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The distribution of species of aerobic chemolitho-autotrophic microorganisms such as
ammonia-oxidizing bacteria are governed by pH, salinity, and temperature as well as the
availability of oxygen, ammonium, carbon dioxide, and other inorganic elements required
for growth. Impounded mangrove forests in the Indian River Lagoon, a coastal estuary on
the east coast of Florida, are dominated by mangroves, especially stands of Black man-
grove (Avicennia germinans) that differ in the size and density of individual plants. In March
2009, the management of one impoundment was changed to a regime of pumping estu-
arine water into the impoundment at critical times of the year to eliminate breeding sites
for noxious insects. We collected soil samples in three different Black mangrove habi-
tats before and after the change in management to determine the impacts of the altered
hydrologic regimes on the distribution of 16s rRNA genes belonging to ammonia-oxidizing
betaproteobacteria (β-AOB). We also sampled soils in an adjacent impoundment in which
there had not been any hydrologic alteration. At the level of 97% mutual similarity in the 16s
rRNA gene, 13 different operational taxonomic units were identified; the majority related to
the lineages of Nitrosomonas marina (45% of the total clones), Nitrosomonas sp. Nm143
(23%), and Nitrosospira cluster 1 (19%). Long-term summer flooding of the impoundment
in 2009, after initiation of the pumping regime, reduced the percentage of N. marina by half
between 2008 and 2010 in favor of the two other major lineages and the potential ammonia-
oxidizing activity decreased by an average of 73%. Higher interstitial salinities, probably
due to a prolonged winter drought, had a significant effect on the composition of the β-
AOB in March 2009 compared to March 2008: Nitrosomonas sp. Nm143 was replaced
by Nitrosospira cluster 1 as the second most important lineage. There were small, but
significant differences in the bacterial communities between the flooded and non-flooded
impoundments.There were also differences in the community composition of the bacteria
in the three Black mangrove habitats. N. marina was most dominant in all three habitats,
but was partly replaced by Nitrosospira cluster 1 in sites dominated by sparsely distrib-
uted trees and by Nitrosomonas sp. Nm143 in sites characterized by taller, more densely
distributed Black mangrove trees.
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INTRODUCTION
Aerobic ammonia-oxidizing bacteria (AOB) and archaea play an
important role in the global nitrogen cycle by converting ammo-
nium to nitrite (Kowalchuk and Stephen, 2001; Schleper and Nicol,
2010). Nitrite can then be further oxidized to nitrate by nitrite-
oxidizing bacteria or used as an electron acceptor in a large number
of microbial and chemical redox reactions. The diversity of aerobic
AOB is limited to a small number of genera within the classes of the
beta- and gammaproteobacteria (Kowalchuk and Stephen, 2001)
but, based on studies applying the phylogenetic 16s rRNA gene
and the functional amoA gene, the ammonia-oxidizing betapro-
teobacteria (β-AOB) are widely distributed and occur in many
habitats. The studies that have been reported also demonstrated
that their abundance is influenced by the prevailing environmental

conditions. On the basis of the 16S rRNA gene, for example, it
was shown that sequences belonging to the Nitrosomonas olig-
otropha lineage dominated in the more frequently flooded and
actively nitrifying habitats in tidal freshwater wetlands, whereas
sequences related to the Nitrosospira lineage were more abun-
dant in habitats that were less frequently flooded and less active
in relation to ammonium oxidation (Laanbroek and Speksnijder,
2008).

Mangroves are tree-dominated intertidal wetlands along trop-
ical and subtropical coastlines with a specialized flora adapted to
waterlogged and saline conditions. Mangroves are often found
in distinct zones of different species and stature (Feller et al.,
2003; Lovelock and Feller, 2003) with temperature, salinity, fre-
quency of tidal inundation, soil texture, degree of soil anoxia,
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pH, predation, and competition being factors that account for the
zonation (Alongi, 2008). Nutrient availability also varies spatially
in mangroves and plays a key role in their size and distribution
(Feller et al., 2003). Research on the abundance and diversity of
AOB in mangroves has been limited to studies of polluted and
rehabilitated mangrove sediments in Southeast Asia (Wickramas-
inghe et al., 2009; Cao et al., 2011b; Li et al., 2011). Hence, there is
little information about the distribution and abundance of AOB
in mangroves at the global scale and even less is known about the
abundance and distribution of AOB in relation to spatial variations
of mangrove species and the factors that control their distribution
and growth.

Almost all mangroves in the Indian River Lagoon of Florida
were impounded, primarily between 1954 and 1970, to control
noxious salt-marsh mosquitoes and biting midges (Rey and Kain,
1991; Brockmeyer et al., 1997). In later years culverts were placed
in the dikes around the impoundments to restore limited tidal
exchange and in a few impoundments, tropical storms destroyed
sections of the dikes resulting in increased tidal exchange with the
estuary.

In 2008 we initiated a study to determine the effects of altered
hydrologic conditions on ecological characteristics of mangroves.
The study was made possible because the St. Lucie County Mos-
quito Control and Coastal Management Services1 had developed
plans to alter the hydrology of one impoundment by pumping
water into it during the season when nuisance insects were most
problematic. We hypothesized that the hydrological changes would
give rise to changes in ecological processes in the mangroves,
including the growth rates of mangroves, the rates of nitrogen
cycling, and the community composition of the AOB.

Here we report on the diversity of ammonia-oxidizing betapro-
teobacteria before, during, and after the changes in hydrology in
three different Black mangrove habitats, i.e., locations with dwarf,
sparse, and dense trees. We tested the hypotheses that changes in
soil characteristics associated with habitat type and management-
directed flooding for insect control would alter the commu-
nity structure of the ammonia-oxidizing betaproteobacteria and
thereby the rates of potential ammonia-oxidizing activity.

MATERIALS AND METHODS
STUDY LOCATIONS
Soil samples were collected in March 2008, 2009, and 2010 in
two mangrove-dominated impoundments (27˚33′N, 80˚19′W) in
the Indian River Lagoon, a coastal sub-estuary, located on North
Hutchinson Island, St. Lucie County, FL, USA. The climatic condi-
tions and subsoil characteristics of the study area have been previ-
ously described (Stringer, 2010; Stringer et al., 2010). Most of the
mangroves in the Indian River Lagoon were impounded between
1954 and 1970 to control numbers of salt-marsh mosquitoes and
biting midges. Following the establishment of the impoundments,
most of the mangroves died. Subsequently, breaches in the dikes
as a result of hurricanes and the installation of culverts through
the dikes resulted in the restoration of tidal exchange between
the impoundments and the estuary. Since the restoration of tidal

1http://www.stlucieco.gov/mosquito/index.htm

exchange, mangrove-dominated vegetation has re-established in
the impoundments (Brockmeyer et al., 1997). Avicennia germinans
L. (Black mangrove) was the dominant species in both impound-
ments (Feller et al., 2003; Lovelock and Feller, 2003). However, the
heights of the mangroves differed. The tallest mangroves occurred
in the wettest habitats and at the upland-wetland border, while the
shortest trees occurred in areas where the soil salinities were very
high (18). Other abundant species throughout the impoundments
were Conocarpus erectus (Button bush), Batis maritima (Saltwort),
Salicornia virginica (Glasswort), and Salicornia bigelovii (Dwarf
glasswort).

