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Job Order Assignment at Optimal Costs in Railway Maintenance

Keywords: Railway Maintenance Planning, Job Order Scheduling, Operations Research

Abstract: Tamping is an important part of railway maintenance. Well tamped ballast reduces track irregularities and
increases travel safety and comfort. But if the ballast is in a bad condition, the train speed must be restricted,
which leads to delays and penalty costs for the operator. In this paper a novel model for the tamping scheduling
problem in a short-term planning horizon is presented. In contrast to other railway maintenance scheduling
problems the penalty costs caused by deferring tamping activities are considered in the scheduling process
beside the travel costs. Three greedy heuristics are presented and compared in different benchmarks. An
outlook discusses issues of interest for further research.

1 Introduction

Tamping is an important part of railway maintenance.
Well tamped ballast reduces track irregularities and
increases travel safety and comfort. But if the bal-
last is in a bad condition, the train speed must be re-
stricted, which leads to delays and penalty costs for
the operator. By scheduling the tamping works these
penalty costs should be minimised together with in-
curred travel costs.

Within the ACEM-Rail project of the Europeans
Seventh Framework Programme a novel solution ap-
proach for the tamping scheduling problem will be
developed. In this paper the model is presented, first
solution approaches are shown and a look out of the
further research is given.

There are different papers dealing with railway main-
tenance scheduling.

(Higgins and Ferreira, 1999) develops an integer
programming model to reduce train delays caused by
maintenance activities. The problem is solved with a
Tabu-Search heuristic.

Budai develops solution approaches for the pre-
ventive maintenance scheduling problem (PMSP)
(Budai et al., 2004; Budai et al., 2009). Aim of the
PMSP is to minimize track possession costs caused
by scheduled routine activities and projects. For this
purpose they combine as much tasks as possible. The
problem is formulated as integer programming model
and solved with heuristics and evolutionary computa-
tion approaches.

In (Miwa, 2002; Oyama and Miwa, 2006) an in-
teger programming model for optimally scheduling
a multiple tie tamper is shown. The objective is to
maximize the improvement of track condition under
bounded maintenance costs. The resulting schedule

defines for each 10 day term where to locate the tam-
per and which lots to be maintained.

(Gorman and Kanet, 2010; Peng et al., 2011)
present a time-space network to schedule larger
projects to maintenance crews and execution weeks.
They consider the specification of the crews (not ev-
ery crew could execute all tasks), time windows (ear-
liest start and latest resolving time of a project), travel
costs, and cross-job constraints (precedence, non-
concurrent, simultaneity).

An integer programming model to minimize the
tamping effort is presented by (Vale et al., 2012). The
optimal time-allocation to 90 day terms is searched,
such that the track quality keeps a given level. They
take into account four aspects of tamping: the time
dependent deterioration process, the track layout, the
imperfect track quality after maintenance and the
track quality limits that depend on the maximal per-
missible train speed.

In (Quiroga and Schnieder, 2010) a heuristic ap-
proach for the tamping scheduling problem is pre-
sented. Aim is to find a set of N interventions, one
per night, which maximise a defined objective func-
tion, e.g. the expected track condition one year later.
An intervention is defined by a start depot, the tamp-
ing works, and an end depot.

The model presented here is different. On the one
hand the planning horizon is short-termed – a few
weeks or months – and the schedule defines explicitly
the execution times of small tamping works. On the
other hand so-called daily costs – penalty costs for re-
strictions in railway services caused by the untamped
track – are considered in the decision process and will
be minimised together with the costs for traveling be-
tween the tamping works.

The paper is organised as follows: In section 2
the short-term tamping scheduling problem is defined.



Three Greedy Heuristics are presented and compared
in section 3. Issues of interest for further research
– extensions of the model and concepts for general
solution approaches – are presented in section 4.

2 Problem Formulation

The short-term tamping scheduling problem is de-
fined as follows. Given a set of jobs that are defined
by
• working duration
• daily costs
• location in the network.

There is a single tamping machine operating at the
network and resolving jobs one after the other. The
jobs are executed during the night in an eight hour
working shift.

