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ABSTRACT
AOP languages are continuously evolving, for example (1)
pointcut languages are becoming increasingly powerful with
respect to the expressiveness of the pointcut language itself,
(2) new program properties can be used as a selection cri-
terion in pointcut designators, or (3) new types of program
elements can be introduced by means of a crosscut speci-
fication. In this paper we investigate the consequences of
these trends. To this end, we focus particularly on the u-
sage of meta-data annotations: several recent (versions of)
AOP languages support the use of annotations as a selec-
tion criterion in pointcut designators or the introduction of
annotations, or both. We investigate the introduction of an-
notations through the use of expressive pointcut languages;
explain why introduction of annotations is useful, and in
particular, why and how annotations can be derived from
other annotations.

We explore the issues that arise due to the inter-dependencies
between annotation introductions. We investigate when such
dependencies may cause ambiguities, and we present an al-
gorithm that resolves the dependencies when possible, and
detects ambiguous cases that cannot be resolved. The solu-
tion we propose is implemented within the Compose* tool,
which supports the introduction of meta-data annotations.

1. INTRODUCTION
A trend in aspect-oriented programming (AOP) is the de-
velopment of more expressive pointcut languages. One way
to increase the expressiveness of pointcut languages is by
adding support for metadata annotations—a mechanism that
enables the attachment of meta-data to program elements.
Various object-oriented programming languages (such as C#
[7] and Java [16]) now support such annotations. The an-
notations do not have any direct influence on the execution
of an application, but they can be used by compile-time
tools or meta-facilities. AOP and annotations are a natural
match, as annotations can be used to explicitly add design
information to a program. Without annotations such infor-
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mation is usually implicit, buried within an implementation.
Explicit design information can be used to write pointcuts
that are much less fragile than those that are based on e.g.
naming conventions or structural patterns [15].

In this paper, we investigate the use of introductions in
aspect-oriented programming, especially focusing on the use
of annotations. We describe how an expressive pointcut lan-
guage can be used to facilitate the introduction and deriva-
tion of annotations. We identify ambiguity problems that
can be caused by using expressive pointcut languages com-
bined with the introduction of elements (e.g. annotations) in
the same structure that is queried by the pointcut language.
We perform an extensive analysis and discuss approaches
that can solve these problems. We present a solution within
the context of a concrete implementation of the Compose*
language [4, 6]. Finally, we argue that these problem are in-
herent to the combination of expressive pointcut languages
and introductions, and are not limited to only specific tools
or the use of annotations. The main contributions of this
paper are the identification and analysis of ambiguity prob-
lems related to introductions, as well as a solution that can
detect and/or resolve these problems.

2. USING ANNOTATIONS IN AOP
In this section, we explain how annotations can be used in
pointcuts. Next, we describe how annotations can also be
introduced and derived through the use of pointcuts, and
explain why this is useful.

2.1 Using annotations in pointcuts
Pointcuts that directly refer to the structure or syntax of a
program are generally quite fragile: they often break when
the base program is refactored. To avoid such fragile point-
cuts, we can decorate the program with annotations that
explicitly represent design information about the program.
These annotations can then be used as a selection criterion
in pointcuts. We demonstrate this use of annotations by
giving a small example: listing 1 shows a simple Java class.

1 @PersistentRoot class User {
2 String name;
3 String email;
4 SessionID session;
5 ..
6 }

Listing 1: Annotations in Java
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The notation @PersistentRoot class User specifies that the
class User has the annotation PersistentRoot attached. An-
notations can be attached to several kinds of program ele-
ments, most notably classes, methods and fields.

The following AspectJ (version 5) example shows a pointcut
that selects the execution of all methods within classes that
have the annotation PersistentRoot:

1 pointcut isPersistent():
2 execution(* (@PersistentRoot *).*(..));

Listing 2: An annotation-based pointcut

Within the execution part of this pointcut, the first * indi-
cates that any (method) return type will match. The next
part, (@PersistentRoot *), means the class containing the
executed method must have the annotation PersistentRoot
attached. The remaining part specifies that methods with
arbitrary name and (number of) parameters will match.

By writing pointcuts based on annotations, we can select
program elements based on design information, rather than
relying on naming or structural patterns. Because the de-
sign intention is made explicit, such pointcuts can be more
robust [15].

However, for some cases the usefulness of annotations can
still be improved. For example, by directly binding the an-
notation PersistentRoot to every persistent class, those an-
notations are scattered over the application. In fact, we can
state that the annotation PersistentRoot is therefore tangled
with base classes (such as the class User in this example),
because their code cannot be fully separated. This may hin-
der the reusability and evolvability of the classes involved.

For this reason, it may be desired to make annotations ap-
plication specific: suppose the class User above would be
reused in two applications. In one application, it is part of
a set of classes that should be made persistent. Another
application has a different set of persistent classes, which
does not include the class User. To work around this issue,
the applications would have to specify differently named an-
notations in the reusable base classes (e.g. App1Persistent
and App2Persistent), thus ’polluting’ an otherwise reusable
class with application-specific information. Also, third party
tools that depend on the use of certain annotations (with a
fixed name) cannot be used in such a situation.

On the other hand, it is important to note that in certain do-
mains (e.g. security) programmers may intentionally want
to bind annotations statically (in the source code) to ensure
that a (fixed) set of constraints is met by all applications
reusing that particular module. In such cases, every appli-
cation that reuses a program element with annotations will
have the same set of annotations.

Fortunately, recent (versions of) AOP languages support
both types of scenarios: they support the use of statically
bound annotations (those that are directly attached to the
source code) as well as introduced annotations. In the latter
case, a crosscutting specification is used to indicate where
annotations should be attached. The next section discusses
this technique.

