METHANE ACTIVATION - A BIBLIOGRAPHY

by

MANFRED BAERNS,
Ruhr-Universitaet Bochum, Bochum, FRG,

KEES van der WIELE,
Eindhoven University of Technology, Eindhoven, The Netherlands,

and

JULIAN R.H. ROSS,
University of Twente, Enschede, The Netherlands.

INTRODUCTION

The papers presented at this workshop represent a wide range of the activities throughout the world on the topic of methane activation. However, it is quite clear that not all the groups working on this topic were represented at the meeting: a number of people who were invited were unable to attend and others were excluded for geographical reasons. In a number of cases, groups were also excluded because we were not at the time aware that they were working in the field. One of the main benefits felt by the participants was that the contacts made would help them to avoid duplication of effort. One aspect of such duplication is the establishment of lists of the literature in this rapidly expanding field. We therefore felt that it was a worthwhile exercise to assemble together in one place a listing of the papers of which we are aware. The bibliography which follows is the result of this endeavour. This lists the papers by title, in alphabetical order of first author; time and space did not permit us to list the papers by second and third authors or by subject matter. Although we make no pretence that the listing is anywhere near complete, we hope that even in this rather rudimentary form it may prove to be of some use to those already working in the field or who are planning to start such work. The listing includes papers of which we became aware up until the time of going to press (January 1989) but no systematic search was made over the last months. It also includes papers which have peripheral interest, such as those dealing with the properties of appropriate oxide catalysts, etc. We are therefore very conscious of the fact that there will inevitably be gaps in the material covered and would be most grateful to hear of such omissions; please send these to the last-named compiling author, who will make sure that they are added to any subsequent print-out of these data.

Such a listing of information would not have been possible without the help of many people, including the coworkers, too numerous to name individually, of the compilers. (Their names are to be found as co-authors on the papers from the three different laboratories which are included in this issue.) Particular mention should be made of the invaluable contributions made by Dr. Alan R.
Sanger, of Alberta Research Council, Canada, who added a number of key references to the bibliography.

Kinetics and Mechanism of Oxidative Dehydrogenation of Ethane and Small Alkanes with Nitrous Oxide over Cobalt-doped Magnesium Oxide.
K. Aika, M. Isobe, K. Kido, T. Moriyama and T. Onishi,

Surface Reactions of Oxygen Ions. 1 Dehydrogenation of Alkanes by O on MgO,
K. Aika and J.H. Lunsford,

Oxidative Dimerization of Methane over Promoted Magnesium Oxide Catalysts. Important Factors,
K. Aika, E. Iwamatsu, N. Takasaki and T. Moriyama,

Oxidative Dimerization of Methane over BaCO₃, SrCO₃, and these Catalysts Promoted with Alkali,
K. Aika and J.H. Lunsford,

Simultaneous Process of Oxidative Coupling of Methane and Reverse Shift of CO₂,
K. Aika and T. Nishiyama,

Utilization of CO₂ in the Oxidative Coupling of Methane over PbO-MgO and PbO-CaO,
K. Aika and T. Mishiyama,

Oxidative Coupling of Methane over Oxides of Group IIIA, IVA and VA Metals,
I.I. Ali Emesh and Y. Amenomiya,

Methane Activation over MoS₂ and CH₅ Stabilities: Molecular Orbital Theory,
A.B. Anderson, J.J. Maloney and J. Yu,

Oxidation of Methane over H-ZSM5 and Other Catalysts,
A.B. Anderson and P. Tsai,
No Need Seen for New Ethylene Plants: Strong Growth Ahead for Brazil's Petrochemical Industry,
E. Anderson,

Methanol from Oxidation of Methane by Nitrous Oxide over FeZSM5 Catalysts,
J.R. Anderson and P. Tsai,

Oxidative Coupling of Methane on a Mixed Oxide Catalyst,
A. Annapragada and E. Gulari, Preprints 196th ACS Nat. Meeting,

Oxidative Coupling of Methane over Ultrafine Crystalline MgO Doped with Li. Role of Lower Coordination Surface Sites Produced by Li-doping,
M. Anpo, M. Sunamoto, T. Doi and I. Matsuura,

Selective Oxidative Coupling of Methane over Supported Lead Oxide Catalyst,
K. Asami, S. Hashimoto, T. Shikada, K. Fujimoto and H. Tominaga,