For each job the execution time has to be assigned
in order to minimize maintenance costs. At the time
at which the plan is calculated the tamping machine
is located in section A and when all jobs are resolved,
the machine will be parked at section B (the depot).

Each job refers to a small section of the track with
a short working duration (about half an hour) such
that the planning flexibility is high, but the number of
jobs is not too large.

The daily costs are caused by traffic restrictions
(like speed limitations) resulting from a bad track con-
dition. They have to be paid for every day from the
beginning until the job is resolved. If the track con-
dition is still acceptable, the daily costs of the corre-
sponding job are zero. Because of the short planning
horizon (a few weeks or months) the time-dependence
of track condition and thus the time-dependence of
the daily costs is not considered.

The costs and time for traveling between jobs are
calculated based on the locations in the network. The
travel times contain 15 minutes for changeover be-
tween travel and working mode. Between jobs of con-
secutive track sections the time and costs for travel-
ling are zero. In practice they are executed within one
larger working step and without traveling. If the work
will be continued in the next night at the same location
the machine stays nearby over day. Thus no costs and
time for travelling to a machine depot are incurred.
If the work starts next night on another location the
machine travels over day to the new location.

The material costs, machine rent and the em-
ployee’s wages are not included in the model, because
they are fixed and must be paid no matter if the job
is executed today or in a week. Thus only the travel
costs and the daily costs must be considered in an ob-
jective function.

The problem could be described as an integer pro-
gramming model. Given a set of jobs J, |J| = n. Let
for each job j ∈ J
• d( j) the working duration
• cd( j) the daily costs
• ct( j,k) the travel costs between the jobs j,k ∈ J
• tt( j,k) the travel time between the jobs j,k ∈ J

Aim of the optimisation is to assign an execution time
te( j), such that the maintenance costs are minimal.

For the start point A and the end point B two ar-
tificial jobs jA and jB, are defined and JAB := J ∪
{ jA, jB}. For both working suration and daily costs
are zero. The travel costs and time are calculated from
the locations in the network.

The execution time te = (te1 , te2) consists of two
components: the execution day te1 ≥ 1 and the ex-
ecution minute te2 ∈ [T1,T2]. The execution minute
is restricted by the working shift, that starts at
T1 =̂ 10:00 p.m. and ends at T2 =̂ 6:00 a.m. For jA
the execution time is set to te( jA) = tstart , which is the
time at which the plan is calculated.
The problem can be formulated as follows:

minz = ∑
j∈JAB

∑
k∈JAB

ct( j,k) · x( j,k)

+ ∑
j∈JAB

te1( j) · cd( j)
(1)

with

te( jA) = tstart

te( jB) = (∞,0)
(2)

x( j,k) =
{

1 , if @l ∈ JAB : te( j) < te(l) < te(k)

0 , else
(3)

subject to

te(k)≥ te( j)+d( j)+ tt( j,k)
∀ j,k ∈ JAB : x( j,k) = 1

(4)

te1( j)≥ 1
te2( j)≥ T1

te2( j)+d( j)≤ T2

 ∀ j ∈ J (5)

With the objective function (1) the maintenance costs,
i.e. the sum of the costs for traveling between the jobs
and the daily costs, are minimised.
The maintenance machine starts at tstart in track sec-
tion A and will be parked at track section B, when all
jobs are resolved. The execution times of the respec-
tive jobs jA and jB are defined in equation (2). Binary
variables x( j,k) state whether two jobs are resolved
directly one after the other and thus if travel costs oc-
cur or not (see (3)). A distinction whether two jobs are



on consecutive track sections is not necessary because
the travel time and travel costs between jobs of con-
secutive track sections are zero. By constraint (4) and
(5) it is ensured that the scheduled execution times are
feasible.

The problem can be reduced to a job order
assignment problem. Instead of determining the
explicit execution time for each job, the order
JO = ( j1, j2, ..., jn) to resolve the jobs ji ∈ J has to be
specified. Then for the order ( jA, j1, j2, ..., jn, jB) the
minimal feasible execution times are calculated based
on the equations (2)–(5).