The March 2008 sampling represented conditions in the two
impoundments prior to the pumping of estuarine water into
Impoundment 24. In March 2009, rotational impoundment man-
agement (i.e., seasonal flooding by pumping water into the
impoundment from the lagoon) was initiated and it coincided
with our soil sampling. During the period of rotational pumping
of estuarine water (March–October) much of the impoundment
had standing water; at other times, water levels were allowed to
fluctuate naturally through the culverts. Due to the changes in
management practice initiated in March 2009, groundwater lev-
els changed substantially in Impoundment 24. Water levels also
changed in Impoundment 23 (Stringer, 2010) demonstrating that
the impoundments, which are immediately adjacent to each other,
were hydrologically connected by groundwater that flows beneath
the dike that separated them. Changes in groundwater levels
were greatest in Impoundment 24, but were evident throughout
Impoundment 23, with the magnitude of the changes diminish-
ing with distance within Impoundment 23 from Impoundment
24 (M. Rains, pers. comm.).

The soil samples that were collected for the analysis of the
diversity of β-AOB were obtained at sites within each impound-
ment that had been the focus of earlier experiments (Feller et al.,
2003; Whigham et al., 2009). All sampled sites were within 500 m
of the dike between both impoundments and they were domi-
nated by A. germinans L. (Black mangrove). One of the habitats
sampled was referred to as “dwarf Black mangrove” or “dwarf”
(Feller et al., 2003; Lovelock and Feller, 2003) because average tree
height was less than 1 m and tree density was low resulting in less
than 30% canopy coverage. Another Black mangrove-dominated
habitat was located between the areas dominated by dwarf trees
and wetter habitats that had taller trees. We refer to this habi-
tat as “sparse Black mangrove” or “sparse.” Tree height in the
sparse habitat averaged 1.8 m and tree density resulted in a canopy
coverage that ranged from 30 to 80%. The third Black mangrove-
dominated habitat, hereafter called “dense Black mangrove” or
“dense,” had trees that averaged 3.6 m in height and the tree den-
sity resulted in a canopy coverage of greater than 80%. Within
each impoundment, we selected five locations in each of the three
habitats resulting in a total of 30 locations where soil samples were
collected.

SOIL COLLECTIONS
In the March 2008, 2009, and 2010 sampling periods, three soil
cores (3.9 cm diameter and 10 cm long) were collected at each
of the 30 sites. The sample locations were within 1-m of a Black
mangrove that was being monitored for growth and leaf nitrogen
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content. Samples were collected with an aluminum tube that was
sharpened at one end. The cores were immediately sealed at both
ends with rubber stoppers and transported to the laboratory. One
of the cores was used for removal of pore water that was ana-
lyzed for salinity, and pH. The top 10-cm of the two other cores
were combined and thoroughly mixed by hand and subsequently
sub-sampled for the determination of moisture content, for mea-
surements of potential rates of nitrification, and for the analysis of
the community structure of ammonia-oxidizing betaproteobacte-
ria (β-AOB). Samples for the genetic analyses of the β-AOB were
freeze-dried and stored until further analyses.

DETERMINATION OF POTENTIAL AMMONIA-OXIDIZING ACTIVITIES
To estimate the numbers of active ammonia-oxidizing cells in the
soil samples, potential ammonia-oxidizing activities (PAAs) were
determined in slurries of 20 g fresh weight soil mixed with 50 ml of
mineral medium containing ammonium at a final concentration
of 1 mM, according to the protocol of Belser and Mays (1980),
as modified by Verhagen and Laanbroek (1991). Salinities of the
mineral media were adapted to the pore water salinity of each indi-
vidual sample. The linear production of nitrite plus nitrate over
time under optimal conditions of substrate, pH, and temperature
was taken as a measure of the potential rate of ammonium oxida-
tion. Measurements were performed within 16 h after collection
of the soil samples and the rates were followed for 6 h with 90 min
sampling intervals.

DNA ISOLATION
Environmental DNA was extracted from the 0.5 g freeze-dried soil
samples. The samples were homogenized by vortexing with 1 ml
cetyltrimethylammonium bromide (CTAB) buffer (Zhou et al.,
1996) and 0.5 g sterilized zirconia–silica beads (diameter 0.1 mm).
The homogenized samples were subsequently subjected to disrup-
tion by bead-beating at a 5.0-m/s rotation for 60 s. After the addi-
tion of 5 μl proteinase K (20 mg/ml), the samples were incubated
for 30 min at 37˚C, and then vortexed after 15 min. After the addi-
tion of 150 μl of a 20% SDS solution, the samples were incubated
for 1 h at 65˚C in a Thermoblock apparatus and vortexed every
15–20 min. After centrifugation at 10,000 × g for 10 min, 600 μl
of supernatant was collected in 2-ml screw-cap tubes. The rest of
the sample was re-extracted with 450 μl CTAB buffer and 50 μl
of a 20% SDS solution, vortexed for 10 s, incubated for 10 min at
65˚C, and centrifuged at 6,000 × g for 10 min. Again, 600 μl was
collected, added to the previously extracted supernatant, mixed
with 1 ml phenol–chloroform–isoamyl alcohol solution (25:24:1,
vol/vol/vol), and centrifuged at 6,000 × g for 10 min. One milli-
liter of supernatant was collected and placed into a new screw-cup
tube containing 700 μl isopropanol, and the tube was incubated
for 1 h at 24˚C. After 20 min of centrifugation at 15,000 × g, the
isopropanol was decanted and the pellet was resuspended and
washed with 1 ml 70% cold ethanol. This was followed by 5 min of
centrifugation at 15,000 × g, decantation of the ethanol, drying of
the pellet under vacuum centrifugation, and finally, resuspension
in 100 μl water (Sigma). Quantification was done with 2-μl DNA
samples and a ND-1000 apparatus (Nanodrop Technology, Wilm-
ington, DE, USA). DNA could not be obtained from four soil sam-
ples. These samples were all from Impoundment 23 in different

years and mangrove habitats: one sample was from the zone with
dwarf Black mangrove trees; three were from the “dense” habitat.

PCR AND CONSTRUCTION OF CLONE LIBRARIES
Extracted DNA was amplified by nested procedure using two 16s
rRNA gene primer sets specific for the majority of the betapro-
teobacterial AOB, i.e., the βAMO161f and βAMO1301r primer set
of McCaig et al. (1994) and the CTO189f and CTO654r primer set
of Kowalchuk et al. (1997). One hundred nanograms of purified
DNA was used as template for a 50-μl PCR mixture containing
1× Mg-free buffer (Invitrogen Corp., Carlsbad, CA, USA), 0.5 μM
of each primer, 200 μM of each deoxynucleotide triphosphate,
1.75 mM MgCl2, 400 ng/μl bovine serum albumin, 1.25 U GoTaq
Hot Start Polymerase (Promega). The thermocycling program for
both steps consisted of 2 min of denaturation at 95˚C followed by
35 cycles of 30 s of denaturation at 95˚C; 30 s of specific annealing
at 59˚C (βAMO primer set) or at 57˚C (CTO primer set) and 45 s
of elongation at 72˚C; 5 min of final elongation was performed for
all reactions. Nested amplifications of 25 cycles were performed
with the primer set CTO189f and CTO654r on 1:100 dilutions of
PCR products from the βAMO primer set. All reactions were ver-
ified by UV illumination of 1% agarose gels stained in a gel red or
ethidium bromide solution.

