. Gene expression of PPARγ2 was assessed one day 

before induction (cells grown to confluence),one day and three days after induction (Fig. 4B). 

Expression of PPARγ2was  increased on day one and day three after induction, as compared 

to samples harvested one day prior to induction (Fig. 4A). PPARγ2 expression was elevated in  
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the group receiving bFGF (FFB) as compared to the control group (BBB); this trend was 

observed not only one day and three days after, but also one day before induction (Fig. 4A).  

Additionally, gene expression of late markers of adipogenic differentiation, GLUT4 and SCD-

1, was assessed on day three after induction (Fig. 4B). Again, quantification showed that 

differentiation under the influence of bFGF (FFB) led to an increased expression of both 

markers as compared to the control group (BBB) (Fig. 4B).   

 

 
Fig. 4 Assessment of expression of adipocytic genes PPARγ2, GLUT4, and SCD-1 using RT-
PCR technique. Two experimental groups (BBB and FFB) were exemplarily investigated to 
demonstrate the effect of bFGF. Three independent experiments were conducted; 
representative results of one experiment are shown here. Additionally, data from semi-
quantitative image analysis are depicted. Statistically significant difference between BBB and 
FFB group is indicated by *. (A) The expression levels of the transcription factor PPARγ2 
were determined one day before, one day after and three days after induction with the 
hormonal cocktail. 18S RNA was used as an internal control. (B) Gene expression of late 
markers of adipogenic differentiation, GLUT4 and SCD-1 was determined on day 3 after 
induction.  
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When using troglitazone as a single inducer (instead of the hormonal cocktail), adipogenic 

differentiation of MSCs was also observed. In detail, only weak adipogenesis was detected in 

absence of bFGF (Fig. 5B). Again, the exposure of MSCs to bFGF throughout the entire 

culture period resulted in a strong enhancement of adipogenesis, which was detected by Oil 

Red O staining (Fig. 5D) and GPDH activity (Fig. 6). In general, after induction with 

troglitazone, intracellular lipid droplets were distinctly smaller compared to cultures induced 

with the hormonal cocktail (Fig. 5), a previously described phenomenon [24]. Apart from that, 

with regard to Oil Red O staining and GPDH activity, troglitazone cultures were comparable 

to corresponding cultures employing the hormonal cocktail. Hence, adipogenic differentiation 

was enhanced by bFGF to the same extent under both inducing conditions (Figs. 5 and 6). 

 

 
Fig. 5 Oil Red O staining of differentiated adipocytes on day 8 of differentiation. MSCs were 
induced with the hormonal cocktail in the absence (A) and in the presence of bFGF (during 
complete culture) (C) or with troglitazone in the absence (B) and the presence of bFGF 
(during complete culture) (D), respectively. Scale bar: 50 µm. 
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Fig. 6 Measurement of GPDH activity on day 3 of differentiation. MSCs were induced with 
either the hormonal cocktail (�) or with troglitazone alone (�). For each induction 
condition, cells were cultivated either in the absence (BBB) or in the presence of bFGF 
during the entire culture period (FFF). Asterisks indicate significantly elevated values as 
compared to the control group (BBB) (n=3). 

Discussion 

Adipogenesis is a complex process involving several transcription factors and signal 

transduction pathways and is affected by a variety of environmental conditions like growth 

and differentiation factors [17]. In this study, we show that the growth factor bFGF can 

strongly enhance adipogenesis of MSCs induced by a widely used hormonal cocktail 

consisting of dexamethasone, IBMX, indomethacin, and insulin.  

Besides other features of adipogenic differentiation (Figs. 2,3,4B), bFGF increased the 

expression of PPARγ2, a key transcription factor in adipogenesis [17]. As this effect was 

observed even prior to adipogenic induction (Fig. 4A), the hypothesis that bFGF can also 

enhance adipogenic differentiation that is induced by a PPARγ ligand alone was explored. 

Indeed, bFGF enhanced adipogenesis solely induced by troglitazone, a commonly recognized 

PPARγ ligand, to the same extent as that induced by the hormonal cocktail (Figs. 5-6).  

The effects of bFGF on the hormonal cocktail-induced adipogenesis of MSCs is inherently 

more complex to explain. The inducing effects of dexamethasone and IBMX are still not well 

understood and are controversially discussed [17]. However, indomethacin is commonly 
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acknowledged to be a PPARγ ligand [25]. Furthermore, other experiments using only IBMX 

and indomethacin as adipogenic inducers showed enhancing effects of bFGF similar to those 

observed in the experiments employing the complete hormonal cocktail (data not shown). 

Therefore, the function of indomethacin as PPARγ ligand suggests that, again, the increase of 

PPARγ2 levels by bFGF likely contributed to the observed effects.  

The obtained results are in agreement with earlier morphological observations using rat MSCs  

[16]. The seemingly contradictory results of a different report obtained with human MSCs 

showing no effect of bFGF treatment may be reasonably explained by distinctly different 

adipogenic inducing schemes [11]. In contrast to our induction phase of 3 days, Tsutsumi et 

al. used a similar hormonal cocktail for 25 days and determined comparable results for groups 

with and without bFGF supplement [11]. Additionally, preliminary experiments in our 

laboratory using human MSCs yielded results similar to our data from the rat MSCs, 

suggesting that the effects of bFGF on adipogenic differentiation are not species-specific. 

In the following, possible mechanisms are discussed through which bFGF may enhance 

adipogenesis and result in elevated PPARγ2 expression levels, respectively. First, bFGF may 

cause a preferential proliferation of a subpopulation of MSCs [26,27], e.g., one with enhanced 

expression of PPARγ2. In this regard, the theoretically possible contribution of differentiated 

adipocytes, which are present in the bone marrow [28], can be excluded: Mature adipocytes 

do not attach to the substratum during cell isolation due to their buoyancy [29] and, in the 

case they did so nonetheless, they would be identified by their typical phenotype (lipid 

droplets); furthermore, they have been demonstrated to be virtually unable to proliferate on 

culture plastic substrate [30]. An alternative explanantion for enhanced adipogenesis is that 

bFGF may exert a direct effect on differentiation or commitment level [26,27], e.g., by 

directly inducing or at least maintaining expression levels of PPARγ2 mRNA of MSCs. Basic 

FGF elevated adipogenesis the most following supplementation throughout the complete 

culture period. However, the addition of bFGF only during the proliferation phase (3 days or 

15 days) also resulted in a distinct increase in differentiation. These data may be explained 

with both hypotheses, either the preferential proliferation of a subpopulation or by direct 

effects on the commitment level. However, the enhancing effects of bFGF on adipogenesis 

after supplementation to postconfluent cells (BBF) (Figs. 2-3) rather supports the idea that a 

direct effect on the commitment level of MSCs contributes, at least in part, to the observed 

extent of adipogenesis.  

As a possible mechanism for a direct effect on the commitment level, Prusty et al. have 

suggested the MEK/ERK signalling pathway to play an important role in adipogenesis [31]. 
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Basic FGF is known to be a potent activator of the MEK/ERK pathway [8]. Short-term 

exposure of bFGF (6 hours) to 3T3-L1 preadipocytes promoted adipogenesis by 

phosphorylation of ERK1/2 and resulting enhanced PPARγ and C/EBPα gene expression, 

irrespective of the presence of MEK1 inhibitors [31]. However, long-term treatment (more 

than 12-24 hours) of these cells with bFGF, as done in this study, led to a inhibition of 

adipogenic differentiation of 3T3-L1 cells [31]. Overall, the identification of the 

mechanism(s) by which bFGF exerts its effects on adipogenesis of MSCs may only be 

elucidated in full by cloning MSCs. Separated MSCs might allow the exact determination of 

the response of different subsets of cells to bFGF and adipogenic inducers. 

Nevertheless, this study underlines the outstanding role of PPARγ in the adipogenic 

conversion of MSCs, demonstrated by the distinct responsiveness of MSCs to the PPARγ 

ligand troglitazone and the strikingly increased responsiveness provoked by bFGF. This 

finding is unexpected because thiazolidinediones alone are not sufficient to stimulate efficient 

differentiation, but require to be associated with glucocorticoids, insulin and/or IBMX in most 

culture systems including preadipocytic systems [32-35]. Thus, MSCs and especially bFGF-

treated MSCs appear to respond in a different way to PPARγ activators such as troglitazone as 

compared to preadipocytic cells.  

Moreover, bFGF may play a crucial role in the fate of bone marrow cells: It has been 

previously shown that under appropriate culture conditions bFGF can enhance osteogenic 

differentiation [12-14], and it is demonstrated here that given the required adipogenic 

environment bFGF also enhances adipogenesis. Thus, depending on microenvironmental 

stimuli and status of lineage-specific transcription factors, bFGF present in bone marrow [36] 

may function as a regulator in the control of adipogenesis and osteogenesis of MSCs. 

Furthermore, in several studies an inverse relationship between adipogenic and osteogenic 

differentiation in MSC cultures was demonstrated [37-39]. Therefore, bFGF may modulate 

the origin and progression of osteoporosis due to its capability to sensitize MSCs for an 

enhanced differentiation into either osteoblasts or adipocytes. 
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Abstract 

Mesenchymal stem cells (MSCs) are multipotent stem cells capable of differentiating at least 

towards the osteogenic, chondrogenic, and adipogenic lineage. Modulators of the 

differentiation are a wide variety of growth factors such as transforming growth factor-β, 

bone morphogenetic proteins, and basic fibroblast growth factor (bFGF). Recently, we 

demonstrated the enhancing effect of bFGF on the adipogenic conversion of MSCs in 2-D and 

3-D cell culture (see chapters 4 and 7). However, mechanisms by which bFGF exerts its 

effects on MSCs are poorly investigated. 

The presence of multiple cell populations in the MSC culture renders the determination of the 

underlying mechanism more difficult and requires a system with which single cells can be 

investigated under clonal conditions. The first goals of this study was to evaluate the potential 

of different media to stimulate the growth of MSCs under clonal conditions. A medium 

consisting of α-MEM, fetal bovine serum, ascorbic acid, and the B27 supplement, denoted as 

the cloning medium, was found to be suitable for the expansion of MSCs under cloning 

condition. This medium ensured the maintenance of the differentiation potential and the 

responsiveness to bFGF as enhancer of the adipogenesis of MSCs. Administration of the 

cloning medium allowed for the investigation of the mechanism of action of bFGF on the 

adipogenesis of MSCs under clonal conditions. In conclusion, differentiation experiments 

under clonal conditions in which bFGF was supplemented either only in the single cell culture 

or in the entire culture suggests bFGF to act mainly via the preferential proliferation of a 

subset of the MSCs capable of undergoing adipogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5                         bFGF-influenced adipogenesis of MSCs under clonal conditions 

 -99-   

Introduction 

Mesenchymal stem cells (MSCs) represent intensively investigated stem cells which have the 

capacity of multipotential differentiation into at least chondrocytes, osteoblasts, and 

adipocytes [1]. The fate of MSCs depends on the microenvironmental conditions such as 

absence or presence of inducing stimuli and differentiation and growth factors such as 

transforming growth factors [2], bone morphogenic proteins [2-4], and basic fibroblast growth 

factor (bFGF) [5-7].  

Recently, we could demonstrate the enhancing effect of bFGF on the adipogenesis of MSCs 

in 2-D (Chapter 4) and 3-D cell culture (Chapter 7). Basic FGF increases the number of 

differentiated adipocytes and their maturation and yields elevated expression levels of 

adipogenic markers such as glycerol-3-phosphate dehydrogenase (GPDH), glucose transporter 

4 (GLUT4), and peroxisome proliferator-activated receptor γ (PPARγ) at the molecular level 

following the administration of hormonal induction regimen (Chapter 4). In 2-D cell culture, 

supplementation of bFGF leads to an increased expression of PPARγ even prior to adipogenic 

induction accompanied by a very high responsiveness of bFGF-treated MSCs to a PPARγ 

ligand, the thiazolidinedione troglitazone. 

Principally, two possible mechanisms of the action of bFGF are discussed [5,6]: (1) Basic 

FGF leads to preferential proliferation of a subset of the MSC population which is responsible 

for the increased PPARγ message and (2) supplementation of bFGF exerts direct effects on 

the commitment level of MSCs, that is, bFGF induces the expression of PPARγ in certain 

cells. 

Bone marrow is composed of at least three cellular systems: haematopoietic, endothelial and 

stromal. In adult bone marrow, macrophages, adipocytes, osteogenic cells, haematopoietic 

cells, cells originating from blood vessels and “reticular” cells coexist and partially cooperate 

[8]. When MSCs are isolated by adherence to cell culture plastics, as was the case in the 

studies mentioned above, the adherent cells represent a mixture of different cell types. The 

presence of multiple cell populations renders the determination of the underlying mechanism 

more difficult and requires a system with which single cells can be investigated under clonal 

conditions. 

In this study, single cells were sorted with means of FACS analysis. As reasonable clonal 

growth of certain cell types often is hard to achieve, the first goal of this study was to evaluate 

an appropriate growth medium for the clonal expansion of MSCs by testing different 

commonly used cell culture media: Dulbecco’s modified Eagle’s medium (DMEM), modified 
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Eagle’s medium (α-modification) (α-MEM), and RPMI supplemented with additives such as 

the B27 supplement and conditioned media. The optimum medium revealed to be α-MEM, 

10% FBS, 1% antibiotics, 50 µg/ml ascorbic acid, and the B27 supplement, in the following 

referred to as cloning medium. The cloning medium was used in the further experiment in 

order to study the mechanisms of the effect of bFGF on the adipogenesis of MSCs. Basic FGF 

was administered either (1) in the complete culture, that is, during the proliferation phase and 

in the subsequent single cell culture, or (2) only in the single cell culture, or (3) not at all as a 

control group. Supplementation of bFGF only in the single cell culture might be effective if 

bFGF is capable to exert direct effects on the commitment level, whereas bFGF also in the 

proliferation phase might support the preferential proliferation of a distinct cell subset which 

are prone to undergo adipogenic conversion. 

Materials and Methods 

Materials 

If not otherwise stated, chemicals were obtained from Sigma (Steinheim, Germany). The B27 

Supplement (in the following abbreviated as B27) was obtained as a 50-fold concentrate from 

Invitrogen (Karlsruhe, Germany). Basic FGF was obtained from PeproTec (Rocky Hill, NJ, 

USA). Insulin was kindly provided by Hoechst Marion Roussel (Frankfurt am Main, 

Germany). Cell culture plastics were purchased from Corning Costar (Bodenheim, Germany). 

Evaluation of the cloning medium: Cell isolation and expansion in the proliferation phase 

Marrow stromal cells were obtained from six-week old male Sprague Dawley rats (weight: 

170 - 180 g, Charles River, Sulzfeld, Germany). MSCs were flushed from the tibiae and 

femora according to the protocol of Ishaug [9]. Cells were centrifuged at 1,200 rpm for 5 min. 

The resulting cell pellet was resuspended in basal medium consisting of DMEM (Biochrom, 

Berlin, Germany), 10 % fetal bovine serum (FBS, Gemini Bio-Products Inc., Calabasas, CA, 

USA), 1% penicillin/streptomycin (Invitrogen, Karlsruhe, Germany), and 50 µg/ml ascorbic 

acid (Fig. 1c). Cells were seeded in T75 flasks and cultured at 37°C and 5% CO2. Cells were 

allowed to adhere to the substratum for three days. The flasks were rinsed twice with 

phosphate-buffered saline (PBS, Invitrogen, Karlsruhe, Germany) in order to remove non-

adherent cells. In the following experiments, cells were expanded (proliferation phase) with 

media based on either α-MEM, DMEM (Biochrom, Berlin, Germany), or RPMI 1640 

(BioWhittaker Europe, Verviers, Belgium) respectively, supplemented with 10 % fetal bovine 

serum (Gemini Bio-Products Inc., Calabasas, CA, USA), 1% penicillin/streptomycin 
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(Invitrogen, Karlsruhe, Germany), and 50 µg/ml ascorbic acid (Table 1). In some cases, B27 

(50-fold concentrate) was additionally supplemented (Table 1). RPMI 1640 was generally 

supplemented with L-glutamine, MEM sodium pyruvate (C.C. Pro, Neustadt, Germany), 

MEM non-essential amino acids, and MEM vitamin solution according to the manufacturers’ 

instructions. After reaching confluence, cells were passaged with 0.25% trypsin and EDTA 

(Invitrogen, Karlsruhe, Germany) and resuspended in DMEM without any other additives at a 

density of 1.5 to 2 million cells/ml for cell sorting. Cell suspensions were stored on ice until 

the cell sorting was performed. In the following, the culture phase from day 3 after cell 

isolation to the time point of the passage is designated as proliferation phase (PP) (Fig. 1a). 

  

Fig. 1a: Time scheme of the cell culture. For the evaluation of the cloning medium, cells were 
propagated in the proliferation phase, sorted following the passage, and expanded under 
clonal conditions using various media (Table 1). Subsequently, the number of grown clones 
was determined. The most favorable cloning medium (Fig. 1c) was used in all further 
experiments: For the mechanistic  investigation of the effect of bFGF on the adipogenesis of 
MSCs, cells were propagated using the cloning medium during the proliferation phase, the 
attachment phase, and the cloning expansion. Adipogenic differentiation was induced with the 
induction medium and MSCs were differentiated five more days with the maintenance 
medium(Fig. 1c). After 39 days, the number of grown and differentiated clones was 
determined. (* The proliferation phase lasted seven days in the presence of the cloning 
medium, but required up to twelve days with other media depending on their composition.)  
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Fig.1b Basic FGF supplementation in different periods of the cell culture. MSCs were 
exposed to bFGF only in the single cell culture (C-F) or throughout the complete culture 
period, that is, in the proliferation phase and in the single cell culture (F-F). Cells grown in 
the absence of bFGF (C-C) served as a control. Grey boxes represent cloning medium 
without bFGF (B), black boxes represent cloning medium supplemented with bFGF (F). 
 

Media Description 
Basal medium DMEM, 10% FBS, 1% PS, 50 µg/ml ascorbic acid 
Cloning medium α-MEM, 10% FBS, 1% PS, 50 µg/ml ascorbic acid, B27 

Induction medium 

clonal conditions:  cloning medium supplemented with the 
hormonal cocktail (10 nM dexamethasone, 0.5 mM IBMX, 60 µM 
indomethacin, 10 µg/ml insulin) 
non-clonal conditions: basal medium supplemented with the 
hormonal cocktail 

Maintenance medium 

clonal conditions:  cloning medium supplemented with 10 µg/ml 
insulin 
non-clonal conditions: basal medium supplemented with 10 
µg/ml insulin 

 
Fig. 1c: Definition of important and frequently used terms concerning the composition of 
various media. 
 

Evaluation of the cloning medium: Cell sorting and expansion under clonal conditions 

Propidium iodide (PI, 1 µg/ml) was added to the cell suspensions in order to exclude dead 

cells from the sorting procedure. Cells were monitored in the FACS analysis (FACStar, 

Beckton Dickinson, Heidelberg, Germany) in two-parameter dot plots, forward scatter (FSC) 

against sideward scatter (SSC) in order to observe the cell population(s), and FSC against the 

fluorescence channel 3 (FL3) in order to exclude dead cells which were stained with PI. PI 

fluorescence was measured on the FL3 emission channel through a 670 nm longpass filter, 

following excitation with an argon ion laser source at 488 nm. The cells to be sorted were 

gated in the region 2 (R2). Single cells were sorted in one well each of a 96-well plate. 94 
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cells were sorted per group. The well plates were pre-filled with the medium (100 µl/well) 

used for the attachment phase (Table 1). Cells were left undisturbed for three days for cell 

attachment. Subsequently, media used during the clonal expansion were added and exchanged 

every two to three days. In the following, the first three days after the sorting procedure is 

designated as attachment phase (AP) and the expansion phase under cloning conditions is 

designated as clonal expansion (CE) (Fig. 1a). In some cases, conditioned media were 

supplemented to the culture media. Conditioned media were collected in the proliferation 

phase of corresponding cells, frozen at -20°C, and thawed immediately before use. The pH of 

the conditioned media was adjusted to pH 7.4 with sterile 0.1 N hydrochloric acid. Cells 

propagated for about three weeks were fixed with 10% formaldehyde in PBS (Merck, 

Darmstadt, Germany) and grown clones were counted under an inverse light microscope 

(Leica DM IRB, Leica Microsystems, Wetzlar, Germany). 

Mechanistic investigation of the effects of bFGF: Cell isolation and expansion in the 
proliferation phase 

MSCs were isolated and seeded into T75 flasks as described above. Adherent cells were 

expanded using cloning medium (α-MEM, 10% FBS, 1% penicillin/streptomycin, 50 µg/ml 

ascorbic acid, and B27) in the proliferation phase. After about seven days, cells were passaged 

and prepared for the cell sorting procedure as described above. 

Mechanistic investigation of the effects of bFGF: Cell sorting and expansion under clonal 
conditions 

Cells were sorted with means of FACS analysis as described above. 282 cells were sorted per 

group. 96-well plates were pre-filled with cloning medium (100 µl/well) which was 

exchanged every two to three days for about three weeks. The phase of the culture is 

designated as single cell culture in the following (Fig. 1a). 

Mechanistic investigation of the effects of bFGF: Supplementation of bFGF 

Basic FGF was supplemented in two different experimental groups (Fig. 1b). On the one 

hand, bFGF was added to the cloning medium during the entire culture period: from three 

days after the cell isolation until the end of single cell culture, that is, during the proliferation 

phase, attachment phase, clonal expansion, and differentiation phase. This group is designated 

as “F-F” in the following. On the other hand, bFGF was supplemented to the cloning medium 

exclusively in the single cell culture, that is, during the attachment phase, clonal expansion, 

and differentiation phase but not during the initial proliferation phase. This group is 
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abbreviated as “C-F”. The control group including cells that were cultivated in absence of 

bFGF is designated as “C-C”. “C” represents the cloning medium, whereas “F” represents the 

cloning medium supplemented with 3 ng/ml bFGF  (Fig. 1b). 

Mechanistic investigation of the effects of bFGF: Adipogenic induction and differentiation  

After cells were propagated in the clonal expansion phase over three weeks, clones were 

exposed to a hormonal cocktail in order to induce adipogenic differentiation. Cultures were 

treated for three days with an induction medium (Fig. 1c) consisting of the hormonal cocktail 

(0.5 mM 3-isobutyl-1-methylxanthine (IBMX) (Serva Electrophoresis, Heidelberg, Germany), 

10 nM dexamethasone, 60 µM indomethacin and 10 µg/ml insulin) which was added to the 

cloning medium. Subsequently, cultures were maintained for five more days in maintenance 

medium consisting of cloning medium supplemented with 10 µg/ml insulin (Fig. 1c). 

Histological staining of clones 

After eight days of differentiation, clones were rinsed with PBS and fixed with 10% 

formaldehyde. First, differentiated clones were stained with Oil Red O. Cells were covered 

with 3 mg/ml Oil Red O (100 µl/96-well) for 2h. Excess dye was removed with PBS and  

finally, cells were fixed with 10% formaldehyde. Subsequently, clones were stained with 1% 

methylene blue in 10 mM borate buffer, pH 8.8 (100 µl/96-well) for 30 minutes. Excess dye 

was removed with PBS. The buffer was completely removed and clones were counted under 

an inverse light microscope (Leica DM IRB, Leica Microsystems, Wetzlar, Germany). 

Pictures were taken on a Minolta camera (Dynax 600 si classic, Minolta Europe, Langehagen, 

Germany) connected to the inverse light microscope. Thereafter, clones were covered again 

with 10% formaldehyde for storage. 