2.2 Introduction of annotations
An intuitive AOP solution to the problem of scattered anno-
tations is to introduce annotations (from within an aspect)
on program elements selected by a pointcut. Note that the
language used to designate places where annotations have
to be introduced can be different from the normal pointcut
language1. In practice, the expressiveness is usually similar
to that of the normal pointcut language - and we show that
this expressive power is indeed desired, as it enables pro-
grammers to express their intented designs more directly. In
AspectJ, the introduction of annotations can be expressed
as follows:

declare @type : SessionID+ : @TransientClass();

Listing 3: Introducing an annotation

This example specifies that the class SessionID and all its
subclasses should be marked with the annotation Transient-
Class. This annotation expresses some information about
the design: presumably, in this application, it does not make
sense to permanently store session-ID’s, as they represent
volatile information that expires after a limited amount of
time. By explicitly specifying this information separate from
the base classes, the information is localized in one place.
The AspectJ construct declare @type means ’introduce an
annotation on a type’. The part between the colons is a
standard AspectJ Type-pattern [2], in this case matching
the type SessionID and its subclasses. The part after the
second colon specifies that the annotation TransientClass
should be attached to the types that match the specified
pattern.

It should be noted that the pattern expression used to in-
troduce annotations does not have full expression power: in
this case, we can only express restrictions directly related to
the type that we want to attach an annotation to. Still, this
allows us to express conditions on the introduction of anno-
tations. As these condition-patterns can include restrictions
based on annotations, we can in fact derive the existence of
one annotation based on the existence (or absence) of others.
The next subsection explains how this can be useful.

2.3 Deriving annotations
Annotations may be relatively bound to each other: an an-
notation can be attached to a certain program element, if
another —related— program element has a certain annota-
tion.

To illustrate this, we extend the previous example by defin-
ing the following rule: If a field is of a type that has the
annotation TransientClass, it should be marked by the an-
notation TransientField. This way, we can specify an excep-
tion to the general rule that all fields within a class marked
by the annotation PersistentRoot will be kept in a persistent
datastore.

In AspectJ, it is possible to express such a rule as follows:

declare @field: (@TransientClass *) * :@TransientField();

Listing 4: Deriving an annotation

1In AspectJ terminology, the selection part is called pattern.
We use a more general notion of the term pointcut to also
indicate such selection patterns.
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This declaration specifies that the annotation Transient-
Field should be introduced on all fields that match the field-
pattern between the colons. Here, the pattern specifies that
such fields should be of a type that has the annotation Tran-
sientClass attached, and that we do not put any constraints
on the name of the type or the name of the field. As you
can see, the introduction of the annotation TransientField
depends on the fact whether the annotation TransientClass
is attached to the type of a field.

Another example can be found in [5], where the following
constraint is specified and enforced: ”If a class is decorated
with the annotation WebService, its public methods (that
constitute the webservice) should have the annotation Web-
Method”. The difference with the approach we discuss here
is that we actively generate the dependent annotations, i.e.
”If a class is decorated with the annotation WebService,
its public methods are marked with the annotation Web-
Method”. As such rules can express the intention of a pro-
grammer more directly, the ability to express such rules has
a clear added value.

One might ask why it is useful or necessary to introduce the
annotations TransientField or TransientClass if their places
can also be designated directly by the pointcuts that could
express the rules above. Using such pointcuts can in fact
be sufficient when these annotations are only used within
pointcut expressions of aspects. However, (derived) anno-
tations can be used by third party tools or frameworks as
well. In many cases, we can derive whether a certain an-
notation should be attached based on the existence of other
annotations, certain types of statements or structural com-
binations of program elements (i.e. ’software patterns’). In
these cases, using derivation removes the need to manually
specify where annotations have to be attached (either in the
concern source or the source of the base application).

3. PROBLEM STATEMENT
In the previous section we described how annotations can be
used in pointcuts. We also saw that annotations can be in-
troduced through the use of pointcuts. In cases where such
pointcuts refer to other annotations, we speak of deriving
annotations, based on the existence or absence of other an-
notations. We have shown that such derivation rules are use-
ful, because they give the programmer a more direct way to
express design intentions. However, basing introductions on
derived information in this way may result in dependencies
between introductions (e.g. of annotations) and the point-
cuts used to designate places where introductions should be
applied. This section describes the problems that such de-
pendencies may cause.

The main problem caused by dependencies between intro-
ductions of annotations is that the order of applying the
introductions may matter. If this order is unspecified, am-
biguities may occur. For instance, consider the combination
of the examples in listings 3 and 4:

1 declare @type : SessionID+ : @TransientClass();
2 declare @field: (@TransientClass *) * :@TransientField();

Listing 5: Inter-dependent declarations

Both declarations (see listing 5) specify the introduction of
an annotation; one has conditions based on the structure

(line 1), while the other depends on the existence of an-
other annotation (line 2). We assume that, without further
specification, there is no ordering implied between these two
introductions (they could even be part of two different as-
pects). In that case, there are two possible orderings of ap-
plying these introductions. The first is to start by evaluating
the types matching the condition SessionId+ and attaching
the annotation TransientClass to these types (i.e. apply the
first introduction), and then to apply the second introduc-
tion, which attaches the annotation TransientField to fields
of a type that have the annotation TransientClass attached.
The other possibility is to switch the order of applying the
two introductions. In that case the annotation Transient-
Field will not be introduced anywhere, as the annotation
TransientClass, on which this introduction clearly depends,
has not been attached yet. In this case, it is intuitively clear
which order is intended by the programmer: the first or-
der is desired, as the declaration in listing 4 clearly depends
on the one in listing 3. Thus, it makes sense to apply the
introduction in listing 3 first.

However, such a conclusion cannot always be drawn. De-
pending on the expressiveness of the pointcut language used
to specify where annotations should be introduced, it may
not be trivial to see which dependencies exist. For example,
when using a Turing-complete pointcut language, it is gen-
erally impossible to infer such information by analyzing only
the textual representation of pointcut expressions. Using a
Turing-complete pointcut language to specify pointcuts can
be useful, as it allows for powerful reasoning within point-
cut expressions [10]. However, even when a more restricted
pointcut language is used, there are still several issues to be
addressed.

For one thing, there can exist multiple levels of dependen-
cies. This can already be seen in the example above, as the
attachment of the annotation TransientClass depends on the
(static) structure, while at the next level, the attachment of
the annotation TransientField depends on the attachment
of the annotation TransientClass. In general, there can be
’chains’ of introductions that depend on each other. This
suggests some kind of iterative algorithm is needed to resolve
the dependencies between introductions of annotations, as
it may not be possible to resolve all dependencies in a sin-
gle pass over all the introductions. However, dependencies
between introductions can even be circular. If circular de-
pendencies occur, such an algorithm might never terminate.