Polymerase chain reaction fragments were ligated into the
pGEM T-vector system (Promega Corporation, Madison, WI,
USA) and transformed into JM109 competent E. coli cells
(Promega) according to the manufacturers’ instructions. Trans-
formed colonies were screened for inserts of the correct size by
PCR. In total 90 clone libraries were created comprising 8 −32
clones each. The number of clones was based on the number
of bands detected by provisional DGGE analyses of the nested
PCR products. Representative clones of the libraries were ampli-
fied with vector primers T7 and SP6 and PCR products were
tested by standard preparative agarose gel electrophoresis. To
ensure sequence read without ambiguities, vector products were
sequenced with sufficient overlap of sequencing reads using the
T7 and SP6 vector primers (Promega). Sequencing reactions were
performed by Macrogen, Amsterdam, the Netherlands.

SEQUENCE ANALYSES
Sequences were aligned and checked for chimeras using
Sequencher 4.1 (Gene Codes Corporation, Ann Arbor, MI, USA).
The resulting contigs were visually inspected and ambiguities
manually resolved. Low quality contigs were removed from the
dataset. After removing sequences of insufficient length or qual-
ity, the remaining 844 sequences were further analyzed. The
aligned sequences were clustered in operational taxonomic units
(OTUs) with the cluster program of MOTHUR software version
1.18.1 (Schloss et al., 2009). In addition, MOTHUR was also
used for establishing rarefaction curves and group (i.e., OTU)
representatives. OTUs at the level of 97% mutual similarity in
their 16S rRNA gene sequences (418 bp) were chosen for fur-
ther analyses. Sequence identification of the OTU-representatives
was done by the BLASTN facility from the National Center for
Biotechnology Information2. The partial 16SrRNA gene sequences

2http://www.ncbi.nlm.nih.gov/
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were submitted to the GenBank database under accession numbers
JQ725556–JQ726359.

Analysis of similarity (ANOSIM) between communities of β-
AOB obtained from different impoundments, years, and man-
grove habitats was done with the PRIMER software version 5.2.9
(Primer-E, Plymouth, UK). The same software was used for non-
parametric multi-dimensional scaling of the β-AOB communities
and for linking the community distribution to the measured
environmental parameters (BIOENV).

STATISTICAL ANALYSES
The values for the PAAs obtained for the different impound-
ments, sampling years, and mangrove habitats were analyzed
with the STATISTICA software version 10 (StatSoft, Inc., Tulsa,
OK, USA). A non-parametric Spearman rank correlation analysis
between the potential ammonia oxidation activities and other soil
characteristics was performed with the same software package.

RESULTS
SOIL MOISTURE CONTENT, PORE WATER SALINITY, AND pH
Soil moisture content in the three habitats in 2010 was significantly
higher than the moisture content measured in 2009 (Figures 1A,B;
ANOVA on log-transformed data: F = 4.01, p = 0.0223). There

were no significant differences in soil moisture between 2008 and
2009 or between 2008 and 2010. There were no significant differ-
ences in soil moisture between the two impoundments but there
were significant habitat differences (ANOVA on log-transformed
data: F = 29.12,p = 0.0000); with increasing moisture in soils from
the dwarf habitat compared to soils from sparse and dense habitats,
respectively (Figure 1).

Pore water salinity differed significantly between years with
significant higher values in 2009 (Figures 1C,D; Kruskal–Wallis
non-parametric ANOVA: H = 48.7758, p = 0.0000). Pore water
salinity did not differ significantly between impoundments or the
three habitats (Figures 1C,D).

Pore water pH differed between years with significantly lower
values in 2010 after the estuarine water was pumped into
Impoundment 24 (Figures 1E,F; ANOVA: F = 10.32, p = 0.0001).
Again, there were no significant differences between impound-
ments, but pH differed across the three habitats (ANOVA on
log-transformed data: F = 29.12, p = 0.0000) with significantly
lower values in the dense mangrove habitat.

Matching the soil characteristics of the three mangrove habitat
types with the community compositions of the AOB resulted in
Spearman Rank correlations of 0.028, 0.011, and −0.034 for soil
moisture content, salinity, and pore water pH, respectively.

FIGURE 1 | Average soil moisture content (A,B), pore water salinity (C,D), and pore water pH (E,F) in the samples collected in the three habitats in

impoundments 23 (A,C,E) and 24 (B,D,F). Mangrove habitats are indicated by different colors: Blue = dwarf, red = sparse, and green = dense; SE in brackets.
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POTENTIAL AMMONIA-OXIDIZING ACTIVITIES
The activity of potential AOB declined significantly (Kruskal–
Wallis non-parametric ANOVA: H = 19.5664, p = 0.0001)
between 2008 and 2009 (Figure 2). Activity levels were lowest
in 2010 but the differences between 2009 and 2010 were not sig-
nificant. PAAs were not significantly different between impound-
ments or habitats. Testing the relationship between PAAs and the
three habitats yielded a Spearman Rank correlation of 0.108.

MICROBIAL DIVERSITY
Based on 97% mutual similarity between the 16S rRNA genes
(418 bp), the 844 qualified sequences could be classified into

13 different OTUs. Due to differences in sequence quality the
numbers of approved clones differed among impoundments, sam-
pling years, and mangrove habitats (Table 1). Accounting for 45%
of the total clones, OTU01 was the most numerous OTU and had
the highest relative numbers in Impoundment 24, the dwarf habi-
tat and in 2008 (Figures 3–5). With 23% of the total, OTU04 was
the second most numerous and had the highest relative abun-
dances in Impoundment 24 and the dense habitat. Its relative
abundances were similar in 2008 and 2010 and lower in 2009.
The third most important OTU was OTU06 with 19% of the
total clones. The relatively abundance of OTU06 was lowest in
Impoundment 23 and in 2008 and much higher in the sparse

FIGURE 2 | Average potential ammonia-oxidizing activities measured in

soil suspensions collected from three different habitats characterized by

dwarf (blue bars), sparse (red bars), or dense (green bars) Avicennia

germinans. Soils were collected in March 2008, 2009, and 2010 in
impoundments 23 and 24 in the Indian River Lagoon, Florida. SE are
presented in brackets.

Table 1 | Distribution of clones related to ammonia-oxidizing betaproteobacteria over the different operational taxonomic units (OTUs),

impoundments, sampling years, and Black mangrove habitats.