Differentiation of MSCs under non-clonal conditions 

As mechanisms of action of bFGF were investigated using the cloning medium, it had to be 

ensured that cells cultured with this medium responded to bFGF and adipogenic inducers in 

the same as in cultures using the basal medium (Chapters 3 and 4). Cells were isolated, 

propagated, and passaged as described in the second subchapter. Βasal medium and cloning 

medium were used as culture media. Cells were passaged and seeded into 24-well plates at a 

density of 30,000 cells/cm² as described in Chapter 4 in detail. After a proliferation phase of 

three days, cells were exposed to the induction medium for further three days (Fig. 1c). 

Subsequently, cells were treated with the maintenance medium for five more days (Fig. 1c). 
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After this, cells were rinsed with PBS, fixed with 10% formaldehyde, and Red Oil O staining 

was performed as described above.  

Cell were cultivated in complete absence of bFGF (“without bFGF”) and in presence of 3 

ng/ml bFGF from the time point of the cell seeding after the passage to the end of the culture 

period (“with bFGF”).  

Results 

Evaluation of a suitable cloning medium 

In the conventional 2-D and 3-D cell culture (chapters 3,4,6,7), MSCs were grown and 

differentiated using the basal medium consisting of DMEM, 10%FBS, 1% antibiotics, and 50 

µg/ml ascorbic acid. However, this medium is not sufficient for the stimulation of the growth 

of MSCs under clonal conditions. Different media based on α-MEM, DMEM, and RPMI 

were tested in combination with the B27 and conditioned media as shown in (Table 1). The 

equality of attached cells after the cell isolation among all experimental group was guaranteed 

by using the same medium, basal medium, for the first three days in all experimental groups 

shown in Table 1. 

 
# Medium in PP B27 CM Medium in AP Medium in CE B27 CM 
1 RPMI - - Medium in CP RPMI - - 
2 RPMI - - Medium in CP RPMI - + 
3 DMEM - - Medium in CP DMEM - - 
4 DMEM + - Medium in CP DMEM + + 
5 DMEM - - Medium in CP α-MEM + - 
6 DMEM - - Medium in CP α-MEM + + 
7 α-MEM - - Medium in CP α-MEM - - 
8 α-MEM - - Medium in CP α-MEM - + 
9 α-MEM + - α-MEM w/o B27 α-MEM + - 

10 α-MEM + - Medium in CP α-MEM + + 
11 α-MEM + - Medium in CP α-MEM + - 
12 α-MEM + - Medium in CP DMEM - - 
13 α-MEM + - Medium in CP DMEM - + 

 
Table 1: Cell culture conditions during the entire culture period. After cell isolation, MSCs 
were allowed to attach to the substratum over three days in basal medium). Thereafter, MSCs 
were propagated in different media in  the proliferation phase (PP) until cell were passaged 
and sorted for single cell culture. In the attachment phase (AP) after the sorting procedure, 
cells were already incubated in the medium in which they were subsequently expanded in the 
clonal expansion (CE), except of MSCs in group 9. Media were partially supplemented with 
B27 and conditioned medium (CM ). DMEM, RPMI, and α−MEM were supplemented with 
FBS, antibiotics, and ascorbic acid. RPMI was additionally supplemented with L-glutamine, 
MEM sodium pyruvate, MEM non-essential amino acids, and MEM vitamin solution (see 
Materials and Methods). 
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Figure 2 shows the number of grown clones per 96-well plate of all experimental groups. 

There was virtually no development of clones detectable following the application of media 

based on either RPMI, DMEM, or α-MEM without further supplementation of B27 or 

conditioned media (Fig. 2, groups 1, 3, and 7, respectively). Addition of conditioned media in 

the single cell culture to RPMI-based and α-MEM-based media did not yield a higher number 

of clones (Fig. 2, groups 2 and 8). 

Fig. 2 Grown clones under different culture conditions. MSCs were cultivated with different 
media and supplements as shown in Table 1. The percentage of developed clones per 96-
wellplate is shown here.  
 
Using DMEM-based media, addition of B27 in the entire culture combined with conditioned 

medium during the clonal expansion led to no improvement (Fig. 2, group 4). However, 

treatment of MSCs propagated with basal medium in the proliferation phase (Fig. 2, group 5) 

and with the α-MEM and B27-based medium supplemented with conditioned medium (Fig. 2, 

group 6) during the clonal expansion clearly improved the growth of clones: 7 clones for 

group 5 and 12 clones for group 6 as compared to 2 clones for group 3. These results show 

that the α-MEM and B27-based medium strongly influenced the growth of MSC clones, that 

is, both α-MEM and B27 are required to obtain a reasonable number of clones for further 

experiments. Thus, the α-MEM and B27-based medium was applied both in the proliferation 

phase and during the clonal expansion. Using the α-MEM and B27-based medium in the 

entire culture except for the attachment phase resulted in ten clones per 96-well plate. Here, a 
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medium without B27 addition was used in the attachment phase (Fig. 2, group 9). In group 

10, the same conditions were used as in group 9 with an additional supplementation of 

conditioned medium in the clonal expansion phase (Table 1). Group 10 resulted in twelve 

clones per well plate (Fig. 2). Exclusion of B27 in the attachment phase was tested because 

the influence of B27 on the attachment of MSC to the cell culture plastic had been unknown. 

A striking effect on the growth of clones was achieved by using the α-MEM and B27-based 

medium during the entire period of the culture (Fig. 2, group 11). 29 clones in a 96-well plate 

were obtained with this culture condition. Using cloning medium in the proliferation phase 

and basal medium (Fig. 2, group 12, 0 clones) or basal medium supplemented with 

conditioned medium (Fig. 2, group 13, 7 clones) during the clonal expansion again 

demonstrated the important influence of the α-MEM and B27-based medium. The most 

favorable medium for the clonal growth of MSCs consisting of α-MEM. 10% FBS, 

antibiotics, 50 µg/ml ascorbic acid, and B27 is termed cloning medium in the following.  

The size of the grown clones was estimated for the most suitable culture condition using the 

cloning medium in the entire culture (Fig. 2, group 11). Figure 3 shows the sizes of the clones, 

categorized in clones covering the area of a well up to 20%, up to 40 %, and from 40 to 100%, 

as estimated by eye. Approx. 45% of the clones fitted in the lowest category, about 20% in the 

middle category, and 35% covered at least 40% of the well area. 

 
Fig. 3 Size of the grown clones cultivated with the cloning medium (α-MEM, 10% FBS, 1% 
antibiotics, and B27). 
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Ιn summary, the cloning medium component α-MEM seems to be superior as compared to 

DMEM, a component of the basal medium, in regard to the stimulation of clone growth. 

Table 2 compares the compositions of α-MEM and DMEM subdivided in the categories 

inorganic salts, amino acids, vitamins, and others. The composition of inorganic salts is quite 

similar, except for the component ferric nitrate that is part of the DMEM mixture but absent in 

α-MEM. Remarkably, α-MEM contains a wider variety of amino acids and vitamins than 

DMEM. Alanine, asparagine, aspartate, cystine, glutamate, proline, biotin, vitamin B12 are 

exclusively parts of α-MEM but not compounds of the DMEM mixture, all other components 

are present in both basic media. Strikingly, components with different concentrations in the 

media are mostly at a  lower concentration in α-MEM as compared to DMEM (18 

components). Only arginine, cysteine, and glycine are present at a higher concentration in α-

MEM as compared to DMEM.   

 
Table 2: Composition of DMEM and α-MEM. 

Components DMEM α−MEM Components DMEM α−MEM

Inorganic salts [mg/l] [mg/l] Methionine 30 15
CaCl2 2H2O 265 Phenylalanine 66 32
CaCl2 200 Proline 40

Ca2+, pure 72.2 72.2 Serine 42 25
MgSO4 97.67 Threonine 95 48
MgSO4 7H2O 200 Tryptophan 16 10

Mg2+, pure 19.7 19.7 Tyrosine 2Na H2O 51.9
Fe(NO3)3 9H2O 0.1 Tyrosine 72
KCl 400 400 Tyrosine, pure 72 38.4
NaCl 6400 6800 Valine 94 46
NaH2PO4 124 122 Vitamins [mg/l] [mg/l]
NaHCO3 3700 2200 Ascorbic acid Na 50
Amino acids [mg/l] [mg/l] Biotin 0.1
Alanine 25 Coline chloride 4 1
Arginine HCl 84 126 Folic acid 4 1
Asparagine H2O 50 myo-Inositol 2
Aspartate 30 i-Inositol 7.2
Cysteine HCl H2O 100 Niacinamide 4 1
Cysteine 48 Pantothenate 1/2Ca 4 1
Cysteine, pure 48 69.5 Pyridoxal HCl 4 1
Cystine 2HCl 31.3 Riboflavin 0.4 0.1
Glutamate 75 Thiamine HCl 4 1
Glutamine 580 292 Vitamin B12 1.36
Glycine 30 50 Others [mg/l] [mg/l]
Histidine HCl H2O 42 42 Glucose 1000 1000
Isoleucine 105 52 Phenolred Na 15 11
Leucine 105 52 Pyruvate Na 110 110
Lysine HCl 146 72.5 Lipoic acid 0.2
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The second pivotal component of the cloning medium is the B27 supplement of which the 

composition is specified in Table 3. B27 is a complex mixture of vitamins, fatty acids, 

hormones, proteins, and other components. Several antioxidative agents such as tocopherol 

and retinyl acetate, the reduced form of glutathione, and the enzymes catalase and superoxide 

dismutase are included in the mixture. 

 
Table 3: Composition of the B27 supplement. 
 

FACS analysis for the cell sorting procedure 

MSCs were subjected to FACS analysis after trypsinization in order to sort single cells into 

96-wells. In Fig. 4, MSCs expanded with the basal medium and the cloning medium were 

compared in two-parameter dot plots, forward scatter (FSC) against sideward scatter (SSC) 

and FSC against fluorescence channel 3 (FL3). The main population of the MSCs of both 

groups appeared at the same position in the FSC-SSC-dot plots gated in the region 1 (R1), 

whereas the distribution of the cells was denser in the dot plot of cells propagated in the 

presence of the cloning medium. 92-94% of all cells were gated in the R1 under both 

conditions (data not shown). In the FSC-FL3-dot plots, the main population (colored red) can 

be seen around the region 2 (R2) in which about 68-74% of all cells were gated (data not 

shown). The cell populations located between 103 and 104 fluorescence units represent dead 

cells stained with the fluorescent dye propidium iodide. The portion of dead cells amounted to 

about 3-5% of all cells (data not shown). With this method, all dead cells could be excluded 

from the sorting procedure by restricting the cells to be sorted to the cells within R2. Single 

cells were sorted into one well each of a 96-well plate. 

 

 

 

Vitamins Superoxid dismutase
Biotin Transferrin
DL-alpha-tocopherol Insulin
DL-alpha-tocopherol acetate Fatty acids
Retinyl acetate Linoleic acid
Hormones Linolenic acid
Corticosterone Other components
Progesterone Ethanolamine HCl
Triodo-1-thyronine D-Galaktose
Proteins Glutathione (reduced)
Albumin, bovine Putrescine 2HCl
Catalase Selenium
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Fig. 4 FACS analysis of MSCs for the cell sorting procedure. Two-parameter dot plots show 
cells in forward scatter (FSC) against sideward scatter (SSC) in the upper row, and FSC 
against fluorescence channel 3 (FL3) in the lower row. The propidium iodide staining 
allowed for the exclusion of dead cells. Viable cells were sorted from the region 2 (R2) which 
represents cells of the main population as marked in the R1 in the FSC-SSC-dot plots. 
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Differentiation of MSCs under non—clonal conditions 

The first goal of this study was to find a cloning medium for MSCs in order to investigate the 

effects of bFGF on the adipogenesis of MSCs under clonal conditions. The cloning medium 

(Fig. 2, group 11) was demonstrated to be a suitable medium for MSC cloning. The next step 

was to also prove the suitability of the cloning medium for the differentiation of MSCs under 

non-clonal conditions in comparison to the basal medium which had been used in previous 

studies in 2-D and 3-D cell culture (chapters 3,4,6,7). 

After induction of the adipogenic differentiation by the hormonal cocktail, MSCs weakly gave 

rise to adipocytes in presence of both the basal and the cloning medium (Fig. 5). Under both 

conditions, MSCs responded to bFGF that enhanced the adipogenesis of MSCs (as also 

described in chapter 4 in detail). Basic FGF increased the number of differentiated adipocytes 

as shown by Red Oil O staining of the lipid inclusions (Fig. 5). Thus, the cultivation of MSCs 

in the cloning medium did not appear to have a modulating influence on the adipogenic 

differentiation and on the responsiveness of the MSCs to bFGF under non-clonal conditions 

as compared to the cultivation of MSCs with the basal medium. 

 

 
Fig. 5: Adipogenesis of MSCs cultured in basal medium and in  cloning medium under non-
clonal conditions. MSCs weakly differentiated in absence of bFGF, whereas supplementation 
of bFGF  enhanced the adipogenic differentiation of MSCs under both conditions. 
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Mechanistic investigation of the effects of bFGF 

The aforementioned experiments suggested the cloning medium to be an appropriate medium 

with which the effects of bFGF on the adipogenesis of MSCs could be investigated under 

clonal conditions. Basic FGF was supplemented either only in the single cell culture, 

abbreviated as C-F, or in the entire culture period, that is, during the proliferation phase and in 

the single cell culture, abbreviated as F-F. Cells cultivated in absence of bFGF (C-C) served 

as control. The number of grown clones was similar in the groups C-C (48 clones) and F-F 

(56 clones). In contrast, the number of the clones was clearly elevated in the group C-F (103 

clones), as shown in Fig. 6.  

 
Fig. 6: The growth of clones under different conditions. Basic FGF was supplemented either 
only in the single cell culture (C-F)or in the entire culture period (F-F). Cells cultivated in 
absence of bFGF (C-C) served as a control. The total number of wells in the single cell 
culture was 282. 
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The number of differentiated clones was similar in the groups C-C (9 clones) and C-F (8 

clones) but strikingly increased in the group F-F (25 clones) as compared to C-C and C-F 

(Fig. 7). Normalized to the number of grown clones under the corresponding conditions (Fig. 

6), 19% of the clones were capable to undergo adipogenesis under the condition C-C, 8% 

under C-F, and remarkable 45% under F-F (Fig. 7).  

 
Fig. 7:  The adipogenic differentiation of grown clones. Basic FGF was supplemented either 
only in the single cell cultre (C-F) or in the entire culture period (F-F). Cells cultivated in 
absence of bFGF (C-C) served as a control. White bars show the absolute number of 
differentiated clones, black bars show the fraction of differentiated clones normalized to the 
number of grown clones (see Fig. 6) under the corresponding condition. 
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Figure 8 exemplarily shows a section of a differentiated clone from the group F-F. 

Adipogenesis was induced in almost all cells of the clone. Lipid droplets were stained red by 

Oil Red O.  

 

 

 
Fig.8: Oil Red O staining of a differentiated clone of the F-F group. 
 

Discussion 

Evaluation of a suitable cloning medium 

The cloning medium consisting of α-MEM, 10% FBS, 1% antibiotics, 50 µg/ml ascorbic 

acid, and B27 turned out to be the most effective medium for the expansion of MSCs under 

clonal conditions (Table 2, Fig. 2). In addition, the application of the cloning medium retained 

the responsiveness of MSCs to the hormonal cocktail and to bFGF (Fig. 5). All media, α-

MEM, DMEM, and RPMI, were not useful to initiate the clonal growth without any further 

supplementation of additives. The addition of conditioned media collected in the proliferation 

phase of the culture had no effect on the clone growth. In contrast, addition of B27 resulted in 

the most efficient growth stimulation, especially in combination with α-MEM. The use of the 

cloning medium in the entire culture without any interruption was most effective, any 

modification led to a decrease of the developed clone number. In preliminary experiments, it 

was shown that the medium components proline and glutamate, both included in the α-MEM 



Chapter 5                         bFGF-influenced adipogenesis of MSCs under clonal conditions 

 -115-   

mixture but excluded in the DMEM mixture, stimulated the proliferation of MSCs under non-

clonal conditions if supplemented to the DMEM medium (data not shown). However, 

virtually no clonal growth was obtained in absence of B27. The B27 supplement in 

combination with DMEM was originally developed and optimized for the cultivation of 

hippocampal neurons by Brewer et al. [10]. In that study was shown that the reduction of the 

concentration of glutamine and the elimination of the toxic ferric sulphate in the DMEM 

mixture are superior to the original medium. Interestingly, the concentration of glutamine is 

strikingly lower in α-MEM (292 mg/l) than in DMEM (580 mg/l) and the iron salt ferric 

nitrate is included in DMEM but not element of α-MEM. Maybe, these components also 

contribute to the growth and survival of MSCs in the single cell culture. Using the cloning 

medium, about one third of all plated singles cells were stimulated to grow under clonal 

conditions which partially developed large clones (Figs. 2,3). The high efficacy of the clone 

growth may allow for the performance of high numbers of differentiation experiments starting 

at a reasonable number of cells to be sorted and the development of large clones and may 

allow for further differentiation experiments where the cloned cells are subjected to 

differential differentiation combined with the application of a wide range of analytical 

methods. 

Cell sorting procedure 

Conventional methods for the cloning of MSCs include the cloning ring technique [1] and the 

limiting dilution technique [11]. These methods represent technical challenges and are time 

consuming. A preferable technique is provided by the flow cytometry technique. Single cells 

can be sorted by fluorescence-activated cell sorting (FACS) [12] and magnetic activated cell 

sorting (MACS) [13], respectively. In this study, we sorted single MSCs using FSC-SSC and 

FSC-FL3 two-parameter dot plots which facilitate the sorting of cells from the main 

population with a simultaneous exclusion of propidium iodide-stained dead cells (Fig. 4).  

Mechanistic investigation of the effects of bFGF 

Basic FGF is a known modulator of the differentiation of MSCs towards the adipogenic [14], 

osteogenic [6,7,14-19], and chondrogenic [7,15] lineage. Beyond this, bFGF is a useful tool 

for the extensive expansion, the elongation of the life span, accompanied by the retention of 

the differentiation potential [5,7]. These aspects emphasize the outstanding role of bFGF for 

the application of MSCs in the field of tissue engineering. However, mechanisms by which 

bFGF exerts its effects on MSCs are poorly investigated. To date, a variety of possible 

mechanisms of the modulation of cellular differentiation by bFGF is discussed in the 
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literature. For instance, it has been suggested that bFGF exerts its effects via the modulation 

of the cell shape and the resulting cytoskeletal organization [20] as well as the alteration of 

the synthesis and the organization of the extracellular matrix and the resulting changes in the 

cell shape [6]. Mc Beath et al. reported that unspread and round human MSCs preferably 

underwent adipogenic differentiation due to an inhibition of the RhoA pathway involving 

actin-myosin-generated tensions [20]. Martin et al. demonstrated human MSCs to exhibit an 

alternative phenotype in presence of bFGF, elongated and spindle-like, as compared to the 

absence of bFGF, flattened and spread [6]. Basic FGF-treated MSCs maintained their original 

elongated shape during extensive expansion and showed an increased osteogenic 

differentiation. However, a contribution of the cell shape to the effect of bFGF in our cell 

culture system appears to be unlikely as discussed in chapter 3 of this thesis (Chapter 3, fig. 

8). A further discussed mechanism involves bFGF in the exertion of a preferential 

proliferation of a distinct subset of the MSCs  [5,6]. Basic FGF has been shown to select a 

MSC subpopulation with a distinctly longer life span caused by an increased telomere length 

of these cells [5]. That study suggested bFGF to exert a bimodal effect: the negative selection 

of cells already committed to the osteogenic lineage and the stimulation of the proliferation of 

immature MSCs. Last but not least, bFGF may influence the behavior of MSCs by a direct 

modulation of their commitment state [6]. In regard to the adipogenesis of cells, bFGF has 

been demonstrated to directly increase the expression of peroxisome proliferator-activated 

receptor γ (PPARγ) and the expression of CCAAT/enhancer-binding protein α (C/EBPα), 

both key transcription factors in adipogenesis [21], via the MEK/ERK signaling pathway in 

3T3-L1 cells [22].  

Furthermore, we have demonstrated bFGF to enhance adipogenesis of MSCs. Basic FGF 

supplemented in different phases of the culture resulted in an elevated adipogenesis in any 

case and interestingly, PPARγ mRNA was expressed at higher levels even prior to adipogenic 

induction in the presence of bFGF as compared to cells cultivated in the absence of bFGF 

(Chapter 4, Figs. 2-4). This effect of bFGF may be provoked by a preferential proliferation of 

a subpopulation of MSCs responsible for the elevated PPARγ message and/or may be caused 

by a direct effect on the commitment level of MSCs. The present study utilizing clonal 

conditions was performed in order to address this issue. The mechanistic investigation of the 

bFGF-influenced adipogenesis of MSCs is rendered more difficult due to the inhomogeneous 

mixture of different cell subpopulations. The single cell culture allows the investigation of the 

(bFGF-influenced) differentiation process of clones derived from a single cell.  
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Surprisingly, bFGF supplemented in the single cell culture (C-F) yielded about double the 

number of grown clones than the control group without bFGF (C-C) and the group with bFGF 

in the entire culture (F-F) (Fig. 6). However, clones of the C-F group differentiated to the 

same extent that the control group but clearly weaker than the clones of the F-F group (Fig. 

7). Clones derived from the C-F group respond to bFGF, that is, the number of grown clones 

is clearly elevated than in the control group, but the addition of bFGF in the single cell culture 

had no promoting effect in regard to the differentiation of MSCs. Thus, a direct commitment 

of single MSCs towards the adipogenic lineage exerted by bFGF appears to be unlikely in this 

study. In contrast, addition of bFGF in the proliferation phase and in the single cell culture 

yielded 25 differentiated clones, i.e. 45% of all grown clones underwent adipogenesis, a clear 

increase as compared to the B-B group (9 differentiated clones, 19% of all clones) and the C-

F group (8 differentiated clones, 8% of all clones) (Fig. 7). Thus, it seems that the 

supplementation of bFGF in the proliferation phase led to preferential proliferation of a 

subpopulation of the MSCs which possess a high capacity to give rise to adipocytes. A 

preferential proliferation of this subset would result in a high number of these cells present at 

the time point of the passage and subsequently, a higher probability to recover these cells in 

the single cell culture following the cell sorting procedure.  

With regard to the groups C-F and F-F, the responsiveness of the MSCs of these groups to 

bFGF in the different culture phases should be discussed. Obviously, a higher number of cells 

of the C-F respond to bFGF in the single cell culture as compared to the F-F group in respect 

to the initiation of the clone growth (Fig. 6). However, the cells of the C-F group failed to 

undergo adipogenesis (Fig. 7). In contrast, approx. 50% of the grown clones of the F-F group 

gave rise to adipocytes (Fig. 7) and these cells were stimulated during the proliferation phase 

and during the single cell culture by bFGF. A possible explanation may be the existence of at 

least two cellular subpopulations which are both proliferatively stimulated by bFGF but only 

one certain subpopulation is capable of differentiating into adipocytes. To explain the 

obtained results, a subpopulation incapable of undergoing adipogenesis might be primarily 

propagated in absence of bFGF during the proliferation phase (C-F), whereas the 

subpopulation with the potential of adipogenic differentiation might be predominantly 

expanded in presence of bFGF during the proliferation phase (F-F).  