In addition to this problem, the existence of dependencies
implies that the ordering of evaluating the declarations can
lead to different results, as seen in the example above. In
the example it is intuitively clear which ordering is desired.
However, given the occurrence of circular dependencies and/or
negative dependencies (i.e. where an annotation should only
be attached if another annotation is absent), there is no intu-
itive way to tell which order of evaluation is intended by the
programmer. In such cases, the specification of annotation-
declarations may be ambiguous, unless certain ordering con-
straints are implied or can be specified by the programmer.

In AspectJ, the ordering of introductions within a single as-
pect is unspecified. Based on some small experiments, we
conclude that the current implementation detects simple de-
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pendencies such as in listing 5, but yields ambiguous results
(i.e. depending on the ordering in the aspect sources in
seemingly arbitrary ways) when negative or circular depen-
dencies are involved. When introductions are divided over
several aspects, the ordering is also unspecified. Thus, the
current implementation does not address the problems re-
lated to ambiguous (non-declarative) specifications and the
expression of circular dependencies.

We stress that these types of problems are not necessarily
limited to introductions of annotations only. Any type of
introduction that changes parts of the structure that can
also be used in pointcuts describing other introductions can
potentially lead to similar problems. Whether problematic
cases can actually occur depends on the expressiveness of
the pointcut language. In this paper, we discuss potential
solutions to these problems, and discuss the trade-offs that
have to be made between supporting expressive pointcut
languages combined with introductions on one hand, while
on the other hand offering a predictable, intuitive and non-
ambiguous programming interface. Also, we want our AOP
language compiler to be able to resolve dependencies when-
ever possible, and to detect cases where the specification is
ambiguous.

The remainder of this paper describes how the problems
that we observed can be addressed, as illustrated by the
aspect-oriented language Compose*.

4. ANNOTATIONS IN COMPOSE*
In this section, we explain the use of annotations within
the context of Compose*, our aspect-oriented programming
language based on the concept of Composition Filters [3,
8], implemented on the .NET platform. In the Composition
Filters paradigm advice is specified by filter modules, which
can be superimposed (woven) on any number of classes. The
selectors (cf. pointcuts) that specify where filter modules
(advices) should be superimposed are written in prolog, us-
ing a set of predicates that can query the structure of the
program.

4.1 Annotation-Based Join Point Selection
Listing 6 shows part of an example concern handling Object-
Persistence. The selector persistentClasses selects all classes
that have the annotation PersistentRoot attached, using a
predicate-based selector language that can select program
elements that are part of the static structure of the appli-
cation. In this example, the variable C selects all program
elements, provided that they are classes that have the an-
notation A attached, which (as specified on line 7) must
be a program element of the annotation type that is named
PersistentRoot. The selector persistentClasses is thus equiv-
alent to the AspectJ pointcut in listing 2.

1
2 concern ObjectPersistence {
3 superimposition {
4 selectors
5 persistentClasses =
6 {C | classHasAnnotation(C, A),
7 isAnnotationWithName(A, ’PersistentRoot’)};
8 ...

Listing 6: Using annotations in Compose*

4.2 Superimposition of Annotations
We introduce a simple extension to the existing mechanism
used to superimpose filtermodules in Compose*: a new lan-
guage construct that specifies the superimposition of anno-
tations on a set of selected program elements. The selector
mechanism itself is exactly the same as the one used for
superimposing filtermodules, and thus has Turing-complete
expressiveness. Program elements can be selected based on
their name, properties and relations to other program ele-
ments (i.e. based on the static structure of the application),
including annotations.

Listing 7 shows the same example as used for AspectJ in
listing 3, now implemented in Compose*:

1 concern AppSpecificPersistence {
2 superimposition {
3 selectors
4 transientClasses =
5 { AnySess | isClassWithName(S, ’SessionID’),
6 inheritsOrSelf(S, AnySess) };
7 annotations
8 transientClasses <- TransientClass;
9 }

10 }

Listing 7: Superimposition of annotations

In listing 7, the class SessionID and its subclasses are se-
lected by the selector transientClasses (line 4-6). The anno-
tation TransientClass will be superimposed (introduced) to
this set of selected classes (line 8).

In principle, annotations can be superimposed on any kind
of program element represented in the language model used
by the pointcut language. In practice, there can be limita-
tions in the underlying implementation framework (in our
case, .NET). In addition, annotation types themselves can
restrict the target program element types to which they can
be applied. So far, we mainly considered the attachment of
annotations to classes, methods and fields. Conceptually it
would be possible to annotate AOP constructs as well, such
as concerns or filter modules. AspectJ does in fact support
the use of annotations on e.g. aspects and advice. This
topic is discussed in more detail in [15]; section 3.2.1 (re-
garding the language model) and 5.2 (regarding the use of
annotations on AOP-specific program elements).

4.3 Derivation of annotations
In the previous sections, we extended the selector language
of Compose* to use annotations as a selection criterion and
introduced a language construct to superimpose annotations
on a set of selected program elements.

These two features can be combined to achieve the deriva-
tion of annotations. Again, in listing 8 we show the same
example as expressed in AspectJ in listing 4:

1 superimposition {
2 selectors
3 transientFields = { F |
4 typeHasAnnotationWithName(T, ’TransientClass’),
5 fieldType(F,T) };
6 annotations
7 transientFields <- TransientField;
8 }

Listing 8: Deriving an annotation
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Here, the selector transientField selects all fields F, as long
as they are of a type that has the annotation named Tran-
sientClass attached (line 3-5). The annotation Transient-
Field is superimposed on these fields (line 7).

There are two big differences between the selector language
used to superimpose annotations in Compose* and the point-
cut language used to introduce annotations in AspectJ. First,
Compose* offers predicates that express all (relevant) prop-
erties of and relations between program elements. For exam-
ple, the predicate typeHasField(T,F) expresses the relation
between a field and its containing type. Using this relation,
we can select e.g. only fields in classes that have the annota-
tion PersistentRoot attached, and introduce an annotation
on those fields (listing 9 gives an example). In AspectJ we
cannot express such a pointcut, as annotation introductions
on fields follow the pattern: declare @field : FieldPattern
: @AnnotationToAttach(). The FieldPattern can place re-
strictions on only the type and the name of the field itself
(see e.g. the example in listing 4), and not on anything else,
such as for example the type containing a specific field.