Selective Oxidative Coupling of Methane to Ethane and Ethylene over Supported Lead Oxide Catalysts,
K. Asami, S. Hashimoto, T. Shikada, K. Fujimoto and H. Tominaga,

Oxidative Coupling of Methane in the Homogeneous Gas Phase under Pressure,
K. Asami, K. Omata, K. Fujimoto, and H. Tominaga,

Oxidative Coupling of Methane over Lead Oxide Catalyst: Kinetic Study and Reaction Mechanism,
K. Asami, T. Shikada, K. Fujimoto, and H. Tominaga,

Verfahren der oxidativen Kopplung von methan zu C2-Kohlenwasserstoffen, Verfahren zur Herstellung der Katalysatoren und Vorrichtungen zur Durchfuhrung der oxidativen Kopplung,
M. Baerns and W. Bytyn,

Oxidative Coupling of Methane to C2 Hydrocarbons in the Presence of Various Catalysts (In German),
M. Baerns and W. Hinsen,

The Adsorption of Methane on H-ZSM-5 Zeolite,
M. Baerns, W. Hinsen, H. Papp and N.T. Do,
Methane - A Chemical Feedstock? (In German),
M. Baerns

Verfahren zur Herstellung van Ethan und bzw. oder Ethylen aus Methan,
M. Baerns and W. Hinsen,

Process for the Production of Ethane and/or Ethylene from Methane,
M. Baerns and W. Hinsen,

Oxidative Catalytic Methane Conversion,
M. Baerns,

Continuous Process for the Oxidative Coupling of Methane to Higher Hydrocarbons by Gas-Phase Conversion,
M. Baerns and H.-W. Zanthoff,

Catalytic Oxidation of Methane on MoO₃-SiO₂: Mechanism of Oxidation with O₂ and N₂O Studied by Surface Potential Measurements,
Y. Barbaux, A. Elamrani and J.P. Bonnelle,

Oxidative Dimerization of Methane over Lead-Magnesium Mixed Oxide Catalysts,
J.P. Bartek, J.M. Hupp, J.F. Brazdil and R.K. Grasselli,

Conversion of Methane,
S.W. Benson,

Upgrading Low Molecular Weight Alkanes,
J.F. Brazdil, R.K. Grasselli and J.P. Bartek,

Methane Conversion Using a Magnesia/Silica Support,
E.W. Breder, Jr., J.A. Jaecker and M.F.L. Johnson,

Preparative Process for Supports,
E.W. Breder, Jr.,

Process for Producing Synthesis Gas by Partial Combustion of Hydrocarbons,
J.H. Brophy and F.J. Weinberg,
Comparative Study of Catalysts for the Oxidative Coupling of Methane,
R. Burch, G.D. Squire and S.C. Tsang,

Role of Chlorine in Improving Selectivity in the Oxidative Coupling of Methane to Ethylene,
R. Burch, G.D. Squire and S.C. Tsang,

Selective Catalytic Dehydrogenation of Alkanes to Alkanes,
M.J. Burk and R.H. Crabtree,

Preparation of Oxide Catalysts: From the Studies of the Mechanisms of Synthesis and Crystallization Towards Control of Properties,
R.A. Buyanov and O.P. Krivoruchko,

Investigation of the Interaction of Methane with Systems Based on V, Mo, and W Oxides by Scanning Calorimetry,
V. Yu. Bychkov, M. Yu. Sinev, V.N. Korchak, E.L. Aptekar and O.V. Krylov,

Supported PbO Catalysts for the Oxidative Coupling of Methane - The Effect of Surface Acidity of the Support on C_2+ Selectivity,
W. Bytyn and M. Bearns,

Methane Activation by the Lanthanide Oxides,
K.D. Campbell, H. Zhang and J.H. Lunsford,

Studies of Carbon Monoxide Hydrogenation over Ruthenium using Transient Response Techniques,
H.W. Cant and A.T. Bell,

The Rate Controlling Step in the Oxidative Conversion of Methane over a Lithium-Promoted Magnesium Oxide Catalyst,
N.W. Cant, C.A. Lickay, P.F. Nelson, and R.J. Tyler,

Catalytic Conversion of Methane by Oxidative Coupling to C2+ Hydrocarbons,
Oxidative Coupling of Methane to C\textsubscript{2}+ Hydrocarbons – Considerations on the Performance of Lead Compound and Alkali/Alkaline Earths Compound Catalysts,
J.A.S.P. Carreiro, G. Follmer, L. Lehmann and M. Baerns,

Functionalization of Paraffinic Hydrocarbons by Heterogeneous Vapor-Phase Oxidation. III. Conversion of the C\textsubscript{1} – C\textsubscript{7} Alkane Series, G. Centi and P. Trifiro, Catal. Today, 3 (1988) 151.