OTU Impoundment Sampling years Black mangrove habitat

23 24 2008 2009 2010 Dwarf Sparse Dense

01 136 248 173 145 66 167 89 128

02 5 12 11 3 3 7 9 1

03 44 18 6 35 21 20 33 9

04 72 121 76 41 76 25 59 109

05 2 2 3 1 0 0 2 2

06 80 77 29 71 57 12 101 44

07 1 3 2 1 1 0 2 2

08 4 2 0 4 2 3 2 1

09 8 1 0 9 0 8 0 1

10 3 2 1 4 0 3 0 2

11 1 0 0 0 1 0 0 1

12 0 1 1 0 0 0 1 0

13 0 1 0 0 1 0 0 1

Total clones 356 488 302 314 228 245 298 301

OTUs are based on 97% mutual similarity of their 16S rRNA gene (418 bp).
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FIGURE 3 | Frequency distribution of different operational taxonomic

units (OTUs) representing ammonia-oxidizing betaproteobacteria.

Soil samples had been taken in a non-flooded (number 23) and a

rotationally flooded (number 24) Black mangrove-dominated
impoundments in the Indian River Lagoon, Florida. Different colors
indicate different OTUs.

FIGURE 4 | Frequency distribution of different operational

taxonomic units (OTUs) representing ammonia-oxidizing

betaproteobacteria. Soil samples had been taken in three subsequent

years (2008–2010) in two Black mangrove-dominated impoundments in
the Indian River Lagoon, Florida. Different colors indicate different
OTUs.

habitat. The relative abundances of the other OTUs were much
lower and with the exception of OTU02 and OTU03, the minor
OTUs were often absent in replicate samples of the impoundments,
sampling years and habitats (Table 1).

With three exceptions, the OTUs were present in both
impoundments (Table 1). OTU01 contributed most (i.e., 34%
of all OTUs) to the dissimilarities between both impoundments.
OTU06 and OTU04 added 25 and 23%, respectively to these
dissimilarities, while the other OTUs were less important for
the dissimilarity between the impoundments. The major OTUs
were present in all years (Table1). Some minor OTUs were only

enumerated in one of the years. Figure 4 shows the frequency dis-
tributions of the OTUs for the three years. With 35% of the total
OTUs on average, OTU01 contributed most to the dissimilarities
between the years. In addition,OTU04 and OTU06 accounted each
for 25% on average, to the dissimilarities between the years with
OTU04 being most important for dissimilarities between 2008 and
2010 and OTU06 between 2008 and 2009 and between 2009 and
2010. The dwarf and sparse habitats did not contain unique OTUs
(Table 1). OTU01 was most abundant in the dwarf habitat samples
whereas OTU06 and OTU04 had the highest relative abundances
in the sparse and dense habitats, respectively (Figure 5). Of all
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FIGURE 5 | Frequency distribution of different operational taxonomic

units (OTUs) representing ammonia-oxidizing betaproteobacteria.

Soil samples had been taken in three different habitats (dwarf, sparse,

dense) dominated by Black mangroves (Avicennia germinans) in two
impoundments in the Indian River Lagoon, Florida. Different colors indicate
different OTUs.

OTUs, OTU01 contributed the most to differences between the
dwarf and sparse habitats and between the dwarf and dense habi-
tats (38% both). OTU06 was the second most abundant OTU that
contributed to the differences between the dwarf and sparse habi-
tats (27%) and OTU04 also contributed to differences between
the dwarf and dense habitats (29%). OTU01, OTU04, and OTU06
contributed equally to the dissimilarity between the sparse and
dense habitats (29, 30, and 26%, respectively).

Sequences of the clones being representative for the different
OTUs according to the MOTHUR analysis showed close relation-
ship with uncultured clones originating from mostly estuarine
and marine habitats (Table 2). Exceptions were the closest rela-
tive of OTU01 that were found in a saline wetland in Chile and
OTU09 and OTU10 that were encountered in nitrifying bioreac-
tors. All OTUs were similar to uncultured clones at a level of at
least 97%. The number of lineages of β-AOB to which the OTUs
belonged was rather limited. Only the lineages of Nitrosomonas
aestuarii/Nitrosomonas marina, Nitrosomonas sp. Nm143, Nitro-
somonas europaea, and Nitrosospira emerged from the search.
OTUs belonging to the N. aestuarii/N. marina lineage, further
referred as N. marina lineage, were by far the most numerous
(Table 2), followed by OTUs identified as being related to Nitro-
somonas sp. Nm143 and Nitrosospira lineages. Only 14 out of 844
sequences belonged to the two OTUs related to N. europaea and
they originated from a restricted number of soil samples in 2009
(Table 1).

DISTRIBUTION OF COMMUNITIES
Operational taxonomic units of β-AOB do not appear in single
populations but in communities usually composed of different
OTUs. In 16 of the 90 soil samples analyzed a single OTU of β-AOB
was enumerated. The number of sequences obtained from the soil
samples was variable with numbers ranging from 0 to 24, with
an average of 10. The variable number of sequences per sample

or community made it difficult to compare the community struc-
ture of the β-AOB. Hence, absolute numbers of sequences were
converted to percentages of OTUs in the different soil samples;
samples containing less than 5 sequences were arbitrarily excluded
from further analyses, as small differences in these numbers will
have a large effect on the relative distribution of OTUs.

Based on a pair-wise ANOSIM, the communities present in
Impoundment 23 were significantly different from those detected
in Impoundment 24 (Table 3), but the difference was small (R-
value close to zero). The comparison between years did not yield a
significant time effect on the distribution of β-AOB, although the
communities in 2008 were slightly different from those in 2010
(Table 3). The β-AOB community composition differed signifi-
cantly between habitats with the greatest difference between the
dwarf habitat and the other two (Table 3).

DISCUSSION
DIFFERENCES AMONG MANGROVE HABITATS
Overall, the communities of the β-AOB were significant different
between the three mangrove habitats. Hence, the hypothesis that
environmental factors that determine differences in the growth,
stature, and density of Black mangroves also affect the community
composition of the β-AOB was confirmed. Communities in the
dwarf mangrove habitat were more different from the communi-
ties in the sparse and dense mangrove habitats and the latter two
were more similar to each other. Whigham et al. (Feller et al., 2003)
showed that, although all mangrove habitats were limited by nitro-
gen availability, this limitation was most severe in the dwarf Black
mangrove habitat. The degree of nitrogen limitation was expected
to also have a selective pressure on the community composition
of the β-AOB (Bollmann et al., 2002).

Overall, the communities of the β-AOB were slightly different
in the two impoundments (Table 3), which may have been due to
differences in management (i.e., the pumping of estuarine water
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Table 2 | Operational taxonomical units (OTUs) affiliated to ammonia-oxidizing betaproteobacteria recovered from mangrove soils and their

most close relatives as retrieved from BLAST search.