This study suggests bFGF to exert its effect on the adipogenesis of MSCs predominantly 

through the preferential proliferation of a subpopulation of MSCs which is capable of 

differentiating into adipocytes. However, the enhancement of the adipogenesis of MSCs by 

bFGF supplemented only during the differentiation phase in the conventional 2-D cell culture 
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is hardly to explain with this mechanism. In this case, bFGF was added to postconfluent cells 

in combination with the hormonal cocktail, that is, bFGF could not stimulate the proliferation 

of MSCs (Chapter 4, Figs. 2-4, experimental group “BBF”). The fraction of MSCs which 

differentiated in this group was about 5%. Probably, the number of cells committed by this 

way is too low to be recovered in the present study and a higher number of single cells has to 

be tested in future experiments. For this group, a direct effect of bFGF on the commitment 

level of the MSCs is more likely, for instance, a mechanism such as the one proposed by 

Prusty et al. [22], as discussed above.   

In conclusion, a medium, denoted as the cloning medium, was found to be suitable for the 

expansion of MSCs under cloning condition. This medium ensured the maintenance of the 

differentiation potential and the responsiveness to bFGF as enhancer of the adipogenesis of 

MSCs. Differentiation experiments under clonal conditions in which bFGF was supplemented 

either only in the single cell culture phase or in the entire culture, respectively, suggests bFGF 

to act mainly via the preferential proliferation of a subset of the MSCs capable of undergoing 

adipogenesis. 
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Abstract 

Mesenchymal stem cells represent a promising potential cell source for tissue engineering 

strategies including approaches towards adipose tissue engineering. Beyond an appropriate 

cell source, suitable biomaterials for the fabrication of cell carriers are required in tissue 

engineering. 

In this study, the potential of a diblock copolymer consisting of poly(ethylene glycol) (PEG) 

and poly(lactic acid) (PLA) components, abbreviated as MeO-PEG2PLA40, was evaluated for 

the use in tissue engineering. This polymer consists of a 2kDa PEG chain and a 40 kDa PLA 

compound. A novel solid lipid templating technique allowed for the fabrication of custom-

made scaffolds with various ranges of pore sizes: 100-300 µm, 300-500 µm, and 500-710 µm. 

Cell attachment and proliferation of MSCs on 3-D cell carriers was investigated in regard to 

effects of the different pore size ranges over a time course of two weeks. 

MSCs were harvested from rat bone marrow and dynamically seeded onto the polymer 

scaffolds. Cellular distribution and cell shape were monitored by H&E histology and scanning 

electron microscopy. The proliferation of MSCs on the scaffolds was assessed by 

measurement of the cell number with means of DNA assay. MSCs were uniformly distributed 

within all scaffolds. The initial seeding density of MSCs onto the different scaffolds was 

equal in all groups whereas the cell number varied over the course of time.  

The scaffolds with pore sizes from 100 to 300 µm allowed for cell penetration throughout the 

entire scaffold and the cell number was maintained over two weeks. Thus, this scaffold type 

appears to be most suitable for tissue engineering applications among the tested scaffolds in 

regard to tissue development.    
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Introduction 

Conventional surgical techniques do not represent the optimum option for the supply with 

adipose tissue surrogates in reconstructive and plastic surgery [1,2]. Recently, promising new 

therapy strategies based on tissue engineering techniques have been developed which 

comprise de novo adipogenesis and cell-based therapy approaches [3]. In general, three 

critical components have emerged in tissue engineering approaches: cells, scaffolds, and 

growth factors [4]. In this study, mesenchymal stem cells (MSCs) and a derivative of PEG-

PLA diblock copolymers as a scaffold material were used in order to investigate their 

potential for (adipose) tissue engineering applications. 

In the field of adipose tissue engineering, the cell source is mainly restricted to preadipocytes 

[5-16]. However, MSCs represent a potential cell source for tissue engineering approaches 

towards various tissues [17-23]. MSCs can be easily isolated and allow for a billion-fold 

expansion. Moreover, these stem cells possess the capacity for multipotent differentiation 

[20]. In detail, MSCs are capable to undergo differentiation at least towards the bone, 

cartilage, fat, muscle, tendon, skin, and marrow stroma lineage [22,24]. To date, MSCs are 

applied to tissue engineering approaches in the field of bone [25-30], cartilage [31,32], and 

tendon [33] regeneration in vitro and in vivo. The potential of MSCs for adipose tissue 

engineering has been evaluated in the study presented in Chapter 7 of this thesis. 

To date, for cell-based strategies, preadipocytes are used as cell source in combination with 

cell carriers made from a wide range of materials. Preadipocytes have been cultivated on 

porous scaffolds made from synthetic, protein-coated polytetrafluoroethylene [5] or synthetic, 

biodegradable PLGA [6,11] and polyglycolic acid [15,16]. Furthermore, natural biomaterials 

such as collagen [7,9,10,13], hyaluronic acid [9,14], (RGD-modified) alginate gels [12], and 

fibrin glue [8] in the form of sponges and hydrogels have been shown to function as 

applicable carriers for preadipocytes. In those studies, scaffolds with pore sizes in the range of 

40 to 633 µm were used.  

In our laboratory, various poly(ethylene glycol)-block-poly(D,L-lactic acid) polymers have 

been synthesized and characterized as described in [34-36]. These polymers with varying 

ratios of the PEG and the PLA components have been shown to suppress unspecific protein 

adsorption and cell attachment and to modulate the osteogenic differentiation of MSCs in 2-D 

cell culture. In addition, by derivatization of the PEG compound, biomimetic polymers can be 

synthesized to which bioactive molecules such as peptides and proteins can be covalently 

bound in order to control the cellular behavior (see chapter 9) [37,38]. In this study, MeO-

PEG2PLA40, a diblock copolymer with a hydrophilic 2 kDa poly(ethylene glycol) (PEG) chain 
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and a lipophilic 40 kDa poly(lactic acid) compound was used. This biodegradable PEGPLA 

polymer can be processed into 3-D cell carriers by a solid lipid templating technique as 

described by Hacker et al. [39]. With this method, the pore size of the scaffolds can be 

controlled by the size of the porogen microparticles which consist of lipids. Architectural 

features of scaffolds such as the pore size and the interconnectivity of the pores have been 

shown to influence cell seeding, distribution, migration, and growth, the transport of nutrients 

and oxygen into the scaffolds, and the removal of metabolites out of the scaffold [40,41]. 

These processes strongly contribute to the development and maintenance of new tissues [42]. 

The aim of this study was to demonstrate the attachment and proliferation of MSCs in regard 

to the influence of different pore sizes of the scaffolds. Therefore, scaffolds used in this study 

are characterized by different ranges of pore sizes: 100-300 µm, 300-500 µm, and 500-710 

µm. 

Materials and Methods 

Materials 

If not otherwise stated, chemicals were obtained from Sigma (Steinheim, Germany). Basic 

FGF was obtained from PeproTec (Rocky Hill, NJ, USA). Cell culture plastics were 

purchased from Corning Costar (Bodenheim, Germany). 

The polymer MeO-PEG2PLA40 was synthesized in our laboratory as previously described 

[36]. The structure of the polymer is shown in Figure 1.  

Spinner flasks were self-made (250 ml volume, 6 cm bottom diameter, side arms for gas 

exchange). Silicon stoppers were obtained from Schuber & Weiss (München, Germany); 

needles were from Unimed (Lausanne, Switzerland).  
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Fig. 1 Structure of the polymer used for the fabrication of the scaffold, a poly(D,L-lactic 
acid)-block-poly(ethylene glycol)-monomethylether consisting of a 2 kDa PEG chain and a 40 
kDa PLA block, abbreviated as MeO-PEG2PLA40.  

 

Scaffold fabrication 

Scaffolds were fabricated using a protocol adapted from Hacker et al. [39]. Briefly, the 

scaffolds were fabricated from 30% MeO-PEG2PLA40 polymer dissolved in a methyl ethyl 

ketone-tetrahydrofurane-mixture (59:41 (v/v)) and 70% lipid microparticles made from 

Softisan 154 and Witepsol H42 (ratio 1:1; kindly provided by SASOL Germany (Witten, 

Germany)) were weighed into a separate vial. The size of porogen particles ranged from 100 

µm to 300 µm, from 300 µm to 500 µm, and from 500 to 710 µm, respectively. After 1 h 

storage at -20°C the porogen particles were transferred into the polymer solution and mixed 

for 5 min on ice. The resulting highly viscous dispersion was then transferred into a 10 ml 

polypropylene syringe and injected into eight cubic Teflon molds (with a cylindrical cavity 

of 0.8 cm in diameter). After a pre-extraction treatment step in n-hexane at 0°C for 90 min, 

the filled molds were submerged in warm n-hexane to precipitate the polymer and extract the 

porogen particles concurrently. This procedure was carried out in two separate n-hexane baths 

of different temperatures: first, molds were incubated at 45°C for 7.5 min and in a second step 

at 35°C for 22.5 min. Subsequently, the molds were transferred into a n-hexane bath of 0°C 

for 5 min. Finally, the porous cylindrical polymer constructs were removed from the molds 

and vacuum-dried for 48 h. For further investigations the constructs were cut into 2 mm slices 

which were then addressed as scaffolds. 

Cell isolation and expansion 

Marrow stromal cells were obtained from six-week old male Sprague Dawley rats (weight: 

170 - 180 g, Charles River, Sulzfeld, Germany). MSCs were flushed from the tibiae and 

femora according to an established protocol published by Ishaug [43]. Cells were centrifuged 
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at 1200 rpm for 5 min. The resulting cell pellet was resuspended in basal medium (DMEM 

(Biochrom, Berlin, Germany), 10 % fetal bovine serum (Gemini Bio-Products, Calabasas, 

CA, USA), 1 % penicillin/streptomycin (Invitrogen, Karlsruhe, Germany), 50 µg/ml ascorbic 

acid) and seeded in T75 flasks. Cells were cultured in an incubator (37°C, 5% CO2) and were 

allowed to adhere to the substratum for three days. The flasks were rinsed twice with 

phosphate-buffered saline (PBS, Invitrogen, Karlsruhe, Germany) to remove non-adherent 

cells. 12 ml of basal medium were then exchanged every 2-3 days. After confluence was 

reached, cells were detached with 0.25 % trypsin and EDTA (Invitrogen, Karlsruhe, 

Germany). The cell number of the obtained cell suspension was determined in triplicate using 

a hemacytometer. 

3-D cell culture 

MeO-PEG2PLA40 scaffolds were pre-wetted with 70% ethanol and rinsed extensively with 

PBS. Scaffolds were strung onto needles (10 cm long, 0.5 mm diameter) and located with 

segments of silicone tubing (1 mm long). Four needles with two scaffolds each were inserted 

into a silicone stopper; the stopper was in turn placed into the mouth of a spinner flask. A 

magnetic stir bar was placed at the bottom of the spinner flask. The spinner flasks were filled 

with 100 ml basal medium and put on a magnetic stir plate (Bellco 10 Glas, Vineland, NJ, 

USA) at 80 rpm in an incubator (37°C, 5% CO2). After 24 h, the medium was aspirated and 

the cell suspension containing 2.5 million cells per scaffold, was filled into the flask. The 

volume of the medium was filled up with basal medium to 100 ml. Stirring for three days at 

80 rpm allowed for cell attachment to the scaffold. At this point of time, cell-polymer 

constructs were harvested for histology, SEM, and measurement of the cell number. Further 

scaffolds were cultivated for two weeks in order to determine the cell numbers after 7 days 

and 14 days (proliferation phase). Day 0 of the proliferation phase was the day the seeding 

procedure was finished. Cell-polymer constructs were transferred into six-well plates 

containing one scaffold and 5 ml medium per well. Constructs were cultivated in six-well 

plates on an orbital shaker at 50 rpm (Dunn Labortechnik, Asbach, Germany) until the time 

point of harvest. In order to stimulate the proliferation of MSCs on the 3-D cell carriers, the 

medium was supplemented with a potent mitogen, 3 ng/ml basic fibroblast growth factor 

(bFGF). Basic FGF has been repeatedly reported to stimulate the proliferation of various cell 

types [44-46] and has been shown to enhance the proliferation of rat MSCs in Chapter 3 of 

this thesis. 
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Histology 

After the seeding procedure over three days, on day 0 of the proliferation phase, cell-polymer 

constructs were washed once with PBS and pre-fixed with 2.5% glutaraldehyde in PBS for 15 

min and subsequently with 10% formaldehyde (Merck, Darmstadt, Germany) in PBS for 

storage. Tissue constructs were dehydrated and embedded in paraffin. Deparaffinized sections 

(5 µm) were stained with hematoxylin and eosin (H&E). Photographs were taken with a 

Dynax 600 si classic camera (Minolta Europe GmbH; Langenhagen, Germany) mounted on a 

Leica DM IRB light microscope (Leica Microsystems AG; Wetzlar, Germany). 

Scanning electron microscopy (SEM) 

After the seeding procedure over three days, on day 0 of the proliferation phase, cell-polymer 

constructs were pre-fixed for 15 min with 2.5% glutaraldehyde in PBS and with 10% 

formaldehyde for storage. Tissue constructs were crosslinked for 30 min with 1% osmium 

tetroxide. After extensive rinsing and freezing at –80°C, samples underwent lyophilization 

(Christ Beta 2-16, Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, Germany). 

Samples were glued on aluminium stubs using conductive carbon tape. Thereafter, cell-

polymer constructs were coated with gold-palladium (Polaron SC515, Fisons surface systems, 

Grinstead, UK). All micrographs were taken at 10 kV on a DSM 950 (Zeiss, Oberkochen, 

Germany). 

 DNA assay 

On day 0, 7, and 14 of the proliferation phase, a fluorimetric assay was performed in order to 

determine the total amount of DNA on the cell-polymer constructs and to subsequently assess 

the cell number [47]. Cell-polymer constructs were washed with PBS and digested with 1 ml 

of a papainase solution (CellSystem, St. Katharinen, Germany) (3.2 U/ml in buffer) for 18 h at 

60 °C. The number of cells per cell-polymer construct was assessed from the DNA content 

using Hoechst 33258 dye (Polysciences, Warrington, PA, USA) measured on a 

spectrofluorometer (RF-1501, Shimadzu Deutschland GmbH, Duisburg, Germany). Cell 

standards and DNA standards (from calf thymus) were prepared in parallel. A conversion 

factor of 13 pg DNA per MSC was used to calculate the total cell number per scaffold. The 

factor was obtained by measurement of the DNA content of a cell standard, that is, a certain 

number of MSCs which number was determined using a hemacytometer, using the same 

conditions as described for the cell-polymer constructs. The determined number of cells is 
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expressed as the percentage of initially provided cells in the cell suspension, that is, 2.5 

million MSCs per scaffold. 

Statistics 

DNA data are expressed as means ± standard deviation (n=3). Single-factor analysis of 

variance (ANOVA) was used in conjunction with a multiple comparison test (Tukey’s test).  

Results 

Scaffold structure 

Custom-made scaffolds were fabricated by a novel solid lipid templating technique [39]. Fig. 

2 shows SEM pictures of the microstructure of the scaffolds. The structure characterized by a 

high porosity and a highly interconnected network of pores was generated by a simultaneous 

precipitation of the polymer and dissolution of the porogen microparticles. Three ranges of 

pore sizes in the ranges from 100 to 300 µm, from 300 to 500 µm, and from 500 to 710 µm 

were chosen for this study.  

 
Fig. 2 SEM pictures of blank scaffolds made from MeO-PEG2PLA40 polymer. Pore sizes 
ranged from 100-300, 300-500, and 500-710 µm, respectively. Scale bar: 200 µm. 

 

Cell seeding 

After the seeding procedure, cross-sections of the scaffolds were stained with H&E in order to 

observe cellular distribution of the cells within the scaffold. Figure 3 shows scaffolds with 

different pore sizes which were halved and cross sections were cut. MSCs were uniformly 

distributed throughout the entire scaffolds in all groups as shown in pictures taken at 40-fold 

magnification. The cells attached to the scaffold walls and coated the walls. The cavities 

100-300 µm 300-500 µm 500-710 µm100-300 µm 300-500 µm300-500 µm 500-710 µm500-710 µm
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within the scaffolds were not filled with cells, thus, the size of the pores can be clearly 

recognized in the histological sections. At the higher magnification, discrete stem cells and 

stem cell clusters were observable. 

 

 
Fig. 3 Histology of the cell-polymer constructs with varying ranges of the pore size at the end 
of the seeding procedure. Deparaffinized sections (5 µm) were stained with H&E. The 
cartoon shows a half of a scaffold and the striped area marks the observed area, the interior 
of a scaffold.   
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The surface of the scaffolds was additionally examined by SEM at 200-fold and 500-fold 

magnification (Fig. 4a). At the low magnification, the uniform distribution recognized in 

histological sections could be confirmed with SEM. Mostly single cells and a few cell clusters 

were distributed on scaffolds with pore sizes from 100-300 µm and from 300-500 µm.  

 
Fig. 4a SEM pictures of MSC-seeded MeO-PEG2PLA40 scaffolds at the end of the seeding 
procedure. The surface of the cell-polymer constructs is shown on the photographs. The 
cartoon shows a half of a scaffold and the striped area marks the observed area, the surface 
of the scaffolds. Scale bars at 200-fold magnification represent 50 µm and 20 µm at 500-fold 
magnification, respectively. The black arrow marks a cell-matrix area and the white arrow 
points to matrix fibrils secreted by MSCs. 
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However, large cell aggregates were found on scaffolds with 500-710 µm pores. The cell 

shape and the production of structures considered to be extracellular matrix compounds are 

recognizable in pictures taken at the high magnification. In all scaffolds, round and unspread 

as well as flattened and well-spread cells could be seen. Large cell-matrix areas, designated 

by the black arrow, and matrix fibrils, designated by the white arrow, were exclusively 

observable on scaffolds with pore sizes from 100 to 300 µm.  

Figure 4b gives insights into the interior of the scaffolds. Here, the exact centre of a scaffold 

is shown at 200-fold and 500-fold magnification. Remarkably, cells could be found in the 

middle of the scaffolds in all groups. The smallest pore sizes from 100 to 300 µm appeared to 

be large enough to allow for the penetration of MSCs to the centre of the scaffolds. In regard 

to cell shape and formation of aggregates, the same tendencies were observed in areas inside 

the scaffolds at the surface (Fig. 4a,b).  
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Fig. 4b SEM pictures of MSC-seeded MeO-PEG2PLA40 scaffolds at the end of the seeding 
procedure. The inner area of cross-sections of the cell-polymer constructs is shown on the 
photographs. The cartoon shows a half of a scaffold and the striped area marks the observed 
area, the interior of a scaffold.  Scale bars at 200-fold magnification represent 50 µm, and 20 
µm at 500-fold magnification. 
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Cell number 

Beyond the attachment of MSCs onto the scaffolds, the proliferation of MSCs in presence of 

the mitogenic growth factor basic fibroblast growth factor (bFGF) was investigated. After the 

seeding procedure, the cell-polymer constructs were cultivated for further 14 days. On day 0, 

7, and 14 of the proliferation phase, the total cell number of attached cells was examined by 

the determination of the total DNA content (Fig. 5).  

 
Fig. 5 Determination of the cell number after the three-day seeding procedure (d0), after one 
week (d7) and after two weeks (d14) of proliferation. Cell number was assessed by measuring 
the DNA content following enzymatic digestion of the cell-polymer constructs. Values are 
expressed as mean ± SD (n=3) and are normalized to the initially provided number of MSCs 
in the cell suspension (2.5 million per scaffold). Statistically significant differences of 
experimental groups are denoted by * (p < 0.01) and ∗∗ (p < 0.05). 
 

In all groups, a similar number of cells attached to the scaffolds after three days of dynamic 

cell seeding in spinner flasks, irrespective of the pore sizes. No statistically significant 

differences were calculated between the different scaffold types at this point of time. About 

71% to 76% of initially  provided cells in the cell suspension (2.5 million MSCs per scaffold) 

attached to the scaffolds with various pore sizes. After the proliferation of MSCs for one 

week, most cells were observed on scaffolds with pores from 500 to 710 µm. A decreased cell 

number was determined on scaffolds with pores from 300 to 500 µm. The scaffolds with 

pores from 100 to 300 µm yielded the lowest cell number, significantly different from 
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scaffolds with 500 to 710 µm pores. However, after two weeks, the highest cell number was 

determined for scaffolds with 100 to 300 µm large pores. A significantly decreased number of 

cells was attached to scaffolds with the other pore size ranges. Regarding the course of time, 

the cell number was not statistically different at all time points on scaffolds with 100 to 300 

µm pores. In contrast, the cell number slightly increased on scaffolds with pores sizes ranging 

from 300 to 500 µm and 500 to 710 µm, respectively, within one week, and strikingly 

decreased from 77% to 52% and 88% to 53%, respectively, after two weeks. In these groups, 

a distinctly higher number of cells was attached to the substrate of the well plates as compared 

to the group with scaffolds with pores from 100 to 300 µm indicating that the MSCs fell off 

the scaffolds (data not shown). 

Discussion 

An important requirement for successful cell-based tissue engineering is an uniform 

distribution of seeded cells throughout the scaffold. High porosity, appropriate pore sizes, and 

a high interconnectivity of pores facilitate uniform seeding of cells onto scaffolds and 

subsequently a sufficient supply of cells with oxygen and nutrients as well as the removal of 

metabolites from the scaffolds [40-42,48].  

To date, a wide variety of materials such as tricalcium phosphate, hydroxyapatite, ceramics, 

hyaluronic acid, titanium, poly(glycolic acid), and collagen as cell carriers for MSCs have 

been used for tissue engineering approaches towards bone, cartilage, and tendon [25-33]. In 

this study, we used poly(D,L-lactic acid)-block-poly(ethylene glycol)-monomethylether, 

abbreviated as MeO-PEG2PLA40, as a biomaterial. PEG-PLA polymers have been described 

to suppress unspecific protein adsorption and cell attachment due to the hydrophilic PEG 

moiety. By variation of the PEG/PLA ratio, the attachment of MSCs and their differentiation 

into osteoblasts can be modulated as shown in 2-D cell culture [36]. Lieb et al. demonstrated 

that MeO-PEG2PLA40 allowed for a significantly increased MSC attachment as compared to 

MeO-PEG5PLA20 and MeO-PEG5PLA45 derivatives but the cell attachment is strongly 

suppressed as compared to more lipophilic polymers such as PLA and PLGA [36]. 

Furthermore, when differentiated towards osteoblasts, MSCs cultivated on MeO-PEG2PLA40 

polymer films increased the mineralization the most, as compared to other PEG-PLA 

derivatives and the lipophilic polymers [36]. In summary, MeO-PEG2PLA40 appears to be a 

suitable polymer for tissue engineering applications since MSCs attach to and proliferate on 

this polymer to a degree sufficient for the formation of a tissue, thus, the polymer may 

stimulate the differentiation of MSCs. Hacker et al. developed a process for the manifacture 
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of scaffolds from the MeO-PEGPLA polymers with a simultaneous polymer precepitation and 

porogen dissolution, designated as solid lipid templating [39]. This scaffold fabrication 

technique leads to scaffold structures characterized by a high porosity and highly 

interconnected pores (Fig. 2). 