1 superimposition {
2 selectors
3 persFields = { F |
4 typeHasAnnotationWithName(T, ’PersistentRoot’),
5 typeHasField(T, F) };
6 annotations
7 persFields <- PersistentField;
8 }

Listing 9: Using relations between program
elements

The second difference is the inherent expression power of
the pointcut languages. Compose* uses a Turing-complete
general-purpose language (prolog) with a predefined library
of predicates, whereas AspectJ uses a more strictly defined,
less expressive pointcut language. Basically there is a trade-
off between supporting powerful reasoning within pointcut
expressions (here, Compose* offers more power) as opposed
to reasoning about pointcut expressions (which is easier in
AspectJ).

Clearly, the problems described in section 3 also apply to our
implementation of annotation introductions in Compose*:
there can be dependencies between the superimposition of
annotations and the selectors used to specify these super-
impositions, because these selectors can also be based on
annotations. In the next section we analyze these problems.

5. PROBLEM ANALYSIS
As discussed in the problem statement, introductions based
on expressive pointcut languages can cause problems related
to the desired order of applying the introductions. The exis-
tence of dependencies between introductions can cause am-
biguities, i.e. when different orderings of applying introduc-
tions leads to different results.

In this section, we analyze concrete cases where such prob-
lems occur, and discuss potential ways to solve these prob-
lems.

5.1 Detecting dependencies
We want to solve the ordering problems described in the
problem statement for the most general case, i.e. for a

Turing-complete pointcut language, such as the one used
in Compose*. Although such a language allows for powerful
reasoning in selector expressions, it makes it impossible to
reason reliably about the results of evaluation by looking at
the source code of selector expressions. The cause is that
an expression in a Turing-complete language is, in general,
not statically decidable, i.e. we cannot (always) know the
results without evaluating the expression. We give a small
example to demonstrate this.

In the context of .NET, annotation types are basically nor-
mal types. This means it is also possible to build (inher-
itance) hierarchies of annotations. For example, we can
create a generic annotation type called PersistentRoot, and
another annotation type XMLPersistentRoot that extends
PersistentRoot. In listing 10, we show how to select all
classes that have any kind of PersistentRoot annotation at-
tached.

1 ClassPersistent =
2 { C | isAnnotationWithName(PRAnnot, ’PersistentRoot’),
3 inheritsOrSelf(PRAnnot, AnyPRAnnot),
4 classHasAnnotation(C, AnyPRAnnot) };

Listing 10: (in)visibility of dependencies

The problem with this selector is that its evaluation may
depend on the existence of a number of annotations, i.e. in
this case any annotation that extends the annotation Per-
sistentRoot. However, by looking at only the source code,
we cannot generally predict which annotations will become
bound to the free variable AnyPRAnnot. Therefore, we can-
not infer (from statically analyzing the source) that there ex-
ists a dependency between this selector expression and the
superimposition of e.g. the annotation XMLPersistentRoot
somewhere else.

However, we can look at the results of selector evaluation;
if the result of evaluating a selector changes after we have
superimposed a certain annotation, there obviously exists
a dependency. The reverse is not true: the fact that the
result does not change after superimposing an annotation
does not imply that there is no dependency. It just does not
occur given the current combination of selectors, program
elements and annotations in the application under consider-
ation. In other words, by performing the evaluation of the
selectors, we can observe when dependencies occur, but we
cannot detect potential dependencies that are independent
of a particular application.

Hence, our approach to determine a correct order of evalu-
ation is based on trying all possible orders of evaluating the
selectors and superimposing annotations, and then observ-
ing the results. Such an iterative approach can also solve
the problem of multi-level (or even circular) dependencies,
as we explain in the next section.

5.2 Circular dependencies
Circular dependencies between introductions may occur in-
tentionally. For example, consider the combination of the
following two rules (taken from [5]): (1) If a class contains
a public method that has the annotation WebMethod, the
class itself should have the annotation WebService, and (2) If
a class has the annotation WebService, all of its public meth-
ods are WebMethods that should be annotated accordingly.
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Both rules can easily be expressed by annotation introduc-
tions in Compose*. However, because these rules depend
on annotations that are introduced based on the other rule,
iteration over those introductions is required.

This problem can be addressed by iterating over the evalu-
ation of selectors and the introduction of annotations, until
a fixpoint is reached. That is, the algorithm iterates over
the introduction of annotations until the state (the set of
selected program elements per selector) does not change be-
tween two iterations. An annotation can only be superim-
posed once on each program element—if it is attached a
second time in a later iteration, the results are considered
idempotent. In each iteration step, the superimposition of
an annotation is performed and the selectors are reevaluated
to reflect the changes caused by the superimposition. Be-
cause the resolution is based on the reevaluation of selectors
between the iterative application of introductions, we do not
need to know where dependencies occur beforehand.

Circular dependencies may also occur unintentionally, for
example by combining several aspects that derive annota-
tions from the existence or absence of other annotations. In
certain cases such circular dependencies may cause infinite
loops within an iterative resolution algorithm. To illustrate
such a case, we show an example in listing 11. In this list-
ing, we express the rule that the annotation PersistentRoot
should be introduced on classes that (1) do not have this
annotation2 and (2) have at least one field that should be
made persistent.

1 selectors
2 isPersistentRoot = {C |
3 not(classHasAnnotationWithName(C,’PersistentRoot’)),
4 classHasField(C,F),
5 fieldHasAnnotationWithName(F, ’PersistentField’) };
6 annotations
7 isPersistentRoot <- PersistentRoot;

Listing 11: Example of a circular dependency

The problem with this rule is that, in an iterative approach,
after executing the superimposition of the annotation Per-
sistentRoot on classes that matched the selector, we have
to reevaluate the selector isPersistentRoot. However, after
reevaluation it will no longer match the classes on which we
just introduced the annotation PersistentRoot, because it no
longer fulfills the first condition. Because the rule on which
the superimposition was based is now violated, a declarative
approach would suggest that the superimposition should not
have been executed in the first place. However, if we would
’roll back’ that decision, the rule would apply again. Hence,
we would create an infinite loop caused by what we will call
negative feedback between selectors and the process of su-
perimposing annotations. In this case it is relatively easy
to recognize the problem, as the selector and superimposi-
tion are specified in one place; but in practice, the selector
and superimposition specification may be distributed over
different aspects.