OTU Most related environmental clone Most related type strain

Clone ID (GenBank accession) Similarity % Origin Reference Name Similarity %

OTU01 Clone 8-1 (EU116365.1) 99 High altitude saline

wetland in northern Chile

Dorador et al. (2008) N. aestuarii 97

OTU02 Clone A-48 (EU155069.1) 98 Prawn farm sediment Ma et al. (2008) N. aestuarii 97

OTU03 Clone B-36 (EU155078.1) 99 Prawn farm sediment Ma et al. (2008) N. aestuarii 97

OTU04 Clone B2-32 (GU988896.1) 100 Sediment of the Pearl

River Estuary, China

Jin et al. (2011) Nitrosomonas

Nm143

97

OTU05 Clone ESNM071205_78H8AOB

(FJ227881.1)

97 Estuarine sediments Bano et al. (2008) Nitrosomonas

Nm143

96

OTU06 Clone HP1 (AY186217.1) 99 Small California Estuary Caffrey et al. (2003) N. tenuis 97

OTU07 Clone CL1-2/E (DQ068703.1) 97 Ythan estuary, Scotland Freitag et al. (2006) N. aestuarii 96

OTU08 Clone Bu-A10 (AB239560.1) 97 Burrow wall of annelida Nakamura et al. (2006) N. aestuarii 96

OTU09 Clone NIT_108 (JN087936.1) 99 Nitrifying bioreactor Bae and Lee (2011) N. europaea 99

OTU10 Clone NIT-EN-18 (HQ843696.1) 98 Nitrifying bioreactor Bae and Song (2011) N. europaea 98

OTU11 Clone B2-19 (GU988887.1) 97 Sediment of the Pearl

River Estuary, China

Jin et al. (2011) Nitrosomonas

Nm143

95

OTU12 Clone Nm 1107_3 (AM295524.1) 97 Marine aquaculture biofilm Foesel et al. (2008) Nitrosomonas

Nm143

96

OTU13 Clone C24s39r (AB239748.1) 97 Sediment of wastewater

treatment plants outlet

Urakawa et al. (2006) Nitrosomonas

Nm143

96

OTUs are based on 97% mutual similarity of their 16S rRNA gene (418 bp).

Table 3 | Pair-wise similarities among communities of ammonia-

oxidizing betaproteobacteria as obtained from an analysis of

similarity (ANOSIM) between impoundments, sampling years, and

habitats of Black mangroves.

Groups Comparison R -value p-value

Impoundments #23 versus #24 0.066 0.012

Sampling years All years 0.045 0.053

2008 versus 2009 0.040 0.102

2008 versus 2010 0.061 0.042

2009 versus 2010 0.036 0.115

Mangrove habitat types All types 0.151 0.001

Dwarf versus sparse 0.261 0.002

Dwarf versus dense 0.118 0.007

Sparse versus dense 0.076 0.028

An R-value of zero means no difference between groups, whereas an R-value of

one means an absolute difference between groups.

into Impoundment 24) or to small differences in the characteris-
tics of the vegetation in the two impoundments. There were only
salt pans, i.e., habitats with no other plant species than Black man-
groves, in Impoundment 24 before the flooding of March 2009
started. In Impoundment 23 the dwarf Black mangroves were
always more intermingled with other shrub plants.

EFFECTS OF FLOODING
The hypothesis that flooding of Impoundment 24 would affect
the composition of the betaproteobacterial community was not

unequivocally confirmed. Although the communities changed sig-
nificantly between 2008 and 2010, the change between March
2009 and March 2010, a period during which estuarine water was
pumped into the impoundment for several months, was not sig-
nificant. A non-significant change in the community composition
did occur between 2008 and 2009, during which time east Florida
experienced a prolonged winter drought leading to extremely low
groundwater levels in the two impoundments (M. Rains, pers.
comm.). Despite the winter drought of 2008/2009, the soil mois-
ture content at the sampling sites was not significantly different
between March 2008 and March 2009. Soil moisture increased sig-
nificantly between 2009 and 2010 as a result of the pumping that
was initiated the exact time that we sampled the sites in 2009. At the
time of our 2009 sampling, however, the impacts of the addition of
water to Impoundment 24 had not yet resulted in a change in soil
moisture. Independent of sampling year, we found a consistent
pattern of significantly increasing soil moisture from the dwarf
habitat to the dense Black mangrove habitat with intermediate
soil moisture content in the sparse mangrove habitat.

One might be surprised that flooding had only a limited effect
on the community composition of the β-AOB. Since flooding will
limit oxygen availability in the soil, it will also repress the activity
of these obligate-aerobic bacteria. Hence, changes in community
composition under flooded, oxygen-restricted conditions can only
be due to differences in survival between the different lineages.

In addition to the change in community composition of the
β-AOB between March 2008 and 2009, the activity levels of the
potential AOB changed over the same time period from rela-
tively high to low and they remained low in 2010 (Figure 2). In a
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preliminary study, we had also measured relatively high PAAs in
soils collected from Impoundment 24. In March 2006, the aver-
age PAAs in soils from the dwarf, sparse, and dense mangrove
habitats were 15, 19, and 34 nMol ammonia h−1 g−1 dry weight,
respectively (P. Baas, unpublished results). In soils collected at
the same sites in March 2007 the average PAAs were 14, 15, and
40 nMol ammonia h−1 g−1 dry weight, respectively (H. J. Laan-
broek, unpublished results). Hence, the values measured in 2009
and 2010 in Impoundment 24 were low compared to the three
previous years; indicating that activity level and community com-
position of β-AOB were affected by winter drought in 2008/2009
and not by the altered management that started in March of 2009.
The potential activities measured in this study were in the same
range as those observed in a Rhizophora apiculata (Red mangrove)
forest in Makham Bay, Thailand, by Kristensen et al. (1998).

EFFECT OF SALINITY
Although the winter drought in 2008/2009 was not reflected in a
measurable change in the soil moisture content, pore water salinity
had increased by an average of 72% in the three habitats (range
61–90%) between March 2008 and 2009 (Figure 1). Following the
onset of pumping of estuarine water into the impoundment in
March 2009, pore water salinities decreased by an average of 43%
(range 36–49% for the three habitats) by March 2010.

The effect of salinity on the community composition of β-
AOB has been observed before, but typically in estuaries where
salt concentrations vary from freshwater values to marine salini-
ties of ∼30‰. In our study, salinities measured in the soils ranged
from 29 to 79‰). In marine-dominated estuarine systems,β-AOB
belonging to the Nitrosospira lineage (cluster 1) dominate, but also
members of the N. marina and Nitrosomonas sp. Nm143 lineages
have been identified (Francis et al., 2003; Cebron et al., 2004; Bern-
hard et al., 2005; Freitag et al., 2006; Mosier and Francis, 2008;
Sahan and Muyzer, 2008; Jin et al., 2011). Francis et al. (2003)
stated that although salinity appears to play a role, no single phys-
ical or chemical parameter entirely explains the pattern of β-AOB
diversity estuaries, suggesting that a combination of environmen-
tal factors may shape the overall level of AOB diversity in dynamic
estuarine ecosystems.

In Mono Lake, a saline (68–79‰) and alkaline (pH 9.8) lake
located just east of the Sierra Nevada range in northern Califor-
nia, Ward et al. (2000) measured a dominance of β-AOB related to
N. europaea and Nitrosomonas eutropha in 1995, whereas Carini
and Joye (2008) observed a dominance of Nitrosomonas halophila-
related AOB in 2002/2003. The differences in the composition of
β-AOB at Mono Lake were proposed to be the result of a switch
in hydrological mixing regimes resulting in reduced ammonia
availabilities.