In recently published studies on cell-based adipose tissue engineering, scaffolds with pore 

sizes from 40 µm to 633 µm have been used. In detail, the pore sizes were: 40 µm [10], 52 

µm [5], 50 µm, 50-340 µm, and 100-300 µm [9], 65 and 100 µm [13], 135-633 µm [6,11], 

and 400 µm[14]. Heimburg et al. stated that an enlargement of the pore size is advantageous 

since preadipocytes showed a much better differentiation, an improved vascularization, and a 

more extensive cellular penetration into the sponges with a pore size of 65 and 100 µm 

respectively, as compared to a pore size of 45 µm [13]. In a further study, hyaluronic acid-

based sponges with a pore size of 50-340 µm proved as superior to collagen sponges with a 

pore size of 50 µm in regard to cellularity [9]. The results of these studies indicate that pore 

sizes distinctly larger than 50 µm appear to be useful for adipose tissue engineering 

approaches. 

The goal of this study was to assess the potential of scaffolds with different pore sizes for 

MSC-based tissue engineering approaches. Cell attachment, cellular distribution within the 

scaffold, and the proliferation of MSCs on the scaffolds was investigated with means of 

histology, SEM, and cell number determination. The porogen size ranges of the used scaffolds 

ranged from 100 to 300 µm, 300 to 500 µm, and 500 to 710 µm (Fig. 2). 

In summary, all ranges of scaffolds seem to be suitable for tissue engineering applications 

with regard to the uniform distribution of MSCs throughout the scaffolds (Fig. 3), that is, even 

the class with the smallest pore sizes (100 to 300 µm) was sufficient for an absolutely uniform 

cell distribution. In addition, a similar number of MSCs attached to all scaffolds after three 

days of cell seeding (Fig. 5). These striking observations may be attributed to the high 

porosity and the high interconnectivity of the pores of the used scaffolds (Fig. 2). 

Furthermore, the seeding procedure, the dynamic cell seeding of MSCs in spinner flasks, 

appeared to be appropriate for the combination of MSCs and the used scaffolds.   

MSCs seeded onto scaffolds with different pore size ranges adopted cell shapes ranging from 

absolutely round to well spread, whereby the majority of the cells tend to be round-shaped. 

This finding is in agreement with the observations in 2-D cell culture experiments using 

MeO-PEG-PLA polymer films by Lieb et al. [36]. MSCs attached to tissue culture 

polysterene in 2-D cell culture exhibited a well-spread and flattened shape. In contrast, MSCs 

attached to the more hydrophilic PEGPLA polymers were shown to adopt a round shape. This 
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change of the cell shape was observed to be more pronounced with an increasing ratio of 

PEG/PLA [36]. Changes of the cell shape might strongly impact the cellular behaviour since 

it is known that changes in cytoskeletal filament assembly may lead to changes in gene 

expression and cell function and may lead to the modulation of the MSC differentiation 

including the adipogenic differentiation [49,50].  

A remarkable difference between the experimental groups represents the observed early 

production of extracellular matrix-like structures in the form of sheets and fibril on scaffolds 

with pore sizes ranging from 100 to 300 µm (Fig. 4a). The production of matrix is necessary 

to provide stability and long-term mainentance of the new tissue and to replace the degrading 

scaffold biomaterial [51]. Furthermore, adipogenic differentiation and adipocyte behaviour 

are known to be influenced by compounds of the extracellular matrix [52-55]. The adhesion, 

proliferation, and differentiation of preadipocytes can be modulated in an inhibitory or a 

stimulatory way depending on the type of the ECM material provided to the cells [53-55]. 

Furthermore, the production of collagens during the preadipocytic state has been reported to 

be essential for the terminal adipogenesis of preadipocytes [52]. 

Unexpectedly, the number of MSCs attached to scaffolds with pore sizes from 300 to 500 µm 

and from 500 to 710 µm strongly decreased towards the end of the culture (Fig. 5). Living 

cells fell off the scaffolds with enlarged pore sizes, attached to and proliferated on the culture 

plastic material (data not shown). In contrast, the cell count was maintained constant on 

scaffolds with pores sizes from 100 to 300 µm (Fig. 5). With regard to the histology in Fig. 3 

and the SEM pictures in Fig. 4a, it is clearly recognizable that cells on the scaffolds with 100 

to 300 µm pores were seeded denser than in the other scaffolds and virtually each discrete cell 

was in contact to the scaffold material. In scaffolds with larger pores, the cells were separated 

by the wide cavaties of the scaffolds and the cells tended to build aggregates, most 

pronounced in scaffolds with the pore size range 500 to 710 µm. These aggregates reached 

into the cavity of the scaffolds but a connection to an opposite polymeric scaffold wall is 

unlikely due to the large pores and thus, the cell aggregates might have fallen off the 

scaffolds. Apparently, the contrary effects were caused by the probably silmutaneously 

occuring processes: The proliferation of MSCs on the scaffolds led to an elevation of the cell 

number, whereas the dropping off of the MSCs from the scaffolds decreased the cell number. 

Probably, the difference of the cell numbers was caused by the difference of the number of 

MSCs that fell off the scaffolds and there was no difference in the proliferation rate of the 

MSCs on scaffolds with different pore sizes. An insufficient supply of the MSCs within the 

scaffolds with nutrients and oxygen which may result in a decreased proliferation of MSCs 



Chapter 6     Stem cells on scaffolds with different pore sizes 

 -137- 

appears to be unlikely with regard to the cellular distribution of the cells throughout the 

scaffolds and the highly interconnected pores (Figs. 2-4). Furthermore, the early production of 

structures considered to be ECM might have been contributed to the retention of the MSCs on 

scaffolds with pores from 100 to 300 µm. The cell detachment might have been promoted by 

the hydrophilic surface of the MeO-PEG2PLA40 polymer and possibly, the cell detachment 

would not have occurred on more lipophilic surfaces such as the commonly used materials 

PLA or PLGA.  

In conclusion, scaffolds made from MeO-PEG2PLA40 seem to be suitable for tissue 

engineering applications based on MSCs. All ranges of pore sizes allowed for an uniform 

cellular distribution throughout the entire scaffold. Scaffolds with pore sizes from 100 to 300 

µm appeared to be advantageous in comparison to scaffolds with pores from 300 to 500 µm 

and from 500 to 710 µm, respectively, in regard to cell proliferation and early production of 

extracellular matrix components.  

As a future perspective, this study may provide useful data for the application of biomimetic 

derivatives of the MeO-PEG2PLA40 to which peptides and proteins can be covalently bound 

to in order to control the cellular behaviour. Scaffolds with pore sizes from 100 to 300 µm 

made from the biomimetic derivatives utilizing the solid lipid templating were used in the 

study presented in chapter 9 of this thesis. 
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Abstract 

Despite the clinical need for reconstructive and plastic surgery, the supply with engineered 

adipose tissue equivalents still remains a challenge. As yet, preadipocytes have exclusively 

been applied as a cell material for the tissue engineering of fat. Herein, we report the 

establishment of a 3-D long-term cell culture using bone marrow-derived mesenchymal stem 

cells (MSCs) as an alternative cell source and custom-made poly(lactic-co-glycolic)acid 

(PLGA) scaffolds as a cell carrier. Cell-polymer constructs were cultivated for four weeks in 

both the absence and presence of basic fibroblast growth factor (bFGF), which was previously 

shown to strongly enhance adipogenesis of MSCs in conventional 2-D short-term culture. A 

striking enhancement of the adipogenic differentiation of MSCs and tissue development 

caused by bFGF in the 3-D culture was observed by osmium tetroxide histology and scanning 

electron microscopy. On the molecular level, reflecting the increased accumulation of lipids, 

bFGF increased the enzymatic activity of GPDH, a late marker of adipogenesis, and the 

expression of the adipocyte-specific genes PPARγ2 and GLUT4, as assessed by RT-PCR. 

This study demonstrates that MSCs, especially in combination with bFGF, may represent a 

promising approach to adipose tissue engineering. 
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Introduction 

Despite the continuously increasing clinical demand [1], at present, an optimum strategy for 

the regeneration and replacement of adipose tissue remains elusive [2-4]. Adipose tissue is 

required in reconstructive, cosmetic, and correctional surgery. Indications for adipose tissue 

include, for instance, therapies following oncological resections and complex traumata or 

augmentative surgery of the breast, cheek, chin, or lips [4]. 

Even though fat functions as a natural filling material, autologous adipose tissue remains 

minimally effective due to insufficient neovascularization and resultant unpredictable 

shrinkage of the fat graft. Injection of single cell suspensions of mature adipocytes does not 

represent an alternative method, because exposure of the fragile adipocytes to the mechanical 

forces of liposuction results in about 90% traumatized adipocytes [5]. 

Recently, promising new therapy strategies based on tissue engineering techniques that 

combine de novo adipogenesis and cell-based therapeutic approaches have been developed. 

De novo adipogenesis has been induced by injection of Matrigel and basic fibroblast growth 

factor (bFGF) [6-8] or long-term local delivery of insulin and insulin-like growth factor-I by 

poly(lactic-co-glycolic) (PLGA)/polyethyleneglycol (PEG) microspheres [9]. To date, only 

preadipocytes have been used as a cell source for cell-based strategies, although in 

combination with cell carriers made from a wide range of materials. Primary preadipocytes or 

preadipocytic cell lines have been cultivated on porous scaffolds made from synthetic, 

protein-coated polytetrafluoroethylene [10], synthetic, biodegradable PLGA [11] and 

polyglycolic acid [12,13]. Furthermore, collagen [14-16] and hyaluronic acid-based scaffolds 

[14,17] have been shown to function as suitable carriers for preadipocytes. Additionally, 

recent studies using preadipocytes examined the potential of hydrogel materials for adipose 

tissue engineering including collagen gels [18], alginate and RGD-modified alginate gels [19], 

and fibrin glue [20]. 

Stem cells derived from adult bone marrow, also referred to as mesenchymal stem cells 

(MSCs), represent a promising alternative cell source for soft tissue engineering [21-24]. The 

use of MSCs may circumvent some major drawbacks associated with mature adipocytes and 

precursor cells, i.e., MSCs can be easily isolated and MSCs possess the capacity of a 

billionfold expansion [21]. Due to their multipotent differentiation capacity [21], MSCs have 

been applied in many tissue engineering approaches, e.g., in the field of bone [25-30], 

cartilage [31,32], and tendon [33] regeneration in vitro and in vivo. However, no study on 

tissue engineered fat exists using MSCs.  
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Therefore, the overall aim of this study was to demonstrate, for the first time, the potential of 

MSCs for the application in adipose tissue engineering. MSCs were seeded on custom-made 

PLGA scaffolds with a pore size from 100 to 300 µm fabricated using a solid lipid templating 

technique [34]. Recently, in 2-D cell culture over eight days, we demonstrated a strong 

enhancement of hormonally induced adipogenesis of MSCs after exposure to bFGF [35]. This 

study aimed at (a) the transfer of the established adipogenic protocol including the application 

of bFGF from 2-D to 3-D long-term cell culture, (b) an efficient adipogenic differentiation of 

MSCs and subsequent maturation, and (c) a characterization of the differentiation processes 

on the histological and molecular level. Therefore, MSCs were cultivated in both the absence 

and presence of bFGF over four weeks in 3-D cell culture applying a repeated hormonal 

induction regimen. 

Materials and Methods 

Materials 

If not otherwise stated, chemicals were obtained from Sigma (Steinheim, Germany). Basic 

FGF was obtained from PeproTec (Rocky Hill, NJ, USA). Insulin was kindly provided by 

Hoechst Marion Roussel (Frankfurt am Main, Germany). Cell culture plastics were purchased 

from Corning Costar (Bodenheim, Germany). Poly(lactic-co-glycolic acid) (PLGA 75:25; 

approx. 90 kD) was obtained from Boehringer Ingelheim (Ingelheim am Rhein, Germany). 

Spinner flasks were self-made (250 ml volume, 6 cm bottom diameter, side arms for gas 

exchange). Silicon stoppers were obtained from Schuber & Weiss (München, Germany); 

needles were from Unimed (Lausanne, Switzerland).  

Scaffold fabrication 

Scaffolds were fabricated using a protocol adapted from Hacker et al [34]. Briefly, 0.80 g of 

PLGA (75:25) polymer was weighed in a glass vial and dissolved in 2.70 ml ethylacetate. 

3.20 g of lipid microparticles made from Softisan 154 and Witepsol H42 (ratio 2:1; kindly 

provided by SASOL Germany (Witten, Germany)) were weighed in a separate vial. The size 

of porogen particles ranged from 100 µm to 300 µm. After cooling for 1 h at -20°C, the 

porogen particles were transferred into the polymer solution and mixed for 5 min on ice. The 

resulting highly viscous dispersion was then transferred into a 10 ml polypropylene syringe 

and injected into eight cubic Teflon molds with a cylindrical cavity of 0.8 cm in diameter. 

After a pre-extraction treatment step in n-hexane at 0°C for 15 min, the filled molds were 

submerged in warm n-hexane to concurrently precipitate the polymer and extract the porogen 
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particles. This procedure was carried out in two separate n-hexane baths of different 

temperatures: 52°C for 10 min followed by 40°C for 20 min. Subsequently, the molds were 

transferred into an n-hexane bath of 0°C for 5 min. Finally, the porous cylindrical polymer 

constructs were removed from the molds and vacuum-dried for 48 h. For further 

investigations, the constructs were cut into 2 mm slices, which were then termed scaffolds. 

Cell isolation and expansion 

Marrow stromal cells were obtained from six-week old male Sprague Dawley rats (weight: 

170 - 180 g, Charles River, Sulzfeld, Germany). MSCs were flushed from the tibiae and 

femora according to an established protocol published by Ishaug [36]. Cells were centrifuged 

at 1200 rpm for 5 min. The resulting cell pellet was resuspended in basal medium (DMEM 

(Biochrom, Berlin, Germany), 10 % fetal bovine serum (Gemini Bio-Products, Calabasas, 

CA, USA), 1 % penicillin/streptomycin (Invitrogen, Karlsruhe, Germany), 50 µg/ml ascorbic 

acid) and seeded in T75 flasks. Cells were cultured in an incubator (37°C, 5% CO2) and were 

allowed to adhere to the substratum for three days. The flasks were rinsed twice with 

phosphate-buffered saline (PBS, Invitrogen, Karlsruhe, Germany) to remove non-adherent 

cells. 12 ml of basal medium, either with or without 3 ng/ml bFGF, were then exchanged 

every 2-3 days. After confluence was reached, cells were detached with 0.25 % trypsin and 

EDTA (Invitrogen, Karlsruhe, Germany), centrifuged and resuspended in basal medium. The 

cell number of the obtained cell suspension was determined using a hemocytometer; the cell 

suspension was used for seeding onto the polymer scaffolds (see below). 

3-D cell culture    

PLGA scaffolds were pre-wet with 70% ethanol and rinsed extensively with PBS. Scaffolds 

were strung onto needles (10 cm long, 0.5 mm diameter) and secured with segments of 

silicone tubing (1 mm long). Four needles with two scaffolds each were inserted into a 

silicone stopper; the stopper was in turn placed into the mouth of a spinner flask. A magnetic 

stir bar was placed at the bottom of the spinner flask. The spinner flasks were filled with 100 

ml basal medium and placed on a magnetic stir plate (Bellco 10 Glas, Vineland, NJ, USA) at 

80 rpm in an incubator (37°C, 5% CO2). After 24 h, the medium was aspirated and the flask 

was filled with a cell suspension containing three million cells per scaffold in 100 ml of basal 

medium. Stirring for three days at 80 rpm allowed for cell attachment to the scaffold. 

Subsequently, the cell-polymer constructs were transferred into six-well plates containing one 

scaffold and 5 ml medium per well. From this point in time, cells which had been cultured 

with bFGF during the proliferation phase in 2-D culture again received bFGF treatment (3 
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ng/ml) for the entire 3-D culture (including adipogenic induction and maintenance); cells 

which had been cultured without bFGF during proliferation (2-D) still did not receive any 

bFGF during 3-D culture. Constructs from both groups (with or without bFGF) were 

cultivated in six-well plates on an orbital shaker at 50 rpm (Dunn Labortechnik, Asbach, 

Germany) until they were harvested. Three days after the transfer into six-well plates, 

adipogenesis was induced by adding the induction medium (a hormonal cocktail containing 

0.5 mM 3-isobutyl-1-methylxanthine (IBMX) (Serva Electrophoresis, Heidelberg, Germany), 

10 nM dexamethasone, 60 µM indomethacin, and 10 µg/ml insulin in basal medium); this 

point of time was referred to as day 0. After three days (day 3), cells were exposed to an 

adipogenic maintenance medium consisting of basal medium supplemented with 10 µg/ml 

insulin. On day 7, cell-polymer constructs were either harvested and designated as “1 week” 

or underwent the alternate treatment with induction (for three days each) and maintenance 

medium (for four days each) a second (“2 weeks”), a third (“3 weeks”), and a fourth time (“4 

weeks”) (Fig. 1).  

 
Fig. 1 Time course of adipogenic 3-D cell culture: MSCs were seeded onto scaffolds for three 
days, followed by a three days lasting proliferation period. Subsequently, cell-polymer 
constructs were induced weekly, i.e. MSCs were exposed to adipogenic inducer cocktail for 
three days (on day 0, 7, 14, and 21) and were allowed to differentiate for four more days (on 
day 3, 10, 17, and 24). The day of the first induction is designated as day 0 of adipogenic 
culture. Constructs were harvested three days after every induction for GPDH and PCR 
analysis and eight days after every induciton for histology and SEM.  
 

In a previous study investigating the adipogenic differentiation of MSCs in 2-D culture, bFGF 

was demonstrated to strongly enhance adipogenesis [35]. The application of bFGF over 

different culture periods led to varying degrees of enhancement, with the largest effect seen 

when bFGF was applied throughout the entire culture period (proliferation, induction and 

maintenance of adipogenesis). Therefore, for this study (3-D culture), only the group that 
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received bFGF throughout the entire culture period (maximum effect in 2-D culture) was 

compared to a control group receiving no bFGF at all. 

The number of MSCs attached to the scaffold after the cell seeding procedure was determined 

fluorometrically by measuring the amount of DNA using Hoechst 33258 dye (Polysciences, 

Warrington, PA, USA) [37]. 

Osmium tetroxide (OsO4) staining 

Lipid staining with OsO4 was performed by adapting a previously published protocol [38]. 

After one, two and four weeks of adipogenic culture (Fig. 1), cell-polymer constructs were 

washed once with PBS and pre-fixed with 2.5% glutaraldehyde in PBS for 15 min and 

subsequently stored in 10% formaldehyde (Merck, Darmstadt, Germany) in PBS. In order to 

crosslink intracellular lipids, cell-polymer constructs were covered with a 1% aqueous OsO4 

solution (Carl Roth, Karlsruhe, Germany) for 1 h on ice. Excess OsO4 was removed with 

extensive washing with bidestilled water and cells were again fixed with 10% formaldehyde. 

Tissue constructs were dehydrated and embedded in paraffin. Deparaffinized sections (5 µm) 

were counterstained with hematoxylin and eosin (H&E). Photographs were taken on a Zeiss 

Axiovert 200M microscope coupled to a Zeiss LSM 510 scanning device (Zeiss, Jena, 

Germany). Photographs at 400-fold magnification were obtained with an oil immersion 

technique using Immersol 518F (Zeiss, Oberkochen, Germany)  

Scanning electron microscopy (SEM) 

After one, two and four weeks of adipogenic culture (Fig. 1), cell-polymer constructs were 

pre-fixed for 15 min with 2.5% glutaraldehyde in PBS and stored in 10% formaldehyde. 

Constructs were then crosslinked for 30 min with 1% osmium tetroxide. After extensive 

rinsing and freezing at –80°C, samples were subjected to lyophilization (Christ Beta 2-16, 

Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, Germany). Samples were glued 

onto aluminum stubs using conductive carbon tape. Thereafter, cell-polymer constructs were 

coated with gold-palladium (Polaron SC515, Fisons surface systems, Grinstead, UK). All 

micrographs were taken at 10 kV on a DSM 950 (Zeiss, Oberkochen, Germany). 

Glycerol-3-phosphate deydrogenase (GPDH) activity assay 

GPDH activity was measured using a protocol adapted from Pairault and Green [39]. Cell-

polymer constructs were harvested weekly three days after each induction and denoted as “1 

week” (harvest on day 3), “2 weeks” (harvest on day 10), “3 weeks” (harvest on day 17), and 

“4 weeks” (harvest on day 24) (Fig. 1). In preliminary experiments employing MSCs, the 
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maximum GPDH activity was obtained three days after induction, as assessed by kinetic 

measurements (data not shown). In brief, cell-polymer constructs washed with PBS were cut 

and put in lysis buffer containing 50 mM Tris, 1 mM EDTA, and 1 mM β-mercaptoethanol on 

ice. The resulting suspension was subsequently sonicated with a digital sonifier (Branson 

Ultrasonic Corporation, Danburg, CT, USA). Cell lysates were centrifuged for 5 min at 

13,200 rpm at 4°C. Aliquots of the supernatant were mixed with a solution containing 0.1 M 

triethanolamine, 2.5 mM EDTA, 0.5 mM β-mercaptoethanol, 120 µM reduced nicotinamide 

adenine dinucleotide (NADH) (Roche, Mannheim, Germany), and 200 µM 

dihydroxyacetonephosphate. Enzyme activity was monitored by measurement of the 

disappearance of NADH at 340 nm over 4.2 min. Enzyme activity was normalized to the 

protein content of each sample. Proteins were determined by the method of Lowry et al. [40]. 

Proteins were precipitated using 12% trichloracetic acid. In alkaline solution, the proteins 

were solubilized and complexed with a mixture of disodium tartrate, copper sulfate and folin-

ciocalteu reagent (all from Merck, Darmstadt, Germany). Absorption was measured at 546 nm 

after a 30 min incubation.  

Reverse transcription-polymerase chain reaction (RT-PCR) 

Cell-polymer constructs were harvested weekly three days after each induction and denoted as 

“1 week” (harvest on day 3), “2 weeks” (harvest on day 10), and “4 weeks” (harvest on day 

24) (Fig. 1). In previous experiments in 2-D culture, gene expression levels of investigated 

genes reached their maxima three days after induction, as assessed by kinetic measurements 

(data not shown). Total RNA was harvested from the cells with Trizol reagent (Invitrogen, 

Karlsruhe, Germany) and isolated according to the manufacturer’s instructions. First-strand 

cDNA was synthesized from total RNA by using random hexamers (Roche Diagnostics, 

Mannheim, Germany) and Superscript II RNase H Reverse Transcriptase (Invitrogen, 

Karlsruhe, Germany). Samples were incubated at 42°C for 50 min and heated afterwards at 

70°C for 15 min to inactivate the enzyme. Subsequently, PCR was performed with Sawady 

Taq-DNA-Polymerase (PeqLab, Erlangen, Germany); initial denaturation occurred at 94°C 

for 120 sec, final extension at 72°C for 30 sec for each set of primers. The amplification was 

carried out using the following specific oligonucleotides:   
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PPARγ2:  5´-GAGCATGGTGCCTTCGCTGA-3´/5´-AGCAAGGCACTTCTGAAACCGA-3´ 

GLUT4:  5´-AGCAGCTCTCAGGCATCAAT-3´/5´-CTCAAAGAAGGCCACAAAGC-3´  

18S:     5´-TCAAGAACGAAAGTCGGAGGTTCG-3´/5´-TTATTGCTCAATCTCGGGTGGCTG-3´  

 

18S rRNA served as control. Appropriate conditions for the investigated genes were: 94°C for 

45 s, 62°C for 45 s, 72°C for 1 min (36 cycles) for PPARγ2; 94°C for 45 sec, 56 °C for 45 

sec, 72°C for 1 min (32 cycles) for GLUT4; and 94°C for 30 sec, 56°C for 45 sec, 72°C for 1 

min (25 cycles) for 18s rRNA. Reverse transcription and PCR were performed using a 

Mastercycler Gradient (Eppendorf AG, Hamburg, Germany). The PCR products were 

analyzed by electrophoresis on 2% agarose gels stained with ethidium bromide. Finally, the 

gels were subjected to imaging of the resultant bands under UV light (l = 312 nm) using a 

Kodak EDAS 290 (Fisher Scientific, Schwerte, Germany).  