This example demonstrates that we cannot ensure that iter-
ation over selectors and superimposition of annotations will

2Actually, this part of the rule is superfluous (applying the
same annotation a second time has no effect), but the code
is valid; we use it to demonstrate the type of problems that
can occur when programmers specify such rules.

terminate, given the occurrence of negative feedback - that
is, introductions that depend on other annotations being
absent, while these annotations are subsequently also intro-
duced (possibly in a completely different location).

However, many pointcut languages do support exclusion op-
erators, as this can be very useful. A good example (that can
be easily expressed in both AspectJ and Compose*) would
be to specify that fields that do not have the annotation
TransientField automatically get the annotation Persistent-
Field superimposed. However, as we will show in the next
section, a combination of such rules (even though they can
easily be expressed in existing languages) can even lead to
specifications that are inherently ambiguous (in the absence
of explicit ordering constraints). Obviously, we would like
to detect the occurrence of such situations.

5.3 Ambiguous selector specifications
The existence of exclusion operators and dependencies in
the selector language leads to another problem: we prefer
superimposition specifications and selectors to be declara-
tive; their specification should not imply any ordering of su-
perimposition. However, different orders of evaluating the
selectors and executing the superimposition of annotations
do exist. As a consequence, this may result in different sets
of program elements with different annotations attached. If
this happens, the concern specification is ambiguous and
non-declarative. As an example, consider the ambiguous
combination of rules specified in listing 12.

1 selectors
2 notTransient = { F |
3 not(fieldHasAnnotationWithName(F, ’TransientField’))};
4 notPersistent = { F |
5 not(fieldHasAnnotationWithName(F, ’PersistentField’))};
6 annotations
7 notTransient <- PersistentField;
8 notPersistent <- TransientField;

Listing 12: Ambiguous selector specification

Listing 12 lists two rules: if a field is not transient, it should
be made persistent, and vice versa. These two derivation
rules express the design intention that each field in a pro-
gram should be marked either transient or persistent. How-
ever, the design intention is not expressed precisely in this
example: suppose there exists a field that has neither an-
notation TransientField nor PersistentField attached. This
field is then selected by both selectors, notTransient and
notPersistent. If we superimpose the annotation Persistent-
Field on it first (line 5) and then reevaluate the selectors,
the field no longer matches selector notPersistent, so the
annotation TransientField will not be attached. However,
if we first superimpose the annotation TransientField (line
6), the field no longer matches the selector notTransient, so
the annotation PersistentField will not be attached. In this
case, the end results are different depending on which intro-
duction is executed first. The specification is syntactically
valid, but also clearly ambiguous, as there is no way to dis-
cern which order of applying the introductions was intended
by the programmer.

In any case, we would like to detect such problems, either
to forbid the use of such ambiguous specifications, or to let
the programmer specify an ordering that would resolve the
problem.
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5.4 Summary
Based on the observations made in the previous subsections,
we draw the following conclusions with respect to the order-
ing problems:

• The expressiveness of the selector language in Com-
pose* does not allow reasoning about dependencies
based on the textual representation of the selectors. In
addition, there can be multiple levels of dependencies
(including circular dependencies). For these reasons,
we apply an approach based on the iterative evaluation
of selector expressions and superimposition of annota-
tions.

• Iterative resolution of dependencies will not terminate
(i.e. it leads to infinite loops) in cases where a circular
dependency occurs in combination with an exclusion
operator. We illustrated such a case in section 5.2.

• An important issue is that selectors and superimposi-
tion should be declarative, which means that the order
of attaching annotations should not matter (otherwise,
the specification is imperative rather than declarative).
Implying an ordering compromises the declarative na-
ture of selector specifications, which leads to problems
regarding evolvability: introducing additional selectors
may change the implied ordering. In addition, this
makes it harder for programmers to see what is actu-
ally selected by a particular selector.

These conclusions form the core of our solution proposal: an
algorithm that considers all different orderings in which the
annotations can be superimposed, and iterates over every
possible ordering, until the set of selected elements for each
selector reaches a fixpoint. To address the problem of infi-
nite loops, we disallow the occurrence of negative feedback
between selectors and superimposition of annotations. This
means that selecting based on the absence of an annota-
tion that is attached by another concern will be considered
an error, as this causes negative feedback (hence, the case
described in listing 11 would be detected as problematic).
Note that this does not directly limit the expressiveness of
the selector language itself: it is still possible to use ’not’ and
other types of exclusion constructs. However, it does limit
the possibilities of introductions, as it is no longer allowed
to introduce annotations that are used to exclude program
elements in selectors.

If such negative feedback occurs, the programmer has two
options to make the specification declarative (apart from
changing the design): (1) do not derive annotations that
are used as part of exclusion conditions in selectors, but
attach them manually (in the source), or (2) do not base the
exclusion condition in the selector on a derived annotation,
but directly on the (static) conditions that where also used
to specify the derivation of the annotation. Both solutions
are workarounds that do not yield very elegant code, but
can at least always resolve the issue. The discussion section
explains why we think the alternative (i.e. specifying an
ordering to resolve the problem) is less attractive.

Additionally, we disallow ambiguous specifications by con-
sidering the occurrence of different results based on different
orders of attaching the annotations as an error. To detect
such cases, our algorithm tries every possible ordering of
introducing the annotations.

In fact, we observed that the second restriction we impose
on the use of introductions (i.e. different orderings are not
allowed to render different endresults) may be superfluous,
because we observed that by disallowing negative feedback,
the order of superimposing the annotation can never lead
to different end results. In other words, cases that would
be detected as being an ambiguous specification would al-
ways involve negative feedback (and already be detected as
such). This would mean that just disallowing (and detect-
ing) negative feedback is actually sufficient to ensure the
declarativeness of selectors in Compose*. Proving that this
observation is true for all cases is one of our future works.
In terms of implementing an iterative algorithm this obser-
vation does not make a big difference: checking for negative
feedback already involves trying all the possible orderings of
introductions.