DIFFERENTIAL DISTRIBUTION OF THE THREE DOMINANT LINEAGES OF
β-AOB
Based on their most close relatives, the major OTUs (i.e., OTU01,
OTU04, and OTU06) identified from the impoundment soils rep-
resented the lineages N. marina, Nitrosomonas sp. Nm143, and
Nitrosospira cluster 1, respectively (Table 2). OTU01 consisting
of N. marine-related clones was relatively abundant in Impound-
ment 24, in 2008, especially in the dwarf habitat (Figures 3–5).

Prior to the pumping of water, the dwarf habitats in Impound-
ment 24 had the appearance of salt pans with no mangroves
or scattered dwarf black mangroves in their center and high
interstitial salt concentrations (Figure 1D). Subsequent to the
initiation of flooding in Impoundment 24, the habitat was col-
onized by Salicornia spp. and interstitial salinities decreased. Also
prior to the flooding of the impoundment, interstitial salinities
were very high in all habitats, but especially in the salt pans,
due to the regional drought that occurred in 2009 (Figure 1).
The increase in interstitial salt concentrations in 2009 was cou-
pled to an increase in relative numbers of OTU03 (Figure 4),
which is also related to the N. marina lineage. The presence of
the two related OTUs in the habitats with high interstitial salini-
ties demonstrates that this lineage is more adapted to hypersaline
concentrations.

OTU04 was comprised of Nitrosomonas sp. Nm143-related
clones and it had a higher relative abundance in all habitats in
2010 and in the dense habitat in all 3 years that the soils were
sampled (Figures 4 and 5). Soil moisture was highest in 2010
compared to 2008 and 2009 and it was also highest in the dense
habitat in all 3 years (Figure 1). Therefore, it seems that mem-
bers of this lineage are more adapted to higher moisture contents,
which could be translated to limited oxygen availability, but also
to changed accessibility of redox-sensitive nutrients such as iron
and phosphate.

OTU06 consisting of Nitrosospira cluster one-related clones
was relatively abundant in the sparse habitat. We were unable to
identify a single soil factor or group of factors that were associated
with OTU06. From an earlier study on the distribution of β-AOB
in a tidal freshwater wetland (Laanbroek and Speksnijder, 2008),
however, it was concluded that Nitrosospira lineages were better
survivors under nutrient-limited conditions. Previous research at
the current study sites has demonstrated the importance of nitro-
gen limitation on the growth form of black mangroves (Whigham
et al., 2009). Nitrogen limitation is important in all three habi-
tats but it may be the factor that is specifically associated with
Nitrosospira cluster 1 in the sparse habitat.

BETAPROTEOBACTERIA AND OTHER AMMONIA-OXIDIZING MICROBES
A goal of our study was to determine if changes in impoundment
management would alter the distribution of members of the β-
AOB. Studies related to numbers and diversity of aerobic nitrifying
microorganisms in mangroves are limited. Archaeal and bacterial
amoA genes were found in rehabilitated and pristine mangrove
forests dominated by Gray (Avicennia marina) and White (A.
alba) mangroves in the vicinity of Bangkok, Thailand (Wickra-
masinghe et al., 2009). Most AOB related sequences belonged to
the lineages N. aestuarii/N. marina and Nitrosospira. No members
of the ammonia-oxidizing gammaproteobacteria were detected.
The numbers of bacterial amoA genes in a Kandelia obovata-
dominated mangrove forest in the New Territories of Hong Kong,
outnumbered those of archaeal amoA genes by a factor of 5–
12 (Li et al., 2011). The distance between individual mangrove
trees had a significant effect on the community composition of
the ammonia-oxidizing community of betaproteobacteria. The
communities of β-AOB were grouped by the distance to the
mangroves, whereas those of the archaeal amoA genes clustered

www.frontiersin.org April 2012 | Volume 3 | Article 153 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Laanbroek et al. Ammonia-oxidizing betaproteobacteria in mangrove stands

into surface and deeper sediment groups. Most of the bacterial
amoA clones identified from the mangrove forest soils belonged
to clusters mostly related to the N. marina lineage. In a parallel
analysis on the presence and diversity amoA genes of ammonia-
oxidizing archaea and bacteria in polluted mangrove sediments in
the Mai Po Nature Reserve of Hong Kong, the dominance of the
N. marina/N. oligotropha was confirmed (Cao et al., 2011a). No
Nitrosospira-related amoA genes were detected. However, when
applying the 16S rRNA gene, Co and co-workers detected two
clusters of Nitrosospira-related sequences. The β-AOB outnum-
bered the AOA with 3–6 in the polluted mangrove sediments (Cao
et al., 2011a).

Meyer and colleagues (Meyer et al., 2005) reported for the
first time on the presence of Planctomycetes in mangrove soils.
These microorganisms are capable of oxidizing ammonia under
anoxic conditions (i.e., Anammox bacteria). Wickramasinghe
et al. (2009) observed different phylotypes of ammonia-oxidizing
Planctomycetes in rehabilitated mangrove forests in Thailand. The
Anammox bacteria were related to Candidatus Scalindua brodae
and Candidatus Scalindua wagneri. Again, no members of the
ammonia-oxidizing gammaproteobacteria had been detected. In
a study on the presence of Anammox bacteria in a mangrove for-
est soil near a shrimp pond in Haiphong, Vietnam, Amano et al.
(2011)) observed mixed communities of Anammox bacteria dom-
inate by phylotypes associated with Candidatus Scalindua sorokinii
and Candidatus Scalindua wagneri. In the mangrove forest soils,
they observed smaller numbers of sequences belonging to Candi-
datus Kuenenia stuttgartiensis, the phylotypes that dominated the
sediment of the shrimp pond.

CONCLUSION
In this study we observed a limited diversity among the lineages
of ammonia-oxidizing betaproteobacteria in the three habitats.
Although the lineages were not equally distributed among the
different habitats, we were unable to identify critical soil factors

that may have been responsible for the differences. However, as
the distribution of the β-AOB lineages seems to parallel the differ-
ences in plant size and density in the three habitats, focusing future
efforts on revealing the factors responsible for differences in the
mangroves should also provide insight in to the factors responsible
for differences in the microbial communities. Based on previous
studies on nutrient limitations in mangroves, potential governing
factors that should be examined are nutrient (i.e., ammonium)
availability, salinity, frequency of tidal inundation, degree of soil
anoxia, and pH. Such studies could well be done in microcosms
containing natural mangrove soils as we have applied in a study
on the effect of marine and estuarine water on the community
composition of β-AOB present in a tidal freshwater wetland (Coci
et al., 2005).

One might wonder whether the dynamics in environmental
parameters are immediately reflected in changes in microbial com-
munity compositions that are based on DNA analyses. Inactive
cells remain present in the soil when conditions change. Analysis
at the RNA level would likely have given a more actual representa-
tion of the presence of active β-AOB and hence a better correlation
with changing environmental conditions.