Statistics 

GPDH data are expressed as means ± standard deviation. Single-factor analysis of variance 

(ANOVA) was used in conjunction with a multiple comparison test (Tukey’s test).  
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Results 

Scaffold material and cell seeding 

The scaffolds, fabricated from PLGA by a solid lipid templating technique [34] exhibited a 

structure characterized by a high porosity and a highly interconnected network of pores (pore 

size 100-300 µm) (Fig. 2). Three million cells per scaffold were used in the dynamic seeding 

process in spinner flasks. During the three day seeding period, 70.3±8.0% of the cells attached 

to the scaffolds (data not shown).  

 
Fig. 2 Scanning electron microscopy of blank PLGA scaffolds without seeded MSCs: 
scaffolds exhibit a highly porous structure with interconnected pores. Photographs are shown 
in 100-fold magification (A) and 200-fold magnification (B). Scale bars: 200 µm (A) and 100 
µm (B).   
     

OsO4 histology 

In order to induce adipogenesis, the cell-polymer constructs were treated with a widely used 

hormonal cocktail [35,41] consisting of dexamethasone, IBMX, indomethacin, and insulin. In 

the absence of inducing stimuli, no adipocytes developed in either the absence or presence of 

bFGF (data not shown). In Fig. 3a, induced cell-polymer constructs are shown over a time 

course of four weeks. Constructs were fixed with OsO4 resulting in black stained areas, which 

mark intracellular lipid droplets of differentiated adipocytes.  

Cell-polymer constructs cultivated in presence of bFGF clearly yielded a higher number of 

differentiated adipocytes compared to the control group without bFGF (Fig. 3a). This 

discrepancy in the differentiation rates was observable at all times. In both groups, a relatively 

modest increase in the number of adipocytes occurred between 1 and 2 weeks, whereas a 

A BA B
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large increase was observed between two and four weeks; the latter was especially 

pronounced in the presence of bFGF. 

 

 
Fig. 3a OsO4 histology of cell-polymer constructs (100-fold magnification): Sections of 
constructs cultivated over 1, 2 and 4 weeks in absence and presence of bFGF. Black stained 
areas represent OsO4-crosslinked lipid droplets. Histological paraffin sections were 
counterstained with hematoxylin and eosin (H&E). A clear development of the tissue and the 
differentiation rate of MSCs was observable in the course of time; more pronounced after 
treatment of MSCs with bFGF compared to control group. Scale bar: 100 µm. 
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Under both culture conditions, the size of lipid droplets increased with time. The size of 

accumulated lipid droplets was distinctly larger in the presence of bFGF than in the absence 

of bFGF (Fig. 3b). After four weeks, adipocytes differentiated in presence of bFGF partially 

exhibited a unilocular phenotype, i.e., one large lipid droplet appears within an adipocyte 

indicating a high degree of maturation of differentiated MSCs. Multivacuolar adipocytes 

(several small lipid droplets within a cell) were observed mainly in inner parts of the scaffold 

(data not shown). Without supplementation of bFGF, only adipocytes with several discrete 

small lipid droplets per adipocyte were visible in all areas of the scaffold at all points of time 

(Fig. 3b).  

 

 
Fig. 3b OsO4 histology of cell-polymer constructs (400-fold magnification): Constructs 
cultivated in absence and presence of bFGF are shown after 1 and 4 weeks. Black stained 
areas represent OsO4-crosslinked lipid droplets. Immature, multivacuolar adipocytes are 
designated by the black arrows. An augmentation of intracellular lipid droplets was 
observable in the course of time and in presence of bFGF compared to control group.Scale 
bar: 20 µm. 
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Scanning electron microscopy (SEM) 

Tissue development and cellular distribution were monitored on the surface and in the interior 

of cell-polymer constructs using SEM. In the presence of bFGF, the scaffold surface was 

partially covered by cells and structured sheets considered to be extracellular matrix (ECM) 

material after just two weeks and was completely covered after four weeks (Fig. 4a). Thus, 

discrete adipocytes could not be observed at the surface, but rather only in the interior of the  

 
Fig. 4a SEM of the surface of cell-polymer constructs (100-fold magnification): Constructs 
cultivated over 1, 2, and 4 weeks in absence and presence of bFGF revealed a clear tissue 
development in the course of time, more pronounced after treatment of MSCs with bFGF 
compared to control group. Figures show single cells or groups of cells attached to the 
polymeric scaffold and, at later points of time, figures show cell-extracellular matrix areas 
covering the scaffold surface. Scale bars: 100 µm. 
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scaffold. material after just two weeks and was completely covered after four weeks (Fig. 4a). 

Thus, discrete adipocytes could not be observed at the surface, but rather only in the interior 

of the scaffold. In contrast, in the absence of bFGF, the structure of the scaffold (compare Fig. 

2) was still clearly identifiable after one and two weeks; after four weeks, the scaffold was 

only partially covered by cells and sheets (Fig. 4a). 

 
Fig. 4b SEM of the interior of cell-polymer constructs (500-fold magnification): Constructs 
cultivated in absence and presence of bFGF are shown after 1 and 4 weeks. Undifferentiated 
MSCs are designated by the black arrow, differentiated adipocytes by the white arrows. An 
increase in cell size and changes in morphology with bulged cell membranes due to fat 
storage were observed. An augmentation of intracellular lipid droplets was observable in the 
course of time and in presence of bFGF compared to control group. Scale bars: 20 µm. 
 

In the interior of the constructs, differentiated adipocytes exhibited a multivacuolar phenotype 

(Fig. 4b). The size of the adipocytes was increased in bFGF-treated constructs as compared to 

the control group (Fig. 4b). In the presence of bFGF, groups of adipocytes were observed 

even after one week, recognizable by the bulged cell membranes, which are caused by lipid 

droplets. After four weeks, cells were additionally embedded in structures regarded as 

extracellular matrix. In the absence of bFGF, most cells were undifferentiated MSCs and only 

a few differentiated adipocytes were observed. 
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Glycerol-3-phosphate dehydrogenase (GPDH) activity  

The degree of adipogenesis of MSCs in the cell-polymer constructs was reflected in 

measurements of the GPDH activity, which was determined three days after each induction. 

GPDH is a late marker of adipogenic differentiation, since it is a key enzyme in the 

biosynthesis of triglycerides. GPDH activity was significantly elevated after supplementation 

of bFGF compared to the control group after one (6.0-fold), two (3.8-fold), and three (1.8-

fold) weeks (Fig. 5). In contrast, values of GPDH activity were equal after four weeks. The 

kinetics of GPDH activity was different for the two experimental groups. In the absence of 

bFGF, GPDH activity increased the first three weeks; after that no further increase was 

observed. In contrast, in the presence of bFGF, GPDH activity reached a maximum after two 

weeks followed by a steady decrease.  

 
Fig. 5 GPDH activity of cell-polymer constructs: GPDH, a key enzyme involved in 
triacylglycerol synthesis, was determined at day 3 after each induction of adipogenesis and 
standardized per mg protein. White bars represent control group without bFGF, gray bars 
represent bFGF-treated cell-polymer constructs. Values are expressed as mean ± SD (n=3). 
Statistically significant differences of bFGF treated cell compared to control group are 
denoted by ∗ (p < 0.01) and ∗∗ (p<0.05). 
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Reverse transcription-polymerase chain reaction (RT-PCR) 

RT-PCR was performed three days after each induction in order to assess adipocytic gene 

expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription 

factor of adipogenesis, and of glucose transporter 4 (GLUT4), a late marker of adipogenesis. 

The housekeeping gene 18S served as control gene. Basic FGF-treated cells yielded a clearly 

higher PPARγ2 expression compared to control without bFGF in the complete time course 

(Fig. 6). The differential expression was most pronounced after one and two weeks and 

attenuated after four weeks. In cell-polymer constructs cultivated in the absence of bFGF, 

PPARγ2 expression steadily increased with time. Basic FGF-treated constructs showed an 

initially high level of PPARγ2 expression, which was only slightly increased thereafter. 

GLUT4 expression was elevated in the bFGF group after one and two weeks and similar after 

four weeks compared to the control group. In the absence of bFGF, similarly to the expression 

profile of PPARγ2, GLUT4 expression steadily increased with time. In contrast, GLUT4 

levels in the presence of bFGF were initally high and were maintained at later time points.  

 
Fig. 6 RT-PCR analysis of cell-polymer constructs: adipocyte-specific gene expression of 
PPARγ, a key transcription factor in adipogenesis, and glucose transporter 4 (GLUT4) were 
evaluated at day 3 after induction of adipogenesis. Gene expression of cells cultured in 
absence (- bFGF) and presence (+ bFGF) of bFGF were compared in the course of time. The 
housekeeping gene 18S served as internal standard. 
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Discussion 

 
To the best of our knowledge, this study reports an adipose tissue engineering approach using 

mesenchymal stem cells as cell source for the first time. The resulting cell-polymer constructs 

exhibited characteristics of white adipose tissue, such as lipid droplet-containing adipocytes 

including unilocular cells, adipocyte-specific enzyme activity and gene expression.  

Recently, we found bFGF to enhance adipogenesis of MSCs in 2-D cell culture over eight 

days [35]. In the present study, the adipogenic protocol was successfully transferred from 2-D 

short-term to 3-D long-term cell culture. MSCs were seeded onto PLGA scaffolds and 

repeatedly exposed to the inducing regimen over four weeks. Basic FGF-treated cells on 

polymeric scaffolds exhibited a clearly enhanced adipogenic differentiation and maturation 

compared to constructs cultivated in absence of bFGF. 

Cellular distribution, the appearance of lipid droplets and development of a tissue-like context 

were monitored by means of OsO4 histology and SEM. The results of both techniques were 

well in agreement with each other, demonstrating an enhanced adipogenesis for the 

experimental group receiving bFGF. Within this group, a higher number of MSCs that 

differentiated into adipocytes were observed in all areas of the constructs and at all points of 

time (Figs. 3a,b and 4b). Furthermore, bFGF supplementation even led to the development of 

mature unilocular adipocytes in the outer area of the constructs (Fig. 3b). The observation that 

cells located in the interior of the scaffolds were smaller and multivacuolar may be attributed 

to the reduced supply of the cells with oxygen, nutrients, and adipogenic stimuli. Oxygen 

gradients in tissue-engineered constructs have previously been shown, for instance, in 

cartilage [42]. With regard to the development of tissue-like structures, the addition of bFGF 

again proved to be advantageous, yielding higher densities of adipocytes embedded in 

structures regarded as secreted extracellular matrix components.  

On the molecular level, differentiation was monitored by measurement of the activity of the 

enzyme GPDH and of adipocytic gene expression of PPARγ2 and GLUT4 over the course of 

four weeks (Figs. 5 and 6). PPARγ has been shown to act as the key transcription factor in 

adipogenesis in vitro and in vivo and PPARγ activators like prostaglandin derivatives, anti-

inflammatory drugs including indomethacin and the synthetic insulin-sensitizing 

thiazolidinediones are known as strong inducers of adipogenesis [43]. The GLUT isoform 4 is 

predominantly expressed in mature muscle and fat tissues and is primarily responsible for the 

increase in glucose uptake in response to insulin stimulation, which is necessary to generate 

the substrate glycerol-3-phosphate for the biosynthesis of triglycerides [44]. GPDH is a key 
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enzyme in lipid biosynthesis, converting dihydroxyacetonephosphate into glycerol-3-

phosphate [45]. Both GLUT4 and GPDH are regarded as late markers of adipogenesis.   

All three markers were clearly detectable in the 3-D culture system and indicated the process 

of adipogenesis of MSCs. Strongly supporting the microscopical observations, the cells in the 

group receiving bFGF in general exhibited higher levels of both adipocyte-specific gene 

expression and enzyme activity (Figs. 5 and 6). Whereas PPARγ2 expression was higher in 

the bFGF group over the whole course of the experiment (Fig. 6), GLUT4 expression and 

GPDH activity was distinctly higher especially at early time points, whereas after four weeks 

levels with and without bFGF were similar (Figs. 5 and 6). Apparently, lipid biosynthesis was 

initially enhanced in the presence of bFGF; as a result, advanced maturation of adipocytes, 

indicated by large lipid droplets within differentiated adipocytes (Fig. 3b), led to reduced lipid 

accumulation at later stages of the culture. 

To date, only a few in vitro studies investigating adipose tissue engineering have been 

performed. Mainly using primary preadipocytes seeded onto scaffolds of various materials, 

most of these studies were restricted to histology and/or SEM for the evaluation of the tissue 

quality. They did show adipogenic differentiation of preadipocytes, however most of the 

adipocytes observed exhibited an immature phenotype [10,11,18]. In comparison to the only 

preadipocyte study that presented a more detailed histological cross-section and GPDH 

activity measurements [17], the MSC-derived constructs described here exhibited a higher 

density of differentiated adipocytes within the scaffold and values of GPDH activity that were 

approx. 5-fold higher at their maximum.  

In contrast to all other in vitro studies including the one presented here, Fischbach et al. 

demonstrated the feasibility of engineering a coherent mature fat pad employing the 

preadipocytic cell line 3T3-L1 in a long-term culture [13]. In order to further improve the 

quality of tissue constructs generated with MSCs, possible future strategies may the elevation 

of the initial cell number and the variation of the induction scheme including further potent 

inducing agents such as thiazolidinediones, ligands of PPARγ. Additionally, perfusion 

cultures may be a tool to circumvent the insufficient supply of cells in the interior of the 

scaffolds.  

In conclusion, we established a 3-D cell culture based on MSCs, PLGA scaffolds, and the 

growth factor bFGF for stem cell-based adipose tissue engineering. MSCs seem to be a 

promising alternative cell source that, especially in combination with bFGF, has potential for 

advanced adipogenic differentiation and tissue development.  
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Abstract 

Biomimetic polymers represent a novel class of biomaterials for the control of the interactions 

with cells at the molecular level. We have recently fabricated 3-D cell carriers from 

biomimetic derivatives of poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) 

diblockcopolymers exhibiting a surface which is modifiable by the covalent binding of 

bioactive agents such as peptides and proteins. Basic fibroblast growth factor (bFGF) is a 

potent growth factor which is known to modulate the behavior of a wide range of cell types 

and to provoke angiogenesis in vivo and, therefore, bFGF represents an attractive candidate 

for the immobilization in biomimetic scaffolds . 

The goal of this study was the investigation of the interactions of bFGF and, on the one hand, 

PEG-PLA derivatives exhibiting a hydrophilic surface and, on the other hand, the more 

lipophilic polymers poly(lactic acid) (PLA) and poly(lactic-co glycolic acid) (PLGA). The 

adsorption of radiolabeled bFGF to PEG-PLA polymers was distinctly suppressed in 

comparison to PLA 2-D films. Furthermore, a protocol was established to efficiently desorb 

bFGF from 2-D polymer films. The transfer of the desorption protocol to 3-D polymer 

scaffolds allowed for the determination of the amount of bFGF covalently bound to 

biomimetic scaffolds. 

In conclusion, this study provides data about the adsorption and desorption of bFGF to 

different polymers and presents the establishment of a protocol for the determination of the 

amounts of bFGF tethered to biomimetic scaffolds. 
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Introduction 

A wide variety of biomaterials has been developed for tissue engineering applications in 

recent years [1]. Natural materials such as collagen, hyaluronic acid, and fibrin may well 

reflect the structure and functional properties of native ECM, have a low toxicity, and exert 

only a weak chronic inflammatory response [2]. However, many natural materials have 

disadvantageous properties in regard to a potential use in the field of tissue engineering such 

as batch-to-batch variations, poor mechanical performance, and a chemical structure difficult 

to modify [3,4]. In contrast, synthetic polymers can be designed in order to obtain a well-

defined, tailor-made structure and functionality. Recently, various synthetic biomaterials have 

been developed which can be modified in order to mimic the biological environment, termed 

biomimetic polymers [5]. These biomaterials aim at the generation of an inert surface per se 

which can structurally be modified in a specific manner in order to selectively control the 

cellular behavior [6]. A possible strategy represents the creation of a highly hydrophilic 

environment, possibly by the use of poly(ethylene glycols) (PEGs), to suppress unspecific 

protein adsorption and subsequent unspecific cell attachment [7,8]. In addition, PEGs have 

been described to be easily modifiable and a plethora of PEG derivatives were developed 

capable of covalently binding substrates with functional end groups such as amine and thiol 

groups [9-12].  

We previously synthesized diblock copolymers consisting of a MeO-PEG moiety and a PLA 

moiety which possess protein-resistant properties whereby increasing PEG/PLA ratio have 

been reported to enhance the protein resistance [13]. Furthermore, these polymers with 

varying ratios of the PEG and the PLA components have been shown to suppress cell 

attachment and to modulate the osteogenic differentiation of MSCs in 2-D cell culture [8]. 

The diblock copolymer consisting of a hydrophilic 2 kDa poly(ethylene glycol) (PEG) block 

and a 40 kDa lipophilic poly(lactic acid) (PLA) block, abbreviated as MeO-PEG2PLA40, has 

been shown to be a suitable polymer for tissue engineering applications with regard to cell 

attachment, proliferation, and differentiation [8]. The substitution of the MeO-PEG block with 

a H2N-PEG block allowed for the attachment of an amine-reactive linker, succinimidyl 

tartrate (ST), and led to activated derivatives of these polymers, abbreviated as ST-NH-

PEG2PLA40 [14]. These PEG-PLA derivatives can be processed into 3-D scaffolds for tissue 

engineering applications [15]. In a previous study, cyclic RGD sequences covalently bound to 

2-D ST-NH-PEG2PLA40 polymer films have been demonstrated to enhance the adhesion of 

osteoblasts [16].  
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The overall goal of the development of biomimetic scaffolds is to covalently immobilize 

growth factors to 3-D scaffolds made from ST-NH-PEG2PLA40 in order to specifically control 

the cellular behavior and tissue development. Basic FGF represents a potent growth factor 

which is known to modulate the behavior of a wide variety of cell types and to provoke pro-

angiogenic effects in vivo [17,18].  

The goal of this study, as a first step towards the tethering of bFGF to the ST-NH-PEG2PLA40 

polymer, was to characterize the interactions of the diblock copolymer derivatives and the 

protein basic fibroblast growth factor (bFGF). The protein-resistant properties of MeO-

PEG2PLA40 were evaluated with regard to the adsorption of bFGF in comparison to bFGF 

adsorption to the lipophilic polymer poly(lactic acid) (PLA). Furthermore, a protocol for the 

efficient desorption of bFGF from polymer films was established which is relevant for 

distinguishing between adsorbed and covalently bound bFGF in order to determine the 

amount of covalently bound bFGF to the ST-NH-PEG2PLA40 polymer. 

Materials and Methods 

Materials 

Basic FGF was purchased from Kaken Pharmaceutical, Tokyo, Japan. PEG-PLA diblock 

copolymers (approx. 42 kDa) were synthesized in our laboratory [8], poly(lactic-glycolic 

acid) (PLGA 75:25; approx. 90 kD) was obtained from Boehringer Ingelheim (Ingelheim am 

Rhein, Germany). Poly(lactic acid) (PLA, approx. 130 kDa) was purchased from Medisorb 

Technology International (Cincinnati, OH, USA). If not otherwise stated, chemicals were 

obtained from Nacalai Tesque (Kyoto, Japan). 

Polymer synthesis 

The polymer ST-NH-PEG2PLA40 was synthesized and characterized as described by Tessmar 

et al. [14]. Briefly, the precursor H2N-PEGP2LA40 was synthesized by a ring-opening 

polymerization of poly(D,L-lactic acid) with poly(ethylene glycol)-monoamine using 

stannous 2-ethylhexanoate as catalyst. ST-NH-PEG2PLA40 was obtained by attachment of 

disuccinimidyl tartrate to H2N-PEG2PLA40 (Fig. 1A). MeO-PEG2PLA40 was synthesized and 

characterized as previously described [8] (Fig. 1B). 

Fabrication of polymer films 

Polymers (1.9 mg/cm² film area) were dissolved in dichlormethane (0.15 ml/cm² film area) 

and poured into glass petri dishes with an absolutely even bottom. The solvent was evaporated 



Chapter 8                                                  Characterization of PEG-PLA derivatives 

 -169- 

under a chemical hood at room temperature (RT) and atmospheric pressure. The films were 

detached from the dish bottom and subsequently, they were dried and stored under vacuum. 

When required, the films were die-punched or cut into pieces. 

 

 
Fig. 1 Structures of the derivatives of poly(D,L-lactic acid)-block-poly(ethylene glycol):        
A Poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether (MeO-PEG2PLA40),              
B Succinimidyl tartrate PEG-PLA (ST-NH-PEG2PLA40). 
 

Fabrication of scaffolds 

Scaffolds were fabricated using a protocol adapted from Hacker et al. [15]. Polymer-specific 

parameters are shown in Table 1. Briefly, the scaffolds were fabricated from polymer 

dissolved in a methyl ethyl ketone-tetrahydrofurane-mixture (59:41 (v/v)) and lipid 

microparticles made from Softisan 154 (S) and Witepsol H42 (H) (kindly provided by 

SASOL Germany (Witten, Germany)) were weighed into a separate vial. The size of porogen 

particles ranged from 100 µm to 300 µm. After 1 h storage at -20°C the porogen particles 

were transferred into the polymer solution and mixed for 5 min on ice. The resulting highly 

viscous dispersion was then transferred into a 10 ml polypropylene syringe and injected into 

cubic Teflon molds (with a cylindrical cavity of 0.8 cm in diameter). After a pre-extraction 

treatment step in n-hexane at 0°C for t0, the filled molds were submerged in warm n-hexane to 

precipitate the polymer and extract the porogen particles concurrently. This procedure was 

carried out in two separate n-hexane baths of different temperatures: first, molds were 

incubated at T1 for t1 and in a second step at T2 for t2. Subsequently, the molds were 

transferred into a n-hexane bath of 0°C for 5 min. Finally, the porous cylindrical polymer 
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constructs were removed from the molds and vacuum-dried for 48 h. For further 

investigations the constructs were cut into 2 mm slices which were then addressed as 

scaffolds.  

 

Group Polymer Lipid 

mixture (S/H) 

t0 [min] T1 [°C]/t1 [min] T2 [°C]/t2 [min] 

PLGA 100% PLGA 2:1 15 52/10 40/20 

MeO-PEG2PLA40 100% MeO-PEG2PLA40 1:1 90 45/7.5 35/22.5 

ST-NH- PEG2PLA40 70% ST-NH- 

PEG2PLA40 + 30% 

MeO-PEG2PLA40 

1:1 90 45/7.5 35/22.5 

ST-NH- 

PEG2PLA40/PLA 

70% ST-NH- 

PEG2PLA40 + 30% PLA 
1:1 90 45/7.5 35/22.5 

 
Table 1: Polymer-specific parameters used for the scaffold fabrication. 