Kinetics of Oxidative Coupling of Methane of 1 wt% Sr/La\textsubscript{2}O\textsubscript{3}, J.M. DeBoy and R.F. Hicks, J. Catal., 113 (1988) 517.

Method and Catalyst for the Conversion of Methane,
R.F. Hicks,

The Oxidative Coupling of Methane over Basic Oxides,
R.F. Hicks and J.M. Deboy,

Photoinduced Reactions of Methane with Molybdenum Supported on Silica,
W. Hill, B.N. Shelimov and V.B. Kazansky,

Oxidative Kupplung van Methan zu C\textsubscript{2}-Kohlenwasserstoffen in Gegenwart unterschiedlicher Katalysatoren,
W. Hinsen and M. Baerns,

Oxidative Dehydrogenation and Coupling of Methane,
W. Hinsen, W. Bytyn and M. Baerns,

Activation of Methane by Iridium Complexes,
J.K. Hoyano, A.D. McMaster and W.A.G. Graham,

Direct Partial Oxidation of Methane: Effect of the Oxidant on the Reaction,
G.J. Hutchings, M.S. Scurrell and J.R. Woodhouse,

The Role of Surface O- in the Selective Oxidation of Methane,
G.J. Hutchings, M.S. Scurrell and J.R. Woodhouse,

Comparison of Ethane and Ethane Primary Selectivities with Li/MgO and MgO Catalysts for Oxidative Coupling of Methane: Comments on the Role of Lithium,
G.J. Hutchings, M.S. Scurrell and J.R. Woodhouse,

The Role of Gas Phase Reaction in the Selective Oxidation of Methane,
G.J. Hutchings, M.S. Scurrell and J.R. Woodhouse,

Partial Oxidation of Methane Using O\textsubscript{3}, N\textsubscript{2}O, O\textsubscript{2} as Oxidants: A Comparative Study,
G.J. Hutchings, J.R. Woodhouse and M.S. Scurrell,
Oxidative Coupling of Methane over LaAlO$_3$,
H. Imai and T. Tagawa,

Oxidative Coupling of Methane over Amorphous Lanthanum Aluminum Oxides,
H. Imai, T. Tagawa and N. Kamide,

Preparation and Characterization of Lanthanum Aluminum Mixed Oxide Catalysts for Oxidative Coupling of Methane,
H. Imai, T. Tagawa, N. Kamide and S. Wada,

Synthesis of Ethylene and Ethane by Partial Oxidation of Methane over Lithium-doped Magnesium Oxide,
T. Ito and J.H. Lunsford,

Oxidative Dimerization of Methane over a Lithium-Promoted Magnesium Oxide Catalyst,
T. Ito, J.-X. Wang, C.-H. Lin and J. H. Lunsford,

Activation of Methane on the MgO Surface at Low Temperatures,
T. Ito, T. Tashiro, T. Watanabe, K. Toi and I. Ikemoto,

Importance of the Specific Surface Area of the Catalyst in Oxidative Dimerization of Methane over Promoted Magnesium Oxide,
E. Iwamatsu, T. Moriyama, N. Takasaki and K. Aika,

Oxidative Coupling of Methane over Na$^+$-Rb$^+$-Doped MgO Catalysts,
E. Iwamatsu, T. Moriyama, N. Takasaki and K. Aika,

Study of Metal Oxide Catalysts by Temperature Programmed Desorption. 4. Oxygen Adsorption on Various Metal Oxides,
M. Iwamoto, Y. Yoda, N. Yamazoe and T. Selyama,

Surface Reactions of Oxygen Ions. 5. Oxidation of Alkanes and Alkenes by (O$_2$)$^-$ on MgO,
M. Iwamoto and J.H. Lunsford,