Finally, it is important to note that the problems related
to negative feedback and circular dependencies can occur in
any sufficiently expressive pointcut language, even though
it may not be Turing-complete. For example, AspectJ sup-
ports introductions based on the absence of other elements
(i.e. a ’not’ operator), as well as dependencies on other intro-
ductions. Such a pointcut language is sufficiently expressive
to share the problems described in this paper, although im-
plementing a solution may be more straightforward if it is
possible to reason about dependencies based on the textual
representation of pointcut expressions.

In the next section we explain the algorithm used to resolve
dependencies and to apply introductions.

6. DEPENDENCY ALGORITHM
This section describes an algorithm that implements the it-
erative resolution of dependencies, as discussed in the pre-
vious section. This means it tries every possible ordering
of superimposing the annotations specified in each concern
source, while checking for negative feedback and ambiguous
end results.

To describe this algorithm, we first need to define a few
terms more precisely:

• (Superimposition) selector: a selector expression
(e.g. S = {C|isClass(C)}) that returns a set of pro-
gram elements when evaluated

• Selector result: a set of program elements selected
by a superimposition selector (i.e. the result of evalu-
ating a selector)

• (Superimposition) action (e.g. S ← A): the act of
attaching a specific annotation (A) to a set of program
elements (selected by S)3. An annotation can only be
attached once; if a program element already has the
annotation A attached, it will not be attached a second
time by executing a superimposition action.

• Iteration: in every iteration step, exactly 1 super-
imposition action is executed. All selectors are then
reevaluated, rendering new (possibly different) selec-
tor results.

• Negative feedback: occurs when for any selector re-
sult there exists a program element that was selected

3In this context superimposition is always about annota-
tions.
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in iteration i-1 but not in iteration i. (For i=0 this
is never the case, as by definition nothing has been
selected before the first iteration.)

• State: the current set of selected program elements for
each selector, and a list of actions executed to reach
this situation.

• Endstate: a state where the execution of any super-
imposition action will not change any of the selector
results.

6.1 Inputs, outputs, variables
To describe the algorithm, we define its inputs and outputs
first.

Inputs are modelled as follows:

1 selectors[0..s]:
2 superimposition selectors described by:
3 selector name, predicate, result variable
4
5 action[0..n]: superimposition actions, described by:
6 selector_name, annotation name

Also, we define a State container object that contains the
following information:

1 Set selResults[0..s]:
2 for each selector, the set of selected program elements
3
4 integer last_action:
5 the superimposition action (0..n) that was
6 executed to get to this state
7
8 integer prev_state:
9 a pointer to the state before last_action was executed

The output can be either:
• An error condition (exception thrown) when the algo-

rithm detects that negative feedback occurred, or that
there are several endstates that have different selector
results.
• An array of selector results, one for each superimposi-

tion selector in the application, representing the final
selector results. Also, the algorithm renders a list of
annotations and the program elements they should be
applied to.

6.2 Algorithm description
The algorithm basically implements a breadth-first search:
given the initial state (where no actions have been executed
yet), it performs all of the possible superimposition actions
one by one and adds a new State to a list of states if an
action generates selector results that differ from those in the
current state and the new state does not already occur in the
list of states. However, if any of the selector results shrinks
by executing an action (i.e. it misses at least one element
in the new state that was selected in the current state) the
algorithm stops, because this is an error condition (negative
feedback between selectors). If executing any action in a
particular state does not render different selector results,
that state is marked as an endState. If there are several
end states, it is checked that they all have the same selector
results. After it has handled a state, the algorithm tries the
next from the list until there are no states left to handle.

Listing 13 describes this algorithm in pseudo-code.

1 dependencyAlgorithm()
2 {
3 number_states = 1; // Total number of states .

4 current_state = 0; // Currently handled state .
5
6 // Define in i t ia l state
7 state[0].selResults = evaluate(selectors);
8
9 while (current_state < number_states)

10 { // Any state l e f t to be handled?
11 // assume endstate , until proven otherwise
12 currentIsEndState = true;
13 for (action = 0..n)
14 { // Try every possible action . .
15 // attach annotations to match current state
16 setAnnotationState(state, action);
17
18 newState.selResults = evaluate(selectors);
19 if (newState.selResults !=
20 state[current_state].selResults)
21 { // Selector results changed
22 // so this is not an end state
23 currentIsEndState = false;
24 if (for any i in 0..s:
25 newState.selResults[i] misses any elem
26 from state[current_state].selResult[i])
27 throw NegativeFeedbackException;
28
29 if (for any i in 0..number_states-1:
30 newState.selResults !=
31 state[i].selResults )
32 { // New state , add i t to l i s t of states
33 newState.last_action = action;
34 newState.prev_state = current_state;
35 state[number_states++] = newState;
36 } // new result found
37 } // selector changed
38 } // action loop
39
40 if (currentIsEndState)
41 { // No action rendered a different result =>
42 // current state is an end state
43 if (endstate == undefined or
44 endstate.selResults == newState.selResults)
45 // Correct end state found
46 endState = state[current_state];
47 else
48 throw DifferentEndResultsException;
49 } // found an end state
50
51 current_state++; // handle the next state
52 } // state handling loop
53
54 // Set annotations according to the end state
55 setAnnotationState(endState);
56 // return set of sel . elems. for each selector
57 return endState.selResults;
58 }

Listing 13: Dependency algorithm pseudo-code

6.3 Example run of the algorithm
To demonstrate how the algorithm works in practice, we
show an example run for a simple combination of selectors
and introductions that can be found throughout the paper.

We take the class User as it is introduced in listing 1, and
assume the existence of a class SessionID. Now, we consider
an application that combines the selectors and introductions
in listings 7 and 8. In this case, the inputs for the algorithm
look as follows (S=Selector, A=Action):

1 S0 : transientFields = { F |
2 typeHasAnnotationWithName(T, ’TransientClass’),
3 fieldType(F,T) }
4 S1 : transientClasses = { AnySess |
5 isClassWithName(S, ’SessionID’),
6 classInheritsOrSelf(S, AnySess) }
7 A0 : transientFields <- TransientField
8 A1 : transientClasses <- TransientClass

Listing 14: Example algorithm inputs
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Figure 1 represents a sample run of the algorithm. The
different states that the algorithm encounters are displayed
from left to right. Vertically, we can see which program
elements are matched by each of the selectors in a given
state. The arrows indicate the transitions between states,
while the labels next to the arrows indicate what action
(introduction) was executed to get from one state to the
other.