 

Contact angle measurements 

The wettability of films was measured by the sessile drop method with a contact angle meter 

(Face, Tokyo, Japan) 0.5 to 10 min after the deposition of droplets (9 µl). The contact angles 

were determined on three areas of each polymer film (n=3). 

Radiolabeling of bFGF 

Different amounts of bFGF were labeled using the chloramine T method. In the following, the 

preparation of 100 µl of a 10 mg/ml bFGF is exemplarily described. 5.00 µl 125NaI (3.7 MBq) 

were added to 100 µl of a 10 mg/ml bFGF solution. After the addition of 100 µl of a 0.2 

mg/ml chloramine T solution (710 µM final concentration), the mixture was shaken for 2 min. 

In order to stop the reaction, 100 µl of a 4 mg/ml sodium metabisulfite solution (21 mM final 

concentration) was mixed and shaken with the bFGF solution for 2 min. The resulting 

solution was subjected to a PD-10 column, Sephadex G-25 M (Amersham Biosciences, 

Uppsala, Sweden) and bFGF was eluted using a phosphate-buffered saline (PBS) pH 8.0. The 

resultant solution was a 1 mg/ml bFGF solution in PBS, pH 8.0, which was used at different 

dilutions for all adsorption and binding experiments. 

Adsorption of bFGF to polymer films 

Polymer films were cut into squares (1 cm x 1 cm). The pieces were incubated in 125I-bFGF 

solutions (pH 8.0) of different concentrations on a shaker (100 min-1) for 2 h at room 
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temperature (RT). Subsequently, the films were rinsed three times with water and subjected to 

scintillation (n=3). 

Desorption of bFGF from polymer films using different buffer types 

Desorption experiments were performed using PLA films because the highest amounts of 

bFGF adsorbed on PLA films as shown in the adsorption experiment. Six round die-punched 

PLA films (diameter 0.8 cm) were strung onto a needle (22G) which was located in a reaction 

tube (2 ml). The films within a tube were separated and secured with segments of silicone 

tubing (1 mm long). The films were incubated in a 125I-bFGF solution (50 µg in 1.5 ml buffer) 

for 6 h at RT in order to adsorb bFGF. After rinsing the films with water, they were 

transferred into 50 ml tubes filled with different desorption solutions: Water, PBS, PBS + 2M 

NaCl, PBS + 1% SDS, and PBS + 1% SDS in combination with ultrasonic treatment as a 

positive control. After mild shaking for 5 min at RT, the films were subjected to scintillation. 

Desorption of bFGF from polymer films using detergent-containing buffers 

Polymer films were treated with different detergent-containing buffers in order to evaluate 

other agents than SDS for their potential to desorb bFGF. Films were pre-treated as described 

in the above paragraph. After rinsing the films with water, they were transferred into 50 ml 

plastic tubes filled with different desorption solutions: Water, PBS + 1% SDS (Nacalai 

Tesque, Kyoto, Japan), PBS + 1% Tween 80 (Nacalai Tesque, Kyoto, Japan), PBS + 1% 

Poloxamer 188 (Pluronic F68, Sigma, Steinheim, Germany), and PBS + 1% Triton X-100 

(Sigma, Steinheim, Germany). Basic FGF was desorbed on a shaker (100 min-1) at RT. After 

different time periods, films were subjected to scintillation. In another experiment, bFGF was 

desorbed using water and PBS + 1% SDS under the above described conditions and 

additionally at 37°C.  

Preparation of scaffolds for adsorption, desorption, and binding experiments 

Single scaffolds (diameter 7 mm, height 2 mm) were strung onto a needle each (22G) which 

was located in a reaction tube (2 ml). The scaffold within a tube was secured with segments of 

silicone tubing (1 mm long). Scaffolds were pre-wetted in 70% ethanol and extensively rinsed 

with PBS. Subsequently, scaffolds were subjected to adsorption, desorption, or binding 

experiments. 
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Adsorption of bFGF to polymer scaffolds 

Scaffolds were prepared as described above. They were incubated in a 125I-bFGF solutions 

with concentrations ranging from 0.1 to 50 µg (in 1.5 ml buffer) fro 2 h at RT on a shaker (20 

min-1). Subsequently, the films were rinsed three times with water and subjected to 

scintillation (n=3). 

Desorption of bFGF from polymer scaffolds 

Scaffolds were prepared as described above. The most effective buffer to desorb bFGF from 

polymer films, that is PBS + 1% SDS as determined in the experiment described above, was 

utilized for the desorption of bFGF from polymer scaffolds. Scaffolds were incubated in a 
125I-bFGF solutions (50 µg in 1.5 ml buffer) for 2 h at RT on a shaker (20 min-1). After rinsing 

the scaffolds with water, for the desorption experiment, they were transferred into 50 ml 

plastic tubes filled with PBS + 1% SDS which were placed on a shaker (20 min-1). After 

different time periods, scaffolds were subjected to scintillation (n=3). 

Covalent binding of bFGF to ST-NH-PEG2PLA40 scaffolds 

Scaffolds made from MeO-PEG2PLA40 and ST-NH-PEG2PLA40 or ST-NH- PEG2PLA40/PLA 

were used in this experiment (Table 1). Subsequently, scaffolds were pre-wetted in 70% 

ethanol and extensively rinsed with PBS pH 8.0. In order to anchor bFGF, scaffolds were 

incubated in a bFGF solution (dissolved in PBS pH 8.0) at a concentration of 50 µg bFGF (in 

1.5 ml buffer) for 2 h (or alternatively for 6 h) at RT on a shaker (20 min-1). After washing the 

scaffolds in PBS pH 7.4, they were treated with 1% SDS in PBS, pH 7.4, in order to desorb 

non-covalently bound bFGF for 90 h at RT on a shaker (20 min-1). Finally, the scaffolds were 

subjected to scintillation (n=3). For the control group which allows the correction for bFGF 

adsorption, bFGF was adsorbed to and desorbed from MeO-PEG2PLA40 under the same 

conditions as described for the covalent binding of bFGF to the ST-NH-PEG2PLA40. The 

amount of bFGF covalently bound to ST-NH-PEG2PLA40 scaffolds was calculated by 

subtracting the amount associated with MeO-PEG2PLA40 control scaffolds from that 

associated with ST-NH-PEG2PLA40 scaffolds. 

Statistics 

All data are expressed as means ± standard deviation. Single-factor analysis of variance 

(ANOVA) was used in conjunction with a multiple comparison test (Tukey’s test) to assess 

statistical significance at a level of p < 0.01 (*) or  p < 0.05 (**). 
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Results 

Contact angle measurements 

Contact angles for PLA and MeO-PEG2PLA40 films were measured in a course of time from 

0.5 to 10 min after droplet deposition in order to measure the wettability of the films. 

Virtually no differences in contact angles between water and the different polymers were 

measured in the first minute (Fig. 2). After 3 min onwards, a clear difference between the 

hydrophobic PLA and the more hydrophilic diblock copolymer was detectable (Fig. 2). 

 
Fig. 2 Measurements of contact angles between water and PLA and MeO-PEG2PLA40 films, 
respectively, in a course of time from 0.5 to 10 min after droplet deposition. Data represent 
mean ± standard deviation (n=3). Asterisks indicate significantly decreased values as 
compared to PLA  films  at a level of p<0.01 (*) or p<0.05 (**). 
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Adsorption of bFGF to polymer films 

In order to test the influence of the differential surface properties on the protein adsorption, 

different amounts of bFGF were adsorbed to PLA and MeO-PEG2PLA40 films. Basic FGF 

adsorbed to both polymers in a dose-dependent manner (Fig. 3). However, MeO-PEG2PLA40 

clearly reduced the adsorption of bFGF as compared to PLA, irrespective of the amount of 

bFGF in the feed (Fig. 3). The adsorption of bFGF to MeO-PEG2PLA40 films could not be 

totally prevented (Fig. 3). 

 
 

 
Fig. 3 Adsorption of bFGF to PLA and MeO-PEG2PLA40 films. Different amounts of bFGF 
from 0 to 25 µg were provided in the feed. Data represent mean ± standard deviation (n=3). 
Asterisks indicate significantly decreased values as compared to PLA  films at a level of 
p<0.01 (*) or p<0.05 (**). 
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Desorption of bFGF from polymer films using different buffer types 

As a first step, different types of buffers were used aiming at an efficient desorption of bFGF 

from the PLA films. PLA was used as a film material because higher amounts of bFGF can be 

adsorbed to this material as compared to MeO-PEG2PLA40 (Fig. 3). Films with adsorbed 

bFGF were treated with PBS, a PBS buffer with a high ionic strength (PBS + 2M sodium 

chloride), a PBS with a detergent (PBS + 1% SDS), and the SDS-containing buffer combined 

with an ultrasonic treatment (PBS + 1% SDS + US). The latter combination served as positive 

control, water as negative control. PBS and PBS + 2M NaCl had no effect on the desorption 

of bFGF from the PLA films. However, the SDS-containing buffer clearly reduced the 

amount of bFGF. Approx. 45% of the initially adsorbed bFGF were desorbed from the PLA 

films after applying the desorption procedure for only 5 min. After treatment of the films with 

the SDS-containing buffer in combination with ultrasound, approx. 75% of the initially 

adsorbed bFGF were removed. 

Fig. 4 Desorption of bFGF from PLA films using different types of buffers. The remaining 
amounts of bFGF after the desorption procedure are shown. Water served as negative 
control, a detergent-containing buffer in combination with ultrasound as positive control. The 
tested buffers include PBS, PBS with a high ionic strength (PBS + 2M NaCl), and a detergent 
containing buffer (PBS + 1% SDS). Data represent mean ± standard deviation (n=3). Tukey’s 
test indicated a statistically significant decrease as compared to the groups with water, PBS, 
and PBS + 2M NaCl at a level of p<0.01(*). Ultrasonic treatment led to a statistically 
significant decrease as compared to the group with PBS + 1%SDS at a level of p<0.05 and  
as compared to the groups with water, PBS, and PBS + 2M NaCl at a level of p<0.01 (‡). 
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Desorption of bFGF from polymer films using detergent-containing buffers 

In the previous experiment, the detergent-containing buffer proved to be most efficient in the 

desorption of bFGF from PLA films. Consequently, the potential of further detergents to 

remove bFGF from polymer films was evaluated: Pluronic F68, Tween 80, and Triton X-100 

dissolved in PBS. Surprisingly, Pluronic F68, Tween 80 and Triton X-100 had no statistically 

significant effect on the desorption of bFGF after 12 h as compared to water (Fig. 5). Only 

8.8±6.3%, 12.7±1.1%, 15.8±1.3%, and 20.7±7.3% of the initially adsorbed bFGF were 

removed by water, Pluronic F68, Tween 80, and Triton X-100, respectively, after 12 h (Fig. 

5). In contrast, 88.4±2.3% of the initially adsorbed protein were desorbed after 12 h using the 

SDS-containing buffer (Fig. 5). 

 

 
Fig. 5 Desorption of bFGF from PLA films using detergent-containing buffers. The amount of 
the remaining amounts of bFGF after the desorption procedure is shown. Water served as a 
control. Data represent mean ± standard deviation (n=3). The asterisk indicates the 
significantly decreased value after 12 h as compared to all other groups at a level of p<0.01.  
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No further improvement of bFGF desorption from the PLA films was achieved by elevation 

of the temperature from RT to 37°C during the desorption procedure, irrespective of the 

presence of the SDS-containing buffer and the time period (Fig. 6).  

 
Fig. 6 Desorption of bFGF from PLA films at RT and 37°C.  The amount of the remaining 
amounts of bFGF after the desorption procedure is shown. Water served as a control. Data 
represent mean ± standard deviation (n=3). 
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Adsorption of bFGF to polymer scaffolds 

In order to test the influence of the differential surface properties on the protein adsorption, 

different amounts of bFGF were adsorbed to PLGA, MeO-PEG2PLA40, and ST-NH-

PEG2PLA40 scaffolds. Basic FGF adsorbed to all polymers in a dose-dependent manner (Fig. 

7). The protein-resistant property of the PEG moiety of the PEG-PLA derivatives was 

moderately observable in the scaffold groups receiving 25 or 50 µg bFGF (dissolved in 1.5 ml 

buffer) in the feed (Fig. 7). However, when lower amounts of bFGF were provided in the 

feed, no difference in the bFGF adsorption was measured (Fig. 7).  

 

 
Fig. 7 Adsorption of bFGF to PLGA, MeO-PEG2PLA40, and ST-NH-PEG2PLA40 scaffolds. 
Different amounts of bFGF from 0 to 50 µg were provided in the feed. Data represent mean ± 
standard deviation (n=3). 
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Desorption of bFGF from polymer scaffolds 
 

The SDS-containing buffer proved highly efficient for the desorption of bFGF from scaffolds, 

irrespective of the polymer material. After desorption for 90 h, between 97.7% and 99.5% of 

the initially adsorbed bFGF was removed from the scaffolds (Fig.8). The amount of bFGF 

adsorbed to PLGA scaffolds was elevated as compared to the scaffolds made from PEG-PLA 

derivatives at all points of time (Fig. 8). Although a higher amount of bFGF was initially 

adsorbed to MeO-PEG2PLA40 scaffolds than to ST-NH-PEG2PLA40 scaffolds, the remaining 

bFGF amount was higher on ST-NH-PEG2PLA40 scaffolds than on MeO-PEG2PLA40 

scaffolds (Fig. 8). For the understanding of Figure 9, it should be noted that the calculated 

amount of covalently bound bFGF to ST-NH-PEG2PLA40 scaffolds was obtained by 

subtracting the remaining amount of bFGF on ST-NH-PEG2PLA40 scaffolds from the amount 

associated with MeO-PEG2PLA40 scaffolds after 90 h.. 

Fig. 8 Desorption of bFGF from PLGA, MeO-PEG2PLA40, and ST-NH-PEG2PLA40 scaffolds 
using PBS + 1% SDS over a maximum of 90 h. The amount of the remaining amounts of 
bFGF after the desorption procedure is shown. Data represent mean ± standard deviation 
(n=3). 
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Covalent binding of bFGF to ST-NH-PEG2PLA40 scaffolds 

As a first step towards the characterization of the covalent immobilization of bFGF in ST-

NH-PEG2PLA40 scaffolds, two blend mixtures were evaluated. The first scaffold material 

consists of 70% ST-NH-PEG2PLA40 polymer and 30% MeO-PEG2PLA40 polymer; these 

scaffolds were used in the previous experiment (Fig. 8). An alternative blend represents the 

scaffold material consisting of 70% ST-NH-PEG2PLA40 polymer and 30% PLA polymer. The 

ST-NH-PEG2PLA40/PLA exhibited a higher stability as compared to the ST-NH-

PEG2PLA40/MeO-PEG2PLA40  blend (upon gross examination), however, the amount of 

covalently bound bFGF was distinctly lower (Fig. 9). 

 
Fig. 9 The influence of the polymer blend on the amount of covalently bound bFGF. Data 
represent mean ± standard deviation (n=3). The asterisk indicates a significantly elevated 
value as compared to scaffolds made from the ST-NH-PEG2PLA40/PLA blend at a level of 
p<0.05. 
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The next parameter tested was the incubation time of the scaffolds in the bFGF solution in 

order to anchor bFGF to ST-NH-PEG2PLA40/MeO-PEG2PLA40 scaffolds. The scaffolds were 

exposed to the bFGF solution for two hours and for six hours. The incubation for six hours led 

to a moderate increase of the amount of tethered bFGF (1.32±0.23-fold) as compared to an 

incubation period of two hours (Fig. 10). The difference was not statistically significant. 

 
Fig. 10 Comparison of the amounts of tethered bFGF after incubation of the scaffolds (ST-
NH-PEG2PLA40/MeO-PEG2LA40) for two hours and for six hours. Data represent mean ± 
standard deviation (n=3). 
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Discussion 

This study demonstrates the interactions of the growth factor bFGF and, on the one hand, the 

lipophilic polymers PLA and PLGA and, on the other hand, the more hydrophilic PEG-PLA 

diblock copolymers with regard to protein adsorption and desorption. Furthermore, a protocol 

was established in order to determine the absolute amount of bFGF tethered to the amine-

reactive polymer ST-NH-PEG2PLA40.  

The contact angle measurements indicated that MeO-PEG2PLA40 polymer films have a more 

hydrophilic surface than PLA films. However, the differences of the contact angles of MeO- 

PEG2PLA40 and PLA were clearly observable not until 3 min after the droplet deposition (Fig. 

2). The lagged feedback might be caused by a required swelling time of the PEG surfaces in 

the presence of water. The PEG chains might be first hydrated and subsequently erected and 

then, the PEG chains likely contributed to the elevated hydrophilicity of the MeO-PEG2PLA40 

films. The clearly reduced bFGF adsorption to the MeO-PEG2PLA40 films, as compared to 

PLA films, indicated the presence of the PEG chains at the surface of the diblock copolymers 

(Fig. 3). In previous studies, PEG-PLA polymer derivatives have been shown to reduce the 

adsorption of the peptides and proteins calcitonin, atrial natriuretic peptide, and fibronectin to 

polymer films depending on the PEG/PLA ratios [8,13]. In the present study, the effect of the 

PEG-PLA derivatives on the reduction of bFGF adsorption to 3-D scaffolds was less 

pronounced than on polymer films (Fig. 7). Hacker et al. recently demonstrated that remnants 

of porogen material from the scaffold fabrication remain inside the scaffolds in a range from 

2.5 to 8% of the scaffold weight [15]. The porogen material might be incorporated in the solid 

scaffold material or be residual on the surface of the scaffolds. The presence of lipids on the 

scaffold surface might have promoted the protein adsorption; protein adsorption has 

previously been demonstrated onto lipid surfaces [19]. 

Data of the adsorption experiments clearly demonstrated that the presence of PEG chains on 

the surface of PEG-PLA films or scaffolds reduces the adsorption of bFGF but does not lead 

to a complete inhibition of bFGF adsorption. In order to be able to distinguish between 

adsorbed and covalently bound bFGF in binding experiments as shown in Figures 9 and 10, it 

was absolutely necessary to efficiently remove adsorbed bFGF from the scaffolds. Therefore, 

a protocol was developed for an efficient desorption of adsorbed bFGF, whereby only a buffer 

consisting of PBS and 1% SDS was suitable for this purpose (Fig. 5). A desorption of 96 to 

99% of the initially adsorbed amounts of bFGF was achieved using the SDS-containing buffer 

(Fig. 8). A buffer with high ionic strength (PBS + 2M NaCl) had virtually no effect on the 

desorption of bFGF from the polymer (Fig. 4). Buffers with high ionic strength are commonly 
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utilized as an eluent in heparin affinity chromatography of bFGF [20] but appear to be 

ineffective in combination with non-ionic surfaces in this study. Surprisingly, buffers 

containing the detergents Triton X-100, Tween 80, and Poloxamer 188 also showed roughly 

weak effects on the desorption of bFGF, similar to the control group using water. 

The established desorption protocol allowed for the determination of the amount of bFGF 

covalently bound to ST-NH-PEG2PLA40 scaffolds. First, the potential of two polymer blends 

was evaluated with regard to the amounts of tethered bFGF. ST-NH-PEG2PLA40 was mixed 

with either MeO-PEG2PLA40 or with PLA in the same ratio (70:30). PLA-blended scaffolds 

appeared to be more stable than the ST-NH-PEG2PLA40/MeO-PEG2PLA40 blend 

(unpublished data). However, the amount of tethered bFGF was decreased in PLA-blended 

scaffolds as compared to the ST-NH-PEG2PLA40/MeO-PEG2PLA40 blend (Fig. 9). Possibly, 

the presence of PLA polymers in the scaffolds might lead to a partial impairment of the 

swelling of the PEG chains reducing the number of erected PEG chains protruding into the 

aqueous environment. Therefore, the possibility of a contact of bFGF molecules in the 

aqueous solution and activated end groups of the polymer might be reduced. In addition, two 

time periods were tested for the binding procedure in order to tether a maximum amount of 

bFGF to the scaffolds. However, incubation of the scaffolds for six hours only moderately 

increased the amount of tethered bFGF as compared to a two-hour incubation period (Fig. 

10). 

In conclusion, this study demonstrates the higher hydrophilicity of PEG-PLA polymer film or 

scaffold surfaces in comparison to PLA polymers without a PEG moiety and the resultant 

suppression of the adsorption of bFGF. Furthermore, the most favorable desorption buffer 

consisting of PBS and the detergent SDS allowed for the determination of the amount of 

bFGF covalently bound to ST-NH-PEG2PLA40 scaffolds. According to the results of this 

study, a polymer blend of 70% ST-NH-PEG2PLA40 and 30%  MeO-PEG2PLA40 appears to be 

suitable as scaffold material and an incubation time for two hours appears to be suitable for 

the tethering of a sufficient amount of bFGF.      
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Abstract 

Biomimetic polymers represent a novel class of biomaterials for the control of the interactions 

with cells at the molecular level. We have fabricated 3-D cell carriers from derivatives of poly 

(ethylene glycol)-poly (lactic acid) (PEG-PLA) diblock copolymers exhibiting a protein-

resistant surface which is modifiable by the covalent binding of bioactive agents such as 

peptides and proteins.  

In this study, basic fibroblast growth factor (bFGF) was covalently bound to 3-D cell carriers 

by a simple incubation step. The amounts of covalently immobilized bFGF were determined 

and radiolabeled bFGF was retained in the scaffolds for three weeks in vivo. Tethered bFGF 

on the surface of the 3-D scaffolds led to vascularization of the scaffolds, in contrast, 

adsorbed bFGF failed to provoke an ingrowth of fibrovascular tissue. This study demonstrates 

novel 3-D devices for an instant surface modification to immobilize proteins and peptides 

such as growth factors for tissue engineering applications . 
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Introduction 

In the field of tissue engineering, the overall goal is the development and the maintenance of 

functional tissues demanding an optimum combination of cells, cell carriers, and bioactive 

agents [1]. In recent years a new generation of biomaterials has been designed to modulate the 

cellular response at the molecular level [2,3]. In this respect, the surface modification of 

biomaterials used for tissue engineering and implantation applications represents one major 

tool to control the interactions with attached cells and the surrounding tissue after 

implantation [4]. The design of low-adhesive “stealth” surfaces modifiable by immobilization 

of specific agents which can exert desired interactions with target cells or target tissues is one 

possible way to create biomimetic materials reflecting and mimicking the properties of 

biological environments [4].  

Proteins and peptides represent highly potent agents for the modulation of the tissue 

development including cellular proliferation, differentiation, motility, adhesion, and 

angiogenic processes, which have been utilized in tissue engineering approaches, 

predominantly in the form of growth factors [5,6]. Growth factors generally require to be 

provided by drug delivery devices for the maintenance of constant concentrations of the 

factors due to their extremely short half-lives (in the range from minutes to hours) [7,8]. For 

instance, basic fibroblast growth factor (bFGF) which is known to induce chemotactic, 

mitogenic, and angiogenic activity and to be involved in differentiation and developmental 

processes exhibits a plasma half-life of approx. 1.5 minutes [7,9]. 