The tamping scheduling problem is similar to the trav-
elling salesman problem. Instead of visiting cities
jobs are resolved. The main difference is the objective
function. Not only the costs for travelling between the
jobs are minimised, but also the daily costs, that de-
pends on the execution day, have an influence on the
solution quality.

Also, the problem shows resemblance to the rural
postmen problem (a variant of the Chinese postmen
problem). There a shortest closed path is searched in
a graph that pass through an edge subset. The graph is
given by the track network and the edges are the track
sections with a job. Again, the objective function dif-
fers because of the daily costs.

Both problems are NP-hard, thus the tamping
scheduling problem is NP-hard, too.

3 Greedy Heuristics

Dependent on the ratio between daily and travel costs
different solution approaches are reasonable. For ex-
ample, if the daily costs of all jobs are zero or very
small, a heuristic that minimises travel costs leads
to good results. Contrariwise, if the travel costs are
much lower than the daily costs it is important to pre-
fer jobs with high daily costs, even if this causes de-
tours. Three different greedy heuristics are presented,
which show good results in different benchmarks.

All greedy heuristics follows the same procedure, see
algorithm 1.
Starting with an arbitrary job k ∈ J the job order
JO(k) = (k) is built up step-by-step: A job j ∈ J that
is not contained in the job order so far is selected by a
heuristic-specific selection criterion and added to the
end of JO(k). This step is repeated until all jobs are
contained of the job order. Then jA and jB are added
to complete the order, the execution times are deter-
mined based on the equations (2)–(5), and the costs of
the job order are calculated.

Algorithm 1:
General Greedy Heuristic procedure

J∗O := ()
z∗ := ∞

for k ∈ J do
JO(k) := (k)
repeat

select j ∈ J \ JO(k)
append j at the end of JO(k)

until J \ JO(k) == /0

determine execution times
calculate maintenance costs z(JO(k))
if z(JO(k)) < z∗ then

z∗ := z(JO(k))
J∗O := JO(k)

end
end
return J∗O

To improve the solution quality a job order JO(k)
is generated for each job k ∈ J and the best of these
job orders is selected.

In the following the three selection criterions are
presented. In section 3.4 a comparison of the three
heuristics is made.

3.1 Nearest Job

At each step of algorithm 1 the nearest uncontained
job, thus the one with the lowest travel costs to the
last job in the order, is selected and added. If there
are two or more jobs with the same distance, then the
job with the highest daily costs is chosen.

With the Nearest Job Greedy Heuristic the travel
costs are kept small, but the daily costs play a minor
role in the decision process.

3.2 Most Expensive Job

At each step of algorithm 1 the most expensive job
is selected and added to the job order. If there is
more than one job with the same costs, the nearest
of them is selected. In our model it is assumed that
the daily costs of consecutive track sections typically
fluctuate. Then these selection criterion leads to high
fragmented solutions. Often the machine travels to re-
solve only a single job, and then travels to a different
track section for the next job. To avoid such a frag-
mentation of the job order, direct neighboured jobs
are preferred. That means if there is a job that could
be reached without traveling and has daily costs in the
same cost range as the most expensive one, this job is
added instead of the most expensive job.



Figure 1: Results of the three greedy heuristics in six bench-
marks.

The Most Expensive Job Greedy Heuristic usually
results in a job order where the jobs with non-zero
daily costs are always added first. The jobs with-
out daily costs are added similar to the Nearest Job
Greedy Heuristic.

3.3 Cost Balanced

Here, both costs are considered by defining a com-
bined cost measure. With this the travel costs and a
very rough estimation for the savings in daily costs
are summed. For each job that is not contained in the
job order the cost measure is calculated by

mc( j) = ct( jl , j)−α · cd( j)

with α = 1
2 ·

# unresolved jobs
# jobs resolved per day

(6)

where jl is the last job in the current order and α is
an estimation on the number of days the job will stay
unresolved until now. If one of the direct neighboured
jobs has daily costs in the same cost range as jl , this
job is chosen. Again, this avoids a fragmentation of
the solution like in the Most Expensive Job Greedy
Heuristic. Otherwise the job with the minimal cost
measure mc is selected.