ACKNOWLEDGMENTS
We like to thank Dr. Mark Rains of the University of South Florida
for the information related to the hydrology of the impounded
mangrove forest in the Avalon State Park at North Hutchinson
Island, St. Lucie County, FL, USA. We also want to acknowledge the
help we obtained from Dr. Valery Paul, Woody Lee, and staff of the
Smithsonian Marine Station at Fort Pierce. The research was sup-
ported by a grant of the Smithsonian Marine Science Network and
by resources of the Smithsonian Environmental Research Center,
Utrecht University, and the Netherlands Institute of Ecology. This
is publication number 5252 of the Netherlands Institute of Ecology
(NIOO-KNAW) and publication number 879 of the Smithsonian
Marine Station.

REFERENCES
Alongi, D. M. (2008). Mangrove forests:

resilience, protection from tsunamis,
and responses to global climate
change. Estuar. Coast. Shelf Sci. 76,
1–13.

Amano, T., Yoshinaga, I., Yamagishi, T.,
Chu,V. T.,Pham,T. T.,Ueda,S.,Kato,
K., Sako, Y., and Suwa, Y. (2011).
Contribution of anammox bacte-
ria to benthic nitrogen cycling in a
Mangrove forest and shrimp ponds,
Haiphong, Vietnam. Microbes Envi-
ron. 26, 1–6.

Bae, H., and Lee, S. (2011). Failure
of SHARON Process under Organic
Carbon Limitation and NaOH Addi-
tion. GenBank.

Bae, H., and Song, J. (2011).
Microbial Community Struc-
ture in Nitrifying Bioreactor.
GenBank.

Bano, N., Smith, A. D., Caffrey, J. M.,
and Hollibaugh, J. T. (2008). Diver-
sity of Ammonia-oxidizing Archaea

and Bacteria in Estuarine Sediments.
GenBank.

Belser, L. W., and Mays, E. L. (1980).
Specific-inhibition of nitrite oxida-
tion by chlorate and its use in assess-
ing nitrification in soils and sedi-
ments. Appl. Environ. Microbiol. 39,
505–510.

Bernhard, A. E., Donn, T., Giblin,
A. E., and Stahl, D. A. (2005).
Loss of diversity of ammonia-
oxidizing bacteria correlates with
increasing salinity in an estu-
ary system. Environ. Microbiol. 7,
1289–1297.

Bollmann, A., Bar-Gilissen, M. J., and
Laanbroek, H. J. (2002). Growth
at low ammonium concentrations
and starvation response as potential
factors involved in niche differen-
tiation among ammonia-oxidizing
bacteria. Appl. Environ. Microbiol.
68, 4751–4757.

Brockmeyer, R. E., Rey, J. R., Virn-
stein, R. W., Gilmore, R. G.,

and Earnest, L. (1997). Rehabilita-
tion of impounded estuarine wet-
lands by hydrologic reconnection to
the Indian River Lagoon, Florida
(USA). Wetlands Ecol. Manage. 4,
93–109.

Caffrey, J. M., Harrington, N., Solem,
I., and Ward, B. B. (2003). Bio-
geochemical processes in a small
California estuary. 2. Nitrifica-
tion activity, community struc-
ture and role in nitrogen bud-
gets. Mar. Ecol. Prog. Ser. 248,
27–40.

Cao, H. L., Li, M., Dang, H. Y., and Gu, J.
D. (2011a). Responses of aerobic and
anaerobic ammonia/ammonium-
oxidizing microorganisms to
anthropogenic pollution in
coastal marine environments.
Methods Enzymol. 46(Pt B),
35–62.

Cao, H. L., Li, M., Hong,Y. G., and Gu, J.
D. (2011b). Diversity and abundance
of ammonia-oxidizing archaea and

bacteria in polluted mangrove sed-
iment. Syst. Appl. Microbiol. 34,
513–523.

Carini, S. A., and Joye, S. B. (2008).
Nitrification in Mono Lake, Califor-
nia: activity and community compo-
sition during contrasting hydrolog-
ical regimes. Limnol. Oceanogr. 53,
2546–2557.

Cebron, A., Coci, M., Garnier, J., and
Laanbroek, H. J. (2004). Denatur-
ing gradient gel electrophoretic
analysis of ammonia-oxidizing
bacterial community structure
in the lower Seine River: impact
of Paris wastewater effluents.
Appl. Environ. Microbiol. 70,
6726–6737.

Coci, M., Riechmann, D., Bodelier, P. L.
E., Stefani, S., Zwart, G., and Laan-
broek, H. J. (2005). Effect of salin-
ity on temporal and spatial dynam-
ics of ammonia-oxidising bacteria
from intertidal freshwater sediment.
FEMS Microbiol. Ecol. 53, 359–368.

Frontiers in Microbiology | Terrestrial Microbiology April 2012 | Volume 3 | Article 153 | 10

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Laanbroek et al. Ammonia-oxidizing betaproteobacteria in mangrove stands

Dorador, C., Busekow, A., Vila, I.,
Imhoff, J. F., and Witzel, K. P. (2008).
Molecular analysis of enrichment
cultures of ammonia oxidizers from
the Salar de Huasco, a high altitude
saline wetland in northern Chile.
Extremophiles 12, 405–414.

Feller, I. C., Whigham, D. F., Mckee, K.
L., and Lovelock, C. E. (2003). Nitro-
gen limitation of growth and nutri-
ent dynamics in a disturbed man-
grove forest, Indian River Lagoon,
Florida. Oecologia 134, 405–414.

Foesel, B. U., Gieseke, A., Schwer-
mer, C., Stief, P., Koch, L., Cytryn,
E., De La Torre, J. R., Van Rijn,
J., Minz, D., Drake, H. L., and
Schramm, A. (2008). Nitrosomonas
Nm143-like ammonia oxidizers and
Nitrospira marina-like nitrite oxi-
dizers dominate the nitrifier com-
munity in a marine aquaculture
biofilm. FEMS Microbiol. Ecol. 63,
192–204.

Francis, C. A., O’Mullan, G. D., and
Ward, B. B. (2003). Diversity of
ammonia monooxygenase (amoA)
genes across environmental gradi-
ents in Chesapeake Bay sediments.
Geobiology 1, 129–140.

Freitag, T. E., Chang, L., and Prosser,
J. I. (2006). Changes in the
community structure and activ-
ity of betaproteobacterial ammonia-
oxidizing sediment bacteria along
a freshwater-marine gradient. Env-
iron. Microbiol. 8, 684–696.

Jin, T., Zhang, T., Ye, L., Lee, O. O.,
Wong, Y. H., and Qian, P. Y. (2011).
Diversity and quantity of ammonia-
oxidizing Archaea and Bacteria in
sediment of the Pearl River Estuary,
China. Appl. Microbiol. Biotechnol.
90, 1137–1145.

Kowalchuk, G. A., and Stephen, J. R.
(2001). Ammonia-oxidizing bacte-
ria: a model for molecular micro-
bial ecology. Annu. Rev. Microbiol.
55, 485–529.

Kowalchuk, G. A., Stephen, J. R., De
Boer, W., Prosser, J. I., Embley, T.
M., and Woldendorp, J. W. (1997).
Analysis of ammonia-oxidizing bac-
teria of the beta subdivision of the
class proteobacteria in coastal sand
dunes by denaturing gradient gel
electrophoresis and sequencing of
PCR-amplified 16s ribosomal DNA

fragments. Appl. Environ. Microbiol.
63, 1489–1497.