Activation of C-H Bonds in Saturated Hydrocarbons on Photolysis of (n^2-C$_{Me3}$)IrH$_2$. Relative Rates of Reaction of the Intermediate with Different Types of C-H Bonds and Functionalization of the Metal-Bound Alkyl Groups,
A.H. Janowicz and R.G. Bergman,
Oxidative Addition of Soluble Iridium and Rhodium Complexes to Carbon-Hydrogen Bonds in Methane and Higher Alkanes (1),
A.H. Janowicz, R.A. Teriana, J.M. Buchanan, C.A. Kovac, J.A. Stryker, M.J. Wax and R.G. Bergman,

Transition Metal Tetrahydridoborates as Models of Methane Activation: Syntheses and Structure of Ti(BH₄)₃(PMe₃)₂,
J.A. Jenson and G.S. Girolami,

Metal Atom Reactions with Methane, Boron, Aluminum, Gallium and Indium Atoms and Dimers,
G.H. Jeong and K.J. Klabunde,

Methane Conversion Using a Silica/Magnesium Support,
M.F.C. Johnson,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,
Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones and J.A. Sofranko,

Natural Gas Conversion,
C.A. Jones, J.J. Leonard, J.A. Sofranko and G.J. Maffia,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

The Oxidative Conversion of Methane to Higher Hydrocarbons over
Alkali-Promoted Mn/SiO,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Fuels for the Future: Remote Gas Conversion,
C.A. Jones, J.J. Leonard and J.A. Sofranko,

Methane Conversion Process,
C.A. Jones, J.J. Leonard, J.A. Sofranko and H.P. Withers,

Alkali Promoted Manganese Oxide Compositions Containing Silica and/or Alkaline Earth Oxides,
C.A. Jones, J.J. Leonard, J.A. Sofranko, H.P. Withers Jr., M.F.L. Johnson and J.A. Jaecker,

Methane Conversion,
C.A. Jones and J.A. Sofranko,

Methane Conversion Process,
C.A. Jones and J.A. Sofranko,

Methane Conversion,
C.A. Jones and J.A. Sofranko,
Methane Conversion,
C.A. Jones and J.A. Sofranko,

Alkali Promoted Manganese Oxide Compositions Containing Zirconium,
C.A. Jones and J.A. Sofranko,

Reactions of Methane and Ethane with Hole Centers O'
S.L. Kaliaguine, B.N. Shelimov, and V.B. Kazansky,

Possible mechanisms of heterogeneous Chain Initiation with Participation of O-Surface Radicals in Catalytic Reactions on Oxides,
V.B. Kazanskii,

Synthesis of Ethylene via Oxidative Coupling of Methane,
G.E. Keller and M.M. Bhasin,

The Oxidative Coupling of Methane,
G.W. Keulks and M. Yu,

Oxidative Coupling of Methane to Higher Hydrocarbons,
J.B. Kimble and J.H. Kolts,

Methane Conversion,
J.B. Kimble and J.H. Kolts,

Methane Conversion,
J.B. Kimble and J.H. Kolts,

Playing Matchmaker with Methane,
J.B. Kimble and J.H. Kolts,

Activation of Methane with Metal Atoms at 10K Without Photolysis,
K.J. Klabunde and Y. Tanaka,

Transition Metal Ions in Zeolites: The Perfect Surface Sites,
K. Klier,
Enhanced Ethylene and Ethane Production with Free-Radical Cracking Catalyts,
J.H. Kolts and G.A. Delzer,

Composition of matter and method of oxidative Conversion of Organic Compounds Therewith,
J.H. Kolts and J.B. Kimble,

Methane Conversion,
J.H. Kolts and J.H. Lunsford,

Oxidative Coupling of Methane over Lithium Doped Magnesium Oxide Catalysts,
S.J. Korf, J.A. Roos, N.A. de Bruijn, J.G. van Ommen and J.R.H. Ross,

The Effect of Promoters on the behaviour of Sm₂O₃ Catalysts for the Oxidative Coupling of Methane,
S.J. Korf, J.A. Roos, J.M. Diphoorn, R.H.J. Veehof, J.G. van Ommen and J.R.H. Ross,

Influence of CO₂ on the Oxidative Coupling of Methane over a Lithium Promoted Magnesium Oxide Catalyst,
S.J. Korf, J.A. Roos, N.A. de Bruijn, J.G. van Ommen and J.R.H. Ross,

Partial Oxidation of Methane Catalyzed by H-Mordenite and Fluorinated Mordenite,
S. Kowalak and J.B. Moffat,