With the Cost Balanced Greedy Heuristic both
kinds of costs are considered in the decision process.

3.4 Comparison

The three greedy heuristics are tested in different
benchmarks. In figure 1 the results of the heuristics
are compared in six benchmarks (I–VI). All bench-
marks are built up of 1415 jobs on a network with
more than 1400 km of track. 353 of them are af-
flicted with daily costs ranging from 45,000e per day
(benchmark I) up to 470,000e in benchmark VI. The
jobs with non-zero daily costs are located in the cen-
tre of the track network. The travel costs are 1000e

per kilometre. To resolve all jobs at least 184,500e
have to be paid for travelling.

In the bar graphs the travel costs (lower part) and
the daily costs (upper part) are stacked. The left bar
shows the results of the Nearest Job Greedy Heuristic
(short NJ), in the middle bar the results of the Most
Expensive Job Greedy Heuristic (MEJ) are plotted,
and the right bars represents the results of the Cost
Balanced Greedy Heuristic (CB).

Due to the fact that the benchmarks only differ in
the daily costs, NJ always generates the same solu-
tion for a certain first job k ∈ J. In each benchmark
the same job order J∗O is selected and thus always the
same travel costs occur. Only the daily costs differ
due to the different daily costs in the benchmarks.

Benchmark I – III and V are very similar: in
benchmark II the daily costs of benchmark I are dou-
bled, in benchmark III they are fourfold and in bench-
mark V the costs are eightfold.
In benchmark I and II the share of the daily costs is
low. NJ starts with the most expensive track sections
and resolves the other jobs without much traveling.
This leads to a plan with low travel and daily costs.
The heuristic CB leads to a solution with higher daily
and higher travel costs than NJ. One reason is that
the daily costs are underestimated and that the jobs
with non-zero daily costs are resolved as long as the
detour is short. So the travel costs are higher as with
NJ and there are no savings in daily costs. By MEJ the
jobs afflicted with daily costs are resolved first. This
leads to long detours and to an increase in travel costs,
which cannot be compensated by the savings in daily
costs.
In benchmark III NJ obtains the same plan as in
benchmark I and II, but the daily costs are much
higher, so the expensive jobs should be preferred.
Also with CB the daily costs are underestimated and
thus they have a high share in the costs of the job or-
der. By MEJ the most expensive jobs are resolved first
with long detours, but this time this can be is compen-
sated by the savings in daily costs.
In benchmark V the daily costs have a huge share in
the overall costs. The cost measure of jobs with non-
zero daily costs is low and these jobs will be resolved
first. Because of the consideration of travel costs in
the decision process CB leads to better results than
MEJ. The detours are shorter, but the jobs afflicted
with daily costs are nevertheless resolved first.

In the benchmark IV and VI the daily costs differ
even more. There are 115 jobs with high daily costs
in the centre of the network on a line. The other jobs
have only small daily costs and are located around.
Resolving the jobs with small daily costs first leads
to long detours, which could be compensated by the



savings in daily costs only in benchmark VI. In bench-
mark IV the small daily costs are low enough, so that
long detours to resolve them are not necessary. There-
with CB obtains the best result.

The heuristics have also been tested in further bench-
marks, with different jobs on the network and differ-
ent assignments of daily costs to jobs. We noticed
that it is hard to predict which heuristic obtains the
best result. But some statements are possible:
• If the daily costs have a small share in the mainte-

nance costs, then NJ and CB obtains good results,
because they minimise the travel costs.

• If the daily costs are high and scattered over the
track network, then CB obtains the best results.
MEJ resolves the expensive jobs more ordered by
daily costs and thus travels crisscross through the
network, where CB resolves the expensive jobs
first, too, but ordered by location. The resulting
savings in travel costs compensate the small in-
crement in daily costs.