Kristensen, E., Jensen, M. H., Banta,
G. T., Hansen, K., Holmer, M.,
and King, G. M. (1998). Transfor-
mation and transport of inorganic
nitrogen in sediments of a south-
east asian mangrove forest. Aquat.
Microb. Ecol. 15, 165–175.

Laanbroek, H. J., and Speksnijder, A.
G. C. L. (2008). Niche separation of
ammonia-oxidizing bacteria across
a tidal freshwater marsh. Environ.
Microbiol. 10, 3017–3025.

Li, M., Cao, H. L., Hong, Y. G., and Gu,
J. D. (2011). Spatial distribution and
abundances of ammonia-oxidizing
archaea (AOA) and ammonia-
oxidizing bacteria (AOB) in man-
grove sediments. Appl. Microbiol.
Biotechnol. 89, 1243–1254.

Lovelock, C. E., and Feller, I. C.
(2003). Photosynthetic performance
and resource utilization of two man-
grove species coexisting in a hyper-
saline scrub forest. Oecologia 134,
455–462.

Ma, Y., Wang, L., and Qian, L. M.
(2008). Community structure of
beta-proteobacterial ammonia-
oxidizing bacteria in prawn farm
sediment. Prog. Nat. Sci. 18,
679–684.

McCaig, A. E., Embley, T. M., and
Prosser, J. I. (1994). Molecular analy-
sis of enrichment cultures of marine
ammonia oxidisers. FEMS Micro-
biol. Lett. 120, 363–367.

Meyer, R. L., Risgaard-Petersen, N.,
and Allen, D. E. (2005). Correla-
tion between anammox activity and
microscale distribution of nitrite
in a subtropical mangrove sedi-
ment. Appl. Environ. Microbiol. 71,
6142–6149.

Mosier, A. C., and Francis, C. A. (2008).
Relative abundance and diversity
of ammonia-oxidizing archaea and
bacteria in the San Francisco Bay
estuary. Environ. Microbiol. 10,
3002–3016.

Nakamura, Y., Satoh, H., Kindaichi, T.,
and Okabe, S. (2006). Community
structure, abundance, and in situ
activity of nitrifying bacteria in
river sediments as determined by
the combined use of molecular
techniques and microelectrodes.

Environ. Sci. Technol. 40,
1532–1539.

Rey, J., and Kain, T. (1991). A Guide
to the Salt Marsh Impoundments of
Florida.Vero Beach,FL: University of
Florida, Florida Medical Entomol-
ogy Laboratory.

Sahan, E., and Muyzer, G. (2008). Diver-
sity and spatio-temporal distribu-
tion of ammonia-oxidizing archaea
and bacteria in sediments of the
Westerschelde estuary. FEMS Micro-
biol. Ecol. 64, 175–186.

Schleper, C., and Nicol, G. W. (2010).
“Ammonia-oxidising archaea –
physiology, ecology and evolution,”
in Advances in Microbial Physiology,
Vol. 57, ed. Robert K. Poole (Oxford:
Academic Press), 1–41.

Schloss, P. D., Westcott, S. L., Ryabin, T.,
Hall, J. R., Hartmann, M., Hollister,
E. B., Lesniewski, R. A., Oakley, B. B.,
Parks, D. H., Robinson, C. J., Sahl, J.
W., Stres, B., Thallinger, G. G., Van
Horn, D. J., and Weber, C. F. (2009).
Introducing mothur: open-source,
platform-independent, community-
supported software for describing
and comparing microbial commu-
nities. Appl. Environ. Microbiol. 75,
7537–7541.

Stringer, C. E. (2010). Hydrologic Con-
trols on Salinity in Mangroves and
Lagoons. Doctor of Philosophy, Uni-
versity of South Florida, Tampa.

Stringer, C. E., Rains, M. C., Kruse,
S., and Whigham, D. (2010). Con-
trols on water levels and salinity in
a Barrier Island Mangrove, Indian
River Lagoon, Florida. Wetlands 30,
725–734.

Urakawa, H., Maki, H., Kawabata, S.,
Fujiwara, T., Ando, H., Kawai, T.,
Hiwatari, T., Kohata, K., and Watan-
abe, M. (2006). Abundance and
population structure of ammonia-
oxidizing bacteria that inhabit canal
sediments receiving effluents from
municipal wastewater treatment
plants. Appl. Environ. Microbiol. 72,
6845–6850.

Verhagen, F. J. M., and Laanbroek,
H. J. (1991). Competition for
ammonium between nitrifying
and heterotrophic bacteria in
dual energy-limited chemostats.
Appl. Environ. Microbiol. 57,
3255–3263.

Ward, B. B., Martino, D. P., Diaz, M.
C., and Joye, S. B. (2000). Analy-
sis of ammonia-oxidizing bacteria
from hypersaline Mono Lake, Cal-
ifornia, on the basis of 16S rRNA
sequences. Appl. Environ. Microbiol.
66, 2873–2881.

Whigham, D. F., Verhoeven, J. T. A.,
Samarkin, V., and Megonigal, P.
J. (2009). Responses of Avicen-
nia germinans (Black Mangrove)
and the soil microbial community
to nitrogen addition in a hyper-
saline wetland. Estuaries Coast 32,
926–936.

Wickramasinghe, S., Borin, M.,
Kotagama, S. W., Cochard, R.,
Anceno, A. J., and Shipin, O. V.
(2009). Multi-functional pollution
mitigation in a rehabilitated man-
grove conservation area. Ecol. Eng.
35, 898–907.

Zhou, J. Z., Bruns, M. A., and
Tiedje, J. M. (1996). DNA recov-
ery from soils of diverse composi-
tion. Appl. Environ. Microbiol. 62,
316–322.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 21 November 2011; accepted:
02 April 2012; published online: 23 April
2012.
Citation: Laanbroek HJ, Keijzer RM,
Verhoeven JTA and Whigham DF
(2012) The distribution of ammonia-
oxidizing betaproteobacteria in stands
of Black mangroves (Avicennia ger-
minans). Front. Microbio. 3:153. doi:
10.3389/fmicb.2012.00153
This article was submitted to Frontiers
in Terrestrial Microbiology, a specialty of
Frontiers in Microbiology.
Copyright © 2012 Laanbroek, Keijzer ,
Verhoeven and Whigham. This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

www.frontiersin.org April 2012 | Volume 3 | Article 153 | 11

http://dx.doi.org/10.3389/fmicb.2012.00153
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive

	The distribution of ammonia-oxidizing betaproteobacteria in stands of Black mangroves (Avicennia germinans)
	Introduction
	Materials and Methods
	Study locations
	Soil collections
	Determination of potential ammonia-oxidizing activities
	DNA isolation
	PCR and construction of clone libraries
	Sequence analyses
	Statistical analyses

	Results
	Soil moisture content, pore water salinity, and pH
	Potential ammonia-oxidizing activities
	Microbial diversity
	Distribution of communities

	Discussion
	Differences among mangrove habitats
	Effects of flooding
	Effect of salinity
	Differential distribution of the three dominant lineages of β-AOB
	Betaproteobacteria and other ammonia-oxidizing microbes

	Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