Covalent binding of growth factors to polymeric cell carriers is a strategy that combines the 

delivery of growth factors and the creation of a biomimetic scaffold surface [10,11]. Various 

strategies have been employed to tether peptides and proteins to biomaterials, mostly 

conducted in 2-D attempts. For instance, peptide fragments of bone morphogenetic proteins 

and epidermal growth factor have been tethered to activated glass [10,12] and insulin has been 

reported to be covalently immobilized onto poly(methyl methacrylate) films [13]; remarkably, 

the bioactivity of the peptides was retained or even improved after immobilization compared 

to the soluble form. In 3-D approaches, TGFβ1, TGFβ2, and bFGF have been tethered to PEG 

hydrogels and injectable collagen gels [14,15]; insulin and RGD peptides have been tethered 

to non-woven polyester meshes for tissue engineering applications [16]. However, the applied 

reactions for the surface modification involve laborious procedures due to the absence of 

functional groups on the scaffold surfaces. Furthermore, the used cell carriers such as 

hydrogels or fibers lack mechanical strength and stability required in many tissue engineering 

applications. 
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Therefore, we have designed a polymer which can be processed into stable sponge-like 

scaffolds [17] and allows for a surface modification by a simple “instant-like” incubation step 

[18]. This polymer consists of a 40 kDa lipophilic poly (lactic acid) (PLA) moiety and a 

hydrophilic asymmetric 2 kDa poly (ethylene glycol) (PEG) moiety coupled to succinimidyl 

tartrate as an amine-reactive linker, abbreviated as ST-NH-PEG2PLA40. The PLA chain 

functions as the backbone responsible for the biodegradability and the stability and the PEG 

component including the reactive linker represents the protein adsorption-resistant and 

substrate-binding chain [19,20]. Bioactive molecules bearing free amine groups can be 

covalently bound to these polymers resulting in a stable amide linkage.  

The goal of this study was to demonstrate the feasibility of the instant surface modification of 

stable 3-D scaffolds with the angiogenic growth factor bFGF [21]. This study provides data 

about the determination of the amount of covalently immobilized basic fibroblast growth 

factor (bFGF) onto 3-D scaffolds, the evaluation of the stability of the covalent linkage in 

vivo, and the investigation of angiogenic effects of the growth factor bFGF tethered to 3-D 

scaffolds in comparison with the adsorbed form after implantation into the subcutis of mice.   

Materials and Methods 

Materials 

Basic FGF was purchased from Kaken Pharmaceutical, Tokyo, Japan. PEG-PLA diblock 

copolymers (approx. 42 kDa) were synthesized in our laboratory [22], poly(lactic-co-glycolic 

acid) (PLGA 75:25; approx. 90 kD) was obtained from Boehringer Ingelheim (Ingelheim am 

Rhein, Germany). 

Polymer synthesis 

The polymer ST-NH-PEG2PLA40 was synthesized and characterized as described by Tessmar 

et al. [19]. Briefly, the precursor H2N-PEGP2LA40 was synthesized by a ring-opening 

polymerization of poly(D,L-lactic acid) with poly(ethylene glycol)-monoamine using 

stannous 2-ethylhexanoate as catalyst. ST-NH-PEG2PLA40 was obtained by attachment of 

disuccinimidyl tartrate to H2N-PEG2PLA40 (Fig. 1A). MeO-PEG2PLA40 was synthesized and 

characterized as previously described in [22] (Fig. 1B).  



Chapter 9                                                   Instant surface modification of biomimetic scaffolds 

 -191- 

 

Fig. 1 Structures of the derivatives of poly(D,L-lactic acid)-block-poly(ethylene glycol):        
A Poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether (MeO-PEG2PLA40),              
B Succinimidyl tartrate PEG-PLA (ST-NH-PEG2PLA40). 
 

Scaffold fabrication 

Scaffolds were fabricated using a protocol adapted from Hacker et al. [17]. Polymer-specific 

parameters are shown in Table 1. Briefly, the scaffolds were fabricated from polymer 

dissolved in a methyl ethyl ketone-tetrahydrofurane-mixture (59:41 (v/v)) and lipid 

microparticles made from Softisan 154 (S) and Witepsol H42 (H) (kindly provided by 

SASOL Germany (Witten, Germany)) were weighed into a separate vial. The size of porogen 

particles ranged from 100 µm to 300 µm. After 1 h storage at -20°C the porogen particles 

were transferred into the polymer solution and mixed for 5 min on ice. The resulting highly 

viscous dispersion was then transferred into a 10 ml polypropylene syringe and injected into 

cubic Teflon molds (with a cylindrical cavity of 0.8 cm in diameter). After a pre-extraction 

treatment step in n-hexane at 0°C for t0, the filled molds were submerged in warm n-hexane to 

precipitate the polymer and extract the porogen particles concurrently. This procedure was 

carried out in two separate n-hexane baths of different temperatures: first, molds were 

incubated at T1 for t1 and in a second step at T2 for t2. Subsequently, the molds were 

transferred into a n-hexane bath of 0°C for 5 min. Finally, the porous cylindrical polymer 

constructs were removed from the molds and vacuum-dried for 48 h. For further 

investigations the constructs were cut into 2 mm slices which were then addressed as 

scaffolds.  
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Group Polymer Lipid mixture 

(S/H) 

t0 [min] T1 [°C]/t1 [min] T2 [°C]/t2 [min] 

PLGA 100% PLGA 2:1 15 52/10 40/20 

MeO-PEG2PLA40 100% MeO-

PEG2PLA40 
1:1 90 45/7.5 35/22.5 

ST-NH- PEG2PLA40 70% ST-NH- 

PEG2PLA40 + 30% 

MeO-PEG2PLA40 

1:1 90 45/7.5 35/22.5 

 
Table 1: Polymer-specific parameters used for the scaffold fabrication. 
 

Radiolabeling of bFGF 

Different amounts of bFGF were labeled using the chloramine T method. In the following, the 

preparation of 100 µl of a 10 mg/ml bFGF is exemplarily described. 5.00 µl 125NaI (3.7 MBq) 

were added to 100 µl of a 10 mg/ml bFGF solution. After the addition of 100 µl of a 0.2 

mg/ml chloramine T solution (710 µM final concentration), the mixture was shaken for 2 min. 

In order to stop the reaction, 100 µl of a 4 mg/ml sodium metabisulfite solution (21 mM final 

concentration) was mixed and shaken with the bFGF solution for 2 min. The resulting 

solution was subjected to a PD-10 column, Sephadex G-25 M (Amersham Biosciences, 

Uppsala, Sweden) and bFGF was eluted using a phosphate-buffered saline (PBS) pH 8.0. The 

resultant solution was a 1 mg/ml bFGF solution in PBS, pH 8.0, which was used at different 

dilutions for all adsorption and binding experiments. 

Determination of the amounts of covalently bound  bFGF to scaffolds 

Scaffolds made from MeO-PEG2PLA40 and ST-NH-PEG2PLA40 were strung onto 22G 

needles and located with small segments of silicone tubing. Subsequently, scaffolds were pre-

wetted in 70% ethanol and extensively rinsed with PBS pH 8.0. In order to anchor bFGF, 

scaffolds were incubated in bFGF solution (in PBS pH 8.0) concentrated from 0 to 100 µg 

bFGF in 1.5 ml buffer for two hours at room temperature (RT) on a shaker (20 min-1). After 

washing the scaffolds in PBS pH 7.4, they were treated with 1% sodium dodecyl sulphate 

(SDS, Nacalai Tesque, Kyoto, Japan) in PBS pH 7.4 in order to desorb non-covalently bound 

bFGF for 90 h at RT on a shaker (20 min-1). Finally, the scaffolds were subjected to 

scintillation. Some scaffolds were subjected to scintillation after the treatment with SDS for 

only 1 h in order to assess the amount of adsorbed/covalently immobilized bFGF prior to 

implantation. For the control group which allows for the correction for bFGF adsorption, 

bFGF was adsorbed to and desorbed from MeO-PEG2PLA40 under the same conditions as 



Chapter 9                                                   Instant surface modification of biomimetic scaffolds 

 -193- 

described for the covalent binding of bFGF to the ST-NH-PEG2PLA40. The amount of bFGF 

covalently bound to ST-NH-PEG2PLA40 scaffolds was calculated by subtracting the amount 

associated with MeO-PEG2PLA40 control scaffolds from that associated with ST-NH-

PEG2PLA40 scaffolds. 

Stability of the linkage in biomimetic scaffolds in vivo   

125I-bFGF was adsorbed and covalently bound to MeO-PEG2PLA40 and ST-NH-PEG2PLA40 

scaffolds, respectively, by incubation in 1.5 ml buffer solution containing 50µg 125I-bFGF for 

2 h at RT on a shaker (20 min-1). After washing the scaffolds in PBS pH 7.4, they were treated 

with 1% sodium dodecyl sulphate (SDS) in PBS pH 7.4 in order to desorb bFGF for 1 h at RT 

on a shaker (20 min-1). The scaffolds with adsorbed and bound 125I-bFGF were implanted into 

the back subcutis of mice (female ddY mice (6 to 8-week-old), Japan SLC, Hamamatsu, 

Japan) following a washing step with PBS pH 7.4. Additionally, an aqueous solution of 125I-

bFGF (250 ng/site) was subcutaneously injected into the back of mice. After certain time 

intervals, the scaffolds or the injection site were excised and the adjacent tissue was wiped off 

with a tissue. The radioactivity of the residual scaffolds, the skin, and the paper was measured 

using the gamma counter. The ratio of the thus measured radioactivity to the radioactivity of 

bFGF initially used were expressed as the percentage of the remaining activity in the in vivo 

bFGF release experiment. Three mice were sacrificed at each point of time and for each 

experimental condition. Animal experiments were done according to the institutional 

guidance of Kyoto University on animal experimentation. 

Assessment of angiogenesis induced by adsorbed and tethered bFGF in vivo 

Basic FGF was adsorbed and covalently bound to PLGA, MeO-PEG2PLA40 and ST-NH-

PEG2PLA40 scaffolds, respectively, by incubation in a 1.5 ml buffer solution containing 50 µg 

bFGF for 2 h at RT on a shaker (20 min-1). After washing the scaffolds in PBS pH 7.4, they 

were treated with 1% sodium dodecyl sulphate (SDS) in PBS pH 7.4 in order to desorb bFGF 

for 1 h at RT on a shaker (20 min-1). Scaffolds were washed with PBS pH 7.4 and were 

implanted into the back subcutis of mice. Control scaffolds without bFGF were treated the 

same way but the incubation buffer contained no bFGF. Three mice were sacrificed for each 

experimental condition three weeks after implantation and scaffolds were prepared for the 

evaluation of angiogenic effects and ingrowth of fibrovascular tissue. The scaffolds were 

excised with the adjacent tissue, rinsed in PBS, and fixed with 2.5 % glutaraldehyde for 15 

min. Subsequently, scaffolds were treated with 10% formaldehyde in PBS for storage. Fixed 

scaffolds were embedded in Tissue Tek. 10 µm thick sections were cut on a cryotome and 
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were stained with hematoxylin and eosin (H&E). In detail, scaffolds were halved, three 

sections were cut from the middle of the construct (layer 1), and further three sections were 

cut each at a distance of  approx. 200 µm (layer 2) and 400 µm (layer 3) from layer 1. All 

capillaries observed in the entire cross-sections were counted under an inverse light 

microscope. The capillary number of one scaffold was calculated from the mean of the nine 

values obtained from layers 1-3. The mean for each experimental condition resulted from 

scaffolds from three mice. 

Statistics 

All data are expressed as means ± standard deviation. Single-factor analysis of variance 

(ANOVA) was used in conjunction with a multiple comparison test (Tukey’s test) to assess 

statistical significance at a level of p < 0.01 or  p < 0.05. 

Results 

Principle 

Scaffolds were fabricated from PLGA and PEG-PLA derivatives. The activated ST-NH-

PEG2PLA40 scaffolds represent an “off-the-shelf” product that is storable over a long time 

period. When required, the scaffold surface can be modified by simple incubation in a 

solution of a bioactive agent bearing free amine groups such as bFGF in this study (Fig.2). 

 
 
Fig. 2 Principle of the instant surface modification of 3-D polymeric scaffolds. The scaffolds 
were fabricated from the activated polymer ST-NH-PEG2PLA40 which can be stored under the 
exclusion of moisture. When required for implantation, a bioactive compound such as bFGF 
can be covalently immobilized by a simple incubation of the scaffolds in the bFGF solution 
for two hours.   
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Determination of the amounts of covalently bound  bFGF to scaffolds 

In order to determine the amount of bFGF tethered to the ST-NH-PEG2PLA40 scaffolds, these 

scaffolds and MeO-PEG2PLA40 control scaffolds were incubated for two hours at room 

temperature in solutions with different bFGF concentrations at pH 8.0. With an increasing 

amount of bFGF in the incubation solution, the amount of covalently immobilized bFGF 

could be elevated (Fig. 3). The minimum concentration of bFGF required in the feed was 10 

µg in 1.5 ml incubation buffer in order to anchor a detectable amount of bFGF (Fig. 3). 

Applying 50 µg bFGF in the feed, 3.6±0.7 ng/mg scaffold could be tethered to ST-NH-

PEG2PLA40 scaffolds (Fig. 3). The use of 100 µg bFGF resulted in a similar amount of 

tethered bFGF as compared to 50 µg (Fig. 3). In the following in vivo studies, scaffolds were 

incubated in a solution of 50 µg bFGF. 

 
Fig. 3 Determination of the amount of covalently immobilized bFGF. 0.1 to 100 µg bFGF in 
1.5 ml incubation buffer were provided in the feed for the binding reaction to ST-NH-
PEG2PLA40 scaffolds. The amount of bFGF covalently bound to ST-NH-PEG2PLA40 scaffolds 
was calculated by subtracting the amount associated with MeO-PEG2PLA40 control scaffolds 
from that associated with ST-NH-PEG2PLA40 scaffolds (n=3). 
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Remaining amount of bFGF after desorption on the scaffolds 

In the following in vivo experiments, bFGF was desorbed for 1 h before implantation. This 

short time period was chosen to guarantee the stability of bFGF although it is insufficient to 

desorb the whole amount of adsorbed protein (Chapter 8, Fig. 8). Figure 4 shows the amounts 

of adsorbed and/or covalently bound bFGF remaining after desorption for 1 h. Approx. double 

the amount of bFGF was recovered on PLGA scaffolds (36.95±10.54) as compared to the 

PEG-PLA derivatives (Fig. 4). A similar amount of bFGF was detected on MeO-PEG2PLA40 

scaffolds (17.12±0.80 ng/mg scaffold) and ST-NH-PEG2PLA40 scaffolds (17.73±3.44 ng/mg 

scaffold) (Fig. 4). Scaffolds were implanted with these amounts of bFGF adsorbed/covalently 

bound to the different scaffold types. 

 

Fig. 4 Remaining amount of bFGF on the scaffolds after desorption for 1 h. The amount of 
bFGF is normalized to the masses of the scaffolds. 

 

Stability of the linkage of bFGF in biomimetic scaffolds in vivo 

 The resultant amide linkage between the ST-NH-PEG2PLA40 polymer and bFGF should be 

stable under physiological conditions and thus, bFGF should be retained within the scaffold 

for a certain period of time. In order to test the stability of the linkage, scaffolds with 

radiolabeled bFGF bound to ST-NH-PEG2PLA40 scaffolds and adsorbed to MeO-PEG2PLA40 

scaffolds were subcutaneously implanted into mice. As a control group, bFGF was 
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administered as a s.c. injection into the backs of mice. The amount of injected bFGF rapidly 

decreased and was significantly different from absorbed and bound bFGF after three days 

(Fig. 5). Scaffolds with exclusively adsorbed bFGF (MeO-PEG2PLA40) and scaffolds with 

adsorbed and bound bFGF (ST-NH-PEG2PLA40) exhibited similar amounts of remaining 

bFGF after 1, 3, and 7 days (Fig. 5). During this time period, loosely adsorbed bFGF was 

released from the scaffolds in the adjacent tissue. The amount of adsorbed bFGF steadily 

decreased on MeO-PEG2PLA40 scaffolds until day 21 (Fig. 5). In contrast, a constant amount 

of bFGF was retained within the ST-NH-PEG2PLA40 scaffolds from day 7 to day 21 (Fig. 5). 

Here, 21.3±8.6% of the initially adsorbed/bound bFGF were recovered after three weeks, that 

is, 3.82±0.33 ng bFGF/mg scaffold. This amount is equal to the amount of bFGF initially 

tethered to the scaffolds (3.6±0.7 ng bFGF/mg scaffold) as shown in Figure 3. 

 
Fig. 5 Stability of the bFGF binding in vivo. Basic FGF was administered in the soluble form 
as s.c. injection, on MeO-PEG2PLA40 scaffolds with exclusively adsorbed bFGF, and on ST-
NH-PEG2PLA40 scaffolds with adsorbed and bound bFGF. The amount of remaining bFGF is 
expressed as the percentage of the amount of bFGF adsorbed/bound to the scaffolds prior to 
the implantation or as the percentage of the injected amount of bFGF. The statistically 
significant difference of bFGF delivered by the scaffolds as compared to the injection group 
is denoted by ‡ (p<0.01). Statistically significant differences of ST-NH-PEG2PLA40 scaffolds 
with adsorbed/covalently bound bFGF as compared to MeO-PEG2PLA40 scaffolds with only 
adsorbed bFGF are denoted by * (p<0.01) and ** (p<0.05) (n=3). 
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Assessment of angiogenesis induced by adsorbed and tethered bFGF in vivo 

Scaffolds made from PLGA, MeO-PEG2PLA40, and ST-NH-PEG2PLA40 were subcutaneously 

implanted into mice for three weeks, either as blank scaffolds or after adsorption or covalent 

binding of bFGF (for amounts of bFGF see Fig. 4). The bioactivity and the angiogenic effects 

of adsorbed or tethered bFGF were determined. The remaining amounts of bFGF after the 

desorption procedure is shown in Figure 4.  

 
Fig. 6a H&E histology of constructs excised after 3 weeks. Photographs of the scaffolds 
without and with adsorbed or bound bFGF were taken in 100-fold magnification. Scale bar: 
300 µm. ST-NH-PEG2PLA40 scaffolds without bFGF could not be evaluated due to instability 
and shrinkage in vivo. 
 
PLGA and MeO-PEG2PLA40 constructs exhibited a very low degree of ingrowth of 

fibrovascular tissue, irrespective of the presence of adsorbed bFGF (Fig. 6a). Only a few 

blood vessels were observed within these scaffolds, preferably in the regions of the scaffolds  

w/o bFGF w/ bFGF

PLGA

MeO-PEG2PLA40

ST-NH-PEG2PLA40 n.d.

w/o bFGF w/ bFGF

PLGA

MeO-PEG2PLA40

ST-NH-PEG2PLA40 n.d.
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Fig. 6b H&E histology of constructs at higher magnification (200-fold). Two experimental 
groups, MeO-PEG2PLA40 and ST-NH-PEG2PLA40 with bFGF, are exemplarily depicted in 
order to demonstrate the effect of covalently bound bFGF on the ingrowth of capillaries and 
connective tissue as compared to adsorbed bFGF. Black arrows mark capillaries within the 
constructs. Scale bar: 100 µm.  
 

close to the adjacent tissue. In detail, 5.0±0.4 capillaries were detected within cross-sections 

of PLGA scaffolds without bFGF, 8.4±5.1 in PLGA scaffolds with bFGF, 3.3±1.9 in MeO-

PEG2PLA40 scaffolds without bFGF, and 5.0±0.4 in MeO-PEG2PLA40 scaffolds with bFGF 

MeO-PEG2PLA40 

ST-NH-PEG2PLA40 
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(Fig. 7). In contrast, a significantly higher number of capillaries (40.9±11.5 in cross-sections) 

penetrated into the ST-NH-PEG2PLA40 constructs with covalently bound bFGF accompanied 

by a clearly enhanced ingrowth of connective tissue as compared to all other experimental 

groups (Figs. 6, 7). ST-NH-PEG2PLA40 constructs without bFGF could not be evaluated due 

to their instability and strong shrinkage in vivo. Figure 6b exemplarily shows two 

experimental groups, MeO-PEG2PLA40 and ST-NH-PEG2PLA40
 with bFGF, at a higher 

magnification. The density of blood vessels and the ingrowth of connective tissue in ST-NH-

PEG2PLA40 scaffolds with tethered bFGF was strikingly increased as compared to scaffolds 

with adsorbed bFGF.  

Fig. 7 Determination of the number of capillaries within the constructs. Data represent mean 
± standard deviation. The asterisk indicates a statistically significant difference of the number 
of capillaries in ST-NH-PEG2PLA40 scaffolds with covalently immobilized bFGF as compared 
to all other experimental groups (p<0.01).  
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Discussion 

This study demonstrates a novel principle for the instant surface modification of solid 

polymeric 3-D scaffolds with the potent growth factor bFGF for tissue engineering 

applications. Basic FGF could be covalently bound to the scaffolds and was anchored within 

the scaffolds for at least three weeks in vivo. The bioactivity of the tethered growth factor was 

retained: it strongly promoted angiogenesis in the scaffolds, whereas adsorbed bFGF had no 

effect on the vascularization. Thus, these constructs represent an “off-the-shelf” product 

functioning as a solid scaffold-type cell carrier or template for the developing tissue and at the 

same time, as a delivery device for peptides and growth factors.  

Scaffolds and growth factors are known to play an outstanding role in the field of tissue 

engineering providing a template for a new tissue and modulating the cellular behavior, 

respectively [1]. However, proteins and peptides have been described as agents susceptible to 

degradation. They  have been reported to exhibit extremely short plasma half-lives, for 

instance, 1.5 min for bFGF and less than 1 h for vascular endothelial growth factor (VEGF) 

and absolutely require to be provided by drug delivery devices [7,8]. As yet, polymer devices 

such as reservoirs, matrices, microspheres, and hydrogels allow for the maintenance of 

constant local levels of growth factors and consequently for a high efficiency [7]. These 

systems deliver the protein to the body in the original soluble form which can directly interact 

with the corresponding receptor on the cell surface in the case of growth factors. The covalent 

immobilization of proteins may circumvent major drawbacks of the soluble form resulting in 

the prevention of the internalization of the ligand-receptor-complex and the hindrance of a 

diffusive spread of the protein [7,10]. Additionally, the tethering of peptides has been shown 

to prolong the intracellular signaling after binding to cell surface receptors in comparison to 

factors provided in a soluble, diffusive form and thus, the efficiency of the peptides can be 

improved [13]. 

The tethering of a growth factor to a polymer potentially bears the risk of reducing its 

bioactivity. Physiologically, bFGF binds to high affinity receptors (receptor tyrosine kinases) 

and to low affinity receptors (heparan-like glycosaminoglycans) located at the cell surface 

[23]. The structure of bFGF includes both a receptor binding site and a heparin-binding site 

which are known to be essential for the exertion of its biological activity [24,25]. N-

hydroxysuccinimide (NHS) esters as used in this study have been reported to react with 

primary amines under near-physiological conditions [26]. The bioactivity of tethered bFGF 

may not or at least only partially be reduced by the covalent binding due to the fact that the 

primary, higher affinity binding interaction of bFGF with its receptor comprises the amino 
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acids tyrosine(-24), tyrosine(-103), leucine(-140), and methionine(-142) and thus, this 

sequence exhibits a lack of primary amines [27]. The retention of the bioactivity was clearly 

demonstrated in this study since bFGF covalently immobilized in ST-NH-PEG2PLA40 

scaffolds provoked angiogenesis, and in contrast, adsorbed bFGF failed in this regard (Figs. 