Figure 1: Example run of the algorithm

In the initial state, no annotations have been superimposed.
The algorithm begins by evaluating all selectors. In this
state, S0 (transientFields) does not select any fields, as there
are no classes that have the annotation TransientClass at-
tached. S1 (transientClasses) selects the class SessionID.

Consequently, the algorithm tries to generate new states by
applying the superimposition actions one at a time. In this
case, the algorithm starts by executing A0, which superim-
poses the annotation TransientField on fields selected by S0.
As S0 does not select anything in the begin state, the result-
ing state (after applying A0 and reevaluating S0 and S1) is
of course identical. If a newly generated state already occurs
in the list of states, we do not need to handle it a second
time (therefore, it has no outgoing arrows - in practice, it is
not even added to the list of states to be handled).

Next, the algorithm tries to superimpose A1, still from the
begin state. After it reevaluates S0 and S1, it turns out
that S0 now selects the field User.session - because execut-
ing A1 superimposed the annotation TransientClass on the
class SessionID, and S0 selects fields that have a type with
this annotation attached. From the begin state, there are
no other possibilities, because we already tried to apply all
possible actions (A0 and A1). This state is not an end state,
as the application of A1 led to a new state.

The second state is skipped, as it is identical to the begin
state. The third state repeats the same process: A0 and
A1 are executed again, one at a time. It turns out both
actions lead to the same, unchanged, state. Because the al-
gorithm cannot find any action that leads to a new state,
this is an end state. The fourth state is skipped, as it is not
a new state. At this point the algorithm has reached the
end of the list of states, which means it has generated all
different introduction orderings and selector results. In this
case, we can see that no negative feedback occurred any-
where during the execution of the algorithm (i.e. there is no
state where any selector matches less than in its predecessor
state). Also, there is only one end state, so there are clearly
no ambiguities. Thus, the selector results for S0 and S1 are
returned according to the situation found in the end state.

6.4 Efficiency of the algorithm
We chose to use a breadth-first search rather than a depth-
first (recursive/backtracking) solution because of several rea-
sons:

• The calculation of a new ’state’ involves evaluating
all selector predicates, which is a (relatively) expen-
sive operation. Hence, we sacrifice memory to gain
speed by avoiding duplicate state calculations. We can
achieve this by storing states that have been encoun-
tered already - a breadth-first algorithm already keeps
such a list.

• We have to consider all (different) orderings to check
whether the results are the same and to make sure that
no negative feedback occurs for any possible ordering.
Therefore, it does not matter that backtracking would
find a first solution faster. For the same reason, the use
of optimizations that would find a first solution faster
(e.g. an A*-algorithm) would not make a difference.

• Breadth-first searching can cause problems related to
state space explosion (resulting in excessive memory
usage). However, we know that most actions will gen-
erally return the same selector results, even when using
a different ordering. Because we check for duplicate
states, most realistic cases are unlikely to cause such
a state-space explosion, even if they involve many se-
lectors and introductions. However, our algorithm is
essentially a brute-force approach, so it is always pos-
sible to construct a worst-case scenario that consumes
a lot of time and memory.

6.5 Termination of the algorithm
It is not obvious that the algorithm described in the previous
section will terminate in all cases. In this section, we show
that it does.

Non-termination could be caused by the while-loop in the
algorithm. This loop has the exit condition current state <
number states (both values are positive integers). In each
cycle, current state is incremented. However, number states
can potentially be incremented repeatedly within a single
cycle. This could cause the algorithm to never terminate.
Therefore, we inspect the circumstances under which num-
ber states is incremented. There are 3 possible cases when
executing each action within a cycle:

1) An action was executed that made at least one pro-
gram element disappear from a selector result set (i.e.
negative feedback occurred). This is an error condition
that will terminate the algorithm.

2) An action was executed that did not change any se-
lector result. This case will be ignored, because it has
been handled already. Like in case 1, number states
will not be incremented.

3) An action was executed that added at least one pro-
gram element to at least one selector result. If this
results in a case that has not been handled yet (the
worst case), number states is incremented.

Only in the third case is number states incremented. In that
case we are dealing with a monotonically increasing result
set (over several cycles). Also, there is a finite set of program
elements that can be in each selector result set (the number
of program elements does not grow during the execution of
this algorithm). Therefore, case 3 will eventually cease to
occur, as there will simply be no program element left to
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add to any selector result. This means that eventually case
2 or 1 will occur.

Because current state is increased in every cycle, and even-
tually no new occurrences of case 3 can be found, the algo-
rithm will always terminate eventually, when current state
equals number states.

7. RELATED WORK
The benefits of explicitly describing dependencies between
annotations are described in [5]. The paper introduces a
technique to describe dependencies between annotations, as
well as a tool to enforce such dependency relations using a
dependency checker tool. The work motivates how the con-
cept of declaring and enforcing dependencies between anno-
tations can be used to model and enforce domain-specific
restrictions on top of a common purpose programming lan-
guage such as C#. Our work focuses on the derivation of
related annotations, by introducing a technique to not only
declare relations between annotations, but also realize the
automatic derivation of such relations.

R. Laddad investigates the application of meta-data in com-
bination with AOP in [13]. In this article, he gives practical
hints in what situations the application of annotations in
combination with AOP (particularly, AspectJ) can be use-
ful. In our paper, we also investigated several new ways of
using annotations in combination with AOP, e.g. by allow-
ing the superimposition and derivation of annotations.

The latest versions of AspectJ [1] and JBoss [11] support the
use of annotations: join points can be designated based on
referring to annotations in the shadow of join points. Similar
to the superimposition mechanism in Compose*, the intro-
duction of annotations is also supported in these languages.
The main differences are in the expressiveness of the point-
cut languages and the way of specifying the introduction of
annotations. Both AspectJ and JBoss have only a limited
language to select program elements on which annotations
can be introduced. In contrast, the selector language of
Compose* allows for specifying arbitrary complex queries to
select program elements for introductions. Another impor-
tant difference is that the weaver of AspectJ uses implicitly
the order of the declarations of introductions, whereas Com-
pose* does not rely any ordering information by ensuring the
declarativeness of the introduction specifications.