Free Radical Processes in Heterogeneous Oxidation Catalyses,
O.V. Krylov,

Desirable Catalyst Properties in Selective Oxidation Reactions,
H.H. Kung,

Mechanistic Studies on the Oxidative Coupling of Methane,
J.A. Labinger and K.C. Ott,

Oxidative Coupling of Methane: The Role of Solid State Chemistry,
J.A. Labinger, K.C. Ott, S. Mehta, H.K. Rochstad and S. Zoumalan,

High Catalytic Activity of Sm₂O₃ for the Oxidative Coupling of Methane into Ethane and Ethylene,
K. Otsuka and T. Komatsu,

Electrochemical Control for Oxidative Coupling of Methane over LiNiO₂ using Solid Electrolytes,
K. Otsuka, K. Suga and I. Yamanaka,

Partial Oxidation of Methane,
r. Pitchai and K. Klier,

Chemical technology of Natural Gas - Its Present State and Prospects,
U. Preuss and M. Baerns,

Current Study on Catalyst Component Interactions,
P. Putanov,

Selective Oxidation of Methane to Ethane and Ethylene Over Various Oxide Catalysts,
J.A. Roos, A.G. Bakker, H. Bosch, J.G. van Ommen and J.R.H. Ross,

The Oxidative Coupling of Methane: Catalyst Requirements and Process Conditions

Catalytic Activity of Metal Oxides and the Energy of the Oxygen Bond,
B.A. Sazonov, V.V. Popovskii and G.K. Boreskov,

Prospects for the Direct Conversion of Light Alkanes to Petrochemical Feedstocks and Liquid Fuels - A Review,
M.S. Scurrell,

Conversion of Methane-Ethylene Mixtures over Sulphate-Treated Zirconia Catalysts,
M.S. Scurrell,

Conversion of Methane into Higher Molecular Weight Hydrocarbons by the Chlorine-Catalyzed Oxidative-Pyrolysis (CCOP) Process,
S.M. Senkan,
Conversion of Methane into Ethylene, Acetylene and Ethane by the CCOP Process: Control of Product Selectivities,
S.M. Senkan, D. Dang, M.K. Abdelaal and M. Qun,
(CCOP) = Chloride Catalyzed Oxidative Pyrolysis).

Catalytic Properties of Zeolites with Various Structures and Chemical Compositions in the Preparation of Aromatic Hydrocarbons from Methane,
S.S. Shepelev, and K.G. Ione,

Preparation of Aromatic Hydrocarbons from Methane in the Presence of O₂,
S.S. Shepelev and K.G. Ione,

Syntheses of Hydrocarbons from C₂ Compounds using Zeolite Catalysts. III. Synthesis from Methane in the Presence of Oxidising Agents,
S.S. Shepelev and K.G. Ione,

Kinetic Peculiarities of Oxidative Condensation of Methane on Oxide Catalysts in a Heterogeneous-Homogeneous Process.
M.Yu. Sinev, V.N. Korchak and O.V. Krylov,

Mechanisms of Oxidative Condensation of Methane into C₂ Hydrocarbons over Oxide Catalysts,
M.Yu. Sinev, V.N. Korchak and O.V. Krylov,

Hydroxylated Magnesia Support,
J.A. Soffranko,

Methane Conversion,
J.A. Soffranko and H.P. Whiter,

The Oxidative Conversion of Methane to Higher Hydrocarbons,
J.A. Soffranko, J.J. Leonard and C.A. Jones,

Catalytic Oxidative Coupling of Methane over Sodium-Promoted Mn/SiO₂ and Mn/MgO,
J.A. Soffranko, J.J. Leonard, C.A. Jones, A.M. Gaffney and H.P. Whiter,
Methane Conversion,
J.A. Sofranko and H.P. Whiters,

Some Principles of Choosing Catalysts for Selective Conversions of
Organic Compounds at C-H Bonds,
V.D. Sokolovskii,

The Design of Methane Activation Catalysts,
F.V. Stohl, J.A. Shelnutt and B. Granoff,

Influence of CO₂ and H₂O on Methane Conversion over Oxide Catalysts,
A.I. Suleimanov, S.M. Aliev and V.D. Sokolovskii,

High Temperature catalytic Synthesis of Higher Hydrocarbons from
Methane,
A.I. Suleimanov, S.M. Aliev and V.D. Sokolovskii,