6,7). A total amount of approx. 17 ng/mg bFGF was detected on these scaffolds prior to 

implantation (Fig. 4) whereby only approx. 3.6 ng/mg scaffold were covalently bound to the 

scaffolds (Fig. 3). Basic FGF adsorbed onto the hydrophobic surface of PLGA scaffolds or 

onto the hydrophilic surface of MeO-PEG2PLA40 exerted no effects with regard to 

angiogenesis and tissue ingrowth although the total amount of bFGF was similar in the case of 

MeO-PEG2PLA40 or even two-fold increased in the case of the PLGA scaffolds as compared 

to the ST-NH-PEG2PLA40 scaffolds (Fig. 4). These observations indicate that the angiogenic 

effects as shown in Figs. 6 and 7 were exerted exclusively by the covalently immobilized 

bFGF whereas adsorbed bFGF proved ineffective. Covalently bound bFGF was presented on 

the surface of the scaffolds at a constant level during three weeks in vivo, whereas the amount 

of adsorbed bFGF strongly decreased after one week (Fig. 5). In detail, the amount of bFGF 

tethered to the scaffolds prior to implantation was 3.6±0.7 ng bFGF/mg scaffold and three 

weeks after implantation, the amount was 3.82±0.33 ng bFGF/mg scaffold. 

The potential of bFGF to exert angiogenic effects has repeatedly been reported [9,21,28-30]. 

To induce angiogenesis, bFGF stimulates endothelial cell migration and division, and plays an 

important role in the remodeling of the extracellular matrix (ECM) [31]. Basic FGF is 

secreted by cells via a poorly understood mechanism and acts in an autocrine or paracrine 

manner via its high and low affinity receptors. Furthermore, bFGF can be stored by binding to 

heparan-like glycosaminoglycans located in the ECM or on the cell surface. When required, 

bFGF can be released by an enzymatic cleavage of the bFGF/heparin complex [32]. In our 

study, bFGF was anchored to the scaffolds over the entire period in vivo and nevertheless, 

bFGF strongly provoked an angiogenic effect. Possibly, the immobilization of growth factors 

also may contribute to a further elucidation of the molecular mechanisms of growth factor-

induced angiogenesis. 

Other systems using covalently immobilized growth factors or peptides have been developed 

so far. Non-woven polyester fiber meshes with covalently immobilized RGD peptides and 

insulin have been reported to promote the adhesion and proliferation of skin fibroblasts in 

vitro and have been utilized to establish a serum-free cell culture [16]. Transforming growth 

factor-β1 (TGF-β1) tethered to acryloyl-PEG hydrogels increased the ECM production of 

vascular smooth muscle cells in vitro similar to incorporated TGF-β1 [15]. Tethering of TGF-
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β2 to collagen gels has been shown to stabilize the growth factor in vitro and to prolong and 

potentiate the responses to the factor in vivo [14]. In contrast to those systems, the polymeric 

scaffolds used in this study exhibit a solid sponge-like structure which is highly porous and 

features pores that are highly interconnected [17]. The pore size desired for a certain purpose 

would easily be variable by the use of different porogen microparticles. Furthermore, the 

tethering of peptides and proteins had been described as a laborious multi-step chemistry [14-

16] whereas the technique described in this study allows for an instant modification of the 

scaffolds by a simple incubation of the scaffolds in the peptide solution at near-physiological 

conditions (Fig. 2). 

The potential for the promotion of angiogenesis by immobilization of bFGF was shown in this 

study. Several strategies come into consideration in order to improve the established system 

or to broaden the spectrum of further applications. The use of RGD peptides may enhance the 

adhesion of specific cells onto the ST-NH-PEG2PLA40 scaffolds. Lieb et al. recently 

demonstrated the positive effects of cyclic RGD sequences covalently immobilized to two-

dimensional ST-NH-PEG2PLA40 films on the adhesion of osteoblasts in vitro [18]. In a 

previous study, DeLong et al. observed an alignment of vascular smooth muscle cells on 

gradient hydrogels made from acryloyl-PEG with a concentration gradient of covalently 

immobilized bFGF [33]. Beyond the alignment, these cells showed an increased migration up 

the concentration gradient as compared to hydrogels with a constant bFGF concentration. The 

efficiency of the system presented in this study may be increased by the generation of 

concentration gradients of bFGF in the scaffolds. Possibly, a concentration gradient with 

increasing bFGF concentrations from the outside to the inside of the scaffolds may result in an 

enhanced vascularization of the scaffolds. The instant modification method as presented in 

this study may technically facilitate the generation of concentration gradients in the scaffolds 

by treatment of different areas of the scaffold with differentially concentrated bFGF solutions. 

Furthermore, alternative growth factors or growth factor combinations may be utilized for the 

modulation of the cellular behavior including the proliferation and differentiation of stem 

cells which have been described to be a promising cell source for tissue engineering [34,35].  

In summary, this study demonstrates the feasibility of the surface modification of 3-D 

scaffolds by a simple instant reaction. The tethering of bFGF to these scaffolds provoked 

angiogenesis in vivo. Thus, this system represents a novel “off-the-shelf” product for tissue 

engineering applications and potentially facilitates the investigation of angiogenic processes 

in a novel model system. 



Chapter 9                                                   Instant surface modification of biomimetic scaffolds 

 -204- 

Acknowledgement 

This work was supported by the Deutsche Akademische Austausch Dienst (DAAD) providing 

a six-month scholarship for Markus Neubauer at the University of Kyoto.  

References 

[1] Langer R, Vacanti JP. 'Tissue engineering'. Science (1993); 260: 920-926. 

[2] Hench LL, Polak JM. 'Third-generation biomedical materials'. Science (2002); 295: 1014-

1017. 

[3] Anderson DG, Burdick JA, Langer R. 'Materials science: Smart biomaterials'. Science 

(2004); 305: 1923-1924. 

[4] Drotleff S, Lungwitz U, Breunig M, Dennis A, Blunk T, Tessmar J, Gopferich A. 

'Biomimetic polymers in pharmaceutical and biomedical sciences'. Eur J Pharm Biopharm 

(2004); 58: 385-407. 

[5] Bonassar LJ, Vacanti CA. 'Tissue engineering: the first decade and beyond'. J Cell 

Biochem (1998); Suppl. 30/31: 297-303. 

[6] Tabata Y. 'The importance of drug delivery systems in tissue engineering'. Pharm Sci 

Technol Today (2000); 3: 80-89. 

[7] Baldwin SP, Mark Saltzman W. 'Materials for protein delivery in tissue engineering'. Adv 

Drug Deliv Rev (1998); 33: 71-86. 

[8] Bouhadir KH, Mooney DJ. 'Promoting angiogenesis in engineered tissues'. J Drug Target 

(2002); 9: 397-406. 

[9] Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. 'Structural characterization and 

biological functions of fibroblast growth factor'. Endocr Rev (1987); 8: 95-114. 

[10] Kuhl PR, Griffith-Cima LG. 'Tethered epidermal growth factor as a paradigm for growth 

factor-induced stimulation from the solid phase'. Nat Med (1996); 2: 1022-1027. 

[11] Ito Y. 'Tissue engineering by immobilized growth factors'. Mater Sci Eng (1998); 6: 267-

274. 

[12] Kirkwood K, Rheude B, Kim YJ, White K, Dee KC. 'In vitro mineralization studies with 

substrate-immobilized bone morphogenetic protein peptides'. J Oral Implantol (2003); 29: 57-

65. 

[13] Ito Y, Zheng J, Imanishi Y, Yonezawa K, Kasuga M. 'Protein-free cell culture on an 

artificial substrate with covalently immobilized insulin'. Proc Natl Acad Sci USA (1996); 93: 

3598-3601. 



Chapter 9                                                   Instant surface modification of biomimetic scaffolds 

 -205- 

[14] Bentz H, Schroeder JA, Estridge TD. 'Improved local delivery of TGF-.beta.2 by binding 

to injectable fibrillar collagen via difunctional polyethylene glycol'. J Biomed Mat Res 

(1998); 39: 539-548. 

[15] Mann BK, Schmedlen RH, West JL. 'Tethered TGF-β increases extracellular matrix 

production of vascular smooth muscle cells'. Biomaterials (2001); 22: 439-444. 

[16] Gumusderelioglu M, Turkoglu H. 'Biomodification of non-woven polyester fabrics by 

insulin and RGD for use in serum-free cultivation of tissue cells'. Biomaterials (2002); 23: 

3927-3935. 

[17] Hacker M, Tessmar J, Neubauer M, Blaimer A, Blunk T, Gopferich A, Schulz MB. 

'Towards biomimetic scaffolds: Anhydrous scaffold fabrication from biodegradable amine-

reactive diblock copolymers'. Biomaterials (2003); 24: 4459-4473. 

[18] Lieb E, Hacker M, Tessmar J, Kunz-Schughart LA, Fiedler J, Dahmen C, Hersel U, 

Kessler H, Schulz MB, Gopferich A. 'Mediating specific cell adhesion to low-adhesive 

diblock copolymers by instant modification with cyclic RGD peptides'. Biomaterials; in press.   

[19] Tessmar JK, Mikos AG, Goepferich A. 'Amine-Reactive Biodegradable Diblock 

Copolymers'. Biomacromolecules (2002); 3: 194-200. 

[20] Tessmar J, Mikos A, Gopferich A. 'The use of poly(ethylene glycol)-block-poly(lactic 

acid) derived copolymers for the rapid creation of biomimetic surfaces'. Biomaterials (2003); 

24: 4475-4486. 

[21] Bikfalvi A, Savona C, Perollet C, Javerzat S. 'New insights in the biology of fibroblast 

growth factor-2'. Angiogenesis (1997); 1: 155-173. 

[22] Lieb E, Tessmar J, Hacker M, Fischbach C, Rose D, Blunk T, Mikos AG, Goepferich A, 

Schulz MB. 'Poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock 

copolymers control adhesion and osteoblastic differentiation of marrow stromal cells'. Tissue 

Eng (2003); 9: 71-84. 

[23] Powers CJ, McLeskey SW, Wellstein A. 'Fibroblast growth factors, their receptors and 

signaling'. Endocr Relat Cancer (2000); 7: 165-197. 

[24] Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. 'Cell surface, heparin-like 

molecules are required for binding of basic fibroblast growth factor to its high affinity 

receptor'. Cell (1991); 64: 841-848. 

[25] Pellegrini L. 'Role of heparan sulfate in fibroblast growth factor signalling: a structural 

view'. Curr Opin Struct Biol (2001); 11: 629-634. 

[26] Roberts MJ, Bentley MD, Harris JM. 'Chemistry for peptide and protein PEGylation'. 

Adv Drug Deliv Rev (2002); 54: 459-476. 



Chapter 9                                                   Instant surface modification of biomimetic scaffolds 

 -206- 

[27] Springer BA, Pantoliano MW, Barbera FA, Gunyuzlu PL, Thompson LD, Herblin WF, 

Rosenfeld SA, Book GW. 'Identification and concerted function of two receptor binding 

surfaces on basic fibroblast growth factor required for mitogenesis'. J Biol Chem (1994); 269: 

26879-26884. 

[28] Nugent MA, Iozzo RV. 'Fibroblast growth factor-2'. Int J Biochem Cell Biol (2000); 32: 

115-120. 

[29] Okada-Ban M, Thiery JP, Jouanneau J. 'Fibroblast growth factor-2'. Int J Biochem Cell 

Biol (2000); 32: 263-267. 

[30] Ornitz DM, Itoh N. 'Fibroblast growth factors'. Genome Biol (2001); 2: Reviews3005. 

[31] Slavin J. 'Fibroblast growth factors: at the heart of angiogenesis'. Cell Biol Int (1995); 19: 

431-444. 

[32] Klein S, Roghani M, Rifkin DB. 'Fibroblast growth factors as angiogenesis factors: New 

insights into their mechanism of action'. In: Goldberg ID, Rosen EM, editors. Regulation of 

Angiogenesis. Basel: Birkhäuser, 1997. p. 159-192. 

[33] DeLong SA, Moon JJ, West JL. 'Covalently immobilized gradients of bFGF on hydrogel 

scaffolds for directed cell migration'. Biomaterials; in press.  

[34] Caplan AI, Bruder SP. 'Mesenchymal stem cells: building blocks for molecular medicine 

in the 21st century'. Trends Mol Med (2001); 7: 259-264. 

[35] Heath CA. 'Cells for tissue engineering'. Trends Biotechnol (2000); 18: 17-19. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 10                                                                             Summary and conclusion 

 -207- 

 

Chapter 10 

 
Summary and Conclusions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Chapter 10                                                                             Summary and conclusion 

 -208- 

Mesenchymal stem cells (MSCs) represent intensively investigated cells with the potential to 

play an important clinical role in the replacement or regeneration of defect tissues [1-3]. In the 

field of tissue engineering, MSCs have been utilized in approaches towards bone, cartilage, 

and tendon [4-7]. However, no study on tissue engineered fat exists using MSCs so far.  

 The capacity of MSCs to undergo adipogenic differentiation has repeatedly been shown using 

various inducing stimuli [8-11]. Growth factors including basic fibroblast growth factor 

(bFGF) have been described to influence the adipogenic differentiation of MSCs. However, 

the effect of bFGF on the adipogenesis of MSCs has been controversially discussed [8,11,12]. 

Furthermore, those studies were not focused on adipogenesis with regard to the applied 

experimental conditions and analytics. 

In order to optimize culture conditions for an adipocytic culture of MSCs, adipogenesis-

inducing agents such as dexamethasone, IBMX, indomethacin, and insulin were employed in 

different combinations (chapter 3). The combination of all inducers, in the following termed 

hormonal cocktail, yielded the strongest adipogenic differentiation of MSCs. However, the 

differentiation rate was still insufficient for tissue engineering applications and, therefore, 

growth factors known to modulate the differentiation of MSCs were administered. Epidermal 

growth factor (EGF) had no effect on the adipogenesis of MSCs, whereas platelet-derived 

growth factor-BB (PDGF-BB) and bFGF strongly enhanced adipogenesis of MSCs. 

Combined administration of bFGF and the hormonal cocktail led to the strongest 

enhancement of adipogenesis, that is, the highest number of adipocytes and the most 

advanced maturation were obtained with this combination.  

In a further study, the striking effect of bFGF on the adipogenesis of MSCs was investigated 

on the cellular and molecular level in detail (chapter 4). Supplementation of bFGF in 

different phases of cell culture and treatment of the cells with the hormonal cocktail led to a 

strong enhancement of adipogenesis of MSCs. In cultures receiving bFGF, mRNA expression 

of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription factor in 

adipogenesis, was upregulated even prior to adipogenic induction. In order to investigate the 

effects of bFGF on PPARγ ligand-induced adipogenic differentiation, the thiazolidinedione 

troglitazone was administered as a single adipogenic inducer. Basic FGF was demonstrated to 

also strongly increase adipogenesis induced by troglitazone, that is, bFGF clearly increased 

the responsiveness of MSCs to a PPARγ ligand.  

Basic FGF was shown to modulate adipogenesis of MSCs in this study and has been 

demonstrated to also influence osteogenesis and chondrogenesis of MSCs in other studies 

[11,13]. However, the mechanism by which bFGF exerts its effects on MSCs are poorly 
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investigated and understood. Possible mechanisms of action of bFGF include (a) the 

preferential proliferation of a subpopulation prone to differentiate into adipocytes and (b) the 

exertion of direct effects on the commitment level of MSCs. The presence of multiple cell 

populations in the MSC culture renders the determination of the underlying mechanism more 

difficult. Therefore, a culture was established to investigate the effects of bFGF on the 

adipogenesis of MSCs under clonal conditions (chapter 5). First, a medium consisting of α-

MEM, fetal bovine serum, ascorbic acid, and the B27 supplement was found to be suitable for 

the expansion of MSCs under cloning condition. This medium ensured the maintenance of the 

differentiation potential and the responsiveness to bFGF of MSCs. Second, differentiation 

experiments under clonal conditions in which bFGF was supplemented either only in the 

single cell culture or in the entire culture suggest bFGF to act mainly via the preferential 

proliferation of a subset of the MSCs capable of undergoing adipogenesis. 

In tissue engineering approaches, so far exclusively adipocytes and preadipocytes have been 

used as cell sources (chapter 1). In this thesis, the potential of MSCs for the application in in 

vitro approaches towards adipose tissue engineering was shown for the first time. As a first 

step, MSCs were seeded onto polymeric scaffolds with different pore size and were cultivated 

for two weeks on the constructs to observe changes of the cell number (chapter 6). Scaffolds 

with pore sizes from 100 to 300 µm appeared to be most suitable with regard to cellular 

distribution throughout the scaffold and maintenance of the cell number over the two-week 

culture period. Scaffolds made from various materials with this pore size range were 

employed in further studies of this thesis (chapters 7-9). The next challenge was the transfer 

of the adipogenic protocol established in 2-D short-term cell culture to a 3-D long-term cell 

culture using MSCs and bFGF (chapter 7). MSCs were seeded onto poly(lactic-co-glycolic 

acid) (PLGA) scaffolds and cultivated for four weeks in the absence and in the presence of 

bFGF. Basic FGF strongly enhanced the adipogenesis of MSCs on the constructs and the 

development of a tissue-like structure accompanied by an elevation of adipocytic gene and 

protein expression. Parts of the constructs cultivated in the presence of bFGF for four weeks 

exhibited highly differentiated and mature adipocytes which were embedded in structures 

considered to be extracellular matrix. 

Recently, a new generation of novel polymers, also termed biomimetic polymers, has been 

designed in order to control the cellular behavior on the molecular level [14-16]. In our 

laboratory, poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) polymers have been 

synthesized to which peptides and proteins can be covalently bound by an instant surface 

modification [17]. Furthermore, a technique was recently developed to process these polymers 
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into 3-D scaffolds [18]. As a first step towards the proof of the feasibility of the tethering of 

bFGF to scaffolds made from a PEG-PLA derivative, the interactions of bFGF with PEG-

PLA derivatives were investigated (chapter 8). The adsorption of radiolabeled bFGF to PEG-

PLA 2-D polymers films was distinctly suppressed in comparison to PLA films. Furthermore, 

a protocol was established to efficiently desorb radiolabeled bFGF from 2-D polymer films 

which subsequently, allowed for the determination of the amount of bFGF covalently bound 

to the scaffolds. In the next study, the tethering of bFGF to the scaffolds was characterized in 

detail (chapter 9). The maximum amount of bFGF which could be covalently immobilized to 

the scaffolds under appropriate conditions was determined (3.6±0.7 ng bFGF/mg). The 

stability of the linkage of bFGF to the scaffolds was determined in an in vivo experiment. 

Radiolabeled bFGF could be anchored for at least three weeks within the scaffolds. And last 

but not least, the bioactivity and the angiogenic effect of tethered bFGF was assessed in a 

further in vivo study. Remarkably, only tethered bFGF strongly induced angiogenesis within 

the scaffolds, whereas adsorbed bFGF remained ineffective.   

 

In conclusion, this thesis shows the potential of MSCs for adipose tissue engineering 

applications for the first time. Basic FGF was found to be a suitable growth factor for the 

enhancement of the adipogenesis of MSCs in 2-D and 3-D cell culture and to strongly 

improve the generation of engineered adipose tissue-like constructs. In addition, the delivery 

of bFGF by tethering to 3-D scaffolds allows for the vascularization of tissue constructs in 

vivo. This system represents a novel “off-the-shelf” product for tissue engineering 

applications. In future studies, a combination of these two strategies may lead to mature 

vascularized engineered adipose tissue.      
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List of Abbreviations 

 

2-D     two-dimensional 

3-D     three-dimensional 

α-MEM    Minimum Essential Medium Eagle, alpha-modification 

aFGF     acidic fibroblast growth factor 

ANOVA    analysis of variance 

aP2     adipocyte-specific fatty acid binding protein 

ASPS     American Society of Plastic Surgeons  

BAT     brown adipose tissue 

bFGF     basic fibroblast growth factor 

BMP     bone morphogenetic protein 

BSA     bovine serum albumin 

cAMP     cyclic adenosin 3’,5’’-monophosphate 

CFU     colony forming unit 

CD     cluster of differentiation 

cDNA     complementary deoxyribonucleic acid 

C/EBP     CCAAT/enhancer binding protein 

Dex     dexamethasone 

DMEM    Dulbecco’s Modified Eagle’s Medium 

DNA     deoxyribonucleic acid 

ECM     extracellular matrix 

EDTA     ethylenediaminetetraacetic acid 

EGF     epidermal growth factor 

ERK     extracellular signal-regulated kinase 

ES     embryonic stem cell 

FACS     fluorescence activated cell sorting (scanning) 

FAS     fatty acid synthase 

FBS     fetal bovine serum 

FL3     fluorescence channel 3 

FSC     forward scatter 

GAG     glycosaminoglycane 

GH     growth hormone 

GLUT4    glucose transporter 4 
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GPDH     glycerol-3-phosphate dehydrogenase 

GR     glucocorticoid receptor 

HA     hyaluronic acid 

H&E     hematoxylin and eosin 

hMSC     human mesenchymal stem cell 

H2N-PEG2PLA40  monoamine poly(ethylene glycol)-block-poly(D,L-lactic 

acid) consisting of a 2 kDa poly(ethylene glycol)-

monoamine block and a 40 kDa poly(lactic acid) block 

HSC     hematopoietic stem cell 

IBMX     3-isobutyl-1-methylxanthine 

IGF     insulin-like growth factor 

Indo     indomethacin 

Ins     insulin 

kDa     kilodalton 

LIF      leukaemia inhibitory factor  

LPL     lipoprotein lipase 

MACS     magnetic activated cell sorting 

MEF      mouse embryonic feeder  

MEK   mitogen-activated protein kinase/extracellular signal-

regulated kinase 

MeO-PEGPLA  poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl 

ether diblock copolymer 

MeO-PEGxPLAy  poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl 

ether diblock copolymer with a PEG block of x kDa and 

a PLA block of y kDa 

mRNA messenger ribonucleic acid 

MSC  mesenchymal stem cell 

NaCl sodium chloride 

NADH   reduced nicotinamide adenine dinucleotide  

OsO4 osmium tetroxide 

PBS phosphate-buffered saline 

PCR polymerase chain reaction 

PDGF platelet-derived growth factor 

PEG poly(ethylene glycol) 
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PGA poly(glycolic acid) 

PLA  poly(lactic acid) 

PLA cell  processed lipoaspirate cells  

PLGA  poly(lactic-co-glycolic acid) 

PPAR peroxisome proliferator-activated receptor 

Pref-1 preadipocyte factor-1 

RGD  peptide sequence Arg-Gly-Asp 

rMSC rat mesenchymal stem cell 

rpm rounds per minute 

rRNA ribosomal ribonucleic acid 

RT  room temperature 

RT-PCR reverse transcription-polymerase chain reaction  

RXRα retinoid X receptor α  

s.c. subcutaneous 

SCD-1 stearoyl-CoA desaturase-1 

SD standard deviation 

SDS  sodium dodecyl sulphate 

SEM scanning electron microscope 

SREBP  sterol regulatory element binding protein 

SSC sideward scatter 

ST-NH-PEGPLA N-succinimidyl tartrate monoamine poly(ethylene 

glycol)-block-poly(D,L-lactic acid) 

ST-NH-PEG2PLA40 N-succinimidyl tartrate monoamine poly(ethylene 

glycol)-block-poly(D,L-lactic acid) consisting of a 2 kDa 

poly(ethylene glycol)-monoamine block and a 40 kDa 

poly(lactic acid) block 

T75-flask 75 cm² cell culture flask 

TGF-β  transforming growth factor-β 

TNFα tumor necrosis factor α 

Tris tris(hydroxymethyl)aminomethane buffer 

UV ultraviolet light 

VEGF vascular endothelial growth factor 

WAT  white adipose tissue 
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