• If the daily costs are medium or high and clus-
tered, then MEJ obtains good results, because of
the lower travel effort. Within CB the daily costs
often are underestimated in this type of bench-
marks, which leads to worse results.

4 Issues of Interest for Further
Research

The model presented in section 2 will be extended by
some additional points, see section 4.1.

In the further research solution approaches will
be developed that are suitable for arbitrary ratios be-
tween daily and travel costs, and that can handle the
additional restrictions from the model extension. The
metaheuristic Simulated Annealing (section 4.2) and
a multilevel solution approach (section 4.3) will be
implemented and compared in terms of solution qual-
ity and computation time in different benchmarks.

4.1 Model extension

(1) K machines are available to resolve the jobs. So
K disjunctive job orders have to be defined and non-
simultaneous restrictions must be considered (e.g. a
minimal distance must be kept between two tamping
machines).
(2) Maintenance is not always possible. Due to night
trains, freight traffic, and other maintenance activities
the possible execution times of a certain job will be
restricted. In the model time windows will be defined
for each job when maintenance is possible. If the time

window ends before the maintenance works are fin-
ished, the crew must leave the track and wait for the
next time window.
(3) Consideration of depots. In some railway net-
works it is not possible or not common that the main-
tenance machine stays close to the track over the day.
There the machine stays in a depot. Then not only the
jobs are scheduled, but also the best depot to stay over
day must be determined and additional travel costs
must be considered.

4.2 Simulated Annealing

The basic idea of Simulated Annealing comes from
annealing processes in metallurgy. After heating the
metal the atoms are inordinated. Through the slow
cooling process they have enough time to order them-
self and to form crystals. This leads to a low-energy
state.

The algorithm starts in the “hot stage” with a
initial solution s and a high temperature T . Then
the solution s̃ is created by modifying s. Depen-
dent on the temperature T , the probability P(s, s̃,T ) =

min{1,e
z(s)−z(s̃)

T } to accept s̃ is calculated. If s̃ is ac-
cepted, then s := s̃. After that the temperature is
cooled. This step – modify solution s, accept the mod-
ified s̃ with probability P(s, s̃,T ), cool T – is repeated
until a given minimal temperature is reached. Then
the best solution is returned.

The challenge in the design of a proper Simulated
Annealing approach for an optimisation problem is
the definition of a modification heuristic to get the so-
lution s̃ and of a cooling schedule for T .

For out tamping scheduling problem at first meth-
ods from solving the TSP are implemented. The SA
starts with a random job order. The solution is mod-
ified by a 2-opt method (Meer, 2007): Two indices
0 ≤ i < j ≤ n + 1 are chosen randomly and the sub-
order between i and j is inverted. The temperature T
is cooled exponentially. This leads to a fast improve-
ment of the solution quality, but at the end the solu-
tion remains a bit fragmented. To smooth the solution
a post-optimisation method will be developed. With
this, irregularities – like jumping over a few jobs and
resolve them later – will be removed without losing
the solution structure.

4.3 Multilevel Branch and Bound

Multilevel solution approaches are common methods
in graph partitioning (Karypis and Kumar, 1996) and
VLSI-design (Cong et al., 2005). A multilevel solu-
tion approach consist of three steps:
1. Coarsening: merge objects to super objects



2. Solving: find a (nearly) optimal solution for the
super object problem

3. Refinement: transfer the solution back to the orig-
inal problem and post-optimise

Step 1 is repeated until the number of super objects
fall below a given threshold. Then the small problem
is solved (step 2). Step 3 is executed as often as step 1.
On each level the post-optimisation step can be used
to improve the solution quality.

For the tamping scheduling problem a multilevel
Branch and Bound method seems to be a promising
approach. In practise, mostly some consecutive jobs
are resolved in one working step without travelling.
Thus jobs of consecutive track sections can be merged
to one super job. Therewith the problem size is de-
creased and the application of exact methods, like a
Branch and Bound approach, is possible. The solu-
tion obtained is transferred back to the original prob-
lem. In the post-optimisation step the super job struc-
ture will be broken by rearranging single jobs in order
to improve the solution.
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