The problem of resolving multiple levels of dependencies
also occurs in the domain of source code transformations.
JTransformer [12] is a transformation tool that uses a lan-
guage named Conditional Transformations to specify source
code transformations. The expression power of this language
to specify transformations (i.e. expressing which elements
should be transformed) is intentionally limited: it allows
for reasoning about dependencies between transformations
based on the syntax of the transformation specification (i.e.
even without the context of a particular application). This
enables the detection of potential conflicts between transfor-
mation specifications, even if a conflict may not occur in all
applications to which such a (potentially conflicting) com-
bination of transformations could be applied. However, the
use of a Turing-complete selector language in Compose* did
not allow for using a similar approach. Note that there is a

trade-off here: the approach of Conditional Tranformations
allows for detecting inherent (application independent) con-
flicts in the specification by offering a transformation lan-
guage with a limited expression power. On the other hand,
Compose* offers an expressive selector language for super-
imposition, however, our dependency resolution algorithm
can detect only application specific conflicts.

A radically different approach to resolving aspect composi-
tion problems is taken in [14]. Here, aspects are defined as
a declaration of changes to a program (i.e. as transforma-
tions). The paper defines a clear approach for determining
the order of applying such changes: a global composition
specification of all aspects is to be specified, and advices at
shared join points are applied in their order of appearance
in the aspect definition (source code). Such an approach
clearly solves any possible ambiguities and works well in sit-
uations where aspects are defined as incremental changes on
top of an existing program (and on top of each other). How-
ever, to write such a global composition specification a pro-
grammer has to know about all the dependencies in an appli-
cation. This can be troublesome when combining (existing)
aspect libraries in a new application. Also, the behavior of
an aspect may depend on its location in the composition
specification. This reduces the ability for a programmer to
understand an aspect as a module on its own, i.e. without
knowing what prior transformations may or may not have
influenced the pointcuts written in this particular aspect.
For this reason, we prefer an approach that keeps pointcuts
declarative rather than depending on an imperative ordering
specification. When a pointcut specification is ambiguous in
combination with other aspects or introductions, we detect
this problem.

Finally, the combination of logic languages, negation and
(non-)termination has been the subject of much research
within the domains of logic programming and databases.
There exist examples of logic languages that guarantee declar-
ativeness and termination of predicate resolution, even in
the presence of negation. However, such languages always
have to impose restrictions on their expressiveness. An ex-
ample of such a language is DATALOG, which is a subset
of prolog; an extensive discussion on its expressiveness, fea-
tures and extensions to the language can be found in [9].

8. DISCUSSION
The superimposition and derivation of annotations as de-
scribed in this paper has been implemented as a module
in Compose*. A limitation in the current version is that
parameters of annotations cannot be queried yet. Also, we
intend to add support for writing superimposed annotations
back to the intermediate language (IL) code (cf. compiled
classes, or bytecode, in Java), to support non-aspect ori-
ented frameworks. This functionality has not been imple-
mented yet (i.e. superimposed annotations can only be used
within Compose*).

One may consider a case where design information is intro-
duced through superimposition (without derivation rules)
and then the occurrences of that same property are used in
a pointcut expression to select join points. This is an exam-
ple style that our approach is not aiming at, as this could
have been expressed directly in a single pointcut expression.
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Our solution is aimed at keeping the specification of intro-
ductions and pointcuts declarative. The alternative is to al-
low precedence specifications between introductions. Even
though this is definitely a solution that can be considered,
it has some drawbacks: if pointcut specifications might no
longer be declarative in all cases, the programmer needs to
look at the context (i.e. other aspects within the same ap-
plication) in order to understand what will match an expres-
sion. Such explicit dependencies might hinder the reusabil-
ity of aspects. Also, even with such an approach, it would
still be desirable to detect ambiguities, as allowing for prece-
dence specifications does not ensure that programmers will
always know when it is necessary to use them.

9. CONCLUSION
The technology for using annotations together with AOP is
becoming readily available; more and more aspect-oriented
languages support the designation of join points based on
references to annotations. The introduction (superimposi-
tion) of annotations is not a new idea either; a few aspect-
oriented languages already support the introduction of an-
notations over multiple program elements. However, as we
discussed in the section on related work, these AOP lan-
guages offer relatively simple static pointcut languages to
express the locations where annotations can be introduced.

In this paper, we consider the application of an expressive
static pointcut language for introductions. This pointcut
language is a predicate-based, Turing-complete query lan-
guage that allows for specifying complex queries as a means
to select program elements on which annotations can be in-
troduced. Queries can also select program elements based
on the annotations that are already associated to program
elements. By introducing annotations through queries that
select program elements based on other annotations, we ob-
tain the automatic derivation of annotations. By supporting
the derivation of annotations, dependent annotations (and
complete annotation hierarchies) can be automatically in-
troduced. By ensuring the declarativeness of annotation in-
troductions, we believe that we can keep the use of this
mechanism as straightforward as possible for the program-
mers.

However, to ensure declarativeness, it is necessary to handle
the dependencies between the evaluation of pointcuts and
the introductions of annotations. The main contributions of
this paper are related to this issue:

• We analyzed the possible dependencies among intro-
ductions and identified cases where dependency prob-
lems may arise (section 5).

• Based on this analysis, we developed an approach and
designed an algorithm to resolve the above mentioned
dependencies, and detect the possible dependency prob-
lems (section 6).

• We showed that this algorithm will always terminate
either by providing a correct resolution of the depen-
dencies, or detecting ambiguity in the weaving specifi-
cation (section 6.5).

• As a proof of concept, we have also implemented and
tested our approach in Compose*[6], which is our aspect-
oriented platform (section 8).

This approach can also be applied in other aspect-oriented
languages to the weaving of introductions. For instance,
the latest AspectJ weaver implicitly chooses the order in
which introductions are applied, in some cases depending on
arbitrary criteria such as the ordering of declarations within
a source file. Our approach ensures the declarativeness of
introduction specifications; this means that by adopting our
approach, the weaver would not need to rely on the order of
these declarations.

Finally, our approach is also generic in the sense that it is
applicable to other types of introductions, not only the intro-
duction of annotations. For example, the selection language
can be applied to introduce methods in the same way we
introduced annotations. When a method is introduced and
this method is referred to by an other superimposition spec-
ification (i.e. a pointcut), the same dependency issues will
arise that we identified at the introduction of annotations.
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