Reaction Mechanism and Principles of Choosing Catalysts for
Selective Oxidation at C-H Bonds,
V.D. Sokolovskii,

Contribution of One-electron Acceptor Centers to Oxidative
Dimerization of Methane,
A.I. Suleimanov, E.G. Ismailov, S.M. Aliev and V.D. Sokolovskii,

Mechanistic Aspects of Oxidative Coupling of Methane over LaAlO₃,
I. Tagawa and H. Imai,

Surface Reactions of Oxygen Ions. 3. Oxidation of Alkanes by (O₃)⁻
on MgO,
Y. Takita and J.H. Lunsford,

Conversion of Methane to Gasoline-Range Hydrocarbons,
C.E. Taylor and R.P. Nocetti,

Conversion of Methane to Gasoline-Range Hydrocarbons,
C.E. Taylor and R.P. Nocetti,
Synthetic Kentrolite as a Catalyst for the Selective Oxidation of Methane to C₂-Hydrocarbons,
J.M. Thomas, X. Kuan and J. Stachurski,

Layered Bismuth Oxyhalides: A New Family of Methane Oxidation Catalysts,
W. Ueda and J.M. Thomas,

High Selectivity Catalysts for the Oxidative Methane Coupling. Complex Oxides with the Rock Salt Structure,
R.K. Ungar, X. Zhang and R.M. Lambert,

Ethylene Synthesis by Catalytic Oxidation of Methane over Li-doped MgO Catalyst: The Interaction of Catalytic and Non-Catalytic Reaction Steps,
H.M.N. van Kesteren, J.W.M.H. Geerts and K. van der Wiele,

Characterisation of Li⁺O⁻ Centers in Lithium-Doped MgO Catalysts,
J.-X. Wang and J.H. Lunsford,

Pyrolysis of Methyl Chloride, a Pathway in the Chlorine-Catalyzed Polymerization of Methane,
M. Weissman and S.W. Benson,

Oxidative Dimerization of Methane on Lead Oxide-Alumina Catalysts,
G. Wendt, C.-D. Meinecke and W. Schmitz,

Conversion of Methane to Higher Hydrocarbons by Supported Organometallic Complexes,
R.B. Wilson, Jr. and Y.W. Chan,

Methane Conversion,
H.P. Withers,

Methane Conversion,
H.P. Withers,
U.S. Patent 4,593,139.

Methane Conversion Process,
H.P. Withers, Jr., C.A. Jones, J.J. Leonard and J.A. Sofranko,
Methane Conversion Process,
H.P. Withers, Jr., C.A. Jones, J.J. Leonard, J.A. Sofranko and A.M.
Gaffney,

Methane Conversion,
H.P. Withers and J.A. Sofranko,

Oxidative Coupling of Methane to Give Ethane and Ethylene,
K. Wohlfahrt, M. Bergfeld and H. Zengel,

Production of Ethylene/Ethane Mixtures,
K. Wohlfahrt, M. Bergfeld and H. Zengel,

Process for the Production of Ethylene-Ethane Mixtures,
K. Wohlfahrt, M. Bergfeld and H. Zengel,

Process for the Production of Ethylene-Ethane Mixtures,
K. Wohlfahrt, M. Bergfeld and H. Zengel,

Oxidative Coupling of Methane over BaO Mixed with CaO and MgO,
N. Yamagata, K. Tanaka, A. Asaki and S. Okazaki,

Dehydrogenative Coupling of Methane by Use of Thermal Diffusion
Column,
T. Yamaguchi, A. Kadota and C. Saito,

Selective Synthesis of Ethylene by Dehydrogenative Coupling of
Methane by Use of Thermal Diffusion Column,
T. Yamaguchi and C. Saito,

Direct Catalytic Conversion of Methane to Higher Hydrocarbons,
P.S. Yarlagadda, L.A. Morton, N.R. Hunter and H.D. Gesser,

Catalytic Oxidative Coupling of Methane over Alkali, Alkaline
Earth, and Rare Earth Metal Oxides,
B. Yingli, Z. Kaiji, J. Yutao, T. Chiwen and Y. Xiangguong,

Modern Trends in Catalysis: Via Studies on Molecular Level Towards
Design of Novel Catalysts and Processes,
K.I. Zamaarev,